WorldWideScience

Sample records for cesium carbides

  1. The diffusion of cesium, strontium, and europium in silicon carbide

    Science.gov (United States)

    Dwaraknath, S. S.; Was, G. S.

    2016-08-01

    A novel multi-layer diffusion couple was used to isolate the diffusion of strontium, europium and cesium in SiC without introducing radiation damage to SiC and at concentrations below the solubility limit for the fission products in SiC. Diffusion occurred by both bulk and grain boundary pathways for all three fission products between 900∘ C and 1 ,300∘ C. Cesium was the fastest diffuser below 1 ,100∘ C and the slowest above this temperature. Strontium and europium diffusion tracked very closely as a function of temperature for both bulk and grain boundary diffusion. Migration energies ranged from 1.0 eV to 5.7 eV for bulk diffusion and between 2.2 eV and 4.7 eV for grain boundary diffusion. These constitute the first measurements of diffusion of cesium, europium, and strontium in silicon carbide, and the magnitude of the cesium diffusion coefficient supports the premise that high quality TRISO fuel should have minimal cesium release.

  2. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions

    International Nuclear Information System (INIS)

    Depleted uranium that included carbide inclusions was sputtered with 30keV gallium ions or 16kev cesium ions to depths much greater than the ions’ range, i.e. using steady state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U86Ga14, (UC)70Ga30 and U81Cs9, (UC)79Cs21, respectively.

  3. Irradiation effects and diffusion of fission products (cesium and iodine) in silicon carbide; Effets d'irradiation et diffusion des produits de fission (cesium et iode) dans le carbure de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Audren, A

    2007-03-15

    Silicon carbide is envisaged as a cladding material for the nuclear fuel in the fourth generation reactors. The aim of this work is to study the capacity to retain fission products and the structure evolution of this material under the combined effects of temperature and irradiation. The low energy ion implantations and the incorporation of stable analogues of fission products (Cs and I) in single crystalline 6H-SiC samples were performed by using the ion implanter or the accelerator of the CSNSM. The high energy heavy ion irradiations were made at GANIL. The evolution of the implanted ion profiles and the crystal structure were studied by RBS and Channeling. Complementary information were obtained by using the UV-visible absorption spectroscopy. The low energy ion implantations at room temperature induce a fast structural damage in the crystal. On the other hand, it is possible to attain a small disorder rate in the crystal during implantation by increasing the implantation temperature (600 C). The high energy heavy ion irradiations do not damage the SiC crystals. On the contrary, they cause an annealing of the disorder created by the low energy implantations. The implanted ions (I) do not diffuse during low or high energy ion irradiations at room temperature and at 600 C. However, a diffusion of Cs ions was observed during a post-implantation annealing at 1300 C. At this temperature, the crystal which had an extended amorphous layer starts to recover a single-crystal structure. (author)

  4. Cesium-137

    International Nuclear Information System (INIS)

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Cesium-137

  5. Decorporation of cesium-137

    International Nuclear Information System (INIS)

    Cesium radio-isotopes, especially cesium-137 (137Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, 137Cs is a major contaminant which can cause severe β, γirradiations and contaminations. 137Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the 137Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  6. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  7. Cesium-137 in biosphere

    International Nuclear Information System (INIS)

    The behaviour of cesium-137 in environment is reviewed. Problems on 137Cs migration in environment, on metabolism andbiological effects are considered. Data on nuclide accumulation in various plants, ways of their entering the man's organism are presented. It is marked that the rate of 137Cs metabolism in the man's organism depends considerably on age, sex, temperature of environment, conditions for activity, water and mineral metabolism and some other factors. It is shown that the annual effective equivalent dose per capita will increase to 2000 yr. up to 1 μSv, that constitutes 0.05% of the average value of irradiation by a natural source

  8. Cesium diffusion in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  9. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  10. Decorporation of cesium-137; Decorporation du cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Le Fleche, Ph.; Destombe, C.; Grasseau, A.; Mathieu, J.; Chancerelle, Y.; Mestries, J.C. [GMR, Direction des Recherches, Etudes et Techniques, 94 - Arcueil (France)

    1997-12-31

    Cesium radio-isotopes, especially cesium-137 ({sup 137}Cs) are among the radionuclides of main importance produced by a fission reaction in reactor or a nuclear weapon explosion. In the environment, {sup 137}Cs is a major contaminant which can cause severe {beta}, {gamma}irradiations and contaminations. {sup 137}Cs is distributed widely and relatively uniformly throughout the body with the highest concentration in skeletal muscles. A treatment becomes difficult afterwards. The purposes of this report are Firstly to compare the Prussian blue verses cobalt and potassium ferrocyanide (D.I. blue) efficiency for the {sup 137}Cs decorporation and secondly to assess a chronological treatment with D.I. blue. (author)

  11. Extraction of radioactive cesium from tea leaves

    International Nuclear Information System (INIS)

    Radioactive contamination of foodstuffs attributed to the Fukushima Daiichi nuclear disaster has become a social problem. This study investigated the extraction of radioactive cesium from the contaminated leaves to the tea. The green tea was brewed twice reusing the same leaves to study the difference in extraction of cesium between the first and second brew. Moreover, the extraction of cesium was studied in correlation to brewing time. The concentration of radioactive cesium was determined with gamma spectrometry, and the concentration of caffeine was determined with absorption spectrometry. About 40% of cesium was extracted from leaves in the first brew, and about 80% was extracted in the second brew. The extraction of cesium increased over time, and it reached about 80% after 10 minutes brew. The ratio of radioactive cesium to caffeine decreased linearly over time. This study revealed that the extraction of cesium was higher for the second brew, and a rapid increase in extraction was seen as the tea was brewed for 6 minutes and more. Therefore, the first brew of green tea, which was brewed within 5 minutes, contained the least extraction of radioactive cesium from the contaminated leaves. (author)

  12. Activity of cesium-134 and cesium-137 in game and mushrooms in Poland

    International Nuclear Information System (INIS)

    The activity of cesium-134 and cesium-137 was measured in mushrooms and game in 1986-1991. The samples were collected all over Poland and most of the measurements were carried out for export purposes. The results indicate that the activity ratio of cesium-137 to cesium-134 in some samples is not comparable to that with fallout after the Chernobyl accident. The analysis of some samples of mushrooms from 1985 showed that the activity of cesium-137 was higher compared to any other foodstuff. The level of contamination varied greatly throughout Poland

  13. Silicon carbide thyristor

    Science.gov (United States)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  14. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  15. Surface tension of liquid dilute solutions of lead-cesium and bismuth-cesium systems

    International Nuclear Information System (INIS)

    Method of the maximal pressure in a drop was used to measure the surface tension of 15 liquid dilute solutions of lead-cesium system in 0-0.214 at% concentration range and of 12 diluted solutions of bismuth-cesium system in 0-0.160 at.% cesium range from solidification temperature up to 500 dec C. It was found that cesium was characterized as surfactant in lead and bismuth melts. It was established that the temperature coefficient of surface tension changes sufficiently in maximally diluted solutions of alkali metals in bismuth and lead melts. Effect of sodium, potassium, rubidum and cesium on the value of surface tension of lead and bismuth was systematized. Growth of activity in sodium, potassium, rubidium and cesium series was noted

  16. Sorption of cesium on Latvian clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easily assimilate in organism expressly brawn woof. It is a problem if pollutant is a radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas (cesium content after good elute of clays are in table). We establish, that clay treated with 25 % sulfuric acid adsorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays. (author)

  17. Cesium and strontium ion specific exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  18. Sorption of Cesium on Latvia clays

    International Nuclear Information System (INIS)

    Cesium is like potassium - good solubility and mobile in a ground, easy assimilates in organism expressly brawn woof. It is a problem if pollutant is radioactive 137Cs. We made experiments to sorption a 2M CsF solution on some Latvian clays which mainly contain hydro micas. We establish that clay treated with 25% sulfuric acid absorb cesium two times more that waste clay. Hereto unstuck elute Cs from clays

  19. Sintered silicon carbide

    International Nuclear Information System (INIS)

    A sintered silicon carbide body having a predominantly equiaxed microstructure consists of 91 to 99.85% by weight of silicon carbide at least 95% of which is the alpha phase, up to 5.0% by weight carbonized organic material, 0.15 to 3.0% of boron, and up to 1.0% by weight additional carbon. A mixture of 91 to 99.85 parts by weight silicon carbide having a surface area of 1 to 100 m2/g, 0.67 to 20 parts of a carbonizable organic binder with a carbon content of at least 33% by weight, 0.15 to 5 parts of a boron source containing 0.15 to 3.0 parts by weight boron and up to 15 parts by weight of a temporary binder is mixed with a solvent, the mixture is then dried, shaped to give a body with a density of at least 1.60 g/cc and fired at 1900 to 22500C to obtain an equiaxed microstructure. (author)

  20. Removal of cesium from wastewater: A cesium-specific ion exchange resin

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Laboratory (SRL) have applied for a patent for an ion exchange resin that will remove cesium from water. Radioactive cesium-137 is a fission product of nuclear reactor operations. Cesium may enter the water of spent fuel holding basins through defects in fuel cladding. Control of cesium in these basins is desirable to keep personnel exposure to a minimum. Cesium is also present in the waste from reprocessing of defense nuclear reactor fuel. Research has been underway at SRL for over a decade to improve management of high-level reprocessing waste. The current technology separates the waste into soluble and insoluble components. Radioactive constituents are removed from the soluble component stream and combined with the insoluble components, which are then converted to a glass for long-term storage. Cesium is the most radioactive constituent of the soluble components stream. The SRL resin is a resorcinol-formaldehyde condensation polymer highly specific for cesium and is about 10 times more effective in removal of cesium than other ion exchange resins evaluated for use in processing defense nuclear waste. Tests have been run at SRL using both simulated and actual waste streams

  1. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  2. Radioactive cesium in Finnish mushrooms

    International Nuclear Information System (INIS)

    Surveillance of radioactive cesium in Finnish mushrooms was started in 1986 at STUK. Results of the surveillance programs carried out in Lapland and other parts of Finland are given in this report. More than 2000 samples of edible mushrooms have been analysed during 1986-2008. The 137Cs detected in the mushrooms mainly originates from the 137Cs deposition due to the accident at the Chernobyl nuclear power plant in 1986. The 137Cs concentrations of mushrooms in the end of 1970s and in the beginning of 1980s varied from some ten to two hundred becquerels per kilogram originating from the nuclear weapon test period. The uneven division of the Chernobyl fallout is seen in the areal variation of 137Cs concentrations of mushrooms, the 137Cs concentrations being about tenfold in the areas with the highest deposition compared to those where the deposition was lowest. After the Chernobyl accident the maximum values in the 137Cs concentrations were reached during 1987-88 among most species of mushrooms. The 137Cs concentrations have decreased slowly, being in 2008 about 40 per cent of the maximum values. The 137Cs concentrations may be tenfold in the mushroom species with high uptake of cesium (Rozites caperatus, Hygrophorus camarophyllus, Lactarius trivialis) compared to the species with low uptake (Albatrellus ovinus, Leccinum sp.) picked in the same area. The 137Cs contents in certain species of commercial mushrooms in Finland still exceed the maximum permitted level, 600 Bq/kg, recommended to be respected when placing wild game, wild berries, wild mushrooms and lake fish on the market (Commission recommendation 2003/274/Euratom). Therefore, the 137Cs concentrations of mushrooms should be measured before placing them on the market in the areas of the highest 137Cs deposition, except for Albatrellus ovinus, Boletus sp. and Cantharellus cibarius. The 137Cs concentrations of common commercial mushroom species, Cantharellus tubaeformis and Craterellus cornucopioides often

  3. Plasma etching of cesium iodide

    International Nuclear Information System (INIS)

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 deg. C, the minimum ion-bombardment energy for etching is Ei∼50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ∼40 nm/min at 40 deg. C to 380 nm/min at 330 deg. C. The temperature dependence corresponds to an activation energy of 0.13±0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides

  4. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  5. Perlite for permanent confinement of cesium

    Science.gov (United States)

    Balencie, J.; Burger, D.; Rehspringer, J.-L.; Estournès, C.; Vilminot, S.; Richard-Plouet, M.; Boos, A.

    2006-06-01

    We present the potential use of expanded perlite, a metastable amorphous hydrated aluminium silicate, as a permanent medium for the long-term confinement of cesium. The method requires simply a loading by mixing an aqueous cesium nitrate solution and expanded perlite at 300 K followed by densification by sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, upon careful heat treatment is demonstrated by X-ray diffraction. Leaching tests on the resulting glass-ceramics reveal a very low Cs departure of 0.5 mg m-2 d-1.

  6. Crystalline silicotitanates for cesium/strontium removal

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  7. Microbial accumulation of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested

  8. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  9. Removal of Radioactive Cesium Using Prussian Blue Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sung-Chan Jang

    2014-11-01

    Full Text Available Radioactive cesium (137Cs has inevitably become a human concern due to exposure from nuclear power plants and nuclear accident releases. Many efforts have been focused on removing cesium and the remediation of the contaminated environment. In this study, we elucidated the ability of Prussian blue-coated magnetic nanoparticles to eliminate cesium from radioactive contaminated waste. Thus, the obtained Prussian blue-coated magnetic nanoparticles were then characterized and examined for their physical and radioactive cesium adsorption properties. This Prussian blue-coated magnetic nanoparticle-based cesium magnetic sorbent can offer great potential for use in in situ remediation.

  10. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  11. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  12. Cesium vapor thermionic converter anomalies arising from negative ion emission

    Science.gov (United States)

    Rasor, Ned S.

    2016-08-01

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  13. Anomalous wetting of helium on cesium

    International Nuclear Information System (INIS)

    The authors report studies of the anomalous wetting of a cesium substrate by a liquid helium film by means of the technique of third sound. A hysteretic pre-wetting transition is observed as a function of the amount of helium in the experimental cell. 10 refs., 2 figs

  14. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  15. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  16. Palladium interaction with silicon carbide

    International Nuclear Information System (INIS)

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation

  17. Palladium interaction with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M., E-mail: Marialuisa.Gentile@manchester.ac.uk [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Abram, T. [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-07-15

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd{sub 3}Si and SiO{sub 2} phases, while the second peak and the third peak are correlated with the formation of Pd{sub 2}Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO{sub 2} phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiC{sub x}O{sub y} phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  18. Palladium interaction with silicon carbide

    Science.gov (United States)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  19. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  20. Lanthanide doped strontium-barium cesium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  1. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  2. Distribution and retention of cesium in Swedish boreal forest ecosystems

    International Nuclear Information System (INIS)

    The retention and distribution of cesium in forest environments are being studied at three locations in Sweden. The main part of the cesium found in the soil was recovered in horizons rich in organic matter. The cesium was retained in the soil organic matter in a more or less extractable form. As different soil types have a different distribution pattern of organic matter the distribution of cesium will depend on the forest soil type. The clay content in Swedish forest soils is in general low which will mitigate the retention of cesium in the soil mineral horizons. The cesium present in the tree was considered to be an effect of assimilation by the tissues in the canopy as well as by the roots. The redistribution of cesium within the trees was extensive which was considered to be an effect of a high mobility of cesium in the close system of a forest environment. The cesium will remain in the forest environment for a considerable time but can be removed by forest practice, by leaching out of the soil profile or by the radioactive decay. (au)

  3. Sorption of cesium in intact rock

    Energy Technology Data Exchange (ETDEWEB)

    Puukko, E. [Univ. of Helsinki, Dept. of Chemistry (Finland)

    2014-04-15

    The mass distribution coefficient K{sub d} is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R{sub d} is determined using crushed rock which causes uncertainty in converting the R{sub d} values to K{sub d} values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs{sup +} and it is sorbed by ion exchange. The tracer used in the experiments was {sup 134}Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  4. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu;

    Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  5. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  6. Palladium interaction with silicon carbide

    OpenAIRE

    M. Gentile, P. Xiao, T. Abram

    2015-01-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide...

  7. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  8. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed. PMID:27609195

  9. Distillation device supplies cesium vapor at constant pressure

    Science.gov (United States)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  10. Extraction of radioactive cesium from ash of flammable radioactive material

    International Nuclear Information System (INIS)

    Huge amount of radioactive materials was released by the hydrogen explosion at Fukushima Daiichi Nuclear Power Plant due to the Great East Japan Earthquake on March 11, 2011. Suppression of the volume of radioactive materials stored by decontamination works is strongly required since the preparation of storage places is not easy. We are developing the technology for separation and concentration of radioactive cesium using nano-particle, Prussian blue, as a cesium adsorption material which has a high efficiency and good selectivity. We propose a method in which radioactive cesium is extracted from the ash of flammable materials into the water and the Prussian blue nano-particles are added to the water to collect cesium. The volume of radioactive wastes contaminated by cesium is expected to be cut down with these processes. (J.P.N.)

  11. A combined cesium-strontium extraction/recovery process

    International Nuclear Information System (INIS)

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100' (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually

  12. Plutonium and Cesium Colloid Mediated Transport

    Science.gov (United States)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  13. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  14. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  15. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,mf=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,mf=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,mf=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  16. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  17. Microbial uptake of uranium, cesium, and radium

    International Nuclear Information System (INIS)

    The ability of diverse microbial species to concentrate uranium, cesium, and radium was examined. Saccharomyces cerevisiae, Pseudomonas aeruginosa, and a mixed culture of denitrifying bacteria accumulated uranium to 10 to 15% of the dry cell weight. Only a fraction of the cells in a given population had visible uranium deposits in electron micrographs. While metabolism was not required for uranium uptake, mechanistic differences in the metal uptake process were indicated. Uranium accumulated slowly (hours) on the surface of S. cerevisiae and was subject to environmental factors (i.e., temperature, pH, interfering cations and anions). In contrast, P. aeruginosa and the mixed culture of denitrifying bacteria accumulated uranium rapidly (minutes) as dense, apparently random, intracellular deposits. This very rapid accumulation has prevented us from determining whether the uptake rate during the transient between the initial and equilibrium distribution of uranium is affected by environmental conditions. However, the final equilibrium distributions are not affected by those conditions which affect uptake by S. cerevisiae. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several microbial species tested. The potential utility of microorganisms for the removal and concentration of these metals from nuclear processing wastes and several bioreactor designs for contacting microorganisms with contaminated waste streams will be discussed

  18. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution

    International Nuclear Information System (INIS)

    In order to identify a more efficient biosorbent for 137Cs, we have investigated the biosorption behavior and mechanism of 137Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of 137Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of 137Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of 137Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of 137Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. - Highlights: • Microorganisms isolated from a cesium solution are considered as a biosorbent to remove cesium ions. • The biosorption equilibrium is fitted well to a Langmuir model with a correlation coefficient of 0.9997. • First attempt to explore biosorption mechanisms using PIXE and EPBS. • Living and dead microorganisms have different biosorption mechanisms. • The biosorption of 137Cs involved a two-step process: passive and active

  19. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  20. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  1. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  2. Thermally Sprayed Silicon Carbide Coating

    OpenAIRE

    Mubarok, Fahmi

    2014-01-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during elevated temperature atmospheric spraying process. The addition of metal or ceramic binders as a matrix phase is necessary to facilitate the bonding of SiC particles, allowing SiC coatings to be deposited. In the conventional procedure, the matrix phase is added through mechanical mixing or mechanical alloying of the powder constituents, making it difficult to achieve homogeneous distr...

  3. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  4. Method to manufacture tungsten carbide

    International Nuclear Information System (INIS)

    The patent deals with an improved method of manufacturing tungsten carbide. An oxide is preferably used as initial product whose particle size and effective surface approximately corresponds to that of the endproduct. The known methods for preparing the oxide are briefly given. Carbon monoxide is passed over the thus obtained oxide particles whereby the reaction mixture is heated to a temperature at which tungsten oxide and carbon monoxide react and tungsten carbide is formed, however, below that temperature at which the tungsten-containing materials are caked or sintered together. According to the method the reaction temperature is about below 9000C. The tungsten carbide produced has a particle size of under approximately 100 A and an active surface of about 20 m2/g. It has sofar not been possible with the usual methods to obtain such finely divided material with such a large surface. These particles may be converted back to the oxide by heating in air at low temperature without changing particle size and effective surface. One thus obtains a tungsten oxide with smaller particle size and larger effective surface than the initial product. (IHOE)

  5. Synthesis and peculiarities of the cesium zeolite crystal structure (cesite)

    International Nuclear Information System (INIS)

    An attempt is made to synthesize cesium zeolite by introduction of amorphous seed crystals which correspond by composition with cesium-containing zeolite into the aluminosilicate gel, since this method can produce zeolite with a crystal structure it would not adopt under the usual conditions. It is seen that during crystablization upon introduction of a seed crystal the cesium content in zeolite decreases. A more complete structural elucidation of zeolite obtained by the suggested method was carried out by x0ray and IR spectral analyses. The data of x-ray analysis showed that the structures of synthesized zeolite and binary octagonal pores are similar

  6. Pollution of drug-technical materials by cesium-137

    International Nuclear Information System (INIS)

    Drug-technical raw materials are medicinal plants (flowers, folium, grasses, mushrooms, roots, fruits, berry, kidney, cortex), used in pharmacy. To limit receipt cesium-137 in people body in 1993 in the Republic of Belarus were created 'Temporary permission levels of the cesium-137 radionuclides contents in drug-technical raw materials' were created (TPL-1993). The permission levels of cesium-137 are following: for drug-technical raw material (flowers, folium, grass, mushrooms, roots and other plants parts) - 1850 Bq/kg, for dried up fruits and berries - 2590 Bq/kg. (Author)

  7. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Separation of 137cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137Cs leach rate was 0.001 gm/cm2/d. (author)

  8. Structural prediction for scandium carbide monolayer sheet

    Science.gov (United States)

    Ma, Hong-Man; Wang, Jing; Zhao, Hui-Yan; Zhang, Dong-Bo; Liu, Ying

    2016-09-01

    A two-dimensional tetragonal scandium carbide monolayer sheet has been constructed and studied using density functional theory. The results show that the scandium carbide sheet is stable and exhibits a novel tetracoordinated quasiplanar structure, as favored by the hybridization between Sc-3d orbitals and C-2p orbitals. Calculations of the phonon dispersion as well as molecular dynamics simulations also demonstrate the structural stability of this scandium carbide monolayer sheet. Electronic properties show that the scandium carbide monolayer sheet is metallic and non-magnetic.

  9. Methods for producing silicon carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  10. Silicon carbide fibers and articles including same

    Science.gov (United States)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  11. Polytype distribution in circumstellar silicon carbide.

    Science.gov (United States)

    Daulton, T L; Bernatowicz, T J; Lewis, R S; Messenger, S; Stadermann, F J; Amari, S

    2002-06-01

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures. PMID:12052956

  12. Structure of double hafnium and cesium sulfate

    International Nuclear Information System (INIS)

    The structure of a compound whose formula according to the structural investigation is Cssub(2+x)Hf(SOsub(4))sub(2+x)(HSOsub(4))sub(2-x)x3Hsub(2)O (x approximately 0.7) (a=10.220, b=12.004, c=15.767 A, space group Pcmn) is determined by diffractometric data (2840 reflections, anisotropic refinement, R=0.087). It is build of complex unions [Hf(SO4)4H2O]4-, Cs+ cations and water molecules. Eight O atoms surrounding Hf atom (dodecahedron Hf-O 2.10-2.22 A) belong to four sulphate groups and water molecule. Three sulphate groups are bidentate-cyclic, and one group - monodentate relative to Hf. The structure has a cesium deficit in particular positions

  13. Biosorption of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Some fundamental aspects of the biosorption of metals by microbial cells were investigated. These studies were carried out in conjunction with efforts to develop a process to utilize microbial cells as biosorbents for the removal of radionuclides from waste streams generated by the nuclear fuel cycle. It was felt that an understanding of the mechanism(s) of metal uptake would potentially enable the enhancement of the metal uptake phenomenon through environmental or genetic manipulation of the microorganisms. Also presented are the results of a preliminary investigation of the applicability of microorganisms for the removal of 137cesium and 226radium from existing waste solutions. The studies were directed primarily at a characterization of uranium uptake by the yeast, Saccharomyces cerevisiae, and the bacterium, Pseudomonas aeruginosa

  14. Atmospheric transmission for cesium DPAL using TDLAS

    Science.gov (United States)

    Rice, Christopher A.; Perram, Glen P.

    2012-03-01

    The cesium (Cs) Diode Pumped Alkali Laser (DPAL) operates near 894 nm, in the vicinity of atmospheric water vapor absorption lines. An open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope has been used to study the atmospheric transmission characteristics of Cs DPALs over extended paths. The ruggedized system has been field deployed and tested for propagation distances of greater than 1 km. By scanning the diode laser across many free spectral ranges, many rotational absorption features are observed. Absolute laser frequency is monitored with a High Finesse wavemeter to an accuracy of less than 10 MHz. Phase sensitive detection is employed with an absorbance of less than 1% observable under field conditions.

  15. Sorption of cesium and strontium by arid region desert soil

    International Nuclear Information System (INIS)

    Adsorption and ion exchange in soil systems are the principal mechanisms that retard the migration of nuclear waste to the biosphere. Cesium and strontium are two elements with radioactive isotopes (Cs137 and Sr90) that are commonly disposed of as nuclear waste. The sorption and ion exchange properties of nonradioactive cesium and strontium were studied in this investigation. The soil used in this study was collected at an experimental infiltration site on Frenchman Flat, a closed drainage basin on the Nevada Test Site. This soil is mostly nonsaline-alkali sandy loam and loamy sand with a cation exchange capacity ranging from 13 to 30 me/100g. The clay fraction of the soil contains illite, montmorillonite, and clinoptilolite. Ion exchange studies have shown that this soil sorbs cesium preferentially relative to strontium, and that charge for charge, the exchange-phase cations released from exchange sites exceed the cesium and strontium sorbed by the soil. 38 references, 22 figures

  16. Sorption of cesium on Olkiluoto mica gneiss, granodiorite and granite

    Energy Technology Data Exchange (ETDEWEB)

    Huitti, T.; Hakanen, M. [Univ. of Helsinki (Finland). Lab. of Radiochemistry; Lindberg, A. [Geological Survey of Finland, Espoo (Finland)

    1998-09-01

    Cesium was selected as a model to study the sorption in bedrock occurring by ion exchange mechanism. The aim of the study was to supplement the existing data on sorption occurring by ion exchange mechanism in bedrock of the candidate sites for spent fuel disposal at Olkiluoto. The sorption of cesium was studied on crushed mica gneiss, tonalite (granodiorite) and granite in artificial groundwaters. Fresh water was represented by Allard water, pH 8 and pH 7, and saline water by Ol-So water, pH 7 and pH 9. In addition, a Na-Ca-Cl brine water and its 1:10 dilution were used as simulants. Cesium concentrations were between 10{sup -8} and 10{sup -3} mol/l. The distribution coefficients of the sorption, R{sub d} and R{sub a} values were determined by batch method. Isotherms were partly non-linear with slopes 0.7 - 1.0 depending on rock and water. At the end of the sorption experiment, the water was analysed for cations exchanged for cesium. The sorption of cesium was also studied as a function of ionic strength. The ionic strength increased in the order Allard < 0l-Br 1:10 < 0l-So < 0l-Br. The sorption of cesium was lower at higher ionic strength and higher Cs concentration. The mineral composition of rocks was determined by thin section analysis, and the sorption distribution ratios on thin sections in the different waters were determined by batch technique. The minerals, that sorbed most cesium were determined by autoradiography. These were biotite, muscovite and chlorite. Cordierite in mica gneiss also sorbed cesium very effectively. (orig.) 12 refs.

  17. Adsorption Behaviour of Liquid 4He on Cesium Substrates

    OpenAIRE

    Iov, Valentin

    2004-01-01

    The aim of this thesis is to investigate the wetting properties of 4He on cesium substrates using optical and electrical methods. Due to the fact that the cesium substrates are deposited at low temperatures onto a thin silver underlayer, it is necessary firstly to study and understand the adsorption of helium on silver. The work presented here is structured as follows: some of the fundamental concepts on the theory of physisorbed films, such as van der Waals interaction, adsorption isotherms ...

  18. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  19. Seasonal variation of cesium 134 and cesium 137 in semidomestic reindeer in Norway after the Chernobyl accident

    Directory of Open Access Journals (Sweden)

    I.M. H. Eikelmann

    1990-09-01

    Full Text Available The Chernobyl accident had a great impact on the semidomestic reindeer husbandry in central Norway. Seasonal differences in habitat and diet resulted in large variations in observed radiocesium concentrations in reindeer after the Chernobyl accident. In three areas with high values of cesium-134 and cesium-137 in lichens, the main feed for reindeer in winter, reindeer were sampled every second month to monitor the seasonal variation and the decrease rate of the radioactivity. The results are based on measurements of cesium-134 and cesium-137 content in meat and blood and by whole-body monitoring of live animals. In 1987 the increase of radiocesium content in reindeer in Vågå were 4x from August to January. The mean reductions in radiocesium content from the winter 1986/87 to the winter 1987/88 were 32%, 50% and 43% in the areas of Vågå, Østre-Namdal and Lom respectively.

  20. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  1. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  2. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.;

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  3. An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide-silicon carbide composites

    Science.gov (United States)

    Buyuk, Bulent; Beril Tugrul, A.

    2014-04-01

    In this study, titanium diboride (TiB2) reinforced boron carbide-silicon carbide composites were investigated against Cs-137 and Co-60 gamma radioisotope sources. The composite materials include 70% boron carbide (B4C) and 30% silicon carbide (SiC) by volume. Titanium diboride was reinforced to boron carbide-silicon carbide composites as additive 2% and 4% by volume. Average particle sizes were 3.851 µm and 170 nm for titanium diboride which were reinforced to the boron carbide silicon carbide composites. In the experiments the gamma transmission technique was used to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental results and theoretical results were compared and evaluated with each other. It could be said that increasing the titanium diboride ratio causes higher linear attenuation values against Cs-137 and Co-60 gamma radioisotope sources. In addition decreasing the titanium diboride particle size also increases the linear and mass attenuation properties of the titanium diboride reinforced boron carbide-silicon carbide composites.

  4. Cesium and strontium in Black Sea macroalgae

    International Nuclear Information System (INIS)

    The trace level of metals and particularly radioactive ones should be monitored to evaluate the transfer along the trophic chain, assess the risk for biota and can be used for global changes assessment. Plants respond rapidly to all changes in the ecosystem conditions and are widely used as indicators and predictors for changes in hydrology and geology. In this work we represent our successful development and applications of a methodology for monitoring of stable and radioactive strontium and cesium in marine biota (Black Sea algae's). In case of radioactive release they are of high interest. We use ED-XRF, gamma spectrometers and LSC instrumentation and only 0.25 g sample. Obtained results are compared with those of other authors in same regions. The novelty is the connection between the radioactive isotopes and their stable elements in algae in time and space scale. All our samples were collected from Bulgarian Black Sea coast. - Highlights: • An extraction chromatography method for radiochemical separation of Sr and Cs. • Assessment of Sr and Cs accumulation capacity of six Black Sea macroalgae species. • Connection between the isotopes and their stable elements content in algae. • Assessment of Sr and Cs content in ecosystems along the Bulgarian coast

  5. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  6. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  7. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri, E-mail: joskit@igcar.gov.in [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Kutty, K.V. Govindan [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Goswami, M.C. [National Metallurgical Laboratory, Jamshedpur 831 007 (India); Rao, P.R. Vasudeva [Chemistry Group, IGCAR, Kalpakkam 603 102 (India)

    2014-07-01

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs{sub 2}O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (E{sub c}) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth.

  8. Cesium corrosion process in Fe–Cr steel

    International Nuclear Information System (INIS)

    A cesium corrosion out-pile test was performed to Fe–Cr steel in a simulated fuel pin environment. In order to specify the corrosion products, the corroded area was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A cesium corrosion process in Fe–Cr steel was successfully developed proceeding from both experimental results and thermochemical consideration. The corroded area was mainly formed by Fe layer and Fe depleted oxidized layer. The Fe depleted oxidized layer was formed by Cr0.5Fe0.5 and Cr2O3. The presumed main corrosion reactions were 2Cr+2/3 O2→Cr2O3(ΔG650°C=-894.1kJ/mol) and Cr23C6+46Cs+46O2→23Cs2CrO4+6C(ΔG650°C=-25018.1kJ/mol). Factors of these reactions are chromium, carbon, oxygen and cesium. Therefore, cesium corrosion progression must be dependent on the chromium content, carbon content in the steel, the supply rate of oxygen and temperature which correlated with the diffusion rate of cesium and oxygen into the specimen

  9. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs2O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (Ec) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth

  10. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  11. Dissociative excitation of cesium atom upon e-CsOH collisions

    International Nuclear Information System (INIS)

    The process of dissociative excitation of cesium atom in collisions with mono-kinetic molecules of cesium hydroxide is studied. It is established that behaviour of dissociative excitations the cesium atom in spectral series corresponds of to the grade dependence of cross sections on the main quantum number of the upper level. The values of constants, characterizing the behaviour of cross sections in the eight spectral series of the cesium atom are determined

  12. Structural diversity in lithium carbides

    Science.gov (United States)

    Lin, Yangzheng; Strobel, Timothy A.; Cohen, R. E.

    2015-12-01

    The lithium-carbon binary system possesses a broad range of chemical compounds, which exhibit fascinating chemical bonding characteristics, which give rise to diverse and technologically important properties. While lithium carbides with various compositions have been studied or suggested previously, the crystal structures of these compounds are far from well understood. In this work, we present the first comprehensive survey of all ground state (GS) structures of lithium carbides over a broad range of thermodynamic conditions, using ab initio density functional theory (DFT) crystal structure searching methods. Thorough searches were performed for 29 stoichiometries ranging from Li12C to LiC12 at 0 and 40 GPa. Based on formation enthalpies from optimized van der Waals density functional calculations, three thermodynamically stable phases (Li4C3 , Li2C2 , and LiC12) were identified at 0 GPa, and seven thermodynamically stable phases (Li8C , Li6C , Li4C , Li8C3 , Li2C , Li3C4 , and Li2C3 ) were predicted at 40 GPa. A rich diversity of carbon bonding, including monomers, dimers, trimers, nanoribbons, sheets, and frameworks, was found within these structures, and the dimensionality of carbon connectivity existing within each phase increases with increasing carbon concentration. We find that the well-known composition LiC6 is actually a metastable one. We also find a unique coexistence of carbon monomers and dimers within the predicted thermodynamically stable phase Li8C3 , and different widths of carbon nanoribbons coexist in a metastable phase of Li2C2 (Imm2). Interesting mixed sp2-sp3 carbon frameworks are predicted in metastable phases with composition LiC6.

  13. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  14. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  15. Controllable evaporation of cesium from a dispenser oven

    Science.gov (United States)

    Fantz, U.; Friedl, R.; Fröschle, M.

    2012-12-01

    This instrument allows controlled evaporation of the alkali metal cesium over a wide range of evaporation rates. The oven has three unique features. The first is an alkali metal reservoir that uses a dispenser as a cesium source. The heating current of the dispenser controls the evaporation rate allowing generation of an adjustable and stable flow of pure cesium. The second is a blocking valve, which is fully metallic as is the body of the oven. This construction both reduces contamination of the dispenser and enables the oven to be operated up to 300 °C, with only small temperature variations (metal at a cold spot is significantly hindered. The last feature is an integral surface ionization detector for measuring and controlling the evaporation rate. The dispenser oven can be easily transferred to the other alkali-metals.

  16. Dating of mine waste in lacustrine sediments using cesium-137

    Science.gov (United States)

    Rember, W. C.; Erdman, T. W.; Hoffmann, M. L.; Chamberlain, V. E.; Sprenke, K. F.

    1993-11-01

    For over a century Medicine Lake in northern Idaho has received heavy-metal-laden tailings from the Coeur d'Alene mining district. Establishing the depositional chronology of the lake bottom sediments provides information on the source and rate of deposition of the tailings. Cesium-137, an isotope produced in the atmosphere by nuclear bomb tests, was virtually absent in the environment prior to 1951, but reached its apex in 1964. Our analysis of cesium-137 in the sediments of Medicine Lake revealed that 14 cm of fine-grained tailings were deposited in the lake from 1951 to 1964 and tailing deposition downstream was greatly reduced by the installation of tailings dams in the district in 1968. Cesium-137 analysis is accomplished by a fairly simple gamma-ray counting technique and should be a valuable tool for analyzing sedimentation in any lacustrine environment that was active during the 1950s and 1960s.

  17. Cesium 137 in oils and plants from Guatemala

    International Nuclear Information System (INIS)

    Since 1990 the project of radioactive and environmental contamination started in Guatemala. Studies about the radioactive contamination levels are made within the framework of this project. Cesium-137 has been an interest radionuclide, because it is a fission product released to the environment by the use of nuclear weapons and nuclear power plants accidents. The sampling consisted in collection of soil and grass in 20 provinces of Guatemala, one point by province, and it was made in 1990. The cesium-137 concentration in the samples, was determined by gamma spectrometry, using an hyper pure germanium detector. The results show the presence of radioactive contamination in soil and grass due to cesium-137, at levels that might be considered as normal. The levels found are not harmful for human health, and its importance is the fact that can be used as reference levels for the environmental radioactivity monitoring in Guatemala

  18. Study of radiatively sustained cesium plasmas for solar energy conversion

    Science.gov (United States)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  19. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  20. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  1. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 oC. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  2. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  3. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  4. Ultrarapid microwave synthesis of superconducting refractory carbides

    International Nuclear Information System (INIS)

    Nb1-xTaxC Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; Tc correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  6. Influence of Rare Earth on Carbide in Weld Metal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Bin; REN Deng-Yi

    2003-01-01

    The influence of rare earths (RE) on carbides in high carbon steel weld metal was studied by transmission electron microscope (TEM) and energy dispersive X-ray microanalysis (EDX). It is found that rare earth markedly affects the quantity, morphology and distribution of carbides. The precipitating mechanism of carbides was proposed in which rare earth compounds with high surface energy serve as the nucleation sites for carbides in superheated liquid metal and the induced carbides are precipitated extensively and distributed evenly. The preferential precipitation of carbides decreases the carbon content in matrix, which is transformed into low carbon lath martensite after welds are chilled to room temperature.

  7. Sorption of cesium in young till soils

    Energy Technology Data Exchange (ETDEWEB)

    Lusa, Merja; Lempinen, Janne; Ahola, Hanna; Soederlund, Mervi; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry; Lahdenperae, Anne-Maj [Saanio and Riekkola Oy, Consulting Engineers, Helsinki (Finland); Ikonen, Ari T.K. [Posiva Oy, Eurajoki (Finland)

    2014-10-01

    Soil samples from three forest soil pits were examined down to a depth of approximately three metres using 1 M ammonium acetate extraction and microwave-assisted extraction with concentrated nitric acid (HNO{sub 3}), to study the binding of cesium (Cs) at Olkiluoto Island, southern Finland. Ammonium acetate was used to extract the readily exchangeable Cs fractions roughly representing the Cs fraction in soil which is available for plants. Microwave-assisted HNO{sub 3} extraction dissolves various minerals, e.g. carbonates, most sulphides, arsenides, selenides, phosphates, molybdates, sulphates, iron (Fe) and manganese (Mn) oxides and some silicates (olivine, biotite, zeolite), and reflects the total Cs concentrations. Cs was mostly found in the strongly bound fraction obtained through HNO{sub 3} extraction. The average Cs concentrations found in this fraction were 3.53 ± 0.30 mg/kg (d.w.), 3.06 ± 1.86 mg/kg (d.w.) and 1.83 ± 0.42 mg/kg (d.w.) in the three soil pits, respectively. The average exchangeable Cs found in the ammonium acetate extraction in all three sampling pits was 0.015 ± 0.008 mg/kg (d.w.). In addition, Cs concentrations in the soil solution were determined and in situ distribution coefficients (K{sub d}) for Cs were calculated. Furthermore, the in situ K{sub d} data was compared with the Cs K{sub d} data obtained using the model batch experiments. The in situ K{sub d} values were observed to fairly well follow the trend of batch sorption data with respect to soil depth, but on average the batch distribution coefficients were almost an order of magnitude higher than the in situ K{sub d} data. In situ Cs sorption data could be satisfactory fitted with the Langmuir sorption isotherm, but the Freundlich isotherm failed to fit the data. Finally, distribution coefficients were calculated by an ion exchange approach using soil solution data, the cation exchange capacity (CEC) as well as Cs to sodium (Na) and Cs to potassium (K) ion exchange selectivity

  8. Cesium-137 Levels Detected in Otters from Austria

    Directory of Open Access Journals (Sweden)

    Gutleb A.C.

    1991-02-01

    Full Text Available Pollution seems to be one of the most important causes for the decline of the European otter (Lutra lutra. The accident in the Chernobyl nuclear power plant added another aspect to environmental pollution. Few data on cesium-137 contents in otters are available, so levels were measured in 3 otters from Austria. All levels found were very low.

  9. Membrane-based separation technologies for cesium, strontium, and technetium

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, T.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with 3M, St. Paul, Minnesota, working in cooperation with IBC Advanced Technologies, American Fork, Utah.

  10. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    International Nuclear Information System (INIS)

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met

  11. Discovery of Cesium, Lanthanum, Praseodymium and Promethium Isotopes

    OpenAIRE

    May, E.; Thoennessen, M

    2011-01-01

    Currently, forty-one cesium, thirty-five lanthanum, thirty-two praseodymium, and thirty-one promethium, isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  12. Strontium-90 and cesium-137 in fresh water

    International Nuclear Information System (INIS)

    Japan Chemical Analysis Center has analysed the strontium-90 and Cesium-137 contents in fresh water from 7 prefectures in Japan by the commission of Science and Technology Agency of Japanese Government. The method described in ''Radioactivity Survey Data in Japan No. 43 (NIRS-RSD-43, 1977) was applied to the analysis of these two radionuclides in samples. (author)

  13. Some aspects of cesium deposition in Transilvania (Romania)

    International Nuclear Information System (INIS)

    Following the accident of the Chernobyl atomic electric power station, a great quantity of radionuclides (∼100MCi) escaped from the reactor. It was estimated that 13% of the inventory activity of cesium representing 1.5-2 MCi left the reactor. The radioactive deposits were very nonuniform for the same distance and in the same direction from Chernobyl nuclear center having a close dependence upon direction and speed of wind and pluviometric conditions. The rains, especially the storms, spectacularly increased the radioactive fallout. Although, for the first two-three days, subsequent to accident, the meteorological conditions were favorable for Romania, after April 29/30, because of the changing in the wind direction on SW (initial it was N and NW) the countries were on this direction - Romania, Bulgaria, Greece, former Yugoslavia - began to be intensely contaminated with radioactive fallout. In Romania, the radioactive cloud passing coincided with abundant rains, especially on the direction mentioned above. On this direction, the cesium deposits are of 8-2 times larger than other Romanian regions. The torrential rain which fell on May 1st 1986, in the western side of Cluj Napoca town caused an intense contamination especially with short-life isotopes as Te, I, Ba, La, Mo. Medium and long-life isotopes as Ru, Zr, Cs, Sr were present in large quantities in this area.too. For the total contribution the value obtained was 1130 kBq/m2, much larger than the average in Romania. This work presents data about cesium content of pollen samples gathered daily between 1-30 May 1986; cesium deposits in five areas and some measurements in connection with cesium mitigation in soils

  14. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  15. CALPHAD study of cubic carbide systems with Cr

    OpenAIRE

    He, Zhangting

    2015-01-01

    Cubic carbides (titanium, tantalum, niobium, and zirconium carbides) can constitute a significant proportion of so-called cubic and cermet grades, where it is added to substitute a portion of tungsten carbide. It is thus critical to understand and be able to thermodynamically model the cubic carbide systems. In order to do this, the thermodynamic descriptions of lower order systems, such as the Ti-Cr-C system, need to be well studied. To approach this goal, an extensive literature survey of t...

  16. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  17. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  18. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  19. Distribution and retention of cesium and strontium in Swedish boreal forest ecosystems

    International Nuclear Information System (INIS)

    The retention and distribution of cesium, and to some extent strontium, in forest environments are being studied at three sites in Sweden. The main part of the cesium found in the soil was recovered in horizons rich in organic matter. The cesium was retained in the soil organic matter in a more or less extractable form. As different soil types have a different distribution pattern of organic matter, the distribution of cesium will depend on the forest soil type. The clay content in Swedish forest soils is, in general, low which will mitigate the retention of cesium in the soil mineral horizons. The cesium and strontium present in the trees was considered to be an effect of assimilation by the tissues in the canopy as well as by the roots. The redistribution of cesium within the trees was extensive which was considered to be the effect of a high mobility of cesium in the trees. The recovery of strontium-90 in pines, in relation to the deposition rate was higher compared to the relative recovery of cesium-137, 30 years after deposition. The cesium and strontium will remain in the forest environment for a considerable time but can be reduced by forest practice, by leaching out of the soil profile or by radioactive decay

  20. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  2. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  3. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  4. Cesium-137, a drama recounted; Cesio-137, um drama recontado

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Suzane de Alencar

    2013-01-15

    The radiological accident with Cesium-137, which started on Goiania in 1987, did not stop with the end of radiological contamination and continues in a judicial, scientific and narrative process of identification and recognition of new victims. The drama occupies a central place on the dynamics of radiological event, as it extends its limits, inflects its intensity and updates the event. As a narrative of the event, the ethnography incorporates and brings up to date the drama as an analysis landmark and the description of the theme as it is absorbed by a dramatic process. Cesium-137, a drama recounted is a textual experimentation based on real events and characters picked out from statements reported in various narratives about the radiological accident. (author)

  5. Trapping and cooling cesium atoms in a speckle field

    International Nuclear Information System (INIS)

    We present the results of two experiments where cold cesium atoms are trapped in a speckle field. In the first experiment, a YAG laser creates the speckle pattern and induces a far-detuned dipole potential which is a nearly-conservative potential. Localization of atoms near the intensity maxima of the speckle field is observed. In a second experiment we use two counterpropagating laser beams tuned close to a resonance line of cesium and in the lin perpendicular to lin configuration, one of them being modulated by a holographic diffuser that creates the speckle field. Three-dimensional cooling is observed. Variations of the temperature and of the spatial diffusion coefficient with the size of a speckle grain are presented. (orig.)

  6. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  7. Cesium exchange reaction on natural and modified clinoptilolite zeolites

    International Nuclear Information System (INIS)

    Cesium cation exchange reaction with K, Na, Ca and Mg ions on natural and modified clinoptilolite has been studied. Batch cation-exchange experiments were performed by placing 0.5 g of clinoptilolite into 10 ml or 20 ml of 1 x 10-3M CsCl solution for differing times. Two type deposits of clinoptilolite zeolites from, Nizny Hrabovec (NH), Slovakia and Metaxades (MX), Greece were used for ion-exchange study. The distribution coefficient (Kd) and sorption capacity (Γ) were evaluated. For the determination of K, Na, Ca and Mg isotachophoresis method, the most common cations in exchange reaction was used. Cesium sorption was studied using 137Cs tracer and measured by γ-spectrometry. (author)

  8. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    International Nuclear Information System (INIS)

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the Λ scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The |Fg = 3> → |Fe = 4> resonance pumping can result in the ground state |Fg = 4, mF = 4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg = 4> → |Fe = 3> transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field. (atomic and molecular physics)

  9. Fiber laser system for cesium and rubidium atom interferometry

    CERN Document Server

    Diboune, Clément; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre

    2016-01-01

    We present an innovative fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing fiber components at these wavelengths, we demonstrate an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium. This result highlights the promising nature of such laser system especially for Cs manipulation for which no fiber laser system has been reported. It offers new perspectives for the development of atomic instruments dedicated to onboard applications and opens the way to a new generation of atom interferometers involving three atomic species $^{85}$Rb, $^{87}$Rb and $^{133}$Cs for which we propose an original laser architecture.

  10. Studies on the Separation of Cesium From Fission Products

    Institute of Scientific and Technical Information of China (English)

    QIANLi-juan; ZHANGSheng-dong; GUOJing-ru; CUIAn-zhi; YANGLei; WUWang-suo

    2003-01-01

    135Cs is a long-life fission product. When measuring its thermal cross section, we must separate radiochemical purity cesium from fission products. Except for decontaminating radio- nuclides, others which can be activated must be avoided to come into solution. So ion exchanger is used. Inorganic ion exchangers have received increased attention because of their high resistance to radiation and their very efficient separation of alkali metal ions.

  11. Optimized production of a cesium Bose-Einstein condensate

    OpenAIRE

    Kraemer, Tobias; Herbig, Jens; Mark, Michael; Weber, Tino; Chin, Cheng; Naegerl, Hanns-Christoph; Grimm, Rudolf

    2004-01-01

    We report on the optimized production of a Bose-Einstein condensate of cesium atoms using an optical trapping approach. Based on an improved trap loading and evaporation scheme we obtain more than $10^5$ atoms in the condensed phase. To test the tunability of the interaction in the condensate we study the expansion of the condensate as a function of scattering length. We further excite strong oscillations of the trapped condensate by rapidly varying the interaction strength.

  12. Radioactive cesium. Dynamics and transport in forestal food-webs

    International Nuclear Information System (INIS)

    This report summarises results from a radioecological study during 1994-1995 concerning turnover, redistribution and loss of radioactive Cesium (134 and 137) in boreal forest ecosystems, as well as uptake and transfer in important food-chains over moose, vole and vegetation. The basis for this report are 9 publications published 1994-95. These reports are presented in summary form. 9 refs, 17 figs

  13. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 104 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  14. Corrections to our results for optical nanofiber traps in Cesium

    CERN Document Server

    Ding, D; Choi, K S; Kimble, H J

    2012-01-01

    Several errors in Refs. [1, 2] are corrected related to the optical trapping potentials for a state-insensitive, compensated nanofiber trap for the D2 transition of atomic Cesium. Section I corrects our basic formalism in Ref. [1] for calculating dipole-force potentials. Section II corrects erroneous values for a partial lifetime and a transition wavelength in Ref. [1]. Sections III and IV present corrected figures for various trapping configurations considered in Refs. [1] and [2], respectively.

  15. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  16. Ceramic Fabric Coated With Silicon Carbide

    Science.gov (United States)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  17. Direct plasmadynamic synthesis of ultradisperse silicon carbide

    Science.gov (United States)

    Sivkov, A. A.; Nikitin, D. S.; Pak, A. Ya.; Rakhmatullin, I. A.

    2013-01-01

    Ultradisperse cubic silicon carbide (β-SiC) has been obtained by direct plasmadynamic synthesis in pulsed supersonic carbon-silicon plasma jet incident on a copper obstacle in argon atmosphere. The powdered product has a high content of β-SiC in the form of single crystals with average size of about 100 nm and nearly perfect crystallographic habit.

  18. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  19. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  20. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  1. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  2. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  3. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  4. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  5. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  6. Laboratory plant for the separation of cesium from waste solutions of the PUREX process

    International Nuclear Information System (INIS)

    A laboratory plant for the separation of cesium from a fission product waste solution of the fuel reprocessing is described. The plant consists of two stages. In the first stage cesium is adsorbed on ammonium molybdatophosphate (AMP). Then the adsorbent is dissolved. From the solution cesium is adsorbed on a cationic ion exchanger in the second stage. Then AMP can be reproduced from this solution. For the elution of cesium in the second stage a NH4NO3 solution (3 m) is used. Flow sheet, construction and the control device of the plant are described and the results of tests with a model solution are given. (author)

  7. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs2O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  8. Mobility of cesium through the Callovo-Oxfordian claystones under partially saturated conditions

    International Nuclear Information System (INIS)

    The diffusion of cesium was studied in an unsaturated core of Callovo-Oxfordian claystone, which is a potential host rock for retrievable disposal of high-level radioactive wastes. In-diffusion laboratory experiments were performed on rock samples with water saturation degrees ranging from 81% to 100%. The analysis of both cesium concentration monitoring in the source reservoir and postmortem cesium rock concentration profile of the samples was carried out using a chemical-transport code where the sorption of cesium was described by a multi-site ion-exchange model. The results showed that cesium exhibited a clear trend related to the saturation degree of the sample. The more dehydrated the rock sample, the slower the decrease of cesium concentration, and the thinner the penetration depth of cesium was. The effective diffusion coefficient (De) for cesium decreased from 18.5 *10-11 m2 s-1 at full-saturation to 0.3 * 10-11 m2 s-1 for the more dehydrated sample. This decrease is almost 1 order of magnitude higher than that for tritiated water (HTO), although a similar behavior could have been expected, since cesium is known to diffuse in the same parts of the pore space as HTO in fully saturated claystones. (authors)

  9. Cesium transport in Four Mile Creek of the Savannah River Plant

    International Nuclear Information System (INIS)

    The behavior of a large radioactive cesium release to a Savannah River Plant (SRP) stream was examined using a stable cesium release to Four Mile Creek. Measurements following the release show that most of the cesium released was transported downstream; however, sorption and desorption decreased the maximum concentration and increased the travel time and duration, relative to a dye tracer, at sampling stations downstream. The study was made possible by the development of an analytical technique using ammonium molybdophosphate and neutron activation that permitted the measurement of stable cesium concentrations as low as 0.2 μg/L

  10. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    OpenAIRE

    Houssni El-Saied; Samya El-Sherbiny; Omnia Ali; Wafaa El-Saied; Said Rohyem

    2013-01-01

    In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+) on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the...

  11. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  12. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  13. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  14. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author)

  15. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH3)2Si][CH3Si]. The polysilane contains from 0 to 60 mole percent (CH3)2Si units and from 40 to 100 mole percent CH3Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 1500C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  16. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    Science.gov (United States)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  17. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  18. Magnetism of hydrogen-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Spin-polarized density functional theory is used to study two-hydrogen defect complexes in silicon carbide. We find that the magnetism depends on the distances of the two hydrogen atoms. Magnetism appears when the two hydrogen defects are distant from each other, and magnetism cancels out if they are close to each other. The critical distance between the two hydrogen defects is determined.

  19. Interaction of energetic tritium with silicon carbide

    International Nuclear Information System (INIS)

    In order to investigate the physical and chemical interactions of energetic hydrogen isotope species with silicon carbide, recoil tritium from the 3He(n,p)T reaction has been allowed to react with K-T silicon carbide and silicon carbide powder. The results show that if the silicon carbide has been degassed and annealed at 14000C prior to tritium bombardment, a considerable fraction of the tritium (ca. 40%) is released as HTO from the SiC upon heating to 13500C under vacuum conditions. Most of the remaining tritium is retained in SiC, e.g., the retention of the tritium in the K-T SiC was found to be 62 and 22% upon heating to 600 and 13500C, respectively. This is in direct contrast to graphite samples in which the tritium is not released to any significant extent even when heated to 13500C. Samples which were exposed to H2O and H2 prior to tritium bombardment were heated to 6000C after the irradiation. The results obtained indicate that a total of 38.7 and 2.49% of the tritium is released in the form of HT and CH3T in the case of H2 or H2O exposure, respectively. Treatment of degassed samples after tritium bombardment with H2O and H2 at temperatures up to 10000C leads to the release of up to 44.9% of the tritium as HT and CH3T. 42 references, 2 figures, 2 tables

  20. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  1. Cutting Performance and Mechanism of RE Carbide Tools

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research of rare earth elements (RE), added into cemented carbide tools, is one of the recent developments of new types of tool materials in China. Systematic experiments about RE carbides YG8R (K30), YT14R (P20) and YW1R (M10) were made to study on the cutting performance in comparison with non-RE carbides YG8, YT14 and YW1. The cutting experiments were as follows: tool life, cutting force, tool-chip friction coefficient and interrupted machining. The action of RE on the carbide materials and the cutting mechanism of the RE carbide tools in the cutting process were verified with the aid of SEM and energy spectrum analysis. Experimental results show that the RE carbide tools have a good overall performance.

  2. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  3. Cesium-137 inventories in undisturbed areas in different regions of Brazil

    International Nuclear Information System (INIS)

    Cesium-137 is an anthropogenic radionuclide introduced in the environment in the early of 1960s to the end of 1970s. The Cesium-137 has very used to assess soil redistribution in the landscape because this is very tight in the fine soil particles and its movement in the landscape is due to soil redistribution. To use Cesium-137 to assess soil redistribution is need to known the Cesium-137 inventory in an area that not has experimented soil erosion neither soil deposition. So, this work present Cesium-137 inventories in undisturbed areas in different regions of Brazil, from South to Northeast of Brazil. The inventories in these areas represent the variational deposition of Cesium-137 in the whole national territory of Brazil. The inventories of Cesium-137 varied from 200 ± 15 Bq.m-2 for South region to 15 ± 2 Bq.m-2 for Northeast region. Moreover, was verified that the Cesium- 137 inventories depend on latitude and altitude of the area. (author)

  4. Peculiarities of presence of cesium-137 in soil at Azgir test site grounds

    International Nuclear Information System (INIS)

    The granulometric composition of soil and the distribution of cesium-137 by soil fractions at the Azgir test site was determined. The characterization of cesium-137 presence in the layer of the thickness of 1 cm of the surface soil was gave. (author)

  5. Velocity Distribution of Effective Atoms in a Small Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, the velocity distribution of effective atoms in a small optically pumped cesium beam frequency standard has been achieved from the Fourier transforms of the experimentally recorded Ramsey patterns. The result fits well with the theoretical calculation. The second order Doppler shift correction of the small cesium atomic clock is obtained from the velocity distribution of effective atoms.

  6. Vacuum squeezed light for atomic memories at the D2 cesium line

    CERN Document Server

    Burks, Sidney; Giacobino, Elisabeth; Laurat, Julien; Ortalo, Jérémie; Jia, Xiaojun; Villa, Fabrizio; Chuimmo, Antonino

    2008-01-01

    We report the experimental generation of squeezed light at 852 nm, locked on the Cesium D2 line. 50% of noise reduction down to 50 kHz has been obtained with a doubly resonant optical parametric oscillator operating below threshold, using a periodically-polled KTP crystal. This light is directly utilizable with Cesium atomic ensembles for quantum networking applications

  7. Ionizing mechanisms in a cesium plasma irradiated with a ruby laser

    Science.gov (United States)

    Shimada, K.; Robinson, L. B.

    1975-01-01

    A cesium filled diode--laser plasmadynamic converter was built to investigate the feasibility of converting laser energy to electrical energy at large power levels. Experiments were performed with a pulsed ruby laser to determine the quantity of electrons and cesium ions generated per pulse of laser beam and to determine the output voltage. A current density as high as 200 amp/sq cm from a spot of approximately 1 sq mm area and an open circuit voltage as high as 1.5 volts were recorded. A qualitative theory was developed to explain these results. In the operation of the device, the laser beam evaporates some of the cesium and ionizes the cesium gas. A dense cesium plasma is formed to absorb further the laser energy. Results suggest that the simultaneous absorption of two ruby laser photons by the cesium atoms plays an important role in the initial ionization of cesium. Inverse bremsstrahlung absorption appears to be the dominant mechanism in subsequent processes. Recombinations of electrons and cesium ions appear to compete favorably with the simultaneous absorption of two photons.

  8. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  9. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  10. Cesium-137 inventory of the undisturbed soil areas in the Londrina Region, Parana, Brazil

    International Nuclear Information System (INIS)

    Cesium-137 is an artificial radionuclide introduced in the environment through the radioactive fallout of the superficial tests of nuclear weapons. The cesium-137 deposition occurred to middles of the 1980-decade and, due to the Chernobyl accident, great part of Europe had a additional fallout of cesium-137. The contaminations of this accident do not have reached Southern Hemisphere. Cesium-137 is an alkaline metal, high electropositive, that in contact with the soil is strongly adsorbed to the clay in the FES (Frayed Edge Sites) and RES (Regular Edge Sites) positions, and it movement by chemical processes in the soil is insignificant. Because of this, cesium-137 became a good soil marker, and its movement is related to the soil movement particles, so that the cesium-137 have been used in the study of the soil redistribution processes, as a tool of quantifying the rates of soil losses and gain. To use this methodology, it is necessary the knowledge of the reference inventory of cesium-137, that is given as function of the total concentration of cesium-137 deposited in an area by the radioactive fallout. If a sampling point presents less cesium-137 than the reference inventory, this point is considered a point with soil loss; otherwise, the point is considered a point with soil deposition. To evaluate the cesium-137 inventory in the Londrina region, four areas of the undisturbed soil were sampling in grid of 3x3, with a distance of 9 meters among the points. Of these four sampling areas, three areas were of native forest (labeled Mata1, Mata2 and Mata UEL), and one was a pasture area. Cesium-137 inventory was 223 ± 41 Bq m-2, 240 ± 65 Bq m-2 and 305 ± 36 Bq m-2 for Mata UEL, Mata1 and Mata2, respectively, and of 211 ± 28 Bq m-2 for the native pasture. Considering the deviation in each value, it is not possible to conclude that there are differences among the values of cesium-137 inventory, so that the average reference inventory of cesium-137 for the Londrina

  11. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  12. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  13. Microstructural and Mechanical characterization of WC-Co cemented carbides

    OpenAIRE

    Zakia, Rizki

    2013-01-01

    WC-Co cemented carbides are ceramic-metal composite materials made of carbides embedded in a metal phase that acts as a binder. They exhibit an exceptional combination of strength, toughness and wear resistance as a result of the extremely different properties of their two constitutive phases. Consequently, cemented carbides have been positioned as suitable options when selecting materials for tribomechanical applications, and their implementation continues to gain a place in t...

  14. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  15. Delivering carbide ligands to sulfide-rich clusters.

    Science.gov (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper

    2016-02-01

    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  16. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  17. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Shu; WANG Yuan-jie; YU Xian-wang; XIONG Xiang-jun

    2008-01-01

    A fine and platelet tungsten carbide patterned structure with fine yttrium containing dispersed phase was observed in liquid phase sintered WC-20%Co-1%Y2O3 cemented carbide with ultrafine tungsten carbide and nano yttrium oxide as starting materials. By comparing the microstructures of the alloy prepared by hot-press at the temperature below the eutectic melting temperature and by conventional liquid phase sintering, it is shown that hexagonal and truncated trigonal plate-like WC grains are formed through the mechanism of dissolution-precipitation (recrystallization) at the stage of liquid phase sintering. Yttrium in the addition form of oxide exhibits good ability in inhibiting the discontinuous or inhomogeneous WC grain growth in the alloy at the stage of solid phase sintering.

  18. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  19. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  20. [Variation in amount of radioactive cesium before and after cooking dry shiitake and beef].

    Science.gov (United States)

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    We investigated the change of radioactive cesium content in food due to cooking in order to estimate the internal radiation exposure due to from radioactive materials in food. Our results revealed that soaking dry shiitake in water decreased the radioactive cesium content by about 50%, compared with that present in uncooked shiitake. Radioactive cesium in beef was decreased by about 10%, 12%, 60-65% and 80% by grilling, frying, boiling and stewing, respectively, compared to uncooked beef. For cooked beef, the decrease in the ratio of radioactive cesium was significantly different among the types of cooking. The decrease ratio of radioactive cesium in boiled and stewed beef was 8 times higher than that in grilled and fried beef.

  1. Sensitive Detection of Cold Cesium Molecules by Radiative Feshbach Spectroscopy

    OpenAIRE

    Chin, Cheng; Kerman, Andrew J.; Vuletić, Vladan; Chu, Steven

    2002-01-01

    We observe the dynamic formation of $Cs_2$ molecules near Feshbach resonances in a cold sample of atomic cesium using an external probe beam. This method is 300 times more sensitive than previous atomic collision rate methods, and allows us to detect more than 20 weakly-coupled molecular states, with collisional formation cross sections as small as $\\sigma =3\\times 10^{-16}$cm$^2$. We propose a model to describe the atom-molecule coupling, and estimate that more than $2 \\times 10^5$ $Cs_2$ mo...

  2. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; GENG; Tao; YAN; Shubin; LI; Gang; ZHANG; Jing; WANG; Junmin; PENG; Kunchi; ZHANG; Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  3. Cesium fallout in Norway after the Chernobyl accident

    International Nuclear Information System (INIS)

    Results of country-wide measurements of 137Cs and 134 Cs in soil samples in Norway after the Chernobyl accident are reported. The results clearly demonstrates that municipalities in the central part of southern Norway, Troendelag and the southern part of Nordland, have been rather heavily contaminated. The total fallout of 137Cs and 134Cs from the Chernobyl accident in Norway is estimated to 2300 TBq and 1200 TBq, respectively. This is approximately 6% of the cesium activity released from the reactor

  4. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  5. Thermodynamic and kinetic study of uranium carbide pyrophoricity

    International Nuclear Information System (INIS)

    This research thesis concerns the development of nuclear reactors of fourth generation, and more particularly the use of carbide fuels instead of oxide fuels. An experimental part allows the investigation of mechanisms resulting in the pyrophoric reaction of a powder of uranium carbide, and addresses the determination of kinetic parameters intrinsic to the oxidation of powdered uranium carbide. Experimental results are then used to develop models of oxidation of powders of carbide uranium which are applied to a simplified mono-dispersed powder, and then introduced in a computation code. Simulation results are compared with experimental results

  6. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  7. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  8. Morphological and electrical properties of zirconium vanadate doped with cesium

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2014-09-01

    Full Text Available Cesium doped zirconium vanadate ZrV2O7 with different Cs dopant content (Cs/Zr varied from 0 to 0.5 in weight ratio were fabricated by hydrothermal technique at 120 °C for 60 min. The synthesized materials are thermally treated using microwave technique. The structural and morphological properties of the synthesized materials and thermally treated samples were investigated using XRD and SEM respectively. It was evident that all synthesized specimens have cubic phase structural without any extra phase but after heat treatment Orthorhombic phase appear with doped samples. However, the morphological structure of the doped synthesized materials has transferred from nanoparticles into rods aspect with heat treatment for the different dopant ratio. Moreover, the electrical properties of both the synthesized and thermally treated materials are studied by AC impedance measurements. The results indicated that the ionic conductivity of Cs-doped ZrV2O7 materials decreased by increasing the dopant ratio while that thermally treated samples the ionic conductivity increase by increasing the dopant ratio. Finally, the concentration of cesium dopants is found to play crucial role in tuning the morphology and electrical properties of nanostructures.

  9. Transportable cesium irradiator (TPCI): Final safety analysis report: Revision 1

    International Nuclear Information System (INIS)

    This Final Safety Analysis Report describes the Transportable Cesium Irradiator (TPCI) and assesses the hazards associated with its operation. The TPCI consists of a mobile, lead-shielded, irradiation unit with support equipment mounted within an enclosed trailer. The irradiation unit has two basic compartments; a source chamber sized to mate with the transportation cask which houses the source capsules, and an irradiation chamber formed as a large shielded cylinder (drum) with a window. The irradiation chamber is mounted on a large diameter support bearing. As this chamber is rotated its window moves from the product access door, where produce is inserted or extracted, to a position in line with a similar window in the source chamber. When the windows are aligned the produce is irradiated, while the back wall of the irradiation chamber shields the product access door. The TPCI is designed to be transported throughout the continental United States. The transportation cask containing the cesium source capsules is transported separately from the irradiation unit and is installed when the TPCI unit has been readied for operation at a particular site. The transportation cask is a separate unit and is documented in a separate FSAR

  10. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  11. Structure and bonding in crystalline cesium uranyl tetrachloride under pressure.

    Science.gov (United States)

    Osman, Hussien H; Pertierra, Pilar; Salvadó, Miguel A; Izquierdo-Ruiz, F; Recio, J M

    2016-07-21

    A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies. PMID:27340008

  12. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun-Hai; Zeng Xian-Jin; Li Qing-Meng; Huang Qiang; Sun Wei-Min

    2013-01-01

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations.The process,described by a three-level model with the A scheme,shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms.The |Fg =3> → |Fe-4> resonance pumping can result in the ground state |Fg =4,mF =4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg =4.To enhance the anisotropy in the ground state,we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg =4> → |Fe =3>transition,in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.

  13. Structure and bonding in crystalline cesium uranyl tetrachloride under pressure.

    Science.gov (United States)

    Osman, Hussien H; Pertierra, Pilar; Salvadó, Miguel A; Izquierdo-Ruiz, F; Recio, J M

    2016-07-21

    A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies.

  14. A study of strontium and cesium sorption on granite

    International Nuclear Information System (INIS)

    The diffusion and sorption of cesium and strontium in crushed granite particles is discussed. Sorption experiments have been performed with one granite from Finnsjoen outside Forsmark on the east coast of Sweden and one granite from the Stripa mine in central Sweden. Granite samples have been crushed and screened, and six different particle size fractions from 0.10-0.12 mm to 4-5 mm of each rock have been used in the experiments. The initial concentrations of inactive cesium and strontium were 10-15 ppm. The experimental data indicate that the amount of sorption is dependent not only on the mass of granite particles, but also to some extent on the size of the particles. An attempt has been made to distinguish between sorption on external surfaces and inner surfaces. The amount of external surface adsorption was found to vary from 15-40 % of the total adsorption capacity for the particle size fraction 0.10-0.12 mm to a few percent or less for the largest particles used. (Auth.)

  15. Diffusion of strontium, technetium, iodine and cesium in granitic rock

    International Nuclear Information System (INIS)

    The migration of strontium, technetium, iodine and cesium in granitic rock has been studied. Rock samples were taken from drilling cores in granitic and granodioritic rock, and small (2x2x2 cm) rock tablets from the drilling cores were exposed to a groundwater solution containing one of the studied elements at trace levels. The concentration of the element versus penetration depth in the rock tablet was measured radiometrically. The sorption on the mineral faces and the diffusion into the rock were studied by an autoradiographic technique. The cationic strontium and cesium have apparent diffusivities of 10-13 - 10-14 m2/s. The migration is confined to microfissures or filled fractures containing e.g., calcite, epidote or chlorite or in veins with high capacity minerals (e.g. biotite). The anionic iodine and technetium have apparent diffusivities of about 10-14 m2/s. These species migrate along mineral boundaries and in open fractures and to a minor extent in high capacity mineral veins. (orig.)

  16. Studies on cesium sorption in hydrous zirconium and titanium oxides

    International Nuclear Information System (INIS)

    Significant quantities of 137Cs (T1/2 = 30.1 y) and 90Sr (T1/2 = 28.5 y) are produced as fission products in nuclear reactors. These long-lived gamma-emitting radionuclides, regarded as a waste few decades ago, are being termed now as valuables owing to the upsurge in the utilization of these radioisotopes in the area of medicine, food irradiation, and sewage treatment technologies in recent years. For long-term waste management it is necessary to minimize the volume and toxicity of the waste. Selective recovery and utilization of these radionuclides from the waste is the concept of growing interest to many researchers. Inorganic sorbents are proven candidates for the separation and recovery of cesium and strontium from aqueous waste streams. They are chemically durable and stable against ionizing radiation. In addition, these materials can be converted into unleachable ceramic form for final disposal. Hydrous metal oxides belong to a particular class of inorganic ion exchangers extensively investigated for various applications in nuclear waste treatment. The present study deals with the preparation of hydrous zirconium and titanium oxide and the studies aimed at separation of cesium from aqueous wastes

  17. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  18. Development and characterization of solid solution tri-carbides

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2001-02-01

    Solid-solution, binary uranium/refractory metal carbide fuels have been shown to be capable of performing at high temperatures for nuclear thermal propulsion applications. More recently, tri-carbide fuels such as (U, Zr, Nb)C1+x with less than 10% metal mole fraction uranium have been studied for their application in ultra-high temperature, high performance space nuclear power systems. These tri-carbide fuels require high processing temperatures greater than 2600 K owing to their high melting points in excess of 3600 K. This paper presents the results of recent studies involving hypostoichiometric, single-phase tri-carbide fuels. Processing techniques of cold uniaxial pressing and sintering were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid solution mixed carbide nuclear fuels for testing. Scanning electron microscopy and xray diffraction were used to analyze samples. Liquid phase sintering with UC1+x at temperatures near 2700 K was shown to be instrumental in achieving good densification in hyper- and near-stoichiometric mixed carbides. Hypostoichiometric carbides require even higher processing temperatures greater than 2800 K in order to achieve liquid phase sintering with a UC liquid phase and good densification of the final solid solution, tri-carbide fuel. .

  19. Critically coupled surface phonon-polariton excitation in silicon carbide.

    Science.gov (United States)

    Neuner, Burton; Korobkin, Dmitriy; Fietz, Chris; Carole, Davy; Ferro, Gabriel; Shvets, Gennady

    2009-09-01

    We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement. PMID:19724526

  20. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  1. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  2. Mechanical properties of Silicon Carbide Nanowires

    Science.gov (United States)

    Alkhateeb, Abdullah; Zhang, Daqing; McIlroy, David; Aston, David Eric

    2004-05-01

    Silicon carbide nanowires could be potentially useful for high strength materials which lead to the interest in understanding their mechanical properties. In this report we use the digital pulse force microscopy to analyze the mechanical properties of SiC nanowires .Stiffness and adhesion images of SiC nanowires on silicon grating were obtained and calibrated force-distance curves were plotted along the wire which spans on a 1.5 micron trench. Moreover, spring constant and Young's modules have been calculated from the linear part of the force-distance curves.

  3. Novel Polymer Nanocomposite With Silicon Carbide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alyona I. Wozniak

    2015-09-01

    Full Text Available Polyimides are ranked among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresistors, nonlinear optical materials, membrane materials for gasseparation, and Langmuir–Blodgett (LB films, among others. While there is a variety of high temperature stable polyimides, there is a growing demand for utilizing these materials at higher temperatures in oxidizing and aggressive environments. Therefore, we sought to use oxidation-resistant materials to enhance properties of the polyimide composition maintaining polyimide weights and processing advantages. In this paper we introduced results of utilizing inorganic nanostructured silicon carbide particles to produce an inorganic particle filled polyimide materials.

  4. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 16000C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH3)2Si units and from 40 to 100 mole percent of CH3Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  5. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  6. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    Energy Technology Data Exchange (ETDEWEB)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D. [Graduate School of Engineering, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan); Sawada, K. [EcoTopia Science Institute, Nagoya University, 1 Furo-cho Nagoya-shi, Aichi-ken, 4648603 (Japan)

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  7. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  8. Hydrogen and Cesium Monitor for H- Magnetron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cheng-Yang [Fermilab; Bollinger, Dan [Fermilab; Schupbach, Brian [Fermilab; Seiya, Kiyomi [Fermilab

    2014-07-01

    The relative concentration of cesium to hydrogen in the plasma of a H- magnetron source is an important parameter for reliable operations. If there is too much cesium, the surfaces of the source become contaminated with it and sparking occurs. If there is too little cesium then the plasma cannot be sustained. In order to monitor these two elements, a spectrometer has been built and installed on a test and operating source that looks at the plasma. It is hypothesized that the concentration of each element in the plasma is proportional to the intensity of their spectral lines.

  9. Effect of Rare Earth Elements on Exchange Performances of Cesium Ion-Sieve

    Institute of Scientific and Technical Information of China (English)

    张惠源; 王榕树; 林灿生; 张先业

    2003-01-01

    The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particular, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity variation on Cs-IS owing to introduction of rare earth elements into HLLW were studied. Though rare earth elements exhibit a small influence on the distribution coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some extent. This interruption on the selectivity to Cs+ can be significantly eliminated provided an appropriate ratio of liquid to solid V:m is used.

  10. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  11. Specific interaction of cesium with the surface of calcium silicate hydrates

    International Nuclear Information System (INIS)

    The sorption of cesium at the calcium silicate hydrates (CSH) surface was investigated, both through sorption isotherm data and by solid-state NMR experiments. The sorption ability of CSH towards cesium is favored for low solid Ca/Si molar ratios, in agreement with the negative surface charge they develop then. A significant proportion of these sorbed cesium cations remains tightly bound to the surface sites forming, in dehydrated CSH, inner-sphere complexes, which can not be removed by alcohol washing. Chloride seems to present a lower affinity for CSH, even for high Ca/Si molar ratios, where the surface charge becomes positive. (orig.)

  12. First-principles study of cesium adsorption to weathered micaceous clay minerals

    Science.gov (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  13. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  14. A New Pumping-Probing Scheme for the Optically Pumped Cesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    陈景标; 朱程锦; 王凤芝; 杨东海

    2001-01-01

    A new pumping-probing scheme for the optically pumped cesium beam frequency standard has been experimentally tested in our laboratory. The stability of the optically pumped cesium beam frequency standard was measured by comparing its 10 MHz output with an HP5071A commercial cesium atomic clock. The result shows that the frequency stability for the 1 s and 30000s sample times are 1.2 × 10-11 and 3.7 × 10-13, respectively. It was proved that the new pumping scheme works well.

  15. Investigation of adsorption and wetting of 3He on cesium and cesiated glass

    International Nuclear Information System (INIS)

    Experiments have been carried out to investigate the binding of 3He on cesium substrates, using optical pumping to spin-polarize the atoms. The behavior of 3He on the walls at low temperature can be analyzed through the evolution of the nuclear magnetization of the sample. Preliminary results are presented, including: (1) adsorption studies of gaseous 3He on cesiated glass; (2) magnetic relaxation time of polarized liquid 3He on cesium and cesiated glass; (3) evidence for wetting of liquid 3He on cesium. 8 refs., 2 figs

  16. a Biokinetic Model for CESIUM-137 in the Fetus

    Science.gov (United States)

    Jones, Karen Lynn

    1995-01-01

    Previously, there was no method to determine the dose to the embryo, fetus, fetal organs or placenta from radionuclides within the embryo, fetus, or placenta. In the past, the dose to the fetus was assumed to be equivalent to the dose to the uterus. Watson estimated specific absorbed fractions from various maternal organs to the uterine contents which included the fetus, placenta, and amniotic fluid and Sikov estimated the absorbed dose to the embryo/fetus after assuming 1 uCi of radioactivity was made available to the maternal blood.^{1,2} However, this method did not allow for the calculation of a dose to individual fetal organs or the placenta. The radiation dose to the embryo or fetus from Cs-137 in the fetus and placenta due to a chronic ingestion by the mother was determined. The fraction of Cs-137 in the maternal plasma crossing the placenta to the fetal plasma was estimated. The absorbed dose from Cs-137 in each modelled fetal organ was estimated. Since there has been more research regarding potassium in the human body, and particularly in the pregnant woman, a biokinetic model for potassium was developed first and used as a basis and confirmation of the cesium model. Available pertinent information in physiology, embryology, biokinetics, and radiation dosimetry was utilized. Due to the rapid growth of the fetus and placenta, the pregnancy was divided into four gestational periods. The numerous physiological changes that occurred during pregnancy were considered and an appropriate biokinetic model was developed for each of the gestational periods. The amount of cesium in the placenta, embryo, and fetus was estimated for each period. The dose to the fetus from cesium deposited in the embryo or fetus and in the placenta was determined for each period using Medical Internal Radiation Dosimetry (MIRD) methodology. An uncertainty analysis was also performed to account for the variability of the parameters in the biokinetic model based on the experimental data

  17. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  18. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    Science.gov (United States)

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  19. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  20. Radiation Damage Effects in Uranium Carbide

    International Nuclear Information System (INIS)

    This paper deals with the results of research into the irradiation behaviour of cast uranium carbide following that reported in another paper by Childs et al. The main conclusions are as follows: 1. The saturation resistivity and lattice parameter increases for hypostoichiometric specimens irradiated at 80oC vary systematically with the excess concentration of uranium present in solution in the UC phase. 2. The temperature coefficient of resistivity (measured over the range 77 - 293oK), unlike the resistivity itself, is not significantly affected by irradiation. 3. A small resistivity annealing stage, additional to those at 150 and 510oC, occurs between 1000 and 1200oC. The annealing-out of the lattice parameter change also occurs in two main stages at 150 and 510oC (5-h anneals). A careful survey of the range 400 - 800oC has failed to reveal the stage postulated by other workers to occur at about 710oC. The significance of the results in determining the defect structure of irradiated uranium carbide is discussed. (author)

  1. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha

    2000-02-01

    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  2. Pressureless sintering of beta silicon carbide nanoparticles

    International Nuclear Information System (INIS)

    This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 degrees C) and the pressureless sintering studied between 1900 and 2100 degrees C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 degrees C. The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 degrees C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation. TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism. (authors)

  3. ELECTROCHEMICAL MACHINING OF CARBIDES AND BORIDES

    Energy Technology Data Exchange (ETDEWEB)

    Dissaux, Bernard Antoine; Muller, Rolf H.; Tobias, Charles W.

    1978-07-01

    The use of high rate anodic dissolution (electrochemical machining) for shaping titanium carbide, zirconium carbide, titanium boride and zirconium boride has been investigated in 2N potassium nitrate and 3N sodium chloride under current densities ranging from 20 to 120 A/cm{sup 2} (corresponding to cutting rates of 0.3 to 1.8 mm/min). The dissolution stoichiometry for all these materials is independent of the current density in the range 20 to 120 A/cm{sup 2}. Both titanium and zirconium appear to dissolve in the +4 state, boron in the +3 state and the weight loss measurements indicate that carbon is oxidized to CO and CO{sub 2}. The current voltage curves permit to establish that, over the entire current density and flow range investigated, dissolution occurs in the transpassive state. The surface roughness obtained on TiC and ZrC is within 3-5 {micro}m and is independent of current density, applied voltage or flow rate.

  4. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  5. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  6. Diffusion of water, cesium and neptunium in pores of rocks

    International Nuclear Information System (INIS)

    Teollisuuden Voima Oy (TVO) is investigating the feasibility to dispose of spent nuclear fuel within Finland. The present plan calls for the repository to be located in crystalline rock at a depth of several hundred meters. The safety assessment of the repository includes calculations of migration of waste nuclides. The flow of waste elements in groundwater will be retarded through sorption interaction with minerals and through diffusion into rock. Diffusion is the only mechanism retarding the migration of non-sorbing species and, it is expected to be the dominating retardation mechanism of many of the sorbing elements. In the investigation the simultaneous diffusion of tritiated water (HTO), cesium and neptunium in rocks of TVO investigation sites at Kivetty, Olkiluoto and Romuvaara were studied. (11 refs., 33 figs., 9 tabs.)

  7. Cesium-137 accident lessons in Goiania, Goias State, Brazil

    International Nuclear Information System (INIS)

    This document relates the experience obtained by several professionals which had an important role in the cesium-137 accident occurred in Goiania, Goias State, Brazil in September, 1987. It's divided into chapters, according to the action area - medical, nursing, social assistance, odontological and psychological. At first, some notions of radioprotection are explained, followed by the accident history and by the doctors and nurses action during the emergency phase and the medical, odontological, social and psychological assistance to the victims. The social assistance report shows some statistical data about the economic, occupational and social conditions of the accident victims. It is shown some information about the health institutions and the sanitary care in the ionizing radiation and about the occupational radiological protection in Goiania

  8. Coherence Properties of Nanofiber-Trapped Cesium Atoms

    Science.gov (United States)

    Reitz, D.; Sayrin, C.; Mitsch, R.; Schneeweiss, P.; Rauschenbeutel, A.

    2013-06-01

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ˜200nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T2*=0.6ms and an irreversible dephasing time of T2'=3.7ms. By modeling the signals, we find that, for our experimental parameters, T2* and T2' are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  9. Norbadione A: synthetic approach and cesium complexation studies

    International Nuclear Information System (INIS)

    This work was dedicated to the study of the synthesis and complexation studies of norbadione A: a pigment originating from a mushroom. A synthetic approach, based on a double Suzuki-Miyaura coupling, was developed. This strategy was applied with high yields to the synthesis of various norbadione A analogues, as well as to the synthesis of simple pulvinic acids. Access to functionalized precursors of the molecule was also studied and the final coupling remains to be done. Besides, a speciation study based on electro-spray ionization mass spectrometry was conducted with norbadione A and one of the analogues. This study allowed the assessment of the cesium complexation abilities of each molecule. Structural data was also obtained and complexation constants were calculated. Finally, norbadione A and various synthetic products have been tested via high-throughput screening methods and strong antioxidant properties were observed. Other biological results are also reported. (author)

  10. Vector Cesium Magnetometer for the nEDM Experiment

    International Nuclear Information System (INIS)

    Full text: We use optical pumping combined with magnetic resonance in a Cesium vapor cell in order to measure the magnetic field. A Vector Cs Magnetometer uses multiple laser beams to follow the dynamics of the spin in 3D. The 3D signal is used to extract the Larmor frequency of the spins, and to extract the direction of the magnetic field through the path of the spins. The magnetometer was successfully tested in a proof of principle experiment. Its measured performance is ∼50 pT/Hz1/2 for the directions perpendicular to the magnetic field, and ∼500 fT/Hz1/2 for the direction parallel to the magnetic field. (author)

  11. Coherence properties of nanofiber-trapped cesium atoms

    CERN Document Server

    Reitz, D; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-01-01

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time $T_2^\\ast=0.6$ ms and an irreversible dephasing time $T_2^\\prime=3.7$ ms. By theoretically modelling the signals, we find that, for our experimental parameters, $T_2^\\ast$ and $T_2^\\prime$ are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

  12. Quantitative analysis of cesium in synthetic lithium molten salts

    International Nuclear Information System (INIS)

    An analytical technique for fission products in lithium molten salts of spent PWR (Pressurized Water Reactor) fuels has been studied for the establishment of optimum chemical engineering process and the evaluation of process material balance in developing Direct Oxide Reduction Process with lithium metal. As part of the basic research, synthetic dissolver solutions of lithium chloride containing trace amounts of fission product elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Y, Cs, Ru, Rh, Pd, Mo, Zr, Cd, Ba, Sr, Te and Se) was prepared and used in establishing the selective separation technique of cesium from lithium chloride matrix using cation exchange chromatography. Its recovery was measured by flame atomic absorption spectrometry and the reliability of this technique was evaluate

  13. Elastic scattering of sodium and cesium atoms at ultracold temperatures

    Institute of Scientific and Technical Information of China (English)

    Zhang Ji-Cai; Wang Ke-Dong; Liu Yu-Fang; Sun Jin-Feng

    2011-01-01

    The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture,the interspecies s-wave scattering lengths,the effective ranges and the p-wave scattering lengths are calculated by the quantal method and the semiclassical method,respectively. The s-wave scattering lengths are 512.7ao for the singlet state and 33.4ao for the triplet state. In addition,the spin-change and elastic cross sections are also calculated,and the g-wave shape resonance is found in the total elastic cross sections.

  14. Vitrification of cesium-contaminated organic ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, T.N. Jr. [Clemson Univ., SC (United States)

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  15. Candlestick oven with a silica wick provides an intense collimated cesium atomic beam

    Science.gov (United States)

    Pailloux, A.; Alpettaz, T.; Lizon, E.

    2007-02-01

    This article shows that readily available glass and silica fibers and braids are suitable capillary structure for recirculating ovens, such as candlestick ovens, becoming then an alternative wick material to conventional metal based capillary structures. In order to study wettability and capillarity of metallic liquid cesium on borosilicate and silica microstructures, samples were selected, prepared, and tested experimentally. The contact angle of cesium on silica glass was roughly measured: θ =35°±10°. A commercially available silica braid was then introduced inside a candlestick oven to transfer the metallic liquid cesium from the cold reservoir to the hot emission point of the candlestick. A collimated cesium atomic beam of intensity of 2×1016at./ssr was obtained, stable and reproducible. Furthermore, this modified oven is easy to handle daily.

  16. Preparation, structure and application of a new ecomaterials cesium ion-sieve

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new ecomaterials cesium ion-sieve (Cs-IS), which has high selectivity to cesium and excellent acid resistance, is prepared with zirconyl molybdopyrophosphate as its matrix by specific chemical sieve-making means. Cs-IS has large exchange capacity ( 1.83mmol@g-1) and high distribution coefficient (4.09 x 104 mL@ L-1) in the medium of 3 mol@ L- 1 HNO3. In the static exchange with strongly acidic high-level radioactive liquid waste (HLLW) (3 mol@ L-1 HNO3), Cs-IS exhibits high exchange rate for cesium (above 96.53 % ) and large separation factor (greater than 958.41). These indicate the possible use of Cs-IS in cesium-137 selective removal and recovery from highly saline acidic HLLW system.

  17. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    Science.gov (United States)

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. PMID:22464752

  18. Synthesis of novel calix[4]crown telomers and selective extraction of cesium ions

    Institute of Scientific and Technical Information of China (English)

    Hai Bing Li; Yuan Yin Chen; De Jun Xiong; Jun Yan Zhan; Cui Ping Han

    2007-01-01

    p-tert-Butylcalix[4]diazacrown-4 telomer, which contains hard and soft ion binding sites, was synthesized. It exhibited high selectivity toward cesium ions. The binding sites may complex alkali metal ions selectively.

  19. Biological effects of cesium-137 injected in beagle dogs of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C. [and others

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.

  20. Total deposition of cesium-137 measured in Finland during the exercise `RESUME 95` in August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Geer, L.E. De; Vintersved, I.; Arntsing, R. [National Defence Research Establisment, Nuclear Detection Group, Stockholm (Sweden)

    1997-12-31

    In the exercise called `RESUME 95` the Nuclear Detection Group from the National Defence Research Establishment in Stockholm participated with field gamma ray measurements combined with soil sampling and profile measurements. The results are presented in this report for the measurements of cesium-137. We considered the measurements of cesium-137 at the airfield the most important part of the in-situ exercise. Data was of course collected also for cesium-134 and natural radionuclides but time has not permitted a full analysis of these radionuclides. The methodology would, however, be the same as applied for cesium-137. Less attention was paid for area II and due to limited personnel resources the search exercise was not fully carried out. (au).

  1. Assessment of food calcium radioprotection effectiveness against cesium-137, added alone and with iodine-131

    International Nuclear Information System (INIS)

    New fish product with addition of food calcium had radioprotective properties, resulted in decreased cesium-137 content in organs and tissues of animals by 40-60% and lesser changes in differential blood count and biochemical indexes of blood serum

  2. Cold cesium molecules produced directly in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Shan; Ji Zhong-Hua; Yuan Jin-Peng; Zhao Yan-Ting; Ma Jie; Wang Li-Rong; Xiao Lian-Tuan; Jia Suo-Tang

    2011-01-01

    We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magnetooptical trap with a good signal-to-noise ratio.These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology.The production rate of ultracold cesium molecules is up to 4× 104 s-1.We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy.We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters,which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.

  3. Cs2 ‘diffuse bands’ emission from superheated cesium vapor

    Science.gov (United States)

    Pichler, G.; Makdisi, Y.; Kokaj, J.; Thomas, N.; Mathew, J.; Beuc, R.

    2016-07-01

    Thermal emission from superheated cesium vapor was studied to very high temperatures from 700 °C to 1000 °C. This was performed in the vapor condition only and with no liquid cesium present in the all-sapphire cell. We observed a number of atomic and molecular spectral features simultaneously in emission and absorption, especially peculiar thermal emission of cesium dimer diffuse bands (2 3Πg → a 3∑u + transitions) around 710 nm coexisting with absorption bands around first resonance lines at 852 and 894 nm. We performed appropriate calculations of the diffuse band emission profiles and compared them with measured profiles. We also performed absorption measurements and compared observed diffuse band profiles with calculated ones. Possible applications of the observed phenomena will be discussed in terms of the solar energy conversion using dense cesium vapor.

  4. Fission of Multiply Charged Cesium and Potassium Clusters in Helium Droplets - Approaching the Rayleigh Limit

    CERN Document Server

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kuhn, Martin; Scheier, Paul; Echt, Olof

    2016-01-01

    Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as $Cs_{19}^{3+}$ are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.

  5. Effect of strong carbide forming elements in hardfacing weld metal

    Institute of Scientific and Technical Information of China (English)

    Yuanbin Zhang; Dengyi Ren

    2004-01-01

    To achieve high carbon hard-facing weld metals with both high hardness and crack resistance, strong carbide forming elements Ti, Nb and V were alloyed into the weld metals, and their effect on the formation of carbides and the matrix microstructure were studied. Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy(EDS) and Transmission Electron Microscopy(TEM) were adopted to investigate the microstructure, then thermodynamics of the formation of carbides was calculated and their effect on the matrix was further discussed. It is revealed that Nb, Ti and V influence strongly the distribution and existing state of carbon, inducing precipitation of carbides accompanying with the depletion of carbon in matrix. But when only V are alloyed as carbide forming element, the carbides are scarce and distributed along grain boundaries, and the hard-facing alloy is too hard, while the using of only Nb or Ti could not reinforce the weld metals effectively. The hard-facing alloy reinforced with Nb, V and Ti can form dispersive fine carbides and low carbon martensite matrix.

  6. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  7. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  8. Fabrication and performance of fl y ash granule filter for trapping gaseous cesium

    Directory of Open Access Journals (Sweden)

    Park Jang Jin

    2015-09-01

    Full Text Available Although a disk-type fly ash filter has shown a good performance in trapping gaseous cesium, it has difficulty in charging filters into a filter container and discharging waste filters containing radioactive cesium from a container by remote action. To solve the difficulty of the disk-type fly ash filter, five types of granule filters, including a ball type, tube type, and sponge-structure type have been made. Among them, the best filter type was chosen through simple crucible tests. The five types of granule filters packed into containers were loaded into five alumina crucibles of 50 cc. Five grams of CsNO3 was used as a gaseous cesium source. They were then placed in a muffle furnace and heated to 900°C and maintained for 2 hours. After the experiment, the weights of the cesium trapped filters were measured. Among the five types of granule filters, the sponge-structure type granule filter was the best, which has the highest trapping capacity of cesium. Its capacity is 0.42 g-Cs/g-filter. The chosen sponge-structure type granule filters and disk-type filters have been tested using a two-zone tube furnace. Cs volatilization and Cs trapping zones were maintained at 900 and 1000°C, respectively. Sixteen grams of CsNO3 was used as a gaseous cesium source. The cesium trapping profile of the sponge-structure type granule filters was almost similar to that of the disk-type fly ash filters. For both cases, cesium was successfully trapped within the third filter.

  9. Enhanced electronic injection in organic light-emitting diodes by incorporating silver nanoclusters and cesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Chung; Gao, Chia-Yuan [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Sze, Po-Wen [Department of Electro-Optical Science and Engineering, Kao Yuan University, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-10-01

    Highlights: • The localized electric field around SNCs is enhanced. • When the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained. • The structure for efficient electron injection is critical to characteristics of the device. - Abstract: The influence of the cesium carbonate/silver nanoclusters/cesium carbonate electron-injection structure (CSC-EIS) on the performance of organic light-emitting diodes is investigated in this study. The silver nanoclusters (SNCs) are introduced between the electron-injection layers by means of thermal evaporation. When the CSC-EIS replaces the cesium carbonate electron-injection structure, higher electron-injection ability is obtained because the electron-injection barrier between the cathode and the electron-transport layer is remarkably reduced from 1.2 to 0 eV. In addition, surface plasmon resonance effect will cause the enhanced localized electric field around the SNCs, resulting that electron-injection ability is further enhanced from the cathode to the emitting layer.

  10. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from 800 μg of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values

  11. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  12. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    International Nuclear Information System (INIS)

    Highlights: ► Prussian blue was sealed in cavities of diatomite using carbon nanotubes. ► The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. ► Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  13. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Baiyang [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Fugetsu, Bunshi, E-mail: hu@ees.hokudai.ac.jp [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Yu, Hongwen [Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810 (Japan); Abe, Yoshiteru [Kyoei Engineering Corporation, Niigata 959-1961 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Prussian blue was sealed in cavities of diatomite using carbon nanotubes. Black-Right-Pointing-Pointer The caged Prussian blue after being permanently immobilized in polyurethane spongy showed a 167 mg/g capability for absorbing cesium. Black-Right-Pointing-Pointer Cesium elimination was accomplished by simply adding the Prussian-blue based spongiform adsorbent to radioactive water. - Abstract: We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  14. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  15. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  16. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  17. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  18. Plasma metallurgical production of nanocrystalline borides and carbides

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  19. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  20. Material properties of silicon and silicon carbide foams

    Science.gov (United States)

    Jacoby, Marc T.; Goodman, William A.

    2005-08-01

    Silicon and silicon carbide foams provide the lightweighting element for Schafer Corporation's silicon and silicon carbide lightweight mirror systems (SLMSTM and SiC-SLMSTM). SLMSTM and SiC-SLMSTM provide the enabling technology for manufacturing lightweight, athermal optical sub-assemblies and instruments. Silicon and silicon carbide foam samples were manufactured and tested under a Schafer-funded Internal Research and Development program in various configurations to obtain mechanical and thermal property data. The results of the mechanical tests that are reported in this paper include Young's modulus, compression strength, tensile strength, Poisson's ratio and vibrational damping. The results of the thermal tests include thermal conductivity and coefficient of thermal expansion.

  1. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross......-metallic inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  4. Thermal Conductivity of Uranium Nitride and Carbide

    Directory of Open Access Journals (Sweden)

    B. Szpunar

    2014-01-01

    Full Text Available We investigate the electronic thermal conductivity of alternative fuels like uranium nitride and uranium carbide. We evaluate the electronic contribution to the thermal conductivity, by combining first-principles quantum-mechanical calculations with semiclassical correlations. The electronic structure of UN and UC was calculated using Quantum Espresso code. The spin polarized calculations were performed for a ferromagnetic and antiferromagnetic ordering of magnetic moments on uranium lattice and magnetic moment in UC was lower than in UN due to stronger hybridization between 2p electrons of carbon and 5f electrons of uranium. The nonmagnetic electronic structure calculations were used as an input to BolzTrap code that was used to evaluate the electronic thermal conductivity. It is predicted that the thermal conductivity should increase with the temperature increase, but to get a quantitative agreement with the experiment at higher temperatures the interaction of electrons with phonons (and electron-electron scattering needs to be included.

  5. Radiation damage of transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  6. Carboloy grade 370 (sintered cemented carbide)

    International Nuclear Information System (INIS)

    Carboloy Grade 370 containing 72.0 WC, 8.0 TiC, 11.5 TaC, 8.5 Co is a tough, wear-resistant grade of cemented carbide for heavy duty roughing cuts of steels, ferrous castings, stainless steels, and some high-temperature alloys. It successfully withstands those high temperatures encountered in heavy duty machining. It is used as the as-sintered condition, without further heat treatment. It cannot be machined, but can be ground to final size by use of SiC and diamonds as abrasives. Carbology 370 is rarely applied where corrosive environments exist. Safety note is given to ensure protection for personnel and equipment from flying fragments and sharp edges when working with these materials, and an adequate ventilation in grinding operation to avoid pulmonary problems. Microstructure and hardness vs. temperature curves for Carboloy 370 are presented and its physical and mechanical properties are tabulated

  7. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  8. Gas emission from ultradispersed carbide powders

    International Nuclear Information System (INIS)

    The process of gas emission from the ultra-dispersed carbides (B4C, SiC, TiC) powders formed by pulsed plasma synthesis technology (condensator discharge) in the environment of corresponding chlorides and methan with the additions of H2 and Ar was investigated. The emitted gases consisted of CH4, H2O, Co(N2), CO2. Calculated heats of gas emission processes (less than 200 kJ/mol) for different components show their adsorption nature up to 700 deg C. The emission of components having mass numbers 28 and 44 raises at higher temperatures that can be considered as a consequence of high temperature reactions between oxygen and carbon containing phases in synthesized powders

  9. Microwave hybrid synthesis of silicon carbide nanopowders

    International Nuclear Information System (INIS)

    Nanosized silicon carbide powders were synthesised from a mixture of silica gel and carbon through both the conventional and microwave heating methods. Reaction kinetics of SiC formation were found to exhibit notable differences for the samples heated in microwave field and furnace. In the conventional method SiC nanopowders can be synthesised after 105 min heating at 1500 deg. C in a coke-bed using an electrical tube furnace. Electron microscopy studies of these powders showed the existence of equiaxed SiC nanopowders with an average particle size of 8.2 nm. In the microwave heating process, SiC powders formed after 60 min; the powder consisted of a mixture of SiC nanopowders (with two average particle sizes of 13.6 and 58.2 nm) and particles in the shape of long strands (with an average diameter of 330 nm)

  10. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang

    2009-01-01

    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  11. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  12. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  13. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  14. Chemical Mechanical Polishing of Silicon Carbide

    Science.gov (United States)

    Powell, J. Anthony; Pirouz

    1999-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) as an enabling electronic technology for many aerospace applications. The Lewis team is focusing on the chemical vapor deposition of the thin, single-crystal SiC films from which devices are fabricated. These films, which are deposited (i.e., epitaxially "grown") on commercial wafers, must consist of a single crystal with very few structural defects so that the derived devices perform satisfactorily and reliably. Working in collaboration (NASA grant) with Professor Pirouz of Case Western Reserve University, we developed a chemical-mechanical polishing (CMP) technique for removing the subsurface polishing damage prior to epitaxial growth of the single-crystal SiC films.

  15. The effects of K+ growth conditions on the accumulation of cesium by the bacterium Thermus sp. TibetanG6

    Institute of Scientific and Technical Information of China (English)

    WANG; Hailei; KONG; Fanjing; ZHENG; Mianping

    2006-01-01

    The accumulation of cesium by the bacterium Thermus sp. TibetanG6 was examined under different K+ growth conditions. The effects of external pH and Na+ on the accumulation of cesium were also studied, and the mechanism involved was discussed. K+ regimes played an important role in the accumulation of cesium by the strain TibetanG6. The quantity of cesium accumulated (24 h) was much higher in K+-deficient regime than that in K+-sufficient regime. The pH and Na+ had different effects on the accumulation of cesium in the two K+ regimes. IR spectra analyses indicated that the biosorption is a process of homeostasis with cesium initially accumulated on the cell wall.

  16. Monitoring of radionuclides in the environment. Part. 4. Factors influencing depth profiles of radioactive cesium in soils

    International Nuclear Information System (INIS)

    In order to evaluate the vertical migration behavior of radioactive cesium, which contaminated by the Fukushima Dai-ichi NPP accident, the distribution of radioactive cesium in different type of soils, e.g., bare ground, grass land, conifer forest floor were measured on October 2011, 2012, 2013, in Abiko, Chiba, Japan. Even three years after the deposition, most of radioactive cesium were deposited in the depths of within 5 cm at anywhere in this area. Depth profiles of radioactive cesium in soil was significantly correlated with organic matter content in soils (r=0.82; p<0.0001), whereas the factors such as potassium ion and ammonium ion in soil, stable cesium content, and clay mineral content were not correlated clearly. This indicates that the vertical migration rate of radioactive cesium is very slow and it would be influenced by organic matter in soil, not just clay. (author)

  17. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  18. Status of advanced carbide fuels: Past, present, and future

    Science.gov (United States)

    Anghaie, Samim; Knight, Travis

    2002-01-01

    Solid solution, mixed uranium/refractory metal carbide fuels such as (U, Zr, Nb)C, so called ternary carbide or tri-carbide fuels have great potential for applications in next generation advanced nuclear power reactors. Because of their high melting points, high thermal conductivity, improved resistance to hot hydrogen corrosion, and good fission product retention, these advanced nuclear fuels have great potential for high performance reactors with increased safety margins. Despite these many benefits, some concerns regarding carbide fuels include compatibility issues with coolant and/or cladding materials and their endurance under the extreme conditions associated with nuclear thermal propulsion. The status of these fuels is reviewed to characterize their performance for space nuclear power applications. Results of current investigations are presented and as well as future directions of study for these advanced nuclear fuels. .

  19. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  20. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  1. Microwave synthesis of phase-pure, fine silicon carbide powder

    International Nuclear Information System (INIS)

    Fine, monophasic silicon carbide powder has been synthesized by direct solid-state reaction of its constituents namely silicon and carbon in a 2.45 GHz microwave field. Optimum parameters for the silicon carbide phase formation have been determined by varying reaction time and reaction temperature. The powders have been characterized for their particle size, surface area, phase composition (X-ray diffraction) and morphology (scanning electron microscope). Formation of phase-pure silicon carbide can be achieved at 1300 deg. C in less than 5 min of microwave exposure, resulting in sub-micron-sized particles. The free energy values for Si + C → SiC reaction were calculated for different temperatures and by comparing them with the experimental results, it was determined that phase-pure silicon carbide can be achieved at around 1135 deg. C

  2. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;

    2013-01-01

    supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total...

  3. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  4. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  5. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  6. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  7. Engineered Materials for Cesium and Strontium Storage. Final Technical Report

    International Nuclear Information System (INIS)

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  8. Dynamic compaction of boron carbide by a shock wave

    Science.gov (United States)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  9. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  10. Impact of pressure on Sintering of Cemented Carbides

    OpenAIRE

    Owais, Tariq Muhammad

    2013-01-01

    In this Master Thesis work, the effect of pressure on sintering of cemented carbides is investigated. Special focus hasbeen given to the residual porosity after sintering. It is well known that sintering shrinkage depends on binder phasecontent, grain size, temperature and pressure. Thus 4 different cemented carbides grades were selected. The gradeswere pressed into standard products and TRS (Tensile Rupture Strength) rods with two different shrinkage factors.These were then sintered at diffe...

  11. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  12. Rapid Wolff–Kishner reductions in a silicon carbide microreactor

    OpenAIRE

    Newman, Stephen G.; Gu, Lei; Lesniak, Christoph; Victor, Georg; Meschke, Frank; Abahmane, Lahbib; Jensen, Klavs F.

    2013-01-01

    Wolff–Kishner reductions are performed in a novel silicon carbide microreactor. Greatly reduced reaction times and safer operation are achieved, giving high yields without requiring a large excess of hydrazine. The corrosion resistance of silicon carbide avoids the problematic reactor compatibility issues that arise when Wolff–Kishner reductions are done in glass or stainless steel reactors. With only nitrogen gas and water as by-products, this opens the possibility of performing selective, l...

  13. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  14. Process for preparing fine-grain metal carbide powder

    Science.gov (United States)

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  15. Synthesis of carbides of metals by electrodischarge method

    OpenAIRE

    Tsolin, Pavlo L.; Terekhov, Anatolii Yu.; Kuskova, Nataliia I.

    2014-01-01

    Initiation by electric discharge of plasma-chemical reaction which is accompanied by the erosion of electrodes material and by synthesis corresponding carbides is discussed. The object of the research is to establish possibility of synthesis of metal carbides during electrodischarge treatment of hydrocarbon liquid. Electrical discharge in the liquid hydrocarbons is studied experimentally using various materials of electrodes (titanium, aluminum, copper, niobium) as a method of synthesis of me...

  16. Superplastic behavior and cavitation for WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, H.; Shimojima, K. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology (AIST) (Japan); Kawakami, M.; Terada, O. [Fuji Die Co. Ltd., Hadano, Kanagawa (Japan); Sano, S. [Fuji Die Co. Ltd., Tokyo (Japan); Mabuchi, M. [Dept. of Energy Science and Technology, Kyoto Univ. (Japan)

    2005-07-01

    Superplastic behavior and cavitation were investigated for WC-15 mass% Co cemented carbides with the WC grain sizes of 0.7 {mu}m (A) and 5.2 {mu}m (B), WC-10 mass% Co cemented carbide with the WC grain size of 1.5 {mu}m (C) and WC-5 mass% Co cemented carbides with the WC grain sizes of 0.5 {mu}m (D) and 2.5 {mu}m (E) by tensile tests at 1473 K. WC contiguity were 0.51, 0.31, 0.27, 0.56 and 0.49, respectively. The large elongations about 200% were obtained for the B and the C having smaller values of WC contiguity compared to the other cemented carbides. The values of cavity volume fraction for them were less for the other cemented carbides, furthermore, cavities formed at WC/WC interfaces. Therefore, it is noted that the distribution of the Co phase is important for superplasticity of the cemented carbides. (orig.)

  17. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    A control blade design, incorporating boron-carbide (B4C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author)

  18. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    International Nuclear Information System (INIS)

    Twenty-seven fully loaded 137Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 15000C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of 137Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded 137Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10-10 kg m-2s-1, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10-12 kg m-2s-1. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level 137Cs aluminosilicate pellets were 1.29 x 10-16m2s-1, 6.88 x 10-17m2s-1, and 1.35 x 10-17m2s-1, respectively

  19. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  20. The crystal structures of potassium and cesium trivanadates

    Science.gov (United States)

    Evans, H.T.; Block, S.

    1966-01-01

    Potassium and cesium trivanadates are monoclinic and isomorphous, space group P21/m, with the following dimensions (Z = 2): KV3O8, a = 7.640 A, b = 8.380 A, c = 4.979 A, ??= 96?? 57???; CsV3O8, a = 8.176 A, b = 8.519 A, c = 4.988 A, ?? = 95?? 32???. The crystal structure of KV3O8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV3O8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO6, octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V2O8, which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.

  1. ATLAS tile calorimeter cesium calibration control and analysis software

    International Nuclear Information System (INIS)

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented

  2. Cesium sorption and desorption behavior of clay minerals

    International Nuclear Information System (INIS)

    Cesium sorption and desorption of clay minerals (montmorillonite, beidellite, nontronite, weathered biotite, rectorite and illite) were investigated by consecutive sorption-desorption (CSD) experiments. In batch sorption experiment, two solutions with different Cs concentration 10-3 and 10-7 mol/L) were used. In batch desorption experiments, Cs sorbed samples in sorption experiments were treated 5 times with 1 mol/L ammonium acetate solution. In the case of CSD experiments using 10-3 mol/L Cs solution, the exchangeable cations (Na, Ca, and K) in the clay samples affected to the sorption ratio of Cs, and this effect depended on the type of clay mineral. The desorption ratios of untreated, Na-exchanged and Ca-exchanged weathered biotite ranged from 23 to 33%, while that of other samples was over 80%. In the case of CSD experiments using 10-7 mol/L Cs solution, the sorption ratio of montmorillonite was smaller than that of the other clay samples. In desorption experiments, more than 10-9 mol sorbed Cs remained in 1.0 g of the sample after 5 extraction times. These results indicate that all examined clay samples are able to strongly adsorb Cs with a capacity of more than 10-9 mol/g. (author)

  3. Broadband Vibrational Cooling of Cold Cesium Molecules: Theory and Experiments

    Institute of Scientific and Technical Information of China (English)

    D. Sofikitis; A. Fioretti; S. Weber; M. Viteau; A. Chotia; R. Horchani; M. Allegrini; B. Chatel; D. Comparat; P. Pillet

    2009-01-01

    The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample of cold molecules, initially distributed over several vibrational levels, has thus been transfered into a single selected vibrational level of the singlet X1∑g ground electronic state. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. In this paper we briefly report the main experimental results and then address, in a detailed way by computer simulations, the perspectives for a "complete" cooling of the molecules, including also the rotational degree of freedom. Since the pumping process strongly depends on the rclative shape of the ground and excited potential curves, ro-vibrational cooling through different excited states is theoretically compared.

  4. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    Science.gov (United States)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  5. Ion exchange performance of commercial crystalline silicotitanates for cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J. [and others

    1996-03-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A&M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na{sup +}. The materials also showed excellent chemical and radiation stability. Together, the high selectivity and stability of the CSTs made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia National Laboratories and UOP have teamed under a Cooperative Research and Development Agreement (CRADA) to develop CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by the Sandia and Texas A&M team consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications.

  6. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  7. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    International Nuclear Information System (INIS)

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department's mission as stated in that document. ''The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.''

  8. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  9. Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; van Meirhaeghe, R. L.; Kellock, A. J.; Lavoie, C.

    2006-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin Ti or Mo films and C substrates. Titanium carbide (TiC) was previously reported as a contact material to diamond and carbon nanotubes. However, the present study shows two disadvantages for the solid-state reaction of Ti and C. First, because Ti reacts readily with oxygen, a capping layer should be included to enable carbide formation. Second, the TiC phase can exist over a wide range of composition (about 10%, i.e., from Ti0.5C0.5 to Ti0.6C0.4), leading to significant variations in the properties of the material formed. The study of the Mo-C system suggests that molybdenum carbide (Mo2C) is a promising alternative, since the phase shows a lower resistivity (about 45% lower than for TiC), the carbide forms below 900 °C, and its formation is less sensitive to oxidation as compared with the Ti-C system. The measured resistivity for Mo2C is ρ=59 μΩ cm, and from kinetic studies an activation energy for Mo2C formation of Ea=3.15+/-0.15 eV was obtained.

  10. Production and characterization of nanostructured silicon carbide

    Science.gov (United States)

    Wallis, Kendra Lee

    Nanostructured materials continue to attract attention because of their new and interesting properties, which are very different from their macrostructured equivalents. Since the size of grain and surface differs, a better understanding of the microstructure, the mechanism of formation, and methods of controlling surface properties is necessary. In this study, nanostructured silicon carbide has been produced from the solid-solid reaction of a mixture of silicon nanopowder and carbon multiwalled nanotubes (MWNT) sintered by induction. A study of the reaction rate at different temperatures has yielded a value for the activation energy of 254 +/- 36 kJ/mol, and has led to the conclusion that the reaction is diffusion-controlled. A second method produced pure silicon carbide nanowires using a procedure which kept the solid reactants, silicon powder and MWNT, separated while sintering at a constant temperature of 1200°C. Silicon in the vapor-phase reacted at the surface of the MWNTs followed by diffusion of both precursors through the product phase boundary. The reaction time was varied, and a morphological study has been done describing changes in shape and size as a function of time. The initial reaction produced a layer of SiC providing the outer shell of coaxial structures with carbon nanotubes inside. As Si and C diffused through the product phase to react at the interface, the tube became filled with SiC to form solid SiC nanowires, and the outer diameter of the nanowires grew continuously as reaction time increased. After long sintering times, growth continued in two dimensions, fusing nanowires together into planar structures. In addition, the precursor form of carbon was varied, and nanowires produced by two different types of nanotubes have been studied. The produced SiC nanowires show cubic crystal structure. After a few hours of sintering, stacking faults began to occur inside the wires, and the frequency of occurrence of the stacking faults increased as

  11. Nanostructured carbide catalysts for the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  12. Silicon Carbide Technology for Grid Integrated Photovoltaic Applications: Dynamic Characterization of Silicon Carbide Transistors.

    OpenAIRE

    Tiwari, Subhadra

    2011-01-01

    For the endorsement of the study of potential utilization of the emerging silicon carbide (SiC) devices, three SiC active switches, namely SJEP120R063 (1200V, 63 mohm) SiC JFET manufactured by Semisouth, BT1206AC-P1 (1200V, 125 mohm) SiC BJT by TranSiC and CMF20120 (1200V, 80 mohm, 33A) SiC MOSFET by Cree have been investigated systematically in this thesis work.The four layer PCB board with the smart layouts like the drain and gate traces are either perpendicular to each other or run into di...

  13. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    Science.gov (United States)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  14. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    Science.gov (United States)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  15. Misinterpretation on the risk of radioactive cesium contained in the disaster wastes

    International Nuclear Information System (INIS)

    Osaka Prefectural Government accepted the disaster wastes contained radioactive cesium after investigation them during one year. I explained the process and discussed about the risk management by people and the self-government body. The environmental pollution by radioactive cesium and Act on Special Measures concerning the Handling of Pollution by Radioactive Materials, the progress of treatment of debris, the concentration of radioactive cesium in debris, the acceptance conditions of debris contained small amount of radioactive cesium, evaluation of effects of radioactive materials in debris on the environment, and citizen's opinion of Osaka prefecture are described. The important investigation area of radioactive contamination on the basis of Act on Special Measures concerning the Handling of Pollution by Radioactive Materials, total amount of waste from Fukushima nuclear accident and debris in Miyagi, Iwate and Fukushima prefecture, the concentration of radioactive cesium in debris in Rikuzentakata and Miyako city as of September, 2011, and cumulative number of citizen's opinion to Osaka are illustrated. (S.Y.)

  16. Local mat-forming cyanobacteria effectively facilitate decontamination of radioactive cesium in rice fields

    International Nuclear Information System (INIS)

    The most effective and widespread method to decontaminate radioactive cesium from the Fukushima Daiichi Nuclear Power Plant Disaster was peeling topsoil. But the method had problems, such as large amounts of discarded soil and large-scale work. In nature, cyanobacteria formed biomats on the ground surface and facilitated peeling topsoil when the biomats dried. The cyanobacteria-facilitating peeling decontamination method utilized these cyanobacterial properties. Cyanobacteria are located all over Japan and 'local' cyanobacteria could be used for decontamination without introducing new species. Utilizing cyanobacteria could decrease the amount of discarded soil to about 30% and downsize the execution-scale to individual locations. Cyanobacterial biomats were easily cultivated, especially in rice fields, by maintaining wet conditions and exposure to 100 - 83% solar radiation. Shading by a thin net was helpful in maintaining an environment suitable for cyanobacteria. Nowadays, to prevent uptake of radioactive cesium into rice, K+ is usually added to fertilizer in rice fields. The K+ fertilization in rice fields might also enhance cyanobacterial capture of radioactive cesium, because high concentrations of K+ enhanced cyanobacterial uptake of Cs+. Cyanobacteria could also mitigate the risk of radioactive cesium moving away from a decontaminating rice field. Therefore, the cyanobacteria-facilitating peeling decontamination method was proposed as an easy and safe 'D.I.Y.' method for both farmers and the environment. Besides, plowing rice fields with water before peeling improved the efficiency of this method, because plowing increased the radioactive cesium concentration in the topsoil. (author)

  17. Development program for magnetically assisted chemical separation: Evaluation of cesium removal from Hanford tank supernatant

    International Nuclear Information System (INIS)

    Magnetic particles (MAG*SEPSM) coated with various absorbents were evaluated for the separation and recovery of low concentrations of cesium from nuclear waste solutions. The MAG*SEPSM particles were coated with (1) clinoptilolite, (2) transylvanian volcanic tuff, (3) resorcinol formaldehyde, and (4) crystalline silico-titanate, and then were contacted with a Hanford supernatant simulant. Particles coated with the crystalline silico-titanate were identified by Bradtec as having the highest capacity for cesium removal under the conditions tested (variation of pH, ionic strength, cesium concentration, and absorbent/solution ratio). The MAG*SEPSM particles coated with resorcinol formaldehyde had high distribution ratios values and could also be used to remove cesium from Hanford supernant simulant. Gamma irradiation studies were performed on the MAG*SEPSM particles with a gamma dose equivalent to 100 cycles of use. This irradiation decreased the loading capacity and distribution ratios for the particles by greater than 75%. The particles demonstrated high sensitivity to radiolytic damage due to the degradation of the polymeric regions. These results were supported by optical microscopy measurements. Overall, use of magnetic particles for cesium separation under nuclear waste conditions was found to be marginally effective

  18. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    Science.gov (United States)

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively). PMID:16759800

  19. Preparation of Modified Kaolin Filler with Cesium and Its Application in Security Paper

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2013-01-01

    Full Text Available In this study, cesium was added intentionally during paper manufacture for protecting the papers against forgery and counterfeiting by sorbing cesium ions (Cs+ on kaolin, used as special filler in papermaking. The sorption of cesium from aqueous solution by kaolin was studied as a function of pH, shaking time, cesium initial concentration, and mass of kaolin using batch technique. The results showed that a solution containing 10 mg/L Cs+ and 250 mg of kaolin at pH 6 can be used to modify the kaolin. Paper handsheets were prepared containing various percentages of the modified kaolin. The mechanical and optical properties of paper handsheets were studied. The prepared paper handsheets were irradiated by gamma irradiation using different doses. Fourier transform infrared (FTIR spectroscopy was used to study the effect of kaolin modification by cesium and gamma irradiation on paper handsheets properties. The results indicated that modified kaolin enhanced the mechanical and optical properties of paper handsheets. Electron spin resonance (ESR spectroscopy and laser-induced breakdown spectroscopy (LIBS were also used. They provided rapid, sensitive and nondestructive techniques in differentiating between different questioned documents. This study presents a new concept in manufacturing security papers and anticounterfeiting applications.

  20. Cesium-137 in soil texture fractions and its impact on Cesium-137 soil-to-plant transfer

    International Nuclear Information System (INIS)

    Field studies at two sites contaminated by the Chernobyl fallout showed 137Cesium (Cs) soil-to-plant transfer factors in wheat, rye and potato. Transfer values ranged from 0.0017 (potato tuber) to 0.07 (wheat straw). Generally transfer coefficients in cereal grains and potato tubers were significantly below the values of the shoots. A comparison of the two sites led to the conclusion that for all plants investigated 137Cs transfer factors were higher in Lower Austria (Calcic Chernozem) than in Upper Austria (Eutric Cambisol). The specific activities of the texture fractions of the two soil types increased from sand to silt and clay. In the Calcic Chernozem the ratio of the 137Cs activity in the silt fraction to the total activity in the soil was considerably higher than in the Eutric Cambisol. At the same time extractability of 137Cs from the silt fraction of the latter soil was clearly lower. Both results mainly were attributed to the differences between the soils according to the organic matter content of the silt fractions, the Calcic Chernozem being seven times higher. Therefore, the differences in the 137Cs-soil-to-plant transfer can be attributed partly to these soil characteristics. (authors)

  1. Yarlongite:A New Metallic Carbide Mineral

    Institute of Scientific and Technical Information of China (English)

    SHI Nicheng; BAI Wenji; LI Guowu; XIONG Ming; FANG Qingsong; YANG Jingsui; MA Zhesheng; RONG He

    2009-01-01

    Yarlongite occurs in ophiolitic chromitite at the Luobusha mine(29°5'N 92°,5'E,about 200 km ESE of Lhasa),Qusum County,Shannan Prefecture,Tibet Autonomous Region,People'S Republic of China.Associated minerals are:diamond,moissanite,wiistite,iridium("osmiridium"), osmium("iridosmine"),periclase,chromite,native irun,native nickel,native chromium,forsterite. Cr-rich diopside,intermetallic compounds Ni-Fe-Cr,Ni-Cr,Cr-C,etc.Yariongite and its associated minerals were handpicked from a large heavy mineral sample of chromitite.The metallic carbides associated with yarlongite are cohenite,tongbaite,khamrabaevite and qusongite(IMA2007.034). Yarlongite occurs as irregular grains,with a size between 0.02 and 0.06 mm,steel-grey colour,H Mohs:5 1/2-6.Tenacity:brittle.Cleavage:{0 0 1}perfect.Fracture:conchoidal.Chemical formula: (Cr4Fe4Ni)∑9C4,or(Cr,Fe,Ni)∑9C4,Crystal system:Hexagonal,Space Group:P63/mc,a=18.839(2)A,C =4.4960(9)A,V=745.7(2)A3,Z=6,Density(calc.)=7.19 g/cm3(with simplified formula).Yarlongite has been approved as a new mineral by the CNMNC(IMA2007-035).Holotype material is deposited at the Geological Museum of China(No.M11650).

  2. Bright Single Photon Emitter in Silicon Carbide

    Science.gov (United States)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  3. Palladium Implanted Silicon Carbide for Hydrogen Sensing

    Science.gov (United States)

    Muntele, C. I.; Ila, D.; Zimmerman, R. L.; Muntele, L.; Poker, D. B.; Hensley, D. K.; Larkin, David (Technical Monitor)

    2001-01-01

    Silicon carbide is intended for use in fabrication of high-temperature, efficient hydrogen sensors. Traditionally, when a palladium coating is applied on the exposed surface of SiC, the chemical reaction between palladium and hydrogen produces a detectable change in the surface chemical potential. We have produced both a palladium coated SiC as well as a palladium, ion implanted SiC sensor. The palladium implantation was done at 500 C into the Si face of 6H, N-type SiC at various energies, and at various fluences. Then, we measured the hydrogen sensitivity response of each fabricated sensor by exposing them to hydrogen while monitoring the current flow across the p-n junction(s), with respect to time. The sensitivity of each sensor was measured at temperatures between 27 and 300 C. The response of the SiC sensors produced by Pd implantation has revealed a completely different behaviour than the SiC sensors produced by Pd deposition. In the Pd-deposited SiC sensors as well as in the ones reported in the literature, the current rises in the presence of hydrogen at room temperature as well as at elevated temperatures. In the case of Pd-implanted SiC sensors, the current decreases in the presence of hydrogen whenever the temperature is raised above 100 C. We will present the details and conclusions from the results obtained during this meeting.

  4. Oxidation of vanadium carbide in air

    International Nuclear Information System (INIS)

    It was studied the samples oxidation of vanadium carbide (V8C7), synterized and in powder, in order to know the temperature influence and the aggregation state in the kinetics and the oxidation products. The assays were realized in static air, at temperature between 600 y 750 Centigrade, between 6 and 24 hours periods. The gaseous products were analyzed through gas chromatography while the condensates ones were analyzed through optical microscopy and scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray fluorescence analysis. It was found that in the V8C7 oxidation occurs two basic processes: the gaseous oxides production which results of the carbon oxidation, fundamentally CO2, and the vanadium condensate oxides production, fundamentally V2O5. In the synterized samples assayed under 650 Centigrade, the kinetics is lineal with loss of mass, suggesting a control by the formation of gaseous products in the sample surface, while in the synterized samples assayed over 650 Centigrade, it occurs a neat gain of mass, which is attributed to vanadium pentoxide fusion. These processes produce stratified layers of V2O5 although at higher temperatures also it was detected V2O4. The superficial area effect is revealed in what the powder samples always experiment a mass neat increase in all essay temperatures, being the condensate oxidation products, fundamentally V2O5 and V6O13. (Author)

  5. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  6. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  7. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  8. Thermal equation of state of silicon carbide

    Science.gov (United States)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  9. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  10. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  11. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  12. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  13. Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid

    OpenAIRE

    Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel A. Lewis; Michael J. Lance; Meyer, Harry M.; More, Karren L.

    2015-01-01

    We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore...

  14. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  15. Comparison of organic and inorganic ion exchange materials for removal of cesium and strontium from tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    This work is part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff are investigating novel ion exchangers for use in nuclear waste remediation (groundwater, high-level waste (HLW), and low-level waste (LLW)). Waste components targeted for remediation include cesium, strontium, and technetium.

  16. Behavior of ruthenium, cesium and antimony during simulated HLLW vitrification

    International Nuclear Information System (INIS)

    The behavior of ruthenium, cesium, and antimony during the vitrification of simulated high-level radioactive liquid wastes (HLLW) in a liquid fed melter was studied on a laboratory scale and on a semi-pilot scale. In the laboratory melter of a 2.5 kg capacity, a series of tests with the simulate traced with 103Ru, 134Cs and 124Sb, has shown that the Ru and Cs losses to the melter effluent are generally higher than 10% whereas the antimony losses remain lower than 0.4%. A wet purification system comprising in series, a dust scrubber, a condenser, an ejector venturi and an NOx washing column retains most of the activity present in the off-gas so that the release fractions for Ru at the absolute filter inlet ranges between 5.10-3 to 5.10-5% of the Ru fed, for Cs the corresponding release fraction ranges between 3.10-3 to 10-4% and for Sb the release fraction ranges between 1.7 10-4 to 1.7 10-5%. The same experiments were performed at a throughput of 1 to 2 1 h-1 of simulated solution in the semi-pilot scale unit RUFUS. The RUFUS unit comprises a glass melter with a 50 kg molten glass capacity and the wet purification train comprises in series a dust scrubber, a condenser, an ejector venturi and an NOx washing column. The tracer tests were restricted to 103Ru and 134Cs since the laboratory tests had shown that the antimony losses were very low. The results of the tests are presented

  17. Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation

    International Nuclear Information System (INIS)

    During the past 50 years, nuclear defense activities have produced large quantities of nuclear waste that now require safe and permanent disposal. The general procedure to be implemented involves the removal of cesium and strontium from the waste solutions for disposal in permanently vitrified media. This requires highly selective sorbents or ion exchangers. Further, at the high radiation doses present in the solution, organic exchangers or sequestrants are likely to decompose over time. Inorganic ion exchangers are resistant to radiation damage and can exhibit remarkably high selectivities. We have synthesized three families of tunnel-type ion exchangers. The crystal structures of these compounds as well as their protonated phases, coupled with ion exchange titrations, were determined and this information was used to develop an understanding of their ion exchange behavior. The ion exchange selectivities of these phases could be regulated by isomorphous replacement of the framework metals by larger or smaller radius metals. In the realm of layered compounds, we prepared alumina, silica, and zirconia pillared clays and sodium micas. The pillared clays yielded very high Kd values for Cs+ and were very effective in removing Cs+ from groundwaters. The sodium micas also had a high affinity for Cs+ but an even greater attraction for S42+. They also possess the property of trapping these ions permanently as the layers slowly decrease their interlayer distance as loading occurs. Sodium nonatitanate exhibited extremely high Kd values for Sr2+ in alkaline tank wastes and should be considered for removal of Sr2+ in such cases. For tank wastes containing complexing agents, we have found that adding Ca2+ to the solution releases the complexed Sr2+ which may then be removed with the CST exchanger

  18. Immobilisation and solidification of cesium on 11 A calcium silicate hydroxy hydrate column

    International Nuclear Information System (INIS)

    Calcium silicate hydrate closely resembling silicate mineral 11 A tobermorite has been synthesised by hydrothermal treatment of lime and silica at 175 degC. The synthetic mineral exhibits selectivity for Cs+ in the presence of strong solutions of alkali and alkaline earth cations, viz, Na+, K+, Mg2+, Ca2+, Sr2+, etc. The Al-substituted form of this mineral effectively separates cesium ion when used as an exchanger in column of size 35x5 mm (hxr). It is possible to remove 98.65±0.5%Cs+ from a mixed solution of cesium and sodium (0.0001N Cs+ + 0.5N Na+). Column separation of cesium from simulated intermediate level waste solution shows that from the first run ∼ 76% Cs+ can be immobilised on a small column, 18x10mm (hxr), having 2.0 g of exchanger. (author)

  19. Studies of cesium and strontium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    Distribution coefficients (Ksub(d)) were measured for cesium and strontium in 16 samples of Canadian unconsolidated geological materials. The samples were collected to cover a wide range of grain size, clay-mineral composition, cation exchange capacity and carbonate mineral content. Distribution coefficients ranged between 102 and 2.0 x 104 ml/g for cesium and between 2.5 and 102 ml/g for strontium, indicating that most unconsolidated geological materials have a substantial ability to retard the migration of cesium, while strontium could generally be expected to be somewhat more mobile. The measured K values were not significantly correlated with the measured soil properties, but appeared to be significantly affected by the background concentration of stable isotopes of the respective radionuclides

  20. The effects of using Cesium-137 teletherapy sources as a radiological weapon (dirty bomb)

    CERN Document Server

    Liolios, Theodore

    2009-01-01

    While radioactive sources used in medical diagnosis do not pose a great security risk due to their low level of radioactivity, therapeutic sources are extremely radioactive and can presumably be used as a radiological weapon. Cobalt-60 and Cesium-137 sources are the most common ones used in radiotherapy with over 10,000 of such sources currently in use worldwide, especially in the developing world, which cannot afford modern accelerators. The present study uses computer simulations to investigate the effects of using Cesium-137 sources from teletherapy devices as a radiological weapon. Assuming a worst-case terrorist attack scenario, we estimate the ensuing cancer mortality, land contamination, evacuation area, as well as the relevant evacuation, decontamination, and health costs in the framework of the linear risk model. The results indicate that an attack with a Cesium-137 dirty bomb in a large metropolitan city (especially one that would involve several teletherapy sources) although would not cause any sta...

  1. Phosphate ceramic solidification and stabilization of cesium-containing crystalline silicotitanate resins.

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A.

    1999-05-11

    This paper reports on the fabrication and testing of magnesium potassium phosphate (MKP)-bonded cesium-loaded crystalline silicotitanate (CST) resins. Typical waste loading of CST resins in the final waste forms was 50 wt.%. Physical and chemical characterization of the MKP materials has shown them to be physically, chemically, and mineralogically stable. Long-term durability studies (using the AN 16.1 standard test) showed a leachability index of {approx}18 for cesium in the phosphate matrix when exposed to deionized water under ambient and elevated temperatures. Leaching of cesium was somewhat higher than in glass waste forms as per PCT and MCC-1 tests. MKP-based final waste forms showed no significant weight changes after exposure to aqueous media for {approx}90 days, indicating the highly insoluble nature of the phosphate matrix. In addition, durability of the CST-MKP waste forms was further established by freeze-thaw cycling tests.

  2. Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel

    CERN Document Server

    Hayes, A C

    2012-01-01

    The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

  3. Reduction of cesium levels in the diet through management of food

    International Nuclear Information System (INIS)

    Several processes influence the radionuclide concentration of food products during processing: dilution, losses, concentration. Boiling of leaf vegetables yields a decontamination effect of up to 80% in the case of radioiodine. Peeling of potato tubers results in a reduction of the cesium concentration of 30%. The cesium and strontium concentration of flour is a factor of two lower as compared to the corresponding cereal grain due to the milling process. Significant discrimination occurs during the milk processing. The skimmed milk is significantly richer in cesium, iodine and especially in strontium than the cream. It follows that butter is depleted in its radionuclide contents as compared to other milk produce. Strontium is concentrated in the casein. Pressurized cooking in combination with salting or a treatment with acetic acid results in an Cs-activity loss of beef, veal and lamb meat of 50 to 90%. (Author) 3 figs., 7 tabs., 13 refs

  4. Continuous Separation of Cesium Based on NiHCF/PTCF Electrode by Electrochemically Switched Ion Exchange

    Institute of Scientific and Technical Information of China (English)

    孙斌; 郝晓刚; 王忠德; 张忠林; 刘世斌; 官国清

    2012-01-01

    Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switched ion exchange (ESIX) electrode in a packed bed for continuous separation for cesium ions. The morphologies of the prepared electrodes were characterized by scanning electron microscopy and the effects of solution concentration on the ion-exchange capacity of the electrodes were investigated by cyclic voltammetry technique. Cycling stability and long-term storage stability of NiHCF/PTCF electrodes were also studied. The NiHCF/PTCF electrodes with excellent ion-exchange ability were used to assemble a diaphragm-isolated ESIX reactor for cesium separation. Continuous separation of cesium and regeneration of NiHCF/PTCF electrode based on the diaphragm-isolated reactor were performed in a laboratory-scale two-electrode system.

  5. Converting a carbon preform object to a silicon carbide object

    Science.gov (United States)

    Levin, Harry (Inventor)

    1990-01-01

    A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.

  6. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  7. Cesium removal from high-pH, high-salt wastwater using crystalline silicotitanate sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Lee, D.D.

    1997-11-01

    Treatment and disposal options for Department of Energy (DOE) underground storage tank waste at Hanford, Savannah River, and Oak Ridge National Laboratory (ORNL) are limited by high gamma radiation fields that are produced by high concentrations of cesium in the waste. Treatment methods are needed to remove the cesium from the liquid waste and thus concentrate the cesium into high-activity, remote-handled waste forms. The treated liquids could then be processed and disposed of by more cost-effective means with less radiation exposure to workers. A full-scale demonstration of one cesium removal technology is currently being conducted at ORNL. This demonstration utilizes a modular, mobile ion-exchange system and existing facilities for the off-gas system, secondary containment, and utilities. The ion-exchange material, crystalline silicotitanate (CST), was chosen on the basis of its effectiveness in laboratory tests. The CST, which was developed through a Cooperative Research and Development Agreement between DOE and private industry, has several advantages over current organic ion-exchange technologies. These advantages include (1) the ability to remove cesium in the presence of high concentrations of potassium, (2) a high affinity for cesium in both alkaline and acidic conditions, (3) physical stability over wide alkaline and acidic ranges, and (4) the elimination of large volumes of secondary waste required for regeneration of organic ion exchangers. Approximately 100,000 L of wastewater will be processed during the demonstration. The wastewater being processed has a high salt content, about 4 M NaNO{sub 3}, and a pH of 12 to 13. This paper discusses the results of the full-scale demonstration and compares these results with data from the laboratory tests.

  8. Separation of cesium from simulated active waste using zinc hexacyanoferrate supported composite

    International Nuclear Information System (INIS)

    Potassium zinc hexacyanoferrate (KZnHCF) was prepared and supported on polyacrylonitrile (PAN) binding polymer. This composite was characterized and used to study the elimination of cesium from acidic radioactive waste containing Sr(II), Eu(II), Am(II), Zr(IV), Hf(IV) and Nb(V) using batch and column techniques. The sorption capacity of this composite for cesium was found to be 1.14 meq/g for column technique. The effect of presence of NH4SCN, NaNo3 and other complexing agents in the aqueous solutions was studied

  9. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    Science.gov (United States)

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  10. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  11. Synthesis of novel calixcrown derivatives with selective complexation towards cesium ions

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Juan Du; Li Hua Yuan; Dong Zhang; Gui Ping Dan; Yuan You Yang; Wen Feng

    2011-01-01

    A series of novel calix [4]arenecrown-6 derivatives with an alkenyl loop of various sizes 5-8 were synthesized via intramolecular ring closing olefin metathesis and characterized by 1H NMR, 13C NMR and ESI-HRMS. Their complexation property towards cesium ion was studied by 'H NMR technique. Two-phase extraction of alkali metal ions using UV-vis spectroscopy revealed remarkably different extractabilities. These results indicate that the complexation capacities towards cesium ions can be tuned and controlled through cooperative regulation of the strain of the loop and conformational change of calixcrown skelton.

  12. Measurement of Ionization Threshold of Ultracold Cesium Rydberg Atoms in Static Electric Field

    Institute of Scientific and Technical Information of China (English)

    FENG Zhi-Gang; ZHANG Lin-Jie; ZHAO Jian-Ming; LI Chang-Yong; LI An-Ling; JIA Suo-Tang

    2008-01-01

    We investigate the field ionization spectra of ultracold cesium Rydberg atoms in dc electric field. The ionization thresholds of different electric fields are measured and shift of the ionization threshold relative to field-free ionization threshold is accurately described by (6.06±0.14) F1/2, which is in good agreement with the classical saddle-point model for field ionization. We obtain the field-free ionization threshold of cesium (6P,3/2) as 19674.89士2.99cm-1 by fitting experimental data.

  13. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  14. Recent progress in optically-pumped cesium beam clock at Peking University

    Science.gov (United States)

    Liu, C.; Zhou, S.; Wan, J.; Wang, S.; Wang, Y.

    2016-06-01

    A compact, long-life, and low-drift cesium beam clock is investigated at Peking University, where the atoms are magnetic-state selected and optically detected. Stability close to that of the best commercial cesium clocks has been achieved from 10 to 105 s. As previously shown, the short-term stability is determined by atomic shot noise or laser frequency noise. The stabilizations of microwave power and C-field improve the long-term stability, with the help of a digital servo system based on field-programmable gate array.

  15. Separation of cesium from rad waste solutions with hexacyanoferrate(II) resins of copper and cobalt

    International Nuclear Information System (INIS)

    The separation of radiocesium from low and intermediate level waste solutions by ion exchange with potassium cobalt hexacyanoferrate(II) and potassium copper-cobalt hexacyanoferrate(II) loaded resins was studied. The distribution coefficient(Kd) of cesium as a function of sodium ion concentration was determined. High batch capacity of these resins with regards to cesium make them ideal sorbents that can be used in once through mode in the treatment of rad waste solutions. (author). 3 refs., 1 fig., 1 tab

  16. Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    S. Salazar, M.McNaughton, P.R. Fresquez

    2006-03-01

    The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).

  17. Computational study of organo-cesium complexes and the possibility of lanthanide/actinide ions substitution

    Science.gov (United States)

    Rabanal-León, Walter A.; Martinez-Ariza, Guillermo; Roberts, Sue A.; Hulme, Christopher; Arratia-Pérez, Ramiro

    2015-11-01

    Relativistic DFT calculations suggest that two organo-cesium complexes studied herein afford large HOMO-LUMO gaps of around 2.4 eV with the PBE xc-functional, which accounts for their stability. Energy decomposition studies suggest these two complexes are largely ionic with about 20% covalency. However, when the Cs+ ions are substituted by the isoelectronic La3+ and Th4+, their predicted ionicity decreases significantly. The significant increase in covalence indicates that employing Ugi reaction cascades that afford tetramic acid-based organo-cesium complexes may be extended to La3+ and Th4+ organometallics.

  18. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  19. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    A.O. Addemir

    2012-03-01

    Full Text Available Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion

  20. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt;

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  1. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  2. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  3. APT analysis of WC-Co based cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2011-05-15

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: {yields} We develop a method for producing specimens from WC-Co based cemented carbides. {yields} Measure segregated atoms to an interface between phases with different field evaporation field. {yields} The interface chemistry in cemented carbides. {yields} The transition metal solubility in WC.

  4. APT analysis of WC-Co based cemented carbides

    International Nuclear Information System (INIS)

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: → We develop a method for producing specimens from WC-Co based cemented carbides. → Measure segregated atoms to an interface between phases with different field evaporation field. → The interface chemistry in cemented carbides. → The transition metal solubility in WC.

  5. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  6. Fabrication of Tungsten Carbide Nanoparticles from Refluxing Derived Precursor

    Institute of Scientific and Technical Information of China (English)

    WEN Jiqiu; LI Yongdi; MENG Xiaopeng; YIN Guangfu; YAO Yadong

    2015-01-01

    Tungsten carbide (WC) nanoparticles were fabricated from a novel refluxing-derived precursor. The precursor was prepared by acid hydrolysis of Na2WO4 with concentrated HCl in water followed by refluxing with ethanol and n-Dedocane, respectively. Then it was heat-treated to 1 200℃for 2 h in vacuum to obtain WC nanoparticles. X-ray studies reveal the formation of hexagonal tungsten carbide and the grain size of 24.3 nm. SEM image shows WC nanoparticles with particle size of 20-60 nm. Long time refluxing results in alkane dehydrogenation and coke formation. The coke is the carbon source in the carbothermal reduction reaction. The novel route of two-stage refluxing is quite general and can be applied in the synthesis of similar carbides.

  7. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  8. Formation of mesostructure in WC-Co cemented carbides: A review

    OpenAIRE

    Lisovsky A.F.

    2011-01-01

    The author considers potential lines in the formation of mesostructures in cemented carbides, analyzes the existing technologies of the formation thereof, describes physical and mechanical properties of cemented carbides with mesostructure and shows the efficiency of such cemented carbides in metal working and rock destruction tools.

  9. Formation of mesostructure in WC-Co cemented carbides: A review

    Directory of Open Access Journals (Sweden)

    Lisovsky A.F.

    2011-01-01

    Full Text Available The author considers potential lines in the formation of mesostructures in cemented carbides, analyzes the existing technologies of the formation thereof, describes physical and mechanical properties of cemented carbides with mesostructure and shows the efficiency of such cemented carbides in metal working and rock destruction tools.

  10. Monolayer Iron Carbide Films on Au(111) as a Fischer–Tropsch Model Catalyst

    DEFF Research Database (Denmark)

    Mannie, Gilbère; Lammich, Lutz; Li, Yong-Wang;

    2014-01-01

    Using scanning tunneling microscopy (STM), we characterize the atomic-scale details of ultrathin films of iron carbide (FexCy) on Au(111) synthesized as a potential model system for the active iron carbide phase in iron Fischer–Tropsch synthesis (FTS) catalysts. The experiments show that room...... carbide surfaces present under FTS conditions....

  11. 40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium carbide production subcategory. The provisions of this subpart are applicable to discharges resulting...

  12. 40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to...

  13. Evolution of carbides in cold-work tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoyoung [Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Kang, Jun-Yun, E-mail: firice@kims.re.kr [Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Son, Dongmin [Seah Changwon Special Steel, 147 Jeokhyeon-ro, Seongsan-gu, Changwon, Gyeongnam 642-370 (Korea, Republic of); Lee, Tae-Ho [Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Cho, Kyung-Mox, E-mail: chokm@pusan.ac.kr [Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-09-15

    This study aimed to present the complete history of carbide evolution in a cold-work tool steel along its full processing route for fabrication and application. A sequence of processes from cast to final hardening heat treatment was conducted on an 8% Cr-steel to reproduce a typical commercial processing route in a small scale. The carbides found at each process step were then identified by electron diffraction with energy dispersive spectroscopy in a scanning or transmission electron microscope. After solidification, MC, M{sub 7}C{sub 3} and M{sub 2}C carbides were identified and the last one dissolved during hot compression at 1180 °C. In a subsequent annealing at 870 °C followed by slow cooling, M{sub 6}C and M{sub 23}C{sub 6} were added, while they were dissolved in the following austenitization at 1030 °C. After the final tempering at 520 °C, fine M{sub 23}C{sub 6} precipitated again, thus the final microstructure was the tempered martensite with MC, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbide. The transient M{sub 2}C and M{sub 6}C originated from the segregation of Mo and finally disappeared due to attenuated segregation and the consequent thermodynamic instability. - Highlights: • The full processing route of a cold-work tool steel was simulated in a small scale. • The carbides in the tool steel were identified by chemical–crystallographic analyses. • MC, M{sub 7}C{sub 3}, M{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6} carbides were found during the processing of the steel. • M{sub 2}C and M{sub 6}C finally disappeared due to thermodynamic instability.

  14. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  15. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 16000C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  16. Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Abel, P.B.

    1987-08-01

    The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.

  17. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  18. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  19. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...

  20. Carbothermic synthesis of carbides of uranium and plutonium

    International Nuclear Information System (INIS)

    Partial pressures of carbon monoxide, uranium and plutonium over different phase regions relevant to the carbothermic synthesis of carbides of uranium and plutonium are calculated using recent models and thermodynamic data for the compounds in U-C-O and Pu-C-O systems. The experimental parameters for the preparation of uranium carbides and a two step synthesis involving carbothermic reduction of the oxide to the dicarbide followed by hydrogen stripping of carbon to produce uranium monocarbide are discussed. (author). 31 refs., 9 figs., 6 tabs

  1. X-ray imaging performance of structured cesium iodide scintillators.

    Science.gov (United States)

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  2. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.

    Science.gov (United States)

    Jang, J G; Park, S M; Lee, H K

    2016-11-15

    The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior.

  3. Immobilisation of radio cesium loaded ammonium molybdo phosphate in glass matrices

    International Nuclear Information System (INIS)

    Long half life and easy availability from high level wastes make 137Cesium most economical radiation source. High level liquid waste processing for 137 Cesium removal has become easier due to development of Cesium specific granulated ammonium molybdophosphate (AMP) composite. In such applications, resulting spent composite AMP itself represents high active solid waste and immobilization of these materials in cement may not be acceptable. Studies on immobilization of 137Cs loaded AMP were taken up in order to achieve twin goals of increasing safety and minimizing processing costs of the final matrix. Studies indicated that phosphate modified sodium borosilicate SPNM glasses prepared under usual oxidizing conditions are not suitable for immobilization of 137Cs loaded on AMP .Phosphate glasses containing Na2O, P2O5, B2O3, Fe2O3, Al2O3 and SiO2 as major constituents are capable of incorporating 6 to 8 % AMP. The Normalized Leach rates of these glasses for sodium, cesium, boron and silica are 10-4 to 10-6 gm/cm2/day which are comparable to or better than those reported for NBS glasses incorporating HLW. Homogeneity of the final matrix was confirmed by x-ray diffraction analysis. Further studies on characterization of these glasses would establish their acceptability. (author)

  4. Removal of cesium ions from waste solution using sericite incorporated into nickel hexacyanoferrate

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Choong; Cha, Ju-Hyun [Gangneung-Wonju National University, Wonju (Korea, Republic of)

    2015-11-15

    To increase adsorption capacity and selectivity for cesium ions from waste solution, sericite was chemically modified by means of nickel hexacyanoferrate (NiHCF) with a high selectivity trap agent for cesium. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy were used for the characteristic analysis of surface onto the NiHCF-sericite. The adsorption capacity of cesium ions for the NiHCF-sericite increased about 2.5 times, as compared with natural sericite at initial pH 5.0 of waste solution. Adsorption equilibrium was investigated by Langmuir and Freundlich isotherm model, respectively. Maximum adsorption capacity was estimated as 16.583mg/g, and the Langmuir isotherm fits the adsorption data better than Freundlich model. The adsorption process was determined as an exothermic reaction and all adsorption was completed in 30 min. In addition, the adsorption capacity of cesium ions was not greatly affected by ionic strength (-0.1M NaCl concentration) and other metals in mixed waste solution.

  5. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  6. Transfer of radioactive cesium from soil to rape plants, rape blossoms and rape honey

    International Nuclear Information System (INIS)

    Due to the test of atomic weapons and the accident in the nuclear power plant at Chernobyl, the vegetation in Germany has been exposed to cesium contamination in the soil. It was to be expected that activity would migrate from soil to plants and to food products. In this work, the transfer of radioactive cesium from soil to rape plants (Brassica napus var. oleifera), rape blossoms and further to rape honey was investigated. By measuring the gamma activity of cesium using germanium detectors with measuring capacity up to 30 h per sample (limit of detection about 0.14 Bq/kg to 0.19 Bq/kg), we determined a mean transfer factor fcs = 0,116 ± 0,080 for the system soil-rape plant, fcs = 0.065 + 0.075 for the system soil-rape blossom and F!S = 0.098 + 0.044 for the system soil-rape honey (plants and honey wet mass, soil dry mass) (Table IV). Additionally, for the transfer of cesium from rape plants to rape honey, a factor of fcs = 2.04 ± 7.23 (both wet mass) was determined. Due to some environmental circumstances, which can hardly ever be taken into account, the results obtained sometimes differ considerably. Nevertheless, the mean transfer factors are within the range of values found in literature (Table V)

  7. Cesium-137 and americium-241 distribution by granulometric fractions of soil at Azgir test site grounds

    International Nuclear Information System (INIS)

    In measurements of radionuclide specific content in surface soil layer of contaminated territories it is important to determine in what agglomerations of soil particles there is the highest radionuclide concentration. For this purpose granulometric composition of soil at Azgir test site was studied and cesium-137 and americium-241 distribution by soil fractions was researched. (author)

  8. Strontium-90 and cesium-137 in sea fish (from Jun. 1982 to Dec. 1982)

    International Nuclear Information System (INIS)

    Strontium-90 and cesium-137 in sea fish (from Jun. to Dec. 1982) were determined. Fish was collected from 22 sampling locations. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results are sown in a table. (Namekawa, K.)

  9. Strontium-90 and cesium-137 in sea fish (from Nov. 1982 to Jun. 1983)

    International Nuclear Information System (INIS)

    Strontium-90 and cesium-137 in sea fish (from Nov. 1982 to Jun. 1983) were determined. Fishes were collected from eight sampling locations. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results are shown in a table. (J.P.N.)

  10. Strontium-90 and cesium-137 in sea fish (from Oct. 1981 to Jun. 1982)

    International Nuclear Information System (INIS)

    Strontium-90 and cesium-137 in sea fishes (from Oct. 1981 to Jun. 1982) were determined. Fish was collected from eight sampling locations. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results are shown in a table. (Namekawa, K.)

  11. Leachability of cobalt and cesium from natural and chemically treated zeolites

    International Nuclear Information System (INIS)

    The determination of leachability of radioisotopes of cesium and cobalt from preloaded zeolites in distilled water, base solution and acid solution has been studied. For the experiment, we used natural and chemically treated zeolites. The zeolites before leaching were calcined at different temperatures. (author). 8 refs., 5 figs., 2 tabs

  12. Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    NARCIS (Netherlands)

    Harding, P.J.; Pinkse, P.W.H.; Mosk, A.P.; Vos, W.L.

    2015-01-01

    We study a hybrid system consisting of a narrow-band atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal'

  13. Electromagnetically-induced transparency in a multi-V-type system in cesium atomic vapour

    Institute of Scientific and Technical Information of China (English)

    赵建明; 尹王保; 汪丽蓉; 肖连团; 贾锁堂

    2002-01-01

    Electromagnetically-induced transparency is observed in a three-level multi-V-type system in cesium vapour atroom temperature. The absorption property is measured and the hyperfine structures of atomic states can be determined.The results of the experiment agree with the theoretical analysis.

  14. Dual cesium and rubidium atomic fountain with a 10-16 level accuracy and applications

    International Nuclear Information System (INIS)

    Atomic fountains are the most accomplished development of the atomic clocks based on the cesium atom whose hyperfine resonance defines the SI second since 1967. Today these systems are among those which realize the second with the best accuracy. We present the last developments of the cold cesium and rubidium atom dual fountain experiment at LNE-SYRTE. This unique dual setup would allow to obtain an outstanding resolution in fundamental physics tests based on atomic transition frequency comparisons. In order to enable operation with both atomic species simultaneously, we designed, tested and implemented on the fountain new collimators which combine the laser lights corresponding to each atom. By comparing our rubidium fountain to another cesium fountain over a decade, we performed a test of the stability of the fine structure constant at the level of 5 * 10-16 per year. We carried on the work on the clock accuracy and we focused on the phase gradients effects in the interrogation cavity and on the microwave leakage. The fountain accuracy has been evaluated to 4 * 10-16 for the cesium clock and to 5 * 10-16 for the refurbished rubidium clock. As a powerful instrument of metrology, our fountain was implicated in many clock comparisons and contributed many times to calibrate the International Atomic Time. Furthermore, we used the fountain to perform a new test of Lorentz local invariance. (author)

  15. Separation of cesium-137 from uranium fission products via a NeoflonR column supporting tetraphenylboron

    International Nuclear Information System (INIS)

    Cesium is a member of the Group I alkali metals, very reactive earth metals that react vigorously with both air and water. The chemistry of cesium is much like the chemistry of neighboring elements on the periodic table, potassium and rubidium. This close relation creates many problems in plant-life exposed to cesium because it is so easily confused for potassium, an essential nutrient to plants. Radioactive 134Cs and 137Cs are also chemically akin to potassium and stable cesium. Uptake of these radioactive isotopes from groundwater by plant-life destroys the plant-life and can potentially expose humans to the radioactive affects of 134Cs and 137Cs. Much experimental work has been focused on the separation of 137Cs from uranium fission products. In previous experimental work performed a column consisting of Kel-F supporting tetraphenylboron (TPB) was utilized to separate 137Cs from uranium fission products. It is of interest at this time to attempt the separation of 134Cs from 0.01M EDTA using the same method and Neoflon in the place of Kel-F as the inert support. The results of this experiment give a separation efficiency of 88% and show a linear relationship between the column bed length and the separation efficiency obtained. (author)

  16. Cesium Sorption from Concentrated Acidic Tank Wastes Using Ammonium Molybdophosphate-polyacrylonitrile Composite Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen; Mann, Nicholas Robert; Tranter, Troy Joseph; Sebesta, F.; John, J.; Motl, A.,

    2002-10-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogrovimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 °C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions.

  17. Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hengxuan; Zhao, Xuan, E-mail: zhxinet@tsinghua.edu.cn; Wei, Jiying; Li, Fuzhi

    2014-08-15

    Highlights: • A novel pathway of synthesizing magnetic hexacyanoferrate material was developed. • The synthesized material can offer a high capacity for sorption of cesium. • The material can offer a fast removal of cesium in kinetic performance. • The fine M-PTH particle can be easily separated from wastewater for recirculation. - Abstract: The rapid development of the nuclear power plant in China leads to increasing attention to the treatment of low-level radioactive wastewater (LLRW). One of possibilities is the application of inorganic adsorbent like potassium titanium hexacyanoferrate (PTH), which can exhibit the effective adsorption of cesium. In this paper, the PTH material was optimized by means of being loaded on magnetite substrate. The synthesized material (magnetic PTH, M-PTH), with a particle size of less than 100 nm, can offer a high capacity and favorable kinetic performance, however, without difficulties of separation from the LLRW due to its magnetic characterizations. The batch experiments demonstrate that cesium sorption isotherm of M-PTH coincide well with Langmuir model. The calculated capacity amounts to 0.517 mmol/g, approximately 1.5 times the capacity of zeolite materials. The sorption process follows the pseudo-second-order sorption model. In the initial phase the rate-controlling step is intraparticle diffusion. With the Cs accumulation on the particle surface, external diffusion performs an important role together with intraparticle diffusion.

  18. Z' indication from new APV data in Cesium and searches at linear colliders

    OpenAIRE

    Casalbuoni, R.; De Curtis, S.; Dominici, D.; Gatto, R.; Riemann, S.

    2000-01-01

    New data on parity violation in atomic cesium can be explained by a new neutral vector boson almost unmixed with Z, with a mass in the TeV range and sizeable couplings to the fermions. The properties of such additional Z' can be investigated at future linear colliders.

  19. Cobalt-60 and cesium-137 for the sterilization of food. Radiation treatment of food

    International Nuclear Information System (INIS)

    The brief article discusses the reasons justifying in the eyes of the authors the irradiation of food with ionizing readiation, the irradiation technique applied using cobalt-60 and cesium-137 as a radiation source, and the possible secondary effects of the method. (VHE)

  20. High-temperature cesium capture using activated kaolinite in the presence of chlorine and volatile heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Kim, Jeoung Guk; Yoo, Jae Hyung; Kim, Joon Hyung [KAERI, Taejon (Korea, Republic of); Yoon, Jong Sung [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-05-01

    This study investigated the use of porous activated kaolin particles in the size range of 300- 400 {mu}m as high-temperature sorbents for cesium capture in the presence of chlorine and/or in the presence of cadmium and lead. Packed bed sorption tests by passing CsCl-carrying flue gas through the packed bed of activated porous kaolin particles were first performed at the temperature range of 973-1173 K and a CsCl partial pressure range of 7.4-11.1 Pa. The observed structural change of the sorbent mineral at the stage of sorption revealed the characteristics of an irreversible chemical reaction as a major cesium capturing mechanism. In the fully saturated kaolin sorbent, Cs{sub 2}O{center_dot}Al{sub 2}O{sub 3}{center_dot}SiO{sub 2} is present as a sorption reaction product, together with much smaller amount of water-soluble cesium species. The increase in sorbent bed temperature resulted in an increase in the rate of sorption, but it had no effect on maximum cesium uptake. In the presence of other condensable gas-phase metal chlorides such as cadmium and lead, cesium was preferentially adsorbed onto tested activated kaolinite, but a half of cesium appeared to be physically-sorbed cesium species, CsCl.

  1. Foliar uptake of cesium, iodine and strontium and their transfer to the edible parts of beans, potatoes and radishes

    Science.gov (United States)

    Oestling, O.; Kopp, P.; Burkart, W.

    Considerable fractions of radionuclide solutions deposited on the surface of the leaves may be transferred to the edible parts of plants. In radishes we observed a transfer of more than 40% of the applied cesium radioisotope within a few days. A rather similar uptake was found for beans and potatoes when harvested a month after application of radioactivity. As much as 60% of the applied cesium-isotope remained in (or on) the potato leaves even 8 days after application. The major part could however be washed off the leaves a few hours after application. When radishes were showered with water within 7 h after the application of activity the uptake was greatly reduced. No competitive effect of potassium chloride for the foliar uptake of cesium was found. A 10 -2 M colloidal suspension of Prussian Blue, a chelating agent for monovalent alkali metals such as potassium, cesium, or other monovalent cations, applied as droplets to the leaves one day prior to application of active cesium was found to strongly inhibit the transfer of cesium to the radish. The transfer of iodine and strontium to the edible parts was found to be negligible (or slower) as compared to cesium. In most cases no detectable amounts of these two nuclides were transfered to the edible parts of the radish after 2-5 weeks.

  2. Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911

    Science.gov (United States)

    Kim, Sung Hyun

    Through collaborative efforts at Texas A&M University and Sandia National Laboratories, a crystalline silicotitanate (CST), which shows extremely high selectivity for radioactive cesium removal in highly concentrated sodium solutions, was synthesized. The effect of hydrogen peroxide on a CST under cesium ion exchange conditions has been investigated. The experimental results with hydrogen peroxide showed that the distribution coefficient of cesium decreased and the tetragonal phase, the major component of CST, slowly dissolved at hydrogen peroxide concentrations greater than 1 M. A simple and novel experimental apparatus for a single-layer ion exchange column was developed to generate experimental data for estimation of the intraparticle effective diffusivity. A mathematical model is presented for estimation of effective diffusivities for a single-layer column of CST granules. The intraparticle effective diffusivity for Cs was estimated as a parameter in the analytical solution. By using the least square method, the effective diffusivities of 1.56 +/- 0.14 x 10-11 m2/s and 0.68 +/- 0.09 x 10-11 m2/s, respectively, were obtained. The difference in the two values was due to the different viscosities of the solutions. A good fit of the experimental data was obtained which supports the use of the homogeneous model for this system. A counter-current ion exchange (CCIX) process was designed to treat nuclear waste at the Savannah River Site. A numerical method based on the orthogonal collocation method was used to simulate the concentration profile of cesium in the CCIX loaded with CST granules. To maximize cesium loading onto the CST and minimize the volume of CST, two design cases of a moving bed, where the fresh CST is pulsed into the column at certain periods or at certain concentration of cesium, were investigated. Simulation results showed that cesium removal behavior in the pilot-scale test of CCIX experiment, where the column length is 22 ft and the CST is pulsed

  3. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1

  4. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Jalali-Rad, R. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)]. E-mail: rjalali@aeoi.org.ir; Ghafourian, H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Asef, Y. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Dalir, S.T. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Sahafipour, M.H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Gharanjik, B.M. [Offshore Fisheries Research Center, Chabahar (Iran, Islamic Republic of)

    2004-12-10

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q{sub max} values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles.

  5. Performance modeling of an integral, self-regulating cesium reservoir for the ATI-TFE

    International Nuclear Information System (INIS)

    This work covers the performance modeling of an integral metal-matrix cesium-graphite reservoir for operation in the Advanced Thermionic Initiative-Thermionic Fuel Element (ATI-TFE) converter configuration. The objectives of this task were to incorporate an intercalated cesium-graphite reservoir for the 3C24Cs→2C36Cs+Cs(g) two phase equilibrium reaction into the emitter lead region of the ATI-TFE. A semi two-dimensional, cylindrical TFE computer model was used to obtain thermal and electrical converter output characteristics for various reservoir locations. The results of this study are distributions for the interelectrode voltage, output current density, and output power density as a function of axial position along the TFE emitter. This analysis was accomplished by identifying an optimum cesium pressure for three representative pins in the ATI ''driverless'' reactor core and determining the corresponding position of the graphite reservoir in the ATI-TFE lead region. The position for placement of the graphite reservoir was determined by performing a first-order heat transfer analysis of the TFE lead region to determine its temperature distribution. The results of this analysis indicate that for the graphite reservoirs investigated the 3C24Cs→2C36Cs+Cs(g) equilibrium reaction reservoir is ideal for placement in the TFE emitter lead region. This reservoir can be directly coupled to the emitter, through conduction, to provide the desired cesium pressure for optimum performance. The cesium pressure corresponding to the optimum converter output performance was found to be 2.18 torr for the ATI core least power TFE, 2.92 torr for the average power TFE, and 4.93 torr for the maximum power TFE

  6. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe3O4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  7. An isotope dilution-precipitation process for removing radioactive cesium from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Harold, E-mail: rogers22@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States); Bowers, John; Gates-Anderson, Dianne [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Developed an isotope dilution-precipitation treatment process for Cs-137 contaminated water. Black-Right-Pointing-Pointer Waste seeded with non-radioactive Cs-133 prior to precipitation with sodium tetraphenylborate. Black-Right-Pointing-Pointer Final Cs-137 concentrations below DOE discharge limit of 3.0 Multiplication-Sign 10{sup -6} {mu}Ci/mL can be achieved. Black-Right-Pointing-Pointer Synthetic wastewater, and industrial low level radioactive proof of principle studies completed. - Abstract: A novel isotope dilution-precipitation method has been developed to remove cesium-137 from radioactive wastewater. The process involves adding stable cesium chloride to wastewater in order to raise the total cesium concentration, which then allows both the stable and radioactive cesium ions to be precipitated together using sodium tetraphenylborate. This process was investigated utilizing laboratory solutions to determine stable cesium dose rates, mixing times, effects of pH, and filtration requirements. Once optimized, the process was then tested on synthetic wastewater and aqueous low-level waste. Experiments showed the reaction to be very quick and stable in the pH range tested, 2.5-11.5. The wastewater may need to be filtered using a 0.45-{mu}m filter, though ferric sulfate has been shown to promote coagulation and settling, thereby eliminating the necessity for filtration. This investigation showed that this isotope dilution-precipitation process can remove Cs-37 levels below the U.S. Department of Energy's (DOE) Derived Concentration Standard (DCS) of 3.0 Multiplication-Sign 10{sup -6} {mu}Ci/mL using a single dosage, potentially allowing the wastewater to be discharged directly to sanitary sewers.

  8. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  9. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    International Nuclear Information System (INIS)

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate

  10. Friction and wear behavior of chromium carbide coatings

    International Nuclear Information System (INIS)

    Chromium carbides, tungsten carbide, and chromium oxide have been tested and evaluated as coatings to protect high-temperature gas-cooled reactor (HTGR) steam generator and other HTGR components from adhesion, galling associated with sliding wear or from fretting. Tests were performed in commercially-pure helium and in helium doped with various gaseous impurities (H2, H2O, CH4, CO) to simulate the primary coolant of an HTGR. Several types of chromium carbide coatings including Cr3C2, Cr7C3, and Cr23C6, were tested for wear resistance and resistance to long-term spalling. Tungsten carbide and chromium oxide coatings were tested in sliding wear tests. Cr23C6-NiCr coatings showed the best performance (from 400 to 8160C) whether they were applied by detonation gun or plasma gun spraying methods. The presence of the Cr23C6-NiCr coatings did not affect the creep rupture properties of Alloy 800H substrates at temperatures up to 7600C. Low-cycle fatigue life of similar specimens at 5930C was reduced to 10 to 20% when tested in the 1 to 0.6% strain range

  11. Porosity of detonation coatings on the base of chromium carbide

    International Nuclear Information System (INIS)

    Porosity of detonation coatings on the base of chromium carbide is estimated by the hydrostatic weighing. The open porosity value dependence on the distance of spraying, depth of the charge, ratio and volume of the detonator barrie filing with gas components is established. Pore distribution in the cross section of a specimen tested for porosity is studied by the methods of metallographic analysis

  12. Dynamic strength of reaction-sintered boron carbide ceramic

    Science.gov (United States)

    Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Rumyantsev, V. I.

    2015-06-01

    The shock compression wave profiles in three modifications of boron carbide ceramic are studied in the compressive stress range 3-19 GPa. The Hugoniot elastic limit and the spall strength of the materials are determined. It is confirmed that the spall strength of high-hardness ceramic changes nonmonotonically with the compressive stress in a shock wave.

  13. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  14. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  15. Influence of nanometric silicon carbide on phenolic resin composites properties

    Indian Academy of Sciences (India)

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  16. Method of making metallic oxide or carbide particles

    International Nuclear Information System (INIS)

    A method is claimed of making metallic oxide or carbide particles of uranium, which comprises fuels or breeder materials for nuclear reactors. An aqueous solution of uranyl nitrate or chloride and, if necessary, colloidal carbon is added dropwise into an organic ketone or ketone mixture phase which is located above an aqueous ammonia solution. The thereupon formed particles are sintered

  17. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Science.gov (United States)

    Rodenbücher, C.; Hildebrandt, E.; Szot, K.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Breuer, U.; Waser, R.; Alff, L.

    2016-06-01

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2-x) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2 thin films prepared and measured under identical conditions, the formation of HfCx was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  18. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  19. Modification of optical surfaces employing CVD boron carbide coatings

    International Nuclear Information System (INIS)

    Non-reflective or high emissivity optical surfaces require materials with given roughness or surface characteristics wherein interaction with incident radiation results in the absorption and dissipation of a specific spectrum of radiation. Coatings have been used to alter optical properties, however, extreme service environments, such as experienced by satellite systems and other spacecraft, necessitate the use of materials with unique combinations of physical, chemical, and mechanical properties. Thus, ceramics such as boron carbide are leading candidates for these applications. Boron carbide was examined as a coating for optical baffle surfaces. Boron carbide coatings were deposited on graphite substrates from BCl3, CH4, and H2 gases employing chemical vapor deposition (CVD) techniques. Parameters including temperature, reactant gas compositions and flows, and pressure were explored. The structures of the coatings were characterized using electron microscopy and compositions were determined using x-ray diffraction. The optical properties of the boron carbide coatings were measured, and relationships between processing conditions, deposit morphology, and optical properties were determined

  20. Fluorescent silicon carbide materials for white LEDs and photovoltaics

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Ou, Haiyan; Wellmann, Peter

    in cubic silicon carbide. The impurity photovoltaic effect could lead to devices with efficiencies comparable to those of tandem systems, and could open a new road for very-high-efficiency solar cells. Such high performance can be reached only if the host material has a large energy gap, like cubic silicon...

  1. Metallographic studies of eutectics carbides in high niobium microalloyed steels

    International Nuclear Information System (INIS)

    The quantity, distribution and effectiveness of eutectic carbides was studied in high niobium microalloyed steels. The particles showed extremely inhomogenuous distributions and seemed to be ineffective in promoting refinement of either an austenitic, ferritic or perlitic microstructure. There is a definite need for better quantitative data about the fraction of Nb 'lost' to eutectic particles in these steels. (Author)

  2. Growth of Vanadium Carbide by Halide-Activated Pack Diffusion

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Dahl, Kristian Vinter;

    The present work investigates growth of vanadium carbide (VC) layers by the pack diffusion method on a Vanadis 6 tool steel. The VC layers were produced by pack diffusion at 1000°C for 1, 4 and 16 hours. The VC layers were characterized with optical and electron microscopy, Vickers hardness tests...

  3. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  4. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  5. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718

  6. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  7. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  8. Mullite Coating on Recrytallized Silicon Carbide and Its Cycling Oxidation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mullite coating on recrystallized silicon carbide was successfully prepared by the sol-gel route. The cycling oxidation of coated recrystallized silicon carbide was performed at 1500℃. For comparison, the oxidation of uncoated recrystallized silicon carbide was also carried out at the same condition. The results indicated that a layer of compact, adhesive and crack free mullite coating was found on the recrystallized silicon carbide. After oxidation, the new coatings exhibit adherence and crack resistance under thermal cycling between room temperature and 1500℃, therefore the oxidation resistance capability of silicon carbide was enhanced. With the increase of the dipping frequencies, namely, the increase of the thickness of mullite coating, the oxidation resistance of silicon carbide would be further improved. The formation mechanism of mullite coating was analyzed and discussed and the oxidation dynamics model of coatedmullite silicon carbide has been also proposed.

  9. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  10. Coarsening of carbides during different heat treatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Kai, E-mail: miaok21@126.com; He, Yanlin, E-mail: ylhe@staff.shu.edu.cn; Zhu, Naqiong; Wang, Jingjing; Lu, Xiaogang; Li, Lin

    2015-02-15

    Highlights: • Coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was quantitatively described in detail. • Cooling mode is a key factor to the simulation for the coarsening of carbides. • Coarsening of above spherical carbides can be calculated by Ostwald ripening model. • The interfacial energy between the γ matrix with M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides are 0.7 J/m{sup 2}. - Abstract: Coarsening of carbides in 1# Fe-5.96Cr-0.35C (wt.%) alloy and 2# Fe-0.5V-0.53C (wt.%) alloy during different heat treatment conditions was investigated by carbon replica, high-resolution transmission electron microscopy (HRTEM) , X-ray diffraction (XRD) and SEM techniques. The equilibrium phases at 850 °C constitute of austenitic matrix (γ) + M{sub 7}C{sub 3} and austenite matrix (γ) + V{sub 4}C{sub 3} for 1# and 2# alloy respectively. Morphology of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was mainly determined by cooling mode due to the different nucleation sites and growth mechanisms. Under directly aging condition, most carbides nucleate in the grain boundaries and grow into rod-shaped or flake-shaped particles by discontinuous growth mechanism. These particles turn out to be excluded during coarsening simulation using Oswald ripening model to give a more reasonable result. In addition, interfacial energy between M{sub 7}C{sub 3}/γ and V{sub 4}C{sub 3}/γ for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} during aging at 850 °C is evaluated by fitting experimental data using thermodynamic and kinetic calculations. The interfacial energy is determined to be 0.7 J/m{sup 2} for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} in austenitic matrix.

  11. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  12. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  13. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    Science.gov (United States)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack

  14. Selective-area laser deposition (SALD) Joining of silicon carbide with silicon carbide filler

    Science.gov (United States)

    Harrison, Shay Llewellyn

    Selective Area Laser Deposition (SALD) is a gas-phase, solid freeform fabrication (SFF) process that utilizes a laser-driven, pyrolytic gas reaction to form a desired solid product. This solid product only forms in the heated zone of the laser beam and thus can be selectively deposited by control of the laser position. SALD Joining employs the SALD method to accomplish 'welding' of ceramic structures together. The solid reaction product serves as a filler material to bond the two parts. The challenges involved with ceramic joining center around the lack of a liquid phase, little plastic deformation and diffusivity and poor surface wetting for many ceramic materials. Due to these properties, traditional metal welding procedures cannot be applied to ceramics. Most alternative ceramic welding techniques use some form of a metal addition to overcome these material limitations. However, the metal possesses a lower ultimate use temperature than the ceramic substrate and therefore it decreases the temperature range over which the joined part can be safely used. SALD Joining enjoys several advantages over these ceramic welding procedures. The solid filler material chemistry can be tailored to match the type of ceramic substrate and therefore fabricate monolithic joints. The SALD filler material bonds directly to the substrate and the joined structure is made in a one step process, without any post-processing. The research documented in this dissertation focused on SALD Joining of silicon carbide structures with silicon carbide filler material. A historical progression of gas-phase SFF research and a literature review of the most prominent ceramic joining techniques are provided. A variety of SiC substrates were examined, as were various conditions of gas precursor pressures and mixtures, laser beam scan speed and joint configuration. The SALD material was characterized for composition and structure by x-ray diffraction, transmission electron microscopy and nuclear magnetic

  15. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  16. Frequency doubling with periodically poled KTiOPO4 at the fundamental wave of cesium D2 transition

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Song; Zhigang Li; Pengfei Zhang; Gang Li; Yuchi Zhang; Junmin Wang; Tiancai Zhang

    2007-01-01

    @@ We report the continuous wave (CW) second harmonic generation (SHG) with a periodically poled KTiOPO4 (PPKTP) pumped by a diode laser at 852.356 nm, which is exactly resonant on the cesium D2 transition.

  17. Application of a composite sorbent based om natural and synthetic zeolites for cesium ion elimination from water solutions

    International Nuclear Information System (INIS)

    The study has been carried out to determine the effect of variations in the content of natural and synthetic zeolites, being the components of the composite sorbent, on the cesium sorption from the water solution

  18. Spin-dependent asymmetry functions in the elastic and inelastic electron-cesium scattering at intermediate energies

    International Nuclear Information System (INIS)

    In this thesis the measurements of the relative differential cross section, the exchange asymmetry, the spin-orbit asymmetry, and the interference asymmetry for the electron scattering on cesium atoms from 4 to 18 eV is described. (HSI)

  19. Cesium-137 in ash from combustion of biofuels. Application of regulations from the Swedish Radiation Safety Authority; Cesium-137 i aska fraan foerbraenning av biobraenslen. Tillaempning av Straalsaekerhetsmyndighetens regler

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf (Tekedo AB, Nykoeping (SE))

    2009-03-19

    The Swedish Radiation Safety Authority, SSM, has issued an ordinance on ash contaminated with Cesium-137. It implies amongst other things that ash containing 0,5 - 10 kBq/kg Cesium-137 (so-called contaminated ash) can be used for geotechnical purposes provided that the content in a near-by well does not exceed 1 Bq/litre and that the increase in a near-by fish producing recipient does not exceed 0,1 Bq/litre. The initial plan with the presently reported work was to provide a compilation of how the ordinance for Cesium-137 can be applied in practical work. It became evident, however, in the course of the work that issues related to the co-variation between potassium and Cesium needed further investigation. As a result, the present report comprises also a compilation of this extended information search. Cesium-137 is present in ash as a result of the accident in a nuclear power reactor in Chernobyl in 1986 during which material having a very small grain size was spread to a high altitude. A few days later, Cesium-137 was deposited during rains over large parts of Sweden. This activity penetrated to a depth of one or a few decimetres during the course of the subsequent few days and weeks, after which it was partially taken up by plants and spread in the ecosystem. Section 2 has the character of a handbook. It provides basic information on radiation, and also about the ordinance and other material from the SSI. Section 3 comprises compilations of relevant international status of knowledge. This regards how potassium and Cesium behave in soil and ash, and also how spreading of Cesium can be modelled. Cesium behaves similarly to Potassium but with the difference that Cesium is bonded much more strongly to mineral soil and ash. Potassium and Cesium appears in soil in four different forms: dissolved in the pore water, exchangeable, non-exchangeable and as bonded to minerals. The amount dissolved in the pore water is the smallest and that bonded to minerals is the largest

  20. The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jie; Cai, Qiuxia; Wan, Yan; Wan, Shaolong; Wang, Li; Lin, Jingdong; Mei, Donghai; Wang, Yong

    2016-09-02

    In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3* to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivity are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM

  1. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  2. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    Science.gov (United States)

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  3. Electric Heating Property from Butyl Rubber-Loaded Boron Carbide Composites

    Institute of Scientific and Technical Information of China (English)

    MENG Dechuan; WANG Ninghui; LI Guofeng

    2014-01-01

    We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal stability of boron carbide/butyl rubber (IIR) polymer composite were introduced. The analysis results indicated that the bulk resistivity decreased greatly with increasing boron carbide content, and when boron carbide content reached to 60%, the bulk resistivity achieved the minimum. Accordingly, electric heating behavior of the composite is strongly dependent on boron carbide content as well as applied voltage. The content of boron carbide was found to be effective in achieving high thermal conductivity in composite systems. The thermal conductivity of the composite material with added boron carbide was improved nearly 20 times than that of the pure IIR. The thermal stability test showed that, compared with pure IIR, the thermal stable time of composites was markedly extended, which indicated that the boron carbide can significantly improve the thermal stability of boron carbide/IIR composite.

  4. Development and Processing of Nickel Aluminide-Carbide Alloys

    Science.gov (United States)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  5. A Study of the High Temperature on Chromium Carbide

    International Nuclear Information System (INIS)

    The oxidation rates of chromium carbide have been measured at 900 to 1300 .deg. C and oxygen pressures between 2x10-2 8 x 10-2 Pa using thermogravimetric analysis method. Oxidation behavior of chromium carbide appeared to change very sensitively with both temperature and oxygen pressure. In case with the oxygen pressure lower than 8 x 10-2 Pa, the weight gain in the specimen due to the formation of chromium oxide occurred linearly with time at the every temperature studied, but when the oxygen pressure was increased up to 8 x 10-2Pa, the weight gain behavior versus time showed entirely different tendency. That is, in the temperature range of 900 .deg. C to 1000 .deg. C weight gain occurred, however in the range of 1000 .deg. C to 1300 .deg. C weight lost was observed. The reason for the observed linear kinetics could be inferred as follows. As the oxidation of carbide proceeded carbon monoxide would build up at the interface of the chromium oxide and carbide. If the equilibrium pressure of carbon monoxide at the interface exceeds the gas pressure at the outer specimen surface, the oxide scale formed on it might be cracked exposing new carbide sites on which oxidation could occur successively. Through a thermodynamic consideration it was judged that the above deduction was reasonable. On the other hand, the weight lost mentioned above was explained that it could occur mainly due to the further oxidation of Cr2O3 to the volatile CrO3 at the corresponding experimental conditions. Weight loss phenomenon mentioned before which was observed in the oxidation of chromium carbide was also clearified by X-ray diffraction method and SEM. That is, at 900 .deg. C stable oxide of chromium, (Cr2O3) was identified easily on the specimen surface. However, at 1300 .deg. C, only a few amount of this stable oxide could be found on to specimen surface, indicating Cr2O3 had been evaporated to CrO3 gas

  6. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  7. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V; Custelcean, Radu; Delmau, Laetitia H; Ditto, Mary E; Engle, Nancy L; Gorbunova, Maryna G; Haverlock, Tamara J; Levitskaia, Taiana G; Bartsch, Richard A; Surowiec, Malgorzata A; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and "switch off" when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  8. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and ''switch off'' when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  9. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, Raphael

    2010-07-21

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  10. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    International Nuclear Information System (INIS)

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  11. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  12. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm-3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  13. The beta strength function structure in \\beta + decay of lutecium, thulium and cesium isotopes

    CERN Document Server

    Alkhazov, G D; Naumov, Yu V; Orlov, S Yu; Vitman, V D

    1981-01-01

    The spectra of total gamma -absorption in the decays of some lutetium, thulium and cesium isotopes have been measured. The probabilities for level population in the decay of the isotopes have been determined. The deduced beta strength functions reveal pronounced structure. Calculations of the strength functions using the Saxon-Woods potential and the residual Gamow-Teller interaction are presented. It is shown that in beta /sup +/ decay of light thulium and cesium isotopes the strength function comprises more than 70% of the Gamow-Teller excitations with mu /sub tau /=+1. This result is the first direct observation of the Gamov-Teller resonance in beta /sup +/ decay of nuclei with T/sub z/>0. (21 refs).

  14. Light storage via coherent population oscillation in a thermal cesium vapor

    CERN Document Server

    de Almeida, A J F; Maynard, M -A; Laupretre, T; Bretenaker, F; Felinto, D; Goldfarb, F; Tabosa, J W R

    2014-01-01

    We report on the storage of light via the phenomenon of Coherent Population Oscillation (CPO) in an atomic cesium vapor at room temperature. In the experiment the optical information of a probe field is stored in the CPO of two ground states of a Lambda three-level system formed by the Zeeman sublevels of the hyperfine transition F = 3 - F' = 2 of cesium D2 line. We show directly that this CPO based memory is very insensitive to stray magnetic field inhomogeneities and presents a lifetime which is mainly limited only by atomic motion. A theoretical simulation of the measured spectra was also developed and is in very good agreement with the experiment.

  15. Leaching Study in Immobilization of Cesium and Cobalt Radionuclides In Fly Ash- Zeolite Cement

    International Nuclear Information System (INIS)

    Fly ash-zeolite cement was synthesized from industrial by-product fly ash obtained from the thermal electric power station. The synthesis process is based on the hydrothermal-calcination-route of the fly ash. The microstructure of fly ash-zeolite cement was characterized by X-ray diffraction, FT infrared spectroscopy and surface area (F-N2). The efficiency of innovative matrices for immobilizing cesium and cobalt radionuclides is presented in this work. The aim of the present study is to investigate the possibility of solidifying 137Cs and 60Co radionuclides in synthetic fly ash zeolite cement. Leaching behavior of the radionuclides have been studied. The leachability index measured indicated that fly ash zeolite cement matrix can be utilized as an efficient material for immobilizing cesium and cobalt radionuclides than portland cement.

  16. Static and dynamic experiments for the retention of cesium in nitrate containing, nitric acid solutions

    International Nuclear Information System (INIS)

    The separation of cesium from medium active waste (MAW) of the Purex-Process by chromatographic methods is demonstrated using the inorganic ion exchanger ammoniummolybdatophosphate (AMP-1). Other inorganic exchangers like ammoniumhexacyanocobaltousferrate (NCFC), zirkoniumphosphate (ZPH) and antimonypentoxid (HAP) have shown for different pH-values a reasonable retention for cesium (NCFC (pH 12) : 35 g Cs/kgNCFC, ZPH(pH 7) : 100 g Cs/kgZPH and HAP (pH 2) : 55 g Cs/kgHAP). But with a high salt loading (300 g/l NaNO3) a loss of capacities occurs which does not allow the use of these exchangers, whereas AMP-1 is useful from a pH of 9 to conc. HNO3 with this high salt loadings with a capacity of 60 g Cs/kg AMP-1. (orig.)

  17. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  18. Strontium-90 and cesium-137 in soil from May 1984 to July 1984

    International Nuclear Information System (INIS)

    Strontium-90 and cesium-137 in soil measured throughout Japan from May to July 1984 are given in pCi/kg and mCi/km2. Sampling points are total of 8 from Kawabe-gun (Akita) to Ibasuki-gun (Kagoshima). Collection and pretreatment of samples, preparation of samples for analysis, separation of strontium-90 and cesium-137, determination of stable strontium, calcium and potassium, and counting are described. Soil was collected from the location in the spacious and flat area without past disturbance on the surface. Soil was taken from two layers of different depths, 0 aproximately 5 cm and 5 approximately 20 cm. After the radiochemical separation, the mounted precipitates were counted for activity using low background beta counters normally for 60 minutes. (Mori, K.)

  19. Characterization of cesium uptake mediated by a potassium transport system of bacteria in a soil conditioner

    International Nuclear Information System (INIS)

    We found that bacteria in a commercial soil conditioner sold in Ishinomaki, Miyagi, exhibited concentrative and saturable cesium ion (Cs+) uptake in the natural range of pH and temperature. The concentration of intracellular Cs+ could be condensed at least a few times higher compared with the outside medium of the cells. This uptake appeared to be mediated by a K+ transport system, since Cs+ uptake was dose-dependently inhibited by potassium ion (K+). Eadie-Hofstee plot analysis indicated that the Cs+ uptake involved a single saturable process. The maximum uptake amount (Jmax) was the same in the presence and absence of K+, suggesting that Cs+ and K+ uptakes were competitive with respect to each other. These bacteria might be useful for bioremediation of cesium-contaminated soil. (author)

  20. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    Science.gov (United States)

    Fokapić, S.; Bikit, I.; Mrđa, D.; Vesković, M.; Slivka, J.; Mihaljev, Ž.; Ćupić, Ž.

    2007-04-01

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450°C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  1. Determination of modelling parameter in the fluctuation and migration of Cesium in soils

    International Nuclear Information System (INIS)

    Cesium radionuclide is one of fission products with high level activity and long life, of about 30 years, therefore it is used as an indicator of a fission product released from a nuclear reactor or a radioactive waste storage. The migration process of cesium in soil is influent by physical and chemical properties of soil and environment in which the sorption process occurred. The data of the physical and chemical properties and the radionuclide retardation in such area are needed for the study of mathematical models of radionuclide migration. The experiment has been performed in laboratory by using soils with particle sizes of -4 - 4.48x10-2 cm/second; the longitudinal dispersivity 0.030 - 0.241 cm; the coefficient of longitudinal dispersion was 4.96x10-5 - 7.69x10-3 cm2/second and retardation factor was 2.30 - 3.39

  2. Chemical treatment of aqueous radioactive Cesium-137 waste using Ferri Chloride

    International Nuclear Information System (INIS)

    Ferric Chloride 6H2O was used for treatment of liquid radioactive wastes containing Cesium-137. Various concentration of ferric chloride 6H2O have been added into the waste at different pH and speed of stirrer. The treatment was based on the coagulans-flocculation and coprecipitation mechanisms. The best result of this experiment was achieved by adding 300 ppm of Ferric chloride 6 H2O into liquid waste on following condition the rate Stirrer was 250 rpm. At this condition, it was found that the separation efficiency and the decontamination factor were 83.32 % and 5.99. The activity of decreasing of aqueous radioactive Cesium-137 waste was 2.10 x 10-4 Ci/l to 3.50 x 10-5 Ci/l

  3. Spectroscopic approach for an electron EDM measurement using neutral cesium atoms

    Science.gov (United States)

    Zhu, Kunyan; Solmeyer, Neal; Weiss, David S.

    2012-06-01

    Observation of a permanent electric dipole moment of the electron (eEDM) would imply CP violating effects not contained in the Standard Model. We describe the state preparation and spectroscopy that will be used to measure the eEDM. Cesium atoms are guided into a measurement chamber, where they are laser-cooled and trapped in a pair of parallel one-dimensional optical lattices. The lattices thread three specially coated glass electric field plates. The measurement chamber is surrounded by a four layer magnetic shield inside of which eight magnetic field coils control the bias and gradient magnetic fields. A series of microwave and low frequency magnetic field pulses transfer the atoms into a superposition state that is sensitive to the eEDM signal. A measurement of the eEDM using neutral cesium atoms can obtain an ultimate shot noise limit of 3x10-30 e-cm.

  4. Adsorption of uranium, cesium and strontium onto coconut shell activated carbon

    International Nuclear Information System (INIS)

    The adsorption of uranium (VI), cesium and strontium ions from aqueous solutions onto a commercial activated carbon obtained by physical activation of coconut shell has been studied in batch systems. In particular the adsorption of uranium, studied as a function of contact time and metal ion concentration, followed pseudo-first-order kinetics. Equilibrium adsorption data were fitted by Langmuir and Freundlich isotherm models and the maximum adsorption capacity of the activated carbon resulted to be 55.32 mg/g. The study showed that the considered activated carbon could be successfully used for uranium adsorption from aqueous solutions. Feasibility of cesium and strontium adsorption onto the same activated carbon has been also investigated. Results showed that no affinities with both of these ions exist. (author)

  5. Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18

    Institute of Scientific and Technical Information of China (English)

    Dong Hui-Jie; Wang Ting; Li Chang-Yong; Zhao Jian-Ming; Zhang Lin-Jie

    2013-01-01

    The Stark structures in a cesium atom around n =18 are numerically calculated.The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot,and those with a large |m| shift downward a little within 1100 V/cm.All components of P states shift downward.Experimental work has been performed in ultracold atomic cesium.Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field,and Stark spectra with 丨m丨=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time.The observed spectra are analyzed in detail.The relative transition probability is calculated.The experimental results are in good agreement with our numerical computation.

  6. Evaporation behaviour of the ternary uranium plutonium carbides

    International Nuclear Information System (INIS)

    The evaporation behaviour of uranium plutonium carbides (Usub(0.80)Psub(0.20)Csub(1+-x) was studied by a combined application of mass spectrometry, using the uranium isotope U-233, and the Knudsen effusion target collection technique in the temperature range from 15000C to the liquids temperature measured at 24580C and the composition range from C/M = 0.95 to 1.4. High temperature compatibility tests were made with W-cells, carburized Ta and TaC-liners up to 25000C. The influence of oxygen and nitrogen impurities on vapour pressure, and composition changes in continued evaporation of the the mixed carbides were investigated. The effects of plutonium depletion and segregation were studied. (Auth.)

  7. Determination of thorium in plutonium-thorium oxides and carbides

    International Nuclear Information System (INIS)

    Thorium is determined in (PuTh)C and (PuTh)O2 by complexometric titration with ethylenediaminetetraacetic acid (EDTA) following separation on anion-exchange resin. Carbides are first oxidized by ignition in air at about 8000C. Oxide or oxidized carbide samples are dissolved in acids by the sealed-reflux technique or by heating in beakers. The plutonium is selectively sorbed from the 12M hydrochloric acid solution of the fuel on a Bio-Rad AG1-X2 anion-exchange resin column, and the eluted thorium is titrated with EDTA using xylenol orange as the indicator. The average recovery of thorium in 20 samples is 99.98% with a relative standard deviation of 0.07%

  8. Process for coating an object with silicon carbide

    Science.gov (United States)

    Levin, Harry (Inventor)

    1989-01-01

    A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.

  9. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  10. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide

    Science.gov (United States)

    Xie, Kelvin Y.; An, Qi; Toksoy, M. Fatih; McCauley, James W.; Haber, Richard A.; Goddard, William A.; Hemker, Kevin J.

    2015-10-01

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B4C (i.e., B12C3 ) but not in B13C2 . TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B4C is B11C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B13C2 because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  11. Single crystalline boron carbide nanobelts:synthesis and characterization

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B203/C/Fe powder as precursors at ll00~C.Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization.Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C,and the atomic ratio of B to C is close to 4:1.High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101].A possible growth mechanism is also discussed.

  12. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  13. Thermal boundary conductance between refractory metal carbides and diamond

    International Nuclear Information System (INIS)

    The thermal boundary conductance (TBC) between thin films of Cr, Mo, Nb and W and diamond substrates has been measured using time domain thermoreflectance before and after a high-vacuum heat treatment at 800 °C for 2 h. While no signs of carbide formation could be detected in as-deposited layers by scanning transmission electron microscopy energy dispersive X-ray spectroscopy elemental analysis, the heat treatment led to partial (W, Mo) or full conversion (Cr, Nb) of the film into carbide. The measured TBC values on as-deposited samples of 315, 220, 220 and 205 MW m-2K-1 measured for, respectively, the Cr, Mo, Nb and W samples, were found to not be significantly altered by the heat treatment

  14. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  15. Carbon-rich icosahedral boron carbide designed from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Antoine; Vast, Nathalie; Sjakste, Jelena; Duparc, Olivier Hardouin [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA-DSM-IRAMIS, CNRS UMR 7642, F-91120 Palaiseau (France)

    2014-07-21

    The carbon-rich boron-carbide (B{sub 11}C)C-C has been designed from first principles within the density functional theory. With respect to the most common boron carbide at 20% carbon concentration B{sub 4}C, the structural modification consists in removing boron atoms from the chains linking (B{sub 11}C) icosahedra. With C-C instead of C-B-C chains, the formation of vacancies is shown to be hindered, leading to enhanced mechanical strength with respect to B{sub 4}C. The phonon frequencies and elastic constants turn out to prove the stability of the carbon-rich phase, and important fingerprints for its characterization have been identified.

  16. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H2:Ar atmosphere at 14000C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  17. Amorphous silicon carbide coatings for extreme ultraviolet optics

    Science.gov (United States)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  18. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  19. Preparation of tantalum carbide from an organometallic precursor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.P. [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Geoquimica. Lab. de Termodinamica e Reatores]. E-mail: carlson at ufrnet.ufrn.br; Favotto, C.; Satre, P.; L' Honore, A.; Roubin, M. [Universite du Toulon et de Var B.P. (France). Equipe der Materiaux a Finalite Specifique. Lab. de Physicochimie du Materiaux et du Milieu Marin]. E-mail: roubin at univ-tln.fr

    1999-03-01

    In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta{sub 2} O{sub 5} nH{sub 2}O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, Ta C, in the powder form at 1000 deg C. The natural sintering of Ta C powder in an inert atmosphere at 1400 deg C during 10 hours, under inert atmosphere made it possible to density the carbide to 96% of the theoretical value. (author)

  20. The local structure of transition metal doped semiconducting boron carbides

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing; Dowben, P A [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, Behlen Laboratory of Physics, University of Nebraska-Lincoln, PO Box 880111, Lincoln, NE 68588-0111 (United States); Luo Guangfu; Mei Waining [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182-0266 (United States); Kizilkaya, Orhan [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge LA 70806 (United States); Shepherd, Eric D; Brand, J I [College of Engineering, and the Nebraska Center for Materials and Nanoscience, N209 Walter Scott Engineering Center, 17th and Vine Streets, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2010-03-03

    Transition metal doped boron carbides produced by plasma enhanced chemical vapour deposition of orthocarborane (closo-1,2-C{sub 2}B{sub 10}H{sub 12}) and 3d metal metallocenes were investigated by performing K-edge extended x-ray absorption fine structure and x-ray absorption near edge structure measurements. The 3d transition metal atom occupies one of the icosahedral boron or carbon atomic sites within the icosahedral cage. Good agreement was obtained between experiment and models for Mn, Fe and Co doping, based on the model structures of two adjoined vertex sharing carborane cages, each containing a transition metal. The local spin configurations of all the 3d transition metal doped boron carbides, Ti through Cu, are compared using cluster and/or icosahedral chain calculations, where the latter have periodic boundary conditions.

  1. Synthesis of titanium carbide by induction plasma reactive spray

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-Liang(蒋显亮); M.Boulos

    2004-01-01

    A novel method capable of sufficient mixing of titanium powder and methane of carbon source was developed in the synthesis of titanium carbide by induction plasma reactive spray. X-ray diffraction analysis, optical microscopy, scanning electron microscopy, and microhardness test were used to characterize the spray-formed deposit.The experimental results show that both primary carburization of the titanium particles inside the plasma flame and secondary carburization of the growing deposit on high temperature substrate contribute to the forming of titanium carbide. The transitional phase of TiC1-x has the same crystal structure as TiC, but has a slightly low lattice constant. The deposit consists of fine grain structure and large grain structure. The fine grain structure, harder than large grain structure, shows grain boundary fracture.

  2. Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent

    International Nuclear Information System (INIS)

    This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 degrees C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains. (authors)

  3. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  4. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  5. Atomic-Level Understanding of "Asymmetric Twins" in Boron Carbide.

    Science.gov (United States)

    Xie, Kelvin Y; An, Qi; Toksoy, M Fatih; McCauley, James W; Haber, Richard A; Goddard, William A; Hemker, Kevin J

    2015-10-23

    Recent observations of planar defects in boron carbide have been shown to deviate from perfect mirror symmetry and are referred to as "asymmetric twins." Here, we demonstrate that these asymmetric twins are really phase boundaries that form in stoichiometric B(4)C (i.e., B(12)C(3)) but not in B(13)C(2). TEM observations and ab initio simulations have been coupled to show that these planar defects result from an interplay of stoichiometry, atomic positioning, icosahedral twinning, and structural hierarchy. The composition of icosahedra in B(4)C is B(11)C and translation of the carbon atom from a polar to equatorial site leads to a shift in bonding and a slight distortion of the lattice. No such distortion is observed in boron-rich B(13)C(2) because the icosahedra do not contain carbon. Implications for tailoring boron carbide with stoichiometry and extrapolations to other hierarchical crystalline materials are discussed.

  6. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.

  7. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  8. Mössbauer study on the gamma radiolysis of anhydrous cesium tris (oxalato) ferrate(III)

    Science.gov (United States)

    Ladriere, J.; Senterre, V.; Apers, D.

    1992-04-01

    The final product of the gamma radiolysis of anhydrous cesium tris(oxalato) ferrate(III) has been identified by Mössbauer spectroscopy as Cs2Fe(ox)2. The radiolytic decomposition proceeds as a first-order process due to the original compound depletion and to the radiolytic stability of the ferrous compound. Lamb-Mössbauer factors measurements indicate that the recoilless fractions of the iron species are practically unaffected by the radiolysis.

  9. Spatial variability and the fate of cesium in coastal sediments near Fukushima, Japan

    Directory of Open Access Journals (Sweden)

    E. Black

    2014-05-01

    Full Text Available Quantifying the amount of cesium incorporated into marine sediments as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP accident has proven challenging due to the limited multi-core sampling from within the 30 km zone around the facility, the inherent spatial heterogeneities in ocean sediments, and the potential for inventory fluctuations due to physical, biological, and chemical processes. Using 210Pb, 234Th, 137Cs, and 134Cs profiles from 20 sediment cores, coastal sediment inventories were reevaluated. A minimum 137Cs sediment inventory of 100 ± 50 TBq was found for an area of 55 000 km2 using cores from this study and a total of 130 ± 60 TBq using an additional 181 samples. These inventories represent less than 1% of the estimated 15–30 PBq of cesium released during the FDNPP disaster and constitute ~ 90% of the total coastal inventory of 137Cs remaining in 2012. The time needed for surface sediment activities (0 to 3 cm at the 20 locations to reduce by 50% via bioturbation was estimated to range from 0.4 to 26 years, indicating a much greater persistence of cesium in the sediments relative to coastal water activities. However, due to the observed variability in mixing rates, grain size, and inventories, additional cores are needed to further improve estimates and capture the full extent of cesium penetration into the shallow coastal sediments, which was deeper than 14 cm for all cores retrieved from water depths less than 150 m.

  10. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium

    OpenAIRE

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-01-01

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/P...

  11. The effects of different factors at the cesium 137 accumulation by tree plants

    International Nuclear Information System (INIS)

    It was shown that cesium 137 accumulation by tree plants depended from numerous factors that had to be take into account by utilisation of forest production and conducting of forestry in the whole. It is necessary to elaborate a new classification of contaminated forests which could take into account not only radionuclide density of soils but existence of different tree species and their growth conditions

  12. Evaporative cooling of cesium atoms in the gravito-optical surface trap

    CERN Document Server

    Hammes, M; Grimm, R

    2000-01-01

    We report on cooling of an atomic cesium gas closely above an evanescent-wave. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude. In a series of measurements of heating and spin depolarization an incoherent background of resonant photons in the evanescent-wave diode laser light was found to be the limiting factor at this stage.

  13. Quantized atomic motion in 1D cesium molasses with magnetic field

    International Nuclear Information System (INIS)

    We report the observation of quantized energy levels for the motion of cesium atoms in optical molasses consisting two counterpropagating σ+ beams and a small transverse magnetic field. The observation of overtones proves the existence of at least four bound states in each optical potential well. The absorption spectrum is dramatically modified when an additional longitudinal magnetic field is applied. In particular, a population inversion between quantized levels is observed. (orig.)

  14. Strategic Design and Optimization of Inorganic Sorbents For Cesium, Strontium and Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Nyman, M.; Clearfield, A.; Maginn, E.

    2006-06-01

    The basic science goal in this project identifies structure/affinity relationships for selected radionuclides and existing sorbents. The task will apply this knowledge to the design and synthesis of new sorbents that will exhibit increased affinity for cesium, strontium and actinide separations. The target problem focuses on the treatment of high-level nuclear wastes. The general approach can likewise be applied to nonradioactive separations.

  15. Development of an Advanced Polymeric Composite (ALIX) for separation of cesium from nuclear waste

    International Nuclear Information System (INIS)

    137Cs is one of the major isotopes present in high level radioactive waste (HLW). Its presence makes nuclear waste handling difficult. A new composite (ALIX) containing Ammonium molybdophosphate and a derivative of Bisphenol was developed for column operations to selectively remove cesium from acidic high level nuclear waste. The composite is stable in nitric acid, radiation field and exhibits fast kinetics for uptake. The properties of the composite are attributed to molecular structure of the polymer and morphology of the composite. (author)

  16. Prussian blue as an antidote for radioactive thallium and cesium poisoning

    Directory of Open Access Journals (Sweden)

    Altagracia-Martinez M

    2012-06-01

    Full Text Available Marina Altagracia-Martínez, Jaime Kravzov-Jinich, Juan Manuel Martínez-Núñez, Camilo Ríos-Castañeda, Francisco López-NaranjoDepartments of Biological Systems and Health Care, Biological and Health Sciences Division, Universidad Autónoma Metropolitana-Xochimilco, Mexico DF, MexicoBackground: Following the attacks on the US on September 11, 2001, potentially millions of people might experience contamination from radioactive metals. However, before the specter of such accidents arose, Prussian blue was known only as an investigational agent for accidental thallium and cesium poisoning. The purpose of this review is to update the state of the art concerning use of Prussian blue as an effective and safe drug against possible bioterrorism attacks and to disseminate medical information in order to contribute to the production of Prussian blue as a biodefense drug.Methods: We compiled articles from a systematic review conducted from January 1, 1960 to March 30, 2011. The electronic databases consulted were Medline, PubMed, the Cochrane Library, and Scopus.Results: Prussian blue is effective and safe for use against radioactive intoxications involving cesium-137 and thallium. The US Food and Drug Administration has approved Prussian blue as a drug, but there is only one manufacturer providing Prussian blue to the US. Based on the evidence, Prussian blue is effective for use against radioactive intoxications involving cesium-137 and thallium, but additional clinical research on and production of Prussian blue are needed.Keywords: Prussian blue, radioactive cesium, thallium, intoxication, biodefense drug

  17. Laser-pumped cesium magnetometers for high-resolution medical and fundamental research

    OpenAIRE

    Groeger, Stephan; Bison, Georg; Knowles, Paul E.; Wynands, Robert; Weis, Antoine

    2007-01-01

    Laser-pumped cesium magnetometers allow highly sensitive magnetometry at room temperature. We report on applications of that technique in biomagnetic diagnostics and in a neutron electric dipole moment (nEDM) experiment. In the biomagnetic application the magnetic field from the beating human heart is detected using a gradiometer, which reaches an intrinsic sensitivity of 80 fT/Hz1/2. The device can record time-resolved magnetic field maps above the human body surface with a spatial resolutio...

  18. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  19. Cubic Silicon Carbide: a promising material for automotive application

    OpenAIRE

    Attolini, Giovanni; Bosi, Matteo; Rossi, Francesca; Watts, Bernard Enrico; Salviati, Giancarlo

    2008-01-01

    carbide is a material that possesses properties that make it desirable in electronic, structural and sensor applications. As a wide band gap semiconductor it can be used in high power, high temperature electronics and harsh environments. Its hardness, wear resistance, chemical inertness, and thermal conductivity find uses ranging from disc brakes to micron scale sensors and actuators. The automotive industry faces some important challenges since it has obligations to manufacture safe, clean, ...

  20. Final design review of boron carbide safety rod

    International Nuclear Information System (INIS)

    The object of this paper discusses the design review of the boron carbide safety rod for the Westinghouse Savannah River Company. This paper reviewed information presented by personnel of the Savannah River Laboratory (SRL) Equipment Engineering Section, SRL Materials Technology Section and Reactor Materials Engineering and Technology. From this report, views, opinions and recommendations were made on the safety rod from materials testing to production