WorldWideScience

Sample records for cervical sympathetic ganglion

  1. Enlarged superior cervical sympathetic ganglion mimicking a metastatic lymph node in the retropharyngeal space: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Jin Na; Kim, Se Hoon; Choi, Eun Chang [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The superior cervical sympathetic ganglion, the largest and most cranial of the three cervical sympathetic ganglia, transfers sympathetic signals to specific targets on the head and neck. This ganglion is located just lateral to the retropharyngeal space along the medial margin of the carotid sheath. Located thus, an enlarged superior cervical sympathetic ganglion can mimic a metastatic lymph node in the retropharyngeal space of the suprahyoid neck in head and neck cancer patients. However, this is often disregarded by radiologists due to lack of interest in its anatomic location. We present a case of an enlarged superior cervical sympathetic ganglion mimicking a retropharyngeal metastatic lymph node in a 42-year-old man with oral tongue cancer.

  2. Macrostructure of the Cranial Cervical Ganglion in the River Buffalo (Bubalus Bubalis

    Directory of Open Access Journals (Sweden)

    Hossein Dehghani

    2011-09-01

    Full Text Available AbstractThe autonomic nervous system consists of a vast range of nerves and ganglions. Anatomical studies have demonstrated that the sympathetic innervations of the head and neck are affected by the neurons that ramify from the cranial cervical ganglion (CCG. The CCG is the end of the sympathetic cervical trunk, which runs with the vagal nerve during its cervical course. In this study sixteen adult (2 - 5 year river buffalo of both sexes (eight male, eight female weighing around 250 - 450 kg were dissected to investigate the weight, situation and arrangement of nerve branches of the cranial cervical ganglion bilaterally. The ganglions showed a fusiform shape and reddish in color. The cranial cervical ganglion covered by the digastricus muscle. It lies in dorsal region of the base of epiglottic cartilage, ventromedial to tympanic bulla and ventrally to atlantic fossa, and medial of the occipital artery. This study showed that the cranial cervical ganglions in river buffalo were well-developed structure. The main branches of cranial cervical ganglion included the internal carotid, external carotid and jugular nerves.

  3. Schwanomma From Cervical Sympathetic Chain Ganglion - A Rare Presentation.

    Science.gov (United States)

    Asma, A Affee; Kannah, E

    2015-10-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner's syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature.

  4. Schwanomma From Cervical Sympathetic Chain Ganglion – A Rare Presentation

    Science.gov (United States)

    Asma, A. Affee

    2015-01-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner’s syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature. PMID:26557566

  5. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Superior Cervical Sympathetic Ganglion: Normal Imaging Appearance on 3T-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Yeon; Lee, Jeong Hyun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Song, Joon Seon; Song, Min Jeong [Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Hwang, Seung-Jun [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Yoon, Ra Gyoung [Department of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711 (Korea, Republic of); Jang, Seung Won; Park, Ji Eun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Heo, Young Jin [Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392 (Korea, Republic of); Choi, Young Jun; Baek, Jung Hwan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    To identify superior cervical sympathetic ganglion (SCSG) and describe their characteristic MR appearance using 3T-MRI. In this prospective study, we recruited 53 consecutive patients without history of head and neck irradiation. Using anatomic location based on literature review, both sides of the neck were evaluated to identify SCSGs in consensus. SCSGs were divided into definite (medial to internal carotid artery [ICA] and lateral to longus capitis muscle [LCM]) and probable SCSGs based on relative location to ICA and LCM. Two readers evaluated signal characteristics including intraganglionic hypointensity of all SCSGs and relative location of probable SCSGs. Interrater and intrarater agreements were quantified using unweighted kappa. Ninety-one neck sites in 53 patients were evaluated after exclusion of 15 neck sites with pathology. Definite SCSGs were identified at 66 (73%) sites, and probable SCSGs were found in 25 (27%). Probable SCSGs were located anterior to LCM in 16 (18%), lateral to ICA in 6 (7%), and posterior to ICA in 3 (3%). Intraganglionic hypointensity was identified in 82 (90%) on contrast-enhanced fat-suppressed T1-weighted images. There was no statistical difference in the relative location between definite and probable SCSGs of the right and left sides with intragnalionic hypointensity on difference pulse sequences. Interrater and intrarater agreements on the location and intraganglionic hypointensity were excellent (κ-value, 0.749–1.000). 3T-MRI identified definite SCSGs at 73% of neck sites and varied location of the remaining SCSGs. Intraganglionic hypointensity was a characteristic feature of SCSGs.

  7. Superior cervical sympathetic ganglion: Normal imaging appearance on 3T-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Yeon; Lee, Jeong Hyun; Song, Joon Seon [Dept. of Radiology, and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); and others

    2016-09-15

    To identify superior cervical sympathetic ganglion (SCSG) and describe their characteristic MR appearance using 3T-MRI. In this prospective study, we recruited 53 consecutive patients without history of head and neck irradiation. Using anatomic location based on literature review, both sides of the neck were evaluated to identify SCSGs in consensus. SCSGs were divided into definite (medial to internal carotid artery [ICA] and lateral to longus capitis muscle [LCM]) and probable SCSGs based on relative location to ICA and LCM. Two readers evaluated signal characteristics including intraganglionic hypointensity of all SCSGs and relative location of probable SCSGs. Interrater and intrarater agreements were quantified using unweighted kappa. Ninety-one neck sites in 53 patients were evaluated after exclusion of 15 neck sites with pathology. Definite SCSGs were identified at 66 (73%) sites, and probable SCSGs were found in 25 (27%). Probable SCSGs were located anterior to LCM in 16 (18%), lateral to ICA in 6 (7%), and posterior to ICA in 3 (3%). Intraganglionic hypointensity was identified in 82 (90%) on contrast-enhanced fat-suppressed T1-weighted images. There was no statistical difference in the relative location between definite and probable SCSGs of the right and left sides with intragnalionic hypointensity on difference pulse sequences. Interrater and intrarater agreements on the location and intraganglionic hypointensity were excellent (κ-value, 0.749–1.000). 3T-MRI identified definite SCSGs at 73% of neck sites and varied location of the remaining SCSGs. Intraganglionic hypointensity was a characteristic feature of SCSGs.

  8. Expression of Fos protein in the rat central nervous system in response to noxious stimulation: effects of chronic inflammation of the superior cervical ganglion

    Directory of Open Access Journals (Sweden)

    Laudanna A.

    1998-01-01

    Full Text Available The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.

  9. File list: His.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: His.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Histone Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  11. File list: Unc.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  12. File list: Unc.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  13. File list: Unc.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Unclassified Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  14. File list: DNS.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: DNS.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  16. File list: Pol.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  17. File list: Pol.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  18. File list: DNS.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 DNase-seq Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  19. File list: Pol.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 RNA polymerase Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  20. File list: Oth.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  1. File list: ALL.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  2. File list: ALL.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  3. File list: ALL.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  4. File list: ALL.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 All antigens Neural Superior Cervical Ganglion... SRX435084,SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  5. File list: Oth.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  6. File list: Oth.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  7. File list: Oth.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 TFs and others Neural Superior Cervical Ganglion... SRX435084 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  8. File list: NoD.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  9. File list: NoD.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  10. File list: NoD.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  11. File list: NoD.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 No description Neural Superior Cervical Ganglion... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  12. File list: InP.Neu.50.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Superior_Cervical_Ganglion.bed ...

  13. File list: InP.Neu.20.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Superior_Cervical_Ganglion.bed ...

  14. File list: InP.Neu.10.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Superior_Cervical_Ganglion.bed ...

  15. File list: InP.Neu.05.AllAg.Superior_Cervical_Ganglion [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Superior_Cervical_Ganglion mm9 Input control Neural Superior Cervical Ganglion... SRX435085 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Superior_Cervical_Ganglion.bed ...

  16. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    Directory of Open Access Journals (Sweden)

    Pablo Valle-Leija

    2017-07-01

    Full Text Available Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc, but are not thought to express a functional full-length TrkB receptor (TrkB-Fl. We, and others, have demonstrated that nerve growth factor (NGF and brain derived neurotrophic factor (BDNF modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR, 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  17. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

    Science.gov (United States)

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  18. The localization of primary efferent sympathetic neurons innervating the porcine thymus – a retrograde tracing study

    Directory of Open Access Journals (Sweden)

    Paweł Kulik

    2017-01-01

    Full Text Available The autonomic nervous system is a sophisticated and independent structure composed of two antagonistic (opposing divisions (sympathetic and parasympathetic that control many vital functions including: homeostasis maintenance, heart rate, blood circulation, secretion, etc. Thymus is one of the most important primary lymphoid organs playing a role in the developing of a juvenile’s immune system mainly by maturation, development, and migration of T-cells (T lymphocytes. In the last decades, several studies identifying sources of the thymic autonomic supply have been undertaken in humans and several laboratory rodents but not in higher mammals such as the pig. Therefore, in the present work, retrograde tracing technique of Fast Blue and DiI was used to investigate the sources of sympathetic efferent supply to the porcine thymus. After Fast Blue injection into the right lobe of the thymus, the presence of Fast Blue-positive neurons was found in the unilateral cranial cervical ganglion (82.8 ± 3.0% of total Fast Blue-positive neurons as well as in the middle cervical ganglion (17.2 ± 3.0%. Injection of DiI resulted in the presence of retrograde tracer in neurons of the cranial cervical ganglion (80.4 ± 2.3% of total amount of DiI-labelled neurons, the middle cervical ganglion (18.4 ± 1.9%, and the cervicothoracic ganglion (1.2 ± 0.8%. The present report provides the first data describing in details the localization of primary efferent sympathetic neurons innervating the porcine thymus.

  19. Bilirubin Modulates Acetylcholine Receptors In Rat Superior Cervical Ganglionic Neurons In a Bidirectional Manner

    Science.gov (United States)

    Zhang, Chengmi; Wang, Zhenmeng; Dong, Jing; Pan, Ruirui; Qiu, Haibo; Zhang, Jinmin; Zhang, Peng; Zheng, Jijian; Yu, Weifeng

    2014-01-01

    Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients. PMID:25503810

  20. Can nerve regeneration on an artificial nerve conduit be enhanced by ethanol-induced cervical sympathetic ganglion block?

    Directory of Open Access Journals (Sweden)

    Yoshiki Shionoya

    Full Text Available This study aimed to determine whether nerve regeneration by means of an artificial nerve conduit is promoted by ethanol-induced cervical sympathetic ganglion block (CSGB in a canine model. This study involved two experiments-in part I, the authors examined the effect of CSGB by ethanol injection on long-term blood flow to the orofacial region; part II involved evaluation of the effect of CSGB by ethanol injection on inferior alveolar nerve (IAN repair using polyglycolic acid-collagen tubes. In part I, seven Beagles were administered left CSGB by injection of 99.5% ethanol under direct visualization by means of thoracotomy, and changes in oral mucosal blood flow in the mental region and nasal skin temperature were evaluated. The increase in blood flow on the left side lasted for 7 weeks, while the increase in average skin temperature lasted 10 weeks on the left side and 3 weeks on the right. In part II, fourteen Beagles were each implanted with a polyglycolic acid-collagen tube across a 10-mm gap in the left IAN. A week after surgery, seven of these dogs were administered CSGB by injection of ethanol. Electrophysiological findings at 3 months after surgery revealed significantly higher sensory nerve conduction velocity and recovery index (ratio of left and right IAN peak amplitudes after nerve regeneration in the reconstruction+CSGB group than in the reconstruction-only group. Myelinated axons in the reconstruction+CSGB group were greater in diameter than those in the reconstruction-only group. Administration of CSGB with ethanol resulted in improved nerve regeneration in some IAN defects. However, CSGB has several physiological effects, one of which could possibly be the long-term increase in adjacent blood flow.

  1. Can nerve regeneration on an artificial nerve conduit be enhanced by ethanol-induced cervical sympathetic ganglion block?

    Science.gov (United States)

    Sunada, Katsuhisa; Shigeno, Keiji; Nakada, Akira; Honda, Michitaka; Nakamura, Tatsuo

    2017-01-01

    This study aimed to determine whether nerve regeneration by means of an artificial nerve conduit is promoted by ethanol-induced cervical sympathetic ganglion block (CSGB) in a canine model. This study involved two experiments—in part I, the authors examined the effect of CSGB by ethanol injection on long-term blood flow to the orofacial region; part II involved evaluation of the effect of CSGB by ethanol injection on inferior alveolar nerve (IAN) repair using polyglycolic acid-collagen tubes. In part I, seven Beagles were administered left CSGB by injection of 99.5% ethanol under direct visualization by means of thoracotomy, and changes in oral mucosal blood flow in the mental region and nasal skin temperature were evaluated. The increase in blood flow on the left side lasted for 7 weeks, while the increase in average skin temperature lasted 10 weeks on the left side and 3 weeks on the right. In part II, fourteen Beagles were each implanted with a polyglycolic acid-collagen tube across a 10-mm gap in the left IAN. A week after surgery, seven of these dogs were administered CSGB by injection of ethanol. Electrophysiological findings at 3 months after surgery revealed significantly higher sensory nerve conduction velocity and recovery index (ratio of left and right IAN peak amplitudes) after nerve regeneration in the reconstruction+CSGB group than in the reconstruction-only group. Myelinated axons in the reconstruction+CSGB group were greater in diameter than those in the reconstruction-only group. Administration of CSGB with ethanol resulted in improved nerve regeneration in some IAN defects. However, CSGB has several physiological effects, one of which could possibly be the long-term increase in adjacent blood flow. PMID:29220373

  2. Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans

    Directory of Open Access Journals (Sweden)

    Živković Vladimir

    2008-01-01

    Full Text Available Background/Aim. Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC (postganglionic sympathetic cell bodies of superior cervical ganglion in humans during ageing. Methods. We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive sections 5 μm thick were made and stained with hematoxylin and eosin method (HE, silver impregnation technique by Masson Fontana and trichrome stain by Florantin. Results. Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent, unipolar type (lipofuscin granules were grouped at the end of the cell, bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell, annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one. Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells

  3. Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro.

    Science.gov (United States)

    Takeuchi, Akimasa; Shimba, Kenta; Mori, Masahide; Takayama, Yuzo; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    2012-12-01

    Although stem cell-derived cardiomyocytes have great potential for the therapy of heart failure, it is unclear whether their function after grafting can be controlled by the host sympathetic nervous system, a component of the autonomic nervous system (ANS). Here we demonstrate the formation of functional connections between rat sympathetic superior cervical ganglion (SCG) neurons and pluripotent (P19.CL6) cell-derived cardiomyocytes (P19CMs) in compartmentalized co-culture, achieved using photolithographic microfabrication techniques. Formation of synapses between sympathetic neurons and P19CMs was confirmed by immunostaining with antibodies against β-3 tubulin, synapsin I and cardiac troponin-I. Changes in the beat rate of P19CMs were triggered after electrical stimulation of the co-cultured SCG neurons, and were affected by the pulse frequency of the electrical stimulation. Such changes in the beat rate were prevented when propranolol, a β-adrenoreceptor antagonist, was added to the culture medium. These results suggest that the beat rate of differentiated cardiomyocytes can be modulated by electrical stimulation of connected sympathetic neurons.

  4. Stellate ganglion block for persistent idiopathic facial pain

    Directory of Open Access Journals (Sweden)

    Poonam Patel

    2016-01-01

    Full Text Available Persistent idiopathic facial pain is a facial pain disorder without any identifiable cause. A patient has persistent facial pain without any objective sign on clinical examination or investigations. There are associated psychological problems such as depression and anxiety. This condition is poorly responsive to therapy with anticonvulsants or analgesics. Stellate ganglion block interrupts the sympathetic supply to head, neck, and upper extremities. This block can be used to alleviate pain of sympathetic origin in head and neck region as well as upper extremities. We report a case of a middle-aged female with persistent idiopathic facial pain on the right side of face with no response to analgesics and anticonvulsants. Her pain was provoked by exposure to cold weather or wind. Assuming a sympathetic component to her pain, we did a right-sided stellate ganglion block for her with local anesthetic and steroid. The patient had significant pain relief (>80% after the block. This indicates that the sympathetic nervous system plays a major role in initiation and perpetuation of this pain condition. Stellate ganglion block can be done early in such patients both as a diagnostic and therapeutic modality.

  5. Uncovering the Forgotten Effect of Superior Cervical Ganglia on Pupil Diameter in Subarachnoid Hemorrhage: An Experimental Study.

    Science.gov (United States)

    Onen, Mehmet Resid; Yilmaz, Ilhan; Ramazanoglu, Leyla; Aydin, Mehmet Dumlu; Keles, Sadullah; Baykal, Orhan; Aydin, Nazan; Gundogdu, Cemal

    2018-01-01

    To investigate the relationship between neuron density of the superior cervical sympathetic ganglia and pupil diameter in subarachnoid hemorrhage. This study was conducted on 22 rabbits; 5 for the baseline control group, 5 for the SHAM group and 12 for the study group. Pupil diameters were measured via sunlight and ocular tomography on day 1 as the control values. Pupil diameters were re-measured after injecting 0.5 cc saline to the SHAM group, and autologous arterial blood into the cisterna magna of the study group. After 3 weeks, the brain, superior cervical sympathetic ganglia and ciliary ganglia were extracted with peripheral tissues bilaterally and examined histopathologically. Pupil diameters were compared with neuron densities of the sympathetic ganglia and ciliary ganglia which were examined using stereological methods. Baseline values were; normal pupil diameter 7.180±620 ?m and mean neuron density of the superior cervical sympathetic ganglia 6.321±510/mm3, degenerated neuron density of ciliary ganglia was 5±2/mm3 after histopathological examination in the control group. These values were measured as 6.850±578 ?m, 5.950±340/mm3 and 123±39/mm3 in the SHAM group and 9.910±840 ?m, 7.950±764/mm3 and 650±98/mm3 in the study group. A linear relationship was determined between neuron density of the superior cervical sympathetic ganglia and pupil diameters (p < 0.005). Degenerated ciliary ganglia neuron density had an inverse effect on pupil diameters in all groups (p < 0.0001). Highly degenerated neuron density of the ciliary ganglion is not responsible for pupil dilatation owing to parasympathetic pupilloconstrictor palsy, but high neuron density of the pupillodilatatory superior cervical sympathetic ganglia should be considered an important factor for pupil dilatation.

  6. Cervical sympathetic chain schwannoma masquerading as a carotid body tumour with a postoperative complication of first-bite syndrome.

    LENUS (Irish Health Repository)

    Casserly, Paula

    2012-01-31

    Carotid body tumours (CBT) are the most common tumours at the carotid bifurcation. Widening of the bifurcation is usually demonstrated on conventional angiography. This sign may also be produced by a schwannoma of the cervical sympathetic plexus. A 45-year-old patient presented with a neck mass. Investigations included contrast-enhanced CT, MRI and magnetic resonance arteriography with contrast enhancement. Radiologically, the mass was considered to be a CBT due to vascular enhancement and splaying of the internal and external carotid arteries. Intraoperatively, it was determined to be a cervical sympathetic chain schwannoma (CSCS). The patient had a postoperative complication of first-bite syndrome (FBS).Although rare, CSCS should be considered in the differential diagnosis for tumours at the carotid bifurcation. Damage to the sympathetic innervation to the parotid gland can result in severe postoperative pain characterised by FBS and should be considered in all patients undergoing surgery involving the parapharyngeal space.

  7. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    1. The present review focuses on some of the processes producing rhythms in sympathetic nerves influencing cardiovascular functions and considers their potential relevance to nervous integration. 2. Two mechanisms are considered that may account for rhythmic sympathetic discharges. First, neuronal elements of peripheral or central origin produce rhythmic activity by phasically exciting and/or inhibiting neurons within central sympathetic networks. Second, rhythms arise within central sympathetic networks. Evidence is considered that indicates the operation of both mechanisms; the first in muscle and the second in skin sympathetic vasoconstrictor networks. 3. Sympathetic activity to the rat tail, a model for the nervous control of skin circulation, is regulated by central networks involved in thermoregulation and those associated with fear and arousal. In an anaesthetized preparation, activity displays an apparently autonomous rhythm (T-rhythm; 0.4-1.2 Hz) and the level of activity can be manipulated by regulating core body temperature. This model has been used to study rhythm generation in central sympathetic networks and possible functional relevance. 4. A unique insight provided by the T rhythm, into possible physiological function(s) underlying rhythmic sympathetic discharges is that the activity of single sympathetic post-ganglionic neurons within a population innervating the same target can have different rhythm frequencies. Therefore, the graded and dynamic entrainment of the rhythms by inputs, such as central respiratory drive and/or lung inflation-related afferent activity, can produce graded and dynamic synchronization of sympathetic discharges. The degree of synchronization may influence the efficacy of transmission in a target chain of excitable cells. 5. The T-rhythm may be generated within the spinal cord because the intrathecal application of 5-hydroxytryptamine at the L1 level of the spinal cord of a rat spinalized at T10-T11 produces a T-like rhythm

  8. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cervical Spondylosis and Hypertension

    Science.gov (United States)

    Peng, Baogan; Pang, Xiaodong; Li, Duanming; Yang, Hong

    2015-01-01

    Abstract Cervical spondylosis and hypertension are all common diseases, but the relationship between them has never been studied. Patients with cervical spondylosis are often accompanied with vertigo. Anterior cervical discectomy and fusion is an effective method of treatment for cervical spondylosis with cervical vertigo that is unresponsive to conservative therapy. We report 2 patients of cervical spondylosis with concomitant cervical vertigo and hypertension who were treated successfully with anterior cervical discectomy and fusion. Stimulation of sympathetic nerve fibers in pathologically degenerative disc could produce sympathetic excitation, and induce a sympathetic reflex to cause cervical vertigo and hypertension. In addition, chronic neck pain could contribute to hypertension development through sympathetic arousal and failure of normal homeostatic pain regulatory mechanisms. Cervical spondylosis may be one of the causes of secondary hypertension. Early treatment for resolution of symptoms of cervical spondylosis may have a beneficial impact on cardiovascular disease risk in patients with cervical spondylosis. PMID:25761188

  10. Peptidergic modulation of efferent sympathetic neurons in intrathoracic ganglia regulating the canine heart.

    Science.gov (United States)

    Armour, J A

    1989-05-01

    When either substance P or vasoactive intestinal peptide was injected into an acutely decentralized intrathoracic sympathetic ganglion, short-lasting augmentation of cardiac chronotropism and inotropism was induced. These augmentations were induced before the fall in systemic arterial pressure occurred which was a consequence of these peptides leaking into the systemic circulation in enough quantity to alter peripheral vascular resistance directly. When similar volumes of normal saline were injected into an intrathoracic ganglion, no significant cardiac changes were induced. When substance P or vasoactive intestinal peptide was administered into an intrathoracic ganglion, similar cardiac augmentations were induced either before or after the intravenous administration of hexamethonium. In contrast, when these peptides were injected into an intrathoracic ganglion in which the beta-adrenergic blocking agent timolol (0.1 mg/0.1 ml of normal saline) had been administered no cardiac augmentation occurred. These data imply that in the presence of beta-adrenergic blockade intraganglionic administration of substance P or vasoactive intestinal peptide does not modify enough intrathoracic neurons to alter cardiac chronotropism and inotropism detectably. When neuropeptide Y was injected into an intrathoracic ganglion, no cardiac changes occurred. However, when cardiac augmentations were induced by sympathetic preganglionic axon stimulation these were enhanced following the intraganglionic administration of neuropeptide Y. As this effect occurred after timolol was administered into the ipsilateral ganglia, but not after intravenous administration of hexamethonium, it is proposed that the effects of neuropeptide Y are dependent upon functioning intrathoracic ganglionic nicotinic cholinergic synaptic mechanisms. Intravenous administration of either morphine or [D-ala2,D-leu5]enkephalin acetate did not alter the capacity of the preganglionic sympathetic axons to augment the heart

  11. Effects of Electrical Stimulation in Sympathetic Neuron-Cardiomyocyte Co-cultures

    Science.gov (United States)

    Takeuchi, Akimasa; Tani, Hiromasa; Mori, Masahide; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    The sympathetic nervous system is one of the principal sources for regulating cardiovascular functions. Little is known, however, about the network-level interactions between sympathetic neurons and cardiomyocytes. In this study, a semi-separated co-culture system of superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) was developed by using a polydimethylsyloxane (PDMS) chamber placed on a microelectrode-array (MEA) substrate. Neurites of SCG neurons passed through a conduit of the chamber and reached VMs. Evoked activities of SCG neurons were observed from several electrodes immediately after applying constant-voltage stimulation (1 V, 1 ms, biphasic square pulses) to SCG neurons by using 32 electrodes. Furthermore, this stimulation was applied to SCG neurons at the frequency of 1, 5 and 10 Hz. After applying these three kinds of stimulations, mean minute contraction rate of VMs increased with an increase in the frequency of stimulation. These results suggest that changes in contraction rate of VMs after applying electrical stimulations to SCG neurons depend on frequencies of these stimulations and that the heart-regulating mechanisms as well as that in the body were formed in this co-culture system.

  12. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    International Nuclear Information System (INIS)

    Curnish, R.; Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-01-01

    The authors have previously demonstrated that 3 H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased 3 H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 μl drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine

  13. Therapeutic potential of stellate ganglion block in orofacial pain: a mini review.

    Science.gov (United States)

    Jeon, Younghoon

    2016-09-01

    Orofacial pain is a common complaint of patients that causes distress and compromises the quality of life. It has many etiologies including trauma, interventional procedures, nerve injury, varicella-zoster (shingles), tumor, and vascular and idiopathic factors. It has been demonstrated that the sympathetic nervous system is usually involved in various orofacial pain disorders such as postherpetic neuralgia, complex regional pain syndromes, and atypical facial pain. The stellate sympathetic ganglion innervates the head, neck, and upper extremity. In this review article, the effect of stellate ganglion block and its mechanism of action in orofacial pain disorders are discussed.

  14. Influence of superior cervical ganglionectomy on hippocampal neurogenesis and learning and memory in adult rats

    Institute of Scientific and Technical Information of China (English)

    Yanping Ding; Baoping Shao; Shiyuan Yu; Shanting Zhao; Jianlin Wang

    2009-01-01

    BACKGROUND: Studies have shown that neurogenesis in the dentate gyrus plays an important role in learning and memory. However, studies have not determined whether the superior cervical ganglion or the sympathetic nerve system influences hippocampal neurogenesis or learning and memory in adult rats. OBJECTIVE: To observe differences in dentate gyrus neurogenesis, as well as learning and memory, in adult rats following superior cervical ganglionectomy. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Immunohistochemistry Laboratory of the School of Life Sciences in Lanzhou University from July 2006 to July 2007.MATERIALS: Doublecortin polyclonal antibody was provided by Santa Cruz Biotechnology, USA;avidin-biotin-peroxidase complex was purchased from Zhongshan Goldenbride Biotechnology, China;Morris water maze was bought from Taimeng Technology, China. METHODS: A total of 20 adult, male, Wistar rats were randomly divided into surgery and control groups, with 10 rats in each group. In the surgery group, the bilateral superior cervical ganglions were transected. In the control group, the superior cervical ganglions were only exposed, but no ganglionectomy was performed. MAIN OUTCOME MEASURES: To examine distribution, morphology, and number of newborn neurons in the dentate gyrus using doublecortin immunohistochemistry at 36 days following surgical procedures. To examine ability of learning and memory in adult rats using the Morris water maze at 30 days following surgical procedures. RESULTS: Doublecortin immunohistochemical results showed that a reduction in the number of doublecortin-positive neurons in the surgery group compared to the control group (P<0.05), while the distribution of doublecortin-positive neurons was identical in the two groups. The surgery group exhibited significantly worse performance in learning and spatial memory tasks compared to the control group (P<0.05). CONCLUSION: Superior cervical ganglionectomy

  15. Segregation of acetylcholine and GABA in the rat superior cervical ganglia: functional correlation.

    Directory of Open Access Journals (Sweden)

    Diana eElinos

    2016-04-01

    Full Text Available Sympathetic neurons have the capability to segregate their neurotransmitters (NTs and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh and other classical NTs such as gamma aminobutyric acid (GABA. Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX. We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region show larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons.

  16. Central vs. peripheral neuraxial sympathetic control of porcine ventricular electrophysiology

    Science.gov (United States)

    Yamakawa, Kentaro; Howard-Quijano, Kimberly; Zhou, Wei; Rajendran, Pradeep; Yagishita, Daigo; Vaseghi, Marmar; Ajijola, Olujimi A.; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Sympathoexcitation is associated with ventricular arrhythmogenesis. The aim of this study was to determine the role of thoracic dorsal root afferent neural inputs to the spinal cord in modulating ventricular sympathetic control of normal heart electrophysiology. We hypothesize that dorsal root afferent input tonically modulates basal and evoked efferent sympathetic control of the heart. A 56-electrode sock placed on the epicardial ventricle in anesthetized Yorkshire pigs (n = 17) recorded electrophysiological function, as well as activation recovery interval (ARI) and dispersion in ARI, at baseline conditions and during stellate ganglion electrical stimulation. Measures were compared between intact states and sequential unilateral T1–T4 dorsal root transection (DRTx), ipsilateral ventral root transection (VRTx), and contralateral dorsal and ventral root transections (DVRTx). Left or right DRTx decreased global basal ARI [Lt.DRTx: 369 ± 12 to 319 ± 13 ms (P < 0.01) and Rt.DRTx: 388 ± 19 to 356 ± 15 ms (P < 0.01)]. Subsequent unilateral VRTx followed by contralateral DRx+VRTx induced no further change. In intact states, left and right stellate ganglion stimulation shortened ARIs (6 ± 2% vs. 17 ± 3%), while increasing dispersion (+139% vs. +88%). There was no difference in magnitude of ARI or dispersion change with stellate stimulation following spinal root transections. Interruption of thoracic spinal afferent signaling results in enhanced basal cardiac sympathoexcitability without diminishing the sympathetic response to stellate ganglion stimulation. This suggests spinal dorsal root transection releases spinal cord-mediated tonic inhibitory control of efferent sympathetic tone, while maintaining intrathoracic cardiocentric neural networks. PMID:26661096

  17. Cervical spondylosis and hypertension: a clinical study of 2 cases.

    Science.gov (United States)

    Peng, Baogan; Pang, Xiaodong; Li, Duanming; Yang, Hong

    2015-03-01

    Cervical spondylosis and hypertension are all common diseases, but the relationship between them has never been studied. Patients with cervical spondylosis are often accompanied with vertigo. Anterior cervical discectomy and fusion is an effective method of treatment for cervical spondylosis with cervical vertigo that is unresponsive to conservative therapy. We report 2 patients of cervical spondylosis with concomitant cervical vertigo and hypertension who were treated successfully with anterior cervical discectomy and fusion. Stimulation of sympathetic nerve fibers in pathologically degenerative disc could produce sympathetic excitation, and induce a sympathetic reflex to cause cervical vertigo and hypertension. In addition, chronic neck pain could contribute to hypertension development through sympathetic arousal and failure of normal homeostatic pain regulatory mechanisms. Cervical spondylosis may be one of the causes of secondary hypertension. Early treatment for resolution of symptoms of cervical spondylosis may have a beneficial impact on cardiovascular disease risk in patients with cervical spondylosis.

  18. [Magnetotherapy designed to affect cervical sympathetic ganglia for the treatment of patients with primary open-angle glaucoma].

    Science.gov (United States)

    Veselova, E V; Kamenskikh, T G; Raĭgorodkiĭ, Iu M; Kolbenev, I O; Myshkina, E S

    2010-01-01

    The traveling magnetic field was used to treat primary open-angle glaucoma. The field was applied to the projection of cervical sympathetic ganglia of the patients. Hemodynamic parameters of posterior short ciliary arteries and central retinal artery were analysed along with visual evoked potentials, visual field limits, and visual acuity. It was shown that magnetotherapy with the use of an AMO-ATOS apparatus produces better clinical results in patients with stage I and II primary open-angle glaucoma compared with medicamentous therapy (intake of trental tablets).

  19. Cervical Vertigo(Vertigo)

    OpenAIRE

    本間, 隆夫; Homma, Takao

    1992-01-01

    Cervical vertigo was reviewed as to its mechanism, diagnosis and treatment, and nine cases which had operation done were briefly presented. Cervical vertigo has been seen occasionaly in the cases of cervical spondylosis, frequently in the cases of traumatic cervical syndrome. The mechanism is attributed to either vertebrobasilar insufficiency caused by compression on vertebral artery or irritation of poterior cervical sympathetic system. The diagnosis consists of reccurent vertigo attack with...

  20. Continuous Thoracic Sympathetic Ganglion Block in Complex Regional Pain Syndrome Patients with Spinal Cord Stimulation Implantation

    Directory of Open Access Journals (Sweden)

    EungDon Kim

    2016-01-01

    Full Text Available The sympathetic block is widely used for treating neuropathic pain such as complex regional pain syndrome (CRPS. However, single sympathetic block often provides only short-term effect. Moreover, frequent procedures for sympathetic block may increase the risk of complications. The use of epidural route may be limited by concern of infection in case of previous implantation of the spinal cord stimulation (SCS. In contrast, a continuous sympathetic block can be administered without such concerns. The continuous thoracic sympathetic block (TSGB has been used to treat the ischemic disease and other neuropathic conditions such as postherpetic neuralgia. We administered continuous thoracic sympathetic block using catheter in CRPS patients who underwent SCS implantations and achieved desirable outcomes. We believe a continuous sympathetic block is a considerable option before performing neurolysis or radiofrequency rhizotomy and even after SCS implantation.

  1. Lateral atlanto-axial joint block for cervical headache

    Directory of Open Access Journals (Sweden)

    Shantanu P Mallick

    2013-01-01

    Full Text Available The patient is a 32-year-old car mechanic, having chronic headache for three years affecting the left upper lateral part of the neck, suboccipital region, and scalp (VAS: 8/10, having a history of whiplash injury from a car accident three years ago, with a deep cut injury on the scalp. He was complaining of neck stiffness and pain during all neck movements and a burning pain in the entire left side of the neck and scalp. He was treated, using conservative methods, by Orthopedists, Neurologists, as well as Psychiatrists, and all investigations including computed tomography (CT of the brain, X-ray cervical spine, and all related blood reports were within normal limits. He was sent to the Pain Clinic for further assessment. Suspecting sympathetic mediated pain on the left side and upper cervical facet pain, he was given a diagnostic Stellate Ganglion Block, a Third Occipital Nerve block, and a fourth cervical medial branch block (MBB, which gave him good relief; by this the visual analog scale (VAS score reduced to 3/10. Yet, he was complaining of pain on a focal area on the left upper cervical spine corresponding to the C1-2 joint with lateral rotation on the left side. Subsequently it was decided that a diagnostic Atlanto-axial joint block under fluoroscopy would be carried out. This gave him very good relief from the cervicogenic headache.

  2. Ganglion block. When and how?

    International Nuclear Information System (INIS)

    Bale, R.

    2015-01-01

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.) [de

  3. Intravenous regional block is similar to sympathetic ganglion block for pain management in patients with complex regional pain syndrome type I

    Directory of Open Access Journals (Sweden)

    M.S.A. Nascimento

    2010-12-01

    Full Text Available Sympathetic ganglion block (SGB or intravenous regional block (IVRB has been recommended for pain management in patients with complex regional pain syndrome type I (CRPS-I. Forty-five patients were initially selected but only 43 were accepted for the study. The present study evaluated the efficacy of IVRB produced by combining 70 mg lidocaine with 30 µg clonidine (14 patients, 1 male/13 females, age range: 27-50 years versus SGB produced by the injection of 70 mg lidocaine alone (14 patients, 1 male/13 females, age range: 27-54 years or combined with 30 µg clonidine (15 patients, 1 male/14 females, age range: 25-50 years into the stellate ganglion for pain management in patients with upper extremity CRPS-I. Each procedure was repeated five times at 7-day intervals, and pain intensity and duration were measured using a visual analog scale immediately before each procedure. A progressive and significant reduction in pain scores and a significant increase in the duration of analgesia were observed in all groups following the first three blocks, but no further improvement was obtained following the last two blocks. Drowsiness, the most frequent side effect, and dry mouth occurred only in patients submitted to SGB with lidocaine combined with clonidine. The three methods were similar regarding changes in pain intensity and duration of analgesia. However, IVRB seems to be preferable to SGB due to its easier execution and lower risk of undesirable effects.

  4. The sympathetic and sensory innervation of rat airways: origin and neurochemical characterisation

    OpenAIRE

    Radtke, Anne

    2010-01-01

    Sensory and sympathetic innervation of Brown Norway rat airways were investigated using retrograde neuronal tracing with fluorescent dyes and double labelling immunofluorescence. Sensory neurons projecting to the lung are located in nodose and jugular vagal ganglia. Sympathetic neuronal supply of the lung originates in the stellate ganglia and superior cervical ganglia. Concerning immuno-reactivity for the SP and NOS in sensory and NPY and TH in sympathetic neurons were investigated. IR for S...

  5. Detailed Anatomy of the Cranial Cervical Ganglion in the Dromedary Camel (Camelus dromedarius).

    Science.gov (United States)

    Nourinezhad, Jamal; Mazaheri, Yazdan; Biglari, Zahra

    2015-08-01

    The detailed morphology and topography of the cranial cervical ganglion (CCG) with its surrounding structures were studied in 10 sides of five heads of adult one-humped camel to determine its general arrangement as well as its differences and similarities to other animals. The following detailed descriptions were obtained: (1) the bilateral CCG was constantly present caudal to cranial base at the rostroventral border of the occipital condyle over the caudolateral part of nasopharynx; (2) the CCG was always in close relations medially with the longus capitis muscle, rostrolaterally with the internal carotid artery, and caudally with the vagus nerve; and (3) the branches of the CCG were the internal carotid and external carotid nerves, jugular nerve, cervical interganglionic branch, laryngopharyngeal branch, carotid sinus branch and communicating branches to the vagus, and first spinal nerves. In conclusion, there was no variation regarding topography of dromedary CCG among the specimens, in spite of typical variations in number, and mainly in origin of nerve branches ramifying from the CCG. In comparative anatomy aspect, the close constant relations, and presence of major nerves (internal/external carotid and jugular nerves) of dromedary CCG exhibited a typical reported animal's pattern. However, the shape, structures lateral to the CCG, the origin and course pattern of external carotid and jugular nerves, the number of the major nerves branches, the communicating branches of the CCG to the spinal and cranial nerves, and the separation of most rostral parts of vagosympathetic trunk of dromedary were different from those of most reported animals. © 2015 Wiley Periodicals, Inc.

  6. Sympathetic chain Schwannoma

    International Nuclear Information System (INIS)

    Al-Mashat, Faisal M.

    2009-01-01

    Schwannomas are rare, benign, slowly growing tumors arising from Schwann cells that line nerve sheaths. Schwannomas arising from the cervical sympathetic chain are extremely rare. Here, we report a case of a 70-year-old man who presented with only an asymptomatic neck mass. Physical examination revealed a left sided Horner syndrome and a neck mass with transmitted pulsation and anterior displacement of the carotid artery. Computed tomography (CT) showed a well-defined non-enhancing mass with vascular displacement. The nerve of origin of this encapsulated tumor was the sympathetic chain. The tumor was excised completely intact. The pathologic diagnosis was Schwannoma (Antoni type A and Antoni type B). The patient has been well and free of tumor recurrence for 14 months with persistence of asymptomatic left sided Horner syndrome. The clinical, radiological and pathological evaluations, therapy and postoperative complications of this tumor are discussed. (author)

  7. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  8. Cervical Vertigo: Historical Reviews and Advances.

    Science.gov (United States)

    Peng, Baogan

    2018-01-01

    Vertigo is one of the most common presentations in adult patients. Among the various causes of vertigo, so-called cervical vertigo is still a controversial entity. Cervical vertigo was first thought to be due to abnormal input from cervical sympathetic nerves based on the work of Barré and Liéou in 1928. Later studies found that cerebral blood flow is not influenced by sympathetic stimulation. Ryan and Cope in 1955 proposed that abnormal sensory information from the damaged joint receptors of upper cervical regions may be related to pathologies of vertigo of cervical origin. Further studies found that cervical vertigo seems to originate from diseased cervical intervertebral discs. Recent research found that the ingrowth of a large number of Ruffini corpuscles into diseased cervical discs may be related to vertigo of cervical origin. Abnormal neck proprioceptive input integrated from the signals of Ruffini corpuscles in diseased cervical discs and muscle spindles in tense neck muscles secondary to neck pain is transmitted to the central nervous system and leads to a sensory mismatch with vestibular and other sensory information, resulting in a subjective feeling of vertigo and unsteadiness. Further studies are needed to illustrate the complex pathophysiologic mechanisms of cervical vertigo and to better understand and manage this perplexing entity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Median Sacral Artery, Sympathetic Nerves, and the Coccygeal Body: A Study Using Serial Sections of Human Embryos and Fetuses.

    Science.gov (United States)

    Jin, Zhe Wu; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco

    2016-07-01

    To examine how the median sacral artery (MSA) is involved with the coccygeal body or glomus coccygeum, we studied serial frontal or sagittal sections of 14 embryos (approximately 5-6 weeks of gestation) and 12 fetuses (10-18 weeks). At five weeks, the caudal end of the dorsal aorta (i.e., MSA) accompanied putative sympathetic ganglion cells in front of the upper coccygeal and lower sacral vertebrae. At six weeks, a candidate for the initial coccygeal body was identified as a longitudinal arterial plexus involving nerve fibers and sympathetic ganglion cells between arteries. At 10-18 weeks, the MSA exhibited a highly tortuous course at the lower sacral and coccygeal levels, and was attached to and surrounded by veins, nerve fibers, and sympathetic ganglion cells near and between the bilateral origins of the levator ani muscle. Immunohistochemistry demonstrated expression of tyrosine hydroxylase and chromogranin A in the nerves. However, throughout the stages examined, we found no evidence suggestive of an arteriovenous anastomosis, such as well-developed smooth muscle. An acute anterior flexure of the vertebrae at the lower sacrum, as well as regression of the secondary neural tube, seemed to induce arterial plexus formation from an initial straight MSA. Nerves and ganglion cells were likely to be secondarily involved with the plexus because of the close topographical relationship. However, these nerves might play a major role in the extreme change into adult morphology. An arteriovenous anastomosis along the MSA might be an overinterpretation, at least in the prenatal human. Anat Rec, 299:819-827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice

    Directory of Open Access Journals (Sweden)

    Hernán H. Dieguez

    2018-02-01

    Full Text Available Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age

  11. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  12. [Therapeutic effect of cervical Jiaji electroacupuncture on postoperative intractable hiccup of liver neoplasms].

    Science.gov (United States)

    Zhang, S K; Gao, W B; Liu, Y; He, H

    2018-02-23

    Objective: To evaluate the therapeutic effect of cervical Jiaji electroacupuncture on postoperative intractable hiccup of liver neoplasms. Methods: A total of 39 patients with postoperative intractable hiccup of liver neoplasms in The First Affiliated Hospital of Heilongjiang University of Chinese Medicine from May 2013 to May 2017 were collected and divided into 2 groups randomly. The electroacupuncture group included 20 cases, the control group included 19 cases. Patients in the electroacupuncture group were treated by cervical Jiaji electroacupuncture (located in C3-5, sympathetic ganglion), while the control group were treated by metoclopramide combined with chlorpromazine for three days. The therapeutic effects of two groups were compared and the onset time were recorded. Results: Total effective rates of electroacupuncture group and control group were 95.0% and 47.4%, respectively. The onset time in electroacupuncture group and control group were (14.8±3.3) h and (30.5±3.1) h, respectively ( P electroacupuncture for 3 days, 6 cases were recovered, 3 cases became better, while 1 case demonstrated no response. No serious adverse reactions were appeared in each group. Conclusion: Cervical Jiaji electroacupuncture is an effective and safe treatment for postoperative intractable hiccup of liver neoplasms, and it can be used as a remedy for intractable hiccup patients who don't respond to drug treatment.

  13. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    Science.gov (United States)

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  14. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice.

    Science.gov (United States)

    Dieguez, Hernán H; Romeo, Horacio E; González Fleitas, María F; Aranda, Marcos L; Milne, Georgia A; Rosenstein, Ruth E; Dorfman, Damián

    2018-02-07

    Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruch's membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruch's membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruch's membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and

  15. Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic

    Science.gov (United States)

    2016-10-01

    resting membrane potential (-57 ± 9 mV ) [Fig. 4A], membrane resistance (985 ± 501 MΩ), and τm (99 ± 49 ms) [Fig. 4B]. Threshold voltage was...typically 10 mV higher than resting membrane potential, action potentials displayed after-hyperpolarization and some cells displayed post-inhibitory...firing in rat sympathetic neurons and thereby contribute to ganglionic amplification. Frontiers in neurology 1:130. Springer MG, Kullmann PH, Horn JP

  16. TARGETED STELLATE DECENTRALIZATION: IMPLICATIONS FOR SYMPATHETIC CONTROL OF VENTRICULAR ELECTROPHYSIOLOGY

    Science.gov (United States)

    Buckley, Una; Yamakawa, Kentaro; Takamiya, Tatsuo; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Background Selective, bilateral cervicothoracic sympathectomy has proven to be effective for managing ventricular arrhythmias in the setting of structural heart disease. The procedure currently employed removes the caudal portions of both stellate ganglia, along with thoracic chain ganglia down to T4 ganglia. Objective To define the relative contributions of T1-T2 and the T3-T4 paravertebral ganglia in modulating ventricular electrical function. Methods In anesthetized vagotomised porcine subjects (n=8), the heart was exposed via sternotomy along with right and left paravertebral sympathetic ganglia to the T4 level. A 56-electrode epicardial sock was placed over both ventricles to assess epicardial activation recovery intervals (ARI) in response to individually stimulating right and left stellate vs T3 paravertebral ganglia. Responses to T3 stimuli were repeated following surgical removal of the caudal portions of stellate ganglia and T2 bilaterally. Results In intact preparations, stellate ganglion vs T3 stimuli (4Hz, 4ms duration) were titrated to produce equivalent decreases in global ventricular ARIs (right-side 85±6 vs 55±10 ms; left-side 24±3 vs 17±7 ms). Threshold of stimulus intensity applied to T3 ganglia to achieve threshold was 3 times that of T1 threshold. ARIs in unstimulated states were unaffected by bilateral stellate-T2 ganglion removal. Following acute decentralization, T3 stimulation failed to change ARIs. Conclusion Preganglionic sympathetic efferents arising from the T1-T4 spinal cord that project to the heart transit through stellate ganglia via the paravertebral chain. T1-T2 surgical excision is thus sufficient to functionally interrupt central control of peripheral sympathetic efferent activity. PMID:26282244

  17. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo

    Directory of Open Access Journals (Sweden)

    Daisuke Kajimura

    2014-10-01

    Full Text Available The transcription factor FoxO1 regulates multiple physiological processes. Here, we show that FoxO1 is highly expressed in neurons of the locus coeruleus and of various sympathetic ganglions, but not in the adrenal medulla. Consistent with this pattern of expression, mice lacking FoxO1 only in sympathetic neurons (FoxO1Dbh−/− display a low sympathetic tone without modification of the catecholamine content in the adrenal medulla. As a result, FoxO1Dbh−/− mice demonstrate an increased insulin secretion, improved glucose tolerance, low energy expenditure, and high bone mass. FoxO1 favors catecholamine synthesis because it is a potent regulator of the expression of Dbh that encodes the initial and rate-limiting enzyme in the synthesis of these neurotransmitters. By identifying FoxO1 as a transcriptional regulator of the sympathetic tone, these results advance our understanding of the control of some aspects of metabolism and of bone mass accrual.

  18. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  19. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Liao, Chun-De; Tsauo, Jau-Yih; Liou, Tsan-Hon; Chen, Hung-Chou; Rau, Chi-Lun

    2016-01-01

    Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated the use of noninvasive SGB for managing neuropathic pain or other disorders associated with sympathetic hyperactivity. We performed a comprehensive search of the following online databases: Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, CINAHL, ProQuest Research Library, Physiotherapy Evidence Database, WorldWideScience, BIOSIS, and Google Scholar. We identified and included quasi-randomized or randomized controlled trials reporting the efficacy of SGB performed using therapeutic ultrasound, transcutaneous electrical nerve stimulation, light irradiation using low-level laser therapy, or xenon light or linearly polarized near-infrared light irradiation near or over the stellate ganglion region in treating complex regional pain syndrome or disorders requiring sympatholytic management. The included articles were subjected to a meta-analysis and risk of bias assessment. Nine randomized and four quasi-randomized controlled trials were included. Eleven trials had good methodological quality with a Physiotherapy Evidence Database (PEDro) score of ≥6, whereas the remaining two trials had a PEDro score of <6. The meta-analysis results revealed that the efficacy of noninvasive SGB on 100-mm visual analog pain score is higher than that of a placebo or active control (weighted mean difference, -21.59 mm; 95% CI, -34.25, -8.94; p = 0.0008). Noninvasive SGB performed using PAMs effectively relieves pain of

  20. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse

    Directory of Open Access Journals (Sweden)

    Zhang Jun-Ming

    2011-07-01

    Full Text Available Abstract Background Sprouting of sympathetic fibers into sensory ganglia occurs in many preclinical pain models, providing a possible anatomical substrate for sympathetically enhanced pain. However, the functional consequences of this sprouting have been controversial. We used a transgenic mouse in which sympathetic fibers expressed green fluorescent protein, observable in live tissue. Medium and large diameter lumbar sensory neurons with and without nearby sympathetic fibers were recorded in whole ganglion preparations using microelectrodes. Results After spinal nerve ligation, sympathetic sprouting was extensive by 3 days. Abnormal spontaneous activity increased to 15% and rheobase was reduced. Spontaneously active cells had Aαβ conduction velocities but were clustered near the medium/large cell boundary. Neurons with sympathetic basket formations had a dramatically higher incidence of spontaneous activity (71% and had lower rheobase than cells with no sympathetic fibers nearby. Cells with lower density nearby fibers had intermediate phenotypes. Immunohistochemistry of sectioned ganglia showed that cells surrounded by sympathetic fibers were enriched in nociceptive markers TrkA, substance P, or CGRP. Spontaneous activity began before sympathetic sprouting was observed, but blocking sympathetic sprouting on day 3 by cutting the dorsal ramus in addition to the ventral ramus of the spinal nerve greatly reduced abnormal spontaneous activity. Conclusions The data suggest that early sympathetic sprouting into the sensory ganglia may have highly localized, excitatory effects. Quantitatively, neurons with sympathetic basket formations may account for more than half of the observed spontaneous activity, despite being relatively rare. Spontaneous activity in sensory neurons and sympathetic sprouting may be mutually re-enforcing.

  1. The sympathetic innervation of the heart: Important new insights.

    Science.gov (United States)

    Coote, J H; Chauhan, R A

    2016-08-01

    Autonomic control of the heart has a significant influence over development of life threatening arrhythmias that can lead to sudden cardiac death. Sympathetic activity is known to be upregulated during these conditions and hence the sympathetic nerves present a target for treatment. However, a better understanding of the anatomy and physiology of cardiac sympathetic nerves is required for the progression of clinical interventions. This review explores the organization of the cardiac sympathetic nerves, from the preganglionic origin to the postganglionic innervations, and provides an overview of literature surrounding anti-arrhythmic therapies including thoracic sympathectomy and dorsal spinal cord stimulation. Several features of the innervation are clear. The cardiac nerves differentially supply the nodal and myocardial tissue of the heart and are dependent on activity generated in spinal neurones in the upper thoracic cord which project to synapse with ganglion cells in the stellate complex on each side. Networks of spinal interneurones determine the pattern of activity. Groups of spinal neurones selectively target specific regions of the heart but whether they exhibit a functional selectivity has still to be elucidated. Electrical or ischemic signals can lead to remodeling of nerves in the heart or ganglia. Surgical and electrical methods are proving to be clinically beneficial in reducing atrial and ventricular arrhythmias, heart failure and severe cardiac pain. This is a rapidly developing area and we need more basic understanding of how these methods work to ensure safety and reduction of side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Early life stress sensitizes the renal and systemic sympathetic system in rats.

    Science.gov (United States)

    Loria, Analia S; Brands, Michael W; Pollock, David M; Pollock, Jennifer S

    2013-08-01

    We hypothesized that maternal separation (MS), an early life stress model, induces a sensitization of the sympathetic system. To test this hypothesis, we evaluated the renal and systemic sympathetic system in 12- to 14-wk-old male control or MS rats with the following parameters: 1) effect of renal denervation on conscious renal filtration capacity, 2) norepinephrine (NE) content in key organs involved in blood pressure control, and 3) acute systemic pressor responses to adrenergic stimulation or ganglion blockade. MS was performed by separating pups from their mothers for 3 h/day from day 2 to 14; controls were nonhandled littermates. Glomerular filtration rate (GFR) was examined in renal denervated (DnX; within 2 wk) or sham rats using I¹²⁵-iothalamate plasma clearance. MS-DnX rats showed significantly increased GFR compared with MS-SHAM rats (3.8 ± 0.4 vs. 2.4 ± 0.2 ml/min, respectively, P renal nerves regulate GFR in MS rats. NE content was significantly increased in organ tissues from MS rats (P renal and systemic sympathetic system. Conscious MS rats displayed a significantly greater increase in mean arterial pressure (MAP) in response to NE (2 μg/kg ip) and a greater reduction in MAP in response to mecamylamine (2 mg/kg ip, P renal and systemic sympathetic system ultimately impairing blood pressure regulation.

  3. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Chun-De Liao

    Full Text Available Stellate ganglion blockade (SGB is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs, such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated the use of noninvasive SGB for managing neuropathic pain or other disorders associated with sympathetic hyperactivity.We performed a comprehensive search of the following online databases: Medline, PubMed, Excerpta Medica Database, Cochrane Library Database, Ovid MEDLINE, Europe PubMed Central, EBSCOhost Research Databases, CINAHL, ProQuest Research Library, Physiotherapy Evidence Database, WorldWideScience, BIOSIS, and Google Scholar. We identified and included quasi-randomized or randomized controlled trials reporting the efficacy of SGB performed using therapeutic ultrasound, transcutaneous electrical nerve stimulation, light irradiation using low-level laser therapy, or xenon light or linearly polarized near-infrared light irradiation near or over the stellate ganglion region in treating complex regional pain syndrome or disorders requiring sympatholytic management. The included articles were subjected to a meta-analysis and risk of bias assessment.Nine randomized and four quasi-randomized controlled trials were included. Eleven trials had good methodological quality with a Physiotherapy Evidence Database (PEDro score of ≥6, whereas the remaining two trials had a PEDro score of <6. The meta-analysis results revealed that the efficacy of noninvasive SGB on 100-mm visual analog pain score is higher than that of a placebo or active control (weighted mean difference, -21.59 mm; 95% CI, -34.25, -8.94; p = 0.0008.Noninvasive SGB performed using PAMs effectively relieves

  4. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jesse L. Ashton

    2018-03-01

    Full Text Available Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation.

  5. Rare Complications of Cervical Spine Surgery: Horner's Syndrome.

    Science.gov (United States)

    Traynelis, Vincent C; Malone, Hani R; Smith, Zachary A; Hsu, Wellington K; Kanter, Adam S; Qureshi, Sheeraz A; Cho, Samuel K; Baird, Evan O; Isaacs, Robert E; Rahman, Ra'Kerry K; Polevaya, Galina; Smith, Justin S; Shaffrey, Christopher; Tortolani, P Justin; Stroh, D Alex; Arnold, Paul M; Fehlings, Michael G; Mroz, Thomas E; Riew, K Daniel

    2017-04-01

    A multicenter retrospective case series. Horner's syndrome is a known complication of anterior cervical spinal surgery, but it is rarely encountered in clinical practice. To better understand the incidence, risks, and neurologic outcomes associated with Horner's syndrome, a multicenter study was performed to review a large collective experience with this rare complication. We conducted a retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network. Medical records for 17 625 patients who received subaxial cervical spine surgery from 2005 to 2011 were reviewed to identify occurrence of 21 predefined treatment complications. Descriptive statistics were provided for baseline patient characteristics. Paired t test was used to analyze changes in clinical outcomes at follow-up compared to preoperative status. In total, 8887 patients who underwent anterior cervical spine surgery at the participating institutions were screened. Postoperative Horner's syndrome was identified in 5 (0.06%) patients. All patients experienced the complication following anterior cervical discectomy and fusion. The sympathetic trunk appeared to be more vulnerable when operating on midcervical levels (C5, C6), and most patients experienced at least a partial recovery without further treatment. This collective experience suggests that Horner's syndrome is an exceedingly rare complication following anterior cervical spine surgery. Injury to the sympathetic trunk may be limited by maintaining a midline surgical trajectory when possible, and performing careful dissection and retraction of the longus colli muscle when lateral exposure is necessary, especially at caudal cervical levels.

  6. Sympathetically maintained pain presenting first as temporomandibular disorder, then as parotid dysfunction.

    Science.gov (United States)

    Giri, Subha; Nixdorf, Donald

    2007-03-01

    Complex regional pain syndrome (CRPS) is a chronic condition characterized by intense pain, swelling, redness, hypersensitivity and additional sudomotor effects. In all 13 cases of CRPS in the head and neck region reported in the literature, nerve injury was identified as the etiology for pain initiation. In this article, we present the case of a 30-year-old female patient with sympathetically maintained pain without apparent nerve injury. Her main symptoms--left-side preauricular pain and inability to open her mouth wide--mimicked temporomandibular joint arthralgia and myofascial pain of the masticatory muscles. Later, symptoms of intermittent preauricular pain and swelling developed, along with hyposalivation, which mimicked parotitis. After an extensive diagnostic process, no definitive underlying pathology could be identified and a diagnosis of neuropathic pain with a prominent sympathetic component was made. Two years after the onset of symptoms and initiation of care, treatment with repeated stellate ganglion blocks and enteral clonidine pharmacotherapy provided adequate pain relief.

  7. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  8. CT-clinical approach to patients with symptoms related to the V, VII, IX-XII cranial nerves and cervical sympathetics

    International Nuclear Information System (INIS)

    Kalovidouris, A.; Mancuso, A.A.; Dillon, W.

    1984-01-01

    Forty-three patients who had signs and symptoms possibly related to the extracranial course of cranial nerves V, VII, IX, X-XII, and the cervical sympathetics were examined prospectively using high resolution CT to obtain images of thin sections during rapid drip infusion of contrast material. Anatomic areas in the scan protocols included the posterior fossa, cavernous and paranasal sinuses, skull base, temporal bone, nasopharynx, parotid gland, tongue base, and neck. Nine of the 23 patients with possible fifth nerve deficits had extracranial structural lesions that explained the symptoms; none of these nine, however, had typical trigeminal neuralgia. Of eight patients with peripheral seventh nerve abnormalities, two had positive findings on scans. Of five patients presenting with referred ear pain, three had carcinoma of the upper aerodigestive tract. The authors' experience suggests that patients at high risk for structural lesions responsible for cranial nerve deficits can be selected by clinical criteria. Protocols for each clinical setting are presented

  9. Radiofrequency ablation of stellate ganglion in a patient with complex regional pain syndrome

    Directory of Open Access Journals (Sweden)

    Chinmoy Roy

    2014-01-01

    Full Text Available Complex regional pain syndrome (CRPS is characterized by a combination of sensory, motor, vasomotor, pseudomotor dysfunctions and trophic signs. We describe the use of radiofrequency (RF ablation of Stellate ganglion (SG under fluoroscopy, for long-term suppression of sympathetic nervous system, in a patient having CRPS-not otherwise specified. Although the effects of thermal RF neurolysis may be partial or temporary, they may promote better conditions toward rehabilitation. The beneficial effect obtained by the RF neurolysis of SG in this particular patient strongly advocates the use of this mode of therapy in patients with CRPS.

  10. Rare Complications of Cervical Spine Surgery: Horner’s Syndrome

    Science.gov (United States)

    Malone, Hani R.; Smith, Zachary A.; Hsu, Wellington K.; Kanter, Adam S.; Qureshi, Sheeraz A.; Cho, Samuel K.; Baird, Evan O.; Isaacs, Robert E.; Rahman, Ra’Kerry K.; Polevaya, Galina; Smith, Justin S.; Shaffrey, Christopher; Tortolani, P. Justin; Stroh, D. Alex; Arnold, Paul M.; Fehlings, Michael G.; Mroz, Thomas E.; Riew, K. Daniel

    2017-01-01

    Study Design: A multicenter retrospective case series. Objective: Horner’s syndrome is a known complication of anterior cervical spinal surgery, but it is rarely encountered in clinical practice. To better understand the incidence, risks, and neurologic outcomes associated with Horner’s syndrome, a multicenter study was performed to review a large collective experience with this rare complication. Methods: We conducted a retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network. Medical records for 17 625 patients who received subaxial cervical spine surgery from 2005 to 2011 were reviewed to identify occurrence of 21 predefined treatment complications. Descriptive statistics were provided for baseline patient characteristics. Paired t test was used to analyze changes in clinical outcomes at follow-up compared to preoperative status. Results: In total, 8887 patients who underwent anterior cervical spine surgery at the participating institutions were screened. Postoperative Horner’s syndrome was identified in 5 (0.06%) patients. All patients experienced the complication following anterior cervical discectomy and fusion. The sympathetic trunk appeared to be more vulnerable when operating on midcervical levels (C5, C6), and most patients experienced at least a partial recovery without further treatment. Conclusions: This collective experience suggests that Horner’s syndrome is an exceedingly rare complication following anterior cervical spine surgery. Injury to the sympathetic trunk may be limited by maintaining a midline surgical trajectory when possible, and performing careful dissection and retraction of the longus colli muscle when lateral exposure is necessary, especially at caudal cervical levels. PMID:28451480

  11. Tibial periosteal ganglion cyst: The ganglion in disguise

    Science.gov (United States)

    Reghunath, Anjuna; Mittal, Mahesh K; Khanna, Geetika; Anil, V

    2017-01-01

    Soft tissue ganglions are commonly encountered cystic lesions around the wrist presumed to arise from myxomatous degeneration of periarticular connective tissue. Lesions with similar pathology in subchondral location close to joints, and often simulating a geode, is the less common entity called intraosseous ganglion. Rarer still is a lesion produced by mucoid degeneration and cyst formation of the periostium of long bones, rightly called the periosteal ganglion. They are mostly found in the lower extremities at the region of pes anserinus, typically limited to the periosteum and outer cortex without any intramedullary component. We report the case of a 62 year-old male who presented with a tender swelling on the mid shaft of the left tibia, which radiologically suggested a juxtacortical lesion extending to the soft tissue or a soft tissue neoplasm eroding the bony cortex of tibia. It was later diagnosed definitively as a periosteal ganglion in an atypical location, on further radiologic work-up and histopathological correlation. PMID:28515597

  12. Asymmetry of salivary gland I123 Metaiodobenzylguanidine (MIBG) uptake in a patient with cervical neuroblastoma and Horner's syndrome - possible etiologic mechanisms

    International Nuclear Information System (INIS)

    Sandler, E.D.; Hattner, R.S.; Parisi, M.T.

    1992-01-01

    Horner's syndrome may be due to a variety of serious underlying disorders including cervical neuroblastoma. Horner's syndrome results from a unilateral disruption of the sympathetic innervation to the head and neck. We report a patient with cervical neuroblastoma in whom post operative metaiodobenzylguanidine (MIBG) scans showed a striking decrease in uptake in the ipselateral salivary glands. Since the biodistribution of I 123 metaiodobenzylguanidine in the salivary glands is also dependent on sympathetic innervation, the presence of Horner's syndrome can be reflected in the MIBG scan. (orig.)

  13. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    Science.gov (United States)

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  14. Comparison of the effects of atropine and labetalol on trigeminocardiac reflex-induced hemodynamic alterations during percutaneous microballoon compression of the trigeminal ganglion.

    Science.gov (United States)

    Chen, Chun-Yu; Luo, Chiao-Fen; Hsu, Yi-Chun; Chen, Jyi-Feng; Day, Yuan-Ji

    2012-12-01

    A significant abrupt drop in heart rate is the most frequent complication during percutaneous microballoon compression of the trigeminal ganglion. It is suggested that co-activation of the sympathetic and parasympathetic nervous systems plays an important role in this occurrence. We hypothesized that not only atropine, but also labetalol might be effective in preventing this cardiovascular reflex during percutaneous microballoon compression of the trigeminal ganglion. Patients who underwent percutaneous microballoon compression for trigeminal neuralgia between September 2007 and December 2009 were prospectively evaluated. The relationship between the hemodynamic changes and intraoperative use of atropine (0.01 mg/kg) or labetalol (0.05 mg/kg) was compared. One-way analysis of variance with Bartlett's and Tukey's post-tests was used, and a value of p compression for trigeminal neuralgia were studied, of whom 38 received atropine before ganglion compression, 36 received labetalol, and 45 received normal saline as a control. Of the patients who received normal saline, 31.3% had moderate bradycardia (heart rate compression. Of the patients who received labetalol, 16.7% had moderate bradycardia, 5.6% had severe bradycardia, and 2.8% had arrhythmia. Systemic blood pressure was markedly elevated straight after compression in all groups and tended to normalize 3 minutes afterwards. Both atropine and labetalol were able to lower the frequency of bradycardia. Neither of them could abolish episodes of bradycardia during the procedure. Patients receiving labetalol before microballoon compression were subject to a smaller change in hemodynamics. Our findings verified that the sympathetic and parasympathetic nervous systems may be involved in the complex interneuronal interaction of the trigeminocardiac reflex. Copyright © 2012. Published by Elsevier B.V.

  15. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats.

    Science.gov (United States)

    Stern, J E; Ladizesky, M G; Keller Sarmiento, M I; Cardinali, D P

    1993-03-01

    Hypocalcemia is a common finding during stress. The objective of this study was to examine: (a) the changes in circulating calcium, parathyroid hormone (PTH) and calcitonin (CT) concentration in rats stressed by being given a subcutaneous injection of turpentine oil, and (b) the involvement of the sympathetic cervical pathway in stress-induced changes of calcium homeostasis. Four hours after receiving turpentine oil or vehicle, rats were subjected either to hypocalcemia, by being given EDTA intraperitoneally, or to hypercalcemia, by being injected CaCl2 intraperitoneally. Significant changes in serum calcium (10% decrease), serum PTH (28% increase) and CT levels (40% decrease) were observed in stressed rats. EDTA administration brought about a significantly greater hypocalcemia, and a higher PTH secretory response in turpentine oil-stressed rats. During stress, the increase of serum calcium after CaCl2 was significantly smaller, and the rise of CT was greater than in controls. In the case of CT the changes were still observed in rats subjected to superior cervical ganglionectomy (SCGx) 14 days earlier. In the case of PTH, the increase found in stressed rats, but not the augmented response after EDTA, was blunted by SCGx. The potentiation of hypocalcemia brought about by turpentine oil was no longer observed in SCGx rats. In vehicle-treated controls, SCGx delayed PTH response to hypocalcemia, but did not affect the increased response of CT to CaCl2 challenge. The results indicate that a number of changes in calcium homeostasis arise during turpentine oil stress in rats. SCGx was effective to modify the set point for PTH release, but played a minor role in affecting the augmentation of CT release during stress.

  16. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Science.gov (United States)

    Sacchi, Oscar; Rossi, Maria Lisa; Canella, Rita; Fesce, Riccardo

    2011-02-25

    The permeability of the nicotinic channel (nAChR) at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC) I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh), were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV) resulted in a change of the synaptic potassium/sodium permeability ratio (P(K)/P(Na)) from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh), by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn)) and of the EPSC decay time constant. Reduction of [Cl(-)](o) to 18 mM resulted in a change of P(K)/P(Na) from 1.57 (control) to 2.26, associated with a reversible shift of E(ACh) by about -10 mV. Application of 200 nM αBgTx evoked P(K)/P(Na) and g(syn) modifications similar to those observed in reduced [Cl(-)](o). The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K)/P(Na) changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization), while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  17. Changes in cationic selectivity of the nicotinic channel at the rat ganglionic synapse: a role for chloride ions?

    Directory of Open Access Journals (Sweden)

    Oscar Sacchi

    Full Text Available The permeability of the nicotinic channel (nAChR at the ganglionic synapse has been examined, in the intact rat superior cervical ganglion in vitro, by fitting the Goldman current equation to the synaptic current (EPSC I-V relationship. Subsynaptic nAChRs, activated by neurally-released acetylcholine (ACh, were thus analyzed in an intact environment as natively expressed by the mature sympathetic neuron. Postsynaptic neuron hyperpolarization (from -40 to -90 mV resulted in a change of the synaptic potassium/sodium permeability ratio (P(K/P(Na from 1.40 to 0.92, corresponding to a reversible shift of the apparent acetylcholine equilibrium potential, E(ACh, by about +10 mV. The effect was accompanied by a decrease of the peak synaptic conductance (g(syn and of the EPSC decay time constant. Reduction of [Cl(-](o to 18 mM resulted in a change of P(K/P(Na from 1.57 (control to 2.26, associated with a reversible shift of E(ACh by about -10 mV. Application of 200 nM αBgTx evoked P(K/P(Na and g(syn modifications similar to those observed in reduced [Cl(-](o. The two treatments were overlapping and complementary, as if the same site/mechanism were involved. The difference current before and after chloride reduction or toxin application exhibited a strongly positive equilibrium potential, which could not be explained by the block of a calcium component of the EPSC. Observations under current-clamp conditions suggest that the driving force modification of the EPSC due to P(K/P(Na changes represent an additional powerful integrative mechanism of neuron behavior. A possible role for chloride ions is suggested: the nAChR selectivity was actually reduced by increased chloride gradient (membrane hyperpolarization, while it was increased, moving towards a channel preferentially permeable for potassium, when the chloride gradient was reduced.

  18. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    Science.gov (United States)

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  19. Effects of decompressive cervical surgery on blood pressure in cervical spondylosis patients with hypertension: a time series cohort study.

    Science.gov (United States)

    Liu, Hong; Wang, Hai-Bo; Wu, Lin; Wang, Shi-Jun; Yang, Ze-Chuan; Ma, Run-Yi; Reilly, Kathleen H; Yan, Xiao-Yan; Ji, Ping; Wu, Yang-feng

    2016-01-06

    Patients with cervical spondylosis myelopathy (CSM) and complicated with hypertension are often experiencing a blood pressure decrease after taking cervical decompressive surgery in clinical observations, but how this blood pressure reduction is associated with the surgery, which cut cervical sympathetic nervous, has never been rigorously assessed. Thus, the purpose of this study is to investigate the effect of cervical decompressive surgery on blood pressure among CSM patients with hypertension. The study will be a time series cohort study. Fifty eligible patients will be selected consecutively from the Peking University First Hospital. Two 24-h ambulatory blood pressure measurement (ABPM) will be taken before the surgery, apart by at least 3 days. The patients will be followed up for another two ABPMs at 1 and 3 months after the surgery. We will recruit subjects with cervical spondylosis myelopathy meeting operation indications and scheduled for receiving cervical decompressive surgery, aged 18-84 years, have a history of hypertension or office systolic blood pressure ≥140 mmHg on initial screening, and willing to participate in the study and provide informed consent. Exclusion criteria includes a history of known secondary hypertension, visual analogue scale (VAS) score ≥4, and unable to comply with study due to severe psychosis. The change in systolic ABPs over the four times will be analyzed to observe the overall pattern of the blood pressure change in relation to the surgery, but the primary analysis will be the comparison of systolic ABP between the 2(nd) and 3(rd), 4(th) measurements (before and after the surgery). We will also calculate the regression-to-the-mean adjusted changes in systolic ABP as sensitivity analysis. Secondary endpoints are the changes in 24 h ABPM diastolic blood pressure, blood pressure control status, the use and dose adjustment of antihypertensive medication, and the incidence of operative complications. Primary outcome

  20. Origins of the sympathetic innervation to the nasal-associated lymphoid tissue (NALT): an anatomical substrate for a neuroimmune connection.

    Science.gov (United States)

    Marafetti, Lucas E; Romeo, Horacio E

    2014-11-15

    The participation of sympathetic nerve fibers in the innervation of the nasal-associated lymphoid tissues (NALT) was investigated in hamsters. Vesicular monoamine transporter 2 (VMAT2), an established sympathetic marker, is expressed in all neurons of superior cervical ganglia (SCG). In addition, VMAT2 -immunoreactive nerve fibers were localized in the NALT as well as in adjacent anatomical structures of the upper respiratory tract. Unilateral surgical ablation of the SCG abolished VMAT2 innervation patterns ipsilaterally while the contra lateral side is unaffected. These results provide the anatomical substrate for a neuroimmune connection in the NALT. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  2. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    OpenAIRE

    Da-Lu Liu; Na Lu; Wen-Juan Han; Rong-Gui Chen; Rui Cong; Rou-Gang Xie; Yu-Fei Zhang; Wei-Wei Kong; San-Jue Hu; Ceng Luo

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron?s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensit...

  3. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice.

    Science.gov (United States)

    Jackson, Kristy L; Marques, Francine Z; Watson, Anna M D; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Morris, Brian J; Charchar, Fadi J; Davern, Pamela J; Head, Geoffrey A

    2013-10-01

    Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the renin-angiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg i.p.) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg i.p.) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2J mice had greater renal sympathetic innervation density as identified by tyrosine hydroxylase staining of cortical tubules. Although there is a major sympathetic contribution to hypertension in BPH/2J mice, the renin-angiotensin system also contributes, doing so to a greater extent during the active period and less during the inactive period. This is the opposite of the normal renin-angiotensin system circadian pattern. We suggest that renal hyperinnervation and enhanced sympathetically induced renin synthesis mediated by lower micro-RNA-181a contributes to hypertension in BPH/2J mice.

  4. A standardized surgical technique for rat superior cervical ganglionectomy

    DEFF Research Database (Denmark)

    Savastano, Luis Emilio; Castro, Analía Elizabeth; Fitt, Marcos René

    2010-01-01

    Superior cervical ganglionectomy (SCGx) is a valuable microsurgical model to study the role of the sympathetic nervous system in a vast array of physiological and pathological processes, including homeostatic regulation, circadian biology and the dynamics of neuronal dysfunction and recovery afte...... expect that the following standardized and optimized protocol will allow researchers to organize knowledge into a cohesive framework in those areas where the SCGx is applied....

  5. Synergistic application of cardiac sympathetic decentralization and comprehensive psychiatric treatment in the management of anxiety and electrical storm

    Directory of Open Access Journals (Sweden)

    Sahib S Khalsa

    2014-01-01

    Full Text Available We report here, for the first time, two cases demonstrating a synergistic application of bilateral cardiac sympathetic decentralization and multimodal psychiatric treatment for the assessment and management of anxiety following recurrent Implantable Cardioverter Defibrillator (ICD shocks. In a first case the combination of bilateral cardiac sympathetic decentralization (BCSD, cognitive behavioral psychotherapy and anxiolytic medication was sufficient to attenuate the patient’s symptoms and maladaptive behaviors, with a maintained benefit at 1 year. Among the more prominent subjective changes, we observed a decrease in aversive interoceptive sensations, particularly of the heartbeat following BCSD. The patient continued to experience cognitive threat appraisals on a frequent basis, although these were no longer incapacitating. In a second case, we report the effect of BCSD on autonomic tone and subjective state. In the post-lesion state we observed attenuated sympathetic responses to the valsalva maneuver, isometric handgrip and mental arithmetic stressor, including decreased systolic and diastolic blood pressure and decreased skin conductance. Collectively, these preliminary findings suggest that an integrative, multidisciplinary approach to treating anxiety disorders in the setting of ventricular arrhythmias and recurrent ICD shocks can result in sustained improvements in physical, psychological and functional status. These findings raise the possibility of a potential role for the stellate ganglion in the modulation of emotional experience and afferent transmission of interoceptive information to the central nervous system.

  6. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig.

    Science.gov (United States)

    Zalecki, Michal

    2012-01-01

    The pylorus, an important part of the digestive tract controlling the flow of chyme between the stomach and the duodenum, is widely innervated by intrinsic and extrinsic nerves. To determine the locations of postganglionic sympathetic perikarya that innervate the pylorus of the domestic pig, a retrograde tracing method with application of Fast Blue tracer was used. All positive neuronal cell bodies (ca. 1750) were found in the celiac-cranial mesenteric ganglion complex (CSMG), however, the coeliac poles of this complex provided the major input to the pylorus. Afterwards, the immunohistochemical staining procedure was applied to determine biologically active substances expressed in the FB-labeled perikarya. Approximately 77% of the FB-positive cell bodies contained tyrosine hydroxylase (TH), 87% dopamine β-hydroxylase (DβH), 40% neuropeptide Y (NPY), 12% somatostatin (SOM) and 7% galanin (GAL). The presence of all these substances in the ganglion tissue was confirmed by RT-PCR technique. Double immunocytochemistry revealed that all of the TH-positive perikarya contained DβH, about 40% NPY, 12% SOM and 8% GAL. Additionally, all above-cited immunohistochemical markers as well as VIP, PACAP, ChAT, LEU, MET, SP and nNOS were observed within nerve fibers associated with the FB-positive perikarya. Immunocytochemical labeling of the pyloric wall tissue disclosed that TH+, DβH+ and NPY+ nerve fibers innervated ganglia of the myenteric and submucosal plexuses, blood vessels, both muscular layers and the muscularis mucosae; nerve fibers immunoreactive to GAL mostly innervated both muscular layers, while SOM+ nerve fibers were observed within the myenteric plexus. Presented study revealed sources of origin and immunohistochemical characteristics of the sympathetic postganglionic perikarya innervating the porcine pylorus. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Competitive inhibition of the nondepolarizing muscle relaxant rocuronium on nicotinic acetylcholine receptor channels in the rat superior cervical ganglia.

    Science.gov (United States)

    Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng

    2014-05-01

    A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.

  8. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia.

    Science.gov (United States)

    Ardell, Jeffrey L; Cardinal, René; Vermeulen, Michel; Armour, J Andrew

    2009-08-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects.

  9. Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension

    NARCIS (Netherlands)

    van Brussel, Peter M.; Eeftinck Schattenkerk, Daan W.; Dobrowolski, Linn C.; de Winter, Robbert J.; Reekers, Jim A.; Verberne, Hein J.; Vogt, Liffert; van den Born, Bert-Jan H.

    2016-01-01

    Renal sympathetic denervation (RSD) is currently being investigated in multiple studies of sympathetically driven cardiovascular diseases such as heart failure and arrhythmias. Our aim was to assess systemic and cardiac sympatholytic effects of RSD by the measurement of cardiac sympathetic activity

  10. Resting sympathetic activity is associated with the sympathetically mediated component of energy expenditure following a meal.

    Science.gov (United States)

    Limberg, Jacqueline K; Malterer, Katherine R; Matzek, Luke J; Levine, James A; Charkoudian, Nisha; Miles, John M; Joyner, Michael J; Curry, Timothy B

    2017-08-01

    Individuals with high plasma norepinephrine (NE) levels at rest have a smaller reduction in resting energy expenditure (REE) following β -adrenergic blockade. If this finding extends to the response to a meal, it could have important implications for the role of the sympathetic nervous system in energy balance and weight gain. We hypothesized high muscle sympathetic nerve activity (MSNA) would be associated with a low sympathetically mediated component of energy expenditure following a meal. Fourteen young, healthy adults completed two visits randomized to continuous saline (control) or intravenous propranolol to achieve systemic β -adrenergic blockade. Muscle sympathetic nerve activity and REE were measured (indirect calorimetry) followed by a liquid mixed meal (Ensure). Measures of energy expenditure continued every 30 min for 5 h after the meal and are reported as an area under the curve (AUC). Sympathetic support of energy expenditure was calculated as the difference between the AUC during saline and β -blockade (AUC P ropranolol -AUC S aline , β -REE) and as a percent (%) of control (AUC P ropranolol ÷AUC S aline  × 100). β -REE was associated with baseline sympathetic activity, such that individuals with high resting MSNA (bursts/100 heart beats) and plasma NE had the greatest sympathetically mediated component of energy expenditure following a meal (MSNA: β -REE R  =   -0.58, P =  0.03; %REE R  = -0.56, P =  0.04; NE: β -REE R  = -0.55, P  = 0.0535; %REE R  = -0.54, P  = 0.0552). Contrary to our hypothesis, high resting sympathetic activity is associated with a greater sympathetically mediated component of energy expenditure following a liquid meal. These findings may have implications for weight maintenance in individuals with varying resting sympathetic activity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees.

    Science.gov (United States)

    Kawashima, Tomokazu; Sato, Fumi

    2012-03-01

    To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages. Copyright © 2011 Wiley Periodicals, Inc.

  12. Superior cervical ganglion mimicking retropharyngeal adenopathy in head and neck cancer patients: MRI features with anatomic, histologic, and surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Loke, S.C.; Karandikar, A.; Goh, J.P.N. [Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Ravanelli, M.; Farina, D.; Maroldi, R. [Department of Radiology, University of Brescia, Brescia (Italy); Ling, E.A. [National University of Singapore, Department of Anatomy, Yong Loo Lin School of Medicine, Singapore (Singapore); Tan, T.Y. [Changi General Hospital, Department of Radiology, Singapore (Singapore)

    2016-01-15

    To describe the unique MRI findings of superior cervical ganglia (SCG) that may help differentiate them from retropharyngeal lymph nodes (RPLNs). A retrospective review of post-treatment NPC patients from 1999 to 2012 identified three patients previously irradiated for NPC that were suspected of having recurrent nodal disease in retropharyngeal lymph nodes during surveillance MRI. Subsequent surgical exploration revealed enlarged SCG only; no retropharyngeal nodal disease was found. A cadaveric head specimen was also imaged with a 3T MRI before and after dissection. In addition, SCG were also harvested from three cadaveric specimens and subjected to histologic analysis. The SCG were found at the level of the C2 vertebral body, medial to the ICA. They were ovoid on axial images and fusiform and elongated with tapered margins in the coronal plane. T2-weighted (T2W) signal was hyperintense. No central elevated T1-weighted (T1W) signal was seen within the ganglia in non-fat-saturated sequences to suggest the presence of a fatty hilum. Enhancement after gadolinium was present. A central ''black dot'' was seen on axial T2W and post-contrast images in two of the three SCG demonstrated. Histology showed the central black line was comprised of venules and interlacing neurites within the central portion of the ganglion. The SCG can be mistaken for enlarged RPLNs in post-treatment NPC patients. However, there are features which can help differentiate them from RPLNs, preventing unnecessary therapy. These imaging findings have not been previously described. (orig.)

  13. Successful treatment of radiation-induced proctitis pain by blockade of the ganglion impar in an elderly patient with prostate cancer: a case report.

    Science.gov (United States)

    Khosla, Ankur; Adeyefa, Oludayo; Nasir, Syed

    2013-05-01

    Chronic rectal pain secondary to radiation-induced proctitis is fast-becoming a leading cause of chronic pain, especially for prostate cancer survivors. Currently, many elderly patients resort to increased opioid intake to alleviate the pain. However, this increase in opioid consumption often leads to constipation and further aggravates the anorectal pain, thus leading to a perpetual, vicious cycle. We reasoned that blocking the ganglion impar could attenuate this sympathetically maintained pain, which would lead to a reduction in the consumption of opioids, lessen constipation, and lead to an improvement in the patient's quality of life. Case report. An academic tertiary pain management clinic. The authors report the case of a 73-year-old African American man with a history of prostate cancer who presented to the pain management clinic for evaluation and treatment of his chronic anorectal pain secondary to radiation-induced proctitis. The patient underwent a ganglion impar block, using the transcoccygeal technique, and consequently reported excellent pain relief with little or no use for opioid pain medications at a 2-month follow-up. Ultimately, this approach led to improved mobility and an increase in the patient's quality of life. Based on this case's success, a prospective study or randomized control trial evaluating the efficacy of the ganglion impar block as a treatment option for chronic anorectal pain secondary to radiation-induced proctitis appears warranted. Wiley Periodicals, Inc.

  14. The meniscus ganglion

    International Nuclear Information System (INIS)

    Schaefer, H.

    1982-01-01

    Normal dimensions of the meniscus quoted in the literature vary somewhat; measurements were therefore carried out on the height and width on standardised arthrograms. This made it possible to evaluate changes in the height of the meniscus objectively and to diagnose degeneration with a ganglion at an earlier stage. Taking into account other, secondary, signs, 261 meniscus ganglia were diagnosed amongst 3133 meniscus lesions (8.3%) in the course of 5650 knee arthrograms. These were confirmed at operation and histologically. For the first time it has been possible to provide an estimate of the frequency of meniscus ganglion in the radiological literature. (orig.) [de

  15. Bioelectronic block of paravertebral sympathetic nerves mitigates post-myocardial infarction ventricular arrhythmias.

    Science.gov (United States)

    Chui, Ray W; Buckley, Una; Rajendran, Pradeep S; Vrabec, Tina; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2017-11-01

    Autonomic dysfunction contributes to induction of ventricular tachyarrhythmia (VT). To determine the efficacy of charge-balanced direct current (CBDC), applied to the T1-T2 segment of the paravertebral sympathetic chain, on VT inducibility post-myocardial infarction (MI). In a porcine model, CBDC was applied in acute animals (n = 7) to optimize stimulation parameters for sympathetic blockade and in chronic MI animals (n = 7) to evaluate the potential for VTs. Chronic MI was induced by microsphere embolization of the left anterior descending coronary artery. At termination, in anesthetized animals and following thoracotomy, an epicardial sock array was placed over both ventricles and a quadripolar carousel electrode positioned underlying the right T1-T2 paravertebral chain. In acute animals, the efficacy of CBDC carousel (CBDCC) block was assessed by evaluating cardiac function during T2 paravertebral ganglion stimulation with and without CBDCC. In chronic MI animals, VT inducibility was assessed by extrasystolic (S1-S2) stimulations at baseline and under >66% CBDCC blockade of T2-evoked sympathoexcitation. CBDCC demonstrated a current-dependent and reversible block without impacting basal cardiac function. VT was induced at baseline in all chronic MI animals. One animal died after baseline induction. Of the 6 remaining animals, only 1 was reinducible with simultaneous CBDCC application (P block of the T1-T2 paravertebral chain with CBDCC reduced VT in a chronic MI model. CBDCC prolonged VERP, without altering baseline cardiac function, resulting in improved electrical stability. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Ganglion block. When and how?; Ganglienblockade. Wann und wie?

    Energy Technology Data Exchange (ETDEWEB)

    Bale, R. [Medizinische Universitaet Innsbruck, Sektion fuer Mikroinvasive Therapie Universitaetsklinik fuer Radiologie, Innsbruck (Austria)

    2015-10-15

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.) [German] Anatomische und physiologische Kenntnisse ueber die Funktion von Schmerzbahnen fuehrten zur Entwicklung chirurgischer und perkutaner destruktiver Verfahren, um einzelne Komponenten afferenter Schmerzbahnen anzusteuern bzw. auszuschalten. Neben anderen nervalen Strukturen gelten Hinterstrangganglien und insbesondere die Ganglien des autonomen Nervensystems als Ziele fuer radiologische Interventionen. Das vegetative Nervensystem ist fuer die Organfunktion durch Regulation des Gefaesstonus und fuer die Leitung

  17. Netrin-1 controls sympathetic arterial innervation.

    Science.gov (United States)

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J C; Kennedy, Timothy E; Zhuang, Zhen; Simons, Michael; Levy, Bernard I; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-07-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type-specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs.

  18. Ganglion Cysts

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Ganglion Cysts Email to a friend * required fields ...

  19. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2017-03-04

    Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. AMPUTATION AND REFLEX SYMPATHETIC DYSTROPHY

    NARCIS (Netherlands)

    GEERTZEN, JHB; EISMA, WH

    Reflex sympathetic dystrophy is a chronic pain syndrome characterized by chronic burning pain, restricted range of motion, oedema and vasolability. Patients are difficult to treat and the prognosis is very often poor. This report emphasizes that an amputation in case of a reflex sympathetic

  1. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  2. Renal sympathetic nerve ablation for treatment-resistant hypertension

    Science.gov (United States)

    Krum, Henry; Schlaich, Markus; Sobotka, Paul

    2013-01-01

    Hypertension is a major risk factor for increased cardiovascular events with accelerated sympathetic nerve activity implicated in the pathogenesis and progression of disease. Blood pressure is not adequately controlled in many patients, despite the availability of effective pharmacotherapy. Novel procedure- as well as device-based strategies, such as percutaneous renal sympathetic nerve denervation, have been developed to improve blood pressure in these refractory patients. Renal sympathetic denervation not only reduces blood pressure but also renal as well as systemic sympathetic nerve activity in such patients. The reduction in blood pressure appears to be sustained over 3 years after the procedure, which suggests absence of re-innervation of renal sympathetic nerves. Safety appears to be adequate. This approach may also have potential in other disorders associated with enhanced sympathetic nerve activity such as congestive heart failure, chronic kidney disease and metabolic syndrome. This review will focus on the current status of percutaneous renal sympathetic nerve denervation, clinical efficacy and safety outcomes and prospects beyond refractory hypertension. PMID:23819768

  3. Impaired Sympathoadrenal Axis Function Contributes to Enhanced Insulin Secretion in Prediabetic Obese Rats

    Directory of Open Access Journals (Sweden)

    Ana Eliza Andreazzi

    2011-01-01

    Full Text Available The involvement of sympathoadrenal axis activity in obesity onset was investigated using the experimental model of treating neonatal rats with monosodium L-glutamate. To access general sympathetic nervous system activity, we recorded the firing rates of sympathetic superior cervical ganglion nerves in animals. Catecholamine content and secretion from isolated adrenal medulla were measured. Intravenous glucose tolerance test was performed, and isolated pancreatic islets were stimulated with glucose and adrenergic agonists. The nerve firing rate of obese rats was decreased compared to the rate for lean rats. Basal catecholamine secretion decreased whereas catecholamine secretion induced by carbachol, elevated extracellular potassium, and caffeine in the isolated adrenal medulla were all increased in obese rats compared to control. Both glucose intolerance and hyperinsulinaemia were observed in obese rats. Adrenaline strongly inhibited glucose-induced insulin secretion in obese animals. These findings suggest that low sympathoadrenal activity contributes to impaired glycaemic control in prediabetic obese rats.

  4. Effect of nerve activity on transport of nerve growth factor and dopamine β-hydroxylase antibodies in sympathetic neurones

    International Nuclear Information System (INIS)

    Lees, G.; Chubb, I.; Freeman, C.; Geffen, L.; Rush, R.

    1981-01-01

    The effect of nerve activity on the uptake and retrograde transport of nerve growth factor (NGF) and dopamine β-hydroxylase (DBH) antibodies was studied by injecting 125 I-labelled NGF and anti-DBH into the anterior eye chamber of guinea-pigs. Decentralization of the ipsilateral superior cervical ganglion (SCG) had no significant effect on the retrograde transport of either NGF or anti-DBH. Phenoxybenzamine produced a 50% increase in anti-DBH but not NGF accumulation and this effect was prevented by prior decentralization. This demonstrates that NGF is taken up independently of the retrieval of synaptic vesicle components. (Auth.)

  5. Voltage-Induced Ca²⁺ Release in Postganglionic Sympathetic Neurons in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hong-Li Sun

    Full Text Available Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 -loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM and absence of extracellular Ca2+ ([Ca2+]e. Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5-10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3 receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.

  6. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  7. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    Science.gov (United States)

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  8. Piriformis ganglion: An uncommon cause of sciatica.

    Science.gov (United States)

    Park, J H; Jeong, H J; Shin, H K; Park, S J; Lee, J H; Kim, E

    2016-04-01

    Sciatica can occur due to a spinal lesion, intrapelvic tumor, diabetic neuropathy, and rarely piriformis syndrome. The causes of piriformis syndrome vary by a space-occupying lesion. A ganglionic cyst can occur in various lesions in the body but seldom around the hip joint. In addition, sciatica due to a ganglionic cyst around the hip joint has been reported in one patient in Korea who underwent surgical treatment. We experienced two cases of sciatica from a piriformis ganglionic cyst and we report the clinical characterics and progress after non-operative treatment by ultrasonography-guided aspiration. The two cases were diagnosed by magnetic resonance imaging and were treated by ultrasonography-guided aspiration. We followed the patients for more than 6months. The symptoms of piriformis syndrome from the ganglion improved following aspiration and this conservative treatment is a treatment method that can be used without extensive incision or cyst excision. Level IV historical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Periosteal ganglion

    International Nuclear Information System (INIS)

    Kolar, J.; Zidkova, H.; Matejovsky, Z.

    1986-01-01

    Ganglionic cysts are a common myxomatous degenerative disorder in periarticular connective tissues particularly in the hand and foot as well as within the subchondral bone adjacent to osteoarthritic joints. Compared with them, periosteal ganglia are only rarely reported in the literature. Their radiologic features are quite typical as documented by the following observation. (orig.) [de

  10. Role of adrenal hormones in the synthesis of noradrenaline in cardiac sympathetic neurones

    Science.gov (United States)

    Bhagat, B.

    1969-01-01

    1. Adrenalectomy or adrenal demedullation affected neither the levels of endogenous catecholamines in the rat heart nor the accumulation of 3H-noradrenaline 1 hr after its intravenous administration. 2. Twenty-four hours after intravenous administration of labelled amine, however, its retention was markedly reduced in the heart of adrenalectomized or demedullated rats. Ganglionic blockade prevented this reduction. 3. Rate calculations from the decline of catecholamine levels after blockade of synthesis with α-methyl-tyrosine showed that cardiac synthesis of noradrenaline increased about four-fold after demedullation and about three-fold after adrenalectomy. This increase in synthesis may compensate for the loss of circulating catecholamines. 4. There was no change in catechol-o-methyl-transferase activity, but monoamine oxidase activity was increased in the homogenates of the heart of adrenalectomized and demedullated rats. The increase in the cardiac monoamine oxidase activity was markedly greater in the adrenalectomized rats than in the demedullated rats. 5. It is suggested that adrenal cortex insufficiency may modulate the rate of synthesis of noradrenaline and monoamine oxidase activity in cardiac sympathetic neurones. PMID:5360339

  11. Intracranial Pressure Is a Determinant of Sympathetic Activity

    Directory of Open Access Journals (Sweden)

    Eric A. Schmidt

    2018-02-01

    Full Text Available Intracranial pressure (ICP is the pressure within the cranium. ICP rise compresses brain vessels and reduces cerebral blood delivery. Massive ICP rise leads to cerebral ischemia, but it is also known to produce hypertension, bradycardia and respiratory irregularities due to a sympatho-adrenal mechanism termed Cushing response. One still unresolved question is whether the Cushing response is a non-synaptic acute brainstem ischemic mechanism or part of a larger physiological reflex for arterial blood pressure control and homeostasis regulation. We hypothesize that changes in ICP modulates sympathetic activity. Thus, modest ICP increase and decrease were achieved in mice and patients with respectively intra-ventricular and lumbar fluid infusion. Sympathetic activity was gauged directly by microneurography, recording renal sympathetic nerve activity in mice and muscle sympathetic nerve activity in patients, and gauged indirectly in both species by heart-rate variability analysis. In mice (n = 15, renal sympathetic activity increased from 29.9 ± 4.0 bursts.s−1 (baseline ICP 6.6 ± 0.7 mmHg to 45.7 ± 6.4 bursts.s−1 (plateau ICP 38.6 ± 1.0 mmHg and decreased to 34.8 ± 5.6 bursts.s−1 (post-infusion ICP 9.1 ± 0.8 mmHg. In patients (n = 10, muscle sympathetic activity increased from 51.2 ± 2.5 bursts.min−1 (baseline ICP 8.3 ± 1.0 mmHg to 66.7 ± 2.9 bursts.min−1 (plateau ICP 25 ± 0.3 mmHg and decreased to 58.8 ± 2.6 bursts.min−1 (post-infusion ICP 14.8 ± 0.9 mmHg. In patients 7 mmHg ICP rise significantly increases sympathetic activity by 17%. Heart-rate variability analysis demonstrated a significant vagal withdrawal during the ICP rise, in accordance with the microneurography findings. Mice and human results are alike. We demonstrate in animal and human that ICP is a reversible determinant of efferent sympathetic outflow, even at relatively low ICP levels. ICP is a biophysical stress related to the forces within the brain. But ICP

  12. CT and fluoroscopy guided celiac ganglion block

    International Nuclear Information System (INIS)

    Lim, Sun Kyung; Kwon, Dae Ik; Ahn, Hyup; Kim, Jong Il; Kim, Byung Young; Lee, Jong Gil

    1994-01-01

    To evaluate the effects and usefulness of fluoroscopy guided celiac ganglion block after marking of needle path with CT scan. Celiac ganglion block with 100% ethyl alcohol was performed in 50 cancer patients who were inoperable and had intractable abdominal pain. Duration and degree of pain relief after the procedure and its complication were analyzed. Early pain relief was observed in 98% and long term relief in 68% without serious complication. Fluoroscopy guided celiac ganglion block after marking of needle path with CT scan was a safe and valuable procedure in relieving intractable pain in terminal cancer patients and reduced the time in the CT room

  13. Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

    OpenAIRE

    Martinez-Lavin, Manuel

    2012-01-01

    Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may...

  14. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...... skeletal muscle, cutaneous and subcutaneous tissues of the limbs indicate that the situation is more complex. Measurements have been carried out during acute as well as chronic sympathetic denervation. Spinal sympathetic reflex mechanisms have been evaluated in tetraplegic patients, where supraspinal...

  15. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  16. Efficacy of Noninvasive Stellate Ganglion Blockade Performed Using Physical Agent Modalities in Patients with Sympathetic Hyperactivity-Associated Disorders: A Systematic Review and Meta-Analysis

    OpenAIRE

    Liao, Chun-De; Tsauo, Jau-Yih; Liou, Tsan-Hon; Chen, Hung-Chou; Rau, Chi-Lun

    2016-01-01

    Background Stellate ganglion blockade (SGB) is mainly used to relieve symptoms of neuropathic pain in conditions such as complex regional pain syndrome and has several potential complications. Noninvasive SGB performed using physical agent modalities (PAMs), such as light irradiation and electrical stimulation, can be clinically used as an alternative to conventional invasive SGB. However, its application protocols vary and its clinical efficacy remains controversial. This study investigated ...

  17. Sympathetic Nerve Injury in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Evangelos Diamantis

    2018-04-01

    Full Text Available The double innervation of the thyroid comes from the sympathetic and parasympathetic nervous system. Injury rates during surgery are at 30% but can be minimized by upwardly preparing the thyroid vessels at the level of thyroid capsule. Several factors have been accused of increasing the risk of injury including age and tumor size. Our aim was to investigate of there is indeed any possible correlations between these factors and a possible increase in injury rates following thyroidectomy. Seven studies were included in the meta-analysis. Statistical correlation was observed for a positive relationship between injury of the sympathetic nerve and thyroid malignancy surgery (p < 0.001; I2 = 74% No statistical correlations were observed for a negative or positive relationship between injury of the sympathetic nerve and tumor size. There was also no statistically significant value observed for the correlation of the patients’ age with the risk of sympathetic nerve injury (p = 0.388. Lack of significant correlation reported could be due to the small number of studies and great heterogeneity between them.

  18. Arthroscopic excision of ganglion cysts.

    Science.gov (United States)

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Anatomy of the nerves and ganglia of the aortic plexus in males

    Science.gov (United States)

    Beveridge, Tyler S; Johnson, Marjorie; Power, Adam; Power, Nicholas E; Allman, Brian L

    2015-01-01

    It is well accepted that the aortic plexus is a network of pre- and post-ganglionic nerves overlying the abdominal aorta, which is primarily involved with the sympathetic innervation to the mesenteric, pelvic and urogenital organs. Because a comprehensive anatomical description of the aortic plexus and its connections with adjacent plexuses are lacking, these delicate structures are prone to unintended damage during abdominal surgeries. Through dissection of fresh, frozen human cadavers (n = 7), the present study aimed to provide the first complete mapping of the nerves and ganglia of the aortic plexus in males. Using standard histochemical procedures, ganglia of the aortic plexus were verified through microscopic analysis using haematoxylin & eosin (H&E) and anti-tyrosine hydroxylase stains. All specimens exhibited four distinct sympathetic ganglia within the aortic plexus: the right and left spermatic ganglia, the inferior mesenteric ganglion and one previously unidentified ganglion, which has been named the prehypogastric ganglion by the authors. The spermatic ganglia were consistently supplied by the L1 lumbar splanchnic nerves and the inferior mesenteric ganglion and the newly characterized prehypogastric ganglion were supplied by the left and right L2 lumbar splanchnic nerves, respectively. Additionally, our examination revealed the aortic plexus does have potential for variation, primarily in the possibility of exhibiting accessory splanchnic nerves. Clinically, our results could have significant implications for preserving fertility in men as well as sympathetic function to the hindgut and pelvis during retroperitoneal surgeries. PMID:25382240

  20. Intra-articular ganglion cysts of the knee: clinical and MR imaging features

    International Nuclear Information System (INIS)

    Kim, M.G.; Cho, W.H.; Kim, B.H.; Choi, J.A.; Lee, N.J.; Chung, K.B.; Choi, Y.S.; Cho, S.B.; Lim, H.C.

    2001-01-01

    The purpose of this study was to present clinical and MR imaging features of intra-articular ganglion cysts of the knee. Retrospective review of 1685 consecutive medical records and MR examinations of the knee performed at three imaging centers allowed identification of 20 patients (13 men and 7 women; mean age 35 years), in whom evidence of intra-articular ganglion cyst was seen. Of the 20 ganglion cysts, 5 were found in the infrapatellar fat pad, 10 arose from the posterior cruciate ligament, and 5 from the anterior cruciate ligament. Three of five patients with ganglion cyst in the infrapatellar fat pad had a palpable mass. In 7 of 15 patients with ganglion cyst in the intercondylar notch, exacerbation of pain occurred in a squatting position. On four MR arthrographies, ganglion cysts were an intra-articular round, lobulated, low signal intensity lesion. Five cases of fat-suppressed contrast-enhanced T1-weighted SE images demonstrated peripheral thin rim enhancement. The clinical presentation of intra-articular ganglion cyst is varied according to its intra-articular location. The MR appearance of intra-articular ganglion cyst is characteristic and usually associated with the cruciate ligament or the infrapatellar fat pad. Magnetic resonance arthrography has no definite advantage over conventional MR in the evaluation of the lesion. For intra-articular ganglion cyst in the infrapatellar fat pad, fat-suppressed contrast-enhanced MR imaging could be useful, because a thin, rim-enhancing feature of intra-articular ganglion cyst allows it to be distinguished from synovial hemangioma and synovial sarcoma. (orig.)

  1. Renal Sympathetic Denervation: Hibernation or Resurrection?

    Science.gov (United States)

    Papademetriou, Vasilios; Doumas, Michael; Tsioufis, Costas

    The most current versions of renal sympathetic denervation have been invented as minimally invasive approaches for the management of drug-resistant hypertension. The anatomy, physiology and pathophysiology of renal sympathetic innervation provide a strong background supporting an important role of the renal nerves in the regulation of blood pressure (BP) and volume. In addition, historical data with surgical sympathectomy and experimental data with surgical renal denervation indicate a beneficial effect on BP levels. Early clinical studies with transcatheter radiofrequency ablation demonstrated impressive BP reduction, accompanied by beneficial effects in target organ damage and other disease conditions characterized by sympathetic overactivity. However, the failure of the SYMPLICITY 3 trial to meet its primary efficacy end point raised a lot of concerns and put the field of renal denervation into hibernation. This review aims to translate basic research into clinical practice by presenting the anatomical and physiological basis for renal sympathetic denervation, critically discussing the past and present knowledge in this field, where we stand now, and also speculating about the future of the intervention and potential directions for research. © 2016 S. Karger AG, Basel.

  2. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis.

    Science.gov (United States)

    Arnold, Julia; Barcena de Arellano, Maria L; Rüster, Carola; Vercellino, Giuseppe F; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2012-01-01

    To investigate possible mechanisms of pain pathophysiology in patients with peritoneal endometriosis, a clinical study on sensory and sympathetic nerve fibre sprouting in endometriosis was performed. Peritoneal lesions (n=40) and healthy peritoneum (n=12) were immunostained and analysed with anti-protein gene product 9.5 (PGP 9.5), anti-substance P (SP) and anti-tyrosine hydroxylase (TH), specific markers for intact nerve fibres, sensory nerve fibres and sympathetic nerve fibres, respectively, to identify the ratio of sympathetic and sensory nerve fibres. In addition, immune cell infiltrates in peritoneal endometriotic lesions were analysed and the nerve growth factor (NGF) and interleukin (IL)-1β expression was correlate with the nerve fibre density. Peritoneal fluids from patients with endometriosis (n=40) and without endometriosis (n=20) were used for the in vitro neuronal growth assay. Cultured chicken dorsal root ganglia (DRG) and sympathetic ganglia were stained with anti-growth associated protein 43 (anti-GAP 43), anti-SP and anti-TH. We could detect an increased sensory and decreased sympathetic nerve fibres density in peritoneal lesions compared to healthy peritoneum. Peritoneal fluids of patients with endometriosis compared to patients without endometriosis induced an increased sprouting of sensory neurites from DRG and decreased neurite outgrowth from sympathetic ganglia. In conclusion, this study demonstrates an imbalance between sympathetic and sensory nerve fibres in peritoneal endometriosis, as well as an altered modulation of peritoneal fluids from patients with endometriosis on sympathetic and sensory innervation which might directly be involved in the maintenance of inflammation and pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Sympathetic activation during early pregnancy in humans

    Science.gov (United States)

    Jarvis, Sara S; Shibata, Shigeki; Bivens, Tiffany B; Okada, Yoshiyuki; Casey, Brian M; Levine, Benjamin D; Fu, Qi

    2012-01-01

    Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min−1, 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min−1; main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm−5; P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.−1 min−1; P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml−1, P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml−1, P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications. PMID:22687610

  4. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  5. Effectiveness of Stellate Ganglion Block Under Fuoroscopy or Ultrasound Guidance in Upper Extremity CRPS.

    Science.gov (United States)

    Imani, Farnad; Hemati, Karim; Rahimzadeh, Poupak; Kazemi, Mohamad Reza; Hejazian, Kokab

    2016-01-01

    Stellate Ganglion Block (SGB) is an effective technique which may be used to manage upper extremities pain due to Chronic Regional Pain Syndrome (CRPS), in this study we tried to evaluate the effectiveness of this procedure under two different guidance for management of this syndrome. The purpose of this study was to evaluate the effectiveness of ultrsound guide SGB by comparing it with the furoscopy guided SGB in upper extermities CRPS patients in reducing pain & dysfuction of the affected link. Fourteen patients with sympathetic CRPS in upper extremities in a randomized method with block randomization divided in two equal groups (with ultrasound or fluoroscopic guidance). First group was blocked under fluoroscopic guidance and second group blocked under ultrasound guidance. After correct positioning of the needle, a mixture of 5 ml bupivacaine 0.25% and 1 mL of triamcinolone was injected. These data represent no meaningful statistical difference between the two groups in terms of the number of pain attacks before the blocks, a borderline correlation between two groups one week and one month after the block and a significant statistical correlation between two groups three month after the block. These data represent no meaningful statistical difference between the patients of any group in terms of the pain intensity (from one week to six months after block), p-value = 0.61. These data represent a meaningful statistical difference among patients of any group and between the two groups in terms of the pain intensity (before the block until six months after block), p-values were 0.001, 0.031 respectively. According the above mentioned data, in comparison with fluoroscopic guidance, stellate ganglion block under ultrasound guidance is a safe and effective method with lower complication and better improvement in patient's disability indexes.

  6. Intramuscular dissection of a large ganglion cyst into the gastrocnemius muscle.

    Science.gov (United States)

    Nicholson, Luke T; Freedman, Harold L

    2012-07-01

    Ganglion cysts are lesions resulting from the myxoid degeneration of the connective tissue associated with joint capsules and tendon sheaths. Most common around the wrist joint, ganglion cysts may be found elsewhere in the body, including in and around the knee joint. Uncommonly, ganglion cysts can present intramuscularly. Previous reports document the existence of intramuscular ganglia, often without histologic confirmation. This article describes a case of an intramuscular ganglion cyst in the medial gastrocnemius muscle of a 53-year-old woman. The patient initially presented for discomfort associated with the lesion. Examination was consistent with intramuscular cystic lesion of unknown etiology. Ultrasound and magnetic resonance imaging revealed the origin of the mass at the semimembranosus-gastrocnemius bursa. Because of its location, the mass was initially suspected to be a dissecting Baker's cyst, an uncommon but previously reported diagnosis. The patient underwent surgical excision, and examination of the intact specimen revealed a thin, fibrous, walled cyst with no lining epithelium, which was consistent with a ganglion cyst. To the authors' knowledge, this is the first report in the orthopedic literature of a ganglion cyst dissecting into the gastrocnemius muscle. Because ganglion cysts commonly require excision for definitive treatment and do not respond well to treatment measures implemented for Baker's cysts, including resection of underlying meniscal tears, the authors believe it is important for orthopedic surgeons to be able to distinguish between Baker's and other cysts associated with the knee joint, including ganglion cysts, which may require more definitive treatment. Copyright 2012, SLACK Incorporated.

  7. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T

    1984-01-01

    (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree......The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... comprise not only the peripheral sensory and motor nerve fibres, but also the thin pseudomotor and vasomotor nerves....

  8. Topography of ganglion cell production in the cat's retina

    International Nuclear Information System (INIS)

    Walsh, C.; Polley, E.H.

    1985-01-01

    The ganglion cells of the cat's retina form several classes distinguishable in terms of soma size, axon diameter, dendritic morphology, physiological properties, and central connections. Labeling with [ 3 H]thymidine shows that the ganglion cells which survive in the adult are produced as several temporally shifted, overlapping waves: medium-sized cells are produced before large cells, whereas the smallest ganglion cells are produced throughout the period of ganglion cell generation. Large cells and medium-sized cells show the same distinctive pattern of production, forming rough spirals around the area centralis. The oldest cells tend to lie superior and nasal to the area centralis, whereas cells in the inferior nasal retina and inferior temporal retina are, in general, progressively younger. Within each retinal quadrant, cells nearer the area centralis tend to be older than cells in the periphery, but there is substantial overlap. The retinal raphe divides the superior temporal quadrant into two zones with different patterns of cell addition. Superior temporal retina near the vertical meridian adds cells only slightly later than superior nasal retina, whereas superior temporal retina near the horizontal meridian adds cells very late, contemporaneously with inferior temporal retina. The broader wave of production of smaller ganglion cells seems to follow this same spiral pattern at its beginning and end. The presence of the area centralis as a nodal point about which ganglion cell production in the retinal quadrants pivots suggests that the area centralis is already an important retinal landmark even at the earliest stages of retinal development

  9. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  10. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Directory of Open Access Journals (Sweden)

    Kim Chan

    2007-10-01

    Full Text Available Abstract Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5. RGC-5 cells were cultured in a closed hypoxic chamber (5% O2 with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38 and nuclear factor-kappa B (NF-κB were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF, a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.

  11. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line

    Science.gov (United States)

    Hong, Samin; Lee, Jong Eun; Kim, Chan Yun; Seong, Gong Je

    2007-01-01

    Background Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-κB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. Results After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-κB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-κB, while BDNF suppressed phosphorylation of ERK and p38. Conclusion Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-κB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia. PMID:17908330

  12. Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability.

    NARCIS (Netherlands)

    Han, C.; Hoeijmakers, J.G.; Ahn, H.S.; Zhao, P.; Shah, P.; Lauria, G.; Gerrits, M.M.; Morsche, R.H.M. te; Dib-Hajj, S.D.; Drenth, J.P.H.; Faber, C.G.; Merkies, I.S.; Waxman, S.G.

    2012-01-01

    OBJECTIVES: Although small fiber neuropathy (SFN) often occurs without apparent cause, the molecular etiology of idiopathic SFN (I-SFN) has remained enigmatic. Sodium channel Na(v)1.7 is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons and their

  13. Antonius Balthazar Raymundus Hirsch and the peregrination of "gasserian ganglion".

    Science.gov (United States)

    Sonig, Ashish; Thakur, Jai; Grass, Monica; Khan, Imad Saeed; Gandhi, Viraj; Nanda, Anil

    2013-09-01

    The anatomical description of the fifth cranial nerve ganglion lacked detail before the work of Antonius Balthazar Raymundus Hirsch (1744-1778). Hirsch used new dissection techniques that resulted in the most meticulous report of the trigeminal ganglion (the gasserian ganglion) to have been reported. In 1765, the 21-year-old published these findings in a thesis, Paris Quinti Nervorum Encephali Disquisitio Anatomica In Quantum Ad Ganglion Sibi Proprium, Semilunare, Et Ad Originem Nervi Intercostalis Pertinet [An anatomical inquiry of the fifth pair of the nerves of the brain, so far as it relates to the ganglion unto itself, the semilunar, and to the source of the intercostal nerve]. Hirsch wrote his thesis as a paean to his ailing teacher, Johann Lorenz Gasser, but Gasser died before Hirsch was able to defend his thesis. Thereafter, Hirsch applied to teach anatomy at his alma mater, the University of Vienna, but the university did not consider his application, deeming him too young for the position. Oddly, Hirsch died at the young age of 35. For the present paper, the library at the University of Vienna (Universität Wien), Austria, was contacted, and Anton Hirsch's thesis was digitized and subsequently translated from Latin into English. The authors here attempt to place the recognition of the fifth cranial nerve ganglion within a historical perspective and trace the trajectory of its anatomical descriptions.

  14. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  15. Sympathetic vasoconstriction takes an unexpected pannexin detour

    DEFF Research Database (Denmark)

    Schak Nielsen, Morten

    2015-01-01

    Sympathetic vasoconstriction plays an important role in the control of blood pressure and the distribution of blood flow. In this issue of Science Signaling, Billaud et al. show that sympathetic vasoconstriction occurs through a complex scheme involving the activation of large-pore pannexin 1...... channels and the subsequent release of adenosine triphosphate that promotes contraction in an autocrine and paracrine manner. This elaborate mechanism may function as a point of intercept for other signaling pathways-for example, in relation to the phenomenon "functional sympatholysis," in which exercise...... abrogates sympathetic vasoconstriction in skeletal muscle. Because pannexin 1 channels are inhibited by nitric oxide, they may function as a switch to turn off adrenergic signaling in skeletal muscle during exercise....

  16. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans.

    Science.gov (United States)

    Kaufmann, H; Biaggioni, I; Voustianiouk, A; Diedrich, A; Costa, F; Clarke, R; Gizzi, M; Raphan, T; Cohen, B

    2002-04-01

    It has been proposed that a vestibular reflex originating in the otolith organs and other body graviceptors modulates sympathetic activity during changes in posture with regard to gravity. To test this hypothesis, we selectively stimulated otolith and body graviceptors sinusoidally along different head axes in the coronal plane with off-vertical axis rotation (OVAR) and recorded sympathetic efferent activity in the peroneal nerve (muscle sympathetic nerve activity, MSNA), blood pressure, heart rate, and respiratory rate. All parameters were entrained during OVAR at the frequency of rotation, with MSNA increasing in nose-up positions during forward linear acceleration and decreasing when nose-down. MSNA was correlated closely with blood pressure when subjects were within +/-90 degrees of nose-down positions with a delay of 1.4 s, the normal latency of baroreflex-driven changes in MSNA. Thus, in the nose-down position, MSNA was probably driven by baroreflex afferents. In contrast, when subjects were within +/-45 degrees of the nose-up position, i.e., when positive linear acceleration was maximal along the naso-ocipital axis, MSNA was closely related to gravitational acceleration at a latency of 0.4 s. This delay is too short for MSNA changes to be mediated by the baroreflex, but it is compatible with the delay of a response originating in the vestibular system. We postulate that a vestibulosympathetic reflex, probably originating mainly in the otolith organs, contributes to blood pressure maintenance during forward linear acceleration. Because of its short latency, this reflex may be one of the earliest mechanisms to sustain blood pressure upon standing.

  17. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    Science.gov (United States)

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  18. Ganglion cysts at the gastrocnemius origin: a series of ten cases

    International Nuclear Information System (INIS)

    James, S.L.J.; Connell, D.A.; Saifuddin, A.; Bell, J.

    2007-01-01

    To describe ganglion cysts arising close to the origin of the medial and lateral head of gastrocnemius as identified on magnetic resonance (MR) imaging. We present a series of ten cases of ganglion cysts arising close to the gastrocnemius origin from the medial and lateral femoral condyles. These were collected over a 6-year period from our imaging database. All patients attended for routine MR imaging of the knee with a variety of clinical presentations. Data collected included patient demographics, ganglion size, ganglion site, clinical presentation and ancillary MR imaging findings. The ten patients in this series consisted of seven males and three females, five right and five left knees, age range 27-68 years, mean age 40.6 years. The mean maximal dimension of the ganglion cysts was 26 mm, range 15-40 mm. The medial gastrocnemius origin was involved in eight patients and the lateral origin in two patients. The MR imaging findings consisted of both uni- and multi-loculated cysts, often containing numerous septations with fluid signal characteristics. The cysts were extra-capsular with no clear communication with the joint. One patient presented with a popliteal soft tissue mass and none of the cases required surgical intervention for cyst removal. MR imaging may identify ganglion cysts arising in an intra- or extra-articular site around the knee. This series documents the MR imaging characteristics of ganglion cysts arising close to the gastrocnemius origin and discusses the relevance of this imaging finding. (orig.)

  19. Ganglion Cyst Associated with Triangular Fibrocartilage Complex Tear That Caused Ulnar Nerve Compression

    Directory of Open Access Journals (Sweden)

    Ugur Anil Bingol, MD

    2015-03-01

    Full Text Available Summary: Ganglions are the most frequently seen soft-tissue tumors in the hand. Nerve compression due to ganglion cysts at the wrist is rare. We report 2 ganglion cysts arising from triangular fibrocartilage complex, one of which caused ulnar nerve compression proximal to the Guyonʼs canal, leading to ulnar neuropathy. Ganglion cysts seem unimportant, and many surgeons refrain from performing a general hand examination.

  20. A new organellar complex in rat sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Matt S Ramer

    Full Text Available Membranous compartments of neurons such as axons, dendrites and modified primary cilia are defining features of neuronal phenotype. This is unlike organelles deep to the plasma membrane, which are for the most part generic and not related directly to morphological, neurochemical or functional specializations. However, here we use multi-label immunohistochemistry combined with confocal and electron microscopy to identify a very large (approximately 6 microns in diameter, entirely intracellular neuronal organelle which occurs singly in a ubiquitous but neurochemically distinct and morphologically simple subset of sympathetic ganglion neurons. Although usually toroidal, it also occurs as twists or rods depending on its intracellular position: tori are most often perinuclear whereas rods are often found in axons. These 'loukoumasomes' (doughnut-like bodies bind a monoclonal antibody raised against beta-III-tubulin (SDL.3D10, although their inability to bind other beta-III-tubulin monoclonal antibodies indicate that the responsible antigen is not known. Position-morphology relationships within neurons and their expression of non-muscle heavy chain myosin suggest a dynamic structure. They associate with nematosomes, enigmatic nucleolus-like organelles present in many neural and non-neural tissues, which we now show to be composed of filamentous actin. Loukoumasomes also separately interact with mother centrioles forming the basal body of primary cilia. They express gamma tubulin, a microtubule nucleator which localizes to non-neuronal centrosomes, and cenexin, a mother centriole-associated protein required for ciliogenesis. These data reveal a hitherto undescribed organelle, and depict it as an intracellular transport machine, shuttling material between the primary cilium, the nematosome, and the axon.

  1. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction.

    Science.gov (United States)

    Luo, Da; Hu, Huihui; Qin, Zhiliang; Liu, Shan; Yu, Xiaomei; Ma, Ruisong; He, Wenbo; Xie, Jing; Lu, Zhibing; He, Bo; Jiang, Hong

    2017-12-01

    Heart failure (HF) is associated with autonomic dysfunction. Vagus nerve stimulation has been shown to improve cardiac function both in HF patients and animal models of HF. The purpose of this present study is to investigate the effects of ganglionated plexus stimulation (GPS) on HF progression and autonomic remodeling in a canine model of acute HF post-myocardial infarction. Eighteen adult mongrel male dogs were randomized into the control (n=8) and GPS (n=10) groups. All dogs underwent left anterior descending artery ligation followed by 6-hour high-rate (180-220bpm) ventricular pacing to induce acute HF. Transthoracic 2-dimensional echocardiography was performed at different time points. The plasma levels of norepinephrine, B-type natriuretic peptide (BNP) and Ang-II were measured using ELISA kits. C-fos and nerve growth factor (NGF) proteins expressed in the left stellate ganglion as well as GAP43 and TH proteins expressed in the peri-infarct zone were measured using western blot. After 6h of GPS, the left ventricular end-diastolic volume, end-systolic volume and ejection fraction showed no significant differences between the 2 groups, but the interventricular septal thickness at end-systole in the GPS group was significantly higher than that in the control group. The plasma levels of norepinephrine, BNP, Ang-II were increased 1h after myocardial infarction while the increase was attenuated by GPS. The expression of c-fos and NGF proteins in the left stellate ganglion as well as GAP43 and TH proteins in cardiac peri-infarct zone in GPS group were significantly lower than that in control group. GPS inhibits cardiac sympathetic remodeling and attenuates HF progression in canines with acute HF induced by myocardial infarction and ventricular pacing. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sympathetic block by metal clips may be a reversible operation

    DEFF Research Database (Denmark)

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa

    2014-01-01

    , but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. METHODS: Thoracoscopic clipping of the sympathetic trunk was performed in adult...... the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery...... suggests in theory that application of metal clips to the sympathetic chain is a reversible procedure if only the observation period is prolonged. Further studies with longer periods between application and removal as well as investigations of nerve conduction should be encouraged, because we do not know...

  3. A Comparative Analysis of Ganglion Cell Complex Parameters in ...

    African Journals Online (AJOL)

    Dr femi Oderinlo

    in the eyes, the optic nerve head, nerve fibre layer and retinal ganglion cells. Retinal ganglion cells encompass three layers ... of the macula in eyes with mild diabetic retinopathy. 8. *Correspondence: O Oderinlo, Eye Foundation ... most sensitive detection of GCC thinning. FLV provides a. 10 quantitative measure of the ...

  4. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    Science.gov (United States)

    Liu, Da-Lu; Lu, Na; Han, Wen-Juan; Chen, Rong-Gui; Cong, Rui; Xie, Rou-Gang; Zhang, Yu-Fei; Kong, Wei-Wei; Hu, San-Jue; Luo, Ceng

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy. PMID:26577374

  5. Ganglion cysts in the paediatric wrist: magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Jennifer; Bartlett, Murray [Royal Children' s Hospital, Medical Imaging Department, Melbourne, VIC (Australia)

    2013-12-15

    The majority of published literature on ganglion cysts in children has been from a surgical perspective, with no dedicated radiologic study yet performed. Our aim was to assess the magnetic resonance (MR) imaging appearance of ganglion cysts in a series of paediatric MR wrist examinations. Ninety-seven consecutive paediatric MR wrist examinations were retrospectively reviewed for the presence of ganglion cysts. Only those studies with wrist ganglia were included. Cysts were assessed for location, size, internal characteristics and secondary effect(s). Forty-one ganglion cysts (2-32 mm in size) were seen in 35/97 (36%) patients (24 female, 11 male), mean age: 13 years 11 months (range: 6 years 3 months-18 years). The majority were palmar (63.4%) with the remainder dorsal. Of the cysts, 43.9% were related to a wrist ligament(s), 36.6% to a joint and 17.1% to the triangular fibrocartilage complex. Of the patients, 91.4% had wrist symptoms: pain (n=29, 82.9%), swelling (n=7, 20%) and/or palpable mass (n=4, 11.4%); 71.4% patients had significant additional wrist abnormalities. Ganglion cysts were frequently found in children referred for wrist MRI. (orig.)

  6. Eagle Syndrome Causing Vascular Compression with Cervical Rotation: Case Report

    International Nuclear Information System (INIS)

    Demirtaş, Hakan; Kayan, Mustafa; Koyuncuoğlu, Hasan Rıfat; Çelik, Ahmet Orhan; Kara, Mustafa; Şengeze, Nihat

    2016-01-01

    Eagle syndrome is a condition caused by an elongated styloid process. Unilateral face, neck and ear pain, stinging pain, foreign body sensation and dysphagia can be observed with this syndrome. Rarely, the elongated styloid process may cause pain by compressing the cervical segment of the internal carotid and the surrounding sympathetic plexus, and that pain spreading along the artery can cause neurological symptoms such as vertigo and syncope. In this case report we presented a very rare eagle syndrome with neurological symptoms that occurred suddenly with cervical rotation. The symptoms disappeared as suddenly as they occurred, with the release of pressure in neutral position. We also discussed CT angiographic findings of this case. Radiological diagnosis of the Eagle syndrome that is manifested with a wide variety of symptoms and causes diagnostic difficulties when it is not considered in the differential diagnosis is easy in patients with specific findings. CT angiography is a fast and effective examination in terms of showing compression in patients with the Eagle syndrome that is considered to be atypical and causes vascular compression

  7. Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat.

    Science.gov (United States)

    Delgado, Silvia Marcela; Casais, Marilina; Sosa, Zulema; Rastrilla, Ana María

    2006-08-01

    Both peripheral innervation and nitric oxide (NO) participate in ovarian steroidogenesis. The purpose of this work was to analyse the ganglionic adrenergic influence on the ovarian release of steroids and NO and the possible steroids/NO relationship. The experiments were carried out in the ex vivo coeliac ganglion-superior ovarian nerve (SON)-ovary system of prepubertal rats. The coeliac ganglion-SON-ovary system was incubated in Krebs Ringer-bicarbonate buffer in presence of adrenergic agents in the ganglionic compartment. The accumulation of progesterone, androstenedione, oestradiol and NO in the ovarian incubation liquid was measured. Norepinephrine in coeliac ganglion inhibited the liberation of progesterone and increased androstenedione, oestradiol and NO in ovary. The addition of alpha and beta adrenergic antagonists also showed different responses in the liberation of the substances mentioned before, which, from a physiological point of view, reveals the presence of adrenergic receptors in coeliac ganglion. In relation to propranolol, it does not revert the effect of noradrenaline on the liberation of progesterone, which leads us to think that it might also have a "per se" effect on the ganglion, responsible for the ovarian response observed for progesterone. Finally, we can conclude that the ganglionic adrenergic action via SON participates on the regulation of the prepubertal ovary in one of two ways: either increasing the NO, a gaseous neurotransmitter with cytostatic characteristics, to favour the immature follicles to remain dormant or increasing the liberation of androstenedione and oestradiol, the steroids necessary for the beginning of the near first estral cycle.

  8. Retinal ganglion cell topography and spatial resolving power in penguins.

    Science.gov (United States)

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  9. Sphenopalatine ganglion: block, radiofrequency ablation and neurostimulation - a systematic review.

    Science.gov (United States)

    Ho, Kwo Wei David; Przkora, Rene; Kumar, Sanjeev

    2017-12-28

    Sphenopalatine ganglion is the largest collection of neurons in the calvarium outside of the brain. Over the past century, it has been a target for interventional treatment of head and facial pain due to its ease of access. Block, radiofrequency ablation, and neurostimulation have all been applied to treat a myriad of painful syndromes. Despite the routine use of these interventions, the literature supporting their use has not been systematically summarized. This systematic review aims to collect and summarize the level of evidence supporting the use of sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Medline, Google Scholar, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were reviewed for studies on sphenopalatine ganglion block, radiofrequency ablation and neurostimulation. Studies included in this review were compiled and analyzed for their treated medical conditions, study design, outcomes and procedural details. Studies were graded using Oxford Center for Evidence-Based Medicine for level of evidence. Based on the level of evidence, grades of recommendations are provided for each intervention and its associated medical conditions. Eighty-three publications were included in this review, of which 60 were studies on sphenopalatine ganglion block, 15 were on radiofrequency ablation, and 8 were on neurostimulation. Of all the studies, 23 have evidence level above case series. Of the 23 studies, 19 were on sphenopalatine ganglion block, 1 study on radiofrequency ablation, and 3 studies on neurostimulation. The rest of the available literature was case reports and case series. The strongest evidence lies in using sphenopalatine ganglion block, radiofrequency ablation and neurostimulation for cluster headache. Sphenopalatine ganglion block also has evidence in treating trigeminal neuralgia, migraines, reducing the needs of analgesics after endoscopic sinus surgery and reducing pain associated with nasal packing

  10. Inflammation in CRPS: role of the sympathetic supply.

    Science.gov (United States)

    Schlereth, Tanja; Drummond, Peter D; Birklein, Frank

    2014-05-01

    Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. University of California San Francisco (UCSF-2): Expression Analysis of Superior Cervical Ganglion from Backcrossed TH-MYCN Transgenic Mice | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at University of California San Francisco (UCSF-2) used genetic analysis of the peripheral sympathetic nervous system to identify potential therapeutic targets in neuroblastoma. Read the abstract Experimental Approaches Read the detailed Experimental Approaches

  12. Effect of sympathetic activity on capsaicin-evoked pain, hyperalgesia, and vasodilatation.

    Science.gov (United States)

    Baron, R; Wasner, G; Borgstedt, R; Hastedt, E; Schulte, H; Binder, A; Kopper, F; Rowbotham, M; Levine, J D; Fields, H L

    1999-03-23

    Painful nerve and tissue injuries can be exacerbated by activity in sympathetic neurons. The mechanisms of sympathetically maintained pain (SMP) are unclear. To determine the effect of cutaneous sympathetic activity on pain induced by primary afferent C-nociceptor sensitization with capsaicin in humans. In healthy volunteers capsaicin was applied topically (n = 12) or injected into the forearm skin (n = 10) to induce spontaneous pain, dynamic and punctate mechanical hyperalgesia, and antidromic (axon reflex) vasodilatation (flare). Intensity of pain and hyperalgesia, axon reflex vasodilatation (laser Doppler), and flare size and area of hyperalgesia (planimetry) were assessed. The local skin temperature at the application and measurement sites was kept constant at 35 degrees C. In each individual the analyses were performed during the presence of high and low sympathetic skin activity induced by whole-body cooling and warming with a thermal suit. By this method sympathetic vasoconstrictor activity is modulated in the widest range that can be achieved physiologically. The degree of vasoconstrictor discharge was monitored by measuring skin blood flow (laser Doppler) and temperature (infrared thermometry) at the index finger. The intensity and spatial distribution of capsaicin-evoked spontaneous pain and dynamic and punctate mechanical hyperalgesia were identical during the presence of high and low sympathetic discharge. Antidromic vasodilatation and flare size were significantly diminished when sympathetic vasoconstrictor neurons were excited. Cutaneous sympathetic vasoconstrictor activity does not influence spontaneous pain and mechanical hyperalgesia after capsaicin-induced C-nociceptor sensitization. When using physiologic stimulation of sympathetic activity, the capsaicin model is not useful for elucidating mechanisms of SMP. In neuropathic pain states with SMP, different mechanisms may be present.

  13. Sphenopalatine ganglion neuromodulation in migraine

    DEFF Research Database (Denmark)

    Khan, Sabrina; Schoenen, Jean; Ashina, Messoud

    2014-01-01

    OBJECTIVE: The objective of this article is to review the prospect of treating migraine with sphenopalatine ganglion (SPG) neurostimulation. BACKGROUND: Fuelled by preliminary studies showing a beneficial effect in cluster headache patients, the potential of treating migraine with neurostimulation...

  14. Radiographically ossified ganglion cyst of finger in a swimmer

    Energy Technology Data Exchange (ETDEWEB)

    Tehranzadeh, J.; Anavim, A. [Department of Radiological Sciences, University of California, Orange (United States); Lin, F. [Department of Pathology, University of California, Irvine Medical Center, Orange (Canada)

    1998-12-01

    Ganglion cysts are fibrous-walled cystic lesions closely associated with joint or tendon sheaths and contain gelatinous mucinous fluid. The radiographic appearance is usually normal. Calcification or ossification in these cysts is extremely unusual. We report on an unusual appearing ganglion cyst of the little finger in a swimmer with ossification resembling myositis ossificans. (orig.) With 3 figs., 8 refs.

  15. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  16. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  17. Petrosal Ganglion: a more complex role than originally imagined.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-12-01

    Full Text Available The petrosal ganglion is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties petrosal ganglion neurons can be ascribed to one of two categories: i neurons with action potentials presenting an inflection (hump on its repolarizing phase and ii neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite cells that prevents the formation of chemical or electrical synapses between neurons. Thus, petrosal ganglion neurons are regarded as mere wires that communicate the periphery (i.e., carotid body and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of petrosal ganglion neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.

  18. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  19. A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.

    Science.gov (United States)

    Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto

    2017-04-13

    We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.

  20. Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function.

    Science.gov (United States)

    Williams, D L

    2017-02-01

    Transection or damage to the mammalian optic nerve generally results in loss of retinal ganglion cells by apoptosis. This cell death is seen less in fish or amphibians where retinal ganglion cell survival and axon regeneration leads to recovery of sight. Reptiles lie somewhere in the middle of this spectrum of nerve regeneration, and different species have been reported to have a significant variation in their retinal ganglion cell regenerative capacity. The ornate dragon lizard Ctenophoris ornatus exhibits a profound capacity for regeneration, whereas the Tenerife wall lizard Gallotia galloti has a more variable response to optic nerve damage. Some individuals regain visual activity such as the pupillomotor responses, whereas in others axons fail to regenerate sufficiently. Even in Ctenophoris, although the retinal ganglion cell axons regenerate adequately enough to synapse in the tectum, they do not make long-term topographic connections allowing recovery of complex visually motivated behaviour. The question then centres on where these intraspecies differences originate. Is it variation in the innate ability of retinal ganglion cells from different species to regenerate with functional validity? Or is it variances between different species in the substrate within which the nerves regenerate, the extracellular environment of the damaged nerve or the supporting cells surrounding the regenerating axons? Investigations of retinal ganglion cell regeneration between different species of lower vertebrates in vivo may shed light on these questions. Or perhaps more interesting are in vitro studies comparing axon regeneration of retinal ganglion cells from various species placed on differing substrates.

  1. MR-guided perineural injection of the ganglion impar: technical considerations and feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Marker, David R.; Carrino, John A.; Fritz, Jan [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Musculoskeletal Radiology, Baltimore, MD (United States); U-Thainual, Paweena [Queen' s University, Department of Mechanical and Materials Engineering, Kingston, ON (Canada); Ungi, Tamas; Fichtinger, Gabor [Queen' s University, School of Computing, Kingston, ON (Canada); Flammang, Aaron J. [Siemens Corporate Research, Center for Applied Medical Imaging, Baltimore, MD (United States); Iordachita, Iulian I. [Johns Hopkins University, Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Baltimore, MD (United States)

    2016-05-15

    Perineural ganglion impar injections are used in the management of pelvic pain syndromes; however, there is no consensus regarding the optimal image guidance. Magnetic resonance imaging (MRI) provides high soft tissue contrast and the potential to directly visualize and target the ganglion. The purpose of this study was to assess the feasibility of MR-guided percutaneous perineural ganglion impar injections. Six MR-guided ganglion impar injections were performed in six human cadavers. Procedures were performed with a clinical 1.5-Tesla MRI system through a far lateral transgluteus approach. Ganglion impar visibility, distance from the sacrococcygeal joint, number of intermittent MRI control steps required to place the needle, target error between the intended and final needle tip location, inadvertent punctures of non-targeted vulnerable structures, injectant distribution, and procedure time were determined. The ganglion impar was seen on MRI in 4/6 (66 %) of cases and located 0.8 mm cephalad to 16.3 mm caudad (average 1.2 mm caudad) to the midpoint of the sacrococcygeal joint. Needle placement required an average of three MRI control steps (range, 2-6). The average target error was 2.2 ± 2.1 mm. In 6/6 cases (100 %), there was appropriate periganglionic distribution and filling of the presacrococcygeal space. No punctures of non-targeted structures occurred. The median procedure time was 20 min (range, 12-29 min). Interventional MRI can visualize and directly target the ganglion impar for accurate needle placement and successful periganglionic injection with the additional benefit of no ionizing radiation exposure to patient and staff. Our results support clinical evaluation. (orig.)

  2. Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130.

    Science.gov (United States)

    Olivas, Antoinette; Gardner, Ryan T; Wang, Lianguo; Ripplinger, Crystal M; Woodward, William R; Habecker, Beth A

    2016-01-13

    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons

  3. Sympathetic Innervation during Development Is Necessary for Pancreatic Islet Architecture and Functional Maturation

    Directory of Open Access Journals (Sweden)

    Philip Borden

    2013-07-01

    Full Text Available Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion, and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in deinnervated animals. Furthermore, in neuron-islet cocultures, sympathetic neurons promoted islet cell migration in a β-adrenergic-dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders.

  4. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  5. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    Science.gov (United States)

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  6. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  7. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  8. Effect of sympathetic nerve block on acute inflammatory pain and hyperalgesia

    DEFF Research Database (Denmark)

    Pedersen, J L; Rung, G W; Kehlet, H

    1997-01-01

    BACKGROUND: Sympathetic nerve blocks relieve pain in certain chronic pain states, but the role of the sympathetic pathways in acute pain is unclear. Thus the authors wanted to determine whether a sympathetic block could reduce acute pain and hyperalgesia after a heat injury in healthy volunteers....... The duration and quality of blocks were evaluated by the sympatogalvanic skin response and skin temperature. Bilateral heat injuries were produced on the medial surfaces of the calves with a 50 x 25 mm thermode (47 degrees C, 7 min) 45 min after the blocks. Pain intensity induced by heat, pain thresholds...... between sympathetic block and placebo for pain or mechanical allodynia during injury, or pain thresholds, pain responses to heat, or areas of secondary hyperalgesia after the injury. The comparisons were done for the period when the block was effective. CONCLUSION: Sympathetic nerve block did not change...

  9. Renal sympathetic denervation in hypertension.

    Science.gov (United States)

    Doumas, Michael; Faselis, Charles; Papademetriou, Vasilios

    2011-11-01

    Despite the abundance of antihypertensive drugs, resistant hypertension remains a major clinical problem. Recent technological advances render interventional management of resistant hypertension one of the hottest topics in the hypertension field. The aim of this review is to present the pathophysiologic background and the mechanisms mediating blood pressure reduction after renal sympathetic denervation, to analyze recent findings with this fascinating approach and to critically suggest future research directions. Catheter-based, ablation-induced renal sympathetic denervation was initially studied in 45 patients with resistant hypertension in a proof-of-concept study. Impressive blood pressure reductions of about 30/15  mmHg were achieved at 6 months, without serious complications. A second, controlled, randomized (but not blinded) study confirmed the results, verifying the efficacy and safety of the procedure. A recent report revealed the 2-year durability of blood pressure reduction. Data published so far indicate that ablation-induced renal denervation is a feasible, effective, and well tolerated interventional approach for the management of resistant hypertension. The groundbreaking studies of renal denervation in drug-resistant hypertension pave the way for further research in other disease conditions in which sympathetic overactivity seems to play a critical role. This initial wave of enthusiasm needs to be followed by rigorous investigation, for the proper identification of the potential and the limitations, indications, and contraindications of this approach.

  10. Troxler Fading, Eye Movements, and Retinal Ganglion Cell Properties

    Directory of Open Access Journals (Sweden)

    Romain Bachy

    2014-12-01

    Full Text Available We present four movies demonstrating the effect of flicker and blur on the magnitude and speed of adaptation for foveal and peripheral vision along the three color axes that isolate retinal ganglion cells projecting to magno, parvo, and konio layers of the LGN. The demonstrations support the eye movement hypothesis for Troxler fading for brightness and color, and demonstrate the effects of flicker and blur on adaptation of each class of retinal ganglion cells.

  11. Tibial nerve intraneural ganglion cyst in a 10-year-old boy

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Judy H. [University of Cincinnati College of Medicine, Department of Radiology, Cincinnati, OH (United States); Emery, Kathleen H.; Johnson, Neil [Cincinnati Children' s Hospital Medical Center, Division of Radiology, Cincinnati, OH (United States); Sorger, Joel [Cincinnati Children' s Hospital Medical Center, Division of Orthopedics, Cincinnati, OH (United States)

    2014-04-15

    Intraneural ganglion cysts are uncommon cystic lesions of peripheral nerves that are typically encountered in adults. In the lower extremity, the peroneal nerve is most frequently affected with involvement of the tibial nerve much less common. This article describes a tibial intraneural ganglion cyst in a 10-year-old boy. Although extremely rare, intraneural ganglion cysts of the tibial nerve should be considered when a nonenhancing cystic structure with intra-articular extension is identified along the course of the nerve. This report also details the unsuccessful attempt at percutaneous treatment with US-guided cyst aspiration and steroid injection, an option recently reported as a viable alternative to open surgical resection. (orig.)

  12. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  13. Sympathetic skin response evoked by laser skin stimulation

    OpenAIRE

    Rossi, P.; Truini, A.; Serrao, M.; Iannetti, G. D.; Parisi, L.; Pozzessere, G.; Cruccu, G.

    2002-01-01

    The objective of this study was to evoke sympathetic skin responses (SSRs) in healthy subjects using laser stimulation and to compare these responses with those induced by conventional electrical stimuli. Twenty healthy subjects were investigated. SSRs were obtained using electrical and laser stimuli delivered to the wrist controlateral to the recording site. The sympathetic sudomotor conduction velocity (SSFCV) was measured in 8 subjects by simultaneously recording the SSR from the hand and ...

  14. Lateral cervical puncture for cervical myelography

    International Nuclear Information System (INIS)

    Seol, Hae Young; Cha, Sang Hoon; Kim, Yoon Hwan; Suh, Won Hyuck

    1985-01-01

    Eleven cervical myelograms were performed by lateral cervical puncture using Metrizamide. So, following results were obtained: 1. Site of lateral cervical puncture; Posterior one third of bony cervical canal at C 1-2 level. 2. Advantages as compared with lumbar puncture for cervical myelograms; 1) Small amount of contrast media 2) Excellent image 3) Less position charge 4) Short time 5) Well visualization of superior margin of obstructive lesion in spinal canal 3. Cessation of lateral cervical puncture, when; 1) Pain during injection of contrast media 2) Localized collection of contrast media

  15. Lateral cervical puncture for cervical myelography

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hae Young; Cha, Sang Hoon; Kim, Yoon Hwan; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    1985-12-15

    Eleven cervical myelograms were performed by lateral cervical puncture using Metrizamide. So, following results were obtained: 1. Site of lateral cervical puncture; Posterior one third of bony cervical canal at C 1-2 level. 2. Advantages as compared with lumbar puncture for cervical myelograms; 1) Small amount of contrast media 2) Excellent image 3) Less position charge 4) Short time 5) Well visualization of superior margin of obstructive lesion in spinal canal 3. Cessation of lateral cervical puncture, when; 1) Pain during injection of contrast media 2) Localized collection of contrast media.

  16. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ganglion of the Flexor Tendon Sheath at the A2 Pulley - Case Report

    Directory of Open Access Journals (Sweden)

    P Gunaseelan

    2015-03-01

    Full Text Available There are few reported cases of flexor tendon sheath ganglion arising from the A2 pulley. We report a case of a flexor tendon sheath ganglion in a 17-year old female who presented with pain, triggering and a swelling at the base of her right ring finger. During the excision biopsy, a ganglion measuring 0.5×0.8×0.4 cm in size was removed from the A2 pulley area.

  18. Alterations of sympathetic nerve fibers in avascular necrosis of femoral head.

    Science.gov (United States)

    Li, Deqiang; Liu, Peilai; Zhang, Yuankai; Li, Ming

    2015-01-01

    Avascular necrosis of the femoral head (ANFH) was mainly due to alterations of bone vascularity. And noradrenaline (NA), as the neurotransmitter of the sympathetic nervous system (SNS), leads to the vasoconstriction by activating its α-Receptor. This study was to explore the nerve fiber density of the femoral head in the rabbit model of ANFH. Twenty New Zealand white rabbits were used in this study. The rabbit model of ANFH was established by the injection of methylprednisolone acetate. The nerve fiber density and distribution in the femoral head was determined using an Olympus BH2 microscope. Significant fewer sympathetic nerve fibers was found in the ANFH intertrochanteric bone samples (P = 0.036) with osteonecrosis. The number of sympathetic nerve fibers was compared between the two groups. And less sympathetic nerve fibers were found in later stage ANFH samples in comparison with those of early stages. ANFH might be preceded by an inflammatory reaction, and an inflammatory response might lead to arthritic changes in tissue samples, which in turn reduces the number of sympathetic nerve fibers.

  19. Sympathetic arousal as a marker of chronicity in childhood stuttering.

    Science.gov (United States)

    Zengin-Bolatkale, Hatun; Conture, Edward G; Walden, Tedra A; Jones, Robin M

    2018-01-01

    This study investigated whether sympathetic activity during a stressful speaking task was an early marker for stuttering chronicity. Participants were 9 children with persisting stuttering, 23 children who recovered, and 17 children who do not stutter. Participants performed a stress-inducing picture-naming task and skin conductance was measured across three time points. Findings indicated that at the initial time point, children with persisting stuttering exhibited higher sympathetic arousal during the stressful speaking task than children whose stuttering recovered. Findings are taken to suggest that sympathetic activity may be an early marker of heightened risk for chronic stuttering.

  20. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    Science.gov (United States)

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  1. MRI diagnosis of soft ganglion cyst in the foot and ankle

    International Nuclear Information System (INIS)

    Zhang Zhaohui; Liang Manqiu; Li Zhuhao

    2011-01-01

    Objective: To explore the clinical and MR imaging features of soft tissue ganglion cyst in the foot and ankle. Methods: Clinical and MR imaging data of 12 patients (male to female ratio 1:5, mean age 47 years) with soft tissue ganglion cysts in the feet and ankles were retrospectively analyzed. Results: The 12 ganglion cysts were located near the first metatarsophalangeal joint (2), in the medial dorsum of foot (4), in the ankle (5) and in the heel (1). Compared with muscle, all lesions showed homogeneous slight T 1 hypointensity and T 2 hyperintensity with thin mural enhancement following the injection of Gd-DTPA. Ten cases were multilocular, and 5 showed mild pericystic edema. Conclusion: Soft tissue ganglion cyst of the foot and ankle are more common in middle aged women. They are frequently located in the ankle and medial dorsum of foot. On MRI they usually appear as multilocular cysts with homogeneous slightly low signal intensity relative to muscle on T 1 WI, high signal intensity on T 2 WI and contrast enhancement of the thin wall. (authors)

  2. Ganglionated plexi stimulation induces pulmonary vein triggers and promotes atrial arrhythmogenecity: In silico modeling study.

    Directory of Open Access Journals (Sweden)

    Minki Hwang

    Full Text Available The role of the autonomic nervous system (ANS on atrial fibrillation (AF is difficult to demonstrate in the intact human left atrium (LA due to technical limitations of the current electrophysiological mapping technique. We examined the effects of the ANS on the initiation and maintenance of AF by employing a realistic in silico human left atrium (LA model integrated with a model of ganglionated plexi (GPs.We incorporated the morphology of the GP and parasympathetic nerves in a three-dimensional (3D realistic LA model. For the model of ionic currents, we used a human atrial model. GPs were stimulated by increasing the IK[ACh], and sympathetic nerve stimulation was conducted through a homogeneous increase in the ICa-L. ANS-induced wave-dynamics changes were evaluated in a model that integrated a patient's LA geometry, and we repeated simulation studies using LA geometries from 10 different patients.The two-dimensional model of pulmonary vein (PV cells exhibited late phase 3 early afterdepolarization-like activity under 0.05μM acetylcholine (ACh stimulation. In the 3D simulation model, PV tachycardia was induced, which degenerated to AF via GP (0.05μM ACh and sympathetic (7.0×ICa-L stimulations. Under sustained AF, local reentries were observed at the LA-PV junction. We also observed that GP stimulation reduced the complex fractionated atrial electrogram (CFAE-cycle length (CL, p<0.01 and the life span of phase singularities (p<0.01. GP stimulation also increased the overlap area of the GP and CFAE areas (CFAE-CL≤120ms, p<0.01. When 3 patterns of virtual ablations were applied to the 3D AF models, circumferential PV isolation including the GP was the most effective in terminating AF.Cardiac ANS stimulations demonstrated triggered activity, automaticity, and local reentries at the LA-PV junction, as well as co-localized GP and CFAE areas in the 3D in silico GP model of the LA.

  3. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries

    International Nuclear Information System (INIS)

    Chen, Mei-Fang; Lai, Su-Yu; Kung, Po-Cheng; Lin, Yo-Cheng; Yang, Hui-I; Chen, Po-Yi; Liu, Ingrid Y.; Lua, Ahai Chang; Lee, Tony Jer-Fu

    2016-01-01

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O 2 demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp, and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic

  4. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Fang [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Tzu Chi Center for Vascular Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Tzu Chi University of Science and Technology, Hualien, Taiwan (China); Lai, Su-Yu; Kung, Po-Cheng; Lin, Yo-Cheng [Department of Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan (China); Yang, Hui-I [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Chen, Po-Yi [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Department of Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan (China); Liu, Ingrid Y. [Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan (China); Lua, Ahai Chang [Department of Laboratory Medicine and Biotechnology & Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lee, Tony Jer-Fu, E-mail: tlee@mail.tcu.edu.tw [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Tzu Chi Center for Vascular Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Department of Life Sciences, College of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL (United States)

    2016-08-15

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O{sub 2} demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp, and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic

  5. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    Science.gov (United States)

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  6. The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis.

    Science.gov (United States)

    Grober, M S; Bass, A H; Burd, G; Marchaterre, M A; Segil, N; Scholz, K; Hodgson, T

    1987-12-08

    Immunocytochemistry and retrograde horseradish peroxidase (HRP) transport were used to study the ganglion of the nervus terminalis in the American eel, Anguilla rostrata. Luteinizing hormone releasing hormone (LHRH) like immunoreactivity was found in large, ganglion-like cells located ventromedially at the junction of the telencephalon and olfactory bulb and in fibers within the retina and olfactory epithelium. HRP transport from the retina demonstrated direct connections with both the ipsi- and contralateral populations of these ganglion-like cells. Given the well-documented role of both olfaction and vision during migratory and reproductive phases of the life cycle of eels, the robust nature of a nervus terminalis system in these fish may present a unique opportunity to study the behavioral correlates of structure-function organization in a discrete population of ganglion-like cells.

  7. X-ray and CT diagnosis of intraosseous ganglion

    International Nuclear Information System (INIS)

    Gong Xiangyang; Zhang Weimin; Yan Shigui

    2002-01-01

    Objective: To investigate the pathogenesis, clinical manifestations, imaging features, and differential diagnosis of intraosseous ganglion. Methods: Clinical and imaging features of 15 cases (5 men, 10 women; mean age 39.7 years) with intraosseous ganglia were retrospectively analyzed. There were 17 lesions, including 6 acetabular, 4 lunate, 3 proximal ends of tibia, 1 major tuberculum of humeral, 1 femoral head, 1 scaphoid, and 1 phalange. Results: ( 1 ) Common radiological features included a unilocular or multilocular cyst surrounded by a full and thin rim of sclerotic: bone in the subchondral epiphysis without any signs of degenerative joint disease. (2) Lesions were displayed as well-defined round radiolucent defect or multi-cystic changes with surrounding bony sclerosis or cystic and expansile change with irregular shape on CT scans. (3) CT showed an intraosseous ganglion communicating with adjacent joint in 1 patient. (4) CT values of the lesions were between 15 - 80 HU. (5) Gas in the cyst could be seen in 3 cases. Conclusion: Combined with patient's age, lesion distribution, clinical manifestations, and imaging features, it is possible to make a correct diagnosis of intraosseous ganglion

  8. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms

    Directory of Open Access Journals (Sweden)

    Jasdeep Kaur

    2017-08-01

    Full Text Available The incidence of chronic kidney disease (CKD is increasing worldwide, with more than 26 million people suffering from CKD in the United States alone. More patients with CKD die of cardiovascular complications than progress to dialysis. Over 80% of CKD patients have hypertension, which is associated with increased risk of cardiovascular morbidity and mortality. Another common, perhaps underappreciated, feature of CKD is an overactive sympathetic nervous system. This elevation in sympathetic nerve activity (SNA not only contributes to hypertension but also plays a detrimental role in the progression of CKD independent of any increase in blood pressure. Indeed, high SNA is associated with poor prognosis and increased cardiovascular morbidity and mortality independent of its effect on blood pressure. This brief review will discuss some of the consequences of sympathetic overactivity and highlight some of the potential pathways contributing to chronically elevated SNA in CKD. Mechanisms leading to chronic sympathoexcitation in CKD are complex, multifactorial and to date, not completely understood. Identification of the mechanisms and/or signals leading to sympathetic overactivity in CKD are crucial for development of effective therapeutic targets to reduce the increased cardiovascular risk in this patient group.

  9. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    Science.gov (United States)

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-03-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO/sub 2/) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO/sub 2/, and oxygen extraction fraction were measured by the positron emission tomography using /sup 15/O/sub 2/, C/sup 15/O/sub 2/ inhalation technique. In addition to reduction of CBF and CMRO/sub 2/ in the basal ganglionic region, CBF and CMRO/sub 2/ decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO/sub 2/ decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO/sub 2/ was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO/sub 2/ were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia.

  11. Sympathetic nerves: How do they affect angiogenesis, particularly during wound healing of soft tissues?

    Science.gov (United States)

    Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao

    2016-01-01

    Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.

  12. The celiac ganglion modulates LH-induced inhibition of androstenedione release in late pregnant rat ovaries

    Directory of Open Access Journals (Sweden)

    Rastrilla Ana M

    2006-12-01

    Full Text Available Abstract Background Although the control of ovarian production of steroid hormones is mainly of endocrine nature, there is increasing evidence that the nervous system also influences ovarian steroidogenic output. The purpose of this work was to study whether the celiac ganglion modulates, via the superior ovarian nerve, the anti-steroidogenic effect of LH in the rat ovary. Using mid- and late-pregnant rats, we set up to study: 1 the influence of the noradrenergic stimulation of the celiac ganglion on the ovarian production of the luteotropic hormone androstenedione; 2 the modulatory effect of noradrenaline at the celiac ganglion on the anti-steroidogenic effect of LH in the ovary; and 3 the involvement of catecholaminergic neurotransmitters released in the ovary upon the combination of noradrenergic stimulation of the celiac ganglion and LH treatment of the ovary. Methods The ex vivo celiac ganglion-superior ovarian nerve-ovary integrated system was used. This model allows studying in vitro how direct neural connections from the celiac ganglion regulate ovarian steroidogenic output. The system was incubated in buffer solution with the ganglion and the ovary located in different compartments and linked by the superior ovarian nerve. Three experiments were designed with the addition of: 1 noradrenaline in the ganglion compartment; 2 LH in the ovarian compartment; and 3 noradrenaline and LH in the ganglion and ovarian compartments, respectively. Rats of 15, 19, 20 and 21 days of pregnancy were used, and, as an end point, the concentration of the luteotropic hormone androstenedione was measured in the ovarian compartment by RIA at various times of incubation. For some of the experimental paradigms the concentration of various catecholamines (dihydroxyphenylalanine, dopamine, noradrenaline and adrenaline was also measured in the ovarian compartment by HPLC. Results The most relevant result concerning the action of noradrenaline in the celiac ganglion

  13. Recurrent postoperative CRPS I in patients with abnormal preoperative sympathetic function.

    Science.gov (United States)

    Ackerman, William E; Ahmad, Mahmood

    2008-02-01

    A complex regional pain syndrome of an extremity that has previously resolved can recur after repeat surgery at the same anatomic site. Complex regional pain syndrome is described as a disease of the autonomic nervous system. The purpose of this study was to evaluate preoperative and postoperative sympathetic function and the recurrence of complex regional pain syndrome type I (CRPS I) in patients after repeat carpal tunnel surgery. Thirty-four patients who developed CRPS I after initial carpal tunnel releases and required repeat open carpal tunnel surgeries were studied. Laser Doppler imaging (LDI) was used to assess preoperative sympathetic function 5-7 days prior to surgery and to assess postoperative sympathetic function 19-22 days after surgery or 20-22 days after resolution of the CRPS I. Sympathetic nervous system function was prospectively examined by testing reflex-evoked vasoconstrictor responses to sympathetic stimuli recorded with LDI of both hands. Patients were assigned to 1 of 2 groups based on LDI responses to sympathetic provocation. Group I (11 of 34) patients had abnormal preoperative LDI studies in the hands that had prior surgeries, whereas group II (23 of 34) patients had normal LDI studies. Each patient in this study had open repeat carpal tunnel surgery. In group I, 8 of 11 patients had recurrent CRPS I, whereas in group II, 3 of 23 patients had recurrent CRPS I. All of the recurrent CRPS I patients were successfully treated with sympathetic blockade, occupational therapy, and pharmacologic modalities. Repeat LDI after recurrent CRPS I resolution was abnormal in 8 of 8 group I patients and in 1 of 3 group II patients. CRPS I can recur after repeat hand surgery. Our study results may, however, identify those individuals who may readily benefit from perioperative therapies. Prognostic I.

  14. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  15. Target recognition and synapse formation by ciliary-ganglion neurons in tissue culture

    NARCIS (Netherlands)

    Stevens, W.F.; Slaaf, D.W.; Hooisma, J.; Magchielse, T.; Meeter, E.

    1978-01-01

    A less complicated source of neurons suitable for this type of studies is the parasympathetic ciliary ganglion. In the pigeon and in the chick this ganglion is known to contain only two classes of neurons, both of which are cholinoceptive and cholinergic and that innervate the muscle fibres of the

  16. An autoradiographic analysis of the development of the chick trigeminal ganglion

    International Nuclear Information System (INIS)

    Amico-Martel, A.D; Noden, D.M.

    1980-01-01

    The avian trigeminal ganglion, which is embryonically derived from the neural crest and epidermal placodes, consists of two topographically segregated classes of immature neurons, large and small, during the second week of incubation, and two neuronal cell types, dark and light, interspersed throughout the mature ganglion. In order to establish the times of terminal mitosis of trigeminal sensory neurons, embryos were treated with [ 3 H]thymidine during the first week of incubation and their ganglia fixed on embryonic day 11. The embryonically large, distal, placodal-derived neurons were generated between days 2 and 5, while the small, proximal, neural crest-derived neurons were formed mostly between days 4 and 7. By comparing the locations of labelled cells in ganglia treated with isotope but fixed on day 18 on incubation with their 11-day counterparts, it was shown that there are no morpho-genetic rearrangements of neurons during the final week of incubation. Thus, no unique relationship exists between the two neuron types in the mature ganglion and the two cell classes in the immature trigeminal. Therefore, both the light and the dark neurons in the mature trigeminal ganglion arise from neural crest as well as placodal primordia. (author)

  17. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  18. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  19. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  20. Ganglion impar block in patients with chronic coccydynia

    Directory of Open Access Journals (Sweden)

    Nitesh Gonnade

    2017-01-01

    Full Text Available Introduction: Coccydynia refers to pain in the terminal segment of the spinecaused by abnormal sitting and standing posture. Coccydynia is usually managed conservatively, however in nonresponsive patients, ganglion impar block is used as a good alternate modality for pain relief. This article studies the effect of ganglion impar block in coccydynia patients who were not relieved by conservative management. Materials and Methods: The study was carried out at the pain clinic in the departments of Physical Medicine and Rehabilitation and Radiology in a tertiary centre in India.It was a prospective hospital-based study, in which 35 patients with coccydynia were considered for fluoroscopy-guided trans-sacro-coccygeal ganglion impar block. The outcome assessment was done using Numerical Rating Scale (NRS and Oswestry Disability Index (ODI scores for a follow-up period of 6 months. Of the 35 patients, 4 were lost to follow-up. Analysis was done usingthe data from the remaining 31 patients. Results: The mean age of the patients suffering from chronic coccydynia was 42.9 ± 8.39 years, and patients' age range was 28–57 years. The mean score of NRS and ODI before the procedure was 7.90 ± 0.16 and 48.97 ± 1.05, respectively. The interquartile range (IQR of NRS score remained almost unchanged during pre and postprocedure, however, IQR of ODI varied during the pre and post procedural events. The NRS and ODI scores immediately after the procedure decreased drastically showing significant pain relief in patients, and the difference of scores till the end of study was statistically significant. Conclusion: This study recommends the trans-sacro-coccygeal “needle inside needle” technique for local anesthetic block of the ganglion impar for pain relief in patients with coccydynia. This should be integrated with rehabilitative measures including ergonomical modification for prolonging pain free period.

  1. Ganglionic cysts related to the scapula: MR findings

    International Nuclear Information System (INIS)

    Jeong, Ae Kyeong; Kim, Sung Moon; Kim, Kyung Sook; Shin, Myung Jin; Chun, Jae Myeung; Ahn, Joong Mo

    1999-01-01

    To evaluate the magnetic resonance (MR) imaging characteristics of ganglionic cysts related to the scapula. We retrospectively reviewed 15 ganglionic cysts diagnosed by MR imaging in 14 patients who subsequently underwent surgical excision (n=8) or needle aspiration (n=1). Five other patients whose lesion-related symptoms were not too severe to manage underwent conservative treatment. We analyzed MR findings with regard to the size, shape and presence of internal septa, the location and signal intensity of the lesion, and associated findings such as change of rotator cuff muscle, labral tear and bone erosion. We also evaluated the presence of tear of rotator cuff tendon, tendinosis, and subacromial enthesophyte. The diameter of ganglionic cysts was 0.5-5.5 (mean, 2.8)cm, and they were round (n=2), ovoid (n=6), or elongated (n=7). Where internal septa were present (n=13), cysts were lobulated. Lesions were located in both scapular and spinoglenoid notches (n=9), only in the scapular notch (n=2), only in the spinoglenoid notch (n=2) or within the bone (n=2). In eleven cases they were very close to the superoposterior aspect of the glenoid labrum (n=11). On T1-weighted images, all lesions were seen to be iso- or hypointense to muscle, while on T2-weighted images, they were hyperintense, resembling joint fluid (n=14), except in one patient with hemorrhage. Associated findings were edema of the infraspinatus muscle (n=4), pressure erosion of the scapular neck (n=1), and labral tear (n=1). A torn supraspinatus tendon (n=2), supraspinatus tendinosis (n=3), and subacromial enthesophyte (n=2) were also present. MR imaging was helpful in diagnosing ganglionic cysts and detecting associated lesions

  2. RESISTIN, AN ADIPOKINE WITH NON-GENERALISED ACTIONS ON SYMPATHETIC NERVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Emilio eBadoer

    2015-11-01

    Full Text Available The World Health Organisation has called obesity a global epidemic. There is a strong association between body weight gain and blood pressure. A major determinant of blood pressure is the level of activity in sympathetic nerves innervating cardiovascular organs. A characteristic of obesity, in both humans and in animal models, is an increase in sympathetic nerve activity to the skeletal muscle vasculature and to the kidneys. Obesity is now recognised as a chronic, low level inflammatory condition and pro-inflammatory cytokines are elevated including those produced by adipose tissue. The most well known adipokine released from fat tissue is leptin. The adipokine, resistin,, is also released from adipose tissue. Resistin can act in the central nervous system to influence the sympathetic nerve activity. Here, we review the effects of resistin on sympathetic nerve activity and compare them with leptin. We build an argument that resistin and leptin may have complex interactions. Firstly, they may augment each other as both are excitatory on sympathetic nerves innervating cardiovascular organs; In contrast, they could antagonize each other’s actions on brown adipose tissue, a key metabolic organ. These interactions may be important in conditions in which leptin and resistin are elevated, such as in obesity.

  3. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    International Nuclear Information System (INIS)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-01-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO 2 ) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO 2 , and oxygen extraction fraction were measured by the positron emission tomography using 15 O 2 , C 15 O 2 inhalation technique. In addition to reduction of CBF and CMRO 2 in the basal ganglionic region, CBF and CMRO 2 decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO 2 decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO 2 was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO 2 were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia. These results suggest that measurements of cerebral blood flow and metabolism were necessary to study the responsible lesion for aphasia. (author)

  4. Veratridine increases the survival of retinal ganglion cells in vitro

    Directory of Open Access Journals (Sweden)

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  5. Expression of EFR3A in the mouse cochlea during degeneration of spiral ganglion following hair cell loss.

    Directory of Open Access Journals (Sweden)

    Chen Nie

    Full Text Available Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.

  6. Effect of experimental hyperinsulinemia on sympathetic nervous system activity in the rat

    International Nuclear Information System (INIS)

    Young, J.B.

    1988-01-01

    Since insulin acutely stimulates the sympathetic nervous system, a role for sympathetic overactivity has been hypothesized to underlie the association between chronic hyperinsulinemia and hypertension. To assess the effect of sustained hyperinsulinemia on sympathetic function, [ 3 H]norepinephrine (NE) turnover was measured in rats injected with insulin for 14d. NE turnover in insulin-treated animals given free access to lab chow and a 10% sucrose solution was compared with that obtained in rats fed chow alone or chow plus sucrose. Sucrose ingestion increased NE turnover in heart, brown adipose tissue, and liver, but exogenous insulin did not augment turnover beyond that seen in animals given sucrose alone. This study, therefore, provides no evidence that chronic hyperinsulinemia, sufficient to induce peripheral insulin resistance, stimulates sympathetic activity more than that produced by chronic sucrose ingestion

  7. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  8. Altered neurotransmitter expression profile in the ganglionic bowel in Hirschsprung's disease.

    Science.gov (United States)

    Coyle, David; O'Donnell, Anne Marie; Gillick, John; Puri, Prem

    2016-05-01

    Despite having optimal pull-through (PT) surgery for Hirschsprung's disease (HSCR), many patients experience persistent bowel symptoms with no mechanical/histopathological cause. Murine models of HSCR suggest that expression of key neurotransmitters is unbalanced proximal to the aganglionic colonic segment. We aimed to investigate expression of key enteric neurotransmitters in the colon of children with HSCR. Full-length PT specimens were collected fresh from children with HSCR (n=10). Control specimens were collected at colostomy closure from children with anorectal malformation (n=8). The distributions of neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and substance P (SP) were evaluated using immunofluorescence and confocal microscopy. Neurotransmitter quantification was with Western blot analysis. ChAT expression was high in aganglionic bowel and transition zone but reduced in ganglionic bowel in HSCR relative to controls. Conversely, nNOS expression was markedly reduced in aganglionic bowel but high in ganglionic bowel in HSCR relative to controls. VIP expression was similar in ganglionic HSCR and control colon. SP expression was similar in all tissue types. Imbalance of key excitatory and inhibitory neurotransmitters in the ganglionic bowel in HSCR may explain the basis of bowel dysmotility after an optimal pull-through operation in some patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. CT-guided injection for ganglion impar blockade: a radiological approach to the management of coccydynia

    International Nuclear Information System (INIS)

    Datir, A.; Connell, D.

    2010-01-01

    Aim: To evaluate the role of computed tomography (CT) in needle placement for ganglion impar blocks, and to determine the efficacy of CT-guided ganglion impar blocks in the management of coccydynia. Materials and methods: The results of ganglion impar blockade in eight patients with coccydynia secondary to trauma or unknown cause were reviewed. The diagnosis of coccydynia was based on clinical history, location of pain, and response to previous diagnostic and therapeutic procedures. The eight patients were treated with CT-guided ganglion impar blocks to manage their coccyx pain after conservative procedures, including oral medication and cushions, failed to provide relief. All patients were subjected to ganglion impar blocks under a thin-section CT-guided technique for needle placement, using a mixture of bupivacaine and triamcinolone. The patients were followed-up for a period of 6-months. Results: Eight patients were treated in this study with a total of 11 injections. A technical success of 100% was achieved in all cases with accurate needle placement without any complications and all the patients tolerated the procedure well. Out of eight, three patients (37%) had complete relief of pain on the follow-up intervals up to 6 months. Three out of eight patients (37%), had partial relief of symptoms and a second repeat injection was given at the 3 month interval of the follow-up period. At the end of the 6-month follow-up period, six out of eight patients (75%) experienced symptomatic relief (four complete relief and two partial relief) without any additional resort to conventional pain management. Twenty-five percent (two out of eight) did not have any symptomatic improvement. The mean visual analogue score (VAS) pre-procedure was 8 (range 6-10) and had decreased to 2 (range 0-5) in six out of eight patients. Conclusion: CT can be used as an imaging method to identify the ganglion and guide the needle in ganglion impar blockade. The advantages of CT

  11. CT-guided injection for ganglion impar blockade: a radiological approach to the management of coccydynia

    Energy Technology Data Exchange (ETDEWEB)

    Datir, A., E-mail: apdatir@gmail.co [Jackson Memorial Hospital, Miami, FL (United States); Connell, D. [Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex (United Kingdom)

    2010-01-15

    Aim: To evaluate the role of computed tomography (CT) in needle placement for ganglion impar blocks, and to determine the efficacy of CT-guided ganglion impar blocks in the management of coccydynia. Materials and methods: The results of ganglion impar blockade in eight patients with coccydynia secondary to trauma or unknown cause were reviewed. The diagnosis of coccydynia was based on clinical history, location of pain, and response to previous diagnostic and therapeutic procedures. The eight patients were treated with CT-guided ganglion impar blocks to manage their coccyx pain after conservative procedures, including oral medication and cushions, failed to provide relief. All patients were subjected to ganglion impar blocks under a thin-section CT-guided technique for needle placement, using a mixture of bupivacaine and triamcinolone. The patients were followed-up for a period of 6-months. Results: Eight patients were treated in this study with a total of 11 injections. A technical success of 100% was achieved in all cases with accurate needle placement without any complications and all the patients tolerated the procedure well. Out of eight, three patients (37%) had complete relief of pain on the follow-up intervals up to 6 months. Three out of eight patients (37%), had partial relief of symptoms and a second repeat injection was given at the 3 month interval of the follow-up period. At the end of the 6-month follow-up period, six out of eight patients (75%) experienced symptomatic relief (four complete relief and two partial relief) without any additional resort to conventional pain management. Twenty-five percent (two out of eight) did not have any symptomatic improvement. The mean visual analogue score (VAS) pre-procedure was 8 (range 6-10) and had decreased to 2 (range 0-5) in six out of eight patients. Conclusion: CT can be used as an imaging method to identify the ganglion and guide the needle in ganglion impar blockade. The advantages of CT

  12. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?

    Science.gov (United States)

    Lansdown, Andrew; Rees, D Aled

    2012-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice. © 2012 Blackwell Publishing Ltd.

  13. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies

    DEFF Research Database (Denmark)

    La Morgia, C; Ross-Cisneros, F.N.; Sadun, A.A.

    2010-01-01

    Mitochondrial optic neuropathies, that is, Leber hereditary optic neuropathy and dominant optic atrophy, selectively affect retinal ganglion cells, causing visual loss with relatively preserved pupillary light reflex. The mammalian eye contains a light detection system based on a subset of retinal...... ganglion cells containing the photopigment melanopsin. These cells give origin to the retinohypothalamic tract and support the non-image-forming visual functions of the eye, which include the photoentrainment of circadian rhythms, light-induced suppression of melatonin secretion and pupillary light reflex...... subjects as in controls, indicating that the retinohypothalamic tract is sufficiently preserved to drive light information detected by melanopsin retinal ganglion cells. We then investigated the histology of post-mortem eyes from two patients with Leber hereditary optic neuropathy and one case...

  14. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons

    OpenAIRE

    Hasan, Wohaib; Smith, Peter G

    2013-01-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is a...

  15. Sympathetic Responses to Central Hypovolemia: New Insights from Microneurographic Recordings

    Science.gov (United States)

    2012-04-26

    Surgical Research, Fort Sam Houston, TX, USA 2 Department of Health and Kinesiology , The University of Texas at San Antonio, San Antonio, TX, USA Edited...suggested that this phenomenon may represent sympathetic baroreflex deafferentation (Cooke et al., 2009), as the fused bursts observed during intense ...Convertino, V. A. (2009). Muscle sympathetic nerve activity during intense lower body negative pressure to presyn- cope in humans. J. Physiol. (Lond

  16. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  17. SYMPATHETIC FILAMENT ERUPTIONS FROM A BIPOLAR HELMET STREAMER IN THE SUN

    International Nuclear Information System (INIS)

    Yang Jiayan; Jiang Yunchun; Zheng Ruisheng; Bi Yi; Hong Junchao; Yang Bo

    2012-01-01

    On 2005 August 5, two solar filaments erupted successively from different confined arcades underlying a common overarching multiple-arcade bipolar helmet streamer. We present detailed observations of these two events and identify them as sympathetic filament eruptions. The first (F1) is a small active-region filament located near the outskirts of the streamer arcade. It underwent a nonradial eruption, initially moving in the interior of the streamer arcade and resulting in an over-and-out coronal mass ejection. The second filament (F2), a larger quiescent one far away from F1, was clearly disturbed during the F1 eruption. It then underwent a very slow eruption and finally disappeared completely and permanently. Because two belt-shaped diffuse dimmings formed along the footprints of the streamer arcade in the first eruption and persisted throughout the complete disappearance of F2, the eruption series are interpreted as sympathetic: the simple expansion of the common streamer arcade forced by the F1 eruption weakened magnetic flux overlying F2 and thus led to its slow eruption, with the dimming formation indicating their physical connection. Our observations suggest that multiple-arcade bipolar helmet-streamer configurations are appropriate to producing sympathetic eruptions. Combined with the recent observations of unipolar-streamer sympathetic events, it appears that a multiple-arcade unipolar or bipolar helmet streamer can serve as a common magnetic configuration for sympathetic eruptions.

  18. Cardiac effects produced by long-term stimulation of thoracic autonomic ganglia or nerves: implications for interneuronal interactions within the thoracic autonomic nervous system.

    Science.gov (United States)

    Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A

    1988-03-01

    Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long

  19. Cervical Cap

    Science.gov (United States)

    ... Videos for Educators Search English Español The Cervical Cap KidsHealth / For Teens / The Cervical Cap What's in ... Call the Doctor? Print What Is a Cervical Cap? A cervical cap is a small cup made ...

  20. Melanopsin retinal ganglion cell loss in Alzheimer's disease

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Koronyo, Yosef

    2015-01-01

    OBJECTIVE: Melanopsin retinal ganglion cells (mRGCs) are photoreceptors driving circadian photoentrainment, and circadian dysfunction characterizes Alzheimer's disease (AD). We investigated mRGCs in AD, hypothesizing their contribution to circadian dysfunction. METHODS: We assessed retinal nerve...

  1. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  2. Relationship between macular ganglion cell complex thickness and macular outer retinal thickness: a spectral-domain optical coherence tomography study.

    Science.gov (United States)

    Kita, Yoshiyuki; Kita, Ritsuko; Takeyama, Asuka; Anraku, Ayako; Tomita, Goji; Goldberg, Ivan

    2013-01-01

    To assess the relationship between macular ganglion cell complex and macular outer retinal thicknesses. Case-control study. Forty-two normal eyes and 91 eyes with primary open-angle glaucoma were studied. Spectral-domain optical coherence tomography (RTVue-100) was used to measure the macular ganglion cell complex and macular outer retinal thickness. Ganglion cell complex to outer retinal thickness ratio was also calculated. The relationships between the ganglion cell complex and outer retinal thicknesses and between the ganglion cell complex to outer retinal thickness ratio and outer retinal thickness were evaluated. There was a positive correlation between ganglion cell complex and outer retinal thicknesses in the normal group and the glaucoma group (r = 0.53, P variation in the outer retinal thickness. Therefore, when determining the ganglion cell complex, it seems necessary to consider the outer retinal thickness as well. We propose the ratio as a suitable parameter to account for individual variations in outer retinal thickness. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  3. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  4. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    Science.gov (United States)

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  5. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.

    Science.gov (United States)

    Gonzalez-Bellido, P T; Wardill, T J; Buresch, K C; Ulmer, K M; Hanlon, R T

    2014-03-15

    Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.

  6. Pain increases during sympathetic arousal in patients with complex regional pain syndrome.

    Science.gov (United States)

    Drummond, P D; Finch, P M; Skipworth, S; Blockey, P

    2001-10-09

    To investigate the effect of sympathetic arousal on pain and vasomotor responses in healthy control subjects and patients with complex regional pain syndrome (CRPS), and to determine whether pain increases in patients with particular symptoms. In experiments 1 and 2, capsaicin was applied to the forearm of 24 healthy subjects to induce thermal hyperalgesia. Vascular responses were monitored and subjects rated thermal hyperalgesia before and after being startled (experiment 1), and before, during, and after mental arithmetic, breath holding, forehead cooling, the Valsalva maneuver, and a cold pressor test in experiment 2. In a third experiment, sensitivity to heat, cold, and mechanical stimulation was investigated in 61 patients with CRPS. Pain ratings and vascular and electrodermal responses were recorded after patients were startled and during forehead cooling. In experiment 1, thermal hyperalgesia decreased in healthy control subjects after they were startled, and digital blood vessels constricted symmetrically. In experiment 2, thermal hyperalgesia decreased during and after other forms of sympathetic arousal. However, in experiment 3, ratings of clinical pain increased during forehead cooling or after being startled in over 70% of patients with CRPS. Pain increased most consistently during forehead cooling in patients with cold allodynia or punctate allodynia. Digital blood vessels constricted more intensely on the symptomatic than the nonsymptomatic side in patients with CRPS during sympathetic arousal. Normal inhibitory influences on pain during sympathetic arousal are compromised in the majority of patients with CRPS. The augmented vasoconstrictor response in the symptomatic limb during sympathetic arousal is consistent with adrenergic supersensitivity. An adrenergic sensitivity in nociceptive afferents might contribute to pain and hyperalgesia during sympathetic arousal in certain patients with CRPS.

  7. The Influence of Prolonged Acetylsalicylic Acid Supplementation-Induced Gastritis on the Neurochemistry of the Sympathetic Neurons Supplying Prepyloric Region of the Porcine Stomach.

    Directory of Open Access Journals (Sweden)

    Katarzyna Palus

    Full Text Available This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group animals were injected with neuronal retrograde tracer Fast Blue (FB. Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH, dopamine β-hydroxylase (DβH, neuropeptide Y (NPY, galanin (GAL, neuronal nitric oxide synthase (nNOS, leu 5-enkephalin (LENK, cocaine- and amphetamine- regulated transcript peptide (CART, calcitonin gene-related peptide (CGRP, substance P (SP and vasoactive intestinal peptide (VIP. The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG. In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%, DβH (97.10 ± 0.97%, NPY (46.88 ± 2.53% and GAL (8.40 ± 0.53%. In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively. Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02% and GAL (26.45 ± 2.75% as well as the novo-synthesis of nNOS (6.13 ± 1.11% and LENK (4.77 ± 0.42% in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA

  8. Factitious lymphoedema as a psychiatric condition mimicking reflex sympathetic dystrophy: a case report

    Directory of Open Access Journals (Sweden)

    Nwaejike Nnamdi

    2008-06-01

    Full Text Available Abstract Introduction Reflex sympathetic dystrophy can result in severe disability with only one in five patients able to fully resume prior activities. Therefore, it is important to diagnose this condition early and begin appropriate treatment. Factitious lymphoedema can mimic reflex sympathetic dystrophy and is caused by self-inflicted tourniquets, blows to the arm or repeated skin irritation. Patients with factitious lymphoedema have an underlying psychiatric disorder but usually present to emergency or orthopaedics departments. Factitious lymphoedema can then be misdiagnosed as reflex sympathetic dystrophy. The treatment for factitious lymphoedema is dealing with the underlying psychiatric condition. Case presentation We share our experience of treating a 33-year-old man, who presented with factitious lymphoedema, initially diagnosed as reflex sympathetic dystrophy. Conclusion Awareness of this very similar differential diagnosis allows early appropriate treatment to be administered.

  9. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons

    Directory of Open Access Journals (Sweden)

    Vitor Fortuna

    2015-06-01

    Full Text Available The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs develop in close proximity to the dorsal aorta (DA and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA differentiation of SN precursors temporally coincides with vascular mural cell (VMC recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  10. Paroxysmal sympathetic hyperactivity: An entity to keep in mind.

    Science.gov (United States)

    Godoy, D A; Panhke, P; Guerrero Suarez, P D; Murillo-Cabezas, F

    2017-12-15

    Paroxysmal sympathetic hyperactivity (PSH) is a potentially life-threatening neurological emergency secondary to multiple acute acquired brain injuries. It is clinically characterized by the cyclic and simultaneous appearance of signs and symptoms secondary to exacerbated sympathetic discharge. The diagnosis is based on the clinical findings, and high alert rates are required. No widely available and validated homogeneous diagnostic criteria have been established to date. There have been recent consensus attempts to shed light on this obscure phenomenon. Its physiopathology is complex and has not been fully clarified. However, the excitation-inhibition model is the theory that best explains the different aspects of this condition, including the response to treatment with the available drugs. The key therapeutic references are the early recognition of the disorder, avoiding secondary injuries and the triggering of paroxysms. Once sympathetic crises occur, they must peremptorily aborted and prevented. of the later the syndrome is recognized, the poorer the patient outcome. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  11. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia.

    Science.gov (United States)

    Prabhakar, Nanduri R; Kumar, Ganesh K

    2010-11-30

    Sleep disordered breathing with recurrent apneas is one of the most frequently encountered breathing disorder in adult humans and preterm infants. Recurrent apnea patients exhibit several co-morbidities including hypertension and persistent sympathetic activation. Intermittent hypoxia (IH) resulting from apneas appears to be the primary stimulus for evoking autonomic changes. The purpose of this article is to briefly review the effects of IH on chemo- and baro-reflexes and circulating vasoactive hormones and their contribution to sympathetic activation and blood pressures. Sleep apnea patients and IH-treated rodents exhibit exaggerated arterial chemo-reflex. Studies on rodent models demonstrated that IH leads to hyperactive carotid body response to hypoxia. On the other hand, baro-reflex function is attenuated in patients with sleep apnea and in IH-treated rodents. Circulating vasoactive hormone levels are elevated in sleep apnea patients and in rodent models of IH. Thus, persistent sympathetic activation and hypertension associated with sleep apneas seems to be due to a combination of altered chemo- and baro-reflexes resulting in sympathetic activation and action of elevated circulating levels of vasoactive hormones on vasculature. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Literary ethnographic writing as sympathetic experiment

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Line

    perhaps only implicitly) of research. But we have no direct access to the subjective world of others and can only inhabit their point of view by way of imagination. Writing literary ethnographic text is one way, I will argue, of experimenting with such sympathetic imagination. By putting together observed...

  13. Ganglion cysts of the cruciate ligaments: a series of 31 cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Mao Yongtao

    2012-08-01

    Full Text Available Abstract Background A case series for ganglion cyst of the cruciate ligament with MRI findings, clinical presentation, and management options along with review of literature is presented. Methods Of 8663 consecutive patients referred for knee MR imaging, 31 were diagnosed with ganglion cysts of the cruciate ligaments, including 21 men and 10 women of ages 12 to 73 years (mean: 37. A review of charts revealed that knee pain was the chief complaint in all cases. Arthroscopic debridement of ganglion cyst was performed in 11 patients. Results MRI proved to be a valuable tool in diagnosing and deciding management of these cases. All 11 patients who underwent arthroscopic treatment were symptom-free on a minimum follow-of one year. Conclusion Cyst formation associated with cruciate ligament of the knee is an infrequent cause of knee pain. MR imaging was important in confirming the cyst lesions and provided useful information prior to arthroscopy. Arthroscopic debridement of ganglion cyst produced excellent outcome without recurrence. This study describes the pertinent MRI and intraoperative findings of ganglion cyst.

  14. Renal sympathetic denervation for resistant hypertension.

    Science.gov (United States)

    Froeschl, Michael; Hadziomerovic, Adnan; Ruzicka, Marcel

    2013-05-01

    Resistant hypertension is an increasingly prevalent health problem associated with important adverse cardiovascular outcomes. The pathophysiology that underlies this condition involves increased function of both the sympathetic nervous system and the renin-angiotensin II-aldosterone system. A crucial link between these 2 systems is the web of sympathetic fibres that course within the adventitia of the renal arteries. These nerves can be targeted by applying radiofrequency energy from the lumen of the renal arteries to renal artery walls (percutaneous renal sympathetic denervation [RSD]), an approach that has attracted great interest. This paper critically reviews the evidence supporting the use of RSD. Small studies suggest that RSD can produce dramatic blood pressure reductions: In the randomized Symplicity HTN-2 trial of 106 patients, the mean fall in blood pressure at 6 months in patients who received the treatment was 32/12 mm Hg. However, there are limitations to the evidence for RSD in the treatment of resistant hypertension. These include the small number of patients studied; the lack of any placebo-controlled evidence; the fact that blood pressure outcomes were based on office assessments, as opposed to 24-hour ambulatory monitoring; the lack of longer-term efficacy data; and the lack of long-term safety data. Some of these concerns are being addressed in the ongoing Renal Denervation in Patients With Uncontrolled Hypertension (Symplicity HTN-3) trial. The first percutaneous RSD system was approved by Health Canada in the spring of 2012. But until more and better-quality data are available, this procedure should generally be reserved for those patients whose resistant hypertension is truly uncontrolled. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  15. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy

    NARCIS (Netherlands)

    Lefrandt, JD; Hoeven, JH; Roon, AM; Smit, AJ; Hoogenberg, K

    Aims/hypothesis. A loss of sympathetic function could lead to changes in capillary fluid filtration in diabetic patients. We investigated whether a decreased sympathetically mediated vasomotion in the skin in diabetic patients with peripheral neuropathy is associated with an abnormal capillary

  16. A Case of Horner's Syndrome following Ultrasound-Guided Infraclavicular Brachial Plexus Block.

    Science.gov (United States)

    Walid, Trabelsi; Mondher, Belhaj Amor; Mohamed Anis, Lebbi; Mustapha, Ferjani

    2012-01-01

    Horner's syndrome results from paralysis of the ipsilateral sympathetic cervical chain (stellate ganglion) caused by surgery, drugs (mainly high concentrations of local anesthetics), local compression (hematoma or tumor), or inadequate perioperative positioning of the patient. It occurs in 100% of the patients with an interscalene block of the brachial plexus and can also occur in patients with other types of supraclavicular blocks.In this case report, we presented a case of Horner's syndrome after performing an ultrasound-guided infraclavicular brachial plexus block with 15 mL of bupivacaine 0.5%. It appeared 40 minutes after the block with specific triad (ptosis, miosis, and exophtalmia) and quickly disappears within 2 hours and a half without any sequelae. Horner's syndrome may be described as an unpleasant side effect because it has no clinical consequences in itself. For this reason anesthesiologists should be aware of this syndrome, and if it occurs patients should be reassured and monitored closely.

  17. Pet measurements of presynaptic sympathetic nerve terminals in the heart

    International Nuclear Information System (INIS)

    Schwaiger, M.; Hutchins, G.D.; Wieland, D.M.

    1991-01-01

    [ 18 F]Metaraminol (FMR) and [ 11 C]hydroxyephedrine (HED) are catecholamine analogues that have been developed at the University of Michigan for the noninvasive characterization of the sympathetic nervous system of the heart using positron emission tomography (PET). Pharmacological studies employing neurotoxins and uptake inhibitors have demonstrated that both FMR and HED specifically trace the uptake and storage of catecholamines in sympathetic nerve terminals with little nonspecific tracer accumulation. These compounds exhibit excellent qualitative imaging characteristics with heart-to-blood ratios exceeding 6:1 as early as 15 min after intravenous injection in both animals (HED and FMR) and humans (HED). Tracer kinetic modeling techniques have been employed for the quantitative assessment of neuronal catecholamine uptake and storage. Indices of neuronal function, such as the volume of tracer distribution derived from the kinetic models, have been employed in preliminary human studies. Comparison of the tissue distribution volume of HED between normal (control subjects) and denervated (recent transplant patients) cardiac tissue demonstrates a dynamic range of approximately 5:1. This distribution volume is reduced by 60% from normal in patients with dilated cardiomyopathy, indicating dysfunction of the sympathetic system. These results show that HED used in combination with PET provides a sophisticated quantitative approach for studying the sympathetic nervous system of the normal and diseased human heart

  18. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  19. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C.; Irigoyen, M.C.; De Angelis, K.

    2015-01-01

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  20. Temperament affects sympathetic nervous function in a normal population.

    Science.gov (United States)

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  1. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  2. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. METHODS: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann-Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. RESULTS: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. CONCLUSIONS: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  3. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Uehara, Akihiko; Kurata, Chinori; Sugi, Toshihiko; Mikami, Tadashi; Shouda, Sakae

    1999-01-01

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123 I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  4. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    International Nuclear Information System (INIS)

    Raffel, David M.; Wieland, Donald M.

    2001-01-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation

  5. Pseudotumoral ganglion cyst of a finger with unexpected remote origin: multimodality imaging

    International Nuclear Information System (INIS)

    Bouilleau, Loic; Malghem, Jacques; Omoumi, Patrick; Simoni, Paolo; Vande Berg, Bruno C.; Lecouvet, Frederic E.; Barbier, Olivier

    2010-01-01

    The case of a ganglion cyst in the pulp of a fifth finger in an elderly woman initially mimicking a soft tissue tumor is described. Most typical sites of ganglion cysts are well documented at the wrist and in the vicinity of inter-phalangeal and metacarpo-phalangeal joints. In this case, ultrasonography (US) and magnetic resonance imaging (MRI) demonstrated a cystic lesion within the pulp of the fifth finger and indicated carpal osteoarthritis as the distant - and unexpected - origin of the lesion. The suggested diagnosis of ganglion cyst was confirmed by computed tomography arthrography (CT arthrography) of the wrist, which showed opacification of the cyst on delayed acquisitions after intra-articular injection into the mid-carpal joint, through the fifth flexor digitorum tendon sheath. The communications between the degenerative carpal joint, the radio-ulnar bursa, the fifth flexor digitorum tendon sheath and the pedicle of the cyst were well demonstrated. (orig.)

  6. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2007-03-01

    Full Text Available Abstract Background Several neurodegenerative diseases are influenced by complex genetics that affect an individual's susceptibility, disease severity, and rate of progression. One such disease is glaucoma, a chronic neurodegenerative condition of the eye that targets and stimulates apoptosis of CNS neurons called retinal ganglion cells. Since ganglion cell death is intrinsic, it is reasonable that the genes that control this process may contribute to the complex genetics that affect ganglion cell susceptibility to disease. To determine if genetic background influences susceptibility to optic nerve damage, leading to ganglion cell death, we performed optic nerve crush on 15 different inbred lines of mice and measured ganglion cell loss. Resistant and susceptible strains were used in a reciprocal breeding strategy to examine the inheritance pattern of the resistance phenotype. Because earlier studies had implicated Bax as a susceptibility allele for ganglion cell death in the chronic neurodegenerative disease glaucoma, we conducted allelic segregation analysis and mRNA quantification to assess this gene as a candidate for the cell death phenotype. Results Inbred lines showed varying levels of susceptibility to optic nerve crush. DBA/2J mice were most resistant and BALB/cByJ mice were most susceptible. F1 mice from these lines inherited the DBA/2J phenotype, while N2 backcross mice exhibited the BALB/cByJ phenotype. F2 mice exhibited an intermediate phenotype. A Wright Formula calculation suggested as few as 2 dominant loci were linked to the resistance phenotype, which was corroborated by a Punnett Square analysis of the distribution of the mean phenotype in each cross. The levels of latent Bax mRNA were the same in both lines, and Bax alleles did not segregate with phenotype in N2 and F2 mice. Conclusion Inbred mice show different levels of resistance to optic nerve crush. The resistance phenotype is heritable in a dominant fashion involving

  7. Cervical spinal canal narrowing and cervical neurologi-cal injuries

    Directory of Open Access Journals (Sweden)

    ZHANG Ling

    2012-04-01

    Full Text Available 【Abstract】Cervical spinal canal narrowing can lead to injury of the spinal cord and neurological symptoms in-cluding neck pain, headache, weakness and parasthesisas. According to previous and recent clinical researches, we investigated the geometric parameters of normal cervical spinal canal including the sagittal and transverse diameters as well as Torg ratio. The mean sagittal diameter of cervical spinal canal at C 1 to C 7 ranges from 15.33 mm to 20.46 mm, the mean transverse diameter at the same levels ranges from 24.45 mm to 27.00 mm and the mean value of Torg ratio is 0.96. With respect to narrow cervical spinal canal, the following charaterstics are found: firstly, extension of the cervical spine results in statistically significant stenosis as compared with the flexed or neutral positions; secondly, females sustain cervical spinal canal narrowing more easily than males; finally, the consistent narrowest cervical canal level is at C 4 for all ethnicity, but there is a slight variation in the sagittal diameter of cervical spinal stenosis (≤14 mm in Whites, ≤ 12 mm in Japanese, ≤13.7 mm in Chinese. Narrow sagittal cervical canal diameter brings about an increased risk of neurological injuries in traumatic, degenerative and inflam-matory conditions and is related with extension of cervical spine, gender, as well as ethnicity. It is hoped that this re-view will be helpful in diagnosing spinal cord and neuro-logical injuries with the geometric parameters of cervical spine in the future. Key words: Spinal cord injuries; Spinal stenosis; Trauma, nervous system

  8. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and γ-amino butyric acid in hypertensive rats.

    Science.gov (United States)

    Zhou, Hong; Sun, Hai-jian; Chang, Jin-rui; Ding, Lei; Gao, Qing; Tang, Chao-shu; Zhu, Guo-qing; Zhou, Ye-bo

    2014-10-01

    Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) and involves in the regulation of cardiovascular function in both peripheral tissues and central nervous system (CNS). Paraventricular nucleus (PVN) of hypothalamus is an important site in the control of cardiac sympathetic afferent reflex (CSAR) which participates in sympathetic over-excitation of hypertension. The aim of this study is to investigate whether IMD in the PVN is involved in the inhibition of CSAR and its related mechanism in hypertension. Rats were subjected to two-kidney one-clip (2K1C) surgery to induce renovascular hypertension or sham-operation (Sham). Acute experiments were carried out four weeks later under anesthesia. The CSAR was evaluated with the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin. The RSNA and MAP were recorded in sinoaortic-denervated, cervical-vagotomized and anesthetized rats. Bilateral PVN microinjection of IMD (25 pmol) caused greater decrease in the CSAR in 2K1C rats than in Sham rats, which was prevented by pretreatment with adrenomedullin (AM) receptor antagonist AM22-52, non-selective nitric oxide (NO) synthase (NOS) inhibitor L-NAME or γ-amino butyric acid (GABA)B receptor blocker CGP-35348. PVN pretreatment with CGRP receptor antagonist CGRP8-37 or GABA(A) receptor blocker gabazine had no significant effect on the CSAR response to IMD. AM22-52, L-NAME and CGP-35348 in the PVN could increase CSAR in Sham and 2K1C rats. These data indicate that IMD in the PVN inhibits CSAR via AM receptor, and both NO and GABA in the PVN involve in the effect of IMD on CSAR in Sham and renovascular hypertensive rats. © 2014 by the Society for Experimental Biology and Medicine.

  10. SYMPATHETIC NEURAL AND HEMODYNAMIC RESPONSES DURING COLD PRESSOR TEST IN ELDERLY BLACKS AND WHITES

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S.; Best, Stuart A.; Edwards, Jeffrey G.; Hendrix, Joseph M.; Adams-Huet, Beverley; Vongpatanasin, Wanpen; Levine, Benjamin D.; Fu, Qi

    2016-01-01

    The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Since blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate (HR), cardiac output (Qc), and muscle sympathetic nerve activity (MSNA) were measured during supine baseline, 2-min CPT, and 3-min recovery in 47 elderly [68±7 (SD) yrs] volunteers (12 blacks, 35 whites). Baseline BP, HR, Qc, or MSNA did not differ between races. Systolic and diastolic BP (DBP) and HR increased during CPT (all P0.05). Qc increased during CPT and up to 30 sec of recovery in both groups, but was lower in blacks than whites. MSNA increased during CPT in both groups (both P<0.001); the increase in burst frequency was similar between groups, while the increase in total activity was smaller in blacks (P=0.030 for interaction). Peak change (Δ) in DBP was correlated with Δ total activity at 1 min into CPT in both blacks (r=0.78, P=0.003) and whites (r=0.43, P=0.009), while the slope was significantly greater in blacks (P=0.007). Thus, elderly blacks have smaller sympathetic and central hemodynamic (e.g., Qc) responses, but a greater pressor response for a given sympathetic activation during CPT than elderly whites. This response may stem from augmented sympathetic vascular transduction, greater sympathetic activation to other vascular bed(s), and/or enhanced non-adrenergically mediated vasoconstriction in elderly blacks. PMID:27021009

  11. Effects of Antidepressants, but not Psychopathology, on Cardiac Sympathetic Control : A Longitudinal Study

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; Penninx, Brenda W. J. H.; de Geus, Eco J. C.

    2012-01-01

    Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of

  12. NUTRITION AND VASCULAR SUPPLY OF RETINAL GANGLION CELLS DURING HUMAN DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Paul eRutkowski

    2016-04-01

    Full Text Available Purpose. To review the roles of the different vascular beds nourishing the inner retina (retinal ganglion cells during normal development of the human eye and using our own tissue specimens to support our conclusions.Methods. An extensive search of the appropriate literature included PubMed, Google scholar, and numerous available textbooks. In addition, choroidal and retinal NADPH-diaphorase stained whole mount preparations were investigated.Results. The first critical interaction between vascular bed and retinal ganglion cell (RGC formation occurs in the 6th-8th month of gestation leading to a massive reduction of RGCs mainly in the peripheral retina. The first three years of age are characterized by an intense growth of the eyeball to near adult size. In the adult eye, the influence of the choroid on inner retinal nutrition was determined by examining the peripheral retinal watershed zones in more detail.Conclusion. This delicately balanced situation of retinal ganglion cell nutrition is described in the different regions of the eye, and a new graphic presentation is introduced to combine morphological measurements and clinical visual field data.

  13. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart.

    Science.gov (United States)

    Richardson, R J; Grkovic, I; Allen, A M; Anderson, C R

    2006-04-01

    The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.

  14. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  16. Cervical Cancer

    Centers for Disease Control (CDC) Podcasts

    2007-03-06

    Did you know that cervical cancer rates differ by race/ethnicity and region? Or that cervical cancer can usually be prevented if precancerous cervical lesions are found by a Pap test and treated? Find out how getting regular Pap tests can save a woman's life.  Created: 3/6/2007 by National Breast and Cervical Cancer Early Detection Program.   Date Released: 4/25/2007.

  17. A Learning Model for L/M Specificity in Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  18. REDUCED GANGLION CELL VOLUME ON OPTICAL COHERENCE TOMOGRAPHY IN PATIENTS WITH GEOGRAPHIC ATROPHY.

    Science.gov (United States)

    Ramkumar, Hema L; Nguyen, Brian; Bartsch, Dirk-Uwe; Saunders, Luke J; Muftuoglu, Ilkay Kilic; You, Qisheng; Freeman, William R

    2017-11-07

    Geographic atrophy (GA) is the sequelae of macular degeneration. Automated inner retinal analysis using optical coherence tomography is flawed because segmentation software is calibrated for normal eyes. The purpose of this study is to determine whether ganglion cell layer (GCL) volume is reduced in GA using manual analysis. Nineteen eyes with subfoveal GA and 22 controls were selected for morphometric analyses. Heidelberg scanning laser ophthalmoscope optical coherence tomography images of the optic nerve and macula were obtained, and the Viewing Module was used to manually calibrate retinal layer segmentation. Retinal layer volumes in the central 3-mm and surrounding 6-mm diameter were measured. Linear mixed models were used for statistics. The GCL volume in the central 3 mm of the macula is less (P = 0.003), and the retinal nerve fiber layer volume is more (P = 0.02) in patients with GA when compared with controls. Ganglion cell layer volume positively correlated with outer nuclear layer volume (P = 0.020). The patients with geographic atrophy have a small significant loss of the GCL. Ganglion cell death may precede axonal loss, and increased macular retinal nerve fiber layer volumes are not indicative of GCL volume. Residual ganglion cell stimulation by interneurons may enable vision in patients with GA.

  19. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  20. Does rehabilitation of cervical lordosis influence sagittal cervical spine flexion extension kinematics in cervical spondylotic radiculopathy subjects?

    Science.gov (United States)

    Moustafa, Ibrahim Moustafa; Diab, Aliaa Attiah Mohamed; Hegazy, Fatma A; Harrison, Deed E

    2017-01-01

    To test the hypothesis that improvement of cervical lordosis in cervical spondylotic radiculopathy (CSR) will improve cervical spine flexion and extension end range of motion kinematics in a population suffering from CSR. Thirty chronic lower CSR patients with cervical lordosis lordosis (p lordosis in the study group was associated with significant improvement in the translational and rotational motions of the lower cervical spine. This finding provides objective evidence that cervical flexion/extension is partially dependent on the posture and sagittal curve orientation. These findings are in agreement with several other reports in the literature; whereas ours is the first post treatment analysis identifying this relationship.

  1. Anterior cruciate ligament ganglion: case report

    Directory of Open Access Journals (Sweden)

    André Pedrinelli

    Full Text Available CONTEXT: A ganglion is a cystic formation close to joints or tendinous sheaths, frequently found in the wrist, foot or knee. Intra-articular ganglia of the knee are rare, and most of them are located in the anterior cruciate ligament. The clinical picture for these ganglia comprises pain and movement restrictions in the knee, causing significant impairment to the patient. Symptoms are non-specific, and anterior cruciate ligament ganglia are usually diagnosed through magnetic resonance imaging or arthroscopy. Not all ganglia diagnosed through magnetic resonance imaging need to undergo surgical treatment: only those that cause clinical signs and symptoms do. Surgical results are considered good or excellent in the vast majority of cases. CASE REPORT: A 29-year-old male presented with pain in the left knee during a marathon race. Physical examination revealed limitation in the maximum range of knee extension and pain in the posterior aspect of the left knee. Radiographs of the left knee were normal, but magnetic resonance imaging revealed a multi-lobed cystic structure adjacent to the anterior cruciate ligament, which resembled a ganglion cyst. The mass was removed through arthroscopy, and pathological examination revealed a synovial cyst. Patient recovery was excellent, and he resumed his usual training routine five months later.

  2. Dynamic interaction between the heart and its sympathetic innervation following T5 spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2012-10-15

    Midthoracic spinal cord injury (SCI) is associated with enhanced sympathetic support of heart rate as well as myocardial damage related to calcium overload. The myocardial damage may elicit an enhanced sympathetic support of contractility to maintain ventricular function. In contrast, the level of inotropic drive may be reduced to match the lower afterload that results from the injury-induced reduction in arterial pressure. Accordingly, the inotropic response to midthoracic SCI may be increased or decreased but has not been investigated and therefore remains unknown. Furthermore, the altered ventricular function may be associated with anatomical changes in cardiac sympathetic innervation. To determine the inotropic drive following midthoracic SCI, a telemetry device was used for repeated measurements of left ventricular (LV) function, with and without beta-adrenergic receptor blockade, in rats before and after midthoracic SCI or sham SCI. In addition, NGF content (ELISA) and dendritic arborization (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac-projecting sympathetic postganglionic neurons in the stellate ganglia were determined. Midthoracic SCI was associated with an enhanced sympathetic support of heart rate, dP/dt(+), and dP/dt(-). Importantly, cardiac function was lower following blockade of the sympathetic nervous system in rats with midthoracic SCI compared with sham-operated rats. Finally, these functional neuroplastic changes were associated with an increased NGF content and structural neuroplasticity within the stellate ganglia. Results document impaired LV function with codirectional changes in chronotropic and inotropic responses following midthoracic SCI. These functional changes were associated with a dynamic interaction between the heart and its sympathetic innervation.

  3. Cervical Cap

    Science.gov (United States)

    ... giving birth vaginally, which means the cervical cap may not fit as well. Inconsistent or incorrect use of the cervical cap increases your risk of pregnancy. For example, you may get pregnant when using the cervical cap if: ...

  4. Omitting histopathology in wrist ganglions. A risky proposition

    Science.gov (United States)

    Zubairi, Akbar J.; Kumar, Santosh; Mohib, Yasir; Rashid, Rizwan H.; Noordin, Shahryar

    2016-01-01

    Objectives: To identify incidence and utility of histopathology in wrist ganglions. Methods: A retrospective study of 112 patients operated for wrist swellings between January 2009 and March 2014 at Aga Khan University Hospital, Karachi, Pakistan, was conducted. Medical records were reviewed for demographics, history, location and associated symptoms, provisional diagnosis and operative details. Histopathology reports were reviewed to confirm the final diagnosis. Results: One hundred and twelve patients were included in the study (34 males and 78 females) with a mean age of 28 ± 12 years. Ninety-five percent of ganglia were dorsally located and 85% were solitary in nature. Histopathology reports confirmed 107 as ganglion cysts, whereas 3 had giant cell tumor of tendon sheath and 2 were reported to be tuberculous tenosynovitis. Conclusion: Although most of the time, the clinical diagnosis conforms to the final diagnosis, the possibility of an alternate diagnosis cannot be ignored (4% in this study). We suggest routine histopathological analysis so that such diagnoses are not missed. PMID:27464871

  5. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  6. Revision on Renal Sympathetic Ablation in the Treatment of Resistant Hypertension.

    Science.gov (United States)

    Saraiva, Ana Filipa

    2016-01-01

    Hypertension is one of the most prevalent diseases in the world, with about 1 billion people affected and a possible increase to 1.5 billion by 2025. Despite advances in treatment, a proportion of patients remain resistant to conventional treatment and uncontrolled, and this can adversely affect future cardiovascular events and mortality. This alarming growth is already reflected in an important public health problem and one of the largest economic burdens of health, requiring new approaches and development of different strategies to fight this problem. This review will focus on the definition of resistant hypertension and its etiology, as well as in contemporary evidence supporting the usefulness of renal sympathetic denervation while addressing current and emerging devices, potential treatment indications in the future and unresolved issues that need to be addressed before renal sympathetic denervation can be adopted not only as a last resort exclusively for resistant hypertension. Finally an evaluation algorithm for patients with resistant hypertension which should be implemented before the execution of this technique will be proposed. Renal sympathetic denervation is a technique that possibly could have future implications in the population with hypertension, especially those with true resistant hypertension. This technique aims to reduce the renal sympathetic activation (a component in the pathophysiology of hypertension) through the destruction of the renal sympathetic nerves located in the adventitia of the renal arteries. There are several catheters that can be used; each with its specifications and therefore their selection should be made individually depending on the profile of the patient. However, a detailed pre-procedure evaluation is extremely important to exclude the large percentage of individuals with uncontrolled hypertension due to several factors that make it impossible to control blood pressure, but are likely to be corrected and as such should

  7. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    Science.gov (United States)

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (pchronic pain at T2 (p'schronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Using a forehead reflectance pulse oximeter to detect changes in sympathetic tone.

    Science.gov (United States)

    Wendelken, Suzanne M; McGrath, Susan P; Akay, Metin; Blike, George T

    2004-01-01

    The extreme conditions of combat and multi-casualty rescue often make field triage difficult and put the medic or first responder at risk. In an effort to improve field triage, we have developed an automated remote triage system called ARTEMIS (automated remote triage and emergency management information system) for use in the battlefield or disaster zone. Common to field injuries is a sudden change in arterial pressure resulting from massive blood loss or shock. In effort to stabilize the arterial pressure, the sympathetic system is strongly activated and sympathetic tone is increased. This preliminary research seeks to empirically demonstrate that a forehead reflectance pulse oximeter is a viable sensor for detecting sudden changes in sympathetic tone. We performed the classic supine-standing experiment and collected the raw waveform, the photoplethysmogram (PPG), continuously using a forehead reflectance pulse oximeter. The resulting waveform was processed in Matlab using various spectral analysis techniques (FFT and AR). Our preliminary results show that a relative ratio analysis (low frequency power/high frequency power) for both the raw PPG signal and its derived pulse statistics (height, beat-to-beat interval) is a useful technique for detecting change in sympathetic tone resulting from positional change.

  9. Change in sympathetic nerve firing pattern associated with dietary weight loss in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth Annie Lambert

    2011-08-01

    Full Text Available Sympathetic activation in subjects with the metabolic syndrome (MS plays a role in the pathogenesis of cardiovascular disease development. Diet-induced weight loss decreases sympathetic outflow. However the mechanisms that account for sympathetic inhibition are not known. We sought to provide a detailed description of the sympathetic response to diet by analyzing the firing behavior of single-unit sympathetic nerve fibres. Fourteen subjects (57±2 years, 9 men, 5 females fulfilling ATP III criteria for the MS underwent a 3-month low calorie diet. Metabolic profile, hemodynamic parameters and multi-unit and single unit muscle sympathetic nerve activity (MSNA, microneurography were assessed prior to and at the end of the diet. Patients’ weight dropped from 96±4 to 88±3 kg (P<0.001. This was associated with a decrease in systolic and diastolic blood pressure (-12 ±3 and -5±2 mmHg, P<0.05, and in heart rate (-7±2 bpm, P<0.01 and an improvement in all metabolic parameters (fasting glucose: -0.302.1±0.118 mmol/l, total cholesterol: -0.564±0.164 mmol/l, triglycerides: -0.414±0.137 mmol/l, P<0.05. Multi-unit MSNA decreased from 68±4 to 59±5 bursts per 100 heartbeats (P<0.05. Single-unit MSNA indicated that the firing rate of individual vasoconstrictor fibres decreased from 59±10 to 32±4 spikes per 100 heart beats (P<0.05. The probability of firing decreased from 34±5 to 23±3 % of heartbeats (P<0.05, and the incidence of multiple firing decreased from 14±4 to 6±1 % of heartbeats (P<0.05. Cardiac and sympathetic baroreflex function were significantly improved (cardiac slope: 6.57±0.69 to 9.57±1.20 msec.mmHg-1; sympathetic slope: -3.86±0.34 to -5.05±0.47 bursts per 100 heartbeats.mmHg-1 P<0.05 for both. Hypocaloric diet decreased sympathetic activity and improved hemodynamic and metabolic parameters. The sympathoinhibition associated with weight loss involves marked changes, not only in the rate but also in the firing pattern of

  10. Cervical Myomas

    Science.gov (United States)

    ... Adnexal Torsion Bartholin Gland Cysts Cervical Myomas Cervical Stenosis Endometriomas of the Vulva Inclusion and Epidermal Cysts of the Vulva Noncancerous Ovarian Growths Polyps of the Cervix Skene Duct Cyst Cervical myomas are smooth, benign tumors in the cervix. A myoma may bleed, ...

  11. MR imaging findings of neurosarcoidosis of the gasserian ganglion: an unusual presentation

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Mercedes; Iglesias, Alfonso; Vila, Oscar; Brasa, Jose [Unidad de Resonancia Magnetica (MEDTEC), Hospital Xeral-Cies, 36204 Vigo (Spain); Conde, Cesareo [Servicio de Neurocirugia, Hospital Xeral-Cies, 36204 Vigo (Spain)

    2002-11-01

    We report the MR imaging findings of an unusual case of neurosarcoidosis of the gasserian ganglion associated with trigeminal neuralgia. No other neurological or extraneurological localization was found. Magnetic resonance imaging demonstrated a mass in the Meckel's diverticulum that was isointense on T1-weighted images and hypointense on T2-weighted images. Gadolinium-enhanced MR imaging showed heterogeneous enhancement. Although rare, sarcoid infiltration of the gasserian ganglion must be considered in the differential diagnosis of an isolated mass in this localization in patients with trigeminal neuralgia. (orig.)

  12. MR imaging findings of neurosarcoidosis of the gasserian ganglion: an unusual presentation

    International Nuclear Information System (INIS)

    Arias, Mercedes; Iglesias, Alfonso; Vila, Oscar; Brasa, Jose; Conde, Cesareo

    2002-01-01

    We report the MR imaging findings of an unusual case of neurosarcoidosis of the gasserian ganglion associated with trigeminal neuralgia. No other neurological or extraneurological localization was found. Magnetic resonance imaging demonstrated a mass in the Meckel's diverticulum that was isointense on T1-weighted images and hypointense on T2-weighted images. Gadolinium-enhanced MR imaging showed heterogeneous enhancement. Although rare, sarcoid infiltration of the gasserian ganglion must be considered in the differential diagnosis of an isolated mass in this localization in patients with trigeminal neuralgia. (orig.)

  13. Cervical Cancer

    Centers for Disease Control (CDC) Podcasts

    Did you know that cervical cancer rates differ by race/ethnicity and region? Or that cervical cancer can usually be prevented if precancerous cervical lesions are found by a Pap test and treated? Find out how getting regular Pap tests can save a woman's life.

  14. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    Scott S Wildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  15. Cervical Spondylosis and Hypertension

    OpenAIRE

    Peng, Baogan; Pang, Xiaodong; Li, Duanming; Yang, Hong

    2015-01-01

    Abstract Cervical spondylosis and hypertension are all common diseases, but the relationship between them has never been studied. Patients with cervical spondylosis are often accompanied with vertigo. Anterior cervical discectomy and fusion is an effective method of treatment for cervical spondylosis with cervical vertigo that is unresponsive to conservative therapy. We report 2 patients of cervical spondylosis with concomitant cervical vertigo and hypertension who were treated successfully w...

  16. The biophysics of renal sympathetic denervation using radiofrequency energy.

    Science.gov (United States)

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  17. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    Science.gov (United States)

    Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.

  18. Cervicitis

    Science.gov (United States)

    ... that does not go away: discharge may be gray, white or yellow in color Painful sexual intercourse ... Names Cervical inflammation; Inflammation - cervix Images Female reproductive anatomy Cervicitis Uterus References Eckert LO, Lentz GM. Infections ...

  19. Cystic degeneration of the tibial nerve. Magnetic resonance neurography and sonography appearances of an intraneural ganglion cyst

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio Silveira, Claudio Regis [Sao Carlos Imaging/Sao Carlos Hospital, Musculoskeletal Imaging Division, Fortaleza, CE (Brazil); Maia Vieira, Clarissa Gadelha; Machado Pereira, Brenda [Sao Carlos Imaging/Sao Carlos Hospital, Fortaleza, CE (Brazil); Pinto Neto, Luiz Holanda [Articular Clinic, Fortaleza, CE (Brazil); Chhabra, Avneesh [UT Southwestern, Radiology and Orthopaedic Surgery, Dallas, TX (United States)

    2017-12-15

    Extra- and intraneural ganglion cysts have been described in the literature. The tibial nerve ganglion is uncommon and its occurrence without intra-articular extension is atypical. The pathogenesis of cystic degeneration localized to connective and perineural tissue secondary to chronic mechanical irritation or idiopathic mucoid degeneration is hypothesized. Since the above pathology is extremely rare and the magnetic resonance imaging examination detects the defining characteristics of the intrinsic alterations of the tibial nerve, the authors illustrate such a case of tibial intaneural ganglion cyst with its magnetic resonance neurography and sonography appearances. (orig.)

  20. Differential Toxicities of Intraneurally Injected Mercuric Chloride for Sympathetic and Somatic Motor Fibers: An Ultrastructural Study

    Directory of Open Access Journals (Sweden)

    Shih-Jung Cheng

    2011-02-01

    Conclusion: This study demonstrated an undue susceptibility of sympathetic fibers to mercury intoxication. The mechanisms that underlie the selective reaction of sympathetic fibers to mercury warrant further investigation.

  1. Ganglion dynamics and its implications to geologic carbon dioxide storage.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Dewers, Thomas; Heath, Jason E; Jove-Colon, Carlos

    2013-01-02

    Capillary trapping of a nonwetting fluid phase in the subsurface has been considered as an important mechanism for geologic storage of carbon dioxide (CO(2)). This mechanism can potentially relax stringent requirements for the integrity of cap rocks for CO(2) storage and therefore can significantly enhance storage capacity and security. We here apply ganglion dynamics to understand the capillary trapping of supercritical CO(2) (scCO(2)) under relevant reservoir conditions. We show that, by breaking the injected scCO(2) into small disconnected ganglia, the efficiency of capillary trapping can be greatly enhanced, because the mobility of a ganglion is inversely dependent on its size. Supercritical CO(2) ganglia can be engineered by promoting CO(2)-water interface instability during immiscible displacement, and their size distribution can be controlled by injection mode (e.g., water-alternating-gas) and rate. We also show that a large mobile ganglion can potentially break into smaller ganglia due to CO(2)-brine interface instability during buoyant rise, thus becoming less mobile. The mobility of scCO(2) in the subsurface is therefore self-limited. Vertical structural heterogeneity within a reservoir can inhibit the buoyant rise of scCO(2) ganglia. The dynamics of scCO(2) ganglia described here provides a new perspective for the security and monitoring of subsurface CO(2) storage.

  2. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    Science.gov (United States)

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  3. Sympathetic responses during saline infusion into the veins of an occluded limb.

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick; Moradkhan, Raman; Pagana, Charles; Sinoway, Lawrence I

    2009-07-15

    Animal studies have shown that the increased intravenous pressure stimulates the group III and IV muscle afferent fibres, and in turn induce cardiovascular responses. However, this pathway of autonomic regulation has not been examined in humans. The aim of this study was to examine the hypothesis that infusion of saline into the venous circulation of an arterially occluded vascular bed evokes sympathetic activation in healthy individuals. Blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) responses were assessed in 19 young healthy subjects during local infusion of 40 ml saline into a forearm vein in the circulatory arrested condition. From baseline (11.8 +/- 1.2 bursts min(-1)), MSNA increased significantly during the saline infusion (22.5 +/- 2.6 bursts min(-1), P Blood pressure also increased significantly during the saline infusion. Three control trials were performed during separate visits. The results from the control trial show that the observed MSNA and blood pressure responses were not due to muscle ischaemia. The present data show that saline infusion into the venous circulation of an arterially occluded vascular bed induces sympathetic activation and an increase in blood pressure. We speculate that the infusion under such conditions stimulates the afferent endings near the vessels, and evokes the sympathetic activation.

  4. Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata

    Science.gov (United States)

    Marina, Nephtali; Abdala, Ana P.L.; Korsak, Alla; Simms, Annabel E.; Allen, Andrew M.; Paton, Julian F.R.; Gourine, Alexander V.

    2011-01-01

    Aims Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses. Methods and results In anaesthetized rats in vivo and perfused rat working heart brainstem preparations in situ, C1 neurones were acutely silenced by application of the insect peptide allatostatin following cell-specific targeting with a lentiviral vector to express the inhibitory Drosophila allatostatin receptor. In anaesthetized rats with denervated peripheral chemoreceptors, acute inhibition of 50% of the C1 neuronal population resulted in ∼50% reduction in renal sympathetic nerve activity and a profound fall in arterial blood pressure (by ∼25 mmHg). However, under these conditions systemic hypercapnia still evoked vigorous sympathetic activation and the slopes of the CO2-evoked sympathoexcitatory and cardiovascular responses were not affected by inhibition of C1 neurones. Inhibition of C1 neurones in situ resulted in a reversible fall in perfusion pressure and the amplitude of respiratory-related bursts of thoracic sympathetic nerve activity. Conclusion These data confirm a fundamental physiological role of medullary catecholaminergic C1 neurones in maintaining resting sympathetic vasomotor tone and arterial blood pressure. However, C1 neurones do not appear to mediate sympathoexcitation evoked by central actions of CO2. PMID:21543384

  5. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  6. Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence.

    Science.gov (United States)

    Nammas, Wail; Koistinen, Juhani; Paana, Tuomas; Karjalainen, Pasi P

    2017-08-01

    Heart failure syndrome results from compensatory mechanisms that operate to restore - back to normal - the systemic perfusion pressure. Sympathetic overactivity plays a pivotal role in heart failure; norepinephrine contributes to maintenance of the systemic blood pressure and increasing preload. Cardiac norepinephrine spillover increases in patients with heart failure; norepinephrine exerts direct toxicity on cardiac myocytes resulting in a decrease of synthetic activity and/or viability. Importantly, cardiac norepinephrine spillover is a powerful predictor of mortality in patients with moderate to severe HF. This provided the rationale for trials that demonstrated survival benefit associated with the use of beta adrenergic blockers in heart failure with reduced ejection fraction. Nevertheless, the MOXCON trial demonstrated that rapid uptitration of moxonidine (inhibitor of central sympathetic outflow) in patients with heart failure was associated with excess mortality and morbidity, despite reduction of plasma norepinephrine. Interestingly, renal norepinephrine spillover was the only independent predictor of adverse outcome in patients with heart failure, in multivariable analysis. Recently, renal sympathetic denervation has emerged as a novel approach for control of blood pressure in patients with treatment-resistant hypertension. This article summarizes the available evidence for the effect of renal sympathetic denervation in the setting of heart failure. Key messages Experimental studies supported a beneficial effect of renal sympathetic denervation in heart failure with reduced ejection fraction. Clinical studies demonstrated improvement of symptoms, and left ventricular function. In heart failure and preserved ejection fraction, renal sympathetic denervation is associated with improvement of surrogate endpoints.

  7. Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness.

    Science.gov (United States)

    Abdellatif, Mona K; Fouad, Mohamed M

    2018-03-01

    To investigate the factors in migraine that have the highest significance on retinal and choroidal layers' thickness. Ninety patients with migraine and 40 age-matched healthy participants were enrolled in this observational, cross-sectional study. After full ophthalmological examination, spectral domain-optical coherence tomography was done for all patients measuring the thickness of ganglion cell layer and retinal nerve fiber layer. Enhanced depth imaging technique was used to measure the choroidal thickness. There was significant thinning in the superior and inferior ganglion cell layers, all retinal nerve fiber layer quadrants, and all choroidal quadrants (except for the central subfield) in migraineurs compared to controls. The duration of migraine was significantly correlated with ganglion cell layer, retinal nerve fiber layer, and all choroidal quadrants, while the severity of migraine was significantly correlated with ganglion cell layer and retinal nerve fiber layer only. Multiregression analysis showed that the duration of migraine is the most important determinant factor of the superior retinal nerve fiber layer quadrant (β = -0.375, p = 0.001) and in all the choroidal quadrants (β = -0.531, -0.692, -0.503, -0.461, -0.564, respectively, p  layer quadrants (β = -0.256, -0.335, -0.308; p  = 0.036, 0.005, 0.009, respectively) and the inferior ganglion cell layer hemisphere (β = -0.377 and p = 0.001). Ganglion cell layer, retinal nerve fiber layer, and choroidal thickness are significantly thinner in patients with migraine. The severity of migraine has more significant influence in the thinning of ganglion cell layer and retinal nerve fiber layer, while the duration of the disease affected the choroidal thickness more.

  8. Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response.

    Directory of Open Access Journals (Sweden)

    Günther Zeck

    Full Text Available BACKGROUND: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. METHODOLOGY/PRINCIPAL FINDINGS: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec. Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. CONCLUSION/SIGNIFICANCE: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion

  9. Get Tested for Cervical Cancer

    Science.gov (United States)

    ... Print This Topic En español Get Tested for Cervical Cancer Browse Sections The Basics Overview Cervical Cancer Cervical ... Cervical Cancer 1 of 5 sections The Basics: Cervical Cancer What is cervical cancer? Cervical cancer is cancer ...

  10. Gasserian Ganglion and Retrobulbar Nerve Block in the Treatment of Ophthalmic Postherpetic Neuralgia: A Case Report.

    Science.gov (United States)

    Huang, Jie; Ni, Zhongge; Finch, Philip

    2017-09-01

    Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.

  11. Microvascularization in trigeminal ganglion of the common tree shrew (Tupaia glis).

    Science.gov (United States)

    Kongstaponkit, S; Pradidarcheep, W; Toutip, S; Chunhabundit, P; Somana, R

    1997-01-01

    Since there is only a limited number of studies of the blood supply to the trigeminal ganglion (TG) in mammalian species, the TG from 16 common tree shrews (Tupaia glis) were investigated by light microscope, transmission electron microscope (TEM) and the corrosion cast technique in conjunction with scanning electron microscope (SEM). It was found that the TG contained clusters of neurons in the peripheral region whereas the bundles of nerve fibers were located more centrally. Each ganglionic neuron had a concentric nucleus and was ensheathed by satellite cells. It was noted that blood vessels of a continuous type were predominantly found in the area where the neurons were densely located and were much less frequently observed in the area occupied by nerve fibers. With TEM, the TG was shown to be mainly associated with large neurons containing big nuclei and prominent nucleoli. The blood supply of the TG is derived from the most rostral branch of the pontine artery, from the stapedial artery or sometimes from the supraorbital artery, and from the accessory meningeal artery which is a branch of the maxillary artery passing through the foramen ovale. These arteries give off branches and become capillary networks in the ganglion before draining blood to the peripheral region. The veins at the medial border drained into the cavernous sinus directly or through the inferior hypophyseal vein, while those at the lateral side of the ganglion carried the blood into the pterygoid plexus via an accessory meningeal vein. The veins along the trigeminal nerve root joined the posterior part of the cavernous sinus. These studies establish a unique anatomical distribution of the TG blood supply in the tree shrew and the utility of the cast/SEM technique in discerning detailed features of the blood supply in the nervous system.

  12. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    Science.gov (United States)

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube feeding failed to elicit a pressor response. The results provide indirect evidence that chewing triggers sympathetic

  13. January Monthly Spotlight: Cervical Health and Cervical Cancer Disparities

    Science.gov (United States)

    In January, CRCHD joins the nation in raising awareness for Cervical Health and Cervical Cancer Disparities. This month we share a special focus on NCI/CRCHD research programs that are trying to reduce cervical cancer disparities in underserved communities and the people who are spreading the word about the importance of early detection.

  14. Retinal Ganglion Cell Loss in Diabetes Associated with Elevated Homocysteine

    Directory of Open Access Journals (Sweden)

    Kenneth S. Shindler

    2009-11-01

    Full Text Available A number of studies have suggested that homocysteine may be a contributing factor to development of retinopathy in diabetic patients based on observed correlations between elevated homocysteine levels and the presence of retinopathy. The significance of such a correlation remains to be determined, and potential mechanisms by which homocysteine might induce retinopathy have not been well characterized. Ganapathy and colleagues1 used mutant mice that have endogenously elevated homocysteine levels due to heterozygous deletion of the cystathionine-β-synthase gene to examine changes in retinal pathology following induction of diabetes. Their finding that elevated homocysteine levels hastens loss of cells in the retinal ganglion cell layer suggests that toxicity to ganglion cells may warrant further investigation as a potential mechanism of homocysteine enhanced susceptibility to diabetic retinopathy.

  15. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe

    NARCIS (Netherlands)

    Nakajima, K.; Scholte, A.; Nakata, T.; Dimitriu-Leen, A.C.; Chikamori, T.; Vitola, J.V.; Yoshinaga, K.

    2017-01-01

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging,

  16. The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations.

    Science.gov (United States)

    Collin, S P

    1988-01-01

    A light microscopy study of the retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae) has revealed a duplex retina with a rod to cone ratio between 4:1 and 6:1. The inner nuclear layer consists of three layers of large horizontal cells, tightly packed, stellate bipolar cells, and up to three substrata of amacrine cells. The collaterals of the many supporting Müller cells project from the inner to the outer limiting membrane and divide the retina into many subunits. The cells of the ganglion cell layer are distributed into two layers, although a large proportion of ganglion cells are also displaced into the inner plexiform and inner nuclear layers. Topographic analysis of the cells in the ganglion cell layer, inner plexiform and inner nuclear layers reveals a number of regional specializations or "areae centrales". Ganglion cells were retrogradely-labelled with cobalt-lysine from the optic nerve, and three sub-populations of neurons characterized on their soma size and position. Small (20-50 microns2), large (80-300 microns2) and giant (greater than 300 microns2) sub-populations of ganglion cells each revealed distinct retinal specializations with peak densities of 3 x 10(3), 1.25 x 10(3) and 1.57 x 10(3) cells per mm2, respectively. Topographical comparison between Nissl-stained and retrogradely-labelled ganglion cell populations have established that a maximum of 20% in the "area centralis", and 75% in unspecialized, peripheral regions of the retina are non-ganglion cells. Out of a total of 210,566 cells in the ganglion cell layer, 49% were found to be non-ganglion cells. Iso-density contour maps of amacrine and bipolar cell distributions also reveal some specializations. These cell concentrations lie in corresponding regions to areas of increased density in the large and giant ganglion cell populations, suggesting some functional association.

  17. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  18. Loss of Sympathetic Nerves in Spleens from Patients with End Stage Sepsis

    Directory of Open Access Journals (Sweden)

    Donald B. Hoover

    2017-12-01

    Full Text Available The spleen is an important site for central regulation of immune function by noradrenergic sympathetic nerves, but little is known about this major region of neuroimmune communication in humans. Experimental studies using animal models have established that sympathetic innervation of the spleen is essential for cholinergic anti-inflammatory responses evoked by vagal nerve stimulation, and clinical studies are evaluating this approach for treating inflammatory diseases. Most data on sympathetic nerves in spleen derive from rodent studies, and this work has established that remodeling of sympathetic innervation can occur during inflammation. However, little is known about the effects of sepsis on spleen innervation. Our primary goals were to (i localize noradrenergic nerves in human spleen by immunohistochemistry for tyrosine hydroxylase (TH, a specific noradrenergic marker, (ii determine if nerves occur in close apposition to leukocytes, and (iii determine if splenic sympathetic innervation is altered in patients who died from end stage sepsis. Staining for vesicular acetylcholine transporter (VAChT was done to screen for cholinergic nerves. Archived paraffin tissue blocks were used. Control samples were obtained from trauma patients or patients who died after hemorrhagic stroke. TH + nerves were associated with arteries and arterioles in all control spleens, occurring in bundles or as nerve fibers. Individual TH + nerve fibers entered the perivascular region where some appeared in close apposition to leukocytes. In marked contrast, spleens from half of the septic patients lacked TH + nerves fibers and the average abundance of TH + nerves for the septic group was only 16% of that for the control group (control: 0.272 ± 0.060% area, n = 6; sepsis: 0.043 ± 0.026% area, n = 8; P < 0.005. All spleens lacked cholinergic innervation. Our results provide definitive evidence for the distribution of noradrenergic

  19. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  20. Impact of Isometric Contraction of Anterior Cervical Muscles on Cervical Lordosis.

    Science.gov (United States)

    Fedorchuk, Curtis A; McCoy, Matthew; Lightstone, Douglas F; Bak, David A; Moser, Jacque; Kubricht, Brett; Packer, John; Walton, Dustin; Binongo, Jose

    2016-09-01

    This study investigates the impact of isometric contraction of anterior cervical muscles on cervical lordosis. 29 volunteers were randomly assigned to an anterior head translation (n=15) or anterior head flexion (n=14) group. Resting neutral lateral cervical x-rays were compared to x-rays of sustained isometric contraction of the anterior cervical muscles producing anterior head translation or anterior head flexion. Paired sample t-tests indicate no significant difference between pre and post anterior head translation or anterior head flexion. Analysis of variance suggests that gender and peak force were not associated with change in cervical lordosis. Chamberlain's to atlas plane line angle difference was significantly associated with cervical lordosis difference during anterior head translation (p=0.01). This study shows no evidence that hypertonicity, as seen in muscle spasms, of the muscles responsible for anterior head translation and anterior head flexion have a significant impact on cervical lordosis.

  1. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal

  2. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  3. Anti-Epileptic Drugs Delay Age-Related Loss of Spiral Ganglion Neurons via T-type Calcium Channel

    Science.gov (United States)

    Lei, Debin; Gao, Xia; Perez, Philip; Ohlemiller, Kevin K; Chen, Chien-Chang; Campbell, Kevin P.; Hood, Aizhen Yang; Bao, Jianxin

    2011-01-01

    Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Cav3.1, Cav3.2, and Cav3.3), based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in α1H null and heterozygous mice, clearly demonstrating an important role for Cav3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. PMID:21640179

  4. Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S; Best, Stuart A; Bivens, Tiffany B; Adams-Huet, Beverley; Levine, Benjamin D; Fu, Qi

    2013-01-01

    Cardiovascular risk remains high in patients with hypertension even with adequate blood pressure (BP) control. One possible mechanism may be sympathetic activation via the baroreflex. We tested the hypothesis that chronic inhibition of renin reduces BP without sympathetic activation, but diuresis augments sympathetic activity in elderly hypertensives. Fourteen patients with stage-I hypertension (66 ± 5 (SD) years) were treated with a direct renin inhibitor, aliskiren (n= 7), or a diuretic, hydrochlorothiazide (n= 7), for 6 months. Muscle sympathetic nerve activity (MSNA), BP, direct renin and aldosterone were measured during supine and a graded head-up tilt (HUT; 5 min 30° and 20 min 60°), before and after treatment. Sympathetic baroreflex sensitivity (BRS) was assessed. Both groups had similar BP reductions after treatment (all P < 0.01), while MSNA responses were different between hydrochlorothiazide and aliskiren (P= 0.006 pre/post × drug). Both supine and upright MSNA became greater after hydrochlorothiazide treatment (supine, 72 ± 18 post vs. 64 ± 15 bursts (100 beats)−1 pre; 60° HUT, 83 ± 10 vs. 78 ± 13 bursts (100 beats)−1; P= 0.002). After aliskiren treatment, supine MSNA remained unchanged (69 ± 13 vs. 64 ± 8 bursts (100 beats)−1), but upright MSNA was lower (74 ± 15 vs. 85 ± 10 bursts (100 beats)−1; P= 0.012 for pre/post × posture). Direct renin was greater after both treatments (both P < 0.05), while upright aldosterone was greater after hydrochlorothiazide only (P= 0.002). The change in upright MSNA by the treatment was correlated with the change of aldosterone (r= 0.74, P= 0.002). Upright sympathetic BRS remained unchanged after either treatment. Thus, chronic renin inhibition may reduce upright MSNA through suppressed renin activity, while diuresis may evoke sympathetic activation via the upregulated renin–angiotensin–aldosterone system, without changing intrinsic sympathetic baroreflex function in elderly hypertensive

  5. Sympathetic skin responses in patients with hyperthyroidism.

    Science.gov (United States)

    Gozke, E; Ozyurt, Z; Dortcan, N; Ore, O; Kocer, A; Ozer, E

    2007-01-01

    The aim of this study was to investigate the disorders of sympathetic nervous system in patients with hyperthyroidism using sympathetic skin response (SSR). Twenty-two newly diagnosed cases with hyperthyroidism were included in the study. The results were compared with those of 20 healthy controls. SSR was recorded with the contralateral electrical stimulation of the median nerve (of the upper extremities) and tibial nerve (of the lower extremities) with active electrodes placed on palms and soles and reference electrodes attached on the dorsal aspects of hands and feet. Ages of the cases with hyperthyroidism and controls ranged between 15-65 years (mean: 46.7 +/- 15.0 years) and 24-62 years (mean: 39.6 +/- 9.8 years) respectively (p > 0.05). In all the control subjects SSR could be obtained, while from the lower extremities of 4 cases with hyperthyroidism (18.0%) SSR could not be elicited. Mean SSR latencies of lower extremities were found significantly longer than control group (p nervous system involvement in cases with hyperthyroidism.

  6. The clinico-anatomic explanation for tibial intraneural ganglion cysts arising from the superior tibiofibular joint

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, Robert J. [Mayo Clinic, Department of Neurologic Surgery, Rochester, Minnesota (United States); Mayo Clinic, Department of Orthopedic Surgery, Rochester, Minnesota (United States); Mayo Clinic, Department of Anatomy, Rochester, Minnesota (United States); Mokhtarzadeh, Ali; Schiefer, Terry K. [Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Krishnan, Kartik G. [Carl Gustav Carus University Hospital, Department of Neurological Surgery, Dresden (Germany); Kliot, Michel [University of Washington, Department of Neurosurgery, Seattle, Washington (United States); Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, Minnesota (United States)

    2007-04-15

    To demonstrate that tibial intraneural ganglia in the popliteal fossa are derived from the posterior portion of the superior tibiofibular joint, in a mechanism similar to that of peroneal intraneural ganglia, which have recently been shown to arise from the anterior portion of the same joint. Retrospective clinical study and prospective anatomic study. The clinical records and MRI findings of three patients with tibial intraneural ganglion cysts were analyzed and compared with those of one patient with a tibial extraneural ganglion cyst and one volunteer. Seven cadaveric limbs were dissected to define the articular anatomy of the posterior aspect of the superior tibiofibular joint. The condition of the three patients with intraneural ganglia recurred because their joint connections were not identified initially. In two patients there was no cyst recurrence when the joint connection was treated at revision surgery; the third patient did not wish to undergo additional surgery. The one patient with an extraneural ganglion had the joint connection identified at initial assessment and had successful surgery addressing the cyst and the joint connection. Retrospective evaluation of the tibial intraneural ganglion cysts revealed stereotypic features, which allowed their accurate diagnosis and distinction from extraneural cases. The intraneural cysts had tubular (rather than globular) appearances. They derived from the postero-inferior portion of the superior tibiofibular joint and followed the expected course of the articular branch on the posterior surface of the popliteus muscle. The cysts then extended intra-epineurially into the parent tibial nerves, where they contained displaced nerve fascicles. The extraneural cyst extrinsically compressed the tibial nerve but did not directly involve it. All cadaveric specimens demonstrated a small single articular branch, which derived from the tibial nerve to the popliteus. The branch coursed obliquely across the posterior

  7. Cervical interfacet spacers and maintenance of cervical lordosis.

    Science.gov (United States)

    Tan, Lee A; Straus, David C; Traynelis, Vincent C

    2015-05-01

    OBJECT The cervical interfacet spacer (CIS) is a relatively new technology that can increase foraminal height and area by facet distraction. These offer the potential to provide indirect neuroforaminal decompression while simultaneously enhancing fusion potential due to the relatively large osteoconductive surface area and compressive forces exerted on the grafts. These potential benefits, along with the relative ease of implantation during posterior cervical fusion procedures, make the CIS an attractive adjuvant in the management of cervical pathology. One concern with the use of interfacet spacers is the theoretical risk of inducing iatrogenic kyphosis. This work tests the hypothesis that interfacet spacers are associated with loss of cervical lordosis. METHODS Records from patients undergoing posterior cervical fusion at Rush University Medical Center between March 2011 and December 2012 were reviewed. The FacetLift CISs were used in all patients. Preoperative and postoperative radiographic data were reviewed and the Ishihara indices and cervical lordotic angles were measured and recorded. Statistical analyses were performed using STATA software. RESULTS A total of 64 patients were identified in whom 154 cervical levels were implanted with machined allograft interfacet spacers. Of these, 15 patients underwent anterior-posterior fusions, 4 underwent anterior-posterior-anterior fusions, and the remaining 45 patients underwent posterior-only fusions. In the 45 patients with posterior-only fusions, a total of 110 levels were treated with spacers. There were 14 patients (31%) with a single level treated, 16 patients (36%) with two levels treated, 5 patients (11%) with three levels treated, 5 patients (11%) with four levels treated, 1 patient (2%) with five levels treated, and 4 patients (9%) with six levels treated. Complete radiographic data were available in 38 of 45 patients (84%). On average, radiographic follow-up was obtained at 256.9 days (range 48-524 days

  8. Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure.

    Science.gov (United States)

    Paolillo, S; Rengo, G; Pellegrino, T; Formisano, R; Pagano, G; Gargiulo, P; Savarese, G; Carotenuto, R; Petraglia, L; Rapacciuolo, A; Perrino, C; Piscitelli, S; Attena, E; Del Guercio, L; Leosco, D; Trimarco, B; Cuocolo, A; Perrone-Filardi, P

    2015-10-01

    Insulin resistance (IR) represents, at the same time, cause and consequence of heart failure (HF) and affects prognosis in HF patients, but pathophysiological mechanisms remain unclear. Hyperinsulinemia, which characterizes IR, enhances sympathetic drive, and it can be hypothesized that IR is associated with impaired cardiac sympathetic innervation in HF. Yet, this hypothesis has never been investigated. Aim of the present observational study was to assess the relationship between IR and cardiac sympathetic innervation in non-diabetic HF patients. One hundred and fifteen patients (87% males; 65 ± 11.3 years) with severe-to-moderate HF (ejection fraction 32.5 ± 9.1%) underwent iodine-123 meta-iodobenzylguanidine ((123)I-MIBG) myocardial scintigraphy to assess sympathetic innervation and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) evaluation to determine the presence of IR. From (123)I-MIBG imaging, early and late heart to mediastinum (H/M) ratios and washout rate were calculated. Seventy-two (63%) patients showed IR and 43 (37%) were non-IR. Early [1.68 (IQR 1.53-1.85) vs. 1.79 (IQR 1.66-1.95); P = 0.05] and late H/M ratio [1.50 (IQR 1.35-1.69) vs. 1.65 (IQR 1.40-1.85); P = 0.020] were significantly reduced in IR compared with non-IR patients. Early and late H/M ratio showed significant inverse correlation with fasting insulinemia and HOMA-IR. Cardiac sympathetic innervation is more impaired in patients with IR and HF compared with matched non-IR patients. These findings shed light on the relationship among IR, HF, and cardiac sympathetic nervous system. Additional studies are needed to clarify the pathogenetic relationship between IR and HF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. Responses of macaque ganglion cells to far violet lights

    International Nuclear Information System (INIS)

    De Monasterio, F.M.; Gouras, P.

    1977-01-01

    In a sample of 487 colour-opponent ganglion cells recorded in the central retina of the rhesus and cynomolgus monkeys, 9% of these neurones were found to have responses with the same sign at both ends of the visible spectrum mediated by red-sensitive cones and mid-spectral responses of opposite sign mediated by green-sensitive cones. Selective chromatic adaptation showed that the responses to far violet lights (400 to 420 nm) were due to input from red- and not blue-sensitive cones. These responses were enhanced by backgrounds depressing the sensitivity of blue- and green-sensitive cones and they were depressed by backgrounds depressing the sensitivity of red-sensitive cones; the sensitivity of these responses was yoked to that of responses to far red lights. The relative incidence of these ganglion cells was maximal at the foveal region and decreased towards the peripheral retina. The properties of these cells are consistent with some psychophysical observations of human vision at the short wave-lengths. (author)

  10. Renal sympathetic nervous system and the effects of denervation on renal arteries.

    Science.gov (United States)

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-08-26

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  11. Cervical syphilitic lesions mimicking cervical cancer: a rare case report

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2015-02-01

    Full Text Available A woman presented to the hospital due to postcoital vaginal bleeding. The patient was initially diagnosed with cervical carcinoma by clinicians at a local hospital. However, a biopsy of the cervical lesions revealed chronic inflammation and erosion of the cervical mucosa, and the rapid plasma reagin ratio titer was 1:256. The patient was eventually diagnosed with syphilitic cervicitis and treated with minocycline 0.1 g twice a day. The patient was cured with this treatment.

  12. Increased Sympathetic Renal Innervation in Hemodialysis Patients Is the Anatomical Substrate of Sympathetic Hyperactivity in End-Stage Renal Disease.

    Science.gov (United States)

    Mauriello, Alessandro; Rovella, Valentina; Anemona, Lucia; Servadei, Francesca; Giannini, Elena; Bove, Pierluigi; Anselmo, Alessandro; Melino, Gerry; Di Daniele, Nicola

    2015-11-26

    Renal denervation represents an emerging treatment for resistant hypertension in patients with end-stage renal disease, but data about the anatomic substrate of this treatment are lacking. Therefore, the aim of this study was to investigate the morphological basis of sympathetic hyperactivity in the setting of hemodialysis patients to identify an anatomical substrate that could warrant the use of this new therapeutic approach. The distribution of sympathetic nerves was evaluated in the adventitia of 38 renal arteries that were collected at autopsy or during surgery from 25 patients: 9 with end-stage renal disease on dialysis (DIAL group) and 16 age-matched control nondialysis patients (CTRL group). Patients in the DIAL group showed a significant increase in nerve density in the internal area of the peri-adventitial tissue (within the first 0.5 mm of the beginning of the adventitia) compared with the CTRL group (4.01±0.30 versus 2.87±0.28×mm(2), P=0.01). Regardless of dialysis, hypertensive patients with signs of severe arteriolar damage had a greater number of nerve endings in the most internal adventitia, and this number was significantly higher than in patients without hypertensive arteriolar damage (3.90±0.36 versus 2.87±0.41×mm(2), P=0.04), showing a correlation with hypertensive arteriolar damage rather than with hypertensive clinical history. The findings from this study provide a morphological basis underlying sympathetic hyperactivity in patients with end-stage renal disease and might offer useful information to improve the use of renal denervation in this group of patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Comparison of sympathetic nerve responses to neck and forearm isometric exercise

    Science.gov (United States)

    Steele, S. L. Jr; Ray, C. A.

    2000-01-01

    PURPOSE: Although the autonomic and cardiovascular responses to arm and leg exercise have been studied, the sympathetic adjustments to exercise of the neck have not. The purpose of the present study was twofold: 1) to determine sympathetic and cardiovascular responses to isometric contractions of the neck extensors and 2) to compare sympathetic and cardiovascular responses to isometric exercise of the neck and forearm. METHODS: Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate were measured in nine healthy subjects while performing isometric neck extension (INE) and isometric handgrip (IHG) in the prone position. After a 3-min baseline period, subjects performed three intensities of INE for 2.5 min each: 1) unloaded (supporting head alone), 2) 10% maximal voluntary contraction (MVC), and 3) 30% MVC, then subjects performed two intensities (10% and 30% MVC) of IHG for 2.5 min. RESULTS: Supporting the head by itself did not significantly change any of the variables. During [NE, MAP significantly increased by 10 +/- 2 and 31 +/- 4 mm Hg and MSNA increased by 67 +/- 46 and 168 +/- 36 units/30 s for 10% and 30% MVC, respectively. IHG and INE evoked similar responses at 10% MVC, but IHG elicited higher peak MAP and MSNA at 30% MVC (37 +/- 7 mm Hg (P INE can elicit marked increases in MSNA and cardiovascular responses but that it evokes lower peak responses as compared to IHG. We speculate that possible differences in muscle fiber type composition, muscle mass, and/or muscle architecture of the neck and forearm are responsible for these differences in peak responses.

  14. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension.

    Science.gov (United States)

    Donazzan, Luca; Mahfoud, Felix; Ewen, Sebastian; Ukena, Christian; Cremers, Bodo; Kirsch, Carl-Martin; Hellwig, Dirk; Eweiwi, Tareq; Ezziddin, Samer; Esler, Murray; Böhm, Michael

    2016-04-01

    To investigate, whether renal denervation (RDN) has a direct effect on cardiac sympathetic activity and innervation density. RDN demonstrated its efficacy not only in reducing blood pressure (BP) in certain patients, but also in decreasing cardiac hypertrophy and arrhythmias. These pleiotropic effects occur partly independent from the observed BP reduction. Eleven patients with resistant hypertension (mean office systolic BP 180 ± 18 mmHg, mean antihypertensive medications 6.0 ± 1.5) underwent I-123-mIBG scintigraphy to exclude pheochromocytoma. We measured cardiac sympathetic innervation and activity before and 9 months after RDN. Cardiac sympathetic innervation was assessed by heart to mediastinum ratio (H/M) and sympathetic activity by wash out ratio (WOR). Effects on office BP, 24 h ambulatory BP monitoring, were documented. Office systolic BP and mean ambulatory systolic BP were significantly reduced from 180 to 141 mmHg (p = 0.006) and from 149 to 129 mmHg (p = 0.014), respectively. Cardiac innervation remained unchanged before and after RDN (H/M 2.5 ± 0.5 versus 2.6 ± 0.4, p = 0.285). Cardiac sympathetic activity was significantly reduced by 67 % (WOR decreased from 24.1 ± 12.7 to 7.9 ± 25.3 %, p = 0.047). Both, responders and non-responders experienced a reduction of cardiac sympathetic activity. RDN significantly reduced cardiac sympathetic activity thereby demonstrating a direct effect on the heart. These changes occurred independently from BP effects and provide a pathophysiological basis for studies, investigating the potential effect of RDN on arrhythmias and heart failure.

  15. Neuronavigated percutaneous approach to the sphenopalatine ganglion.

    Science.gov (United States)

    Benedetto, Nicola; Perrini, Paolo

    2017-02-01

    The sphenopalatine ganglion (SPG) has been assumed to be involved in the genesis of several types of facial pain, including Sluder's neuralgia, trigeminal neuralgia, persistent idiopathic facial pain, cluster headache, and atypical facial pain. The gold standard treatments for SPG-related pain are percutaneous procedures performed with the aid of fluoroscopy or CT. In this technical note the authors present, for the first time, an SPG approach using the aid of a neuronavigator.

  16. Sphenopalatine ganglion treatment with radiofrequency in a Sluder syndrome young patient

    Directory of Open Access Journals (Sweden)

    Carmelo Costa

    2014-12-01

    Full Text Available Sluder's neuralgia or sphenopalatine ganglion neuralgia is a pain syndrome first described by Sluder in 1908. The clinical picture is characterised by pain starting around the eye and the route of nose. Typically the pain is accompanied by parasympathetic disautonomic signs such as lacrimation and/or rhinorrhea. However, many official headache classifications do not mention the Sluder's neuralgia at all, which is instead classified as a cluster headache (CH. In case of resistance to pharmacological management pain the physician could recur to sphenopalatine ganglion (GSP neurolytic block with continuous radiofrequency (CRF or its no ablative alternative with pulsed radiofrequency (PRF. We are presenting a case of a 16-year-old woman who suffered from a typical Sluder's neuralgia successfully treated with GSP PRF.

  17. Changes in the Skin Conductance Monitor as an End Point for Sympathetic Nerve Blocks.

    Science.gov (United States)

    Gungor, Semih; Rana, Bhumika; Fields, Kara; Bae, James J; Mount, Lauren; Buschiazzo, Valeria; Storm, Hanne

    2017-11-01

    There is a lack of objective methods for determining the achievement of sympathetic block. This study validates the skin conductance monitor (SCM) as an end point indicator of successful sympathetic blockade as compared with traditional monitors. This interventional study included 13 patients undergoing 25 lumbar sympathetic blocks to compare time to indication of successful blockade between the SCM indices and traditional measures, clinically visible hyperemia, clinically visible engorgement of veins, subjective skin temperature difference, unilateral thermometry monitoring, bilateral comparative thermometry monitoring, and change in waveform amplitude in pulse oximetry plethysmography, within a 30-minute observation period. Differences in the SCM indices were studied pre- and postblock to validate the SCM. SCM showed substantially greater odds of indicating achievement of sympathetic block in the next moment (i.e., hazard rate) compared with all traditional measures (clinically visible hyperemia, clinically visible engorgement of veins, subjective temperature difference, unilateral thermometry monitoring, bilateral comparative thermometry monitoring, and change in waveform amplitude in pulse oximetry plethysmography; P ≤ 0.011). SCM indicated successful block for all (100%) procedures, while the traditional measures failed to indicate successful blocks in 16-84% of procedures. The SCM indices were significantly higher in preblock compared with postblock measurements (P SCM is a more reliable and rapid response indicator of a successful sympathetic blockade when compared with traditional monitors. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Neural correlates of fear-induced sympathetic response associated with the peripheral temperature change rate.

    Science.gov (United States)

    Yoshihara, Kazufumi; Tanabe, Hiroki C; Kawamichi, Hiroaki; Koike, Takahiko; Yamazaki, Mika; Sudo, Nobuyuki; Sadato, Norihiro

    2016-07-01

    Activation of the sympathetic nervous system is essential for coping with environmental stressors such as fearful stimuli. Recent human imaging studies demonstrated that activity in some cortical regions, such as the anterior cingulate cortex (ACC) and anterior insula cortex (aIC), is related to sympathetic activity. However, little is known about the functional brain connectivity related to sympathetic response to fearful stimuli. The participants were 32 healthy, right-handed volunteers. Functional magnetic resonance imaging (fMRI) was used to examine brain activity when watching horror and control movies. Fingertip temperature was taken during the scanning as a measure of sympathetic response. The movies were watched a second time, and the degree of fear (9-point Likert-type scale) was evaluated every three seconds. The brain activity of the ACC, bilateral aIC, and bilateral anterior prefrontal cortex (aPFC) was correlated with the change rate of fingertip temperature, with or without fearful stimuli. Functional connectivity analysis revealed significantly greater positive functional connectivity between the amygdala and the ACC and between the amygdala and the aIC when watching the horror movie than when watching the control movie. Whole-brain psycho-physiological interaction (PPI) analysis revealed that the functional connectivity between the left amygdala and the ACC was modulated according to the fear rating. Our results indicate that the increased functional connectivity between the left amygdala and the ACC represents a sympathetic response to fearful stimuli. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Yrsa Bergmann Sverrisdóttir

    Full Text Available BACKGROUND: Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. METHODS AND RESULTS: In 10 healthy normotensive subjects (3 f/7 m, (age 37+/-11 yrs, (BMI 24+/-3 kg/m(2 direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index, was within the normal range (1.9-3.3 and MSNA was as expected for age and gender (13-44 burst/minute. RH-PAT index was inversely related to MSNA (r = -0.8, p = 0.005. RH-PAT index and MSNA were reciprocally related to time (h/week spent on physical activity (p = 0.005 and p = 0.006 respectively and platelet concentration (PLT (p = 0.02 and p = 0.004 respectively. CONCLUSIONS: Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular

  20. TOPOGRAPHIC ORGANIZATION AND SPECIALIZED AREAS IN THE RETINA OF Callopistes palluma: GANGLION CELL LAYER

    OpenAIRE

    Inzunza, Oscar; Barros B., Zitta; Bravo, Hermes

    1998-01-01

    In this paper we analyze the topographic distribution and cell body size of neurons (ganglion and displaced amacrine) of layer 8 of the retina in the chilean reptile Callopistes palluma; using whole mount retinaswith nissl stain. Callopistes palluma retina has an area centralis without fovea in which the ganglion cell density amounts 20.000 cells / µm2 while the displaced amacrine neurons is about 7.000 cells / µm2. This neural density decreased gradually towards the peripheral retina. A hor...

  1. Electroacupuncture Improved the Function of Myocardial Ischemia Involved in the Hippocampus-Paraventricular Nucleus-Sympathetic Nerve Pathway

    Directory of Open Access Journals (Sweden)

    Shuai Cui

    2018-01-01

    Full Text Available We investigated the hippocampus-paraventricular nucleus- (PVN- sympathetic nerve pathway in electroacupuncture (EA at the heart meridian for the treatment of myocardial ischemia by observing PVN neuronal discharge, sympathetic nerve discharge, and hemodynamics parameters. Sprague Dawley (SD rats were equally divided into four groups: Sham, Model, Model + EA, and Model + EA + Lesion. The model rat was established by ligating the left anterior descending branch of the coronary artery. Changes in the sympathetic nerve discharge and hemodynamic parameters were observed. The Model + EA exhibited a significantly lower discharge frequency of PVN neurons compared with the Model. The Model + EA + Lesion had a significantly higher discharge frequency compared with the Model + EA. The total discharge frequency of PVN neurons and interneurons were positively correlated with the sympathetic nerve discharge. The total discharge frequency of PVN neurons was positively correlated with heart rate (HR and negatively correlated with mean arterial pressure (MAP and rate pressure product (RPP. The discharge frequency of interneurons was positively correlated with HR and negatively correlated with MAP and RPP. The hippocampus-PVN-sympathetic nerve pathway is involved in electroacupuncture at the heart meridian and interneurons are the key neurons in PVNs.

  2. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    International Nuclear Information System (INIS)

    Maguire, G.W.; Smith, E.L. III

    1985-01-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by [ 3 H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [ 3 H]dopamine uptake compared with that of their matched controls. Normal appearing [ 3 H]GABA and [ 3 H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry

  3. [Relationship between sympathetic activity and response to treatment with atenolol in hypertensive patients. Investigation group of the study of efficiency and tolerance of atenolol in hypertensive patients with increase in the sympathetic activity].

    Science.gov (United States)

    de la Sierra, A

    1999-06-19

    Therapeutical response to antihypertensive treatment is poorly predicted by individual clinical or biochemical characteristics. Some preliminary data indicate that therapeutical response to atenolol might depend on physical and/or sympathetic activity. The aim of the present study was to evaluate the blood pressure response to atenolol depending on physical and sympathetic activity. One thousand one hundred forty hypertensive patients were treated with the beta adrenorecepetor blocker atenolol in an open fashion during 3 months. Before the beginning of the treatment, we evaluated current weekly physical activity (direct interview), as well as sympathetic activity (direct interview and baseline heart rate). Age or physical activity did not correlate with blood pressure response to atenolol. Conversely, hypertensive patients with symptoms suggesting sympathetic overactivity (three or more of the following symptoms: palpitations, anxiety, diaphoresis, headache, tremor or weakness; n = 456), showed a more pronounced decrease in systolic (27.7 [13.4] vs 25.8 [14.3] mmHg; p = 0.0226) and diastolic (17.6 [8.3] vs 15.5 [8.6] mmHg; p = 0.0001) blood pressures (SBP and DBP), with respect to the remaining hypertensive patients (n = 719). Moreover, we found a statistically significant correlation between blood pressure fall with atenolol and baseline heart rate (r = 0.107, P anxiety, emotional tension or sympathetic overactivity are associated with a more pronounced blood pressure fall to antihypertensive treatment with atenolol. These circumstances may play a role when choosing a new antihypertensive therapy.

  4. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice.

    Science.gov (United States)

    Waise, T M Zaved; Toshinai, Koji; Naznin, Farhana; NamKoong, Cherl; Md Moin, Abu Saleh; Sakoda, Hideyuki; Nakazato, Masamitsu

    2015-09-04

    A high-fat diet (HFD) induces inflammation in systemic organs including the hypothalamus, resulting in obesity and diabetes. The vagus nerve connects the visceral organs and central nervous system, and the gastric-derived orexigenic peptide ghrelin transmits its starvation signals to the hypothalamus via the vagal afferent nerve. Here we investigated the inflammatory response in vagal afferent neurons and the hypothalamus in mice following one day of HFD feeding. This treatment increased the number of macrophages/microglia in the nodose ganglion and hypothalamus. Furthermore, one-day HFD induced expression of Toll-like receptor 4 in the goblet cells of the colon and upregulated mRNA expressions of the proinflammatory biomarkers Emr1, Iba1, Il6, and Tnfα in the nodose ganglion and hypothalamus. Both subcutaneous administration of ghrelin and celiac vagotomy reduced HFD-induced inflammation in these tissues. HFD intake triggered inflammatory responses in the gut, nodose ganglion, and subsequently in the hypothalamus within 24 h. These findings suggest that the vagal afferent nerve may transfer gut-derived inflammatory signals to the hypothalamus via the nodose ganglion, and that ghrelin may protect against HFD-induced inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Adolescent sympathetic activity and salivary C-reactive protein: The effects of parental behavior.

    Science.gov (United States)

    Nelson, Benjamin W; Byrne, Michelle L; Simmons, Julian G; Whittle, Sarah; Schwartz, Orli S; Reynolds, Eric C; O'Brien-Simpson, Neil M; Sheeber, Lisa; Allen, Nicholas B

    2017-10-01

    This study utilized a novel multisystem approach to investigate the effect of observed parental behavior on the relationship between biological mechanisms associated with disease processes (i.e., autonomic physiology and immune response) among their adolescent children. Thirty-three adolescents (23 males), aged 11-13, and their parents participated in a laboratory session in which adolescents provided baseline measures of autonomic (sympathetic) activity, and adolescents and 1 parent participated in a laboratory based dyadic conflict resolution interaction task. This included 3 male parent/male adolescent dyads, 20 female parent/male adolescent dyads, 3 male parent/female adolescent dyads, and 7 female parent/female adolescent dyads. Approximately 3 years later, adolescents provided a salivary measure of C-Reactive Protein (sCRP) to index inflammation. Analyses revealed a positive association between sympathetic activity and sCRP, as well as a moderating role of positive parental behavior in this relationship, such that the association between sympathetic activity and sCRP was greater among adolescents whose parents displayed shorter duration of positive affect. Overall findings indicate parental behavior may influence the association between adolescent sympathetic activity and inflammatory processes. These findings have important implications for understanding the impact of psychosocial factors on biological mechanisms of disease. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Is the cervical spine clear? Undetected cervical fractures diagnosed only at autopsy.

    Science.gov (United States)

    Sweeney, J F; Rosemurgy, A S; Gill, S; Albrink, M H

    1992-10-01

    Undetected cervical-spine injuries are a nemesis to both trauma surgeons and emergency physicians. Radiographic protocols have been developed to avoid missing cervical-spine fractures but are not fail-safe. Three case reports of occult cervical fractures documented at autopsy in the face of normal cervical-spine radiographs and computerized tomography scans are presented.

  7. Cervical cancer

    Science.gov (United States)

    ... bleeding between periods, after intercourse, or after menopause Vaginal discharge that does not stop, and may be pale, ... Instructions Hysterectomy - abdominal - discharge Hysterectomy - laparoscopic - ... Images Cervical cancer Cervical neoplasia ...

  8. Retinal glia promote dorsal root ganglion axon regeneration.

    Directory of Open Access Journals (Sweden)

    Barbara Lorber

    Full Text Available Axon regeneration in the adult central nervous system (CNS is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.

  9. Reliability and validity of CODA motion analysis system for measuring cervical range of motion in patients with cervical spondylosis and anterior cervical fusion.

    Science.gov (United States)

    Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing

    2017-12-01

    The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.

  10. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    Science.gov (United States)

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. [Cervical cerclage].

    Science.gov (United States)

    Akladios, C Y; Sananes, N; Gaudineau, A; Boudier, E; Langer, B

    2015-10-01

    Cervical cerclage aims to strengthen not only the mechanical properties of the cervix, but also its immunological and anti-infectious functions. The demonstration of a strong interrelation between cervical insufficiency as well as decreased cervical length at endo-vaginal ultrasonography and infection has changed the indications cerclage. Actually we can distinguish three indications for cerclage: prophylactic, for obstetrical history; therapeutic, for shortened cervical length at ultrasonography in patients at risk and; emergency cerclage in case of threatening cervix at physical examination. The McDonald's technique is the most recommended. In case of failure, it is proposed to realize cerclage at a higher level on the cervix either by vaginal or abdominal route. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    OpenAIRE

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.; Chintala, Shravan K.

    2011-01-01

    The functional effect of curcumin, a free radical scavenger and an herbal medicine from Indian yellow curry spice, Curcuma longa, on protease-mediated retinal ganglion cell death was investigated. These results show, for the first time, that curcumin indeed prevents the protease-mediated death of RGCs, both in vitro and in vivo.

  13. Protective effect of oestradiol in the coeliac ganglion against ovarian apoptotic mechanism on dioestrus.

    Science.gov (United States)

    Cynthia, Bronzi; Cristina, Daneri Becerra; Adriana, Vega Orozco; Belén, Delsouc María; María, Rastrilla Ana; Marilina, Casais; Zulema, Sosa

    2013-05-01

    The aims of this work were to investigate if oestradiol 10(-8)M in the incubation media of either the ovary alone (OV) or the ganglion compartment of an ex vivo coeliac ganglion-superior ovarian nerve-ovary system (a) modifies the release of ovarian progesterone (P4) and oestradiol (E2) on dioestrus II, and (b) modifies the ovarian gene expression of 3β-HSD and 20α-HSD enzymes and markers of apoptosis. The concentration of ovarian P4 release was measured in both experimental schemes, and ovarian P4 and E2 in the ex vivo system by RIA at different times. The expression of 3β-hydroxysteroid dehydrogenase, 20α-hydroxysteroid dehydrogenase and antiapoptotic bcl-2 and proapoptotic bax by RT-PCR were determined. E2 added in the coeliac ganglion caused an increase in the ovarian release of the P4, E2 and 3β-HSD, while in the ovary incubation alone it decreased P4 and 3β-HSD but increased and 20α-HSD and bax/bcl-2 ratio. It is concluded that through a direct effect on the ovary, E2 promotes luteal regression in DII rats, but the addition of E2 in the coeliac ganglion does not have the same effect. The peripheral nervous system, through the superior ovarian nerve, has a protective effect against the apoptotic mechanism on DII. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Anorexia nervosa depends on adrenal sympathetic hyperactivity: opposite neuroautonomic profile of hyperinsulinism syndrome

    Directory of Open Access Journals (Sweden)

    Lechin F

    2010-09-01

    Full Text Available Fuad Lechin1,2, Bertha van der Dijs1,2, Betty Pardey-Maldonado1, Jairo E Rivera1, Scarlet Baez1, Marcel E Lechin31Department of Pathophysiology, Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Caracas; 2Instituto de Vias Digestivas Caracas, Centro Clínico Profesional, Caracas, Venezuela; 3Department of Internal Medicine, Texas A and M Health Science Center, College of Medicine, Texas, USAObjective: The aim of our study was to determine the central and peripheral autonomic nervous system profiles underlying anorexia nervosa (AN syndrome, given that affected patients present with the opposite clinical profile to that seen in the hyperinsulinism syndrome.Design: We measured blood pressure and heart rate, as well as circulating neurotransmitters (noradrenaline, adrenaline, dopamine, plasma serotonin, and platelet serotonin, using high-performance liquid chromatography with electrochemical detection, during supine resting, one minute of orthostasis, and after five minutes of exercise. In total, 22 AN patients (12 binge-eating/purging type and 10 restricting type and age-, gender-, and race-matched controls (70 ± 10.1% versus 98 ± 3.0% of ideal body weight were recruited.Results: We found that patients with AN had adrenal sympathetic overactivity and neural sympathetic underactivity, demonstrated by a predominance of circulating adrenaline over noradrenaline levels, not only during the supine resting state (52 ± 2 versus 29 ± 1 pg/mL but also during orthostasis (67 ± 3 versus 32 ± 2 pg/mL, P < 0.05 and after exercise challenge (84 ± 4 versus 30 ± 3 pg/mL, P < 0.01.Conclusion: Considering that this peripheral autonomic nervous system disorder depends on the absolute predominance of adrenomedullary C1 adrenergic nuclei over A5 noradrenergic pontine nucleus, let us ratify the abovementioned findings. The AN syndrome depends on the

  15. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U

    1987-01-01

    vasoconstriction normally seen after lowering the forearm 40 cm below heart level was absent since SBF only decreased by 4% (+/- 7%, P greater than 0.1) during these conditions. In head-up vertical position we noticed a diminished baroreceptor response as SBF at heart level was reduced by 11% (+/- 7%, P greater...... than 0.1) compared to supine position. After proximal local anaesthesia SBF increased by 351% (+/- 81%, P less than 0.01) and disclosed a normal vasoconstrictor response as SBF was reduced by 53% (+/- 5%, P less than 0.01) during arm lowering. Five of the treated patients were restudied.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  16. Does transcutaneous nerve stimulation have effect on sympathetic skin response?

    Science.gov (United States)

    Okuyucu, E Esra; Turhanoğlu, Ayşe Dicle; Guntel, Murat; Yılmazer, Serkan; Savaş, Nazan; Mansuroğlu, Ayhan

    2018-01-01

    This study examined the effects of transcutaneous electrical nerve stimulation (TENS) on the sympathetic nerve system by sympathetic skin response test. Fifty-five healthy volunteers received either: (i) 30minutes TENS (25 participants) (ii) 30minutes sham TENS (30 participants) and SSR test was performed pre- and post-TENS. The mean values of latency and peak-to-peak amplitude of five consecutive SSRs were calculated. A significant amplitude difference was found between TENS and sham TENS group both in right and left hand (p=0.04, p=0.01, respectively). However there was no significant latancy difference between two groups (p>0.05 ). TENS has an inhibitory effect on elicited SNS responses when compared with sham TENS control group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion.

    Directory of Open Access Journals (Sweden)

    Keisuke Yonehara

    Full Text Available The direction of image motion is coded by direction-selective (DS ganglion cells in the retina. Particularly, the ON DS ganglion cells project their axons specifically to terminal nuclei of the accessory optic system (AOS responsible for optokinetic reflex (OKR. We recently generated a knock-in mouse in which SPIG1 (SPARC-related protein containing immunoglobulin domains 1-expressing cells are visualized with GFP, and found that retinal ganglion cells projecting to the medial terminal nucleus (MTN, the principal nucleus of the AOS, are comprised of SPIG1+ and SPIG1(- ganglion cells distributed in distinct mosaic patterns in the retina. Here we examined light responses of these two subtypes of MTN-projecting cells by targeted electrophysiological recordings. SPIG1+ and SPIG1(- ganglion cells respond preferentially to upward motion and downward motion, respectively, in the visual field. The direction selectivity of SPIG1+ ganglion cells develops normally in dark-reared mice. The MTN neurons are activated by optokinetic stimuli only of the vertical motion as shown by Fos expression analysis. Combination of genetic labeling and conventional retrograde labeling revealed that axons of SPIG1+ and SPIG1(- ganglion cells project to the MTN via different pathways. The axon terminals of the two subtypes are organized into discrete clusters in the MTN. These results suggest that information about upward and downward image motion transmitted by distinct ON DS cells is separately processed in the MTN, if not independently. Our findings provide insights into the neural mechanisms of OKR, how information about the direction of image motion is deciphered by the AOS.

  18. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study

    NARCIS (Netherlands)

    Driessen, Antoine H. G.; Berger, Wouter R.; Krul, Sébastien P. J.; van den Berg, Nicoline W. E.; Neefs, Jolien; Piersma, Femke R.; Chan Pin Yin, Dean R. P. P.; de Jong, Jonas S. S. G.; van Boven, WimJan P.; de Groot, Joris R.

    2016-01-01

    Patients with long duration of atrial fibrillation (AF), enlarged atria, or failed catheter ablation have advanced AF and may require more extensive treatment than pulmonary vein isolation. The aim of this study was to investigate the efficacy and safety of additional ganglion plexus (GP) ablation

  19. Processing of natural temporal stimuli by macaque retinal ganglion cells

    NARCIS (Netherlands)

    Hateren, J.H. van; Rüttiger, L.; Lee, B.B.

    2002-01-01

    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the

  20. Clinical evaluation of 123I-MIBG for assessment of sympathetic nervous system in the heart

    International Nuclear Information System (INIS)

    Hirosawa, Koushitiro; Tanaka, Takeshi; Hisada, Kin-ichi; Bunko, Hisashi.

    1991-01-01

    Multi-center clinical trial of 123 I-metaiodobenzylguanidine ( 123 I-MIBG) was carried out to assess its utility as a scintigraphic imaging agent reflecting sympathetic neuronal function in cardiovascular field. Studies were performed on patients with heart diseases of three categories, myocardial infarction, angina pectoris and cardiomyopathy. Scintigraphic images, reflecting sympathetic neuronal function, were obtained with 123 I-MIBG from all of those categories of patients and the efficacy of the imaging was revealed in 781 (95.0%) out of 822 patients. In some patients abnormality was suggested in sympathetic neuronal function with 123 I-MIBG imaging, in spite of normal findings with myocardial perfusion scintigraphy by 201 TlCl. In all 981 patients studied with 123 I-MIBG, there have been no severe adverse reactions, except complaints of burning on injection site of the agent or nausea, ect. from 4 patients. We conclude that 123 I-MIBG imaging is one of the effective tools for diagnostic use reflecting topical sympathetic neuronal function in the heart, judging from its safety and efficacy. (author)

  1. Headache of cervical origin

    Energy Technology Data Exchange (ETDEWEB)

    Burguet, J L; Wackenheim, A

    1984-08-01

    The authors recall cervical etiologies of headache. They distinguish on the one hand the cervico-occipital region with minor and major malformations and acquired lesions, and on the other hand the middle and inferior cervical segment. They also recall the original structuralist analysis of the cervical spine and give the example of the ''cervical triplet''.

  2. Neuroprotection of the rat’s retinal ganglion cells against glutamate-induced toxicity

    Directory of Open Access Journals (Sweden)

    Kariman M.A El-Gohari

    2016-01-01

    Conclusion Taurine protects the retina against glutamate excitotoxicity and could have clinical implications in protecting the ganglion cells from several ophthalmic diseases such as glaucoma and diabetic retinopathy.

  3. The rheumatoid cervical spine: Signs of instability on plain cervical radiographs

    International Nuclear Information System (INIS)

    Roche, Clare J.; Eyes, Brian E.; Whitehouse, Graham H.

    2002-01-01

    The cervical spine is a common focus of destruction from rheumatoid arthritis, second only to the metacarpophalangeal joints. Joint, bone and ligament damage in the cervical spine leads to subluxations which can cause cervical cord compression resulting in paralysis and even sudden death. Because many patients with significant subluxations are asymptomatic, the radiologist plays a key role in recognizing the clinically important clues to instability on plain radiographs of the cervical spine-often difficult in rheumatoid arthritis when the bony landmarks are osteoporotic or eroded. This review focuses on the signs of instability on plain radiographs of the cervical spine, using diagrams and clinical examples to illustrate methods of identifying significant subluxations in rheumatoid arthritis. Roche, C.J., Eyes, B.E. and Whitehouse, G.H. (2002)

  4. CORRELATION BETWEEN CERVICAL SAGITTAL ALIGNMENT AND FUNCTIONAL CAPACITY IN CERVICAL SPONDYLOSIS

    Directory of Open Access Journals (Sweden)

    Marcel Machado da Motta

    Full Text Available ABSTRACT Objective: To correlate the radiographic parameters of sagittal cervical alignment with quality of life and functional capacity in patients with cervical spondylosis under conservative treatment. Methods: This is an observational and prospective study in patients with cervical spondylosis under conservative treatment and without indication for surgery. The 52 patients included were divided into three groups: axial pain, radiculopathy, and cervical myelopathy. The radiographic parameters considered were cervical lordosis (CL, cervical sagittal vertical axis (CSVA, T1 slope (TS and the discrepancy between TS and CL (TS-CL. Quality of life and functional capacity were evaluated by the Neck Disability Index (NDI questionnaire. Pain was assessed by the Visual Analogue Scale (VAS. The correlation between the radiographic parameters and the clinical scores was evaluated by the Pearson correlations coefficient. Results: There was no difference in cervical radiographic parameters between the three groups. In the total of the sample, the mean value of the CSVA was 17.8o (±8.3o, CL, 22.4° (± 8.8°; TS, 29.3° (±6.6°, and TS-CL, 7.0° (±7.4°. Significant inverse correlation (r= -0.3, p=0.039 was observed between NDI and CL, but there was no significant correlation between CL and VAS. CSVA (p=0.541, TS (p=0.287 and TS-CL (p=0.287 had no significantly correlated with NDI or VAS. Conclusion: Considering patients with cervical spondylosis not candidates for surgery, the only sagittal parameter that correlated with functional capacity was LC. In these patients, the correlation between cervical alignment and quality of life needs to be better characterized.

  5. Headache of cervical origin

    International Nuclear Information System (INIS)

    Burguet, J.L.; Wackenheim, A.

    1984-01-01

    The authors recall cervical etiologies of headache. They distinguish on the one hand the cervico-occipital region with minor and major malformations and acquired lesions, and on the other hand the middle and inferior cervical segment. They also recall the original structuralist analysis of the cervical spine and give the example of the ''cervical triplet''. (orig.) [de

  6. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  7. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  8. A novel model for rapid induction of apoptosis in spiral ganglions of mice.

    Science.gov (United States)

    Lee, Ji Eun; Nakagawa, Takayuki; Kim, Tae Soo; Iguchi, Fukuichiro; Endo, Tsuyoshi; Dong, Youyi; Yuki, Kazuo; Naito, Yasushi; Lee, Sang Heun; Ito, Juichi

    2003-06-01

    The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course. Laboratory study using experimental animals. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration.

  9. Cervical Cancer

    Science.gov (United States)

    ... the place where a baby grows during pregnancy. Cervical cancer is caused by a virus called HPV. The ... for a long time, or have HIV infection. Cervical cancer may not cause any symptoms at first. Later, ...

  10. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    Science.gov (United States)

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  11. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  12. The Effects of Sympathetic Inhibition on Metabolic and Cardiopulmonary Responses to Exercise in Hypoxic Conditions.

    Science.gov (United States)

    Scalzo, Rebecca L; Peltonen, Garrett L; Binns, Scott E; Klochak, Anna L; Szallar, Steve E; Wood, Lacey M; Larson, Dennis G; Luckasen, Gary J; Irwin, David; Schroeder, Thies; Hamilton, Karyn L; Bell, Christopher

    2015-12-01

    Pre-exertion skeletal muscle glycogen content is an important physiological determinant of endurance exercise performance: low glycogen stores contribute to premature fatigue. In low-oxygen environments (hypoxia), the important contribution of carbohydrates to endurance performance is further enhanced as glucose and glycogen dependence is increased; however, the insulin sensitivity of healthy adult humans is decreased. In light of this insulin resistance, maintaining skeletal muscle glycogen in hypoxia becomes difficult, and subsequent endurance performance is impaired. Sympathetic inhibition promotes insulin sensitivity in hypoxia but may impair hypoxic exercise performance, in part due to suppression of cardiac output. Accordingly, we tested the hypothesis that hypoxic exercise performance after intravenous glucose feeding in a low-oxygen environment will be attenuated when feeding occurs during sympathetic inhibition. On 2 separate occasions, while breathing a hypoxic gas mixture, 10 healthy men received 1 hour of parenteral carbohydrate infusion (20% glucose solution in saline; 75 g), after which they performed stationary cycle ergometer exercise (~65% maximal oxygen uptake) until exhaustion. Forty-eight hours before 1 visit, chosen randomly, sympathetic inhibition via transdermal clonidine (0.2 mg/d) was initiated. The mean time to exhaustion after glucose feeding both with and without sympathetic inhibition was not different (22.7 ± 5.4 minutes vs 23.5 ± 5.1 minutes; P = .73). Sympathetic inhibition protects against hypoxia-mediated insulin resistance without influencing subsequent hypoxic endurance performance. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Clinical Guidelines for Stellate Ganglion Block to Treat Anxiety Associated With Posttraumatic Stress Disorder

    Science.gov (United States)

    2015-07-01

    maintained by the sympathetic branch of the autonomic nervous system as well as the somatic nervous system. Block- ade of the sympathetic nervous...through sternocleidomas- toid, continuing just ventral to the tip of the anterior tubercle of C6, then continuing on until the needle tip has just...know that questioning them is just another way to monitor how they are doing. It is absolutely critical to constantly keep the needle tip in view. If

  14. Experiencing Physical Pain Leads to More Sympathetic Moral Judgments

    Science.gov (United States)

    Xiao, Qianguo; Zhu, Yi; Luo, Wen-bo

    2015-01-01

    Previous studies have shown that observing another’s pain can evoke other-oriented emotions, which instigate empathic concern for another’s needs. It is not clear whether experiencing first-hand physical pain may also evoke other-oriented emotion and thus influence people’s moral judgment. Based on the embodied simulation literature and neuroimaging evidence, the present research tested the idea that participants who experienced physical pain would be more sympathetic in their moral judgments. Study 1 showed that ice-induced physical pain facilitated higher self-assessments of empathy, which motivated participants to be more sympathetic in their moral judgments. Study 2 confirmed findings in study 1 and also showed that State Perspective Taking subscale of the State Empathy Scale mediated the effects of physical pain on moral judgment. These results provide support for embodied view of morality and for the view that pain can serve a positive psychosocial function. PMID:26465603

  15. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension.

    Science.gov (United States)

    Sata, Yusuke; Head, Geoffrey A; Denton, Kate; May, Clive N; Schlaich, Markus P

    2018-01-01

    The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA) is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target.

  16. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    Science.gov (United States)

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic

  17. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells.

    Science.gov (United States)

    Yuan, Jing; Yu, Jian-Xiong

    2016-05-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.

  18. Gudmundur Finnbogason, "sympathetic understanding," and early Icelandic psychology.

    Science.gov (United States)

    Pind, Jörgen L

    2008-05-01

    Gudmundur Finnbogason (1873-1944) was a pioneer of Icelandic psychology. He was educated at the University of Copenhagen where he finished his M.A. in 1901 in philosophy, specializing in psychology. During the years 1901-1905, Finnbogason played a major role in establishing and shaping the future of primary education in Iceland. He defended his doctoral thesis on "sympathetic understanding" at the University of Copenhagen in 1911. This work deals with the psychology of imitation. In it Finnbogason defends the view that imitation is basically perception so that there is a direct link from perception to motor behavior. Through imitation people tend to assume the countenance and demeanor of other people, thus showing, in Finnbogason's terminology, "sympathetic understanding." Finnbogason's theory of imitation in many respects anticipates contemporary approaches to the psychology of imitation. In 1918 Finnbogason became professor of applied psychology at the recently founded University of Iceland. Here he attempted to establish psychology as an independent discipline. In this he was unsuccessful; his chair was abolished in 1924.

  19. Chemical lumbar sympathetic plexus block in Buerger′s disease: Current scenario

    Directory of Open Access Journals (Sweden)

    Rampal Singh

    2014-01-01

    Full Text Available Introduction: High incidences of Buerger′s disease (43-62% in India draw our attention towards available treatment modalities in such patients. Patients with this disease are in severe pain and agony. Pain relief by any means remains first and foremost priority in such patients and if patient is able to sleep even one pain free night it is a boon for the patients. The purpose of study was to test the hypothesis that lumber sympathetic block relieves the pain of ischemic limb in Buerger′s disease. Aims and Objectives: To study the effect of chemical lumber sympathetic block on visual analog score (VAS score and walking distance of the patients. Materials and Methods: Lumber sympathetic block was given under C-arm guidance with 17.5 cm long 22 G spinal needle at L3 and L4 level. Diagnostic block was given initially with plain bupivacaine 0.25% with two needle technique. Total seven blocks series were given in all patients. Final block was given with phenol 8%, 8 ml at L3 and L4 level. In postoperative period, VAS score was observed. Effect of block on walking distance was assessed on 3 rd day before giving next block. Statistical analysis: Software Statistical Package for Social Sciences (SPSS version 11.5 was used for statistical analysis. Data were analyzed by paired t-test and P-value < 0.05 was considered as significant. Results: Both VAS and walking distance improved significantly after each successive block. Healing of ulcers of foot is also noted. Conclusion: Despite advances in treatment modalities in such patients, lumber sympathetic block is still very cost-effective, safe, and least-invasive technique in treating painful ischemic legs.

  20. Sensory and sympathetic correlates of heat pain sensitization and habituation in men and women.

    Science.gov (United States)

    Breimhorst, M; Hondrich, M; Rebhorn, C; May, A; Birklein, F

    2012-10-01

    Habituation and sensitization are important behavioural responses to repeated exposure to painful stimuli, but little is known about the factors determining sensory, affective and sympathetic habituation to repeated pain stimulation in men and women. Thirty volunteers (15 women) underwent a standardized heat pain paradigm spread over 8 consecutive days. At the beginning of the experiment, personality dimensions, coping strategies and pain catastrophizing thoughts were determined. Receiving a series of 10 blocks of six painful heat stimuli a day, participants rated pain intensity and unpleasantness. Skin conductance was recorded throughout the sessions. The results show similar habituation of both the sensory and affective dimensions of pain in men and women, although skin conductance did not undergo a significant decrease across the eight days. When focusing on single daily sessions, women showed pain sensitization but sympathetic habituation, while men showed pain sensitization but stable sympathetic activation. Our findings therefore indicate that the process of long-term habituation to painful heat stimuli is a common feature in both genders, whereas men and women might differently recruit their sympathetic nervous system for short-term pain processing. This study could potentially help to better evaluate gender-specific mechanisms in pain perception. © 2012 European Federation of International Association for the Study of Pain Chapters.

  1. Real-Time Imaging of Retinal Ganglion Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Timothy E. Yap

    2018-06-01

    Full Text Available Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.

  2. Cervical cancer - screening and prevention

    Science.gov (United States)

    Cancer cervix - screening; HPV - cervical cancer screening; Dysplasia - cervical cancer screening; Cervical cancer - HPV vaccine ... Almost all cervical cancers are caused by HPV (human papilloma virus). HPV is a common virus that spreads through sexual contact. Certain ...

  3. TTV and HPV co-infection in cervical smears of patients with cervical lesions

    Directory of Open Access Journals (Sweden)

    Tachezy Ruth

    2009-07-01

    Full Text Available Abstract Background The female lower genital tract is a gateway for pathogens entering the host through the mucous membrane. One of the prevalent human viruses is Torque teno virus (TTV. The major reported routes of TTV transmission are fecal-oral and parenteral. Furthermore, other modes of transmission, e.g. sexual contact, are suggested. To investigate the sexual route of TTV transmission, cervical smears of healthy women and those with cervical lesions were screened for the presence of TTV DNA. Methods TTV DNA was studied in cervical smears of 95 patients with cervical lesions and 55 healthy women. Paired serum samples were available from 55 and 42 women, respectively. All healthy women had normal cytology while 44 patients had histologically confirmed low-grade lesion (LGL and 51 high-grade lesion (HGL. TTV DNA was detected with primers specific for the non-coding region. In 40 paired cervical smears and serum samples, the phylogenetic group of TTV isolates was determined. The presence of HPV DNA in cervical smears was detected by means of PCR with MY09/11 primers. Results The prevalence of TTV DNA in cervical smears of healthy women was 52.7% and was comparable with that in paired serum samples (50%. Symptomatic women had significantly higher prevalence of TTV DNA in cervical smears (74.7% than healthy controls. The TTV DNA prevalence in patient serum samples was 51%. The phylogenetic groups of TTV serum isolates were concordant with those of TTV from cervical smears of the same subjects. In cervical smears, a wider variety of TTV isolates was found. The viral loads in cervical smears were 10 to 1000 times as high as in sera. The HPV-positive study subjects had significantly higher TTV DNA prevalence than HPV negatives. The prevalence of TTV was not associated with disease severity. Conclusion High prevalence of TTV in cervical smears suggests that sexual transmission is another mode of expansion of TTV infection among the population. The

  4. SCREENING FOR CERVICAL CANCER

    African Journals Online (AJOL)

    Enrique

    Cervical cancer remains a major health concern worldwide, especially in devel- ... Important aspects of cervical cancer screening include the age at which .... High-risk types HPV (16,18) are impli- cated in the pathogenesis of cervical cancer.

  5. Pathophysiology of cervical myelopathy.

    Science.gov (United States)

    Baptiste, Darryl C; Fehlings, Michael G

    2006-01-01

    Cervical myelopathy is a group of closely related disorders usually caused by spondylosis or by ossification of the posterior longitudinal ligament and is characterized by compression of the cervical spinal cord or nerve roots by varying degrees and number of levels. The decrease in diameter of the vertebral canal secondary to disc degeneration and osteophytic spurs compresses the spinal cord and nerve roots at one or several levels, producing direct damage and often secondary ischemic changes. Clinicians who treat cervical myelopathy cord injuries should have a basic understanding of the pathophysiology and the processes that are initiated after the spinal cord has been injured. Literature review. Literature review of human cervical myelopathy and clinically relevant animal models to further our understanding of the pathological mechanisms involved. The pathophysiology of cervical myelopathy involves static factors, which result in acquired or developmental stenosis of the cervical canal and dynamic factors, which involve repetitive injury to the cervical cord. These mechanical factors in turn result in direct injury to neurons and glia as well as a secondary cascade of events including ischemia, excitotoxicity, and apoptosis; a pathobiology similar to that occurring in traumatic spinal cord injury. This review summarizes some of the significant pathophysiological processes involved in cervical myelopathy.

  6. The Sympathetic Release Test: A Test Used to Assess Thermoregulation and Autonomic Control of Blood Flow

    Science.gov (United States)

    Tansey, E. A.; Roe, S. M.; Johnson, C. J.

    2014-01-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the…

  7. Distinguishing ischaemic optic neuropathy from optic neuritis by ganglion cell analysis.

    Science.gov (United States)

    Erlich-Malona, Natalie; Mendoza-Santiesteban, Carlos E; Hedges, Thomas R; Patel, Nimesh; Monaco, Caitlin; Cole, Emily

    2016-12-01

    To determine whether a pattern of altitudinal ganglion cell loss, as detected and measured by optical coherence tomography (OCT), can be used to distinguish non-arteritic ischaemic optic neuropathy (NAION) from optic neuritis (ON) during the acute phase, and whether the rate or severity of ganglion cell loss differs between the two diseases. We performed a retrospective, case-control study of 44 patients (50 eyes) with ON or NAION and 44 age-matched controls. Non-arteritic ischaemic optic neuropathy and ON patients had OCT at presentation and four consecutive follow-up visits. Controls had OCT at one point in time. The ganglion cell complex (GCC) was evaluated in the macula, and the retinal nerve fibre layer (RNFL) was evaluated in the peripapillary region. Ganglion cell complex thickness, RNFL thickness and GCC mean superior and inferior hemispheric difference were compared between NAION and ON patients at each time-point using unpaired t-tests and between disease and control subjects at first measurement using paired t-tests. Mean time from onset of symptoms to initial presentation was 10.7 ± 6.6 days in NAION and 11.7 ± 8.6 days in ON (p = 0.67). There was a significantly greater vertical hemispheric difference in GCC thickness in NAION patients than ON patients at all time-points (5.5-10.7 μm versus 3.1-3.6 μm, p = 0.01-0.049). Mean GCC thickness was significantly decreased at less than 2 weeks after onset in NAION compared to age-matched controls (72.1 μm versus 82.1 μm, p < 0.001), as well as in ON compared to age-matched controls (74.3 μm versus 84.5 μm, p < 0.001). Progression and severity of GCC and RNFL loss did not differ significantly between NAION and ON. A quantitative comparison of mean superior and inferior hemispheric GCC thickness with OCT may be used to distinguish NAION from ON. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Cervical bracing practices after degenerative cervical surgery: a survey of cervical spine research society members.

    Science.gov (United States)

    Lunardini, David J; Krag, Martin H; Mauser, Nathan S; Lee, Joon Y; Donaldson, William H; Kang, James D

    2018-05-21

    Context: Prior studies have shown common use of post-operative bracing, despite advances in modern day instrumentation rigidity and little evidence of brace effectiveness. To document current practice patterns of brace use after degenerative cervical spine surgeries among members of the Cervical Spine Research Society (CSRS), to evaluate trends, and to identify areas of further study. A questionnaire survey METHODS: A 10 question survey was sent to members of the Cervical Spine Research Society to document current routine bracing practices after various common degenerative cervical spine surgical scenarios, including fusion and non-fusion procedures. The overall bracing rate was 67%. This included 8.4% who used a hard collar in each scenario. Twenty-two percent of surgeons never used a hard collar, while 34% never used a soft collar, and 3.6% (3 respondents) did not use a brace in any surgical scenario. Bracing frequency for specific surgical scenarios varied from 39% after foraminotomy to 88% after multi-level corpectomy with anterior & posterior fixation. After one, two and three level anterior cervical discectomy & fusion (ACDF), bracing rates were 58%, 65% and 76% for an average of 3.3, 4.3 and 5.3 weeks, respectively. After single level corpectomy, 77% braced for an average of 6.2 weeks. After laminectomy and fusion, 72% braced for an average of 5.4 weeks. Significant variation persists among surgeons on the type and length of post-operative brace usage after cervical spine surgeries. Overall rates of bracing have not changed significantly with time. Given the lack evidence in the literature to support bracing, reconsidering use of a brace after certain surgeries may be warranted. Copyright © 2018. Published by Elsevier Inc.

  9. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  10. Cervical Cancer Stage IA

    Science.gov (United States)

    ... historical Searches are case-insensitive Cervical Cancer Stage IA Add to My Pictures View /Download : Small: 720x576 ... Large: 3000x2400 View Download Title: Cervical Cancer Stage IA Description: Stage IA1 and IA2 cervical cancer; drawing ...

  11. Cervical Cancer Stage IIIA

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IIIA Add to My Pictures View /Download : ... 1275x1275 View Download Large: 2550x2550 View Download Title: Cervical Cancer Stage IIIA Description: Stage IIIA cervical cancer; drawing ...

  12. Cervical Cancer—Patient Version

    Science.gov (United States)

    Cervical cancer is the fourth most common cancer in women worldwide. The primary risk factor for cervical cancer is human papillomavirus (HPV) infection. Start here to find evidence-based information on cervical cancer treatment, causes and prevention, screening, research, and statistics.

  13. Cervical Cancer Stage IVA

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IVA Add to My Pictures View /Download : ... 1575x1200 View Download Large: 3150x2400 View Download Title: Cervical Cancer Stage IVA Description: Stage IVA cervical cancer; drawing ...

  14. Cervical Cancer Stage IVB

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IVB Add to My Pictures View /Download : ... 1200x1305 View Download Large: 2400x2610 View Download Title: Cervical Cancer Stage IVB Description: Stage IVB cervical cancer; drawing ...

  15. Sympathetic ingrowth: A result of cholinergic nerve injury in the adult mammalian brain

    International Nuclear Information System (INIS)

    Davis, J.N.

    1986-01-01

    This paper describes sympathetic ingrowth, its regulation and function. The study leads to a better understanding of the molecular mechanisms that probably underlie the regulation of other neuronal rearrangements. The authors examine tritium-2-deoxyglucose uptake in the hippocampal formation after septal leasions. Preliminary experiments suggest that the septo-hippocampal fibers do influence tritium-2-deoxyglucose uptake throughout the hippocampal formation in normal animals. If sympathetic ingrowth also can influence this uptake, this could provide further evidence for an adaptive role of this noradrenergic replacement of cholinergic neurons

  16. Subchondral synovial cysts (intra-osseous ganglion)

    International Nuclear Information System (INIS)

    Graf, L.; Freyschmidt, J.

    1988-01-01

    Twelve cases of subchondral synovial cysts (intra-osseous ganglion) have been seen and their clinical features, radiological findings and differential diagnosis are described. The lesion is a benign cystic tumour-like mass in the subchondral portion of a synovial joint. Our findings in respect of age, sex and localisation are compared with those of other authors. The aetiology and pathogenesis of the lesion is not completely understood. There is an increased incidence in middle life and joints with high dynamic and static stress are favoured, particularly in the lower extremities. Chronic stress or microtrauma, causing damage to the involved joint, therefore appears to be a plausible explanation. (orig.) [de

  17. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension

    Directory of Open Access Journals (Sweden)

    Yusuke Sata

    2018-03-01

    Full Text Available The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target.

  18. Bilateral sphenopalatine ganglion block reduces blood pressure in never treated patients with essential hypertension. A randomized controlled single-blinded study.

    Science.gov (United States)

    Triantafyllidi, Helen; Arvaniti, Chrysa; Schoinas, Antonios; Benas, Dimitris; Vlachos, Stefanos; Palaiodimos, Leonidas; Pavlidis, George; Ikonomidis, Ignatios; Batistaki, Chrysanthi; Voumvourakis, Costas; Lekakis, John

    2018-01-01

    Sympathetic fibers connect sphenopalatine ganglion (SPG) with the central nervous system. We aimed to study the effect of SPG block in blood pressure (BP) in never treated patients with stage I-II essential hypertension. We performed bilateral SPG block with lidocaine 2% in 33 hypertensive patients (mean age 48±12years, 24 men) and a sham operation with water for injection in 11 patients who served as the control group (mean age 51±12years, 8 men). All patients have been subjected to 24h ambulatory blood pressure monitoring prior and a month after the SBG block in order to estimate any differences in blood pressure parameters. We defined as responders to SBG block those patients with a 24h SBP decrease ≥5mmHg. We found that 24h and daytime DBP (p=0.02) as well as daytime DBP load (p=0.03) were decreased in the study group a month after SPG block. In addition, a significant response was noted in 12/33 responders (36%) regarding: a. SBP and DBP during overall 24h and daytime (pblock is a promising, minimally invasive option of BP decrease in hypertensives, probably through SNS modulation. Additionally, due to its anesthetic effect, SPG block might act as a method of selection for those hypertensive patients with an activated SNS before any other invasive antihypertensive procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Intratympanic steroid prevents long-term spiral ganglion neuron loss in experimental meningitis

    DEFF Research Database (Denmark)

    Worsøe, Lise Lotte; Brandt, C.T.; Lund, S.P.

    2010-01-01

    Hypothesis: Intratympanic steroid treatment prevents hearing loss and cochlear damage in a rat model of pneumococcal meningitis. Background: Sensorineural hearing loss is a long-term complication of meningitis affecting up to a third of survivors. Streptococcus pneumoniae is the bacterial species...... for 3 days. Hearing loss and cochlear damage were assessed by distortion product otoacoustic emissions, auditory brainstem response at 16 kHz, and spiral ganglion neuron density. Results: Fifty-six days after infection, auditory brainstem response showed no significant differences between groups...... in the spiral ganglion compared with both intratympanic and systemic saline (p = 0.0082 and p = 0.0089; Mann-Whitney test). Histology revealed fibrosis of the tympanic membrane and cavity in steroid-treated animals, which plausibly caused the low-frequency hearing loss. Conclusion: Intratympanic betamethasone...

  20. J.H. Pons on 'Sympathetic insanity': With an introduction by GE Berrios.

    Science.gov (United States)

    Berrios, G E; Pons, J H

    2014-09-01

    The ancient concept of 'sympathy' originally referred to a putative affinity or force that linked all natural objects together. This notion was later used to explain the manner in which human beings related and felt for each other. A large literature exists on both the physical and psychological definitions of sympathy. Until the nineteenth century the conceptual apparatus of medicine preserved the view that the organs of the human body had a sympathetic affinity for each other. In addition to these 'physiological' (normal) sympathies there were morbid ones which explained the existence of various diseases. A morbid sympathy link also explained the fact that insanity followed the development of pathological changes in the liver, spleen, stomach and other bodily organs. These cases were classified as 'sympathetic insanities'. After the 1880s, the sympathy narrative was gradually replaced by physiological, endocrinological and psychodynamic explanations. The clinical states involved, however, are often observed in hospital practice and constitute the metier of 'consultation-liaison psychiatry'. Hence, it is surprising that historical work on the development of this discipline has persistently ignored the concept of 'sympathetic insanity'. © The Author(s) 2014.

  1. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1

    African Journals Online (AJOL)

    Enrique

    with MRI every 3 months and the bone marrow oedema disappeared after 6 months. Introduction ... SA JOURNAL OF RADIOLOGY • August 2004. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1 ... may be either trauma of external origin or iatrogenic, post surgery. In some patients particularly children ...

  2. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...

  3. Treatment of cervical radiculopathy by anterior cervical discectomy and cage fusion

    Directory of Open Access Journals (Sweden)

    Osman A Mohamed

    2012-01-01

    Full Text Available Introduction: Since the pioneering days of the anterior cervical approach introduced by Cloward et al. in the early 1950s, anterior cervical discectomy and fusion (ACDF has been the standard procedure for most discogenic and degenerative cervical spinal lesions. Although traditional interbody fusion using iliac bone can maintain the patency of the neuroforamen and ensure solid fusion, selection of patients, and of surgical procedure for ACDF is a continuous challenge. Aim: The aim of this study was to assess the results of cervical discectomy and fusion with cervical cages in treatment of cervical radiculopathy clinically and radiologically. Materials and Methods: Eighteen patients suffering from cervical radiculopathy were operated upon using this technique. They were 15 males and 3 females. Clinical and radiological assessment, visual analog scale (VAS for neck and arm and modified Oswestery neck disability index (NDI were done preoperatively and at 4 weeks, 3, 6, and 12 months postoperatively. Polyetheretherketone (Peek cages filled with iliac bone graft were used after cervical discectomy. The levels operated upon were C 5-6 in 16 patients and C4-5 in 2 patients. Results: Marked clinical improvement as regard arm and neck pain, and NDI was observed. The pre and post operative mean and standard deviations (SD of the various scores were as follows. VAS for pain in arm reduced from mean of 8 (SD 1.76 to mean 0.4 (SD 0.4, VAS for neck pain reduced from mean of 3.5 (SD 1.58 to mean of 0.8 (SD 0.47, and NDI from mean of 20.2 (SD 0.89 to 2.1(SD 1.05. Fusion occurred in all patients. Subjectively 79% of the patients reported marked improvement in neck pain, and 95% reported marked reduction in arm pain. Conclusion: Anterior cervical discectomy and cage fusion resulted in high fusion rate with minimal preservation of lordosis.

  4. Distracted cervical spinal fusion for management of caudal cervical spondylomyelopathy in large-breed dogs

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, G. W.; Seim, III, H. B.; Clemmons, R. M.

    1988-08-15

    Using an autogenous bone graft (obtained from the iliac crest), 4-mm cancellous bone screws, and polymethylmethacrylate, a distracted cervical spinal fusion technique was performed on 10 dogs with myelographic evidence of caudal cervical spondylomyelopathy. All dogs had evidence of dynamic soft tissue spinal cord compression, as indicated by flexion, extension, and traction myelographic views. Of the 10 dogs, 4 previously had undergone surgery by use of ventral slot or cervical disk fenestration techniques, and their neurologic status had deteriorated after the original surgery. Preoperative neurologic status of the 10 dogs included nonambulatory tetraparesis (n = 5), severe ataxia with conscious proprioceptive deficits (n = 2), and mild ambulatory ataxia with conscious proprioceptive deficits (n = 3). Five dogs had signs of various degrees of cervical pain. Clinical improvement was observed in 8 of 10 dogs--either improved neurologic status or elimination of cervical pain. Implant loosening developed in 3 dogs; 2 of them were euthanatized because of lack of neurologic improvement. Radiographic evidence of bony cervical fusion was observed during a 9- to 24-week period in 6 of the 8 surviving dogs. The distracted cervical fusion technique appears to be a valid surgical procedure to manage cervical spondylomyelopathy in those dogs in which the lesions are limited to one cervical intervertebral disk space.

  5. Distracted cervical spinal fusion for management of caudal cervical spondylomyelopathy in large-breed dogs

    International Nuclear Information System (INIS)

    Ellison, G.W.; Seim, H.B. III; Clemmons, R.M.

    1988-01-01

    Using an autogenous bone graft (obtained from the iliac crest), 4-mm cancellous bone screws, and polymethylmethacrylate, a distracted cervical spinal fusion technique was performed on 10 dogs with myelographic evidence of caudal cervical spondylomyelopathy. All dogs had evidence of dynamic soft tissue spinal cord compression, as indicated by flexion, extension, and traction myelographic views. Of the 10 dogs, 4 previously had undergone surgery by use of ventral slot or cervical disk fenestration techniques, and their neurologic status had deteriorated after the original surgery. Preoperative neurologic status of the 10 dogs included nonambulatory tetraparesis (n = 5), severe ataxia with conscious proprioceptive deficits (n = 2), and mild ambulatory ataxia with conscious proprioceptive deficits (n = 3). Five dogs had signs of various degrees of cervical pain. Clinical improvement was observed in 8 of 10 dogs--either improved neurologic status or elimination of cervical pain. Implant loosening developed in 3 dogs; 2 of them were euthanatized because of lack of neurologic improvement. Radiographic evidence of bony cervical fusion was observed during a 9- to 24-week period in 6 of the 8 surviving dogs. The distracted cervical fusion technique appears to be a valid surgical procedure to manage cervical spondylomyelopathy in those dogs in which the lesions are limited to one cervical intervertebral disk space

  6. Cervical Cancer Stage IB

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Cervical Cancer Stage IB Add to My Pictures View /Download : ... 1613x1200 View Download Large: 3225x2400 View Download Title: Cervical Cancer Stage IB Description: Stage IB1 and IB2 cervical ...

  7. Recruitment pattern of sympathetic muscle neurons during premature ventricular contractions in heart failure patients and controls.

    Science.gov (United States)

    Maslov, Petra Zubin; Breskovic, Toni; Brewer, Danielle N; Shoemaker, J Kevin; Dujic, Zeljko

    2012-12-01

    Premature ventricular contractions (PVC) elicit larger bursts of multiunit muscle sympathetic nerve activity (MSNA), reflecting the ability to increase postganglionic axonal recruitment. We tested the hypothesis that chronic heart failure (CHF) limits the ability to recruit postganglionic sympathetic neurons as a response to PVC due to the excessive sympathetic activation in these patients. Sympathetic neurograms of sufficient signal-to-noise ratio were obtained from six CHF patients and from six similarly aged control individuals. Action potentials (APs) were extracted from the multiunit sympathetic neurograms during sinus rhythm bursts and during the post-PVC bursts. These APs were classified on the basis of the frequency per second, the content per burst, and the peak-to-peak amplitude, which formed the basis of binning the APs into active clusters. Compared with controls, CHF had higher APs per burst and higher number of active clusters per sinus rhythm burst (P < 0.05). Compared with sinus rhythm bursts, both groups increased AP frequency and the number of active clusters in the post-PVC burst (P < 0.05). However, compared with controls, the increase in burst integral, AP frequency, and APs per burst during the post-PVC burst was less in CHF patients. Nonetheless, the PVC-induced increase in active clusters per burst was similar between the groups. Thus, these CHF patients retained the ability to recruit larger APs but had a diminished ability to increase overall AP content.

  8. Nervus terminalis ganglion of the bonnethead shark (Sphyrna tiburo): evidence for cholinergic and catecholaminergic influence on two cell types distinguished by peptide immunocytochemistry.

    Science.gov (United States)

    White, J; Meredith, M

    1995-01-16

    The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion

  9. Effect of Tissue Heterogeneity on the Transmembrane Potential of Type-1 Spiral Ganglion Neurons: A Simulation Study.

    Science.gov (United States)

    Sriperumbudur, Kiran Kumar; Pau, Hans Wilhelm; van Rienen, Ursula

    2018-03-01

    Electric stimulation of the auditory nerve by cochlear implants has been a successful clinical intervention to treat the sensory neural deafness. In this pathological condition of the cochlea, type-1 spiral ganglion neurons in Rosenthal's canal play a vital role in the action potential initiation. Various morphological studies of the human temporal bones suggest that the spiral ganglion neurons are surrounded by heterogeneous structures formed by a variety of cells and tissues. However, the existing simulation models have not considered the tissue heterogeneity in the Rosenthal's canal while studying the electric field interaction with spiral ganglion neurons. Unlike the existing models, we have implemented the tissue heterogeneity in the Rosenthal's canal using a computationally inexpensive image based method in a two-dimensional finite element model. Our simulation results suggest that the spatial heterogeneity of surrounding tissues influences the electric field distribution in the Rosenthal's canal, and thereby alters the transmembrane potential of the spiral ganglion neurons. In addition to the academic interest, these results are especially useful to understand how the latest tissue regeneration methods such as gene therapy and drug-induced resprouting of peripheral axons, which probably modify the density of the tissues in the Rosenthal's canal, affect the cochlear implant functionality.

  10. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    International Nuclear Information System (INIS)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon; Bae, Sang Jin

    2004-01-01

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance (ρ > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury

  11. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Bae, Sang Jin [Sanggyepaik Hospital, Inje University, Seoul (Korea, Republic of)

    2004-12-15

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance ({rho} > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury.

  12. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P state MSNA was decreased by 31% (P state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  13. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  14. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  15. A Guyon's canal ganglion presenting as occupational overuse syndrome: A case report.

    LENUS (Irish Health Repository)

    Chan, Jeffrey C Y

    2008-01-01

    Occupational overuse syndrome (OOS) can present as Guyon\\'s canal syndrome in computer keyboard users. We report a case of Guyon\\'s canal syndrome caused by a ganglion in a computer user that was misdiagnosed as OOS.

  16. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  17. Increased cardiac sympathetic activity in patients with hypothyroidism as determined by iodine-123 metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Momose, Mitsuru; Inaba, Shigeki; Emori, Toshiaki; Imamura, Kimiharu; Kawano, Katsunori; Ueda, Tetsuro; Kobayashi, Hideki; Hosoda, Saichi

    1997-01-01

    Clinical manifestations of hypothyroidism, such as bradycardia, suggest decreased sympathetic tone. However, previous studies in patients with hypothyroidism have suggested that increased plasma noradrenaline (NA) levels represent enhanced general sympathetic activity. As yet, cardiac sympathetic activity (CSA) in hypothyroidism has not been clarified. To evaluate CSA in patients with hypothyroidism, iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy was performed in eight patients with hypothyroidism before therapy and in ten normal control patients. Planar images were obtained at 15 min and 4 h after injection of MIBG. The ratio of early myocardial uptake to the total injected dose (MU) and myocardial clearance of MIBG within 4 h p.i. (MC) were calculated. Plasma NA was also measured, and echocardiography was performed in all patients. Those patients with hypothyroidism in the euthyroid state after medical therapy were also evaluated in a similar manner. Left ventricular ejection fraction, measured by echocardiography, did not differ significantly between the groups. NA, MU and MC were significantly higher in patients with hypothyroidism than in controls, and all parameters were decreased after therapy. MC was well correlated with NA in hypothyroidism (r=0.86) before therapy. We conclude that CSA is increased in patients with hypothyroidism, in parallel with the enhanced general sympathetic activity. (orig.). With 4 figs., 2 tabs

  18. Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells.

    Science.gov (United States)

    Ströh, Sebastian; Puller, Christian; Swirski, Sebastian; Hölzel, Maj-Britt; van der Linde, Lea I S; Segelken, Jasmin; Schultz, Konrad; Block, Christoph; Monyer, Hannah; Willecke, Klaus; Weiler, Reto; Greschner, Martin; Janssen-Bienhold, Ulrike; Dedek, Karin

    2018-02-21

    In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse. SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light

  19. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response.

    Science.gov (United States)

    Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M

    2017-05-17

    Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.

  20. Outcomes of Open Dorsal Wrist Ganglion Excision in Active-Duty Military Personnel.

    Science.gov (United States)

    Balazs, George C; Donohue, Michael A; Drake, Matthew L; Ipsen, Derek; Nanos, George P; Tintle, Scott M

    2015-09-01

    To examine the most common presenting complaints of active-duty service members with isolated dorsal wrist ganglions and to determine the rate of return to unrestricted duty after open excision. Surgical records at 2 military facilities were screened to identify male and female active duty service members undergoing isolated open excision of dorsal wrist ganglions from January 1, 2006 to January 1, 2014. Electronic medical records and service disability databases were searched to identify the most common presenting symptoms and to determine whether patients returned to unrestricted active duty after surgery. Postoperative outcomes examined were pain persisting greater than 4 weeks after surgery, stiffness requiring formal occupational therapy treatment, surgical wound complications, and recurrence. A total of 125 active duty military personnel (Army, 54; Navy, 43; and Marine Corps, 28) met criteria for inclusion. Mean follow-up was 45 months. Fifteen percent (8 of 54) of the Army personnel were given permanent waivers from performing push-ups owing to persistent pain and stiffness. Pain persisting greater than 4 weeks after surgery was an independent predictor of eventual need for a permanent push-up waiver. The overall recurrence incidence was 9%. No demographic or perioperative factors were associated with recurrence. Patients whose occupation or activities require forceful wrist extension should be counseled on the considerable risk of residual pain and functional limitations that may occur after open dorsal wrist ganglion excision. Therapeutic IV. Published by Elsevier Inc.

  1. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    Science.gov (United States)

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  2. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...

  3. Treatment of Reflex sympathetic dystrophy with Bee venom -Using Digital Infrared Thermographic Imaging-

    Directory of Open Access Journals (Sweden)

    Myung-jang Lim

    2006-12-01

    Full Text Available Objectives : The purpose of this case is to report the patient with Reflex sympathetic dystrophy, who is improved by Bee venom. Method : We treated the patient with Bee venom who was suffering from Reflex sympathetic dystrophy, using Digital Infrared Thermographic Imaging and Verbal Numerical Rating Scale(VNRS to evaluate the therapeutic effects. We compared the temperature of the patient body before and after treatment. Result and Conclusion : We found that Bee venom had excellent outcome to relieve pain, atrophy and ankle joint ROM, and that Bee venom also had clinical effect on hypothermia on the Digital Infrared Thermographic Imaging.

  4. Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.

    Science.gov (United States)

    DiBona, G F; Sawin, L L

    1999-02-01

    To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.

  5. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    Science.gov (United States)

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  6. Functional role of diverse changes in sympathetic nerve activity in regulating arterial pressure during REM sleep.

    Science.gov (United States)

    Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju

    2011-08-01

    This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.

  7. Sympathetic ophthalmia after 23-gauge transconjunctival sutureless vitrectomy

    Directory of Open Access Journals (Sweden)

    Masatoshi Haruta

    2010-11-01

    Full Text Available Masatoshi Haruta1, Hirokazu Mukuno2, Kazuaki Nishijima3, Hitoshi Takagi4, Mihori Kita51Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan; 2Department of Ophthalmology, Konan Hospital, Kobe, Hyogo, Japan; 3Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan; 4Department of Ophthalmology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; 5Department of Ophthalmology, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Hyogo, JapanPurpose: We report a case of a sympathetic ophthalmia that occurred after 23-gauge transconjunctival sutureless vitrectomy for a retinal detachment.Case report: A 41-year-old Japanese woman underwent combined phacoemulsification with intraocular lens implantation and 23-gauge transconjunctival sutureless vitrectomy for a rhegmatogenous retinal detachment in the right eye. Endolaser photocoagulation and silicone oil tamponade were used to manage inferior retinal holes. Four weeks after the surgery, she returned with a 5-day history of reduced vision and metamorphopsia in her left eye. Slit-lamp examination showed a shallow anterior chamber in the right eye and moderate anterior uveitis bilaterally. Silicone oil bubbles and pigment dispersion were observed in the subconjunctival space adjacent to the right eye’s superonasal sclerotomy site. Fundus examination showed multifocal serous retinal detachments in both eyes. A diagnosis of sympathetic ophthalmia was made and the patient was treated with intensive topical and systemic steroids. The subretinal fluid cleared in both eyes following treatment. Twelve months after the onset of inflammation, the patient’s condition was stable on a combination of oral cyclosporine and topical steroids. Sunset glow retinal changes remain, but there has been no evidence of recurrent inflammation.Conclusion: Sympathetic ophthalmia can develop after 23-gauge

  8. Sciatica and claudication caused by ganglion cyst.

    Science.gov (United States)

    Yang, Guang; Wen, Xiaoyu; Gong, Yubao; Yang, Chen

    2013-12-15

    Case report. We report a rare case that a ganglion cyst compressed the sciatic nerve and caused sciatica and claudication in a 51-year-old male. Sciatica and claudication commonly occurs in spinal stenosis. To our knowledge, only 4 cases have been reported on sciatica resulting from posterior ganglion cyst of hip. A 51-year-old male had a 2-month history of radiating pain on his right leg. He could only walk 20 to 30 m before stopping and standing to rest for 1 to 3 minutes. Interestingly, he was able to walk longer distances (about 200 m) when walking slowly in small steps, without any rest. He had been treated as a case of lumbar disc herniation, but conservative treatment was ineffective. On buttock examination, a round, hard, and fixative mass was palpated at the exit of the sciatic nerve. MR imaging of hip revealed a multilocular cystic mass located on the posterior aspect of the superior gemellus and obturator internus, compressing the sciatic nerve. On operation, we found that the cyst extended to the superior gemellus and the obturator internus, positioned right at the outlet of the sciatic nerve. At 18 months of follow-up, the patient continued to be symptom free. He returned to comprehensive physical activity with no limitations. For an extraspinal source, a direct compression on the sciatic nerve also resulted in sciatica and claudication. A meticulous physical examination is very important for the differential diagnosis of extraspinal sciatica from spinal sciatica.

  9. Effects of the α-adrenoceptor antagonists phentolamine, phenoxybenzamine, and Idazoxan on sympathetic blood flow control in the periodontal ligament of the cat

    International Nuclear Information System (INIS)

    Edwall, B.; Gazelius, B.

    1988-01-01

    Blood flow changes in the periodontal ligament (PDL) were measured indirectly by monitoring the local clearance of 125 I - during electric sympathetic nerve stimulation or close intra-arterial infusions of either noradrenaline (NA) or adrenaline (ADR) before and after administration of phentolamine (PA), phenoxybenzamine (PBZ) or Idazoxan (RX). At the doses used in the present study, PA was the only antagonist that significantly reduced the blood flow decrease seen on activation of sympathetic fibers, although PBZ also reduced this response. Idazoxan, however, did not induce the consistent effect on blood flow decreases seen on sympathetic activation. All three α-adrenoceptor antagonists almost abolished the effects of exogenously administered NA and ADR. The results suggest the presence of functional post-junctional adrenoceptors of both the α 1 and α 2 subtypes in the sympathetic regulation of the blood flow in the PDL of the cat. A component of the response elicited by electrical sympathetic stimulation appeared to be resistant to α-adrenoceptor blockade. Administration of guanethidine (which inhibits further release of NA and neuropeptide Y) after PA abolished this residual sympathetic response

  10. Study of sympathetic nerve activity in young Indian obese individuals

    Directory of Open Access Journals (Sweden)

    B Kalpana

    2013-01-01

    Full Text Available Background: Obesity is the culmination of a chronic imbalance between energy intake and energy expenditure. This energy balance can be potentially affected by the activity of autonomic nervous system (ANS. Altered sympathetic nerve function may be of importance in obesity. Objective: The present study is an attempt to pinpoint the defect (if any in the activity of sympathetic limb of the ANS in obesity, by subjecting to isometric exercise stress. Materials and Methods: A total of 81 females belonging to the age group of 18-22 years were recruited for the study. The participants were divided into two groups as normal weight and obese based on WHO guidelines for Asia Pacific region. After recording the resting blood pressure, they were subjected to isometric exercise by Handgrip dynamometer. Blood pressure was recorded again, and the difference was noted down. All recorded parameters were compared between two groups using unpaired t test. The relationship between body mass index (BMI and rise in diastolic pressure was quantified by Pearson′s correlation test. A P value less than 0.05 was considered as significant. Results: In obese, the diastolic pressure was significantly higher at rest, but showed reduced rise during handgrip test in comparison with normal weight individuals. Also, the rise in diastolic pressure exhibited a negative relation with BMI. Conclusion: The result is suggestive of impaired autonomic function at rest and reduced sympathetic activity in the group of obese when subjected to stress. This could make them more prone for future development of hypertension or other cardiovascular disorders.

  11. Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion.

    Science.gov (United States)

    Whitlon, Donna S

    2017-06-01

    In the United States there are, at present, no drugs that are specifically FDA approved to treat hearing loss. Although several clinical trials are ongoing, including one testing D-methionine that is supported by the US Army, none of these trials directly address the effect of noise exposure on cochlear spiral ganglion neurons. We recently published the first report of a systematic chemical compound screen using primary, mammalian spiral ganglion cultures in which we were able to detect a compound and others in its class that increased neurite elongation, a critical step in restoring cochlear synapses after noise induced hearing loss. Here we discuss the issues, both pro and con, that influenced the development of our approach. These considerations may be useful for future compound screens that target the same or other attributes of cochlear spiral ganglion neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Loss of Melanopsin-Expressing Retinal Ganglion Cells in Patients With Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Obara, Elisabeth Anne; Hannibal, Jens; Heegaard, Steffen

    2017-01-01

    Purpose: Photo-entrainment of the circadian clock is mediated by melanopsin-expressing retinal ganglion cells (mRGCs) located in the retina. Patients suffering from diabetic retinopathy (DR) show impairment of light regulated circadian activity such as sleep disorders, altered blood pressure...

  13. The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age.

    Science.gov (United States)

    Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W

    2014-01-01

    During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Treatment of patients with painful blind eye using stellate ganglion block

    Directory of Open Access Journals (Sweden)

    Tatiana Vaz Horta Xavier

    2016-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: management of pain in painful blind eyes is still a challenge. Corticosteroids and hypotensive agents, as well as evisceration and enucleation, are some of the strategies employed so far that are not always effective and, depending on the strategy, cause a deep emotional shock to the patient. Given these issues, the aim of this case report is to demonstrate a new and viable option for the management of such pain by treating the painful blind eye with the stellate ganglion block technique, a procedure that has never been described in the literature for this purpose. CASE REPORT: six patients with painful blind eye, all caused by glaucoma, were treated; in these patients, VAS (visual analogue scale for pain assessment, in which 0 is the absence of pain and 10 is the worst pain ever experienced ranged from 7 to 10. We opted for weekly sessions of stellate ganglion block with 4 mL of bupivacaine (0.5% without vasoconstrictor and clonidine 1 mcg/kg. Four patients had excellent results at VAS, ranging between 0 and 3, and two remained asymptomatic (VAS = 0, without the need for additional medication. The other two used gabapentin 300 mg every 12 h. CONCLUSION: currently, there are several therapeutic options for the treatment of painful blind eye, among which stand out the retrobulbar blocks with chlorpromazine, alcohol and phenol. However, an effective strategy with low rate of serious complications, which is non-mutilating and improves the quality of life of the patient, is essential. Then, stellate ganglion block arises as a demonstrably viable and promising option to meet this demand.

  15. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease.

    Science.gov (United States)

    Larsen, Hege E; Lefkimmiatis, Konstantinos; Paterson, David J

    2016-12-14

    Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron's ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.

  16. Detecting cervical cancer by quantitative promoter hypermethylation assay on cervical scrapings : A feasibility study

    NARCIS (Netherlands)

    Reesink-Peters, N; Wisman, G.B.A.; Jeronimo, C; Tokumaru, CY; Cohen, Y; Dong, SM; Klip, HG; Buikema, HJ; Suurmeijer, AJH; Hollema, H; Boezen, HM; Sidransky, D; van der Zee, AGJ

    Current morphology-based cervical cancer screening is associated with significant false-positive and false-negative results. Tumor suppressor gene hypermethylation is frequently present in cervical cancer. It is unknown whether a cervical scraping reflects the methylation status of the underlying

  17. Anti-asialo GM1 antibodies prevents guanethidine-induced sympathectomy in athymic rats

    DEFF Research Database (Denmark)

    Thygesen, P; Hougen, H P; Christensen, H B

    1992-01-01

    Guanethidine sulphate induces destruction of peripheral sympathetic neurons and infiltration of mononuclear cells in rat sympathetic ganglia. The effect of guanethidine is believed to be an autoimmune reaction. In order to determine the effect of anti-asialo GM1, an antibody that binds to the gly......Guanethidine sulphate induces destruction of peripheral sympathetic neurons and infiltration of mononuclear cells in rat sympathetic ganglia. The effect of guanethidine is believed to be an autoimmune reaction. In order to determine the effect of anti-asialo GM1, an antibody that binds...... to the glycolipid asialo GM1 expressed on rodent natural killer cells, athymic Lewis rats received guanethidine 40 mg/kg i.p. daily from day 1 to 14 and anti-asialo GM1 i.p. 1 mg/rat on day -2, 0, 2, 6, and 10 in the study period. Saline and anti-asialo GM1 were given alone in the same doses as control. The number...... of neurons in the sympathetic ganglia were counted and the ganglionic volume determined. The presence of natural killer cells in the ganglia were determined by immunohistochemical methods. Our results shows that anti-asialo GM1 can prevent guanethidine-induced reduction of sympathetic neurons...

  18. Cervical Cancer Screening

    Science.gov (United States)

    ... Cancer found early may be easier to treat. Cervical cancer screening is usually part of a woman's health ... may do more tests, such as a biopsy. Cervical cancer screening has risks. The results can sometimes be ...

  19. Prevent Cervical Cancer

    Science.gov (United States)

    ... professional printing [PDF-1.5MB] Cancer Home “Prevent Cervical Cancer” Infographic Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Prevent Cervical Cancer with the Right Test at the Right Time ...

  20. Association between cervical screening and prevention of invasive cervical cancer in Ontario: a population-based case-control study.

    Science.gov (United States)

    Vicus, Danielle; Sutradhar, Rinku; Lu, Yan; Kupets, Rachel; Paszat, Lawrence

    2015-01-01

    The aim of this study was to estimate the effect of cervical screening in the prevention of invasive cervical cancer among age groups, using a population-based case-control study in the province of Ontario, Canada. Exposure was defined as cervical cytology history greater than 3 months before the diagnosis date of cervical cancer (index date). Cases were women who were diagnosed with cervical cancer between January 1, 1998, and December 31, 2008. Controls were women without a diagnosis of cervical cancer on, or before, December 31, 2008. Two controls were matched to each case on year of birth and income quintile, as of the index date. Conditional logistic regression was used to estimate the odds ratio for having been screened among those with cervical cancer. Cervical cancer screening performed between 3 and 36 months before the index date was protective against invasive cervical cancer in women aged 40 through 69 years. In women younger than 40 years, cervical cancer screening performed 3 to 36 months before the index date was not protective. Cervical screening is associated with a reduced risk for invasive cervical cancer among women older than 40 years. Cervical cancer resources should be focused on maximizing the risk reduction.

  1. [Ropivacaine use in transnasal sphenopalatine ganglion block for post dural puncture headache in obstetric patients - case series].

    Science.gov (United States)

    Furtado, Inês; Lima, Isabel Flor de; Pedro, Sérgio

    2018-02-02

    Sphenopalatine ganglion block is widely accepted in chronic pain; however it has been underestimated in post dural puncture headache treatment. The ganglion block does not restore normal cerebrospinal fluid dynamics but effectively reduces symptoms associated with resultant hypotension. When correctly applied it may avoid performance of epidural blood patch. The transnasal approach is a simple and minimally invasive technique. In the cases presented, we attempted to perform and report the ganglion block effectiveness and duration, using ropivacaine. We present four obstetrics patients with post dural puncture headache, after epidural or combined techniques, with Tuohy needle 18G that underwent a safe and successful Sphenopalatine ganglion block. We performed the block 24-48h after dural puncture, with 4mL of ropivacaine 0.75% in each nostril. In three cases pain recurred within 12-48h, although less intense. In one patient a second block was performed with complete relief and without further recurrence. In the other two patients a blood patch was performed without success. All patients were asymptomatic within 7 days. The average duration of analgesic effect of the block remains poorly defined. In the cases reported, blocking with ropivacaine was a simple, safe and effective technique, with immediate and sustained pain relief for at least 12-24h. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. CT-guided cervical interlaminar epidural steroid injection for cervical radiculopathy

    International Nuclear Information System (INIS)

    Chen Wei; Wu Chungen; Wu Chaoxian; Cheng Yongde

    2009-01-01

    Objective: To evaluate the safety and effectiveness of CT-guided cervical interlaminar epidural steroid injection for the treatment of cervical radiculopathy. Methods: CT-guided cervical interlaminar epidural steroid injection was performed in 32 patients with cervical radioculopathy, encountered during the period of Dec. 2006 to June 2008, as the patients failed to respond to the conservative treatment in 2 weeks. The clinical data and the imaging findings were retrospectively analyzed. Before and after the procedure, visual analogue scale (VAS) and Odom criteria were used to evaluate the pain of the patient. Results: Three months after the injection, improvement judged by Odom criteria was seen in 28 patients (87.5%), and the mean pain relief value of VAS was 5.88 ± 1.10. No significant difference in effective rate and in VAS score (P>0.05) was found between protrusion group and degenerative group, between the group with the course over 6 months and the group with the course below 6 months, also between the group receiving one injection and the group receiving the second injection. Conclusion: CT-guided fine needle (23 gauge) puncture epidural steroid (Decadron) 'target spot' injection is an ideal alternative for the treatment of cervical radiculopathy, especially for the patients who fails to respond to the conservative treatment. (authors)

  3. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    International Nuclear Information System (INIS)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes; Gonçalves-de-Albuquerque, Cassiano Felippe; Castro-Faria-Neto, Hugo Caire; Giestal-de-Araujo, Elizabeth

    2016-01-01

    Ouabain is a steroid hormone that binds to the enzyme Na + , K + – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  4. The trophic effect of ouabain on retinal ganglion cells is mediated by IL-1β and TNF-α

    Energy Technology Data Exchange (ETDEWEB)

    Salles von-Held-Ventura, Juliana; Mázala-de-Oliveira, Thalita; Cândida da Rocha Oliveira, Amanda; Granja, Marcelo Gomes [Departamento de Neurobiologia, Programa de Neurociências, Outeiro de São João Batista s/n CEP: 24020-150, Universidade Federal Fluminense, Niterói, RJ (Brazil); Gonçalves-de-Albuquerque, Cassiano Felippe; Castro-Faria-Neto, Hugo Caire [Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Departamento de Fisiologia e Farmacodinâmica, Av., no 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ (Brazil); Giestal-de-Araujo, Elizabeth, E-mail: egiestal@vm.uff.br [Departamento de Neurobiologia, Programa de Neurociências, Outeiro de São João Batista s/n CEP: 24020-150, Universidade Federal Fluminense, Niterói, RJ (Brazil)

    2016-09-09

    Ouabain is a steroid hormone that binds to the enzyme Na{sup +}, K{sup +} – ATPase and stimulates different intracellular pathways controlling growth, proliferation and cell survival. IL-1β and TNF-α are pleiotropic molecules, conventionally regarded as pro-inflammatory cytokines with well-known effects in the immune system. In addition, IL-1β and TNF-α also play important roles in the nervous system including neuroprotective effects. Previous data from our group showed that ouabain treatment is able to induce an increase in retinal ganglion cell survival kept in mixed retinal cell cultures. The aim of this work was to investigate if IL-1β and TNF-α could be mediating the trophic effect of ouabain on retinal ganglion cells. Our results show that the trophic effect of ouabain on retinal ganglion cell was inhibited by either anti-IL-1β or anti-TNF-α antibodies. In agreement, IL-1β or TNF-α increased the retinal ganglion cells survival in a dose-dependent manner. Accordingly, ouabain treatment induces a temporal release of TNF-α and IL-1β from retinal cell cultures. Interestingly, TNF-α and IL-1β regulate each other intracellular levels. Our results suggest that ouabain treatment triggers the activation of TNF-α and IL-1β signaling pathways leading to an increase in retinal ganglion cell survival. - Highlights: • Pro-inflammatory cytokines regulates the ouabain effect on RGC survival. • Ouabain treatment modulates the intracellular levels of TNF-α and IL-1β. • Ouabain induces the release of TNF-α and IL-1β in retinal cell cultures.

  5. A comparison of static and dynamic cerebral autoregulation during mild whole-body cold stress in individuals with and without cervical spinal cord injury: a pilot study.

    Science.gov (United States)

    van der Scheer, Jan W; Kamijo, Yoshi-Ichiro; Leicht, Christof A; Millar, Philip J; Shibasaki, Manabu; Goosey-Tolfrey, Victoria L; Tajima, Fumihiro

    2018-05-01

    Experimental study. To characterize static and dynamic cerebral autoregulation (CA) of individuals with cervical spinal cord injury (SCI) compared to able-bodied controls in response to moderate increases in mean arterial pressure (MAP) caused by mild whole-body cold stress. Japan METHODS: Five men with complete autonomic cervical SCI (sustained > 5 y) and six age-matched able-bodied men participated in hemodynamic, temperature, catecholamine and respiratory measurements for 60 min during three consecutive stages: baseline (10 min; 33 °C water through a thin-tubed whole-body suit), mild cold stress (20 min; 25 °C water), and post-cold recovery (30 min; 33 °C water). Static CA was determined as the ratio between mean changes in middle cerebral artery blood velocity and MAP, dynamic CA as transfer function coherence, gain, and phase between spontaneous changes in MAP to middle cerebral artery blood velocity. MAP increased in both groups during cold and post-cold recovery (mean differences: 5-10 mm Hg; main effect of time: p = 0.001). Static CA was not different between the able-bodied vs. the cervical SCI group (mean (95% confidence interval (CI)) of between-group difference: -4 (-11 to 3) and -2 (-5 to 1) cm/s/mm Hg for cold (p = 0.22) and post-cold (p = 0.24), respectively). At baseline, transfer function phase was shorter in the cervical SCI group (mean (95% CI) of between-group difference: 0.6 (0.2 to 1.0) rad; p = 0.006), while between-group differences in changes in phase were not different in response to the cold stress (interaction term: p = 0.06). This pilot study suggests that static CA is similar between individuals with cervical SCI and able-bodied controls in response to moderate increases in MAP, while dynamic CA may be impaired in cervical SCI because of disturbed sympathetic control.

  6. Biologia molecular do câncer cervical Molecular biology of cervical cancer

    Directory of Open Access Journals (Sweden)

    Waldemar Augusto Rivoire

    2006-01-01

    Full Text Available A carcinogênese é um processo de múltiplas etapas. Alterações no equilíbrio citogenético ocorrem na transformação do epitélio normal a câncer cervical. Numerosos estudos apoiam a hipótese de que a infecção por HPV está associada com o desenvolvimento de alterações malignas e pré-malignas do trato genital inferior. Neste trabalho são apresentadas as bases para a compreensão da oncogênese cervical. O ciclo celular é controlado por proto-oncogenes e genes supressores. Quando ocorrem mutações, proto-oncogenes tornam-se oncogenes, que são carcinogênicos e causam multiplicação celular excessiva. A perda da ação de genes supressores funcionais pode levar a célula ao crescimento inadequado. O ciclo celular também pode ser alterado pela ação de vírus, entre eles o HPV (Human Papiloma Virus, de especial interesse na oncogênese cervical. Os tipos de HPV 16 e 18 são os de maior interesse, freqüentemente associados a câncer cervical e anal. O conhecimento das bases moleculares que estão envolvidas na oncogênese cervical tem sido possível devido a utilização de técnicas avançadas de biologia molecular. A associação destas técnicas aos métodos diagnósticos clássicos, poderão levar a uma melhor avaliação das neoplasias cervicais e auxiliar no desenvolvimento de novas terapias, talvez menos invasivas e mais efetivas.Carcinogenesis involves several steps. Disorders of the cytogenetic balance occur during the evolution from normal epithelium to cervical cancer. Several studies support the hypothesis that the Human Papiloma Virus (HPV infection is associated to development of premalignant and malignant lesions of cervical cancer. In this review we show the basis to understand cervical oncogenesis. The cell cycle is controlled by protooncogenes and supressive genes. This orchestrated cell cycle can be affected by virus such as HPV. Of special interest in the cervical carcinogenesis are the HPV subtypes 16 and 18

  7. Assessment of cervical range of motion, cervical core strength and scapular dyskinesia in violin players.

    Science.gov (United States)

    Tawde, Pooja; Dabadghav, Rachana; Bedekar, Nilima; Shyam, Ashok; Sancheti, Parag

    2016-12-01

    Playing the violin can lead to asymmetric postures which can affect the cervical range of motion, cervical core strength and scapular stability. The objective of the study was to assess the cervical range of motion, cervical core strength and scapular dyskinesia in violin players and non-players of the same age group. An inclinometer was used to assess the cervical range of motion, pressure biofeedback was used to assess cervical core strength and scapular dyskinesia was also assessed in 30 professional violin players (18-40 years) compared with 30 age-matched non-players. Analysis was done using an unpaired t test. Significant change was seen with respect to extension (p = 0.051), cervical core strength (p = 0.005), right (Rt) superior angle 0° (p = 0.004), Rt superior angle 45° (p = 0.015) and Rt inferior angle 90° (p = 0.013). This study shows a significant difference in extension range of motion and cervical core strength of violin players. Also, there was scapular dyskinesia seen at 0° and 45° right-side superior angle of the scapula and 90° right-side inferior angle of the scapula.

  8. Cervical precancerous changes and selected cervical microbial infections, Kiambu County, Kenya, 2014: a cross sectional study.

    Science.gov (United States)

    Kanyina, Evalyne Wambui; Kamau, Lucy; Muturi, Margaret

    2017-09-25

    Cervical cancer is the predominant cancer among women in Kenya and second most common in women in developing regions. Population-based cytological screening and early treatment reduces morbidity and mortality associated with the cancer. We determined the occurrence of cervical precancerous changes and cervical microbial infections (Trichomonas vaginalis, Candida albicans, Neisseria gonorrhea and Actinomyces) among women attending Family Health Option Kenya (FHOK) clinic in Thika. This was a hospital based cross sectional study among women attending reproductive health screening clinic from November 2013 to January 2014. Cervical Intraepithelial Neoplasia (CIN) I, II, III, cervical cancer and microbial infection (Actinomyces, Trichomonas vaginalis and Yeast cells) diagnosis was based on Pap smear screening test and High Vaginal Swab wet preparation microscopy. Neisseria gonorrhea was diagnosed through Gram staining. Socio-demographic and reproductive health data was collected using a structured questionnaire administered to the study participants and analyzed using Epi Info version 3.5.1. Of the 244 women screened, 238 (97.5%) presented with cervical inflammation, 80 (32.8%) cervical microbial infections and 12 (4.9%) cervical precancerous changes; 10 (83.3%) with CIN I and 2 (16.7%) CIN II. Of the 80 cervical microbial infections, 62 (77.5%) were yeast cell and 18 (22.5%) T. vaginalis. One thirty four (55%) participants had no history of Pap smear screening of which 84 (62.7%) were 20-40 years. Use of IUCDs (OR: 2.47, 95% CI 1.3-4.6) was associated with cervical inflammation. CIN I was the predominant cervical precancerous change. There is need to scale up cervical screening test to capture all categories of women.

  9. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Imbriaco, Massimo; Piscopo, Valentina; Ponsiglione, Andrea; Nappi, Carmela; Puglia, Marta; Dell'Aversana, Serena; Spinelli, Letizia; Cuocolo, Alberto; Pellegrino, Teresa; Petretta, Mario; Riccio, Eleonora; Pisani, Antonio

    2017-01-01

    Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by 123 I-metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear. Cardiac sympathetic innervation was assessed by 123 I-MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV. Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r 2 = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02). Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, 123 I-MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD. (orig.)

  10. Enhanced sympathetic arousal in response to FMRI scanning correlates with task induced activations and deactivations.

    Directory of Open Access Journals (Sweden)

    Markus Muehlhan

    Full Text Available It has been repeatedly shown that functional magnetic resonance imaging (fMRI triggers distress and neuroendocrine response systems. Prior studies have revealed that sympathetic arousal increases, particularly at the beginning of the examination. Against this background it appears likely that those stress reactions during the scanning procedure may influence task performance and neural correlates. However, the question how sympathetic arousal elicited by the scanning procedure itself may act as a potential confounder of fMRI data remains unresolved today. Thirty-seven scanner naive healthy subjects performed a simple cued target detection task. Levels of salivary alpha amylase (sAA, as a biomarker for sympathetic activity, were assessed in samples obtained at several time points during the lab visit. SAA increased two times, immediately prior to scanning and at the end of the scanning procedure. Neural activation related to motor preparation and timing as well as task performance was positively correlated with the first increase. Furthermore, the first sAA increase was associated with task induced deactivation (TID in frontal and parietal regions. However, these effects were restricted to the first part of the experiment. Consequently, this bias of scanner related sympathetic activation should be considered in future fMRI investigations. It is of particular importance for pharmacological investigations studying adrenergic agents and the comparison of groups with different stress vulnerabilities like patients and controls or adolescents and adults.

  11. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  12. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.J.; Blankestijn, P.J.; Karemaker, J.M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  13. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Oey, P. Liam; Vos, Pieter E.; Wieneke, George H.; Wokke, John H. J.; Blankestijn, Peter J.; Karemaker, John M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  14. Tuina treatment in cervical spondylosis

    Directory of Open Access Journals (Sweden)

    Florin Mihai Hinoveanu

    2010-12-01

    Full Text Available Cervical spondylosis is a common, chronic degenerative condition of the cervical spine that affects the vertebral bodies and intervertebral disks of the neck as well as the contents of the spinal canal. Common clinical syndromes associated with cervical spondylosis include cervical pain, cervical radiculopathy and/or mielopathy. This study show the main principles, indication and side effects of tuina in cervical spondylosis´ treatment; tuina is one of the external methods based on the principles of Traditional Chinese Medicine (TCM, especially suitable for use on the elderly population and on infants. While performing Tuina, the therapist concentrates his mind, regulates his breathing, and actuates the Qi and power of his entire body towards his hands. For a better result is recommended to try to combine acupuncture with tuina treatment. Tuina can help relieve the pain associated with spondylosis. After this kind of treatment, the symptomes produced by irritated nerves and sore muscles can find some relief. Tuina helps patients with cervical spondylosis regain muscle control, nerve function and flexibility, all through the restoration of the life force flow.

  15. A Guyon's canal ganglion presenting as occupational overuse syndrome: A case report

    Directory of Open Access Journals (Sweden)

    Hennessy Michael J

    2008-02-01

    Full Text Available Abstract Background Occupational overuse syndrome (OOS can present as Guyon's canal syndrome in computer keyboard users. We report a case of Guyon's canal syndrome caused by a ganglion in a computer user that was misdiagnosed as OOS. Case presentation A 54-year-old female secretary was referred with a six-month history of right little finger weakness and difficulty with adduction. Prior to her referral, she was diagnosed by her general practitioner and physiotherapist with a right ulnar nerve neuropraxia at the level of the Guyon's canal. This was thought to be secondary to computer keyboard use and direct pressure exerted on a wrist support. There was obvious atrophy of the hypothenar eminence and the first dorsal interosseous muscle. Both Froment's and Wartenberg's signs were positive. A nerve conduction study revealed that both the abductor digiti minimi and the first dorsal interosseus muscles showed prolonged motor latency. Ulnar conduction across the right elbow was normal. Ulnar sensory amplitude across the right wrist to the fifth digit was reduced while the dorsal cutaneous nerve response was normal. Magnetic resonance imaging of the right wrist showed a ganglion in Guyon's canal. Decompression of the Guyon's canal was performed and histological examination confirmed a ganglion. The patient's symptoms and signs resolved completely at four-month follow-up. Conclusion Clinical history, occupational history and examination alone could potentially lead to misdiagnosis of OOS when a computer user presents with these symptoms and we recommend that nerve conduction or imaging studies be performed.

  16. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  17. Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery.

    Science.gov (United States)

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2018-02-12

    This study investigated indirect measures of post-exercise parasympathetic reactivation (using heart-rate-variability, HRV) and sympathetic withdrawal (using systolic-time-intervals, STI) following upper- and lower-body exercise. Randomized, counter-balanced, crossover. 13 males (age 26.4±4.7years) performed maximal arm-cranking (MAX-ARM) and leg-cycling (MAX-LEG). Subsequently, participants undertook separate 8-min bouts of submaximal HR-matched exercise of each mode (ARM and LEG). HRV (including natural-logarithm of root-mean-square-of-successive-differences, Ln-RMSSD) and STI (including pre-ejection-period, PEP) were assessed throughout 10-min seated recovery. Peak-HR was higher (p=0.001) during MAX-LEG (182±7beatsmin -1 ) compared with MAX-ARM (171±12beatsmin -1 ), while HR (preflecting sympathetic withdrawal). Exercise modality appears to influence post-exercise parasympathetic reactivation and sympathetic withdrawal in an intensity-dependent manner. These results highlight the need for test standardization and may be relevant to multi-discipline athletes and in clinical applications with varying modes of exercise testing. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Mirror Neurons and Literature: Empathy and the Sympathetic Imagination in the Fiction of J.M. Coetzee

    Directory of Open Access Journals (Sweden)

    Hilmar Heister

    2015-01-01

    Full Text Available In the two essays “The Philosophers and the Animals” and “The Poets and the Animals” (in The Lives of Animals, 1999 J.M. Coetzee lets Elizabeth Costello urge us to use our sympathetic imagination in order to access the experience of others—in particular, animals—and engage with them empathetically. Coetzee’s fiction illustrates how the use of the sympathetic imagination might evoke empathy in the reader. Narrative structure and the character’s mode of introspection engage the reader’s empathy through an ambivalent process of distancing and approximation, as Fritz Breithaupt puts forward in his narrative theory of empathy (Kulturen der Empathie, 2009. The sympathetic imagination and the complementary notion of embodiment feature prominently in Coetzee’s fictional discourse and resonate with neuroscience’s research on mirror neurons and their relation to empathy.

  19. Thyroid storm following anterior cervical spine surgery for tuberculosis of cervical spine

    Directory of Open Access Journals (Sweden)

    Sanjiv Huzurbazar

    2014-01-01

    Full Text Available Objective: The primary objective was to report this rare case and discuss the probable mechanism of thyroid storm following anterior cervical spine surgery for Kochs cervical spine.

  20. The polymethyl methacrylate cervical cage for treatment of cervical disk disease Part III. Biomechanical properties.

    Science.gov (United States)

    Chen, Jyi-Feng; Lee, Shih-Tseng

    2006-10-01

    In a previous article, we used the PMMA cervical cage in the treatment of single-level cervical disk disease and the preliminary clinical results were satisfactory. However, the mechanical properties of the PMMA cage were not clear. Therefore, we designed a comparative in vitro biomechanical study to determine the mechanical properties of the PMMA cage. The PMMA cervical cage and the Solis PEEK cervical cage were compressed in a materials testing machine to determine the mechanical properties. The compressive yield strength of the PMMA cage (7030 +/- 637 N) was less than that of the Solis polymer cervical cage (8100 +/- 572 N). The ultimate compressive strength of the PMMA cage (8160 +/- 724 N) was less than that of the Solis cage (9100 +/- 634 N). The stiffness of the PMMA cervical cage (8106 +/- 817 N/mm) was greater than that of the Solis cage (6486 +/- 530 N/mm). The elastic modulus of the PMMA cage (623 +/- 57 MPa) was greater than that of the Solis cage (510 +/- 42 MPa). The elongation of PMMA cage (43.5 +/- 5.7%) was larger than that of the Solis cage (36.1 +/- 4.3%). Although the compressive yield strength and ultimate compressive strength of the PMMA cervical cage were less than those of the Solis polymer cage, the mechanical properties are better than those of the cervical vertebral body. The PMMA cage is strong and safe for use as a spacer for cervical interbody fusion. Compared with other cage materials, the PMMA cage has many advantages and no obvious failings at present. However, the PMMA cervical cage warrants further long-term clinical study.

  1. Anatomic assessment of sympathetic peri-arterial renal nerves in man.

    Science.gov (United States)

    Sakakura, Kenichi; Ladich, Elena; Cheng, Qi; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Fowler, David R; Kolodgie, Frank D; Virmani, Renu; Joner, Michael

    2014-08-19

    Although renal sympathetic denervation therapy has shown promising results in patients with resistant hypertension, the human anatomy of peri-arterial renal nerves is poorly understood. The aim of our study was to investigate the anatomic distribution of peri-arterial sympathetic nerves around human renal arteries. Bilateral renal arteries were collected from human autopsy subjects, and peri-arterial renal nerve anatomy was examined by using morphometric software. The ratio of afferent to efferent nerve fibers was investigated by dual immunofluorescence staining using antibodies targeted for anti-tyrosine hydroxylase and anti-calcitonin gene-related peptide. A total of 10,329 nerves were identified from 20 (12 hypertensive and 8 nonhypertensive) patients. The mean individual number of nerves in the proximal and middle segments was similar (39.6 ± 16.7 per section and 39.9 ± 1 3.9 per section), whereas the distal segment showed fewer nerves (33.6 ± 13.1 per section) (p = 0.01). Mean subject-specific nerve distance to arterial lumen was greatest in proximal segments (3.40 ± 0.78 mm), followed by middle segments (3.10 ± 0.69 mm), and least in distal segments (2.60 ± 0.77 mm) (p renal sympathetic nerve fibers is lower in distal segments and dorsal locations. There is a clear predominance of efferent nerve fibers, with decreasing prevalence of afferent nerves from proximal to distal peri-arterial and renal parenchyma. Understanding these anatomic patterns is important for refinement of renal denervation procedures. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Percutaneous renal sympathetic nerve ablation for loin pain haematuria syndrome.

    Science.gov (United States)

    Gambaro, Giovanni; Fulignati, Pierluigi; Spinelli, Alessio; Rovella, Valentina; Di Daniele, Nicola

    2013-09-01

    Loin pain haematuria syndrome (LPHS) is a severe renal pain condition of uncertain origin and often resistant to treatment. Nephrectomy and renal autotrasplantation have occasionally been performed in very severe cases. Its pathogenesis is controversial. A 40-year-old hypertensive lady was diagnosed with LPHS after repeated diagnostic imaging procedures had ruled out any renal, abdominal or spinal conditions to justify pain. Notwithstanding treatment with three drugs, she had frequent hypertensive crises during which the loin pain was dramatically exacerbated. Vascular causes of the pain and hypertension were investigated and excluded. Her renal function was normal. The patient was referred to a multidisciplinary pain clinic, but had no significant improvement in her pain symptoms despite the use of non-steroidal anti-inflammatory drugs, adjuvant antidepressants and opioid-like agents. The pain and the discomfort were so severe that her quality of life was very poor, and her social and professional activities were compromised. Nephrectomy and renal autotransplantation have occasionally been performed in these cases. Since visceral pain signals flow through afferent sympathetic fibres, we felt that percutaneous catheter-based radiofrequency ablation of the renal sympathetic nerve fibres (recently introduced for the treatment of drug-resistant hypertension) could be valuable for pain relief. We treated the patient with radiofrequency ablation (Medtronic Symplicity Catheter) applied only to the right renal artery. After a 6-month follow-up, the patient is pain free and normotensive with all drugs withdrawn. She has experienced no hypertensive crises in the meantime. This observation suggests that percutaneous sympathetic denervation could prove to be an effective mini-invasive strategy for the treatment of chronic renal pain, and LPHS in particular.

  3. Human papillomavirus infection among Bangladeshi women with cervical intraepithelial neoplasia and chronic cervicitis

    Directory of Open Access Journals (Sweden)

    Elisha Khandker

    2016-01-01

    Full Text Available Background and objectives: Cervical cancer is one of the leading causes of morbidity and mortality. Human papillomavirus (HPV is known to be associated with cervical intraepithelial neoplasia (CIN and cancer. The objective of the present study was to determine the rate of HPV infection among the Bangladeshi women with different grades of CIN and cancer. Methods: Women aged 20 to 55 years, diagnosed as a case of chronic cervicits, cervical intraepithelial neoplasia (CIN or invasive cancer by Papanicolaou (Pap smear and colposcopy directed biopsy were enrolled in the study. High and intermediate risk oncogenic HPV were detected in cervical samples by real time PCR (rt-PCR. Results: Seventy two women with chronic cervicitis and different grades of CIN were included in the study. Out of 72 cases, 28 (38.9% and 44 (61.1% had chronic cervicitis and CIN respectively. Overall, the HPV infection rate was 43.1% (95% CI= 32%-54% among the study population. CIN cases had significantly high (p<0.01 HPV infection (78.6%; 95% CI=60%-89% compared to cases with chronic cervicitis (18.2%; 95% CI=11.1%-34.5%. Women between the age of 20-30 years had the highest positive rate (50.0% followed by 31-40 years age group (43.6%. All CIN grade 2 and 3 had HPV infection. Conclusion: The study showed that HPV was strongly associated with different grades of CIN. Specific HPV types should be determined to find out the most prevalent HPV types among the Bangladeshi women with CIN and cervical cancers. IMC J Med Sci 2016; 10(1: 29-32

  4. Percutaneous endoscopic cervical discectomy for discogenic cervical headache due to soft disc herniation

    International Nuclear Information System (INIS)

    Ahn, Y.; Lee, S.H.; Shin, S.W.; Chung, S.E.; Park, H.S.

    2005-01-01

    A discogenic cervical headache is a subtype of cervicogenic headache (CEH) that arises from a degenerative cervical disc abnormality. The purpose of this study was to evaluate the clinical outcome of percutaneous endoscopic cervical discectomy (PECD) for patients with chronic cervical headache due to soft cervical disc herniation. Seventeen patients underwent PECD for intractable headache. The inclusion criteria were soft disc herniation without segmental instability, proven by both local anesthesia and provocative discography for headache unresponsive to conservative treatment. The mean follow-up period was 37.6 months. Fifteen of the 17 patients (88.2%) showed successful outcomes based on the Macnab criteria. Pain scores on a visual analog scale (VAS) improved from a preoperative mean of 8.35±0.79 to 2.12±1.17, postoperatively (P<0.01). The mean disc height decreased from 6.81±1.08 to 5.98±1.07 mm (P<0.01). There was no newly developed segmental instability or spontaneous fusion on follow-up radiography. In conclusion, PECD appears to be effective for chronic severe discogenic cervical headache under strict inclusion criteria. (orig.)

  5. Experimental evaluation of the stability of goat's cervical spine after percutaneous cervical diskectomy

    International Nuclear Information System (INIS)

    Du Zhongli; Zhou Yicheng; Wang Chengyuan; Hong Cheng; Liu Hanqiao; Zhang Jiangfan; Ding Hui; Feng Dingyi

    1999-01-01

    Objective: To evaluate the stability of the goat's cervical spine after PCD (percutaneous cervical diskectomy). Methods: Ten adult goats were studied. Seven had PCD at C 3-4 , and three at C 4-5 . The cervical spine of the goat was studied with MR using axial, corona land sagittal images and with anteroposterior and lateral radiographs before and after PCD. The height of the disk, the disk space angle and dislocation were measured respectively before and after PCD. The data were examined by t-test. Results: The disk space (7 cases, 70%) became narrow obviously, and hyperostosis (5 cases, 50%) disk bulging (4 cases, 40%) appeared after PCD, but there was no obvious dislocation or angulation between the adjacent vertebral bodies. Conclusions: The stability of the goat's cervical spine is not affected after PCD. Indicating that this might also hold true for human cervical spine

  6. Cervical Cancer—Health Professional Version

    Science.gov (United States)

    The primary risk factor for cervical cancer is human papillomavirus (HPV) infection. Most cases of cervical cancer are preventable by routine screening and by treatment of precancerous lesions. Find evidence-based information on cervical cancer treatment, causes and prevention, screening, research, and statistics.

  7. Central Gi(2) proteins, sympathetic nervous system and blood pressure regulation

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef

    2016-01-01

    Roč. 216, č. 3 (2016), s. 258-259 ISSN 1748-1708 Institutional support: RVO:67985823 Keywords : inhibitory G proteins * sympathetic nervous system * central blood pressure control Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.867, year: 2016

  8. Neurogenic inflammation: a study of rat trigeminal ganglion

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Edvinsson, Lars

    2010-01-01

    Calcitonin gene-related peptide (CGRP) is linked to neurogenic inflammation and to migraine. Activation of the trigeminovascular system plays a prominent role during migraine attacks with the release of CGRP. The trigeminal ganglion (TG) contains three main cell types: neurons, satellite glial...... cells (SGC) and Schwann cells; the first two have before been studied in vitro separately. Culture of rat TG provides a method to induce inflammation and the possibility to evaluate the different cell types in the TG simultaneously. We investigated expression levels of various inflammatory cytokines...

  9. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake

    International Nuclear Information System (INIS)

    Nomura, Yusuke; Kajinami, Kouji; Matsunari, Ichiro; Takamatsu, Hiroyuki; Murakami, Yoshihiro; Matsuya, Takahiro; Chen, Wei-Ping; Taki, Junichi; Nakajima, Kenichi; Nekolla, Stephan G.

    2006-01-01

    Although 11 C-hydroxyephedrine ( 11 C-HED) PET is used to map cardiac sympathetic innervation, no studies have shown the feasibility of quantitation of 11 C-HED PET in small- to medium-sized animals. Furthermore, its relation to 123 I-MIBG uptake, the most widely used sympathetic nervous tracer, is unknown. The aims of this study were to establish in vivo sympathetic nerve imaging in rabbits using 11 C-HED PET, and to compare the retention of 11 C-HED with that of 123 I-MIBG. Twelve rabbits were assigned to three groups; control (n=4), chemical denervation by 6-hydroxydopamine (6-OHDA) (n=4) and reserpine treated to inhibit vesicular uptake (n=4). After simultaneous injection of 11 C-HED and 123 I-MIBG, all animals underwent dynamic 11 C-HED PET for 40 min with arterial blood sampling. The 11 C-HED retention fraction and normalised 11 C-HED activity measured by tissue sampling were compared with those measured by PET. Both the 11 C-HED retention fraction and the normalised 11 C-HED activity measured by PET correlated closely with those measured by tissue sampling (R=0.96027, p 11 C-HED and 123 I-MIBG. Reserpine pretreatment reduced 11 C-HED retention by 50%, but did not reduce 123 I-MIBG retention at 40 min after injection. Non-invasive quantitation of cardiac sympathetic innervation using 11 C-HED PET is feasible and gives reliable estimates of cardiac sympathetic innervation in rabbits. Additionally, although both 11 C-HED and 123 I-MIBG are specific for sympathetic neurons, 11 C-HED may be more specific for intravesicular uptake than 123 I-MIBG in some situations, such as that seen in reserpine pretreatment. (orig.)

  10. Regulators of human white adipose browning: evidence for sympathetic control and sexual dimorphic responses to sprint interval training.

    Directory of Open Access Journals (Sweden)

    Rebecca L Scalzo

    Full Text Available The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21 were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11. The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE, but was increased during hypoxia mediated sympathetic activation (368±135; this response was abrogated (P = 0.035 with clonidine (269±93. Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21. Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5 was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT. SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046 but did not affect FNDC5 (P = 0.79. Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045 and increased in females (139±14 vs. 170±18. Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT.

  11. Cervical lung hernia

    Science.gov (United States)

    Lightwood, Robin G.; Cleland, W. P.

    1974-01-01

    Lightwood, R. G., and Cleland, W. P. (1974).Thorax, 29, 349-351. Cervical lung hernia. Lung hernias occur in the cervical position in about one third of cases. The remainder appear through the chest wall. Some lung hernias are congenital, but trauma is the most common cause. The indications for surgery depend upon the severity of symptoms. Repair by direct suture can be used for small tears in Sibson's (costovertebral) fascia while larger defects have been closed using prosthetic materials. Four patients with cervical lung hernia are described together with an account of their operations. PMID:4850946

  12. THE CERVICAL CANCER SCREENING - UNSOLVED PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available The problem of cervical cancer (CC for many decades continues to be the center of attention leading foreign and domestic oncologists. Malignant cervical tumors occupy the leading position among malignant neoplasms of reproductive system in women, second only to breast cancer, despite having far more effective screening compared with this disease. On predictive expert estimates (taking into account population growth and the expected increase in life expectancy by 2020 in developing countries, the rising incidence and prevalence of cervical cancer is 40%, while in developed countries - 11%. If we do not perform timely interventions for prevention and treatment of cervical cancer, after 2050 cervical cancer every year in the world will become sick 1 million women. In the last decade inRussiathere has been a gradual increase in the incidence of cervical cancer: average annual growth rate of 2.21%, General 25,18%. Cervical cancer is one of nosological forms that meet all the requirements of population-based screening. The current Russian normative documents do not give clear answers to questions concerning the age of onset of cervical cancer screening and the time interval between tests, no clear program organized cytological screening of cervical cancer.

  13. Impact of Fat Infiltration in Cervical Extensor Muscles on Cervical Lordosis and Neck Pain: A Cross-Sectional Study.

    Science.gov (United States)

    Kim, Choong-Young; Lee, Sang-Min; Lim, Seong-An; Choi, Yong-Soo

    2018-06-01

    Weakness of cervical extensor muscles causes loss of cervical lordosis, which could also cause neck pain. The aim of this study was to investigate the impact of fat infiltration in cervical extensor muscles on cervical lordosis and neck pain. Fifty-six patients who suffered from neck pain were included in this study. Fat infiltration in cervical extensor muscles was measured at each level of C2-3 and C6-7 using axial magnetic resonance imaging. The visual analogue scale (VAS), 12-Item Short Form Health Survey (SF-12), and Neck Disability Index (NDI) were used for clinical assessment. The mean fat infiltration was 206.3 mm 2 (20.3%) at C2-3 and 240.6 mm 2 (19.5%) at C6-7. Fat infiltration in cervical extensor muscles was associated with high VAS scores at both levels ( p = 0.047 at C2-3; p = 0.009 at C6-7). At C2-3, there was a negative correlation between fat infiltration of the cervical extensor muscles and cervical lordosis (r = -0.216; p = 0.020). At C6-7, fat infiltration in the cervical extensor muscles was closely related to NDI ( p = 0.003) and SF-12 ( p > 0.05). However, there was no significant correlation between cervical lordosis and clinical outcomes (VAS, p = 0.112; NDI, p = 0.087; and SF-12, p > 0.05). These results suggest that fat infiltration in the upper cervical extensor muscles has relevance to the loss of cervical lordosis, whereas fat infiltration in the lower cervical extensor muscles is associated with cervical functional disability.

  14. Dissection of the sentry ganglion by laparoscopic boarding in patients with cervix uterine cancer clinical stages IA2 at IIB

    International Nuclear Information System (INIS)

    Valdez U, J.J.; Pichardo M, P.A.; Cortes M, G.; Escudero de los Rios, P.

    2005-01-01

    The obtained results in presently study demonstrate that the feasibility of the detection of the sentry ganglion in cervix uterine cancer using a boarding by laparoscopic via, being necessary the use of twice labelled as much with patent blue and radioisotope (colloid of labelled rhenium with 99m Tc, total dose of 3 MCi) to achieve the identification of the ganglion. (Author)

  15. Evaluation of arthrodesis and cervical alignment in the surgical results of cervical discectomy using polymethylmetacrylate Avaliação da artrodese e do alinhamento cervical após discectomia cervical com interposição de polimetilmetacrilato

    Directory of Open Access Journals (Sweden)

    Marcelo Luis Mudo

    2009-09-01

    Full Text Available BACKGROUND AND OBJECTIVES: Surgical treatment of cervical radiculopathy with or without myelopathy is a controversy issue, although anterior discectomy is the most common form of treatment. METHOD: We present the evaluation of the arthrodesis' rate and cervical alignment in 48 patients with cervical degenerative disease (CDD submitted to anterior cervical discectomy with interposition of polymethylmetacrylate (PMMA. Odom and Nürick scales were used to evaluation of functional status before and after surgery. Cervical spine X-rays were used to access arthrodesis and alignment, at least 2 years after the procedure. RESULTS: Excellent and good results (Odom I and II were obtained in 91% of the patients with radiculopathy and in 69% of those with myelopathy. Using the chi square test of independence (1% of significance, there was no association between excellent and good clinical results with the presence of arthrodesis verified in cervical X-rays. The presence of cervical alignment had association with good results, whereas the misalignment was associated with unfavorable outcomes. Two patients died: one cervical hematoma and other from graft migration with cord compression. CONCLUSIONS: Cervical alignment was more important than fusion to achieve good surgical results in CDD.TEMA E OBJETIVO: O tratamento cirúrgico da radiculopatia cervical com ou sem mielopatia é um tema controverso, embora a discectomia por via anterior seja uma das formas mais comuns de tratamento. MÉTODO: Apresentamos a avaliação da artrodese cervical e do alinhamento pós operatório em 48 pacientes com doença degenerativa cervical (DDC submetidos a discectomia por via anterior seguida da interposição de polimetilmetacrilato (PMMA. As escalas de Odom e de Nurick foram utilizadas para avaliar o status funcional dos pacientes antes e após a cirurgia. Radiografias da coluna cervical foram utilizadas para avaliar a artrodese e o alinhamento cervical, pelo menos 2 anos ap

  16. Incidence of cervical dysplasia and cervical cancer in women living with HIV in Denmark

    DEFF Research Database (Denmark)

    Thorsteinsson, Kristina; Ladelund, Steen; Jensen-Fangel, Søren

    2014-01-01

    and hazard ratios (HRs) for time from inclusion to first cervical intraepithelial neoplasia (CIN)/ICC and time from first normal cervical cytology to first CIN/ICC were estimated. Sensitivity analyses were performed to include prior screening outcome, screening intensity and treatment of CIN......INTRODUCTION: Women living with HIV (WLWH) are reportedly at increased risk of invasive cervical cancer (ICC). WLWH in Denmark attend the National ICC screening program less often than women in the general population. We aimed to estimate the incidence of cervical dysplasia and ICC in WLWH...... with normal baseline cytology, incidences of CIN1+ and CIN2+ were higher in WLWH. However, incidences were comparable between WLWH and controls adherent to the National ICC screening program. CONCLUSIONS: Overall, WLWH develop more cervical disease than controls. However, incidences of CIN are comparable...

  17. Incidence of cervical dysplasia and cervical cancer in women living with HIV in Denmark

    DEFF Research Database (Denmark)

    Thorsteinsson, K; Ladelund, Steen; Jensen-Fangel, S

    2016-01-01

    , which contains nationwide records of all pathology specimens. The cumulative incidence and hazard ratios (HRs) for time from inclusion to first cervical intraepithelial neoplasia (CIN)/ICC and time from first normal cervical cytology result to first CIN/ICC were estimated. Sensitivity analyses were......OBJECTIVES: Women living with HIV (WLWH) are reportedly at increased risk of invasive cervical cancer (ICC). A recent publication found that WLWH in Denmark attend the national ICC screening programme less often than women in the general population. We aimed to estimate the incidence of cervical...... in both groups were adherent to the national ICC screening programme and had a normal baseline cytology, incidences of CIN and ICC were comparable. CONCLUSIONS: Overall, WLWH developed more cervical disease than controls. Yet, in WLWH and controls adherent to the national ICC screening programme...

  18. Relationship Between T1 Slope and Cervical Alignment Following Multilevel Posterior Cervical Fusion Surgery: Impact of T1 Slope Minus Cervical Lordosis.

    Science.gov (United States)

    Hyun, Seung-Jae; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2016-04-01

    Retrospective study. To assess the relationship between sagittal alignment of the cervical spine and patient-reported health-related quality-of-life scores following multilevel posterior cervical fusion, and to explore whether an analogous relationship exists in the cervical spine using T1 slope minus C2-C7 lordosis (T1S-CL). A recent study demonstrated that, similar to the thoracolumbar spine, the severity of disability increases with sagittal malalignment following cervical reconstruction surgery. From 2007 to 2013, 38 consecutive patients underwent multilevel posterior cervical fusion for cervical stenosis, myelopathy, and deformities. Radiographic measurements included C0-C2 lordosis, C2-C7 lordosis, C2-C7 sagittal vertical axis (SVA), T1 slope, and T1S-CL. Pearson correlation coefficients were calculated between pairs of radiographic measures and health-related quality-of-life. C2-C7 SVA positively correlated with neck disability index (NDI) scores (r = 0.495). C2-C7 lordosis (P = 0.001) and T1S-CL (P = 0.002) changes correlated with NDI score changes after surgery. For significant correlations between C2-C7 SVA and NDI scores, regression models predicted a threshold C2-C7 SVA value of 50 mm, beyond which correlations were most significant. The T1S-CL also correlated positively with C2-C7 SVA and NDI scores (r = 0.871 and r = 0.470, respectively). Results of the regression analysis indicated that a C2-C7 SVA value of 50 mm corresponded to a T1S-CL value of 26.1°. This study showed that disability of the neck increased with cervical sagittal malalignment following surgical reconstruction and a greater T1S-CL mismatch was associated with a greater degree of cervical malalignment. Specifically, a mismatch greater than 26.1° corresponded to positive cervical sagittal malalignment, defined as C2-C7 SVA greater than 50 mm. 3.

  19. Cervical cytology and the diagnosis of cervical cancer in older women.

    Science.gov (United States)

    Landy, Rebecca; Castanon, Alejandra; Dudding, Nick; Lim, Anita Wey Wey; Hollingworth, Antony; Hamilton, Willie; Sasieni, Peter D

    2015-12-01

    Most non-screen-detected cervical cancers are advanced stage. We assess the potential for cytology to expedite diagnosis when used outside of routine call and recall screening for cervical cancer. Two cohorts of women with cytology that did not appear to have been taken as part of routine screening, nested within a census of cervical cytology, in England between April 2007 and March 2010 were studied: 93,322 women aged 40-69 at first cytology, and 14,668 women aged ≥70. The diagnostic performance of high grade cervical squamous intraepithelial lesion (HSIL) or worse cytology was estimated. We also estimated case-fatality from stage distribution in women aged ≥66 with and without cytology in the year prior to diagnosis. There were 259 cancers diagnosed in women aged 40-69 at first cytology, and 78 in women aged ≥70. The sensitivity of cytology ≥ HSIL for cancer was 89% and 83% respectively, and the number of women needed to test to identify one cancer was 404 (95% confidence interval [CI]: 355-462) and 226 (95% CI: 177-292) respectively. Women aged ≥66 with cytology within a year of diagnosis had earlier stage cancers than those without, corresponding to a 17-22% reduction in case fatality. Cervical cytology is an excellent identifier of cancer among women tested outside routine screening call and recall. Its use as a triage tool, for instance in women with vague gynaecological symptoms, could facilitate earlier stage diagnosis and reduce cervical cancer mortality. © The Author(s) 2015.

  20. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study.

    Science.gov (United States)

    Atherton, Daniel S; Deep, Nicholas L; Mendelsohn, Farrell O

    2012-07-01

    Hypertension remains an epidemic uncontrolled with pharmacologic therapies. A novel catheter inserted into the renal artery has been shown to lower blood pressure by ablating the renal sympathetic nerves with radiofrequency energy delivered through the arterial wall. We report a histologic study describing the anatomic substrate for this technique, specifically the renal sympathetic nervous system. Histological sections from proximal, middle, and distal renal artery segments from nine renal arteries (five human autopsies) were analyzed. Nerves were manually counted and their distance from the lumen-intima interface was measured using a micrometer. The nerves were then categorized by location into 0.5-mm-wide "rings" that were arranged circumferentially around the renal artery lumen. Of all nerves detected, 1.0% was in the 0-0.5 mm ring, 48.3% were in the 0.5-1.0 mm ring, 25.6% were in the 1.0-1.5 mm ring, 15.5% were in the 1.5-2.0 mm ring, and 9.5% were in the 2.0-2.5 mm ring. Beyond 0.5 mm, the proportion of nerves tended to decrease as the distance from the lumen increased. Totally, 90.5% of all nerves in this study existed within 2.0 mm of the renal artery lumen. Additionally, the number of nerves tended to increase along the length of the artery from proximal to distal segments (proximal = 216; middle = 323; distal = 417). In conclusion, our analysis indicates that a great proportion of renal sympathetic nerves have close proximity to the lumen-intima interface and should thus be accessible via renal artery interventional approaches such as catheter ablation. This data provides important anatomic information for the development of ablation and other type devices for renal sympathetic denervation. © 2011 Wiley Periodicals, Inc.

  1. Pneumatic antishock garment inflation activates the human sympathetic nervous system by abdominal compression.

    Science.gov (United States)

    Garvin, Nathan M; Levine, Benjamin D; Raven, Peter B; Pawelczyk, James A

    2014-01-01

    Pneumatic antishock garments (PASG) have been proposed to exert their blood pressure-raising effect mechanically, i.e. by increasing venous return and vascular resistance of the lower body. We tested whether, alternatively, PASG inflation activates the sympathetic nervous system. Five men and four women wore PASG while mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), heart rate and stroke volume were measured. One leg bladder (LEG) and the abdominal bladder (ABD) of the trousers were inflated individually and in combination (ABD+LEG), at 60 or 90 mmHg for 3 min. By the end of 3 min of inflation, conditions that included the ABD region caused significant increases in MAP in a dose-dependent fashion (7 ± 2, 8 ± 3, 14 ± 4 and 13 ± 5 mmHg for ABD60, ABD+LEG60, ABD90 and ABD+LEG90, respectively, P < 0.05). Likewise, inflation that included ABD caused significant increases in total MSNA compared with control values [306 ± 70, 426 ± 98 and 247 ± 79 units for ABD60, ABD90 and ABD+LEG90, respectively, P < 0.05 (units = burst frequency × burst amplitude]. There were no changes in MAP or MSNA in the LEG-alone conditions. The ABD inflation also caused a significant decrease in stroke volume (-11 ± 3 and -10 ± 3 ml per beat in ABD90 and ABD+LEG90, respectively, P < 0.05) with no change in cardiac output. Neither cardiopulmonary receptor deactivation nor mechanical effects can account for a slowly developing rise in both sympathetic activity and blood pressure during ABD inflation. Rather, these data provide direct evidence that PASG inflation activates the sympathetic nervous system secondarily to abdominal, but not leg, compression.

  2. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Imbriaco, Massimo; Piscopo, Valentina; Ponsiglione, Andrea; Nappi, Carmela; Puglia, Marta; Dell' Aversana, Serena; Spinelli, Letizia; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Petretta, Mario [University Federico II, Department of Translational Medical Sciences, Naples (Italy); Riccio, Eleonora; Pisani, Antonio [University of Naples Federico II, Department of Public Health, Naples (Italy)

    2017-12-15

    Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by {sup 123}I-metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear. Cardiac sympathetic innervation was assessed by {sup 123}I-MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV. Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r{sup 2} = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02). Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, {sup 123}I-MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD. (orig.)

  3. Vagal and sympathetic activity in burnouts during a mentally demanding workday

    NARCIS (Netherlands)

    Zanstra, Ydwine J.; Schellekens, Jan M. H.; Schaap, Cas; Kooistra, Libbe

    2006-01-01

    Objective: We study differences in task performance and related sympathetic-vagal reaction patterns between burnouts and controls during a mentally demanding workday. Method: Thirty-nine adults with burnout and 40 healthy controls performed mental tasks during a simulated workday. At pretest, just

  4. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder.

    Science.gov (United States)

    Park, Jeanie; Marvar, Paul J; Liao, Peizhou; Kankam, Melanie L; Norrholm, Seth D; Downey, Ryan M; McCullough, S Ashley; Le, Ngoc-Anh; Rothbaum, Barbara O

    2017-07-15

    Patients with post-traumatic stress disorder (PTSD) are at a significantly higher risk of developing hypertension and cardiovascular disease. The mechanisms underlying this increased risk are not known. Studies have suggested that PTSD patients have an overactive sympathetic nervous system (SNS) that could contribute to cardiovascular risk; however, sympathetic function has not previously been rigorously evaluated in PTSD patients. Using direct measurements of sympathetic nerve activity and pharmacological manipulation of blood pressure, we show that veterans with PTSD have augmented SNS and haemodynamic reactivity during both combat-related and non-combat related mental stress, impaired sympathetic and cardiovagal baroreflex sensitivity, and increased inflammation. Identifying the mechanisms contributing to increased cardiovascular (CV) risk in PTSD will pave the way for developing interventions to improve sympathetic function and reduce CV risk in these patients. Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular (CV) risk. We tested the hypothesis that PTSD patients have augmented sympathetic nervous system (SNS) and haemodynamic reactivity during mental stress, as well as impaired arterial baroreflex sensitivity (BRS). Fourteen otherwise healthy Veterans with combat-related PTSD were compared with 14 matched Controls without PTSD.  Muscle sympathetic nerve activity (MSNA), continuous blood pressure (BP) and electrocardiography were measured at baseline, as well as during two types of mental stress:  combat-related mental stress using virtual reality combat exposure (VRCE) and non-combat related stress using mental arithmetic (MA). A cold pressor test (CPT) was administered for comparison. BRS was tested using pharmacological manipulation of BP via the Modified Oxford technique at rest and during VRCE. Blood samples were analysed for inflammatory biomarkers. Baseline characteristics, MSNA and haemodynamics were similar between

  5. Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress.

    Science.gov (United States)

    Marko, Martin; Riečanský, Igor

    2018-05-01

    Cognitive flexibility emerges from an interplay of multiple cognitive systems, of which lexical-semantic and executive are thought to be the most important. Yet this has not been addressed by previous studies demonstrating that such forms of flexible thought deteriorate under stress. Motivated by these shortcomings, the present study evaluated several candidate mechanisms implied to mediate the impairing effects of stress on flexible thinking. Fifty-seven healthy adults were randomly assigned to psychosocial stress or control condition while assessed for performance on cognitive flexibility, working memory capacity, semantic fluency, and self-reported cognitive interference. Stress response was indicated by changes in skin conductance, hearth rate, and state anxiety. Our analyses showed that acute stress impaired cognitive flexibility via a concomitant increase in sympathetic arousal, while this mediator was positively associated with semantic fluency. Stress also decreased working memory capacity, which was partially mediated by elevated cognitive interference, but neither of these two measures were associated with cognitive flexibility or sympathetic arousal. Following these findings, we conclude that acute stress impairs cognitive flexibility via sympathetic arousal that modulates lexical-semantic and associative processes. In particular, the results indicate that stress-level of sympathetic activation may restrict the accessibility and integration of remote associates and bias the response competition towards prepotent and dominant ideas. Importantly, our results indicate that stress-induced impairments of cognitive flexibility and executive functions are mediated by distinct neurocognitive mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Pathological evaluation of ganglion cells in biopsies from upper side of the dentate line in patients with perianal problems

    Directory of Open Access Journals (Sweden)

    Marjan Joudi

    2014-07-01

    Full Text Available Introduction: Constipation is one of the most common complaints of individuals, which may present with complication like hemorrhoid and fissure. Hirschsprung is a disease presenting with chronic constipation and its diagnosis may be delayed until adulthood. It is diagnosed by biopsies from anorectal transitional zone. This study aimed to evaluate the association between Hirschsprung and anorectal problems. Method: Sixty three patients with anorectal problems who underwent surgery enrolled in this study. Some consecutive biopsies were obtained from anal canal at 2, 4 and 6 cm above the dentate line. Biopsies were assessed for ganglion cells changes. Patients' data and biopsies results were analyzed with SPSS version18. Results: Out of 63 patients 29 (46 % patients were female and 34 (54 % were male with the mean of 32.65 ± 13.73 years. Fifty six (73 % patients complained from constipation with the mean time of 57.65 ± 45.21 months. Aganglionic zone were reported in six patients with the mean length of 43.33 mm. There was not any relation between anal ganglion cells pathology and constipation (p=0.363, but there was a significant relation between duration of constipation and pathologic changes (p=0.001. The ratio of constipation duration to age was related to anal ganglion cell pathology (p=0.001. Hemorrhoid degree was also affected anal ganglion cells pathology (p=0.037. Conclusion: The relation between Hirschsprung's disease and anorectal problems in adults were significant. The pathologic findings were more presented in younger patients, and those with longer history of constipation and lower degree hemorrhoids. Key words: Anal ganglion cells, Hemorrhoids, Constipation  

  7. The pattern of activation of the sympathetic nervous system during tilt-induced syncope.

    Science.gov (United States)

    Zyśko, Dorota; Gajek, Jacek; Sciborski, Ryszard; Smereka, Jacek; Checiński, Igor; Mazurek, Walentyna

    2007-04-01

    A 49-year-old patient with a history of situational syncope and minimal electrocardiographic signs of accessory pathway is described. The evidence for pre-excitation was present only during the sympathetic activation caused by exercise testing and isoprenaline infusion. This phenomenon served as an indicator of significant adrenergic drive to the heart after the tilt-induced syncope. The meaning of the observed electrocardiographic changes in the course of neurocardiogenic reaction and its contribution to the understanding of the sympatho-vagal balance during vasovagal syncope is discussed. The lack of preexcitation signs during syncope and its appearance several seconds after the syncope-related sinus pause indicates sympathetic withdrawal before and shortly after the asystole. The possible pathophysiological mechanisms are discussed.

  8. Carotid body (Thermoreceptors, sympathetic neural activation, and cardiometabolic disease

    Directory of Open Access Journals (Sweden)

    Rodrigo Iturriaga

    Full Text Available The carotid body (CB is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome.

  9. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  10. Production and sympathetic cooling of complex molecular ions

    International Nuclear Information System (INIS)

    Zhang, Chaobo

    2008-01-01

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO 2 , Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the 138 Ba + ions in the ( 2 P 1/2 ) excited state with gases such as O 2 , CO 2 , or N 2 O, could be observed. If the initial 138 Ba + ion ensemble is cold, the produced 138 BaO + ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of 138 BaO + ions with neutral CO to 138 Ba + is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the feasibility of nondestructive spectroscopy via an optical dipole excitation

  11. Pathogenesis, Diagnosis, and Treatment of Cervical Vertigo.

    Science.gov (United States)

    Li, Yongchao; Peng, Baogan

    2015-01-01

    Cervical vertigo is characterized by vertigo from the cervical spine. However, whether cervical vertigo is an independent entity still remains controversial. In this narrative review, we outline the basic science and clinical evidence for cervical vertigo according to the current literature. So far, there are 4 different hypotheses explaining the vertigo of a cervical origin, including proprioceptive cervical vertigo, Barré-Lieou syndrome, rotational vertebral artery vertigo, and migraine-associated cervicogenic vertigo. Proprioceptive cervical vertigo and rotational vertebral artery vertigo have survived with time. Barré-Lieou syndrome once was discredited, but it has been resurrected recently by increased scientific evidence. Diagnosis depends mostly on patients' subjective feelings, lacking positive signs, specific laboratory examinations and clinical trials, and often relies on limited clinical experiences of clinicians. Neurological, vestibular, and psychosomatic disorders must first be excluded before the dizziness and unsteadiness in cervical pain syndromes can be attributed to a cervical origin. Treatment for cervical vertigo is challenging. Manual therapy is recommended for treatment of proprioceptive cervical vertigo. Anterior cervical surgery and percutaneous laser disc decompression are effective for the cervical spondylosis patients accompanied with Barré-Liéou syndrome. As to rotational vertebral artery vertigo, a rare entity, when the exact area of the arterial compression is identified through appropriate tests such as magnetic resonance angiography (MRA), computed tomography angiography (CTA) or digital subtraction angiography (DSA) decompressive surgery should be the chosen treatment.

  12. Cervical Cancer Stage IIIB

    Science.gov (United States)

    ... by the cancer. This blockage can cause the kidney to enlarge or stop working. Stage IIIB cervical cancer. Topics/Categories: Anatomy -- Gynecologic Cancer Types -- Cervical Cancer Staging Type: Color, ...

  13. The Biomechanics of Cervical Spondylosis

    Directory of Open Access Journals (Sweden)

    Lisa A. Ferrara

    2012-01-01

    Full Text Available Aging is the major risk factor that contributes to the onset of cervical spondylosis. Several acute and chronic symptoms can occur that start with neck pain and may progress into cervical radiculopathy. Eventually, the degenerative cascade causes desiccation of the intervertebral disc resulting in height loss along the ventral margin of the cervical spine. This causes ventral angulation and eventual loss of lordosis, with compression of the neural and vascular structures. The altered posture of the cervical spine will progress into kyphosis and continue if the load balance and lordosis is not restored. The content of this paper will address the physiological and biomechanical pathways leading to cervical spondylosis and the biomechanical principles related to the surgical correction and treatment of kyphotic progression.

  14. Burst Activity and Heart Rhythm Modulation in the Sympathetic Outflow to the Heart

    National Research Council Canada - National Science Library

    Baselli, G

    2001-01-01

    In 13 decerebrate, artificially ventilated cats preganglionic sympathetic outflow to the heart was recorded with ECG and ventilation signal, A novel algorithm was implemented that extracts weighted...

  15. The circadian response of intrinsically photosensitive retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew J Zele

    Full Text Available Intrinsically photosensitive retinal ganglion cells (ipRGC signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central or intrinsic (retinal network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18-30 years with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC and outer retina (cone photoreceptors was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux. Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin retinal ganglion cells mediate this circadian variation.

  16. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we

  17. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always

    DEFF Research Database (Denmark)

    Georg, Birgitte; Ghelli, Anna; Giordano, Carla

    2017-01-01

    Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties...

  18. Abnormal Cervical Cancer Screening Test Results

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  19. Cervical Chondrocutaneous Branchial Remnants.

    Science.gov (United States)

    Klockars, Tuomas; Kajosaari, Lauri

    2017-03-01

    Cervical chondrocutaneous branchial remnants are rare malformations usually found in the lower neck. As high as 76% of patients have been reported to have associated anomalies. We review the literature and report a case series of seven patients with cervical cartilaginous remnants.   A retrospective case series of seven patients identified from the electronic hospital records.   Seven patients with cervical chondrocutaneous branchial remnants were identified (six boys and one girl). Only one of the patients had associated anomalies.   A review of the literature revealed no evidence for sinuses or cysts related to cervical chondrocutaneous branchial remnants. Operative treatment can be postponed to a suitable and safe age. There is marked variation in the reported prevalence of associated anomalies, ranging from 11% to 76%.

  20. Human Papilloma Virus 16 and 18 Association in Cervical Intraepithelial Lesions and Cervical Cancers by In Situ Hybridization

    Directory of Open Access Journals (Sweden)

    Mohanty Manisa

    2017-03-01

    Full Text Available Objective: To correlate the association of high risk Human Papilloma Virus (HPV 16, 18 in cervical intraepithelial lesions and cervical cancers by in-situ hybridization (ISH technique. Study Group: Cervical biopsy and hysterectomy specimen of 78 young and adult women, attending Hi-Tech Medical College and Hospital, Bhubaneswar, who were clinically or cytologically suspected of cervical intraepithelial lesion or cervical cancer were taken as source of target viral DNA. Material: Formalin 10% as fixative H & E stain as routine staining agent In-situ hybridization kit for HPV 16 and 18 DNA. Method: After following standard protocol for surgical grossing, HPV 16, 18 In-situ hybridization kit was used on paraffin embedded tissue sections. Results: The percentage of positive cases was highest in cervical cancer patients followed by cervical intraepithelial lesions, high grade, and low grade. Conclusion: This study has been carried out for the first in our state and our results show high degree of positivity of HPV 16/18 in females with cervical intraepithelial lesions and cervical cancers attending our tertiary care hospital.