WorldWideScience

Sample records for certej river catchment

  1. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania.

    Science.gov (United States)

    Zobrist, Jürg; Sima, Mihaela; Dogaru, Diana; Senila, Marin; Yang, Hong; Popescu, Claudia; Roman, Cecilia; Bela, Abraham; Frei, Linda; Dold, Bernhard; Balteanu, Dan

    2009-08-01

    In the region of the Apuseni Mountains, part of the Western Carpathians in Romania, metal mining activities have a long-standing tradition. These mining industries created a clearly beneficial economic development in the region. But their activities also caused impairments to the environment, such as acid mine drainage (AMD) resulting in long-lasting heavy metal pollution of waters and sediments. The study, established in the context of the ESTROM programme, investigated the impact of metal mining activities both from environmental and socioeconomic perspectives and tried to incorporate the results of the two approaches into an integrated proposition for mitigation of mining-related issues. The small Certej catchment, situated in the Southern Apuseni Mountains, covers an area of 78 km(2). About 4,500 inhabitants are living in the basin, in which metal mining was the main economic sector. An open pit and several abandoned underground mines are producing heavy metal-loaded acidic water that is discharged untreated into the main river. The solid wastes of mineral processing plants were deposited in several dumps and tailings impoundment embodying the acidic water-producing mineral pyrite. The natural science team collected samples from surface waters, drinking water from dug wells and from groundwater. Filtered and total heavy metals, both after enrichment, and major cations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major anions in waters, measured by ion chromatography, alkalinity and acidity were determined by titration. Solid samples were taken from river sediments and from the largest tailings dam. The latter were characterised by X-ray fluorescence and X-ray diffraction. Heavy metals in sediments were analysed after digestion. Simultaneously, the socioeconomic team performed a household survey to evaluate the perception of people related to the river and drinking water pollution by way of a logistic regression analysis

  2. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    Science.gov (United States)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  3. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    Science.gov (United States)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  4. Vaal River catchment: problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available , the Pretoria-Witwatersrand-Vereeniging (PWV) complex. Although the catchment only produces eight per cent of the mean annual runoff of the country it has the highest concentration of urban, industrial, mining and power generation development in South Africa... of the Vaal River. The purpose of the workshop and preceding symposium was to examine the ever increasing complexity of the Vaal River system, the much enlarged spectrum of user water quality needs and problems, and those activities in the catchment which...

  5. The Vaal river catchment: Problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available The vaal river catchments contains South African's economic heartland, the Pretoria -Witwatersrand-Vereeniging (PWV) complex. Although the catchments only produces eight per cent of the mean annual runoff of the country it has highest concentration...

  6. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  7. Monitoring of microcystin-LR in Luvuvhu River catchment ...

    African Journals Online (AJOL)

    The main aim of this study is to assess the levels of microcystin-LR in Luvuvhu River catchment and to assess the physicochemical parameters that may promote the growth of cyanobacteria. The level of microcystin-LR in some of the sampling sites was <0.18 ìg/l except for one site (Luvuvhu River just before the confluence ...

  8. Creating a catchment scale perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-09-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  9. Restoring Landform Geodiversity in Modified Rivers and Catchments

    Science.gov (United States)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    Extensive human modification and exploitation has created degraded and simplified systems lacking many of the landforms which would characterise healthy, geodiverse rivers. As awareness of geodiversity grows we must look to ways not only to conserve geodiversity but to also restore or create landforms which contribute to geodiverse environments. River restoration, with lessons learned over the last 30 years and across multiple continents, has much to offer as an exemplar of how to understand, restore or create geodiversity. Although not mentioned explicitly, there is an implicit emphasis in the Water Framework Directive on the importance of landforms and geodiversity, with landform units and assemblages at the reach scale assumed to provide the physical template for a healthy aquatic ecosystem. The focus on hydromorphology has increased the importance of geomorphology within river restoration programmes. The dominant paradigm is to restore landforms in order to increase habitat heterogeneity and improve biodiversity within rivers. However, the process of landform restoration is also a goal in its own right in the context of geodiversity, and extensive compilations of restoration experiences allow an inventory and pattern of landform (re-) creation to be assembled, and an assessment of landform function as well as landform presence/absence to be made. Accordingly, this paper outlines three principal research questions: Which landforms are commonly reinstated in river restoration activities? How do these landforms function compared to natural equivalents and thus contribute to 'functional' geodiversity as compared to the 'aesthetic' geodiversity? How does landform diversity scale from reach to catchment and contribute to larger-scale geodiversity? Data from the UK National River Restoration Inventory and the RHS are combined to assess the frequency and spatial distribution of commonly created landforms in relation to catchment type and more local context. Analysis is

  10. Morphometric Analysis of Didessa River Catchment in Blue Nile ...

    African Journals Online (AJOL)

    Morphometric Analysis of Didessa River Catchment in Blue Nile Basin, Western Ethiopia. ... In the present paper an attempt has been made to study the morphometric characteristics of Didessa ... Stream networks and watersheds were delineated in ArcGIS 10.1 software environment by utilizing ... HOW TO USE AJOL.

  11. Catchment2Coast: A systems approach to coupled river-coastal ecosystem science and management

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2009-07-01

    Full Text Available Catchment2Coast was an interdisciplinary research and modelling project that aimed to improve understanding of the linkages between coastal ecosystems and the adjacent river catchments. The project involved nine partner organizations from three...

  12. Agroecology and biodiversity of the catchment area of Swat River

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmed, R.

    2003-01-01

    Agroecological studies of the of the Swat River catchment area showed that the terrestrial ecosystem of the area is divided into subtropical, humid temperate, cool temperate, cold temperate, subalpine, alpine and cold desert zones. Indicator species along with their altitudinal limits are specified for each zone. Unplanned population growth, agriculture extension, habitat losses, deforestation, environmental pollution and unwise use of natural resources are threats to the natural biodiversity of these zones. Its severity is very evident in the subtropical and humid temperate zones. The losses encountered to the biodiversity of the area under the influence of various anthropogenic stresses are highlighted. (author)

  13. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Chenery, Simon R.N.; Pashley, Vanessa; Lord, Richard A.; Ander, Louise E.; Breward, Neil; Hobbs, Susan F.; Horstwood, Matthew; Klinck, Benjamin A.; Worrall, Fred

    2009-01-01

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  14. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Thomas J., E-mail: shepherdtj@aol.com [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom); Chenery, Simon R.N. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Pashley, Vanessa [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Lord, Richard A. [School of Science and Technology, University of Teesside, Middlesbrough, Tees Valley TS1 3BA (United Kingdom); Ander, Louise E.; Breward, Neil; Hobbs, Susan F. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Horstwood, Matthew [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Klinck, Benjamin A. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Worrall, Fred [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom)

    2009-08-15

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  15. Observed precipitation trends in the Yangtze river catchment from 1951 to 2002

    Institute of Scientific and Technical Information of China (English)

    SUBuda; JIANGTong; SHIYafeng; StefanBECKER; MracoGEMMER

    2004-01-01

    The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.

  16. Vulnerability of schools to floods in Nyando River catchment, Kenya.

    Science.gov (United States)

    Ochola, Samuel O; Eitel, Bernhard; Olago, Daniel O

    2010-07-01

    This paper assesses the vulnerability of schools to floods in the Nyando River catchment (3,600 km(2)) in western Kenya and identifies measures needed to reduce this vulnerability. It surveys 130 schools in the lower reaches, where flooding is a recurrent phenomenon. Of the primary schools assessed, 40% were vulnerable, 48% were marginally vulnerable and 12% were not vulnerable. Of the secondary schools, 8% were vulnerable, 73% were marginally vulnerable and 19% were not vulnerable. Vulnerability to floods is due to a lack of funds, poor building standards, local topography, soil types and inadequate drainage. The Constituencies Development Fund (CDF), established in 2003, provides financial support to cover school construction and reconstruction costs; CDF Committees are expected to adopt school building standards. In an effort to promote safe and resilient construction and retrofitting to withstand floods, this paper presents vulnerability reduction strategies and recommendations for incorporating minimum standards in the on-going Primary School Infrastructure Programme Design.

  17. Influences on flood frequency distributions in Irish river catchments

    Directory of Open Access Journals (Sweden)

    S. Ahilan

    2012-04-01

    Full Text Available This study explores influences on flood frequency distributions in Irish rivers. A Generalised Extreme Value (GEV type I distribution is recommended in Ireland for estimating flood quantiles in a single site flood frequency analysis. This paper presents the findings of an investigation that identified the GEV statistical distributions that best fit the annual maximum (AM data series extracted from 172 gauging stations of 126 rivers in Ireland. Analysis of these data was undertaken to explore hydraulic and hydro-geological factors that influence flood frequency distributions. A hierarchical approach of increasing statistical power that used probability plots, moment and L-moment diagrams, the Hosking goodness of fit algorithm and a modified Anderson-Darling (A-D statistical test was followed to determine whether a type I, type II or type III distribution was valid. Results of the Hosking et al. method indicated that of the 143 stations with flow records exceeding 25 yr, data for 95 (67% was best represented by GEV type I distributions and a further 9 (6% and 39 (27% stations followed type II and type III distributions respectively. Type I, type II and type III distributions were determined for 83 (58%, 16 (11% and 34 (24% stations respectively using the modified A-D method (data from 10 stations was not represented by GEV family distributions. The influence of karst terrain on these flood frequency distributions was assessed by incorporating results on an Arc-GIS platform showing karst features and using Monte Carlo simulations to assess the significance of the number and clustering of the observed distributions. Floodplain effects were identified by using two-sample t-tests to identify statistical correlations between the distributions and catchment properties that are indicative of strong floodplain activity. The data reveals that type I distributions are spatially well represented throughout the country. While also well represented throughout

  18. New Information on the Malacofauna of the Catchment Area of Rusenski Lom River (North Bulgaria

    Directory of Open Access Journals (Sweden)

    Iltcho Kolev

    2015-12-01

    Full Text Available After this short note adding 8 species to the faunal list of the area, a total of 130 mollusk species are known from the catchment area of Rusenski Lom River both aquatic and terrestrial.

  19. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  20. Spatiotemporal variability of oxygen isotope compositions in three contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Knudsen, N. Tvis; Yde, J.C.; Steffensen, J.P.

    2015-01-01

    composition is controlled by the proportion between snowmelt and ice melt with episodic inputs of rainwater and occasional storage and release of a specific water component due to changes in the subglacial drainage system. At Kuannersuit Glacier River on the island Qeqertarsuaq, the δ18O characteristics were......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of spatio-temporal δ18O variations in glacier rivers, we have examined three glacierized catchments in Greenland...... of diurnal oscillations, and in 2003 there were large diurnal fluctuations in δ18O. At Watson River, a large catchment at the western margin of the Greenland Ice Sheet, the spatial distribution of δ18O in the river system was applied to fingerprint the relative runoff contributions from sub-catchments. Spot...

  1. Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2010-10-01

    Full Text Available Understanding catchment hydrological processes is essential for water resources management, in particular in data scarce regions. The Gilgel Abay catchment (a major tributary into Lake Tana, source of the Blue Nile is undergoing intensive plans for water management, which is part of larger development plans in the Blue Nile basin in Ethiopia. To obtain a better understanding of the water balance dynamics and runoff generation mechanisms and to evaluate model transferability, catchment modeling has been conducted using the conceptual hydrological model HBV. Accordingly, the catchment of the Gilgel Abay has been divided into two gauged sub-catchments (Upper Gilgel Abay and Koga and the un-gauged part of the catchment. All available data sets were tested for stationarity, consistency and homogeneity and the data limitations (quality and quantity are discussed. Manual calibration of the daily models for three different catchment representations, i.e. (i lumped, (ii lumped with multiple vegetation zones, and (iii semi-distributed with multiple vegetation and elevation zones, showed good to satisfactory model performances with Nash-Sutcliffe efficiencies Reff > 0.75 and > 0.6 for the Upper Gilgel Abay and Koga sub-catchments, respectively. Better model results could not be obtained with manual calibration, very likely due to the limited data quality and model insufficiencies. Increasing the computation time step to 15 and 30 days improved the model performance in both sub-catchments to Reff > 0.8. Model parameter transferability tests have been conducted by interchanging parameters sets between the two gauged sub-catchments. Results showed poor performances for the daily models (0.30 < Reff < 0.67, but better performances for the 15 and 30 days models, Reff > 0.80. The transferability tests together with a sensitivity analysis using Monte Carlo simulations (more than 1 million

  2. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  3. Linking sediment fingerprinting and modeling outputs for a Spanish Pyrenean river catchment.

    Science.gov (United States)

    Palazón, Leticia; Latorre, Borja; Gaspar, Leticia; Blake, Williams H.; Smith, Hugh G.; Navas, Ana

    2015-04-01

    Indirect techniques to study fine sediment redistribution in river catchments could provide unique and diverse information, which, when combined become a powerful tool to address catchment management problems. Such combinations could solve limitations of individual techniques and provide different lines of information to address a particular problem. The Barasona reservoir has suffered from siltation since its construction, with the loss of over one third of its storage volume in around 30 study years (period 1972-1996). Information on sediment production from tributary catchments for the reservoir is required to develop management plans for maintaining reservoir sustainability. Large spatial variability in sediment delivery was found in previous studies in the Barasona catchment and the major sediment sources identified included badlands developed in the middle part of the catchment and the agricultural fields in its lower part. From the diverse range of indirect techniques, fingerprinting sediment sources and computer models could be linked to obtain a more holistic view of the processes related to sediment redistribution in the Barasona river catchment (1509 km2, Central Spanish Pyrenees), which comprises agricultural and forest land uses. In the present study, the results from a fingerprinting procedure and the SWAT model were compared and combined to improve the knowledge of land use sediment source contributions to the reservoir. Samples from the study catchment were used to define soil parameters for the model and for fingerprinting the land use sources. The fingerprinting approach provided information about relative contributions from land use sources to the superficial sediment samples taken from the reservoir infill. The calibration and validation of the model provided valuable information, for example on the timescale of sediment production from the different land uses within the catchment. Linking results from both techniques enabled us to achieve a

  4. Gis Approach to Estimation of the Total Phosphorous Transfer in the Pilica River Lowland Catchment

    Directory of Open Access Journals (Sweden)

    Magnuszewski Artur

    2014-09-01

    Full Text Available In this paper, the Pilica River catchment (central Poland is analyzed with a focus on understanding the total phosphorous transfer along the river system which also contains the large artificial Sulejów Reservoir. The paper presents a GIS method for estimating the total phosphorous (TP load from proxy data representing sub-catchment land use and census data. The modelled load of TP is compared to the actual transfer of TP in the Pilica River system. The results shows that the metrics of connectivity between river system and dwelling areas as well as settlement density in the sub-catchments are useful predictors of the total phosphorous load. The presence of a large reservoir in the middle course of the river can disrupt nutrient transport along a river continuum by trapping and retaining suspended sediment and its associated TP load. Analysis of the indirect estimation of TP loads with the GIS analysis can be useful for identifying beneficial reservoir locations in a catchment. The study has shown that the Sulejów Reservoir has been located in a subcatchment with a largest load of the TP, and this feature helps determine the problem of reservoir eutrphication

  5. Lowland forest butterflies of the Sankosh River catchment, Bhutan

    Directory of Open Access Journals (Sweden)

    A.P. Singh

    2012-10-01

    Full Text Available This paper provides information on butterflies of the lowland forests of Bhutan for the first time. As a part of the biodiversity impact assessment for the proposed Sankosh hydroelectric power project, a survey was carried out along the Sankosh River catchment to study the butterfly diversity. The aim of the study was to identify species of conservation priority, their seasonality and to know the butterfly diversity potential of the area. Surveys were carried out during five different seasons (winter, spring, pre-monsoon, monsoon, post-monsoon lasting 18 days from January 2009 to March 2010. Pollard walk method was used to assess the diversity on four-line transects within 10-12 km radius of the proposed dam site. Two hundred and thirteen species, including 22 papilionids, were thus sampled. Eleven species amongst these are listed in Schedules I and II of the Indian Wildlife (Protection Act, 1972, of which 10 taxa (Pareronia avatar avatar, Nacaduba pactolus continentalis, Porostas aluta coelestis, Elymnias vasudeva vasudeva, Mycalesis mestra retus, Melanitis zitenius zitenius, Charaxes marmax, Athyma ranga ranga, Neptis manasa manasa and Neptis soma soma are of conservation priority as they are ‘rare’ in occurrence across their distribution range in the region. The maximum number of species (128 were recorded during the spring season (March and lowest (66 during July (monsoon. The seasonal pattern of variation in diversity was very typical of the pattern found in other areas of the lower foothills and adjoining plains of the Himalaya. Relative abundances of butterflies during spring varied significantly (p<0.05 as compared to winter, pre-monsoon and post-monsoon seasons. However, species composition changed with every season as Sorensen’s similarity index varied between 0.3076 to 0.5656. All these findings suggest that the lowland forests of Bhutan hold a rich and unique diversity of butterflies during every season of the year thus having

  6. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    Science.gov (United States)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest

  7. Ecohydrological modelling and integrated management planning in the catchment of the river Dommel

    NARCIS (Netherlands)

    Verkroost, A.W.M.; Olde Venterink, H.; Pieterse, N.M.; Schot, P.P.; Wassen, M.J.

    1998-01-01

    The EU-LIFE Dommel project aims at the development of methods for the combined use of landscape ecological models and socio-economic knowledge in the drawing up of integrated management plans for catchment areas of small trans-border rivers. These methods were developed and tested in the

  8. Environmental monitoring of 137Cs in the Vardar River catchment area

    International Nuclear Information System (INIS)

    Anovski, T.; Cvetanovska-Nastevska, L.; Jovanovski, N.

    1996-01-01

    Distribution of Cs-137, as one of the most important anthropogenic radioactive pollutant on the environment, in various samples within the Vardar river catchment area has been determined. By application of adequate radioecological model, an effective equivalent dose for different transfer media and exposure pathways as a contribution of Cs-137 to the total exposure of man of different age, were calculated. (author)

  9. Situation analysis of water quality in the Umtata River catchment ...

    African Journals Online (AJOL)

    The Umtata River was characterised by using standard physico-chemical and microbiological methods to assess the present water quality in the river. The results indicated high turbidity, gross microbiological and cadmium pollution. Turbidity values ranged from 0.28 NTU to 1 899 NTU highlighting the known problem of ...

  10. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  11. Implementing integrated catchment management in the Limpopo River Basin Phase 1: Situational assessment

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2012-10-01

    Full Text Available reaches of the main stem of the Limpopo River. Much of the surface water exploitation in the basin states relies on storage reservoirs built on tributary rivers. Surface water use is directed primarily to irrigated agriculture, afforestation... and the pool storages located in the A63E and A71L catchments. The riverine gallery forest (Figure 6) is an aquifer-dependent ecosystem situated on the same aquifer used by the Venetia Mine and recharged by the Limpopo River main stem. The isolated...

  12. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Directory of Open Access Journals (Sweden)

    W. R. Ismail

    2015-03-01

    Full Text Available The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  13. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Science.gov (United States)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  14. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    Science.gov (United States)

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  15. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Directory of Open Access Journals (Sweden)

    Jorge G Álvarez-Romero

    Full Text Available Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both

  16. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  17. [Hydrologic processes of the different landscape zones in Fenhe River headwater catchment].

    Science.gov (United States)

    Yang, Yong-Gang; Li, Cai-Mei; Qin, Zuo-Dong; Zou, Song-Bing

    2014-06-01

    There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.

  18. Microplastic contamination of river beds significantly reduced by catchment-wide flooding

    Science.gov (United States)

    Hurley, Rachel; Woodward, Jamie; Rothwell, James J.

    2018-04-01

    Microplastic contamination of the oceans is one of the world's most pressing environmental concerns. The terrestrial component of the global microplastic budget is not well understood because sources, stores and fluxes are poorly quantified. We report catchment-wide patterns of microplastic contamination, classified by type, size and density, in channel bed sediments at 40 sites across urban, suburban and rural river catchments in northwest England. Microplastic contamination was pervasive on all river channel beds. We found multiple urban contamination hotspots with a maximum microplastic concentration of approximately 517,000 particles m-2. After a period of severe flooding in winter 2015/16, all sites were resampled. Microplastic concentrations had fallen at 28 sites and 18 saw a decrease of one order of magnitude. The flooding exported approximately 70% of the microplastic load stored on these river beds (equivalent to 0.85 ± 0.27 tonnes or 43 ± 14 billion particles) and eradicated microbead contamination at 7 sites. We conclude that microplastic contamination is efficiently flushed from river catchments during flooding.

  19. Technogenic waterflows generated by oil shale mining: impact on Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2000-01-01

    The correlation between natural (meteorological, hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by oil shale mining in the Purtse catchment region in northeastern Estonia during 1990-1998 has been studied. As a result of a complex effect of these factors (correlation coefficients r = 0. 60-0.86), a so-called hydrogeological circulation of water has been formed in the catchment area. It totals 25-40 % from the whole amount of mine water pumped out at the present, but in the near future it will reach even up to 50-55 %. On the ground of average data, a conceptual balance scheme of water circulation (cycles) for the Purtse catchment landscape has been worked out. It shows that under the influence of technogenic waterflows a new, anthropogenic biogeochemical matter cycling from geological environment into hydrological one has been formed in this catchment area. Transition of the macro- and microelements existing in the composition of oil shale into the aqueous solution and their distribution in mine water are in a good harmony with the so-called arrangement of the elements by the electrode potentials. The technogenic hydrochemical conditions arising in the catchment rivers will not disappear even after finishing oil shale mining. (author)

  20. The development and evolution of landform based on neotectonic movement: The Sancha river catchment in the southwestern China

    Science.gov (United States)

    Zhong, Lingmin; Xu, Mo; Yang, Yanna; Wang, Xingbing

    2018-02-01

    Neotectonics has changed the coupled process of endogenic and exogenic geological dynamics, which mold the modern landform. Geomorphologic analysis is essential for identifying and understanding the tectonic activity and indicates the responsive mechanism of the landform to tectonic activity. At first, this research reconstructed the twisted Shanpen period planation surface, computed the valley floor width-to-height ratio of Sancha river and extracted the cross sections marking the river terraces to analyze the characteristics of the neotectonics. And then, the relation between neotectonic movement and landform development was analyzed by dividing the landform types. At last, the spatial variation of landform evolution was analyzed by extracting the Hypsometric Integral of sub-catchments. The Sancha river catchment's neotectonic movement presents the tilt-lift of earth's crust from NW to SE, which is characterized by the posthumous activity of Yanshan tectonic deformation. The spatial distribution of river terraces indicates that Sancha river catchment has experienced at least four intermittent uplifts and the fault blocks at both the sides of Liuzhi-Zhijin basement fault have differentially uplifted since the late Pleistocene. As the resurgence of Liuzhi-Zhijin basement fault, the Sancha river catchment was broken into two relative independent landform units. The spatial variations of the landform types near the Sancha river and the sub-catchments' landform evolution are characterized by periodic replacement. The styles of geological structure have controlled the development of landform far away from the Sancha River and influenced the landform evolution. The posthumous activities of the secondary structure have resulted in the spatial variation of sub-catchments' landform evolution, which presents periodic replacement with local exceptions. The present study suggests that spatial variations of the development and evolution of modern landform of Sancha River

  1. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  2. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2016-08-01

    Full Text Available Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33% of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2 using Geographic Information Systems (GIS and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1. The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1 and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1 and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  3. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.

    Science.gov (United States)

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-08-20

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  4. Ecological quality assessment of rivers and integrated catchment management in England and Wales

    Directory of Open Access Journals (Sweden)

    Paul LOGAN

    2001-09-01

    Full Text Available This paper deals with the ecological assessment of river quality and its relationship to integrated catchment management. The concept of catchment or river basin management has been a basic management tool in England and Wales since 1990; it is now being enshrined in the Water Framework Directive. Historically the statutory and operational drivers in the UK have lead to the development of distinctly different approaches to the management of water quality, water resources (quantity and physical river structure. More recently a proactive approach to the sustainable use of water promulgated in the Local Environment Agency Plans has also dealt with the three management aspects in some isolation although greater effort has been made to present the issues in an integrated manner. The Water Framework Directive calls for further integration in river basin plans and associated programmes of measures. In the paper the three approaches are described and considered in light of the requirements of the Water Framework Directive. Water Quality classification and objective setting has been based on information from the survey of benthic macro-invertebrates. The Biological Monitoring Working Party Score and the predictive software River Invertebrate Prediction and Classification System (RIVPACS have been used to set site-specific targets for management purposes. RIVPACS includes a reference database of minimally impacted sites for comparison with the observed data. This approach is in line with the requirements of the directive. Physical river structure work has been based on monitoring of in-river and river corridor characteristics. The River Habitat System (RHS has also developed a reference database but is less well developed in terms of its predictive ability. The use of ecological information in Water Resource management has taken a different approach based on the concept of differential ecological sensitivity to the hydrological regime within the river. In

  5. Hydrochemistry in the Tropical Forested River: A Case Study in Nee Soon Catchment Streams

    Science.gov (United States)

    Nguyen, T. C. T.; WIN, S. H.; Lim, M. H.; Pai, K.; Khairun Nisha, B. M. R.; Ziegler, A. D.; Wasson, R.; Cantarero, S. I.

    2016-12-01

    A total of 779 water samples from the Nee Soon Nature Reserve, a 5km2 catchment in humid tropical Singapore, were collected in low-flow (May 2014 to Nov 2015) and high-flow (May 2014 to June 2015) conditions for determination of spatial and temporal distributions of major ions (Na+, Ca2+, K+, Mg2+, Cl-, HCO3-, NO3-, SO42- and F-) in the streams. In low-flow conditions all cations and Cl-, HCO3-, SO42- showed significant enrichment in the lower compared to the upper catchment, whereas, NO3- and F- had the opposite pattern. In high-flow conditions, the spatial distribution patterns of the ions was largely unchanged across the catchment except that F- was enriched in the lower compared to the upper catchment. Except for Cl-, HCO3- and NO3-, all other ions were higher in storm periods. Among possible sources (atmospheric input, anthropogenic impact and rock weathering), rainfall played an important role in controlling river Cl- and Na+; silicate rock weathering was possibly the source for Ca2+,Mg2+, HCO3- and some of the Na+; all of the SO42- probably comes from pollution by anthropogenic activities. This study provides new data and insights for the understudied South East Asia region.

  6. Using stable isotopes to estimate and compare mean residence times in contrasting geologic catchments (Attert River, NW Luxembourg)

    Science.gov (United States)

    Martínez-Carreras, N.; Fenicia, F.; Frentress, J.; Wrede, S.; Pfister, L.

    2012-04-01

    In recent years, stable isotopes have been increasingly used to characterize important aspects of catchment hydrological functioning, such as water storage dynamics, flow pathways and water sources. These characteristics are often synthesized by the Mean Residence Time (MRT), which is a simple catchment descriptor that employ the relation of distinct stable isotopic signatures in the rainfall input and streamflow output of a catchment that are significantly dampened through sub-surface propagation. In this preliminary study, MRT was estimated in the Attert River catchment (NW Luxembourg), where previous studies have shown that lithology exerts a major control on runoff generation. The Attert catchment lies at the transition zone of contrasting bedrock lithology: the Northern part is characterized by Devonian schist of the Ardennes massif, while sedimentary deposits of sandstone and marls dominate in the south of the catchment. As a consequence of differing lithologic characteristics, hydrological processes change across scales. The schistose catchments exhibit a delayed shallow groundwater component, sandstone catchments have slow-responding year-round groundwater component, whereas flashy runoff regimes prevails in the marly catchments. Under these circumstances, the MRTs are expected to vary significantly according to lithology, and provide additional understanding in internal catchment processes and their scale dependencies. In order to test this, bi-weekly monitoring of rainfall and discharge stable water isotope composition (oxygen-18 and deuterium) has been carried out since 2007 in 10 nested sub-catchments ranging in size from 0.4 to 247 km2 in the Attert catchment. MRT was estimated using different lumped convolution integral models and sine wave functions with varying transit times distributions (TTDs). TTDs were evaluated through calibration. Further research efforts will deal with the application of conceptual models to simulate and compare TTD, using

  7. Excess erosion and deposition in the catchments of Kamenichka and Radanjska river, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Milevski Ivica

    2009-01-01

    Full Text Available One of the greatest environmental problems in the Republic of Macedonia is accelerated soil erosion caused by high human impact during last centuries on to the susceptible landscape. Natural factors itself are very suitable for development of such erosion: from mostly erodible rocks and soils on the mountainous slopes around the depressions, to the generally continental, semi-arid climate and slight vegetation cover. Because of that, there are sites with severe erosion and deposition like those in the catchments of Kamenichka River and Radanjska River, two torrential tributaries of Bregalnica. In these catchments there are varieties of erosion-related landforms: rills, gullies, badlands, landslides, as well as valley-type alluvial fans and huge alluvial plains. Such devastating accelerated erosion and deposition largely transformed original landscape, and represent significant environmental, social, and economic problem in local areas. Because of that, some measures of protection and conservation were taken from 1950-ties in both catchments. But it is obvious that the final effect of these measures is far of enough, so new efforts must be implemented to revitalizing these abandoned lands.

  8. River catchment responses to anthropogenic acidification in relationship with sewage effluent: An ecotoxicology screening application.

    Science.gov (United States)

    Oberholster, P J; Botha, A-M; Hill, L; Strydom, W F

    2017-12-01

    Rising environmental pressures on water resources and resource quality associated with urbanisation, industrialisation, mining and agriculture are a global concern. In the current study the upper Olifants River catchment as case study was used, to show that acid mine drainage (AMD) and acid precipitation were the two most important drivers of possible acidification during a four-year study period. Over the study period 59% of the precipitation sampled was classified as acidic with a pH value below 5.6. Traces of acidification in the river system using aquatic organisms at different trophic levels were only evident in areas of AMD point sources. Data gathered from the ecotoxicology screening tools, revealed that discharge of untreated and partially treated domestic sewage from municipal sewage treatment works and informal housing partially mitigate any traces of acidification by AMD and acid precipitation in the main stem of the upper Olifants River. The outcome of the study using phytoplankton and macroinvertebrates as indicator organisms revealed that the high loads of sewage effluent might have played a major role in the neutralization of acidic surface water conditions caused by AMD and acid precipitation. Although previous multi-stage and microcosm studies confirmed the decrease in acidity and metals concentrations by municipal wastewater, the current study is the first to provide supportive evidence of this co-attenuation on catchment scale. These findings are important for integrated water resource management on catchment level, especially in river systems with a complex mixture of pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    Science.gov (United States)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated

  10. Uniform Transnational Assessment of the Environmental Indices from the Romanian Catchment Area of the Tisa River

    Directory of Open Access Journals (Sweden)

    SILVIU-FLORIN FONOGEA

    2010-01-01

    Full Text Available The uniform transnational assessment of the environmental indices in the catchment area of the Tisa river aims at rehabilitating, protecting and conserving the environmental systems, as well as creating a commonly strategic demarche concerning a sustainable spatial development, based on integrated intersectorial approaches of environmental issues, viewed in their territorial dimension. The information necessary in underlining the current situation in the Romanian catchment area of the Tisa has been structured according to the following categories of analysed indices: sources of surface waters, resources of drinkable water and water supply resources, the risk of not reaching the environmental objectives, significant sources of water pollution (punctual sources of pollution, diffuse sources of pollution, significant hydromorphic pressure, the quality of water, significant sources of air pollution, soils affected by agricultural and industrial activities, nature protection and waste management.

  11. Mitigating Agricultural Diffuse Pollution: Learning from The River Eden Demonstration Test Catchment Experiments

    Science.gov (United States)

    Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.

    2016-12-01

    Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence

  12. Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The SHETRAN model for simulating the sediment yield arising from shallow landslides at the scale of a river catchment was applied to the 45-km2 Ijuez catchment in the central Spanish Pyrenees, to investigate the effect of loss of forest cover on landslide and debris flow incidence and on catchment sediment yield. The application demonstrated how such a model, with a large number of parameters to be evaluated, can be used even when directly measured data are not available: rainfall and discharge time series were generated by reference to other local records and data providing the basis for a soil map were obtained by a short field campaign. Uncertainty bounds for the outputs were determined as a function of the uncertainty in the values of key model parameters. For a four-year period and for the existing forested state of the catchment, a good ability to simulate the observed long term spatial distribution of debris flows (represented by a 45-year inventory and to determine catchment sediment yield within the range of regional observations was demonstrated. The lower uncertainty bound on simulated landslide occurrence approximated the observed annual rate of landsliding and suggests that landslides provide a relatively minor proportion of the total sediment yield, at least in drier years. A scenario simulation in which the forest cover was replaced by grassland indicated an increase in landsliding but a decrease in the number of landslides which evolve into debris flows and, at least for drier years, a reduction in sediment delivery to the channel network.

  13. Climate, runoff and landuse trends in the Owo River Catchment in Nigeria

    Science.gov (United States)

    Adegun, O.; Odunuga, S.; Ajayi, O. S.

    2015-06-01

    The Owo River is an important surface water source in Lagos particularly to the western section. It is the source of direct water intake for water supply by Lagos State Water Corporation to Amuwo-Odofin, Ojo and parts of Badagry Local Government Areas. This paper examines the complex interactions and feedbacks between many variables and processes within that catchment and analyses the future ability of this semi-urban watershed in sustaining water supply in the face of cumulative environmental change. Stationarity analysis on rainfall, change detection analysis and morphometry analysis were combined to analyse the non-stationarity of Owo River catchment. On rainfall trend analysis, since the correlation coefficient (0.38) with test statistic of 2.17 did not satisfy the test condition we concluded that there is trend and that rainfall in the watershed is not stationary. The dominant land use impacting on the bio-geochemical fluxes is built up area (including structures and paved surfaces) which grew from about 142.92 km2 (12.20%) in 1984 to 367.22 km2 (31.36%) in 2013 recording gain of 224.3 km2 at average growth rate of 7.73 km2 per annum. Total length of streams within the catchment reduced from 622.24 km in 1964 to 556 km in 2010, while stream density reduced from 0.53 in 1964 to 0.47 in 2010 an indication of shrinking hydrological network. The observed trends in both natural and anthropogenic processes indicated non-stationarity of the hydrological fluxes within the Catchment and if this continues, the urban ecosystem services of water supply will be compromised.

  14. A distributed water level network in ephemeral river reaches to identify hydrological processes within anthropogenic catchments

    Science.gov (United States)

    Sarrazin, B.; Braud, I.; Lagouy, M.; Bailly, J. S.; Puech, C.; Ayroles, H.

    2009-04-01

    In order to study the impact of land use change on the water cycle, distributed hydrological models are more and more used, because they have the ability to take into account the land surface heterogeneity and its evolution due to anthropogenic pressure. These models provide continuous distributed simulations of streamflow, runoff, soil moisture, etc, which, ideally, should be evaluated against continuous distributed measurements, taken at various scales and located in nested sub-catchments. Distributed network of streamflow gauging stations are in general scarce and very expensive to maintain. Furthermore, they can hardly be installed in the upstream parts of the catchments where river beds are not well defined. In this paper, we present an alternative to these standard streamflow gauging stations network, based on self powered high resolution water level sensors using a capacitive water height data logger. One of their advantages is that they can be installed even in ephemeral reaches and from channel head locations to high order streams. Furthermore, these innovative and easily adaptable low cost sensors offer the possibility to develop in the near future, a wireless network application. Such a network, including 15 sensors has been set up on nested watersheds in small and intermittent streams of a 7 km² catchment, located in the mountainous "Mont du Lyonnais" area, close to the city of Lyon, France. The land use of this catchment is mostly pasture, crop and forest, but the catchment is significantly affected by human activities, through the existence of a dense roads and paths network and urbanized areas. The equipment provides water levels survey during precipitation events in the hydrological network with a very accurate time step (2 min). Water levels can be related to runoff production and catchment response as a function of scale. This response will depend, amongst other, on variable soil water storage capacity, physiographic data and characteristics of

  15. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  16. Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management.

    Science.gov (United States)

    Rusiñol, Marta; Fernandez-Cassi, Xavier; Timoneda, Natàlia; Carratalà, Anna; Abril, Josep Francesc; Silvera, Carolina; Figueras, Maria José; Gelati, Emiliano; Rodó, Xavier; Kay, David; Wyn-Jones, Peter; Bofill-Mas, Sílvia; Girones, Rosina

    2015-08-15

    Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution

  17. Flood Hazard Mapping Assessment for El-Awali River Catchment-Lebanon

    Science.gov (United States)

    Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Hijazi, Samar

    2016-04-01

    River flooding prediction and flood forecasting has become an essential stage in the major flood mitigation plans worldwide. Delineation of floodplains resulting from a river flooding event requires coupling between a Hydrological rainfall-runoff model to calculate the resulting outflows of the catchment and a hydraulic model to calculate the corresponding water surface profiles along the river main course. In this study several methods were applied to predict the flood discharge of El-Awali River using the available historical data and gauging records and by conducting several site visits. The HEC-HMS Rainfall-Runoff model was built and applied to calculate the flood hydrographs along several outlets on El-Awali River and calibrated using the storm that took place on January 2013 and caused flooding of the major Lebanese rivers and by conducting additional site visits to calculate proper river sections and record witnesses of the locals. The Hydraulic HEC-RAS model was then applied to calculate the corresponding water surface profiles along El-Awali River main reach. Floodplain delineation and Hazard mapping for 10,50 and 100 years return periods was performed using the Watershed Modeling System WMS. The results first show an underestimation of the flood discharge recorded by the operating gauge stations on El-Awali River, whereas, the discharge of the 100 years flood may reach up to 506 m3/s compared by lower values calculated using the traditional discharge estimation methods. Second any flooding of El-Awali River may be catastrophic especially to the coastal part of the catchment and can cause tragic losses in agricultural lands and properties. Last a major floodplain was noticed in Marj Bisri village this floodplain can reach more than 200 meters in width. Overall, performance was good and the Rainfall-Runoff model can provide valuable information about flows especially on ungauged points and can perform a great aid for the floodplain delineation and flood

  18. Clearing invasive alien plants as a cost-effective strategy for water catchment management: The case of the Olifants river catchment, South Africa

    Directory of Open Access Journals (Sweden)

    Tshepo Morokong

    2016-12-01

    Full Text Available Invasive alien plants have a negative impact on ecosystem goods and services derived from ecosystems. Consequently, the aggressive spread of invasive alien plants (IAPs in the river catchments of South Africa is a major threat to, inter alia, water security. The Olifants River catchment is one such a catchment that is under pressure because of the high demand for water from mainly industrial sources and unsustainable land-use, which includes IAPs. This study considered the cost-effectiveness of clearing IAPs and compared these with the cost of a recently constructed dam. The methods used for data collection were semistructured interviews, site observation, desktop data analysis, and a literature review to assess the impact of IAPs on the catchment’s water supply. The outcomes of this study indicate that clearing invasive alien plants is a cost-effective intervention with a Unit Reference Value (URV of R1.44/m3, which compares very favourably with that of the De Hoop dam, the URV for which is R2.93/m3. These results suggest that clearing invasive alien plants is a cost-effective way of catchment management, as the opportunity cost of not doing so (forfeiting water to the value of R2.93/m3 is higher than that of protecting the investment in the dam.

  19. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    Science.gov (United States)

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six

  20. Microbial water quality in the upper Olifants River catchment: implications for health

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2012-09-01

    Full Text Available poor to fair condition. Mining-related disturbances were seen as *Corresponding author. E-mail: wleroux@csir.co.za. Tel: (+27)12 841 2189. the main cause of impairment of river health in the upper parts of the catchment, with the exception... relationship, N50: median infectious dose, r: parameter characterised by dose-response relationship. Microbial monitoring Microbial water quality was monitored over a two year period. During the first year, faecal indicator counts (E. coli) levels...

  1. Mapping SOC in a river catchment by integrating laboratory spectra wavelength with remote sensing spectra

    DEFF Research Database (Denmark)

    Peng, Yi; Xiong, Xiong; Knadel, Maria

    There is potential to use soil ·-proximal and remote sensing derived spectra concomitantly to develop soil organic carbon (SOC) models. Yet mixing spectral data from different sources and technologies to improve soil models is still in its infancy. The objective of this study was to incorporate...... soil spectral features indicative of SOC from laboratory visible near-infrared reflectance (vis-NlR) spectra and incorporate them with remote sensing (RS) images to improve predictions of top SOC in the Skjem river catchment, Denmark. The secondary objective was to improve prediction results...

  2. Calibration of the sodium base cation dominance index of weathering for the River Dee catchment in north-east Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Stutter, M. [Aberdeen Univ. (United Kingdom). Dept. of Plant and Soil Science; Smart, R.; Cresser, M. [York Univ. (United Kingdom). Environmental Dept.

    2002-07-01

    Previously the dominance of base cations by Na{sup +} in river water in upland catchments with low weathering rates and influenced by marine-derived aerosols has been suggested as a quantitative index of weathering rate upstream of the sampling point. Using data for 59 sites from a study of the River Dee catchment in NE Scotland, the index has been fully calibrated against catchment weathering rates and net alkalinity production, derived through input output budget methods, for both upland and agricultural catchments and over a wide range of parent materials. It is shown that the relationship between Na{sup +} dominance and weathering rate is logarithmic, rather than linear as initially suggested. The excellent correlations highlight the potential use of this Na{sup +} dominance index for the direct quantification of catchment susceptibility to acidification at fine spatial resolution, using a few simple and inexpensive measurements. Stronger correlations were observed between the % Na{sup +} dominance and net annual flux of alkalinity than between % Na{sup +} dominance and weathering rate derived from summation of base cation fluxes. This demonstrates the importance of mechanisms controlling the transport of base cations out of catchments, namely in association with organic matter and with anthropogenically derived SO{sub 4}{sup 2-}. These processes are shown to reduce the residual alkalinity derived through weathering. The partial neutralization of organic acidity by internally generated alkalinity has implications in the context of using the mass balance approach for setting critical loads for catchments. (Author)

  3. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    Science.gov (United States)

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  4. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.

    2016-01-01

    the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68±0.18‰ during the peak flow period...... event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from...

  5. Meltwater chemistry and solute export from a Greenland ice sheet catchment, Watson River, West Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, N. Tvis; Hasholt, Bent

    2014-01-01

    –2010 for the Watson River sector of the GrIS that drains into the fjord Kangerlussuaq. The hydrochemistry is dominated by Ca2+ and HCO3− with a relatively high molar K+/Na+ ratio of 0.6 ± 0.1, typical for meltwaters draining a gneissic lithology. Low molar Ca2+/Na+ and Mg2+/Na+ ratios indicate that weathering....... However, when normalized by discharge the denudation rates are comparable to other Arctic sites. When extrapolating the results from the Watson River catchment to the entire Greenland for 2007–2010, the solute export from Greenland meltwater varied between 7.1 × 106 and 7.8 × 106 tons, whilst the major...

  6. Ecosystem based river basin management planning in critical water catchment in Mongolia

    Science.gov (United States)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  7. A Flash Flood Study on the Small Montaneous River Catchments in Western Romania

    Science.gov (United States)

    Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël

    2013-04-01

    interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

  8. Assessment of water quality of the Odaw river catchment using hydrochemistry and stable isotope techniques

    International Nuclear Information System (INIS)

    Kemetse, J. K.

    2014-07-01

    The physico-chemical and isotopic properties of water In the Odaw River catchment including some hand-dug wells and water from the unsaturated zone were assessed to ascertain the impact of human activities on the water quality and also to assess the vulnerability of ground water resources in the catchment. Samples were collected from October, 2013 to March, 2014 using well washed plastic bottles. During every sampling session; temperature, conductivity, salinity, turbidity and pH were measured in situ using HACH portable conductivity meter and a pH meter. Alkalinity and bicarbonates were determined by titration. In the laboratory, total dissolved solid (TDS) and total suspended solids (TSS) were determined using calorimetric methods. Total hardness, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and dissolved oxygen (DO) and calcium were determined by titration. Anions such as nitrates, phosphates, sulphate, chloride, fluoride were analyzed by Ion Chromatography, while Flame Photometry was used to analyze sodium and potassium. Atomic Absorption Spectroscopy (AAS) was used to determine magnesium, cadmium, mercury, lead and arsenic. Liquid isotope analyzer was also used for the determination of 18 O and 2 H. Stable isotopes of 18 O, 2 H and 15 N were analyzed to help understand the source and flow of nutrients into the catchment. Data were analyzed using Microsoft Excel-2003 and CCME WQI. From the results pH for the water samples upstream was acidic to slightly alkaline (2.8 - 8.1), midstream was alkaline (7.3 - 11.5) and the downstream was 6.4 -7.7; TDS, EC and salinity increased from the upstream to the downstream as the river approaches the lagoon. There was some amount of heavy metal contamination in all the samples with the exception of Cd which was below detection limit. Hg was also below detection limit in the upstream. The CCME WQI was calculated for the surface water samples using 16 physico-chemical parameters. Results indicated that the

  9. Participatory scenario development for integrated assessment of nutrient flows in a Catalan river catchment

    Directory of Open Access Journals (Sweden)

    F. Caille

    2007-11-01

    Full Text Available Rivers in developed regions are under significant stress due to nutrient enrichment generated mainly by human activities. Excess nitrogen and phosphorus emissions are the product of complex dynamic systems influenced by various factors such as demographic, socio-economic and technological development. Using a Catalan river catchment, La Tordera (North-East of Spain, as a case study of an integrated and interdisciplinary environmental assessment of nutrient flows, we present and discuss the development of narrative socio-economic scenarios through a participatory process for the sustainable management of the anthropogenic sources of nutrients, nitrogen and phosphorus. In this context, scenarios are an appropriate tool to assist nutrient emissions modelling, and to assess impacts, possible pathways for socio-economic development and associated uncertainties. Evaluated against the 1993–2003 baseline period, scenarios target the 2030 horizon, i.e. through the implementation process of the Water Framework Directive (Directive 2000/60/EC. After a critical examination of the methodology used in the participatory development of socio-economic scenarios, we present four possible futures (or perspectives for the Catalan river catchment conceived by stakeholders invited to a workshop. Keys to the success of such a participatory process were trust, which enhanced openness, and disagreements, which fostered the group's creativity for scenario development. The translation of narrative socio-economic scenarios into meaningful nutrient emission scenarios is also discussed. By integrating findings of natural sciences and socio-economic analysis, we aim to assist decision makers and stakeholders in evaluating optimal management strategies for the anthropogenic sources of nitrogen and phosphorus.

  10. Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-01-01

    Lead isotope signatures ( 207 Pb/ 206 Pb, 208 Pb/ 206 Pb, 208 Pb/ 204 Pb, 206 Pb/ 204 Pb), determined by magnetic sector ICP-MS in river channel sediment, metal ores and mine waste, have been used as geochemical tracers to quantify the delivery and dispersal of sediment-associated metals in the lower Danube River catchment. Due to a diverse geology and range of ore-body ages, Pb isotope signatures in ore-bodies within the lower Danube River catchment show considerable variation, even within individual metallogenic zones. It is also possible to discriminate between the Pb isotopic signatures in mine waste and river sediment within river systems draining individual ore bodies. Lead isotopic data, along with multi-element data; were used to establish the provenance of river sediments and quantify sedimentary contributions to mining-affected tributaries and to the Danube River. Data indicate that mining-affected tributaries in Serbia and Bulgaria contribute up to 30% of the river channel sediment load of the lower Danube River. Quantifying relative sediment contributions from mining-affected tributaries enables spatial patterns in sediment-associated metal and As concentrations to be interpreted in terms of key contaminant sources. Combining geochemical survey data with that regarding the provenance of contaminated sediments can therefore be used to identify foci for remediation and environmental management strategies.

  11. Knickpoint Propagation and Hillslope Response in the Mangataikapua Catchment, Waipaoa River, New Zealand

    Science.gov (United States)

    Cerovski-Darriau, C.; Roering, J. J.; Bilderback, E. L.

    2012-12-01

    Base level change can cause differential incision in fluvial networks, driving a transient hillslope response as slopes attempt to adjust to a new base level. Following a shift to a warmer, wetter climate after the Last Glacial Maximum (LGM) (~17.5 ka), the Waipaoa River (NZ) rapidly incised ~120 m leaving perched relict hillslopes that are still adjusting to that base level fall. While previous studies of the Waipaoa basin have only focused on sediment contribution from channel incision or a few individual large earthflows, here we analyze an entire catchment that experiences widespread adjustment due to earthflow activity. In the Mangataikapua catchment—a tributary of the Waipaoa River principally comprised of weak mélange—we see wholesale relaxation of hillslopes due to pervasive post-LGM earthflows. Less than 6% of the mélange area retains relict terrain unaltered by earthflows, exemplifying the importance of including hillslope sediment contribution. Incision has propagated ~9 km upstream along the mainstem of the Mangataikapua (~86% of the channel length) and has created 80 m of relief at the junction with the Waipaoa. Continued adjustment along Mangataikapua tributaries and slopes is evident from knickpoints in the channels and changes in gradient, curvature, and degree of earthflow-altered terrain on the hillslopes. By identifying the location of this transition in channels and on the hillslopes, we can estimate the amount of post-LGM hillslope relaxation. We analyzed 10 major sub-catchments (drainage areas >35,000 m2) in the mélange on the southeastern side of the catchment. We used slope-area plots, in conjunction with normalized steepness index values (ksn) generated with the Stream Profiler (www.geomorphtools.org), to determine the degree to which the tributary channels have adjusted to incision along the mainstem. Preliminary results show an "upper zone" of relict channel morphology with an average curvature value of θ=-0.3 (±0.1 s.d.) and a

  12. Persistent pollution of Warta river catchment with chromium: case study from central Poland

    Science.gov (United States)

    Hermanski, S.; Lukaczynski, I.; Nikiel, G.; Mizera, J.; Dulinski, M.; Kania, J.; Rozanski, K.; Szklarczyk, T.; Wachniew, P.; Witczak, S.; Zurek, A.

    2012-04-01

    Upper reaches of the Warta river, the third largest river in Poland, are located in a densely populated and industrialized area, with presence of heavy industry going back to the second half of the XIX century. Industrial activities include iron smelters in towns of Częstochowa and Zawiercie, large chemical plants (Rudniki and Aniolow) producing predominantly chromium compounds, paper and textile industry, as well as large number of small enterprises specialized in metal coatings (nickel and chromium). Until the 1960s all the industrial and municipal effluents in the region were discharged into the Warta river and its tributaries. Solid wastes were dumped on the surface, mostly without appropriate cover and isolation. This resulted in progressive contamination of surface waters and groundwater with heavy metals, mostly chromium. The upper reaches of the Warta river are located on top of upper Jurassic Major Groundwater Basin (MGWB 326 which is one of four most important groundwater reservoirs in Poland. Almost all potable water demands in the area (ca. 340,000 inhabitants, 800 factories and enterprises) are covered by MGWB 326 (50 deep wells with the average extraction rate of 57,000 m3/d). As the MGWB 326 is mostly phreatic, it has been recognized since long time that persistent pollution of the upper catchment of the Warta river with heavy metals may pose serious thread to quality of this important groundwater resource. In this presentation we summarize the work carried out to date, focused on characterization of the extent and understanding of the mechanisms of pollution of surface water, sediments and groundwater in MGWB 326 with chromium. Historical monitoring data of the levels of chromium in the Warta river and its tributaries are presented, supplemented by the results of measurements of Cr loads in Warta over-bank deposits and Cr levels in groundwater production wells in the area. Three conceptual models of spreading of chromium in the catchment of Warta

  13. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    Science.gov (United States)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  14. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  15. Tracing the sources of fine sediment in a nickel mining catchment using fallout and geogenic radionuclides (Thio River, New Caledonia)

    Science.gov (United States)

    Evrard, Olivier; Navratil, Oldrich; Lefèvre, Irène; Laceby, J. Patrick; Allenbach, Michel

    2016-04-01

    Soil erosion and subsequent sediment transfer in rivers are exacerbated in tropical regions exposed to heavy rainfall. In New Caledonia, an island located in the southwestern part of the Southern Pacific Ocean, a significant fraction of this sediment is likely originating from tributaries draining nickel mining sites that are known to increase the terrigenous inputs to the rivers and, potentially to UNESCO World Heritage listed coastal lagoons. However, downstream contributions from these tributaries remain to be quantified. A pilot sediment tracing study has therefore been conducted in the 400-km² Thio River catchment. Fallout and geogenic radionuclides have been measured in sediment deposits collected in potential sources, i.e. (i) tributaries draining mines, (ii) tributaries draining 'natural' areas affected by landslides, and (iii) the main stem of the Thio River. Thorium-228 and Caesium-137 provide the best discrimination between sediment originating from the two tributaries. A distribution modelling approach was used to quantify the relative sediment contributions from these tributaries to the Thio River main stem. Results demonstrate that tributaries draining mining sites supply the majority of sediment (67-84%) to the main river. In the future, the validity of these results obtained on sediment deposits collected in April and May 2015 should be verified over a longer time period by applying a similar approach to sediment cores collected in the Thio river deltaic plain. Once validated, this method will be applicable to other catchments draining mines in New Caledonia to design appropriate measures to limit sediment supply to the lagoon.

  16. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK

    Energy Technology Data Exchange (ETDEWEB)

    Gozzard, E., E-mail: emgo@ceh.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Mayes, W.M., E-mail: W.Mayes@hull.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Potter, H.A.B., E-mail: hugh.potter@environment-agency.gov.uk [Environment Agency England and Wales, c/o Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Jarvis, A.P., E-mail: a.p.jarvis@ncl.ac.uk [Hydrogeochemical Engineering Research and Outreach Group, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2011-10-15

    Quantifying diffuse sources of pollution is becoming increasingly important when characterising river catchments in entirety - a prerequisite for environmental management. This study examines both low and high flow events, as well as spatial variability, in order to assess point and diffuse components of zinc pollution within the River West Allen catchment, which lies within the northern England lead-zinc Orefield. Zinc levels in the river are elevated under all flow regimes, and are of environmental concern. Diffuse components are of little importance at low flow, with point source mine water discharges dominating instream zinc concentration and load. During higher river flows 90% of the instream zinc load is attributed to diffuse sources, where inputs from resuspension of metal-rich sediments, and groundwater influx are likely to be more dominant. Remediating point mine water discharges should significantly improve water quality at lower flows, but contribution from diffuse sources will continue to elevate zinc flux at higher flows. - Highlights: > Zinc concentrations breach EU quality thresholds under all river flow conditions. > Contributions from point sources dominate instream zinc dynamics in low flow. > Contributions from diffuse sources dominate instream zinc dynamics in high flow. > Important diffuse sources include river-bed sediment resuspension and groundwater influx. > Diffuse sources would still create significant instream pollution, even with point source treatment. - Diffuse zinc sources are an important source of instream contamination to mine-impacted rivers under varying flow conditions.

  17. Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments.

    Science.gov (United States)

    Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens

    2012-10-01

    Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Radioecological of the Vardar river catchment area after the Chernobyl release

    International Nuclear Information System (INIS)

    Cvetanovska, L.; Anovski, T.

    1997-01-01

    Vardar river with its length of 301.6 km and its catchment area of 28,338 km 2 covers almost 80% of the territory of the Republic of Macedonia. Various usage of the surface and underground water flows of this hydro system (water supply, irrigation, etc.) to which gravitate cca 2/3 of the population of our Country, are subject of increased interest for their protection. In this sense, radioecological investigations (due to a presence of a local not well prospected uranium deposits and a factor, for phosphate fertilizers) were in progress. The first preliminary results of performed gamma-spectrometric analysis showed that besides many others, the following isotopes: I-131, I-132, Cs-134, Cs-137 and Ru-103, dominated into the investigated water, air and food samples. Different from the concentration of I-131 into the filtered Skopje air which was 12 Bq/m 3 on the 5th of May, 1986, the concentration of Cs-137 was up to 15 Bq/m 3 in air, 122 Bq/L in local precipitation, up to 800 Bq/kg in sediments and 0.29 Bq/L in the water samples from the Vardar river

  19. Investigating the impact of land cover change on peak river flow in UK upland peat catchments, based on modelled scenarios

    Science.gov (United States)

    Gao, Jihui; Holden, Joseph; Kirkby, Mike

    2014-05-01

    Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal

  20. The role of a dambo in the hydrology of a catchment and the river network downstream

    Directory of Open Access Journals (Sweden)

    C. J. von der Heyden

    2003-01-01

    Full Text Available Dambos are shallow, seasonally inundated wetlands and are a widespread landform in Central and Southern Africa. Owing to their importance in local agriculture and as a water resource, the hydrology of dambos is of considerable interest: varied, and sometimes contradictory, hydrological characteristics have been described in the literature. The issues in contention focus on the role of the dambo in (i the catchment evapotranspiration (ET budget, (ii flood flow retardation and attenuation, and (iii sustaining dry season flow to the river down-stream. In addition, both rainfall and groundwater have been identified as the dominant source of water to the dambo and various hydrogeological models have been proposed to describe the hydrological functions of the landform. In this paper, hydrological and geochemical data collected over a full hydrological year are used to investigate and describe the hydrological functions of a dambo in north-western Zambia. The Penman estimate of wetland ET was less than the ET from the miombo-wooded interfluve and the wetland has been shown to have little effect on flood flow retardation or attenuation. Discharge of water stored within the wetland contributed little to the dry season flow from the dambo, which was sustained primarily by groundwater discharge. Flow in a perched aquifer within the catchment soils contributed a large portion of baseflow during the rains and early dry season. This source ceased by the mid dry season, implying that the sustained middle to late dry season streamflow from the wetland is through discharge of a deeper aquifer within the underlying regolith or bedrock. This hypothesis is tested through an analysis of groundwater and wetland geochemistry. Various physical parameters, PHREEQC model results and end member mixing analysis (EMMA suggest strongly that the deep Upper Roan dolomite aquifer is the source of sustained discharge from the wetland. Keywords: dambo, hydrology, hydrogeology

  1. Nitrogen Source Apportionment for the Catchment, Estuary, and Adjacent Coastal Waters of the River Scheldt

    Directory of Open Access Journals (Sweden)

    Jan E. Vermaat

    2012-06-01

    Full Text Available Using the systems approach framework (SAF, a coupled model suite was developed for simulating land-use decision making in response to nutrient abatement costs and water and nutrient fluxes in the hydrological network of the Scheldt River, and nutrient fluxes in the estuary and adjacent coastal sea. The purpose was to assess the efficiency of different long-term water quality improvement measures in current and future climate and societal settings, targeting nitrogen (N load reduction. The spatial-dynamic model suite consists of two dynamically linked modules: PCRaster is used for the drainage network and is combined with ExtendSim modules for farming decision making and estuarine N dispersal. Model predictions of annual mean flow and total N concentrations compared well with data available for river and estuary (r² ≥ 0.83. Source apportionment was carried out to societal sectors and administrative regions; both households and agriculture are the major sources of N, with the regions of Flanders and Wallonia contributing most. Load reductions by different measures implemented in the model were comparable (~75% remaining after 30 yr, but costs differed greatly. Increasing domestic sewage connectivity was more effective, at comparatively low cost (47% remaining. The two climate scenarios did not lead to major differences in load compared with the business-as-usual scenario (~88% remaining. Thus, this spatially explicit model of water flow and N fluxes in the Scheldt catchment can be used to compare different long-term policy options for N load reduction to river, estuary, and receiving sea in terms of their effectiveness, cost, and optimal location of implementation.

  2. Variability of Rainfall Erosivity and Erosivity Density in the Ganjiang River Catchment, China: Characteristics and Influences of Climate Change

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2018-02-01

    Full Text Available Soil erosion is one of the most critical environmental hazards in the world. Understanding the changes in rainfall erosivity (RE and erosivity density (ED, as well as their affecting factors, at local and catchment scales in the context of climate warming is an important prerequisite of soil erosion prevention and soil loss risk assessment. The present study identified the variability and trends of RE and ED in terms of both time and space in the Ganjiang River catchment over the period of 1960–2012, and also analyzed and discussed the impact of climate change. The results show that RE and ED in the catchment had great monthly variations and high year-to-year variability. Both presented long-term increasing trends over the entire study period. The highest RE and ED were observed in June and in the eastern and northeast parts of the catchment, which indicated that June was the most susceptible month for soil erosion in this area and the lower reaches of the Ganjiang River was the riskiest area for soil erosion. Finally, the East Asian summer monsoon and climate change were highly correlated with changes in RE and ED.

  3. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    Science.gov (United States)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  4. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    Science.gov (United States)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  5. Infiltration Losses Calculated for the Flash Flood in the Upper Catchment of Geru River, Galaţi County, Romania

    Directory of Open Access Journals (Sweden)

    Balan Isabela

    2016-10-01

    Full Text Available MIKE software created by Danish Institute of Hydraulics can be used to perform mathematical modelling of rainfall-runoff process on the hillslopes, resulting in a runoff hydrograph in the closing section of a catchment. The software includes a unitary hydrograph method - UHM in the hydrological module Rainfall - Runoff. Excess rainfall is routed to the river and transited through unit hydrograph method. The model divides the flood generating precipitation in excess rainfall (net rainfall and losses (infiltration.

  6. Pollution from urban development and setback outfalls as a catchment management measure for river water quality improvement

    Science.gov (United States)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Urban development causes an increase in fine sediment and heavy metal stormwater pollution. Pollution load estimation theorises that stormwater pollutant load and type are strongly, directly influenced by contributing catchment land use. The research presented investigates the validity of these assumptions using an extensive novel field data set of 53 catchments. This research has investigated the relationships between land use and pollutant concentrations (Cu, Zn, Pb, Ni, Ca, Ba, Sn, Mn) in urban stormwater outfall sediments. Cartographic and aerial photography data have been utilised to delineate the surface and subsurface contributing catchment land use. A zoned sub-catchment approach to catchment characterisation of stormwater pollutant concentration has been defined and tested. This method effectively describes the specific land use influence on pollutant concentrations at the stormwater outfall, showing strong dependency with road length, brake points, impervious area and open space. Road networks and open space are found to influence land use, and thus stormwater pollution, closer to stormwater outfall/receiving waterbody suggesting storage, treatment, assimilation, loss or dilution of the land use influence further away from stormwater outfall. An empirical description has been proposed with which to predict outfall pollutant contributions to the receiving urban waterbody based on catchment land use information. With the definition and quantification of contributing catchment specific fine sediment and urban heavy metal pollutants, the influence of urban stormwater outfall management on the receiving watercourse has been considered. The locations of stormwater outfalls, and their proximity to the receiving waterway, are known as key water quality and river health influences. Water quality benefits from the implementation of stormwater outfalls set back from the receiving waterway banks have been investigated using the catchment case study. Setback outfalls

  7. Response of surface and groundwater on meteorological drought in Topla River catchment, Slovakia

    Science.gov (United States)

    Fendekova, Miriam; Fendek, Marian; Vrablikova, Dana; Blaskovicova, Lotta; Slivova, Valeria; Horvat, Oliver

    2016-04-01

    Continuously increasing number of drought studies published in scientific journals reflects the attention of the scientific community paid to drought. The fundamental works among many others were published by Yevjevich (1967), Zelenhasic and Salvai (1987), later by Tallaksen and van Lanen Eds. (2004). The aim of the paper was to analyze the response of surface and groundwater to meteorological drought occurrence in the upper and middle part of the Topla River Basin, Slovakia. This catchment belongs to catchments with unfavourable hydrogeological conditions, being built of rocks with quite low permeability. The basin is located in the north-eastern part of Slovakia covering the area of 1050.05 km2. The response was analyzed using precipitation data from the Bardejov station (long-term annual average of 662 mm in 1981 - 2012) and discharge data from two gauging stations - Bardejov and Hanusovce nad Toplou. Data on groundwater head from eight observation wells, located in the catchment, were also used, covering the same observation period. Meteorological drought was estimated using characterisation of the year humidity and SPI index. Hydrological drought was evaluated using the threshold level method and method of sequent peak algorithm, both with the fixed and also variable thresholds. The centroid method of the cluster analysis with the squared Euclidean distance was used for clustering data according to occurrence of drought periods, lasting for 100 days and more. Results of the SPI index showed very good applicability for drought periods identification in the basin. The most pronounced dry periods occurred in 1982 - 1983, 1984, 1998 and 2012 being classified as moderately dry, and also in 1993 - 1994, 2003 - 2004 and 2007 evolving from moderately to severely dry years. Short-term drought prevailed in discharges, only three periods of drought longer than 100 days occurred during the evaluated period in 1986 - 1987, 1997 and 2003 - 2004. Discharge drought in the

  8. Identification of pollutant sources in a rapidly developing urban river catchment in China

    Science.gov (United States)

    Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi

    2016-04-01

    Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.

  9. Preliminary survey of the vulnerability to the contamination of the aquifers of Morondava river catchments

    International Nuclear Information System (INIS)

    Randrianasolo, A.F.

    2004-01-01

    The objective of this work is to make a preliminary survey of the vulnerability to the contamination of the aquifers of Morondava river catchments. The methods used are the geological and hydrogeological surveys, the hydrochemistry and isotopic techniques. This survey allows us to have an overview of the chemical features of groundwaters, conditions of recharge, and especially to determine the potential and active zone of nitrate pollution. Two field works have been carried out within the frame of MAG/8/003 project. The first one is focused on groundwater sampling and surface water sampling, and the second one is based on the geological and hydrogeological surveys. The samples were sent for isotope ( 18 O, 2 H, 15 N, 87 Sr, 3 H) and chemical analysis to the I.A.E.A laboratories. The survey gave the following conclusions: the groundwaters are affected by evaporation before or during infiltration and saline intrusion. The region of Morondava is submitted to a regime of simple oceanic precipitation (excess in deuterium). The boreholes waters is of sodic-bicarbonate chemical type, whereas well waters belong to the calcic-bicarbonate. The superficial aquifers (subsurface water) trapped by the wells are more vulnerable than deep aquifers (homogeneous aquifers) trapped by boreholes. These hypotheses are proven by geological and hydrogeological investigations, by the groundwaters nitrate analyses results, and are confirmed by radioactive isotope. [fr

  10. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.; Wang, X. [Hydrogeology and Engineering Geology Team of Beijing, Beijing 100037 (China); Pang, Z. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-07-01

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO{sub 3} to NaK-HCO{sub 3}, and then to Na-HCO{sub 3} compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ{sup 18}O) plots along a line with a slope of 4.0 on a δ{sup 2}H versus δ{sup 18}O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ{sup 18}O and δ{sup 2}H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  11. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  12. Design for participation in ecologically sound management of South Africa's Mlazi River catchment

    OpenAIRE

    Auerbach, R.

    1999-01-01

    Without local participation, integrated catchment management and Landcare will not become a general reality in South Africa. With support from the South African Water Research Commission, the University of Natal's Farmer Support Group set up the Ntshongweni Catchment Management Programme (NCMP) as a practical participatory action research investigation of ecological farming systems, integrated catchment management and Landcare. Local experience played a crucial role in helping to bui...

  13. Methodology to quantify the role of the factors controlling the variation of rivers' total dissolved solids in Jiu Catchment (Romania)

    Science.gov (United States)

    Adina Morosanu, Gabriela; Zaharia, Liliana; Ioana-Toroimac, Gabriela; Belleudy, Philippe

    2017-04-01

    The total dissolved solids (TDS) is a river water quality parameter reflecting its concentration in solute ions. It is sensitive to many physical and anthropogenic features of the watershed. In this context, the objective of this work is to analyze the spatial variation of the TDS and to identify the role of the main controlling factors (e.g. geology, soils, land use) in Jiu River and some of its main tributaries, by using a methodology based on GIS and multivariate analysis. The Jiu watershed (10,000 kmp) is located in south-western Romania and it has a high diversity of physical and anthropogenic features influencing the water flow and its quality. The study is based on TDS measurements performed in August, 2016, during low flow conditions in the Jiu River and its tributaries. To measure in situ the TDS (ppm), an EC/TDS/Temperature Hand-held Tester was used in the 12 measuring points on Jiu River and in another 7 points on some of its tributaries. Across the hydrographic basin, the recorded TDS values ranged from 31 ppm to 607 ppm, while in the case of Jiu River, the TDS varied between 38 ppm at Lonea station (upper Jiu River) and 314 ppm at Išalniča (in the lower course). For each catchment corresponding to the sampling points, the influence of some contiguous features was defined on the basis of the lithology (marls, limestones, erodible bedrocks) and soils (clay textures), as well as the land cover/use influencing the solubility and solid content. This assessment was carried out in GIS through a set of spatial statistics analysis by calculating the percentages of the catchment coverage area for each determinant. In order to identify the contributions of different catchment features on the TDS variability, principal components analysis (PCA) was then applied. The results revealed the major role of the marls and clayey soils in the increase of TDS (on the Amaradia and Gilort rivers and some sections in the middle course of the Jiu River). In contrast

  14. Assessment of the effect of land use /land cover changes on total runoff from Ofu River catchment in Nigeria

    Directory of Open Access Journals (Sweden)

    Meshach Ileanwa Alfa

    2018-04-01

    Full Text Available The total runoff from a catchment is dependednt on both the soil characteristics and the land use/land cover (LULC type. This study was conducted to examine the effect of changes in land cover on the total runoff from Ofu River Catchment in Nigeria. Classified Landsat imageries of 1987, 2001 and 2016 in combination with the soil map extracted from the Digital Soil Map of the World was used to estimate the runoff curve number for 1987, 2001 and 2016. The runoff depth for 35 years daily rainfall data was estimated using Natura Resource Conservation Services Curve Number (NRCS-CN method. The runoff depths obtained for the respective years were subjected to a one-way analysis of variance at 95% level of significance. P-value < 0.05 was taken as statistically significant. Runoff curve numbers obtained for 1987, 2001 and 2016 were 61.83, 63.26 and 62.79 respectively. The effects of the changes in LULC for 1987-2001, 2001-2016 and 1987-2016 were statistically significant (P<0.001 at 95% confident interval.  The average change in runoff depths were 79.81%, -11.10% and 48.09% respectively for 1987-2001, 2001-2016 and 1987-2016. The study concluded that the changes in LULC of the catchment had significant effect on the runoff from the catchment.

  15. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China

    Directory of Open Access Journals (Sweden)

    H. Xu

    2011-01-01

    Full Text Available Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the Yangtze and Yellow River Basins that feature contrasting climate regimes (humid and semi-arid. Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1, SRES emissions scenarios (A1B, A2, B1, B2 and prescribed increases in global mean air temperature (1 °C to 6 °C. Climate projections, applied to semi-distributed hydrological models (SWAT 2005 in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990, for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C respectively. Intra-annual changes include increases in flood (Q05 discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93% in dry season (Q95 discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13 to 17% rise from baseline but substantial (73 to 121% for the River Huangfuchuan. With one minor exception of a slight (−2% decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is substantial uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05 discharges (−1 to 41% under SRES A1B and −3 to 41% under 2

  16. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    Science.gov (United States)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  17. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    Science.gov (United States)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  18. Occurrence and distribution of tetrabromobisphenol A and its derivative in river sediments from Vaal River Catchment, South Africa

    Directory of Open Access Journals (Sweden)

    Tlou B. Chokwe

    2017-12-01

    Full Text Available Brominated flame retardants (BFRs compounds have been widely added in a number of products to reduce their flammability. In the present study, the concentrations and distribution of tetrabromobisphenol A (TBBPA and its derivatives, i.e. tribromophenol dibromopropyl ether (TBPDBPE, tetrabromobisphenol A bis-dibromopropyl ether (TBBPA BDBPE, tetrabromobisphenol A bis-allyl ether (TBBPA BAE were investigated in sediment samples collected from the Vaal River catchment, South Africa. The results showed that all these pollutants were detected in sediments with TBBPA BAE being the most abundant contaminant. The TBBPA BAE concentrations ranged from 3.5 to 44.4 ng/g (mean 16 ng/g while the concentration ranged from not detected (nd to 2.4 ng/g (mean 0.6 ng/g, nd - 21.0 ng/g (mean 6 ng/g and nd - 2.0 ng/g (mean 0.2 ng/g for TBPDBPE, TBBPA and TBBPA BDBPE; respectively. Higher concentrations of these pollutants were found in sampling sites receiving effluents of wastewater treatment works (WWTWs treating some industrial wastewater suggesting effluents might play an important role in the contamination of BFRs in the environment. Negative correlation between TBBPA and TBBPA BAE was observed implying different sources or environmental fates between these pollutants. Overall, the results showed a need for further studies to be undertaken in investigating the presence, fate and sources of alternative halogenated flame retardants in the environment.

  19. Design for participation in ecologically sound management of South Africa's Mlazi River catchment

    NARCIS (Netherlands)

    Auerbach, R.

    1999-01-01

    Without local participation, integrated catchment management and Landcare will not become a general reality in South Africa. With support from the South African Water Research Commission, the University of Natal's Farmer Support Group set up the Ntshongweni Catchment Management Programme

  20. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    Science.gov (United States)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  1. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study

    Science.gov (United States)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty-1 of sand (8.764 million ty-1 of instream sand and 2.763 million ty-1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  2. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Science.gov (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.

    2011-01-01

    We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard), SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH (Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM (Harper's Brook). The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM) to explore response to different amounts of climate forcing, and (2) a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty. We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%), and they are generally larger for indicators of high and low monthly runoff. However

  3. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  4. Eco-physiological Study on the Influence of Contaminated Waters from the Topolnitza River Catchment Area on Some Crops

    Directory of Open Access Journals (Sweden)

    Iliana Velcheva

    2012-12-01

    Full Text Available The present study is a small part of a program for an investigation of the water conditions in the Topolnitza Dam Lake, Topolnitza River and its catchment area. The sensitivity of seeds and young wheat, sunflower and mustard plants to heavy metal stress was examined at laboratory conditions. Our results showed that seedling growth was more sensitive to heavy metals in comparison to seed germination. The length of shoot and root has been adversely affected due to water contamination when compared to the control. A certain negative effect on the photosynthetic pigments content was registered.

  5. Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin

    Science.gov (United States)

    Wałęga, A.; Rutkowska, A.; Grzebinoga, M.

    2017-04-01

    Correct determination of direct runoff is crucial for proper and safe dimensioning of hydroengineering structures. It is commonly assessed using SCS-CN method developed in the United States. However, due to deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified Sahu-Mishra-Eldo (SME) method was introduced and tested for three catchments located in the upper Vistula basin. Modification of SME method involved a determination of maximum potential retention S based on CN parameter derived from SCS-CN method. The modified SME method yielded direct runoff values very similar to those observed in the investigated catchments. Moreover, it generated significantly smaller errors in the direct runoff estimation as compared with SCS-CN and SME methods in the analyzed catchments. This approach may be used for estimating the runoff in uncontrolled catchments.

  6. Land cover changes in catchment areas of lakes situated in headwaters of the Tyśmienica River

    Directory of Open Access Journals (Sweden)

    Grzywna Antoni

    2017-06-01

    Full Text Available The paper presents the history of land cover changes in the catchment area of lakes situated in the headwaters of the Tyśmienica River. The basis of the study were topographic maps in scale 1:50 000, from 1936 and 2014. We analyzed the quantitative aspect of these changes. The study was conducted in three natural lakes (Rogóźno, Krasne, Łukcze, and in one lake transformed into a storage reservoir (Krzczeń. The technical issues of georeferencing maps in the Geographic Information System (GIS software are addressed first. In the landscape of Łęczna and Włodawa Lake District, to the end of the 19th century wetlands and bushes dominated. The first type of human pressure on this area was agriculture. Another type of pressure was recreation. In the catchment areas of studied lakes increased mainly the area of buildings and forests. Significantly increased also the length of roads and watercourses. Almost completely disappeared bushes and wastelands. In most of the analyzed basins, the area of wetlands and arable lands decreased. The probable cause of the changes in catchment use was decline in the water table, and thus overgrowing of meadows and wetlands.

  7. Precipitation Pattern Controls on the Dynamics and Subsequent Export of Large Wood from River Catchments

    Science.gov (United States)

    Seo, J.; Nakamura, F.; Chun, K.; Grant, G. E.

    2011-12-01

    In-stream large wood (LW) has a critical impact on the geomorphic and ecological character in river catchments, yet relatively little is known about variations in its dynamics and subsequent export in relation to different precipitation patterns and intensities. To understand these variations we used the annual volume of LW removed from 42 reservoirs in Japan and daily precipitation at or near the reservoir sites. Daily precipitation data were transformed into effective precipitation to evaluate trends in both current and antecedent precipitation, and these data were then used to explain basin variation in LW export. Model selection with generalized linear mixed models revealed that the precipitation pattern and intensity controlling LW export in small, intermediate, and large watersheds differed with latitude along the Japanese archipelago. LW export in small watersheds was well explained by effective precipitation greater than 120 mm, and showed little latitudinal variation. In contrast, LW export in intermediate and large watersheds was well explained by daily precipitation greater than 40 mm and 60 mm, respectively, and varied with latitude. In small watersheds with narrow channels and low stream discharges, mass movements (such as landslides and debris flows) are major factors in the production and transport of LW. Thus LW export in small watersheds appears to be regulated by the effective precipitation required to initiate mass movements, and shows little latitudinal change. In intermediate and large watersheds with wide channels and high stream discharges, heavy rainfall and subsequent floods regulate buoyant depth influencing the initiation of LW mobility, and thus control the amount of LW exported. In southern and central Japan, intense rainfall accompanying typhoons or localized torrential downpours lead to geomorphic disturbances, which produce massive amounts of LW delivery into channels. However, these pieces are constantly removed by high streamflows

  8. Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales)

    Science.gov (United States)

    Bussi, Gianbattista; Whitehead, Paul G.; Thomas, Amy R. C.; Masante, Dario; Jones, Laurence; Jack Cosby, B.; Emmett, Bridget A.; Malham, Shelagh K.; Prudhomme, Christel; Prosser, Havard

    2017-10-01

    Water-borne pathogen contamination from untreated sewage effluent and runoff from farms is a serious threat to the use of river water for drinking and commercial purposes, such as downstream estuarine shellfish industries. In this study, the impact of climate change and land-use change on the presence of faecal indicator bacteria in freshwater was evaluated, through the use of a recently-developed catchment-scale pathogen model. The River Conwy in Wales has been used as a case-study, because of the large presence of livestock in the catchment and the importance of the shellfish harvesting activities in its estuary. The INCA-Pathogens catchment model has been calibrated through the use of a Monte-Carlo-based technique, based on faecal indicator bacteria measurements, and then driven by an ensemble of climate projections obtained from the HadRM3-PPE model (Future Flow Climate) plus four land-use scenarios (current land use, managed ecosystem, abandonment and agricultural intensification). The results show that climate change is not expected to have a very large impact on average river flow, although it might alter its seasonality. The abundance of faecal indicator bacteria is expected to decrease in response to climate change, especially during the summer months, due to reduced precipitation, causing reduced runoff, and increased temperature, which enhances the bacterial die-off processes. Land-use change can also have a potentially large impact on pathogens. The "managed ecosystems" scenario proposed in this study can cause a reduction of 15% in average water faecal indicator bacteria and up to 30% in the 90th percentile of water faecal indicator bacteria, mainly due to the conversion of pasture land into grassland and the expansion of forest land. This study provides an example of how to assess the impacts of human interventions on the landscape, and what may be the extent of their effects, for other catchments where the human use of the natural resources in the

  9. Modeling water flow, depth and inundation extent over the rivers of the Contiguous US within a Catchment-based Land Surface Modeling Framework

    Science.gov (United States)

    Liu, Z.; David, C. H.; Famiglietti, J. S.

    2013-12-01

    With population growth and increasing demand of water supply, the need for integrated continental and global scale surface water dynamics simulation systems relying on both observations and models is ever increasing. In this study we characterize how accurately we can estimate river discharge, river depth and the corresponding inundation extent over the contiguous U.S. by combining observations and models. We present a continental-scale implementation of the Catchment-based Hydrological And Routing Modeling System (CHARMS) that includes an explicit representation of the river networks from a Geographic Information System (GIS) dataset. The river networks and contributing catchment boundaries of the Contiguous U.S are upscaled from the NHDPlus dataset. The average upscaled catchment size is 2773 km2 and the unique main river channel contained in each catchment consists of several river reaches of average length 1.6 km. We derive 18 sets of empirical relationship between channel dimension (bankfull depth and bankfull width) and drainage area based on USGS gauge observations to describe river dynamics for the 18 water resource regions of the NHDPlus representation of the United States. These relationships are used to separate the main river channel and floodplain. Modeled monthly and daily streamflow show reasonable agreement with gauge observations and initial results show that basins with fewer anthropogenic modifications are more accurately simulated. Modeled monthly and daily river depth and floodplain extent associated with each river reach are also explicitly estimated over the U.S., although such simulations are more challenging to validate. Our results have implications for capturing the seasonal-to-interannual dynamics of surface water in climate models. Such a continental-scale modeling framework development would, by design, facilitate the use of existing in situ observations and be suitable for integrating the upcoming NASA Surface Water and Ocean

  10. The logic of participation: critical perspectives on the 'participatory turn' in river and catchment management

    Science.gov (United States)

    Lane, Stuart

    2014-05-01

    regarding those who currently participate; necessary, because of changes in the water management system that make an existing system inherently less participative; or ignorant, because authorities do not realise that there are already effective systems of participation in water management that are invisible, or only partly visible, and so too readily overlooked. To explore this issue, I focus upon a proposed restructuring of the Inland Drainage Boards (IDBs) of England and Wales over the last decade. The IDBs have developed, in some cases over many centuries, as organisations responsible for the management of water levels in areas of special drainage need, providing a range of water supply, flood risk management and ecosystem services. They cover 9.7% and 1.4% of the land area of England and Wales respectively and there are currently 121 in total. They provide an interesting case example because up until the restructuring process began, they were organized around relatively small-in-size drainage districts and governed by members elected from the payers of agricultural drainage rates (owners, occupiers or tenants) or appointed from elected local authority members, in proportion to the payments the local authorities were making to the IDB. They were, in effect, highly participatory forms of hydrological governance as many of those who paid and who were elected were genuinely those who lived within their own water management system. What I show in this paper is that this proved highly unsatisfactory to legislators and other organisations involved in river management. Under the pre-text that river management should respect catchment boundaries, the IDBs were progressively encouraged to create larger spatial units with smaller numbers of elected representatives, initially as amalgamation to share services and functions, eventually into large stand-alone boards. The latter was preferred so as to provide efficiency savings and to be more readily seen as accountable to legislation

  11. Flow dependent water quality impacts of historic coal and oil shale mining in the Almond River catchment, Scotland

    International Nuclear Information System (INIS)

    Haunch, Simon; MacDonald, Alan M.; Brown, Neil; McDermott, Christopher I.

    2013-01-01

    Highlights: • A GIS map of coal and oil shale mining in the Almond basin was constructed. • Water quality data confirms the continued detrimental impact of historic mining. • Oil shale mining is confirmed as a contributor to poor surface water quality. • Surface water flow affects mine contaminant chemistry, behaviour and transport. • River bed iron precipitate is re-suspended and transported downstream at high flow. - Abstract: The Almond River catchment in Central Scotland has experienced extensive coal mining during the last 300 years and also provides an example of enduring pollution associated with historic unconventional hydrocarbon exploitation from oil shale. Detailed spatial analysis of the catchment has identified over 300 abandoned mine and mine waste sites, comprising a significant potential source of mine related contamination. River water quality data, collected over a 15 year period from 1994 to 2008, indicates that both the coal and oil shale mining areas detrimentally impact surface water quality long after mine abandonment, due to the continued release of Fe and SO 4 2- associated with pyrite oxidation at abandoned mine sites. Once in the surface water environment Fe and SO 4 2- display significant concentration-flow dependence: Fe increases at high flows due to the re-suspension of river bed Fe precipitates (Fe(OH) 3 ); SO 4 2- concentrations decrease with higher flow as a result of dilution. Further examination of Fe and SO 4 loading at low flows indicates a close correlation of Fe and SO 4 2- with mined areas; cumulative low flow load calculations indicate that coal and oil shale mining regions contribute 0.21 and 0.31 g/s of Fe, respectively, to the main Almond tributary. Decreases in Fe loading along some river sections demonstrate the deposition and storage of Fe within the river channel. This river bed Fe is re-suspended with increased flow resulting in significant transport of Fe downstream with load values of up to 50 g/s Fe

  12. Reach‐scale river metabolism across contrasting sub‐catchment geologies: Effect of light and hydrology

    DEFF Research Database (Denmark)

    Rovelli, Lorenzo; Attard, Karl; Binley, Andrew

    2017-01-01

    and reaches followed a general linear relationship with increasing stream light availability. Sub‐catchment specific NEM proved to be linearly related to the local hydrological connectivity, quantified as the ratio between base flow and stream discharge, and expressed on a timescale of 9 d on average....... This timescale apparently represents the average period of hydrological imprint for carbon turnover within the reaches. Combining a general light response and sub‐catchment specific base flow ratio provided a robust functional relationship for predicting NEM at the reach scale. The novel approach proposed...

  13. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    Science.gov (United States)

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  14. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland

    Directory of Open Access Journals (Sweden)

    S. TATTARI

    2008-12-01

    Full Text Available Modeling tools are needed to assess (i the amounts of loading from agricultural sources to water bodies as well as (ii the alternative management options in varying climatic conditions. These days, the implementation of Water Framework Directive (WFD has put totally new requirements also for modeling approaches. The physically based models are commonly not operational and thus the usability of these models is restricted for a few selected catchments. But the rewarding feature of these process-based models is an option to study the effect of protection measures on a catchment scale and, up to a certain point, a possibility to upscale the results. In this study, the parameterization of the SWAT model was developed in terms of discharge dynamics and nutrient loads, and a sensitivity analysis regarding discharge and sediment concentration was made. The SWAT modeling exercise was carried out for a 2nd order catchment (Yläneenjoki, 233 km2 of the Eurajoki river basin in southwestern Finland. The Yläneenjoki catchment has been intensively monitored during the last 14 years. Hence, there was enough background information available for both parameter setup and calibration. In addition to load estimates, SWAT also offers possibility to assess the effects of various agricultural management actions like fertilization, tillage practices, choice of cultivated plants, buffer strips, sedimentation ponds and constructed wetlands (CWs on loading. Moreover, information on local agricultural practices and the implemented and planned protective measures were readily available thanks to aware farmers and active authorities. Here, we studied how CWs can reduce the nutrient load at the outlet of the Yläneenjoki river basin. The results suggested that sensitivity analysis and autocalibration tools incorporated in the model are useful by pointing out the most influential parameters, and that flow dynamics and annual loading values can be modeled with reasonable

  15. Characterisation of Shigella species isolated from river catchments in the North West province of South Africa

    Directory of Open Access Journals (Sweden)

    Constance Wose Kinge

    2010-10-01

    Full Text Available The occurrence and distribution of Shigella species in water from the five river catchments in the North West province of South Africa were investigated. Shigella is a Gram-negative, non-motile, facultative anaerobic bacillus that causes shigellosis, an important cause of morbidity and mortality in high-risk populations (such as children, the elderly and immuno-compromised individuals that depend on river water. A total of 54 water samples collected in winter (April 2007 to July 2007 and summer (December 2007 to March 2008 were cultured on Salmonella-Shigella agar by the spread-plate method. Suspected Shigella isolates obtained were characterised by primary biochemical (Triple Sugar Iron agar and agglutination and molecular (polymerase chain reactions, PCR tests. Amplification of the invasion plasmid gene (ipaH by PCR was done to confirm the presence of Shigella spp. in water. In total, 214 Shigella boydii, 15 Shigella dysenteriae, 11 Shigella flexneri and 2 Shigella sonnei were confirmed by serotyping in both winter and summer samples. The ipaH gene (606 bp was present in 176 and 49 of the winter and summer isolates, respectively. The presence of Shigella spp. in water was confirmed with over 90% specificity. The need for more effective management of these river catchments and the provision of potable water and sanitation facilities is needed to minimise the occurrence and transmission of water-borne diseases caused by these and other pathogenic bacteria.

  16. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: a case study.

    Science.gov (United States)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from in-stream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the in-stream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty(-1) of sand (8.764 million ty(-1) of in-stream sand and 2.763 million ty(-1) of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  17. Structural control over well productivity in the Jundiaí River Catchment, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mirna A. Neves

    2007-06-01

    Full Text Available The well productivity in crystalline terrains is extremely changeable and depends on external factors, in addition to the intrinsic properties of rocks. In the Jundiaí River Catchment, Southeastern Brazil, the main factor that influences well productivity is the existence of open discontinuities permeability in geologic environments that favor groundwater recharge. In that area, Pre-Cambrian shear and fault zones were reactivated throughout geologic time, controlling the morphostructural compartments and the Cenozoic sedimentary deposition. Superposition of productivity data and structural maps showed that more productive wells are concentrated mainly along the regional geologic structures. The structural control over well productivity is also noticeable in detailed scale. Using fine scale maps we show that the most productive wells are located in areas where brittle structures with NW-SE and E-W directions denote the action of neotectonic transtensional stress. The comprehension of evolutionary geologic history allied to fracturing analysis proved to be an efficient and a low cost technique, which is adequate for selecting areas for further developments using more expensive methods.A produtividade dos poços tubulares profundos em terrenos cristalinos é extremamente variável e depende, além das propriedades intrínsecas da rocha, de fatores externos a ela. Na bacia do rio Jundiaí, Região Sudeste do Brasil, a existência de descontinuidades abertas em situações geológicas favoráveis à recarga constitui o principal fator que influencia a produtividade dos poços. Nesta área, zonas de cisalhamento e zonas de falhas pré-cambrianas reativadas ao longo do tempo geológico controlam a compartimentação morfoestrutural e a deposição de sedimentos cenozóicos. O cruzamento do mapa estrutural com os dados dos poços que explotam o Sistema Aqüífero Cristalino mostrou que poços com produtividade elevada em relação aos demais concentram

  18. Probabilistic risk assessment of diuron and prometryn in the Gwydir River catchment, Australia, with the input of a novel bioassay based on algal growth.

    Science.gov (United States)

    Shi, Yajuan; Burns, Mitchell; Ritchie, Raymond J; Crossan, Angus; Kennedy, Ivan R

    2014-08-01

    A probabilistic risk assessment of the selected herbicides (diuron and prometryn) in the Gwydir River catchment was conducted, with the input of the EC₅₀ values derived from both literature and a novel bioassay. Laboratory test based on growth of algae exposed to herbicides assayed with a microplate reader was used to examine the toxicity of diuron and prometryn on the growth of Chlorella vulgaris. Both herbicides showed concentration dependent toxicity in inhibiting the growth of Chlorella during the exposure period of 18-72 h. Diuron caused more toxicity as judged by growth rates than prometryn. Thalaba Creek at Merrywinebone was identified as the 'hotspot' for diuron and prometryn risk in the Gwydir catchment. The use of microplate assays coupled with probabilistic risk assessment is recommended for rapid assessment of ecotoxicity of indigenous species, allowing identification of locations in river catchments requiring environmental management. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Dynamic seasonal nitrogen cycling in response to anthropogenic N loading in a tropical catchment, Athi-Galana-Sabaki River, Kenya

    Science.gov (United States)

    Marwick, T. R.; Tamooh, F.; Ogwoka, B.; Teodoru, C.; Borges, A. V.; Darchambeau, F.; Bouillon, S.

    2014-01-01

    As part of a broader study on the riverine biogeochemistry in the Athi-Galana-Sabaki (A-G-S) River catchment (Kenya), we present data constraining the sources, transit and transformation of multiple nitrogen (N) species as they flow through the A-G-S catchment (~47 000 km2). The data set was obtained in August-September 2011, November 2011, and April-May 2012, covering the dry season, short rain season and long rain season respectively. Release of (largely untreated) wastewater from the city of Nairobi had a profound impact on the biogeochemistry of the upper Athi River, leading to low dissolved oxygen (DO) saturation levels (36-67%), high ammonium (NH4+) concentrations (123-1193 μmol L-1), and high dissolved methane (CH4) concentrations (3765-6729 nmol L-1). Riverine dissolved inorganic nitrogen (DIN; sum of NH4+ and nitrate (NO3-); nitrite was not measured) concentration at the most upstream site on the Athi River was highest during the dry season (1195 μmol L-1), while DIN concentration was an order of magnitude lower during the short and long rain seasons (212 and 193 μmol L-1, respectively). During the rain seasons, low water residence time led to relatively minimal in-stream N cycling prior to discharge to the ocean, whereas during the dry season we speculate that prolonged residence time creates two differences comparative to wet season, where (1) intense N cycling and removal of DIN is possible in the upper to mid-catchment and leads to significantly lower concentrations at the outlet during the dry season, and (2) as a result this leads to the progressive enrichment of 15N in the particulate N (PN) pool, highlighting the dominance of untreated wastewater as the prevailing source of riverine DIN. The rapid removal of NH4+ in the upper reaches during the dry season was accompanied by a quantitatively similar production of NO3- and nitrous oxide (N2O) downstream, pointing towards strong nitrification over this reach during the dry season. Nitrous oxide

  20. Validation of SMOS L1C and L2 Products and Important Parameters of the Retrieval Algorithm in the Skjern River Catchment, Western Denmark

    DEFF Research Database (Denmark)

    Bircher, Simone; Skou, Niels; Kerr, Yann H.

    2013-01-01

    -band Microwave Emission of the Biosphere (L-MEB) model with initial guesses on the two parameters (derived from ECMWF products and ECOCLIMAP Leaf Area Index, respectively) and other auxiliary input. This paper presents the validation work carried out in the Skjern River Catchment, Denmark. L1C/L2 data...

  1. Soil and Terrain Database for Upper Tana River Catchment (version 1.1) - scale 1:250,000 (SOTER_UT_v1.1)

    NARCIS (Netherlands)

    Dijkshoorn, J.A.; Macharia, P.; Kempen, B.

    2014-01-01

    The Soil and Terrain database for the Upper Tana River Catchment (version 1.1) (SOTER_UT_v1.1) at scale 1:250,000 was compiled to support the Green Water Credits (GWC) programme by creating a primary SOTER dataset for a hydrology assessment of the basin. The Kenya Soil Survey of the Kenya

  2. Impacts of climate change on the seasonality of low flows in 134 catchments in the river Rhine basin using an ensemble of bias-corrected regional climate simulations.

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2013-01-01

    The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR), weighted mean occurrence day (WMOD) and

  3. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    Science.gov (United States)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  4. A Simple Scheme for Modeling Irrigation Water Requirements at the Regional Scale Applied to an Alpine River Catchment

    Directory of Open Access Journals (Sweden)

    Pascalle C. Smith

    2012-11-01

    Full Text Available This paper presents a simple approach for estimating the spatial and temporal variability of seasonal net irrigation water requirement (IWR at the catchment scale, based on gridded land use, soil and daily weather data at 500 × 500 m resolution. In this approach, IWR is expressed as a bounded, linear function of the atmospheric water budget, whereby the latter is defined as the difference between seasonal precipitation and reference evapotranspiration. To account for the effects of soil and crop properties on the soil water balance, the coefficients of the linear relation are expressed as a function of the soil water holding capacity and the so-called crop coefficient. The 12 parameters defining the relation were estimated with good coefficients of determination from a systematic analysis of simulations performed at daily time step with a FAO-type point-scale model for five climatically contrasted sites around the River Rhone and for combinations of six crop and ten soil types. The simple scheme was found to reproduce well results obtained with the daily model at six additional verification sites. We applied the simple scheme to the assessment of irrigation requirements in the whole Swiss Rhone catchment. The results suggest seasonal requirements of 32 × 106 m3 per year on average over 1981–2009, half of which at altitudes above 1500 m. They also disclose a positive trend in the intensity of extreme events over the study period, with an estimated total IWR of 55 × 106 m3 in 2009, and indicate a 45% increase in water demand of grasslands during the 2003 European heat wave in the driest area of the studied catchment. In view of its simplicity, the approach can be extended to other applications, including assessments of the impacts of climate and land-use change.

  5. Trends and seasonality in stream water chemistry in two moorland catchments of the Upper River Wye, Plynlimon

    Directory of Open Access Journals (Sweden)

    B. Reynolds

    1997-01-01

    Full Text Available Stream water chemistry in the Cyff and Gwy subcatchments within the headwaters of the River Wye has been monitored regularly since 1980. In the Gwy, which is a predominantly semi-natural grassland catchment, land use has remained relatively static over the monitoring period, whilst the Cyff catchment is more buffered because of base cation inputs from agricultural improvement and ground water sources. Using a variety of statistical techniques, the long-term data are examined for evidence of trends after eliminating seasonal effects. The results highlight some of the difficulties associated with the analysis of longterm water quality data which show considerable variability over a variety of timescales. Some of this variability can be explained in terms of hydrochemical responses to climatic extremes and episodic events such as large atmospheric inputs of seasalts. The long-term fluctuations in solute concentration underline the continuing need for maintaining consistent long-term monitoring at sensitive upland sites if underlying trends related to gradual changes in pollutant deposition or climate are to be detected with any certainty.

  6. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems.

    Science.gov (United States)

    Brauer, Chris J; Unmack, Peter J; Hammer, Michael P; Adams, Mark; Beheregaray, Luciano B

    2013-01-01

    Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology.

  7. Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka river basin (SW Poland)

    Science.gov (United States)

    Jeziorska, Justyna; Niedzielski, Tomasz

    2018-03-01

    River basins located in the Central Sudetes (SW Poland) demonstrate a high vulnerability to flooding. Four mountainous basins and the corresponding outlets have been chosen for modeling the streamflow dynamics using TOPMODEL, a physically based semi-distributed topohydrological model. The model has been calibrated using the Monte Carlo approach—with discharge, rainfall, and evapotranspiration data used to estimate the parameters. The overall performance of the model was judged by interpreting the efficiency measures. TOPMODEL was able to reproduce the main pattern of the hydrograph with acceptable accuracy for two of the investigated catchments. However, it failed to simulate the hydrological response in the remaining two catchments. The best performing data set obtained Nash-Sutcliffe efficiency of 0.78. This data set was chosen to conduct a detailed analysis aiming to estimate the optimal timespan of input data for which TOPMODEL performs best. The best fit was attained for the half-year time span. The model was validated and found to reveal good skills.

  8. The Serchio River catchment, northern Tuscany: Geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate

    International Nuclear Information System (INIS)

    Cortecci, Gianni; Dinelli, Enrico; Boschetti, Tiziano; Arbizzani, Paola; Pompilio, Loredana; Mussi, Mario

    2008-01-01

    The Serchio River and its tributaries in northern Tuscany were investigated for the chemical and isotopic compositions of waters and bed sediments. Bedrocks are mostly limestone/dolomite and siliciclastics, thermal spring systems are present in the catchment, and the main industrial activity is represented by paper-mills. Main results obtained are: (1) major ions in solution appear to be basically controlled by precipitation and lithology, as well as subordinately by direct inputs of thermal springs, (2) human influence on metals in the waters along the main Serchio and Lima rivers is indicated at a number of sites by increases in concentration compared to the chemical composition of upstream tributaries, (3) S and O isotope compositions delineate two main sources for aqueous SO 4 2- , that is dissolution of Triassic evaporite (directly or via thermal springs) and oxidation of sulfide dispersed in siliciclastic rocks. Anthropogenic contributions are probable, but they cannot be quantitatively assessed. Only SO 4 2- in the notoriously polluted Ozzeri tributary is suspected to be largely anthropogenic, and (4) the chemical composition of bed sediments is mainly influenced by lithology, apart from a number of technogenic elements in the upper part of the Serchio River and in some tributaries. Contamination possibly occurs at other sites, but geochemical indications are weak

  9. Comparison of balance of tritium activity in waste water from nuclear power plants and at selected monitoring sites in the Vltava River, Elbe River and Jihlava (Dyje) River catchments in the Czech Republic.

    Science.gov (United States)

    Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora

    2017-12-01

    During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    Science.gov (United States)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  11. On the impact of the development of the Verkhnyaya Sukhona river catchment area (the Vologda Region on the chemical composition of the waters in its tributaries.

    Directory of Open Access Journals (Sweden)

    Ivicheva Ksenya

    2017-09-01

    Full Text Available The aim of the investigation was to study the influence of anthropogenic burden on the catchment areas of the rivers in Vologda Region and to establish the dependence of the chemical composition of water on pollution sources in the rivers of the Verkhnyaya Sukhona basin. In the catchment areas hydro chemical samples were taken, population density was calculated as well as the automated and visual interpretation of the main elements of the landscape was carried out. At that, forests, populated areas, farmlands and other territories changed by economic activities were identified. An increase in the pollutants concentration in the catchment areas on drawing near the regional center was detected. The development of the catchment areas varies depending on the landscape pattern and on the proximity to the city of Vologda. The population density and the relative area of settlements and farmlands increase while approaching to the city, at the same time the ratio of forests decreases. The positive correlation dependence between the phosphate content and the relative size of farmlands was shown. The main source of pollutants in the catchment areas of the Verkhnyaya Sukhona basin is the presence of settlements and high population density. Under such conditions, high concentration of sodium, chlorine, nitrogen-containing compounds as well as permanganate oxidizability are observed in water.

  12. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  13. The dispersal of metal mining wastes in the catchment of the river Geul (Belgium - The Netherlands)

    NARCIS (Netherlands)

    Leenaers, H.

    1989-01-01

    The metal mining industry has caused large quantities of heavy metals to enter countless river systems. The consequent spread of heavy metals is determined largely by how these metals bind with silt and soil particles and the transport pathways of these particles in the alluvial parts of river

  14. Physical-chemical modeling of elements' behavior in mixing sea and fresh waters of minor rivers in the White Sea catchment area.

    Science.gov (United States)

    Maksimova, Victoria V; Mazukhina, Svetlana I; Cherepanova, Tatiana A; Gorbacheva, Tamara T

    2017-07-29

    The physical-chemical stage of marginal filters in minor rivers of the White Sea catchment area by the example of the Umba River, flowing to Kandalaksha Gulf, has been explored. Application of the method of physical-chemical modeling on the basis of field data allowed establishing migration forms of a number of elements in the "river-sea" system and deposition of solid phases when mixing waters. The mixing of river and sea water is accompanied by the sedimentation of predominantly goethite, hydromuscovite, and hydroxylapatite. Sediments in mixing river and sea waters were found to be mainly composed by goethite, hydromuscovite, and hydroxylapatite. The research has added to the knowledge of the role of the abiotic part in the marginal filters of small rivers in the Arctic.

  15. Alien freshwater polychaetes Hypania invalida (Grube 1860 and Laonome calida Capa 2007 in the Upper Odra River (Baltic Sea catchment area

    Directory of Open Access Journals (Sweden)

    Pabis Krzysztof

    2017-01-01

    Full Text Available Two polychaete species, Hypania invalida and Laonome calida, were found in the Upper Odra River in 2016. Both species were recorded close to a natural river bank down to 1 m depths. They inhabited sandy-gravelly and sandy-muddy sediments. H. invalida is an alien invasive Ponto-Caspian species, previously known in Poland from the Odra River estuary only. Our results may indicate a further rapid dispersal of H. invalida upstream the Odra River or an accidental introduction. This study is the first record of L. calida in the Baltic Sea catchment. This Australian species has been recently introduced into Europe. Prior to this study, it had been reported from Dutch rivers only. The present data suggest accidental introduction of the species to European rivers; however, our findings show an urgent need for a close monitoring of the polychaete in Europe.

  16. [Temporal-spatial Variation and Source Identification of Hydro-chemical Characteristics in Shima River Catchment, Dongguan City].

    Science.gov (United States)

    Gao, Lei; Chen, Jian-yao; Wang, Jiang; Ke, Zhi-ting; Zhu, Ai-ping; Xu, Kai

    2015-05-01

    Shima River catchment is of strategic importance to urban water supply in Dongjiang portable water source area. To investigate the hydro-chemical characteristics of Shima River, 39 river water samples were collected in February, June and November, 2012 to analyze the major ions (K+, Na+, Ca2+, Mg2+, Cl-, SO4(2-) , HCO3-) and nutritive salts (PO4(3-), NO3- and NH4+) and to discuss the temporal-spatial variation and controlling factors of hydro-chemical composition, relative sources identification of varied ions was performed as well. The results showed that the hydro-chemical composition exhibited significant differences in different periods. The average concentration of total dissolved solid ( TDS) and nutritive salts in different investigated periods followed the decreasing order of November > February > June. The dominant anion of Shima River was HCO3-, and Na+ + K+ were the major cations in February and November which were changed to Ca2+ in June, the hydro-chemical types were determined as HCO(3-)-Na+ and HCO(3-)- Ca2+ in dry (February and November) and rainy (June) seasons, respectively. Spatial variations of concentration of nutritive salts were mainly affected by the discharges of N- and P-containing waste water resulted from human activities. The ratio between N and P of water sample (R7) was 18.4:1 which boosted the "crazy growth" of phytoplankton and led to severe eutrophication. According to Gibbs distribution of water samples, dissolution of hydatogenic rocks was the primary factor to control the major cations of river water in dry season, however, the hydro-chemical composition was significantly affected by the combination of hydatogenic and carbonate rocks in rainy season. The deposition of sea-salts contributed less to chemical substances in river. Correlation analysis revealed that K+, Na+, Mg2+, Cl- and SO4(2-) were partly derived from the application of fertilizer and the discharge of industrial effluent; Waste water of poultry feeding and

  17. Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain

    Science.gov (United States)

    Garijo, Carlos; Mediero, Luis

    2018-04-01

    Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.

  18. Contrasting Climate Change Impact on River Flow from Glacierised Catchments in the Himalayan and Andes Mountains

    Science.gov (United States)

    Pellicciotti, F.; Ragettli, S.; Immerzeel, W. W. W.

    2016-12-01

    Glaciers and glacierised catchments in mountainous regions react to a changing climate in different manners depending on climate and glacier characteristics. Despite the key role of mountain ranges as natural water towers, their hydrological balance and future changes in glacier runoff associated with climate warming remain poorly understood because of high meteorological variability, physical inaccessibility and the complex interplay between climate, cryosphere and hydrological processes. We use a state-of-the art glacio-hydrological model informed by data from high altitude observations and the latest CMIP5 climate change scenarios to quantify the climate change impact on glaciers and runoff for two contrasting catchments vulnerable to changes in the cryosphere. The two catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites are projected to experience a strong decrease in glacier area, they show remarkably different hydrological responses. Icemelt is on a rising limb in Langtang at least until 2041-2050 and starts to decrease afterwards, while in Juncal icemelt was already beyond its tipping point at the beginning of the 21st century. This contrasting response can be explained by differences in the elevation distribution of the glaciers in the two regions. In Juncal, many glaciers are melting up to the highest elevations already during the reference period (2000-2010) and increasing melt rates due to higher air temperatures cannot compensate the loss of glacier area. In Langtang, large sections of the glaciers at high elevations are currently not exposed to melt, but will be in the future, thus compensating for the loss of glacier area at lower elevations. As a result of these changes and projected changes in precipitation, in Juncal runoff will sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In Langtang, future water

  19. Ecological characteristics of the main river catchments in Vrachanska Planina Mountains

    Directory of Open Access Journals (Sweden)

    SVETOSLAV CHESHMEDJIEV

    2016-05-01

    Full Text Available Assessment of the ecological status of river ecosystems of the major watersheds in the Vrachanska Planina Mts. (Leva River, Cherna River and some tributaries is made. The assessment is carried out by determining the composition and structure of phytobenthos, benthic macroinvertebrate communities and fish. The following indexes are calculated: diatom pollution index IPS, macrozoobenthic Biotic Index and Fish Based Index (BFI, adopted for assessing the ecological status as required by WFD (Directive 60/2000. Additionally, various physical and hydrochemical analyzes are performed. Based on our results the majority of the mountainous zones of the studied rivers is "good" or "high" ecological status. Deteriorated ecological conditions is observed downstream some villages: for Leva River below the village of Zgorigrad and for Cherna River nearby the village of Dolno Ozirovo. This is probably owing to contamination with organic matter from the human settlements in the area. An accident pollution (with a predominantly protein character was found in the Cherna River near the Lupovaka area.

  20. Using geochemical tracers to distinguish groundwater and parafluvial inflows in rivers (the Avon Catchment, SE Australia)

    Science.gov (United States)

    Cartwright, I.; Hofmann, H.

    2015-09-01

    Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. Downstream trends in 222Rn activities and Cl concentrations in the Avon River, southeast Australia, implies that it contains alternating gaining and losing reaches. 222Rn activities of up to 3690 Bq m-3 imply that inflows are locally substantial (up to 3.1 m3 m-1 day-1). However, if it assumed that these inflows are solely from groundwater, the net groundwater inflows during low-flow periods exceed the measured increase in streamflow along the Avon River by up to 490 %. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain this discrepancy. It is proposed that a significant volume of the total calculated inflows into the Avon River represents water that exfiltrates from the river, flows through parafluvial sediments, and subsequently re-enters the river in the gaining reaches. This returning parafluvial flow has high 222Rn activities due to 222Rn emanations from the alluvial sediments. The riffle sections of the Avon River commonly have steep longitudinal gradients and may transition from losing at their upstream end to gaining at the downstream end and parafluvial flow through the sediment banks on meanders and point bars may also occur. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to rivers.

  1. Long term effect of metal pollution in the catchment area of Tisza River

    Directory of Open Access Journals (Sweden)

    Zoltán Győri

    2013-01-01

    Full Text Available In January and March 2000 two tailings dam failures occurred in the upper Tisza catchment area near Baia Mare and Baia Borsa (Romania. These accidents focused attention on the metal pollution of the Tisza catchment area, and the short term effects of them were studied by many researchers. The aim of this study was to evaluate the long term effects of these pollutions by determining the Lakanen-Erviö extractable easily available metal contents of samples collected in 2011 from floodplains and pastures along the Tisza (Tivadar, Vásárosnamény, Rakamaz, Tiszacsege, and comparing them to our earlier results. Cu and Zn contents were measured by Optima 3300 DV ICP-OES (Perkin-Elmer. The measurement of Pb and Cd was conducted by QZ 939 GF-AAS (Unicam in 2000 and by an X7 ICP-MS (Thermo Fisher in 2011. We found that the Cd, Zn and Pb contents of the pasture near Vásárosnamény exceed limit values and natural background values. In addition, during a 11 year period the easily available Cd, Zn and Pb contents increased significantly, suggesting that the hazard of this pollution should not be neglected.

  2. Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment

    CSIR Research Space (South Africa)

    Mwenge Kahinda, Jean-Marc

    2015-10-01

    Full Text Available mechanisms for implementing water stewardship schemes to mitigate the shared water risks. Analysis of the social-ecological system (hydrological, climatic, ecological, socio-economic and governance systems) of the Limpopo River basin indicates...

  3. Understanding the controls on sediment-P interactions and dynamics along a non-tidal river system in a rural–urban catchment: The River Nene

    International Nuclear Information System (INIS)

    Tye, A.M.; Rawlins, B.G.; Rushton, J.C.; Price, R.

    2016-01-01

    The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (P_T_o_t_a_l) and labile (P_L_a_b_i_l_e) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and P_T_o_t_a_l data with soil catchment geochemical survey data, large increases in P_T_o_t_a_l were identified in sediments from water body 4–6, where median concentrations of P_T_o_t_a_l in the sediment (3603 mg kg"−"1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6. P_L_a_b_i_l_e concentrations in homogenised cores were up to 100 mg kg"−"1 PO_4–P (generally < 2% of P_T_o_t_a_l) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC_0) from an average of 0.9–∼1.7 μm L"−"1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted

  4. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C

    NARCIS (Netherlands)

    Gosling, S.N.; Zaherpour, J.J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; Kundu, D.; Liu, J.; van Griensven, A.; Veldkamp, T.I.E.; Vetter, T.; Wang, X.; Zhang, X.

    2017-01-01

    We present one of the first climate change impact assessments on river runoff that utilises an ensemble of global hydrological models (Glob-HMs) and an ensemble of catchment-scale hydrological models (Cat-HMs), across multiple catchments: the upper Amazon, Darling, Ganges, Lena, upper Mississippi,

  5. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  6. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    DEFF Research Database (Denmark)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-01-01

    organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being...

  7. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    Science.gov (United States)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  8. A new perspective on soil erosion: exploring a thermodynamic approach in a small area of the River Inn catchment

    Science.gov (United States)

    Reid, Lucas; Scherer, Ulrike; Zehe, Erwin

    2016-04-01

    Soil erosion modeling has always struggled with compensating for the difference in time and spatial scale between model, data and the actual processes involved. This is especially the case with non-event based long-term models based on the Universal Soil Loss Equation (USLE), yet USLE based soil erosion models are among the most common and widely used for they have rather low data requirements and can be applied to large areas. But the majority of mass from soil erosion is eroded within short periods of times during heavy rain events, often within minutes or hours. Advancements of the USLE (eg. the Modified Universal Soil Loss Equation, MUSLE) allow for a daily time step, but still apply the same empirical methods derived from the USLE. And to improve the actual quantification of sediment input into rivers soil erosion models are often combined with a Sediment Delivery Ratio (SDR) to get results within the range of measurements. This is still a viable approach for many applications, yet it leaves much to be desired in terms of understanding and reproducing the processes behind soil erosion and sediment input into rivers. That's why, instead of refining and retuning the existing methods, we explore a more comprehensive, physically consistent description on soil erosion. The idea is to describe soil erosion as a dissipative process (Kleidon et al., 2013) and test it in a small sub-basin of the River Inn catchment area in the pre-Alpine foothills. We then compare the results to sediment load measurements from the sub-basin and discuss the advantages and issues with the application of such an approach.

  9. Application of two phosphorus models with different complexities in a mesoscale river catchment

    Directory of Open Access Journals (Sweden)

    B. Guse

    2007-06-01

    Full Text Available The water balance and phosphorus inputs of surface waters of the Weiße Elster catchment, Germany, have been quantified using the models GROWA/MEPhos and SWAT. A comparison of the model results shows small differences in the mean long-term total runoff for the entire study area. All relevant pathways of phosphorus transport were considered in MEPhos with phosphorus inputs resulting to about 65% from point sources. SWAT focuses on agricultural areas and estimates a phosphorus input of about 60% through erosion. The mean annual phosphorus input from erosion calculated with SWAT is six times higher than the estimation with MEPhos due to the differing model concepts. This shows the uncertainty contributed by the modelling description of phosphorus pathways.

  10. Mycobacterial infection in Northern snakehead (Channa argus) from the Potomac River catchment

    Science.gov (United States)

    Densmore, Christine L.; Iwanowicz, L.R.; Henderson, A.P.; Iwanowicz, D.D.; Odenkirk, J.S.

    2016-01-01

    The Northern snakehead, Channa argus (Cantor), is a non-native predatory fish that has become established regionally in some temperate freshwater habitats within the United States. Over the past decade, Northern snakehead populations have developed within aquatic ecosystems throughout the eastern USA, including the Potomac River system within Virginia, Maryland and Washington, D.C. Since this species was initially observed in this region in 2002, the population has expanded considerably (Odenkirk & Owens 2007). In the Chesapeake Bay watershed, populations of Northern snakehead exist in the lower Potomac River and Rappahannock Rivers on the Western shore of the Bay, and these fish have also been found in middle or upper reaches of river systems on the Eastern shore of the Bay, including the Nanticoke and Wicomico Rivers among others. Over the past several years, many aspects of Northern snakehead life history in the Potomac River have been described, including range and dispersal patterns, microhabitat selection and diet (Lapointe, Thorson & Angermeier 2010; Saylor, Lapointe & Angermeier 2012; Lapointe, Odenkirk & Angermeier 2013). However, comparatively little is known about their health status including susceptibility to parasitism and disease and their capacity to serve as reservoirs of disease for native wildlife. Although considered hardy by fisheries biologists, snakehead fish have demonstrated susceptibility to a number of described piscine diseases within their native range and habitat in Asia. Reported pathogens of significance in snakehead species in Asia include snakehead rhabdovirus (Lio-Po et al. 2000), aeromonad bacteria (Zheng, Cao & Yang 2012), Nocardia (Wang et al. 2007) andMycobacterium spp. (Chinabut, Limsuwan & Chantatchakool 1990; ). Mycobacterial isolates recovered from another snakehead species (Channa striata) in the previous studies have included M. marinum and M. fortuitum, as identified through molecular

  11. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC

    Directory of Open Access Journals (Sweden)

    ADINA SANDA ŞERBAN

    2011-03-01

    Full Text Available Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC. The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losses of habitats and biodiversity, as well as a threat to human health (art.1 from Directive 2008/105/EC regarding the environmental quality standards for water policy.The purpose of this study is to evaluate the chemical status for surface water bodies in the lower catchment of Jiu river basin. The assessment was made taking into account the water impact of four heavy metals: cadmium (Cd, nickel (Ni, mercury (Hg and lead (Pb.

  12. Numerical model of the catchments of the oziąbel and wołczyński strumień rivers - Wołczyn municipality

    Science.gov (United States)

    Olichwer, Tomasz; Wcisło, Marek; Staśko, Stanisław; Buczyński, Sebastian; Modelska, Magdalena; Tarka, Robert

    2012-10-01

    The article presents a numerical model designed for determining groundwater dynamics and water balance of the catchments of the Oziąbel (Czarna Woda) river and the Wołczyński Strumień river in Wołczyn region. Hydrogeological mapping and modelling research covered the area of 238.9 km2. As a result of measurements performed in 2008-2009, flows were determined in major rivers and water table positions were measured at 26 points. In the major part of the area described, the water table, lying at the depth of 1.5-18.7 m, has unconfined character, and the aquifer is built of Neogene (Quaternary) sands and gravels. In the area under study, groundwaters are drawn from 6 wells with total withdrawal of 6133 m3/d. The numerical modelling was performed with the use of Visual Modflow 3.1.0 software. The area was partitioned by a discretization grid with a step size l = 250 m. The conceptual model of the hydrogeological system is based on hydrological data gathered over a period of one year, data from HYDRO bank database, cross-sections and maps. The boundaries of the modelled hydrogeological system were established on the watersheds of the Wołczyński Strumień river and the Oziąbel river, apart from the areas where they run together. The modelled area was extended (271.5 km2) around the Wołczyński Strumień river catchment to achieve a more effective mapping of the anthropogenic impact on its balance and the hydrodynamic system of the catchment area. The structure is characterised by the occurrence of one or rarely two aquifers separated by a pack of Quaternary clays. The investigation produced a detailed water balance and its components.

  13. Hydrology of the North Klondike River: carbon export, water balance and inter-annual climate influences within a sub-alpine permafrost catchment.

    Science.gov (United States)

    Lapp, Anthony; Clark, Ian; Macumber, Andrew; Patterson, Tim

    2017-10-01

    Arctic and sub-arctic watersheds are undergoing significant changes due to recent climate warming and degrading permafrost, engendering enhanced monitoring of arctic rivers. Smaller catchments provide understanding of discharge, solute flux and groundwater recharge at the process level that contributes to an understanding of how larger arctic watersheds are responding to climate change. The North Klondike River, located in west central Yukon, is a sub-alpine permafrost catchment, which maintains an active hydrological monitoring station with a record of >40 years. In addition to being able to monitor intra-annual variability, this data set allows for more complex analysis of streamflow records. Streamflow data, geochemistry and stable isotope data for 2014 show a groundwater-dominated system, predominantly recharged during periods of snowmelt. Radiocarbon is shown to be a valuable tracer of soil zone recharge processes and carbon sources. Winter groundwater baseflow contributes 20 % of total annual discharge, and accounts for up to 50 % of total river discharge during the spring and summer months. Although total stream discharge remains unchanged, mean annual groundwater baseflow has increased over the 40-year monitoring period. Wavelet analysis reveals a catchment that responds to El Niño and longer solar cycles, as well as climatic shifts such as the Pacific Decadal Oscillation. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  14. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  15. Catchment2Coast: making the link between coastal resource variability and river inputs

    CSIR Research Space (South Africa)

    Monteiro, P

    2003-07-01

    Full Text Available groundwater quantity (flow) and quality (nutrients) on mangrove habitat. The development phase will include a literature review on current understanding of groundwater contribu- tions to tropical estuarine and mangrove ecosystems. The model will use...–estuarine hydrodynamics and physical processes in Maputo Bay A validated hydrodynamic modelling system with two-way nesting of the estu- ary, mangrove, bay and coastal system at Maputo will not only facilitate an investi- gation of the influence of river flow...

  16. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    Science.gov (United States)

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  17. Cellular modelling of river catchments and reaches: Advantages, limitations and prospects

    Science.gov (United States)

    Coulthard, T. J.; Hicks, D. M.; Van De Wiel, M. J.

    2007-10-01

    The last decade has witnessed the development of a series of cellular models that simulate the processes operating within river channels and drive their geomorphic evolution. Their proliferation can be partly attributed to the relative simplicity of cellular models and their ability to address some of the shortcomings of other numerical models. By using relaxed interpretations of the equations determining fluid flow, cellular models allow rapid solutions of water depths and velocities. These can then be used to drive (usually) conventional sediment transport relations to determine erosion and deposition and alter the channel form. The key advance of using these physically based yet simplified approaches is that they allow us to apply models to a range of spatial scales (1-100 km 2) and time periods (1-100 years) that are especially relevant to contemporary management and fluvial studies. However, these approaches are not without their limitations and technical problems. This paper reviews the findings of nearly 10 years of research into modelling fluvial systems with cellular techniques, principally focusing on improvements in routing water and how fluvial erosion and deposition (including lateral erosion) are represented. These ideas are illustrated using sample simulations of the River Teifi, Wales. A detailed case study is then presented, demonstrating how cellular models can explore the interactions between vegetation and the morphological dynamics of the braided Waitaki River, New Zealand. Finally, difficulties associated with model validation and the problems, prospects and future issues important to the further development and application of these cellular fluvial models are outlined.

  18. Tailings transport and deposition downstream of the Northern Hercules (Moline) mine in the catchment of the Mary River, Northern Territory

    International Nuclear Information System (INIS)

    Cull, R.F.; East, T.J.; Marten, R.; Murray, A.S.; Duggan, K.

    1986-01-01

    Milling of uraniferous and other metalliferous ores at the Northern Hercules (Moline) Mine near Pine Creek produced some 246,000 tonnes of tailings between 1959 and the closure of the mill in 1972. During this period tailings were contained by several bunds which later failed resulting in the erosion and transport of tailings by tributaries of the Mary River. Suspended sediment concentrations as high as 94 g/L were recorded in Tailings Creek immediately downstream of the eroding tailings pile during the 1984/85 wet season and the total yield was equivalent to a mean erosion rate for the tailings area of 4 mm/yr. This erosion rate is about two orders of magnitude higher than natural rates in the Pine Creek area. Erosion rates of the tailings pile have, however, decreased perhaps by as much as a factor of eight since the last bund was breached. Radioactive dose rates recorded along a series of transects across floodplains downstream of the mill are consistently related to the sedimentary environment. The main channel is associated with low dose rates, and the relatively low energy environments of backswamps and flood bypass channels are characterised by higher dose rates. Longitudinally, dose rates on the floodplain generally decrease with distance downstream although the rate of decrease is not constant, and appears to be dependent upon the hydrological and geomorphic character of the catchment

  19. Linking Flow Regime and Water Quality in Rivers: a Challenge to Adaptive Catchment Management

    Directory of Open Access Journals (Sweden)

    Christer Nilsson

    2008-12-01

    Full Text Available Water quality describes the physicochemical characteristics of the water body. These vary naturally with the weather and with the spatiotemporal variation of the water flow, i.e., the flow regime. Worldwide, biota have adapted to the variation in these variables. River channels and their riparian zones contain a rich selection of adapted species and have been able to offer goods and services for sustaining human civilizations. Many human impacts on natural riverine environments have been destructive and present opportunities for rehabilitation. It is a big challenge to satisfy the needs of both humans and nature, without sacrificing one or the other. New ways of thinking, new policies, and institutional commitment are needed to make improvements, both in the ways water flow is modified in rivers by dam operations and direct extractions, and in the ways runoff from adjacent land is affected by land-use practices. Originally, prescribed flows were relatively static, but precepts have been developed to encompass variation, specifically on how water could be shared over the year to become most useful to ecosystems and humans. A key aspect is how allocations of water interact with physicochemical variation of water. An important applied question is how waste releases and discharge can be managed to reduce ecological and sanitary problems that might arise from inappropriate combinations of flow variation and physicochemical characteristics of water. We review knowledge in this field, provide examples on how the flow regime and the water quality can impact ecosystem processes, and conclude that most problems are associated with low-flow conditions. Given that reduced flows represent an escalating problem in an increasing number of rivers worldwide, managers are facing enormous challenges.

  20. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS FROM UPPER MUREŞ RIVER CATCHMENT AREA USING DIFFERENT BIOTIC INDICES

    Directory of Open Access Journals (Sweden)

    Milca PETROVICI

    2012-01-01

    Full Text Available Present paper approach the issue of assessing the water quality of tributaries located in the upper basin of the river Mureş, taking into account changes in the value of biotic indices. In this sense, have been selected the next five biotic indices: Ephemeroptera Plecoptera Trichoptera index (EPT, Total Invertebrates index (T, Chironomidae index (Ch, EPT / Total invertebrates index (EPT / T, EPT / Chironomidae index (EPT / Ch and % Chironomidae index (% Chironomidae. Considering all these indices, it was found existence of a medium to best quality water in Mureş tributaries from Harghita Mountains and a good quality water which comes from the Maramureş Mountains and Transylvania Plateau.

  1. Management of human-induced salinization in the Berg River catchment (South Africa)

    CSIR Research Space (South Africa)

    Jovanovic, Nebojsa

    2010-09-01

    Full Text Available Impacts on Salinity in Western Cape Waters. Water Research Commission Report No. K5/1503, Pretoria, South Africa. In press. Figure 1: Location and 20 m Digital Elevation Model of the Berg River basin. The red square indicates the approximate position..., and German Federal Ministry for Education and Research (BMBF) for funding, SA Rock Drill, Caren Jarmain (University of KwaZulu Natal), University of the Western Cape, farmers, United States Geological Survey Historic land uses: ?Pre-1700 savanna, nomadic...

  2. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water.

    Science.gov (United States)

    Pacheco, F A L; Sanches Fernandes, L F

    2016-04-01

    Environmental land use conflicts are uses of the land that ignore soil capability. In this study, environmental land use conflicts were investigated in mainland Portugal, using Partial Least Squares (PLS) regression combined with GIS modeling and a group of 85 agricultural watersheds (with >50% occupation by agriculture) as work sample. The results indicate a dominance of conflicts in a region where vineyards systematically invaded steep hillsides (the River Douro basin), where forests would be the most appropriate use. As a consequence of the conflicts, nitrate concentrations in rivers and lakes from these areas have increased, sometimes beyond the legal limit of 50mg/L imposed by the European and Portuguese laws. Excessive nitrate concentrations were also observed along the Atlantic coast of continental Portugal, but associated to a combination of other factors: large population densities, and incomplete coverage by sewage systems and inadequate functioning of wastewater treatment plants. Before this study, environmental land use conflicts were never recognized as possible boost of nitrate concentrations in surface water. Bearing in mind the consequences of drinking water nitrate for human health, a number of land use change scenarios were investigated to forecast their impact on freshwater nitrate concentrations. It was seen that an aggravation of the conflicts would duplicate the number of watersheds with maximum nitrate concentrations above 50mg/L (from 11 to 20 watersheds), while the elimination of the conflicts would greatly reduce that number (to 3 watersheds). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. TransWatL - Crowdsourced water level transmission via short message service within the Sondu River Catchment, Kenya

    Science.gov (United States)

    Weeser, Björn; Jacobs, Suzanne; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana

    2016-04-01

    The fast economic development in East African countries causes an increasing need of water and farmland. Ongoing changes in land use and climate may affect the function of water tower areas such as the Mau Forest complex as an important water source and tropical montane forest in Kenya. Reliable models and predictions are necessary to ensure a sustainable and adequate water resource management. The calibration and validation process of these models requires solid data, based on widespread monitoring in both space and time, which is a time consuming and expensive exercise. Countries with merging economies often do not have the technical capacity and resources to operate monitoring networks, although both the government and citizens are aware of the importance of sustainable water management. Our research focus on the implementation and testing of a crowdsourced database as a low-cost method to assess the water quantity within the Sondu river catchment in Kenya. Twenty to 30 water level gauges will be installed and equipped with instructional signage. Citizens are invited to read and transmit the water level and the station number to the database using a simple text message and their cell phone. The text message service is easy to use, stable, inexpensive and an established way of communication in East African countries. The simplicity of the method ensures a broad access for interested citizens and integration of locals in water monitoring all over the catchment. Furthermore, the system allows a direct and fast feedback to the users, which likely increases the awareness for water flow changes in the test region. A raspberry pi 2 Model B equipped with a mobile broadband modem will be used as a server receiving and storing incoming text messages. The received raw data will be quality checked and formatted by a python script and afterwards written back in a database. This ensures flexible and standardized access for postprocessing and data visualization, for which a

  4. Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model.

    Science.gov (United States)

    Pathak, Devanshi; Whitehead, Paul G; Futter, Martyn N; Sinha, Rajiv

    2018-03-07

    The present study analyzes the water quality characteristics of the Ramganga (a major tributary of the Ganga river) using long-term (1991-2009) monthly data and applies the Integrated Catchment Model of Nitrogen (INCA-N) and Phosphorus (INCA-P) to the catchment. The models were calibrated and validated using discharge (1993-2011), phosphate (1993-2010) and nitrate (2007-2010) concentrations. The model results were assessed based on Pearson's correlation, Nash-Sutcliffe and Percentage bias statistics along with a visual inspection of the outputs. The seasonal variation study shows high nutrient concentrations in the pre-monsoon season compared to the other seasons. High nutrient concentrations in the low flows period pose a serious threat to aquatic life of the river although the concentrations are lowered during high flows because of the dilution effect. The hydrological model is satisfactorily calibrated with R 2 and NS values ranging between 0.6-0.8 and 0.4-0.8, respectively. INCA-N and INCA-P successfully capture the seasonal trend of nutrient concentrations with R 2 >0.5 and PBIAS within ±17% for the monthly averages. Although, high concentrations are detected in the low flows period, around 50% of the nutrient load is transported by the monsoonal high flows. The downstream catchments are characterized by high nutrient transport through high flows where additional nutrient supply from industries and agricultural practices also prevail. The seasonal nitrate (R 2 : 0.88-0.94) and phosphate (R 2 : 0.62-0.95) loads in the catchment are calculated using model results and ratio estimator load calculation technique. On average, around 548tonnes of phosphorus (as phosphate) and 77,051tonnes of nitrogen (as nitrate) are estimated to be exported annually from the Ramganga River to the Ganga. Overall, the model has been able to successfully reproduce the catchment dynamics in terms of seasonal variation and broad-scale spatial variability of nutrient fluxes in the

  5. Historical trends in precipitation and stream discharge at the Skjern River catchment, Denmark

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

    2014-01-01

    for undercatch. The degree of change in the climatic variables is examined using the non-parametric Mann–Kendall test. During the last 133 yr the area has experienced a significant change in precipitation of 26% and a temperature change of 1.4°C, leading to increases in river discharge of 52% and groundwater...... outside the calibration period. The results showed a reduced model fit, especially for recent time periods (after the 1980s), and not all hydrological changes could be explained. This might indicate that hydrological models cannot be expected to predict climate change impacts on discharge as accurately...... in the future, compared to the performance under present conditions, where they can be calibrated. The (simulated) stream discharge was subsequently analysed using high flow and drought indices based on the threshold method. The extreme signal was found to depend highly on the period chosen as reference...

  6. Status of riverine soils of a Mediterranean river catchment (the Turia river, Spain) regarding potential contamination of heavy metals and pesticides

    Science.gov (United States)

    Andreu, Vicente; Gimeno-García, Eugenia; Pascual, Juan Antonio; Picó, Yolanda

    2016-04-01

    Rivers are sink structures receiving diffuse contamination mainly from agricultural practices. Hydrological dynamics of these watercourses favour, by one hand, the transport of contaminants (dissolved, complexed or adsorbed to suspended particles) and, by the other, their accumulation in sediments. These circumstances affect at different scales the quality of soils, waters, and the entire riverine ecosystems. In this work, 7 heavy metals and 50 pesticides were monitored in riverine soils of the Turia River catchment. From the source to the mounth, along the entiere river, 22 sampling points were selected for sampling according different lithologies, land uses, population size and the proximity to waste waters treatment plants (WWTPs). Cd, Co, Cr, Cu, Pb, Ni and Zn were analysed to determine its total and extractable contents in soils. Total content of metals was established by microwave acid digestion and the extractable fraction in soils and sediments by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of the selected metals. Pesticide residues were extracted from the soil samples using the QuEchERS method and determined by Liquid Chromatograph-tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 40 to 105 %. The limits of quantification ranged from 0.1 to 5.0 ng g-1. The higest levels of total and extractable Cd, Co, Cr and Ni were determined near the Benageber reservoir, located in the middle course of the river, where an important forest fires occurred a year ago. High levels of metals, mainly Cr and Zn, appeared headwaters in the Alfambra tributary. This deserves special mention because it was selected as a little impacted area that could serve as non-contaminated reference for the river. From the 50 pesticides condsidered, 26 were detected, with the highest levels for acetochlor (290.00 ng g-1) and a degradation product of terbutyazine - terbuthylazine deethyl - (234.75 ng g-1

  7. Evaluation of sediment and 137Cs redistribution in the Oginosawa River catchment near the Fukushima Dai-ichi Nuclear Power Plant using integrated watershed modeling.

    Science.gov (United States)

    Sakuma, Kazuyuki; Malins, Alex; Funaki, Hironori; Kurikami, Hiroshi; Niizato, Tadafumi; Nakanishi, Takahiro; Mori, Koji; Tada, Kazuhiro; Kobayashi, Takamaru; Kitamura, Akihiro; Hosomi, Masaaki

    2018-02-01

    The Oginosawa River catchment lies 15 km south-west of the Fukushima Dai-ichi nuclear plant and covers 7.7 km 2 . Parts of the catchment were decontaminated between fall 2012 and March 2014 in preparation for the return of the evacuated population. The General-purpose Terrestrial Fluid-flow Simulator (GETFLOWS) code was used to study sediment and 137 Cs redistribution within the catchment, including the effect of decontamination on redistribution. Fine resolution grid cells were used to model local features of the catchment, such as paddy fields adjacent to the Oginosawa River. The simulation was verified using monitoring data for river water discharge rates (r = 0.92), suspended sediment concentrations, and particulate 137 Cs concentrations (r = 0.40). Cesium-137 input to watercourses came predominantly from land adjacent to river channels and forest gullies, e.g. the paddy fields in the Ogi and Kainosaka districts, as the ground in these areas saturates during heavy rain and is easily eroded. A discrepancy between the simulation and monitoring results on the sediment discharge rate following decontamination may be explained by fast erosion occurring after decontamination. Forested areas far from the channels only made a minor contribution to 137 Cs input to watercourses, total erosion of between 0.001 and 0.1 mm from May 2011 to December 2015, as ground saturation is infrequent in these areas. The 2.3-6.9% y -1 decrease in the amount of 137 Cs in forest topsoil over the study period can be explained by radioactive decay (approximately 2.3% y -1 ), along with a migration downwards into subsoil and a small amount of export. The amount of 137 Cs available for release from land adjacent to rivers is expected to be lower in future than compared to this study period, as the simulations indicate a high depletion of inventory from these areas by the end of 2015. However continued monitoring of 137 Cs concentrations in river water over future years is advised, as

  8. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of Nitrate (NO3) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of ammonium (NH4) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  13. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    Science.gov (United States)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  14. Fish Assemblage Patterns as a Tool to Aid Conservation in the Olifants River Catchment (East), South Africa

    Science.gov (United States)

    South Africa has committed to address freshwater conservation at the catchment scale, using a combination of landscape-level and species-level features as surrogates of freshwater biodiversity. Here we examined fishes in the Olifants catchment, where multiple anthropogenic pressu...

  15. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  16. River catchment rainfall series analysis using additive Holt-Winters method

    Science.gov (United States)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  17. About the coding system of rivers, catchment basing and their characteristics of the republic of Armenia

    International Nuclear Information System (INIS)

    Avagyan, A.A.; Arakelyan, A.A.

    2011-01-01

    The coding of rivers, catchements, lakes and seas is one of the most important requirements of Water Framework Directive of the European Union. This coding provides solutions to actual problems of planning and management of water resources of the Republic of Armenia. The coding system provides the hierarchy of water bodies and watersheds with their typology as well as their geographic and natural conditions, anthropogenic pressures and ecological status. This approach is a fundamentally new complex solution to the coding of water resources. The coding technique allows you to automate the assessment and mapping of environmental risks and areas of water bodies which are subjected to significant pressure and also helps to solve other problems concerning the planning and the management of water resources. A complex code of each water body consists of the following groups of codes: Hydrographic code - an identifier of a water body in the hydrographic system of the country; Codes of static attributes in the system requirements of the Water Framework Directive of the European Union; Codes of static attributes of the qualifiers of the RA National Water Program; Codes of dynamic attributes that define the quality of water and characteristics of water use; Codes of dynamic attributes describing the human impact and determining the ecological status of water body

  18. Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia).

    Science.gov (United States)

    Atkins, Marnie L; Santos, Isaac R; Perkins, Anita; Maher, Damien T

    2016-04-01

    The extraction of unconventional gas resources such as shale and coal seam gas (CSG) is rapidly expanding globally and often prevents the opportunity for comprehensive baseline groundwater investigations prior to drilling. Unconventional gas extraction often targets geological layers with high naturally occurring radioactive materials (NORM) and extraction practices may possibly mobilise radionuclides into regional and local drinking water resources. Here, we establish baseline groundwater radon and uranium levels in shallow aquifers overlying a potential CSG target formation in the Richmond River Catchment, Australia. A total of 91 groundwater samples from six different geological units showed highly variable radon activities (0.14-20.33 Bq/L) and uranium levels (0.001-2.77 μg/L) which were well below the Australian Drinking Water Guideline values (radon; 100 Bq/L and uranium; 17 μg/L). Therefore, from a radon and uranium perspective, the regional groundwater does not pose health risks to consumers. Uranium could not explain the distribution of radon in groundwater. Relatively high radon activities (7.88 ± 0.83 Bq/L) in the fractured Lismore Basalt aquifer coincided with very low uranium concentrations (0.04 ± 0.02 μg/L). In the Quaternary Sediments aquifers, a positive correlation between U and HCO3(-) (r(2) = 0.49, p uranium was present as uranyl-carbonate complexes. Since NORM are often enriched in target geological formations containing unconventional gas, establishing radon and uranium concentrations in overlying aquifers comprises an important component of baseline groundwater investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Transfer and transformation of soil iron and implications for hydrogeomorpholocial changes in Naoli River catchment, sanjiang plain, Northeast China

    Science.gov (United States)

    Ming, J.; Xianguo, L.; Hongqing, W.; Yuanchun, Z.; Haitao, W.

    2011-01-01

    Wetland soils are characterized by alternating redox process due to the fluctuation of waterlogged conditions. Iron is an important redox substance, and its transfer and transformation in the wetland ecosystem could be an effective indicator for the environment changes. In this paper, we selected the Naoli River catchment in the Sanjiang Plain, Northeast China as the study area to analyze the dynamics of transfer and transformation of soil iron, and the relationship between iron content change and environmental factors. The results show that the total and crystalline iron contents reach the peak in the depth of 60 cm in soil profile, while the amorphous iron content is higher in the topsoil. In the upper reaches, from the low to high landscape positions, the total and crystalline iron contents decrease from 62.98 g/kg to 41.61 g/kg, 22.82 g/kg to 10.53 g/kg respectively, while the amorphous iron content increases from 2.42 g/kg to 8.88 g/kg. Amorphous iron content has positive correlation with organic matter and soil water contents, while negative correlation with pH. Moreover, both the crystalline and amorphous iron contents present no correlation with total iron content, indicating that environmental factors play a more important role in the transfer and transformation of iron other than the content of the total iron. Different redoximorphic features were found along the soil profile due to the transfer and transformation of iron. E and B horizons of wetland soil in the study area have a matrix Chroma 2 or less, and all the soil types can meet the criteria of American hydric soil indicators except albic soil. ?? Science Press, Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag Berlin Heidelberg 2011.

  20. Characterising alluvial aquifers in a remote ephemeral catchment (Flinders River, Queensland) using a direct push tracer approach

    Science.gov (United States)

    Taylor, Andrew R.; Smith, Stanley D.; Lamontagne, Sébastien; Suckow, Axel

    2018-01-01

    The availability of reliable water supplies is a key factor limiting development in northern Australia. However, characterising groundwater resources in this remote part of Australia is challenging due to a lack of existing infrastructure and data. Here, direct push technology (DPT) was used to characterise shallow alluvial aquifers at two locations in the semiarid Flinders River catchment. DPT was used to evaluate the saturated thickness of the aquifer and estimate recharge rates by sampling for environmental tracers in groundwater (major ions, 2H, 18O, 3H and 14C). The alluvium at Fifteen Mile Reserve and Glendalough Station consisted of a mixture of permeable coarse sandy and gravely sediments and less permeable clays and silts. The alluvium was relatively thin (i.e. < 20 m) and, at the time of the investigation, was only partially saturated. Tritium (3H) concentrations in groundwater was ∼1 Tritium Unit (TU), corresponding to a mean residence time for groundwater of about 12 years. The lack of an evaporation signal for the 2H and 18O of groundwater suggests rapid localised recharge from overbank flood events as the primary recharge mechanism. Using the chloride mass balance technique (CMB) and lumped parameter models to interpret patterns in 3H in the aquifer, the mean annual recharge rate varied between 21 and 240 mm/yr. Whilst this recharge rate is relatively high for a semiarid climate, the alluvium is thin and heterogeneous hosting numerous alluvial aquifers with varied connectivity and limited storage capacity. Combining DPT and environmental tracers is a cost-effective strategy to characterise shallow groundwater resources in unconsolidated sedimentary aquifers in remote data sparse areas.

  1. Concentration-Discharge relationships in a mine-impacted catchment, New River, Tennessee: Comparison across spatial and temporal scales using time-series analysis

    Science.gov (United States)

    Murphy, J.; Hornberger, G. M.

    2009-12-01

    Concentration-discharge (c-Q) relationships are useful in indentifying physical and chemical processes affecting stream water chemistry. Frequently used as a diagnostic tool, c-Q relationships can be used to infer particular mixing patterns that may occur in a catchment. However, much work has shown c-Q relationships are highly variable and often inconclusive, suggesting the catchment behavior they indicate cannot be readily recognized without supporting knowledge of system dynamics. For example, drainage area and location, in addition to changes in land use over time, affect many processes in catchments including flow routing and solute concentrations. The effect of spatial and temporal scales on c-Q relationships are explored using recursive time-series analysis of historic and recent water quality data. The New River encompasses 400 square miles of remote land on the Cumberland Plateau in middle Tennessee and is a major component of the headwaters of the Cumberland River. Current and historic coal mining, oil and gas extraction, and timber harvesting have impaired water quality in the watershed. Historically, the highest magnitude of degradation probably occurred during the mid-1900s with severe acid mine drainage throughout the watershed. In 1975, 56% of all coal mined in Tennessee was derived from the New River watershed. Over the past three decades most of the New River system has rebounded though some small tributaries still experience acid mine drainage and elevated metal loads. Sediment, in terms of quantity and sorption of metals, is currently considered the largest pollutant by many. Water pH is circum-neutral in the system and coal-mining pollution is best identified by elevated specific conductance and sulfate concentration. A combination of historic and recently collected water quality data were obtained for the Indian Fork, a small 4 square mile upland catchment in the New River watershed, and the New River main-stem, approximately 25 miles

  2. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  3. Insight into biogeochemical inputs and composition of Greenland Ice Sheet surface snow and glacial forefield river catchment environments.

    Science.gov (United States)

    Cameron, Karen; Hagedorn, Birgit; Dieser, Markus; Christner, Brent; Choquette, Kyla; Sletten, Ronald; Lui, Lu; Junge, Karen

    2014-05-01

    The volume of freshwater transported from Greenland to surrounding marine waters has tended to increase annually over the past four decades as a result of warmer surface air temperatures (Bamber et al 2012, Hanna et al 2008). Ice sheet run off is estimated to make up approximately of third of this volume (Bamber et al 2012). However, the biogeochemical composition and seeding sources of the Greenland Ice Sheet supraglacial landscape is largely unknown. In this study, the structure and diversity of surface snow microbial assemblages from two regions of the western Greenland Ice Sheet ice-margin was investigated through the sequencing of small subunit rRNA genes. Furthermore, the origins of microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and to geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Viridiplantae). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The structure of microbial assemblages was found to have strong similarities to communities sampled from marine and air environments, and sequences obtained from the South-West region, near Kangerlussuaq, which is bordered by an extensive periglacial expanse, had additional resemblances to soil originating communities. Strong correlations were found between bacterial beta diversity and Na+ and Cl- concentrations. These data suggest that surface snow from western regions of Greenland contain microbiota that are most likely derived from exogenous, wind transported sources. Downstream of the supraglacial environment, Greenland's rivers likely influence the ecology of localized estuary and marine systems. Here we characterize the geochemical and biotic composition of a glacial and glacial forefield fed river catchment in

  4. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  5. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    Directory of Open Access Journals (Sweden)

    D. Kocman

    2010-02-01

    Full Text Available Results obtained by a laboratory flux measurement system (LFMS focused on investigating the kinetics of the mercury emission flux (MEF from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4–417 μg g−1 and land cover (forest, meadow and alluvial soil alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, regulating three major environmental parameters comprising soil temperature, soil moisture and solar radiation. MEFs ranged from less than 2 to 530 ng m−2 h−1, with the highest emissions from contaminated alluvial soils and soils near the mining district in the town of Idrija. A significant decrease of MEF was then observed with increasing distance from these sites. The results revealed a strong positive effect of all three parameters investigated on momentum MEF. The light-induced flux was shown to be independent of the soil temperature, while the soil aqueous phase seems to be responsible for recharging the pool of mercury in the soil available for both the light- and thermally-induced flux. The overall flux response to simulated environmental conditions depends greatly on the form of Hg in the soil. Higher activation energies are required for the overall process to occur in soils where insoluble cinnabar prevails compared to soils where more mobile Hg forms and forms available for transformation processes are dominant.

  6. Concentration-Discharge Relationships, Nested Reaction Fronts, and the Balance of Oxidative and Acid-Base Weathering Fluxes in an Alpine Catchment, East River, Colorado

    Science.gov (United States)

    Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.

    2016-12-01

    Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.

  7. Tracing sediment sources in the Williams River catchment using caesium-137 and heavy metals: towards an assessment of the relative importance of surface erosion and gully erosion

    International Nuclear Information System (INIS)

    Krause, A.K.; Kalma, J.D.; Loughran, R.J.

    1999-01-01

    Recent sediment sourcing in the 1175km 2 Williams River catchment near Newcastle, NSW, has involved the use of caesium-137 ( 137 Cs) and heavy metals to identify zones of erosion and estimate erosion rates. Sediment sources to the Williams River include sheet erosion from forested and grazed lands, stream channels (especially banks), gullies and roads. The fallout environmental radioisotope 137 Cs was used to assess the erosion status of five vegetated slopes using soil sampling along transects. The net loss or gain of 137 Cs at each sampling point was compared with the 137 Cs level at a reference site at the slope crest. Net soil loss at each point was calculated from an Australian regression model relating net soil loss from runoff-erosion plots to 137 Cs deficit in soils (n=34; r=0.84). Net soil gain was calculated using the regression model in reverse mode. A weighted net soil loss (or gain) was then calculated for each slope transect. Results showed low net soil loss, ranging from zero to 0.64 t ha -1 yr 1 , suggesting that slopes were not major contributors of sediment to the Williams River. A small sub-catchment south of Wirragulla Hill, typical of the lower Williams region, was selected for more detailed tracing of sediment sources. The catchment contains gullies, sheet-erosion exposed sub-soil, grassland and one unsealed road. Heavy metals and 137 Cs have been used to fingerprint the sources, and these measurements will be compared with suspended sediment collected from drainage water in the creek. Only preliminary results have been obtained for this component of the study. The paper will assess these two approaches for the identification of sediment sources and discuss practical applications in water resources management

  8. Mass balance and decontamination times of Polycyclic Aromatic Hydrocarbons in rural nested catchments of an early industrialized region (Seine River basin, France).

    Science.gov (United States)

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-02-01

    Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in soils and their subsequent release in rivers constitute a major environmental and public health problem in industrialized countries. In the Seine River basin (France), some PAHs exceed the target concentrations, and the objectives of good chemical status required by the European Water Framework Directive might not be achieved. This investigation was conducted in an upstream subcatchment where atmospheric fallout (n=42), soil (n=33), river water (n=26) and sediment (n=101) samples were collected during one entire hydrological year. PAH concentrations in atmospheric fallout appeared to vary seasonally and to depend on the distance to urban areas. They varied between 60 ng·L(-1) (in a remote site during autumn) and 2,380 ng·L(-1) (in a built-up area during winter). PAH stocks in soils of the catchment were estimated based on land use, as mean PAH concentrations varied between 110 ng·g(-1) under woodland and 2,120 ng·g(-1) in built-up areas. They ranged from 12 to 220 kg·km(-2). PAH contamination in the aqueous phase of rivers remained homogeneous across the catchment (72 ± 38 ng·L(-1)). In contrast, contamination of suspended solid was heterogeneous depending on hydrological conditions and population density in the drainage area. Moreover, PAH concentrations appeared to be higher in sediment (230-9,210 ng·g(-1)) than in the nearby soils. Annual mass balance calculation conducted at the catchment scale showed that current PAH losses were mainly due to dissipation (biodegradation, photo-oxidation and volatilization) within the catchments (about 80%) whereas exports due to soil erosion and riverine transport appeared to be of minor importance. Based on the calculated fluxes, PAHs appeared to have long decontamination times in soils (40 to 1,850 years) thereby compromising the achievement of legislative targets. Overall, the study highlighted the major role of legacy contamination that supplied the bulk of

  9. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    Science.gov (United States)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding

  10. Numerical groundwater flow modeling of the northern river catchment of the Lake Tana, Upper Blue Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Nigussie Ayehu Asrie

    2016-06-01

    Full Text Available The study area is found North Western plateau in the North Gondar zone, Amhara regional state, Ethiopia. Its total surface coverage is 1887km2.The study area boundary was delineated from 90m Shutter Radar Terrain Mapping (SRTM digital elevation model (DEM using Global Mapper 8 software. Based on geologic information of the study area, unconfined subsurface flow condition was considered and simulated using MODFLOW 2000. The model calibration accounts the matching of the 58 observation point with simulated head with a permissible residual head of ±10m. 75% of the difference the observed and measured water level head in the study area is 5m. . The model was calibrated with mean error 0.506, absolute mean error 4.431m and standard deviation 6.083m. Based on the calibration process, the model is very sensitive in decreasing order change in recharge, hydraulic conductivity, and stream bed conductance. The simulated out flow of the model is 205.7Mm3/year which is nearly equal to simulated inflow with difference 2,887.45m3/yr. The base flow simulated discharge Megech River holds 35.8% of the out flow. The river contributed as recharge in to the aquifer that accounts to 15.3% of the inflow. Steady state withdrawal rates were increased by 15%, 35%, 55%, 75% and 100% to study the response of the system in this scenario. From the simulation results, one can observe that the development of a new groundwater sources would not pose appreciable impact in case of 15% and 35% withdrawal the head declines in this case is insignificant relative to the steady state withdrawal rate and the natural discharges were not altered highly. The simulation result indicated that the stream leakage decreased by 7.9% relative to the whole steady state value, but showed 14.9% decrease for Angereb, Keha, and Shinta river segments near the well field area. The water tables decline by 3.6m to18.8m in head observation in the well field area. The steady state simulated recharge was

  11. Spatio-temporal patterns of mass fluxes of micropollutants in Swiss rivers of catchments with different land use

    Science.gov (United States)

    Stamm, Christian; van der Voet, Jürgen; Singer, Heinz

    2010-05-01

    lakes, where it has a residence time of several weeks, while it flows through the river system within a few days. This example illustrates how compound properties, season and spatial location may interact and control the occurrence of micropollutants in a stream. The spatial nesting of study catchments made it possible to check the data for plausibility and consistency: we present data on cumulative mass balances downstream and test whether the load development along the river network corresponds to the spatial distribution of possible compound sources (e.g., acreage of arable fields, number of inhabitants etc.). Overall, the data show that monitoring of micropollutants may be achieved even without changing an existing monitoring programme. However, given the generally low concentrations in the composite samples of the NADUF programme compounds with lower use and/or lower stability may fall below the limit of reliable quantification or even detection. A proper interpretation of the data relies on additional (spatio-temporal) information like land use data or precipitation patterns.

  12. Hydromorphological adjustments and re-adjustments of low energy rivers in a sub-urban catchment following historical engineering and recent urbanization

    Science.gov (United States)

    Jugie, Marion; Gob, Frédéric; Slawson, Deborah; Le-Coeur, Charles

    2014-05-01

    The EU Water Framework Directive (WFD, October 2000) mandated that the Member States of the European Union achieve the general objective of protection of aquatic ecology by 2015. European rivers and streams have to attain "good ecological status" through the preservation and restoration of aquatic environments. Member will have to ensure environmental continuity through "the adequate distribution of fish species and transport of sediments". In France, more than 61,000 transverse structures - mill dams, weirs, diversion gates - have been identified on rivers as being obstacles to ecological and sedimentary continuity. Because of their historical occupation by societies, rivers flowing in the Paris area have long been anthropized and artificialized. River courses, channel shape, sediment transport and hydrological regime modifications have tremendously transformed the hydrosystems surrounding the city of Paris. The Merantaise's catchment is one of this low energy river watershed, near Paris, that have been modified by historical engineering, especially during medieval-modern times and by the building of the Versailles Castle (XVIIth century). The hydraulic infrastructures are still there and impact the hydromorphogical conditions of the river (incision, lateral erosion, …). In addition to these ancient pressures a rapid and massive urbanization of the suburban areas has applied a new type of constraint to the hydrosystems in recent decades. This undermines the balance that was established following ancient engineering and disturbs the current functioning of the valley. These new types of land occupation have significantly altered the ecological circumstances and transformed the hydrological responses of rivers. In this study, we therefore seek to understand these processes of successive adjustments (ancient and recent) of a small river from the urban margins of the Orge watershed (to the south of Paris). We use a multi-scalar spatial and temporal approach to

  13. Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland

    Science.gov (United States)

    Castillo, Miguel; Bishop, Paul; Jansen, John D.

    2013-01-01

    A sudden drop in river base-level can trigger a knickpoint that propagates throughout the fluvial network causing a transient state in the landscape. Knickpoint retreat has been confirmed in large fluvial settings (drainage areas > 100 km2) and field data suggest that the same applies to the case of small bedrock river catchments (drainage areas UK), where rivers incise into dipping quartzite. The mapping of raised beach deposits and strath terraces, and the analysis of stream long profiles, were used to identify knickpoints that had been triggered by base-level fall. Our results indicate that the distance of knickpoint retreat scales to the drainage area in a power law function irrespective of structural setting. On the other hand, local channel slope and basin size influence the vertical distribution of knickpoints. As well, at low drainage areas (~ 4 km2) rivers are unable to absorb the full amount of base-level fall and channel reach morphology downstream of the knickpoint tends towards convexity. The results obtained here confirm that knickpoint retreat is mostly controlled by stream discharge, as has been observed for other transient landscapes. Local controls, reflecting basin size and channel slope, have an effect on the vertical distribution of knickpoints; such controls are also related to the ability of rivers to absorb the base-level fall.

  14. Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development

    Directory of Open Access Journals (Sweden)

    Hua-peng Qin

    2014-10-01

    Full Text Available Surface water quality deterioration is a serious problem in many rapidly urbanizing catchments in developing countries. There is currently a lack of studies that quantify water quality variation (deterioration or otherwise due to both socio-economic and infrastructure development in a catchment. This paper investigates the causes of water quality changes over the rapid urbanization period of 1985–2009 in the Shenzhen River catchment, China and examines the changes in relation to infrastructure development and socio-economic policies. The results indicate that the water quality deteriorated rapidly during the earlier urbanization stages before gradually improving over recent years, and that rapid increases in domestic discharge were the major causes of water quality deterioration. Although construction of additional wastewater infrastructure can significantly improve water quality, it was unable to dispose all of the wastewater in the catchment. However, it was found that socio-economic measures can significantly improve water quality by decreasing pollutant load per gross regional production (GRP or increasing labor productivity. Our findings suggest that sustainable development during urbanization is possible, provided that: (1 the wastewater infrastructure should be constructed timely and revitalized regularly in line with urbanization, and wastewater treatment facilities should be upgraded to improve their nitrogen and phosphorus removal efficiencies; (2 administrative regulation policies, economic incentives and financial policies should be implemented to encourage industries to prevent or reduce the pollution at the source; (3 the environmental awareness and education level of local population should be increased; (4 planners from various sectors should consult each other and adapt an integrated planning approach for socio-economic and wastewater infrastructure development.

  15. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.

    Science.gov (United States)

    Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas

    2013-10-01

    In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of

  16. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    Science.gov (United States)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within

  17. Sediment Budget Analysis and Hazard Assessment in the Peynin, a Small Alpine Catchment (Upper Guil River, Southern Alps, France)

    Science.gov (United States)

    Carlier, Benoit; Arnaud-Fassetta, Gilles; Fort, Monique; Bouccara, Fanny; Sourdot, Grégoire; Tassel, Adrien; Lissak, Candide; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    The upper Guil catchment (Southern Alps) is prone to hydro-geomorphic hazards. Major hazards are related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity as observed in 1957 and 2000. In both cases, the rainfall intensity, aggravated by the pre-existing saturated soils, explained the instantaneous response of the fluvial system, such as destabilisation of slopes, high sediment discharge, and subsequent damages to exposed structures and settlements present in the floodplain and at confluence sites. The Peynin junction with the Guil River is one of these sites, where significant land-use change during the last decades in relation to the development of handicraft and tourism economy has increased debris flow threat to population. Here, we adopt a sediment budget analysis aimed at better understanding the functioning of this small subcatchment. This latter offers a combination of factors that favour torrential and gravitational activity. It receives abundant and intense rainfall during "Lombarde" events (moist air mass from Mediterranean Sea). Its elongated shape and small surface area (15 km²) together with asymmetric slopes (counter dip slope on the left bank) accelerate runoff on a short response time. In addition highly tectonised shaly schists supply a large volume of debris (mostly platy clasts and fine, micaceous sediment). The objectives of this study, carried out in the frame of SAMCO (ANR) project, are threefold: Identify the different sediment storages; Characterise the processes that put sediment into motion; Quantify volumes of sediment storages. We produced a geomorphic map using topographic surveys and aerial photos in order to locate the different sediment storage types and associated processes. This analysis was made with respect to geomorphic coupling and sediment flux activity. In terms of surface area, the dominant landforms in the valley were found to be mass wasting, talus slopes and

  18. Case Study: Effect of Climatic Characterization on River Discharge in an Alpine-Prealpine Catchment of the Spanish Pyrenees Using the SWAT Model

    Directory of Open Access Journals (Sweden)

    Leticia Palazón

    2016-10-01

    Full Text Available The new challenges in assessment of water resources demand new approaches and tools, such as the use of hydrologic models, which could serve to assist managers in the prediction, planning and management of catchment water supplies in view of increased demand of water for irrigation and climatic change. Good characterization of the spatial patterns of climate variables is of paramount importance in hydrological modelling. This is especially so when modelling mountain environments which are characterized by strong altitudinal climate gradients. However, very often there is a poor distribution of climatic stations in these areas, which in many cases, results in under representation of high altitude areas with respect to climatic data. This results in the poor performance of the models. In the present study, the Soil and Water Assessment Tool (SWAT model was applied to the Barasona reservoir catchment in the Central Spanish Pyrenees in order to assess the influence of different climatic characterizations in the monthly river discharges. Four simulations with different input data were assessed, using only the available climate data (A1; the former plus one synthetic dataset at a higher altitude (B1; and both plus the altitudinal climate gradient (A2 and B2. The model’s performance was evaluated against the river discharges for the representative periods of 2003–2005 and 1994–1996 by means of commonly used statistical measures. The best results were obtained using the altitudinal climate gradient alone (scenario A2. This study provided insight into the importance of taking into account the sources and the spatial distribution of weather data in modelling water resources in mountainous catchments.

  19. Phylogeographic analysis of the true lemurs (genus Eulemur) underlines the role of river catchments for the evolution of micro-endemism in Madagascar.

    Science.gov (United States)

    Markolf, Matthias; Kappeler, Peter M

    2013-11-14

    Due to its remarkable species diversity and micro-endemism, Madagascar has recently been suggested to serve as a biogeographic model region. However, hypothesis-based tests of various diversification mechanisms that have been proposed for the evolution of the island's micro-endemic lineages are still limited. Here, we test the fit of several diversification hypotheses with new data on the broadly distributed genus Eulemur using coalescent-based phylogeographic analyses. Time-calibrated species tree analyses and population genetic clustering resolved the previously polytomic species relationships among eulemurs. The most recent common ancestor of eulemurs was estimated to have lived about 4.45 million years ago (mya). Divergence date estimates furthermore suggested a very recent diversification among the members of the "brown lemur complex", i.e. former subspecies of E. fulvus, during the Pleistocene (0.33-1.43 mya). Phylogeographic model comparisons of past migration rates showed significant levels of gene flow between lineages of neighboring river catchments as well as between eastern and western populations of the redfronted lemur (E. rufifrons). Together, our results are concordant with the centers of endemism hypothesis (Wilmé et al. 2006, Science 312:1063-1065), highlight the importance of river catchments for the evolution of Madagascar's micro-endemic biota, and they underline the usefulness of testing diversification mechanisms using coalescent-based phylogeographic methods.

  20. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia

    Science.gov (United States)

    Hunter, Heather M.; Walton, Richard S.

    2008-07-01

    SummaryA 6-year study was conducted in the Johnstone River system in the wet tropics of north-eastern Australia, to address concerns that the Great Barrier Reef is at risk from elevated levels of suspended sediment (SS) and nutrients discharged from its river catchments. Aims were to quantify: (i) fluxes of SS, phosphorus (P) and nitrogen (N) exported annually from the catchment and (ii) the influence of rural land uses on these fluxes. Around 55% of the 1602 km2 catchment was native rainforest, with the reminder developed mainly for livestock and crop production. Water quality and stream flow were monitored at 16 sites, with the emphasis on sampling major runoff events. Monitoring data were used to calibrate a water quality model for the catchment (HSPF), which was run with 39 years of historical precipitation and evaporation data. Modelled specific fluxes from the catchment of 1.2 ± 1.1 t SS ha-1 y-1, 2.2 ± 1.8 kg P ha-1 y-1 and 11.4 ± 7.3 kg N ha-1y-1 were highly variable between and within years. Fluxes of SS and P were strongly dominated by major events, with 91% of SS and 84% of P exported during the highest 10% of daily flows. On average, sediment P comprised 81% of the total P flux. The N flux was less strongly dominated by major events and sediment N comprised 46% of total N exports. Specific fluxes of SS, N and P from areas receiving precipitation of 3545 mm y-1 were around 3-4 times those from areas receiving 1673 mm y-1. For a given mean annual precipitation, specific fluxes of SS and P from beef pastures, dairy pastures and unsewered residential areas were similar to those from rainforest, while fluxes from areas of sugar cane and bananas were 3-4 times higher. Specific fluxes of N from areas with an annual precipitation of 3545 mm ranged from 8.9 ± 6.5 kg N ha-1 y-1 (rainforest) to 72 ± 50 kg N ha-1 y-1 (unsewered residential). Aggregated across the entire catchment, disproportionately large fluxes of SS, total P and total N were derived from

  1. Management of regional German river catchments (REGFLUD) impact of nitrogen reduction measures on the nitrogen load in the River Ems and the River Rhine.

    Science.gov (United States)

    Kunkel, R; Bogena, H; Goemann, H; Kreins, P; Wendland, F

    2005-01-01

    The REGFLUD-project, commissioned by Germany's Federal Research Ministry (BMBF), addresses the problem of reducing diffuse pollution from agricultural production. The objective of the project is the development and application of multi-criteria scientific methods, which are able to predict diffuse pollution in river basins subject to economic feasibility and social acceptability. The selected river basins (Ems and Rhine basins) cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. This paper focuses on the analysis of the effects of certain policy measures to reduce diffuse pollution by nitrogen. For this purpose a model system consisting of an agricultural sector model, a water balance model and a residence time/denitrification model was developed and applied. First results indicate a wide range of annual nitrogen surpluses for the rural areas between less than 10 kg N/ha up to 200 kg N/ha or more depending on the type and intensity of farming. Compared to the level of nitrogen surpluses the level of nitrogen inputs into the surface waters is relatively moderate because of degradation processes during transport in soil and groundwater. Policy impact analysis for a nitrogen tax and a limitation of the livestock density stress the importance of regionally tailored measures.

  2. An assessment of the impact of different land use activities on water quality in the upper Olifants River catchment

    CSIR Research Space (South Africa)

    Dabrowski, James M

    2013-04-01

    Full Text Available to the system. Trend analysis of Department of Water Affairs (DWA) data indicated significant positive trends in ortho-phosphate at 12 of 14 stations in the catchment. An increase in sulphate concentrations from upstream to downstream indicates that mining...

  3. Quantifying the effect of catchment land-use and water nutrient concentrations on freshwater river and stream biodiversity

    NARCIS (Netherlands)

    Weijters, M.J.; Janse, J.H.; Alkemade, J.R.M.; Verhoeven, J.T.A.

    2009-01-01

    A major threat to freshwater taxon diversity is the alteration of natural catchment Land use into agriculture, industry or urban areas and the associated eutrophication of the water. In order to stop freshwater biodiversity loss, it is essential to quantify the relationships between freshwater

  4. Agricultural Rivers at Risk: Dredging Results in a Loss of Macroinvertebrates. Preliminary Observations from the Narew Catchment, Poland

    OpenAIRE

    Mateusz Grygoruk; Magdalena Frąk; Aron Chmielewski

    2015-01-01

    Ecosystem deterioration in small lowland agricultural rivers that results from river dredging entails a significant threat to the appropriate ecohydrological conditions of these water bodies, expressed as homogenization of habitats and loss of biodiversity. Our study was aimed at a comparison of abundance and taxonomic structure of bottom-dwelling macroinvertebrates in dredged and non-dredged stretches of small lowland rivers and tributaries of the middle Narew River, namely: Czaplinianka, Tu...

  5. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand

    Czech Academy of Sciences Publication Activity Database

    Alastair, J. H. C.; Nováková, Tereza; Hudson-Edwards, K. A.; Fuller, I. C.; Macklin, M. G.; Fox, E. G.; Zapico, I.

    2017-01-01

    Roč. 295, OCT 15 2017 (2017), s. 159-175 ISSN 0169-555X Institutional support: RVO:67985831 Keywords : mining-contaminated river * floodplain sedimentation * mine tailing discharge * historical gold mining * Ohinemuri River * Waihou River Subject RIV: DO - Wilderness Conservation OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.958, year: 2016

  6. The chemical behaviour and ecological transfer in human food chain of some radionuclides in aqueous ecosystems and their risk on population health. Part of a coordinated programme on radiological and environmental protection studies in the Danube River catchment area

    International Nuclear Information System (INIS)

    Furnica, G.

    1982-12-01

    The radioecological concentration of H-3, K-40, Sr-90, Cs-137, and Ra-226 in the Danube River catchment area in Romania as well as the migration of these radionuclides in the food chain was determined. It was found that the concentration of each of these radionuclides in the Danube water was very low and that the radioactivity in the food chain was lower than the maximum permissible level. Very low incidence of cancer was detected among the inhabitants along the river

  7. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa.

    Science.gov (United States)

    Rimayi, Cornelius; Odusanya, David; Weiss, Jana M; de Boer, Jacob; Chimuka, Luke

    2018-06-15

    A quantitative assessment of pollutants of emerging concern in the Hartbeespoort Dam catchment area was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to establish the occurrence, source and distribution of 15 environmental pollutants, including 10 pharmaceuticals, 1 pesticide and 4 steroid hormones. Seasonal sampling was conducted in the Hartbeespoort Lake using sub-surface grab sampling to determine the lake's ecological status and obtain data for establishment of progressive operational monitoring. The Jukskei River, which lies upstream of the Hartbeespoort Dam, was sampled in the winter season. Five year old carp (Cyprinus carpio) and catfish (Clarias gariepinus) were also sampled from the Hartbeespoort Dam to study bioaccumulation in biota as well as to estimate risk associated with fish consumption. In the Jukskei River, the main source of 11 emerging pollutants (EPs) was identified as raw sewage overflow, with the highest ∑11 EP concentration of 593ngL -1 being recorded at the Midrand point and the lowest ∑11 EP concentration of 164ngL -1 at the N14 site located 1km downstream of a large wastewater treatment plant. The Jukskei River was found to be the largest contributor of the emerging contaminants detected in the Hartbeespoort Dam. In the Hartbeespoort Dam EP concentrations were generally in the order efavirenz>nevirapine>carbamazepine>methocarbamol>bromacil>venlafaxine. Water and sediment were sampled from the uMngeni River estuary within 24h after large volumes of an assortment of pharmaceutical waste had been discovered to be washed into the river estuary after flash rainfall on 18 May 2016. Analytical results revealed high levels of some emerging pollutants in sediment samples, up to 81ngg -1 for nevirapine and 4ngg -1 for etilefrine HCL. This study shows that efavirenz, nevirapine, carbamazepine, methocarbamol, bromacil and venlafaxine are contaminants that require operational monitoring in South African urban waters

  8. Concentration and distribution patterns of naturally occurring radionuclides in sediments and flood plain soils of the catchment area of the river Elbe

    International Nuclear Information System (INIS)

    Barth, A.; Jurk, M.; Weiß, D.

    1998-01-01

    The impact of uranium mining and milling as well as that of traditional mining activities on river sediments and flood plain soils in the catchment area of the river Elbe was investigated over the years 1994 to 1995. Contamination resulting from mining activities has been identified by comparing the median values for the measured radionuclides, and by establishing the ratio between Ra-226 and Ra-228. The transport and deposition of contaminated materials as a result of high water events, and river discharge of waste water from mining and milling facilities, can be considered to be the main paths of sediment and soil contamination. Sediments and flood plain soils located in the vicinity of former uranium mining and milling sites are primarily influenced by discharges of waste water. Long distance transport and deposition at dams, barrages and on flood plains has mainly been caused by high water events. In many cases the radionuclide concentrations were higher in the subsurface layer than in the top layer of flood plain soil. Due to termination of uranium mining and milling activities, no significant contamination of newer or fresh sediments was found. Radiation exposure arising in relation to angling or walking on flood plains is low

  9. Watershed Modeling with ArcSWAT and SUFI2 In Cisadane Catchment Area: Calibration and Validation of River Flow Prediction

    Directory of Open Access Journals (Sweden)

    Iwan Ridwansyah

    2014-04-01

    Full Text Available Increasing of natural resources utilization as a result of population growth and economic development has caused severe damage on the watershed. The impacts of natural disasters such as floods, landslides and droughts become more frequent. Cisadane Catchment Area is one of 108 priority watershed in Indonesia. SWAT is currently applied world wide and considered as a versatile model that can be used to integrate multiple environmental processes, which support more effective watershed management and the development of better informed policy decision. The objective of this study is to examine the applicability of SWAT model for modeling mountainous catchments, focusing on Cisadane catchment Area in west Java Province, Indonesia. The SWAT model simulation was done for the periods of 2005 – 2010 while it used landuse information in 2009. Methods of Sequential Uncertainty Fitting ver. 2 (SUFI2 and combine with manual calibration were used in this study to calibrate a rainfall-runoff. The Calibration is done on 2007 and the validation on 2009, the R2 and Nash Sutchliffe Efficiency (NSE of the calibration were 0.71 and 0.72 respectively and the validation are 0.708 and 0.7 respectively. The monthly average of surface runoff and total water yield from the simulation were 27.7 mm and 2718.4 mm respectively. This study showed SWAT model can be a potential monitoring tool especially for watersheds in Cisadane Catchment Area or in the tropical regions. The model can be used for another purpose, especially in watershed management.

  10. Metal-fluxes characterization at a catchment scale: Study of mixing processes and end-member analysis in the Meca River watershed (SW Spain)

    Science.gov (United States)

    Cánovas, C. R.; Macías, F.; Olías, M.; López, R. Pérez; Nieto, J. M.

    2017-07-01

    Fluxes of acidity and contaminants from acid mine drainage (AMD) sources to the receiving surface water bodies were studied in a mining-impacted watershed (Meca River, SW Spain) using a novel methodology based on the joint application of EMMA and MIX codes. The application of EMMA and elemental ratios allowed delimiting the end-members responsible for water quality variations at a catchment scale. The further application of MIX quantified the significant impact of AMD on the river quality; less than 10% of AMD relative contribution is enough to maintain acidic conditions during most of the year. The mixing model also provided information about the element mobility, distinguishing those elements with a quasi-conservative behavior (e.g., Cu, Zn, Al, Co or Ni) from those affected by mineral precipitation/dissolution (e.g., K, Si, Na, Sr, Ca, Fe, Pb, or As). Floods are the main driver of dissolved and, mainly particulate, contaminants in the catchment. Thus, the first rainfall events in November only accounted for 19% of the annual Meca flow but yielded between 26 and 43% of the net acidity and dissolved metal loads (mainly, Fe, As and Pb). Concerning particulate transport, around 332 tons of particulate Fe, 49 tons of Al, 0.79 tons of As and 0.37 tons of Pb were recorded during these first floods. The particulate As concentration can be up to 34 times higher than the dissolved one during floods and between 2 and 4 times higher for Fe, Pb and Cr. This integrated modeling approach could be a promising and useful tool to face future restoration plans in derelict mines worldwide. This approach would allow prioritizing remedial measures, achieving an environmental and cost-effective restoration of degraded areas.

  11. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  12. Agricultural Rivers at Risk: Dredging Results in a Loss of Macroinvertebrates. Preliminary Observations from the Narew Catchment, Poland

    Directory of Open Access Journals (Sweden)

    Mateusz Grygoruk

    2015-08-01

    Full Text Available Ecosystem deterioration in small lowland agricultural rivers that results from river dredging entails a significant threat to the appropriate ecohydrological conditions of these water bodies, expressed as homogenization of habitats and loss of biodiversity. Our study was aimed at a comparison of abundance and taxonomic structure of bottom-dwelling macroinvertebrates in dredged and non-dredged stretches of small lowland rivers and tributaries of the middle Narew River, namely: Czaplinianka, Turośnianka, Dąb, and Ślina. The experimental setup was (1 to collect samples of the bottom material from the river stretches that either persisted in a non-modified state (dredging was not done there in the last few years or had been subjected to river dredging in the year of sampling; and (2 to analyze the abundance and taxonomic structure of macroinvertebrates in the collected samples. The study revealed that at the high level of statistical significance (from p = 0.025 to p = 0.001, the total abundance of riverbed macroinvertebrates in the dredged stretches of the rivers analyzed was approximately 70% lower than in non-dredged areas. We state that the dredging of small rivers in agricultural landscapes seriously affects their ecological status by negatively influencing the concentrations and species richness of benthic macroinvertebrates.

  13. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.

    Science.gov (United States)

    Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Omata, Teppei

    2015-01-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in March 2011 resulted in the deposition of large quantities of radionuclides, such as (134)Cs and (137)Cs, over parts of eastern Japan. Since then high levels of radioactive contamination have been detected in large areas, including forests, agricultural land, and residential areas. Due to the strong adsorption capability of radiocesium to soil particles, radiocesium migrates with eroded sediments, follows the surface flow paths, and is delivered to more populated downstream regions and eventually to the Pacific Ocean. It is therefore important to understand the transport of contaminated sediments in the hydrological system and to predict changes in the spatial distribution of radiocesium concentrations by taking the land-surface processes related to sediment migration into consideration. In this study, we developed a distributed model to simulate the transport of water and contaminated sediment in a watershed hydrological system, and applied this model to a partially forested mountain catchment located in an area highly contaminated by the radioactive fallout. Observed discharge, sediment concentration, and cesium concentration measured from June 2011 until December 2012 were used for calibration of model parameters. The simulated discharge and sediment concentration both agreed well with observed values, while the cesium concentration was underestimated in the initial period following the accident. This result suggests that the leaching of radiocesium from the forest canopy, which was not considered in the model, played a significant role in its transport from the catchment. Based on the simulation results, we quantified the long-term fate of radiocesium over the study area and estimated that the effective half-life of (137)Cs deposited in the study area will be approximately 22 y due to the export of contaminated sediment by land-surface processes, and the amount of (137)Cs remaining in the

  15. Inside the "Black Box" of River Restoration: Using Catchment History to Identify Disturbance and Response Mechanisms to Set Targets for Process-Based Restoration

    Directory of Open Access Journals (Sweden)

    Sarah Mika

    2010-12-01

    Full Text Available Many river restoration projects fail. Inadequate project planning underpins many of the reasons given for failure (such as setting overly ambitious goals; selecting inappropriate sites and techniques; losing stakeholder motivation; and neglecting to monitor, assess, and document projects. Another major problem is the lack of an agreed guiding image to direct the activities aimed at restoring the necessary biophysical and ecological processes within the logistic constraints of on-ground works. Despite a rich literature defining the components of restoration project planning, restoration ecology currently lacks an explicit and logical means of moving from the initial project vision through to on-ground strategies. Yet this process is fundamental because it directly links the ecological goals of the project to the on-ground strategies used to achieve them. We present a planning process that explicitly uses an interdisciplinary mechanistic model of disturbance drivers and system responses to build from the initial project vision to the implementation of on-ground works. A worked example on the Upper Hunter River in southeastern Australia shows how understanding catchment history can reveal disturbance and response mechanisms, thus facilitating process-based restoration.

  16. River network bedload model: a tool to investigate the impact of flow regulation on grain size distribution in a large Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter

    2017-04-01

    Sediment transport rates along rivers and the grain size distribution (GSD) of coarse channel bed sediment are the result of the long term balance between transport capacity and sediment supply. Transport capacity, mainly a function of channel geometry and flow competence, can be altered by changes in climatic forcing as well as by human activities. In Alpine rivers it is hydropower production systems that are the main causes of modification to the transport capacity of water courses through flow regulation, leading over longer time scales to the adjustment of river bed GSDs. We developed a river network bedload transport model to evaluate the impacts of hydropower on the transfer of sediments and the GSDs of the Upper Rhône basin, a 5,200 km2 catchment located in the Swiss Alps. Many large reservoirs for hydropower production have been built along the main tributaries of the Rhône River since the 1960s, resulting in a complex system of intakes, tunnels, and pumping stations. Sediment storage behind dams and intakes, is accompanied by altered discharge due to hydropower operations, mainly higher flow in winter and lower in summer. It is expected that this change in flow regime may have resulted in different bedload transport. However, due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, the effects of changed hydraulic conditions are not easily deducible, and because observations of bedload in pre- and post-dam conditions are usually not available, a modelling approach is often necessary. In our modelling approach, the river network is conceptualized as a series of connected links (river reaches). Average geometric characteristics of each link (width, length, and slope of cross section) are extracted from digital elevation data, while surface roughness coefficients are assigned based on the GSD. Under the assumptions of rectangular prismatic cross sections and normal flow conditions, bed shear stress is estimated

  17. Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China

    Directory of Open Access Journals (Sweden)

    Ranghu Wang

    2016-11-01

    Full Text Available This research is focused on gully erosion mapping and monitoring at multiple spatial scales using multi-source remote sensing data of the Sancha River catchment in Northeast China, where gullies extend over a vast area. A high resolution satellite image (Pleiades 1A, 0.7 m was used to obtain the spatial distribution of the gullies of the overall basin. Image visual interpretation with field verification was employed to map the geometric gully features and evaluate gully erosion as well as the topographic differentiation characteristics. Unmanned Aerial Vehicle (UAV remote sensing data and the 3D photo-reconstruction method were employed for detailed gully mapping at a site scale. The results showed that: (1 the sub-meter image showed a strong ability in the recognition of various gully types and obtained satisfactory results, and the topographic factors of elevation, slope and slope aspects exerted significant influence on the gully spatial distribution at the catchment scale; and (2 at a more detailed site scale, UAV imagery combined with 3D photo-reconstruction provided a Digital Surface Model (DSM and ortho-image at the centimeter level as well as a detailed 3D model. The resulting products revealed the area of agricultural utilization and its shaping by human agricultural activities and water erosion in detail, and also provided the gully volume. The present study indicates that using multi-source remote sensing data, including satellite and UAV imagery simultaneously, results in an effective assessment of gully erosion over multiple spatial scales. The combined approach should be continued to regularly monitor gully erosion to understand the erosion process and its relationship with the environment from a comprehensive perspective.

  18. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Sakaguchi, Aya; Yamamoto, Masayoshi; Matsuura, Yuki

    2015-01-01

    An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (K d ) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean K d was calculated as 3.6 × 10 5 with a 95% confidence interval of 2.6–5.1 × 10 5 . - Highlights: • Particulate radiocaesium concentration correlated with catchment inventory. • Particulate size can be an important factor of the correlation. • Solid/liquid distribution coefficients were obtained for extensive area

  19. Use of Sr isotopes as a tool to decipher the soil weathering processes in a tropical river catchment, southwestern India

    International Nuclear Information System (INIS)

    Gurumurthy, G.P.; Balakrishna, K.; Tripti, M.; Riotte, Jean; Audry, Stéphane; Braun, Jean-Jacques; Udaya Shankar, H.N.

    2015-01-01

    River water composition (major ion and "8"7Sr/"8"6Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L"−"1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L"−"1), with radiogenic "8"7Sr/"8"6Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and "8"7Sr/"8"6Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO_2/Ca and "8"7Sr/"8"6Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO_2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO_2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO_2/Ca and "8"7Sr/"8"6Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. - Highlights: • Systematic monthly geochemical monitoring of a mountainous tropical river. • Soil weathering has dominant control on the surface water chemistry in the basin. • Soil redox process plays a dominant role in leaching of soil minerals. • Soil mineral weathering in

  20. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    Science.gov (United States)

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin.

  1. Contamination of fish by organochlorine pesticide residues in the Oueme River catchment in the Republic of Benin

    NARCIS (Netherlands)

    Yehouenou, E.; Lalèyè, P.; Boko, M.; van Gestel, C.A.M.; Ahissou, H.; Akpona, S.; van Hattum, A.G.M.; Swart, C.P.; van Straalen, N.M.

    2006-01-01

    In the Republic of Bénin, aquatic ecosystems are subject to poisoning risks due to the inappropriate use of pesticides, such as washing of empty bottles in rivers and using pesticides to catch fish. In some areas, cotton fields are located near riverbanks, increasing the probability of pesticide

  2. Farmer and retailer knowledge and awareness of the risks from pesticide use: A case study in the Wei River catchment, China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaomei, E-mail: xiaomei.yang@wur.nl [Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700AA Wageningen (Netherlands); State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling (China); Wang, Fei [State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling (China); Institute of Soil and Water Conservation, Northwest A and F University, 712100 Yangling (China); Meng, Lei [Baoji University of Arts and Sciences, 712300 Baoji, Shaanxi (China); Zhang, Wenshuai [State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100 Yangling (China); Fan, Liangxin [School of Surveying and Land Information Engineering, Henan Polytechnic University, 454003 Jiaozuo, Henan Province (China); Geissen, Violette [Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700AA Wageningen (Netherlands); Institute of Crop Science and Resources Conservation (INRES), University of Bonn, 53115 Bonn (Germany); Ritsema, Coen J. [Soil Physics and Land Management, Wageningen University, P.O. Box 47, 6700AA Wageningen (Netherlands)

    2014-11-01

    Monitoring the educational level of farmers and retailers on pesticide use would be useful to assess the appropriateness of information for reducing or/and avoiding the risks from pesticides in rural regions. The levels of knowledge and awareness of the dangers to the environment and human health were investigated by questionnaires for farmers (209) and retailers (20) in two rural regions (Qianyang County (S1) and Chencang County (S2)) of the Wei River catchment in China where the modes of farming and the state of erosion are very different. The results showed that farmers learned the use and dangers of pesticides mainly by oral communication (p < 0.01). Protective measures were inadequate; 65% (S1) and 55% (S2) of farmers never used any protective measures during spraying (p < 0.05). Washing hands (> 70%) was the most common mode of personal hygiene, relative to wearing masks, showering, and changing clothes, but no significant differences were observed between the selected regions. Most pesticide wastes were dumped directly onto the land or into water, suggesting that educational measures should be taken to address the potential risks from the residues in the wastes. Over 85% of farmers (S1 and S2) claimed to use illegal pesticides, but the reasons for their use varied (p < 0.01). Retailers were well-informed and highly conscious of their responsibility for the safe use of pesticides, especially in S2 (p < 0.01). A canonical correspondence analysis indicated that educational level and age differed between the two regions and contributed greatly to the risks from pesticide use (p < 0.01). Educational programmes targeted to age groups, proper disposal of pesticide waste, and sufficient supervision from authorities should consequently be considered for improving the levels of knowledge and awareness of the dangers of pesticides to human health and environmental pollution in the Wei River catchment, China. - Highlights: • The status of income and expenditure on

  3. Farmer and retailer knowledge and awareness of the risks from pesticide use: A case study in the Wei River catchment, China

    International Nuclear Information System (INIS)

    Yang, Xiaomei; Wang, Fei; Meng, Lei; Zhang, Wenshuai; Fan, Liangxin; Geissen, Violette; Ritsema, Coen J.

    2014-01-01

    Monitoring the educational level of farmers and retailers on pesticide use would be useful to assess the appropriateness of information for reducing or/and avoiding the risks from pesticides in rural regions. The levels of knowledge and awareness of the dangers to the environment and human health were investigated by questionnaires for farmers (209) and retailers (20) in two rural regions (Qianyang County (S1) and Chencang County (S2)) of the Wei River catchment in China where the modes of farming and the state of erosion are very different. The results showed that farmers learned the use and dangers of pesticides mainly by oral communication (p < 0.01). Protective measures were inadequate; 65% (S1) and 55% (S2) of farmers never used any protective measures during spraying (p < 0.05). Washing hands (> 70%) was the most common mode of personal hygiene, relative to wearing masks, showering, and changing clothes, but no significant differences were observed between the selected regions. Most pesticide wastes were dumped directly onto the land or into water, suggesting that educational measures should be taken to address the potential risks from the residues in the wastes. Over 85% of farmers (S1 and S2) claimed to use illegal pesticides, but the reasons for their use varied (p < 0.01). Retailers were well-informed and highly conscious of their responsibility for the safe use of pesticides, especially in S2 (p < 0.01). A canonical correspondence analysis indicated that educational level and age differed between the two regions and contributed greatly to the risks from pesticide use (p < 0.01). Educational programmes targeted to age groups, proper disposal of pesticide waste, and sufficient supervision from authorities should consequently be considered for improving the levels of knowledge and awareness of the dangers of pesticides to human health and environmental pollution in the Wei River catchment, China. - Highlights: • The status of income and expenditure on

  4. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France

    Science.gov (United States)

    Anthony, Edward J.; Julian, Maurice

    1999-12-01

    Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific

  5. Use of standardized precipitation evapotranspiration index to investigate drought relative to maize, in the Luvuvhu River catchment area, South Africa

    Science.gov (United States)

    Masupha, Teboho Elisa; Moeletsi, Mokhele Edmond

    2017-12-01

    Drought frequency and severity analysis during the growing period of maize was carried out by means of the Standardized Precipitation Evapotranspiration Index (SPEI) based on climatic data from seven weather stations (1975-2014). The index was aggregated at different time scales following three consecutive planting dates (October, November and December), relative to the average start of the rainy season in the area. Temporal analysis of droughts was conducted and trends were evaluated using the non-parametric Spearman's Rank Correlation test. The relative frequency distributions of the different drought categories were plotted for each growth stage of maize, with respect to the three planting dates. Results revealed an average drought occurrence of once every two seasons. The 1991/92 drought was identified as the most extreme drought during the analysis period; and generally there were no significant trends across the catchment, except for weak increasing SPEI at Levubu, Lwamondo and Thohoyandou with Spearman's ρ values of 0.4. This implies that the severity of drought decreased over time in these regions following the respective planting dates. The study further revealed that planting a 120-day maturing maize crop in December would pose a high risk of frequent severe-extreme droughts (SPEI -1.5 to ≤ -2) during the flowering to grain-filling stage at the high and moderate rainfall regions, while results at the low rainfall region indicated this risk following planting in October.

  6. WATER QUALITY ANALYSIS OF LOTIC ECOSYSTEMS OF NERA AND CARAS RIVERS CATCHMENTS USING BENTHIC INVERTEBRATES AS BIOINDICATORS

    Directory of Open Access Journals (Sweden)

    CLAUDIA PETRUCEAN

    2009-01-01

    Full Text Available The study of the two watersheds involved the collection of twenty-four benthic samples from the main tributaries of Nera and Caras rivers, but also from the Nera river. The samples were collected in august 2009 with a benthic net, which had the mesh size of 250 μm, by disturbing the substrate upstream for three minutes, being thus qualitative samples. The next stage, working in the laboratory, consisted in separating the invertebrates from the substrate, sorting them to taxonomic categories and counting them. The data was statistically analized and interpreted. It led to the conclusion that the water quality in the two watersheds is good. In most of the sampling points the major groups of benthic macroinvertebrates were found, some of the sampling points were dominated by the EPT groups (Ephemeroptera, Plecoptera, Trichoptera which is known as a clean freshwater group, sensitive to pollution and human impact.

  7. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand

    Science.gov (United States)

    Clement, Alastair J. H.; Nováková, Tereza; Hudson-Edwards, Karen A.; Fuller, Ian C.; Macklin, Mark G.; Fox, Elizabeth G.; Zapico, Ignacio

    2017-10-01

    Between 1875 and 1955 approximately 250,000 Mg yr- 1 of mercury-, arsenic-, and cyanide-contaminated mine tailings were discharged directly into the Ohinemuri River and its tributaries, in the Coromandel Region, North Island, New Zealand. A devastating flood on 14 January 1907 deposited large amounts of mine waste across the floodplain of the Ohinemuri and Waihou rivers in the vicinity of the township of Paeroa. The 1907 mine-waste flood deposit was located as a dirty yellow silt in cores and floodplain profiles, with a thickness ranging from 0.15-0.50 m. Geochemical analysis of the mine waste shows elevated concentrations of Pb ( 200-570 mg kg- 1) and As ( 30-80 mg kg- 1), compared to early Holocene background concentrations (Pb metalloids that pose a long-term risk to the Ohinemuri and Waihou ecosystems.

  8. Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2017-07-01

    Full Text Available Quantifying the long term impacts of climate and land cover change on streamflow is of great important for sustainable water resources management in inland river basins. The Soil and Water Assessment Tool (SWAT model was employed to simulate the streamflow in the upper reaches of Heihe River Basin, northwestern China, over the last half century. The Sequential Uncertainty Fitting algorithm (SUFI-2 was selected to calibrate and validate the SWAT model. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.93 for calibration and validation periods, the percent bias (PBIAS of the two periods were—3.47% and 1.81%, respectively. The precipitation, average, maximum, and minimum air temperature were all showing increasing trends, with 14.87 mm/10 years, 0.30 °C/10 years, 0.27 °C/10 year, and 0.37 °C/10 years, respectively. Runoff coefficient has increased from 0.36 (averaged during 1964 to 1988 to 0.39 (averaged during 1989 to 2013. Based on the SWAT simulation, we quantified the contribution of climate and land cover change to streamflow change, indicated that the land cover change had a positive impact on river discharge by increasing 7.12% of the streamflow during 1964 to 1988, and climate change contributed 14.08% for the streamflow increasing over last 50 years. Meanwhile, the climate change impact was intensive after 2000s. The increasing of streamflow contributed to the increasing of total streamflow by 64.1% for cold season (November to following March and 35.9% for warm season (April to October. The results provide some references for dealing with climate and land cover change in an inland river basin for water resource management and planning.

  9. Assessment of contamination and origin of metals in mining affected river sediments: A case study of the Aries catchment, Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2014-01-01

    Full Text Available The study presents the current status of contamination with metals (Cu, Cr, Cd, Pb, Ni, Zn, As and their anthropogenic or natural origin in the sediments of the Aries river basin, Romania, affected by mining activities. The results indicated an enrichment of metals in sediments. Different contamination levels were identified on the Aries river and its tributaries. According to sediment quality guidelines and contamination indices, sediments from the Aries river were found to be highly contaminated with Cd, Cu, As, considerably with Zn and moderately with Pb and Ni. The right-bank tributaries were found to be more contaminated than the left-bank affluents, where only a contamination with As of geogenic origin was identified. The Principal Component Analysis allowed to identify five latent factors (86 % total variability reflecting the anthropogenic and natural origins of metals. Arsenic, Cd and partially Pb were found to have a common anthropogenic origin, different from that of Cu. The statistical approach indicated also the geogenic origin of Pb due to its association with Ca, K, Na, Sr. Chromium and Ni were attributed to natural source following their association with Mn, Fe, Al and Mg, respectively.

  10. Evasion of CO2 and dissolved carbon in river waters of three small catchments in an area occupied by small family farms in the eastern Amazon

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Silva da Rosa

    2017-08-01

    Full Text Available CO2 effluxes from streams and rivers have been hypothesized to be a critical pathway of carbon flow from the biosphere back to the atmosphere. This study was conducted in three small Amazonian catchments to evaluate carbon evasion and dynamics, where land-use change has occurred on small family-farms. Monthly field campaigns were conducted from June 2006 to May 2007 in the Cumaru (CM, Pachibá (PB and São João (SJ streams. Electrical conductivity, pH, temperature, and dissolved oxygen measurements were done in situ, while water samples were collected to determine dissolved organic carbon (DOC and dissolved inorganic carbon (DIC concentrations, as well as carbon dioxide partial pressures (pCO2 and CO2 evasion fluxes. Instantaneous discharge measured by a current meter was used to calculate DOC fluxes. Considering all the sites, DOC, DIC, pCO2, and CO2 flux measurements ranged as follows, respectively: 0.27 - 12.13 mg L-1; 3.5 - 38.9 mg L-1; 2,265 - 26,974 ppm; and 3.39 - 75.35 μmol m-2 s-1. DOC annual flux estimates for CM, SJ and PB were, respectively, 281, 245, and 169 kg C ha-1. CO2 evasion fluxes had an average of 22.70 ± 1.67 μmol m-2 s-1. These CO2 evasion fluxes per unit area were similar to those measured for major Amazonian rivers, thus confirming our hypothesis that small streams can evade substantial quantities of CO2. As secondary vegetation is abundant as a result of family farming management in the region, we conclude that this vegetation can be a major driver of an abundant carbon cycle.

  11. Using UAVSAR Interferometry to Quantify the Geometry and Sediment Flux of Slow-moving Landslides in the Eel River Catchment, Northern California

    Science.gov (United States)

    Handwerger, A. L.; Huang, M. H.; Booth, A. M.; Fielding, E. J.

    2017-12-01

    Slow-moving, deep-seated landslides are highly erosive features that can remain active for periods of decades to centuries, playing a major role in landscape evolution. In the Eel River catchment, Northern California, slow-moving landslides are the primary contributor of sediment to the channel network, delivering >50% of the regional sediment flux despite occupying mass conservation techniques to 1) invert for landslide thickness and 2) solve for landslide rheology (i.e. depth-averaged velocity), which enables us to better constrain both volume and sediment flux. Our preliminary results indicate that the landslide thickness is highly variable with changes up to tens of meters along the landslide body. We also find that the landslides have a power law rheology with a plug-flow vertical velocity profile. Estimates of sediment flux contributed by individual landslides ranges from 103 to 104 m3/yr. The application of UAVSAR data represents a major advance from previous InSAR studies in this region and provides one of the first datasets containing 3D displacement measurements for multiple landslides occurring under nearly identical environmental conditions. Future work is aimed at using these subsurface and kinematic data to calculate landslide erosion rates and regional sediment flux and to better understand the controls on landslide dynamics over short- and long-timescales.

  12. IDENTIFICATION OF DANGER ZONES FOR SURFACE WATER USING GIS (SIP – MAPINFO SYSTEM ON AN EXAMPLE OF UPPER NAREW RIVER CATCHMENT

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-07-01

    Full Text Available Creating the buffer zones is a function intended to designate an area in particular, of a constant distance around the spatial objects. The aim of the study was to create maps as thematic layers, which served to identify areas of existing and potential contamination of surface water and other environmental elements. Among others, it made possible to localize the areas potentially affected by the surface water pollution due to transport; localize the areas potentially affected by the surface water pollution due to the discharge of sewage from human settlements; localize the zones with mitigated impact of communication emissions due to the natural protection of forests taking the form of so-called geochemical barriers. The spatial analyzes allowed to generate model-zones of the existing and potential threat of water pollution in the Narew river catchment. Designated danger zones can be verified by studies as well as they can be very helpful in determining the monitoring network and for water quality modeling process.

  13. The heron that laid the golden egg: metals and metalloids in ibis, darter, cormorant, heron, and egret eggs from the Vaal River catchment, South Africa.

    Science.gov (United States)

    van der Schyff, V; Pieters, R; Bouwman, H

    2016-06-01

    Metal pollution issues are afforded the highest priority in developing countries. Only one previous study has addressed metals in African bird eggs. We determined the concentration of metals and metalloids in bird eggs from four sites in the Vaal River catchment (VRC) of South Africa to provide data on the current situation. We analysed 16 pools of 77 heron, ibis, darter, egret, and cormorant eggs for 18 metals and metalloids using ICP-MS. We found high concentrations of gold (Au), uranium (U), thallium (Tl), and platinum (Pt) in Grey Heron eggs from Baberspan. Great white egrets from Bloemhof Dam had high concentrations of mercury (Hg). Multivariate analyses revealed strong associations between Au and U, and between palladium (Pd) and Pt. The toxic reference value (TRV) for Hg was exceeded in seven pools. Selenium exceeded its TRV in one pool; in the same pool, copper (Cu) reached its TRV. Compared with other studies, VRC bird eggs had high concentrations of contaminants. Based on these high concentrations, human health might be at risk as Grey Herons and humans share similar food and are therefore exposed to the same contaminants.

  14. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    ... to weak degree of potentiality are found occupying flat to rugged topography of the catchment. ... government and non-governmental organizations. Among various .... Ellala River, forming something like graben structure. This is particularly ...

  15. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    Science.gov (United States)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  16. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  17. Hydrobiological studies in the catchment of Vaal dam, South Africa. Part 1. River Zonation and the Benthic Fauna

    CSIR Research Space (South Africa)

    Chutter, FM

    1970-01-01

    Full Text Available , the Eroding Zone, the Stable Depositing Zone, the Unstable Depositing Zone and two special eases. the Mnddy and the Sandy High-lying Unstable Depositing Zones. Conditions in cacti of these zones are described below, the descriptions being based largely... the only sampling point in (his zone. The Frothing Zone. Eroding Zone conditions were found in the Klein Vaal River at Station 21 a (Fig. 4). There were no semi.aquatie or fully aquatic maeroplly tes because the si i-cant bed was stony...

  18. Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K.

    Science.gov (United States)

    Izquierdo, M; Tye, A M; Chenery, S R

    2012-09-01

    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb were examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0-15 cm) and subsoil (35-50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9 and 56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 μg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type ('BHT') Pb, used as an additive in UK petrol, and the local coal/Southern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools. Copyright © 2012 Natural Environment

  19. Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K

    International Nuclear Information System (INIS)

    Izquierdo, M.; Tye, A.M.; Chenery, S.R.

    2012-01-01

    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb were examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0–15 cm) and subsoil (35–50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9 and 56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 μg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type (‘BHT’) Pb, used as an additive in UK petrol, and the local coal/Southern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools. -- Highlights: ► The labile

  20. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  1. Spatiotemporal Variation and Risk Assessment of Pesticides in Water of the Lower Catchment Basin of Acheloos River, Western Greece

    Science.gov (United States)

    Stamatis, Nikolaos; Hela, Dimitra; Triantafyllidis, Vassilios; Konstantinou, Ioannis

    2013-01-01

    A three-year monitoring survey (March 2005–February 2008) was conducted to investigate, on monthly basis, the presence of thirty pesticides belonging to various categories and metabolites, in Acheloos River (Western Greece), one of the most important water resources in Greece. Six sampling stations along the river were established. Water analyses were performed using solid-phase extraction combined with gas chromatography with flame thermionic detector and mass spectrometry. Statistical analysis using one-way ANOVA and Duncan's multiple range test (P < 0.05) was used to compare annual mean concentrations of pesticides, seasonal and spatial distribution. In general, the highest mean concentrations of the pesticides were recorded at the three stations downstream. The greatest average concentrations were determined during spring and summer in agreement with the pesticide application period. The observed lower concentrations after 2006 reflect the land-use change because of the elimination of tobacco, the main cultivation of the area for many decades. The compounds most frequently detected were diazinon (78.6%), DEA (69.3%), and fenthion (52.6%). Environmental risk assessment using risk quotient (RQ) approach showed high risk for six insecticides in 2005 and one in 2007. A compliance with the European Environmental Quality Standards (EQS) was observed for the priority pesticides. PMID:24453814

  2. Modelling the impact of prescribed global warming on runoff from headwater catchments of the Irrawaddy River and their implications for the water level regime of Loktak Lake, northeast India

    Directory of Open Access Journals (Sweden)

    C. R. Singh

    2010-09-01

    Full Text Available Climate change is likely to have major implications for wetland ecosystems, which will include altered water level regimes due to modifications in local and catchment hydrology. However, substantial uncertainty exists in the precise impacts of climate change on wetlands due in part to uncertainty in GCM projections. This paper explores the impacts of climate change upon river discharge within three sub-catchments of Loktak Lake, an internationally important wetland in northeast India. This is achieved by running pattern-scaled GCM output through distributed hydrological models (developed using MIKE SHE of each sub-catchment. The impacts of climate change upon water levels within Loktak Lake are subsequently investigated using a water balance model. Two groups of climate change scenarios are investigated. Group 1 uses results from seven different GCMs for an increase in global mean temperature of 2 °C, the purported threshold of ''dangerous'' climate change, whilst Group 2 is based on results from the HadCM3 GCM for increases in global mean temperature between 1 °C and 6 °C. Results from the Group 1 scenarios show varying responses between the three sub-catchments. The majority of scenario-sub-catchment combinations (13 out of 21 indicate increases in discharge which vary from <1% to 42% although, in some cases, discharge decreases by as much as 20%. Six of the GCMs suggest overall increases in river flow to Loktak Lake (2–27% whilst the other results in a modest (6% decline. In contrast, the Group 2 scenarios lead to an almost linear increase in total river flow to Loktak Lake with increasing temperature (up to 27% for 6 °C, although two sub-catchments experience reductions in mean discharge for the smallest temperature increases. In all but one Group 1 scenario, and all the Group 2 scenarios, Loktak Lake water levels are higher, regularly reaching the top of a downstream hydropower barrage that impounds the lake and necessitating the

  3. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Morava river (Danube catchment area), Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Babek, O. [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Palacky Univ., Olomouc (Czech Republic). Dept. of Geology; Hilscherova, K.; Holoubek, I.; Machat, J.; Klanova, J. [Masaryk Univ., Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Nehyba, S.; Zeman, J.; Famera, M. [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Francu, J. [Czech Geological Survey, Brno (Czech Republic)

    2008-06-15

    Background, aims, and scope Embankment of meandering river systems in many industrial areas results in the formation of artificial oxbow lakes that may act as perennial or intermittent traps for river sediments. Their deposits can be dated using a combination of historical and stratigraphic data, providing a good means to study historical records of contamination transported by rivers. Contamination history over the last few decades is of special significance for Central and Eastern Europe as it can reflect high pollutant levels in the second half of the twentieth century and the subsequent improvement after the fall of the Iron Curtain. The purpose of this study was to investigate recent sediments of an oxbow lake of the Morava River, Czech Republic, their stratigraphic records, sediment architecture, and history of contamination. Materials and methods Seven ground-penetrating radar (GPR) profiles and three sediment cores up to 4 m deep were studied. The stratigraphy of the cores was inferred from visible-light spectrophotometry, X-ray radiography, grain size analysis, and semiquantitative modal analysis of sandy fractions. The sediments were dated using the {sup 137}Cs mass activity and combinations of stratigraphic and historical data. The cores were sampled for concentrations of heavy metals and persistent organic pollutants. Wet sampled, lyophilized, and sieved sediments were extracted and analyzed for heavy metals by inductively coupled plasma mass spectrometry (ICP-MS) of aqua regia leachate and for persistent organic pollutants by gas chromatography (GC-ECD and GC-MS). Results Three distinct sedimentary sequences (S1, S2, and S3) were identified. The basal sequence S1 represents river channel sediments deposited before the formation of the oxbow lake, most likely before the 1930s. The boundary between the S1 and S2 sequence correlates with the level of sediment dredging from 1981 evidenced from historical data. The overlying sequences S2 and S3 represent a

  4. Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. Morava river (Danube catchment area), Czech Republic

    International Nuclear Information System (INIS)

    Babek, O.

    2008-01-01

    Background, aims, and scope Embankment of meandering river systems in many industrial areas results in the formation of artificial oxbow lakes that may act as perennial or intermittent traps for river sediments. Their deposits can be dated using a combination of historical and stratigraphic data, providing a good means to study historical records of contamination transported by rivers. Contamination history over the last few decades is of special significance for Central and Eastern Europe as it can reflect high pollutant levels in the second half of the twentieth century and the subsequent improvement after the fall of the Iron Curtain. The purpose of this study was to investigate recent sediments of an oxbow lake of the Morava River, Czech Republic, their stratigraphic records, sediment architecture, and history of contamination. Materials and methods Seven ground-penetrating radar (GPR) profiles and three sediment cores up to 4 m deep were studied. The stratigraphy of the cores was inferred from visible-light spectrophotometry, X-ray radiography, grain size analysis, and semiquantitative modal analysis of sandy fractions. The sediments were dated using the 137 Cs mass activity and combinations of stratigraphic and historical data. The cores were sampled for concentrations of heavy metals and persistent organic pollutants. Wet sampled, lyophilized, and sieved sediments were extracted and analyzed for heavy metals by inductively coupled plasma mass spectrometry (ICP-MS) of aqua regia leachate and for persistent organic pollutants by gas chromatography (GC-ECD and GC-MS). Results Three distinct sedimentary sequences (S1, S2, and S3) were identified. The basal sequence S1 represents river channel sediments deposited before the formation of the oxbow lake, most likely before the 1930s. The boundary between the S1 and S2 sequence correlates with the level of sediment dredging from 1981 evidenced from historical data. The overlying sequences S2 and S3 represent a

  5. THE STUDY OF HEAVY METALS CONTENT IN THE CATCHMENT AREA OF THE BIEBRZA RIVER AND THREE TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    Zuzanna Kazimierowicz

    2014-11-01

    Full Text Available Sediment samples were taken in 11 measuring points of the Biebrza River and determined the contents of six metals (Cu, Cr, Co, Ni, Cd and Zn. Arithmetic mean, median and standard deviation were calculated. The sources of heavy metals in bottom sediments are: pollutants of fieldsand meadows (admixtures of plant protection products and fertilizers, discharges of domestic sewage and municipal from local wastewater treatment plants, wastewater di-scharges from rural buildings and pollutions of anthropogenic origin. Research of pollution of bottom sediments with heavy metals are needed tool for monitoring the aquatic environ-ment. Continuous monitoring metal content of the sediments will counteract the effects of the threat of biological life in the water reservoir, which may occur in the case of notorious exceeded permissible content of harmful substances.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Chalk Catchment Transit Time: Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Darling, W. G.; Gooddy, D. C. [British Geological Survey, Crowmarsh Gifford, Wallingford, Oxfordshire (United Kingdom); Barker, J. A. [School of Civil Engineering and the Environment, University of Southampton, Southampton (United Kingdom); Robinson, M. [Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire (United Kingdom)

    2013-07-15

    The mean transit time (MTT) of a catchment is the average residence time of water from rainfall to river outflow at the foot of the catchment. As such, MTT has important water quality as well as resource implications. Many catchments worldwide have been measured for MTT using environmental isotopes, yet the Chalk, an important aquifer in NW Europe, has received little attention in this regard. The catchment of the River Lambourn in southern England has been intermittently studied since the 1960s using isotopic methods. A tritium peak measured in the river during the 1970s indicates an apparent MTT of {approx}15 years, but the thick unsaturated zone (average {approx}50 m) of the catchment suggests that the MTT should be much greater because of the average downward movement through the Chalk of {approx}1 m/a consistently indicated by tritium and other tracers. Recent work in the catchment using SF{sub 6} as a residence time indicator has given groundwater ages in the narrow range 11-18 yrs, apparently supporting the river tritium data but in conflict with the unsaturated zone data even allowing for a moderate proportion of rapid bypass flow. The MTT of the catchment remains unresolved for the time being. (author)

  8. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.C. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom)]. E-mail: ajo@ceh.ac.uk; Keller, V. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Williams, R.J. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Young, A. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2007-03-15

    An existing GIS hydrology water quality model, LF2000-WQX, was applied to predict the concentrations of the pharmaceuticals diclofenac and propranalol in catchments. As a practical exercise the predominantly rural Tamar (UK) catchment was chosen. Consumption, excretion, and fate data were used to estimate the pharmaceutical input load for the model. The predicted concentrations throughout most of the catchment were 1 ng/L or less under low flow (90th percentile) conditions. However, at a few locations, downstream of small sewage treatment plants, concentrations above 25 ng/L were predicted. This exercise shows that it is relatively straightforward to predict the concentrations of new and emerging organic microcontaminants in real catchments using existing GIS hydrology water quality models. Further testing will be required to establish their accuracy. - A GIS hydrology model was used to predict pharmaceutical concentration hot spots in a rural catchment.

  9. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment

    International Nuclear Information System (INIS)

    Johnson, A.C.; Keller, V.; Williams, R.J.; Young, A.

    2007-01-01

    An existing GIS hydrology water quality model, LF2000-WQX, was applied to predict the concentrations of the pharmaceuticals diclofenac and propranalol in catchments. As a practical exercise the predominantly rural Tamar (UK) catchment was chosen. Consumption, excretion, and fate data were used to estimate the pharmaceutical input load for the model. The predicted concentrations throughout most of the catchment were 1 ng/L or less under low flow (90th percentile) conditions. However, at a few locations, downstream of small sewage treatment plants, concentrations above 25 ng/L were predicted. This exercise shows that it is relatively straightforward to predict the concentrations of new and emerging organic microcontaminants in real catchments using existing GIS hydrology water quality models. Further testing will be required to establish their accuracy. - A GIS hydrology model was used to predict pharmaceutical concentration hot spots in a rural catchment

  10. Rainfall and runoff regime trends in mountain catchments (Case study area: the upper Hron River basin, Slovakia

    Directory of Open Access Journals (Sweden)

    Blahušiaková Andrea

    2015-09-01

    Full Text Available This paper presents an analysis of trends and causes of changes of selected hydroclimatic variables influencing the runoff regime in the upper Hron River basin (Slovakia. Different methods for identifying trends in data series are evaluated and include: simple mass curve analysis, linear regression, frequency analysis of flood events, use of the Indicators of Hydrological Alteration software, and the Mann-Kendall test. Analyses are performed for data from two periods (1931-2010 and 1961-2010. The changes in runoff are significant, especially in terms of lower QMax and 75 percentile values. This fact is also confirmed by the lower frequency and extremity of flood events. The 1980s are considered a turning point in the development of all hydroclimatic variables. The Mann-Kendall test shows a significant decrease in runoff in the winter period. The main causes of runoff decline are: the considerable increase in air temperature, the decrease in snow cover depth and changes in seasonal distribution of precipitation amounts.

  11. Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England

    International Nuclear Information System (INIS)

    Collins, A.L.; Williams, L.J.; Zhang, Y.S.; Marius, M.; Dungait, J.A.J.; Smallman, D.J.; Dixon, E.R.; Stringfellow, A.; Sear, D.A.; Jones, J.I.; Naden, P.S.

    2013-01-01

    The ingress of particulate material into freshwater spawning substrates is thought to be contributing to the declining success of salmonids reported over recent years for many rivers. Accordingly, the need for reliable information on the key sources of the sediment problem has progressed up the management agenda. Whilst previous work has focussed on apportioning the sources of minerogenic fine sediment degrading spawning habitats, there remains a need to develop procedures for generating corresponding information for the potentially harmful sediment-bound organic matter that represents an overlooked component of interstitial sediment. A source tracing procedure based on composite signatures combining bulk stable 13 C and 15 N isotope values with organic molecular structures detected using near infrared (NIR) reflectance spectroscopy was therefore used to assess the primary sources of sediment-bound organic matter sampled from artificial spawning redds. Composite signatures were selected using a combination of the Kruskal–Wallis H-test, principal component analysis and GA-driven discriminant function analysis. Interstitial sediment samples were collected using time-integrating basket traps which were inserted at the start of the salmonid spawning season and extracted in conjunction with critical phases of fish development (eyeing, hatch, emergence, late spawning). Over the duration of these four basket extractions, the overall relative frequency-weighted average median (± 95% confidence limits) source contributions to the interstitial sediment-bound organic matter were estimated to be in the order: instream decaying vegetation (39 ± road verges > septic tanks > farm manures

  12. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China

    International Nuclear Information System (INIS)

    Yang Zhifeng; Wang Ying; Shen Zhenyao; Niu Junfeng; Tang Zhenwu

    2009-01-01

    A comparative study of the heavy metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) concentrations in sediments collected from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China, was conducted. Compared with the maximum background values in Wuhan Province soils, Cd was the metal with the highest contamination level, especially in the mainstream, followed by Zn and Cu. In a few samples from tributaries and lakes, the Hg concentration was very high compared to background levels. The concentrations of As and Ni in all sites fluctuated close to background levels. Partitioning of speciation of each heavy metal in sediments was similar for samples taken from the mainstream, tributaries, and lakes. Compared to the other metals studied, Cd, Cu, Zn, and Pb had higher bioavailability in the three zones, which means they pose a higher ecological risk. Significant correlations among group a (Zn, Cu, and Pb, r > 0.9) and group b (Cr and Ni, r = 0.978) in the mainstream; Hg, Cu, Cd, and Pb in lakes (r > 0.9); and Cu and Pb (r > 0.9) in tributaries were observed using Cluster and correlation analysis. However, a low correlation between As and the other elements in the three zones was shown. Overall, 63.6% of samples from the mainstream, 75.0% from tributaries, and 88.9% from lakes exhibited low and moderate ecological risk of heavy metals, and the potential ecological risks in the mainstream and tributaries were higher than those in lakes.

  13. The catchment based approach using catchment system engineering

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  14. Impacts of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin using an ensemble of bias-corrected regional climate simulations

    Directory of Open Access Journals (Sweden)

    M. C. Demirel

    2013-10-01

    Full Text Available The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR, weighted mean occurrence day (WMOD and weighted persistence (WP. These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices were estimated from: (1 observed low flows; (2 simulated low flows by the semi-distributed HBV model using observed climate as input; (3 simulated low flows using simulated inputs from seven combinations of General Circulation Models (GCMs and Regional Climate Models (RCMs for the current climate (1964–2007; (4 simulated low flows using simulated inputs from seven combinations of GCMs and RCMs for the future climate (2063–2098 including three different greenhouse gas emission scenarios. These four cases were compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. Significant differences were found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference was found for the SR index, whereas large differences were found for the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR decreases substantially by 2063–2098 in all seven sub-basins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1 to summer low flows (SR < 1 in the two Alpine sub-basins. The WMODs of low flows tend to be earlier than for the current climate in all sub-basins except for the Middle Rhine and Lower Rhine sub

  15. Flood defence in the catchment of the Hessian Lahn river. Manual pt. 1: Summarized report; Vorbeugender Hochwasserschutz im Einzugsgebiet der hessischen Lahn. Handbuch. T. 1: Zusammenfassender Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Lang, T.; Toensmann, F.

    2002-06-01

    The INTERREG Rhine-Maas action program (IRMA) was the result of the co-initiative 'INTERREG IIC' of the European Union. It consisted of approximately 150 projects. One of those projects was the 'Lahn project', presented in this handbook. Its duration was restricted to the years 2000 to 2001. The EU sponsored the project with 50% of the costs on planning and 25% on the constructional work, according to financial guidelines. The cofinancing was guaranteed by the Hessian Department of Environment, Agriculture and Forestry as part of the state program 'Ecological Streams'. Clients supported subprojects with shares ranging from 20% to 0%, relative to their financial capacity. The scientific investigation was realised by a research group, which developed a framework plan for flood protection, in close cooperation with the Departments of Regional Planning, Civil Engineering, Economics and Traffic (Section III), and the Federal Bureaus of Environment Marburg and Wetzlar, Section IV of the Giessen Government Office. Please refer to Fig. 1 for members of this research group and their tasks. The catchment area of the Lahn River covers 5,964 km{sup 2}. Approximately, 4,500 km{sup 2} are located in Hesse. The Lahn River is a typical low mountain range river. With its culminant point being at 680 m above sea level, 20% of the area is located 400 m above sea level. The level of mouth is 60 m above sea level. The land use in the catchment area consists of 26.3% arable farmland, 21.1% grassland, 41.8% woodland and 8.7% urban settlement, and 3% sealed area. The permeability is mostly low (Fig. 3). The morphological classification derived in Tab 2 shows a surprising result. Against common expectations of low mountain range rivers, a large section of the Lahn River and most of the lower stream sections of its tributaries are only slightly inclined with a slope of 0 permille to 3 permille. Therefore, it was particularly favourable for water retention in

  16. Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England

    Energy Technology Data Exchange (ETDEWEB)

    Collins, A.L., E-mail: adrian.collins@adas.co.uk [ADAS, Pendeford House, Wobaston Road, Wolverhampton WV9 5AP (United Kingdom); Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Williams, L.J.; Zhang, Y.S. [ADAS, Pendeford House, Wobaston Road, Wolverhampton WV9 5AP (United Kingdom); Marius, M. [Civil Engineering and Environment, University of Southampton, Highfield, Southampton S017 1BJ (United Kingdom); Dungait, J.A.J. [Department of Sustainable Systems and Grassland Science, Rothamsted Research—North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Smallman, D.J. [Civil Engineering and Environment, University of Southampton, Highfield, Southampton S017 1BJ (United Kingdom); Dixon, E.R. [Department of Sustainable Systems and Grassland Science, Rothamsted Research—North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Stringfellow, A. [Civil Engineering and Environment, University of Southampton, Highfield, Southampton S017 1BJ (United Kingdom); Sear, D.A. [Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Jones, J.I. [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Naden, P.S. [CEH Wallingford, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB (United Kingdom)

    2013-07-01

    The ingress of particulate material into freshwater spawning substrates is thought to be contributing to the declining success of salmonids reported over recent years for many rivers. Accordingly, the need for reliable information on the key sources of the sediment problem has progressed up the management agenda. Whilst previous work has focussed on apportioning the sources of minerogenic fine sediment degrading spawning habitats, there remains a need to develop procedures for generating corresponding information for the potentially harmful sediment-bound organic matter that represents an overlooked component of interstitial sediment. A source tracing procedure based on composite signatures combining bulk stable {sup 13}C and {sup 15}N isotope values with organic molecular structures detected using near infrared (NIR) reflectance spectroscopy was therefore used to assess the primary sources of sediment-bound organic matter sampled from artificial spawning redds. Composite signatures were selected using a combination of the Kruskal–Wallis H-test, principal component analysis and GA-driven discriminant function analysis. Interstitial sediment samples were collected using time-integrating basket traps which were inserted at the start of the salmonid spawning season and extracted in conjunction with critical phases of fish development (eyeing, hatch, emergence, late spawning). Over the duration of these four basket extractions, the overall relative frequency-weighted average median (± 95% confidence limits) source contributions to the interstitial sediment-bound organic matter were estimated to be in the order: instream decaying vegetation (39 ± < 1%; full range 0–77%); damaged road verges (28 ± < 1%; full range 0–77%); septic tanks (22 ± < 1%; full range 0–50%), and; farm yard manures/slurries (11 ± < 1%; full range 0–61%). The reported procedure provides a promising basis for understanding the key sources of interstitial sediment-bound organic matter

  17. Probabilistic properties of the date of maximum river flow, an approach based on circular statistics in lowland, highland and mountainous catchment

    Science.gov (United States)

    Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz

    2018-04-01

    Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.

  18. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa

    NARCIS (Netherlands)

    Rimayi, Cornelius; Odusanya, David; Weiss, Jana M.; de Boer, Jacob; Chimuka, Luke

    2018-01-01

    A quantitative assessment of pollutants of emerging concern in the Hartbeespoort Dam catchment area was conducted using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to establish the occurrence, source and distribution of 15 environmental pollutants, including 10 pharmaceuticals, 1

  19. Management of human-induced salinisation in the Berg River catchment and development of criteria for regulating agricultural land use in terms of salt generating capacity

    CSIR Research Space (South Africa)

    Jovanovic, W

    2013-04-01

    Full Text Available From previous WRC work by the same group, various needs were identified. One was to examine the effects a range of land uses may have on the production of salinity from the Sandspruit catchment. Another was to develop criteria to manage the salt...

  20. Anthropogenic factor and water quality in the rivers of Prespa Lake catchment; Antropogeniot faktor i kvalitetot na vodata vo rekite na prespanskoto slivno podrachje

    Energy Technology Data Exchange (ETDEWEB)

    Jordanoski, Momchulo; Veljanoska-Serafiloska, Elizabeta [Hydrobiological Institute, Ohrid (Macedonia, The Former Yugoslav Republic of)

    2001-07-01

    From the Rivers, which are subject of our investigation, only River Brajcinska and River Kranska are mountain rivers, while River Golema is lowland river. This has influence on water quality, which is evidently from the dates we found for the investigated parameters. Water quality moves from distinctly clear oligo trophic water (winter period), to strongly eytrophic polluted water (summer, autumn,). Great organic loading of River Golema in the summer period is evidential. Although, there are small possibilities of many investigations on this part, our obligation is to find possibilities, even to reduce some of sampling points of this project, to define the real state in long time period, so we could find appropriate conclusions and suggestions to eliminate that situation. Fields watching of the river beds and results from the laboratory investigations, shows how big is mans negligence for this natural resources. Practically, this rivers are recipients of all wastes that man made, like solid waste, communal waste water, waste water from pig farms, etc. International character of Lake Prespa enforces need of much completely and sensible engagement for reclaiming the state of the rivers inflow, in aim to protect the Lake. (Original)

  1. Seasonal rainfall predictability over the Lake Kariba catchment area

    CSIR Research Space (South Africa)

    Muchuru, S

    2014-07-01

    Full Text Available The Lake Kariba catchment area in southern Africa has one of the most variable climates of any major river basin, with an extreme range of conditions across the catchment and through time. Marked seasonal and interannual fluctuations in rainfall...

  2. The flash flood event in the catchment of the river Weisseritz (eastern Erzgebirge, Saxony) from 12.-14. August 2002 - meteorological and hydrological reasons, damage assesment and disaster managment

    Science.gov (United States)

    Goldberg, V.; Bernhofer, Ch.

    2003-04-01

    Between 12. and 14. August 2002 the region of eastern Erzgebirge (Saxony/Eastern Germany) was affected by the heaviest rainfall event recorded since beginning of the measuring period in 1883. The synoptic reason of this event was the advective precipitation due to the strong and very slowly shifting Vb-low "Ilse" combined with a noticeable topographic intensification by north-westerly winds. All stations in the catchment area of the river Weisseritz recorded new all-time records. E.g., at the meteorological station Zinnwald-Georgenfeld situated at the crest of eastern Erzgebirge a daily sum of 312 mm was measured for the 13. August. This value is close to the maximum physically possible rainfall. The intensive rainfall in the catchments of Rote Weisseritz and Wilde Weisseritz led to unexperienced heavy flash floods with large material transport and flow damages. The buffer effect of the existing dam systems was comparatively small because the reserved retaining capacity for flood protection was only about 20 percent of the total capacity. The reservoirs filled quickly due to the very high maximum inflow. So a long-time overflow of the dam system occurred with a maximum of about 300 cubic meters per second at the combined river Weisseritz through the cities of Freital and Dresden (This situation led, e.g., to the flooding of Central Railway Station in Dresden). This water flow is comparable with a medium flow rate of the river Elbe in Dresden, and it is about 300 times higher than the normal drain of the river Weisseritz in Freital! The material damages in the Weisseritz region account for several hundred millions EURO, and several causalties occurred. The damages of the University buildings in Tharandt (including one building of the Department of Meteorology) account for 15 millions EURO alone. The disaster management during the flood was not optimal. For many people, e.g. in Tharandt, there was neither an officially warning nor an organised rescue of movable goods

  3. How can we cope with the complexity of the environment? A "Learning by modelling" approach using qualitative reasoning for developing causal models and simulations with focus on Sustainable River Catchment Management

    Science.gov (United States)

    Poppe, Michaela; Zitek, Andreas; Salles, Paulo; Bredeweg, Bert; Muhar, Susanne

    2010-05-01

    The education system needs strategies to attract future scientists and practitioners. There is an alarming decline in the number of students choosing science subjects. Reasons for this include the perceived complexity and the lack of effective cognitive tools that enable learners to acquire the expertise in a way that fits its qualitative nature. The DynaLearn project utilises a "Learning by modelling" approach to deliver an individualised and engaging cognitive tool for acquiring conceptual knowledge. The modelling approach is based on qualitative reasoning, a research area within artificial intelligence, and allows for capturing and simulating qualitative systems knowledge. Educational activities within the DynaLearn software address topics at different levels of complexity, depending on the educational goals and settings. DynaLearn uses virtual characters in the learning environment as agents for engaging and motivating the students during their modelling exercise. The DynaLearn software represents an interactive learning environment in which learners are in control of their learning activities. The software is able to coach them individually based on their current progress, their knowledge needs and learning goals. Within the project 70 expert models on different environmental issues covering seven core topics (Earth Systems and Resources, The Living World, Human population, Land and Water Use, Energy Resources and Consumption, Pollution, and Global Changes) will be delivered. In the context of the core topic "Land and Water Use" the Institute of Hydrobiology and Aquatic Ecosystem Management has developed a model on Sustainable River Catchment Management. River systems with their catchments have been tremendously altered due to human pressures with serious consequences for the ecological integrity of riverine landscapes. The operation of hydropower plants, the implementation of flood protection measures, the regulation of flow and sediment regime and intensive

  4. Impacts of Rainfall and Land Use on Sediment Regime in a Semi-Arid Region: Case Study of the Wuqi Catchment in the Upper Beiluo River Basin, China

    NARCIS (Netherlands)

    Zhu, J.; Gao, P.; Geissen, V.; Maroulis, J.; Ritsema, C.J.; Mu, X.; Zhao, G.

    2015-01-01

    The middle reaches of the Yellow River Basin transport the vast majority of sediment (>85% of the basin's total available sediment load), which has had profound effects on the characteristics of the middle and lower reaches of the Yellow River. With recent land use and land cover change, the

  5. Cesium-137 global fallout into the Ob river basin and its influence on the Kara sea contamination - Weapons fallout cesium-137 in the Ob' catchment landscapes and its influence on radioactive contamination of the Kara sea: Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Semenkov, Ivan N.; Miroshnikov, Alexey Yu. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences (Russian Federation)

    2014-07-01

    There are several high level {sup 137}Cs anomaly zones detected in the deposits of the SW part of the Kara Sea. These anomaly zones were formed in the Ob' and the Enisey river estuaries due to the geochemical 'river-sea' boarder barrier. Level of radiocaesium specific activity reaches 120 Bq*kg{sup -1} in the deposits from these zones. Radiochemical enterprises occur in the both river basins. Their activity results in caesium-137 transfer into the river net. Vast area is contaminated by {sup 137}Cs after nuclear weapons in Semipalatinsk test-site and Kyshtym disaster in the Ob' river basin. Moreover, caesium comes to the Ob' and the Enisey river basins with global atmospheric fallout. The inflow of global fallout caesium-137 to the catchments is 660 kCi (320 kCi including radioactive decay) that is 4 times higher than {sup 137}Cs emission due to Fukushima disaster. Therefore, these river basins as any other huge catchment are an important sources of radioactive contamination of the Arctic Ocean. The aim of our research is to study behavior of global fallout caesium-137 in the landscapes of the Ob and the Enisey river basins. We studied caesium-137 behavior on the example of first order catchments in taiga, wetland, forest-steppe, steppe, and semi-arid landscapes. Geographic information system (GIS) was made. The tenth-order catchments (n=154, Horton coding system) shape 20-groups due to topsoil properties controlling cesium mobility. Eleven first-order basins, characterized 7 groups of tenth order catchments, were studied. And 700 bulk-core soil samples were collected in 2011-2013. Cesium runoff is calculated for 3 first-order river basins in taiga and forest-steppe landscapes. Storage of global fallout caesium-137 declines from undisturbing taiga first-order river basin (90% of cumulative fallout including radioactive decay)> arable steppe and fores-steppe (70 - 75%)> undisturbing wetland (60%). Caesium-137 transfer is high in arable lands

  6. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    Science.gov (United States)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found

  7. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    Science.gov (United States)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating

  8. How old is upland catchment water?

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  9. Environmental impact analysis of the Odra River catchment. Project report for phase 1 and programme of work for phase II. Project 3.1

    OpenAIRE

    Arnesen, R.T.; Ibrekk, H.O.; Holtan, H.; Skacel, A.; Svrcula, Jiri; Brezina, P.

    1993-01-01

    The Odra River basin in the Chech Republic is heavily polluted by discharges of waste water from industries, muncipalities and agriculture. The level of waste water treatment is low. Due to discharges of nutrients, organic matter, heavy metals and micro pollutants the ambient water quality does not meet Chech water quality standards. The report outlines the environmental problems in the region, assesses the existing environmental data and specifies needed data to develop a water pollution aba...

  10. Water Pollution abatement programme, The Czech republic Pollution abatement analysis and strengthening of water resources management, Odra River Catchment, phase II

    OpenAIRE

    Dagestad, K.; Ratnaweera, H.; Ibrekk, H.O.; Hansen, J.H.; Tridlica, L.; Brezina, P.; Skacel, A.

    1995-01-01

    Odra river is extremely polluted by organic matter, nitrates, ammonia, phosphorus, bacteria, particles, heavy metals and other micro pollutants from municipalities, industries and agriculture. The poor water quality severely affects the ecology and represents a risk to human health. The water has a very limited value of use. This report presents an abatement programme with both technical and accompanying measures. In order to identify the major polluters several multi criteria analysis have b...

  11. Analysis of bio-obtainable endocrine disrupting metals in river water and sediment, sewage influent/effluent, sludge, leachate, and concentrated leachate, in the irish midlands shannon catchment.

    LENUS (Irish Health Repository)

    Reid, Antoinette M

    2009-01-01

    The application of an acid digestion and subsequent solid-phase extraction (SPE) procedure were implemented as preliminary treatments prior to quantifying the levels of potentially endocrine disrupting metals (EDMs) in a variety of solid and liquid matrices. These included (solid) river sediment, leachate sediment and sewage sludge and also (liquid) river water, landfill leachate, concentrated leachate, sewage influent, and sewage effluent, sampled in the Irish Midlands. The total concentrations of cobalt (Co), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and manganese (Mn), after extraction and preconcentration, were determined by atomic absorption spectroscopy (AAS). Mercury (Hg) in sediment and sludge was determined using cold-vapour atomic fluorescence spectroscopy (AFS). For sewage sludge maximum values (mg\\/kg(dw)) of 4700 Ni, 1642 Mn, 100.0 Cd, 3400 Zn, 36.70 Co, 750.0 Pb, 485.8 Cr, and 1003 Cu were determined whilst in leachate sediment, maximum values (mg\\/kg(dw)) of 32.10 Ni, 815.0 Mn, 32.78 Cd, 230.3 Zn, 26.73 Co, 3525 Pb, 124.9 Cr, and 50.13 Cu were found. Over several months, the data showed elevated levels in sewage influents, effluents, and sludges compared to a battery of adjacent river water samples and corresponding sediments. There was a definite trend for target values for sediments to be exceeded, while intervention values were only exceeded for cadmium. Overall the pattern in terms of concentration was sewage > leachate > river matrices. A nonparametric assessment of the effect of sewage treatment method on median metal levels in sludge revealed statistically significant differences at the 95% level of confidence for Co, Cr, and Hg and at the 90% level of confidence for Cd.

  12. THE IMPACT OF SEWAGE TREATMENT PLANT ON THE AMOUNT OF HEAVY METALS IN WATER OF THE SUPRAŚL RIVER CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2016-01-01

    Full Text Available The main purpose of this study was to evaluate the effect of treated sewage flowing from sewage treatment plants located in the basin of the Supraśl river on the concentration and load of metals in river waters and its main tributaries. Three measuring- control points were chosen, on the river and its tributaries, located near Gródek, Sokółka and Dobrzyniewo. Selected points were located behind the discharge of treated wastewater from sewage treatment plants respectively – Gródek, Sokółka and Bialystok. The samples of treated sewage and water were collected in a period from May to November, once a month in 2014. Each individual sample was examined for the content of dissolved form of the following metals: Pb2+, Cu2+, Cd2+, Ni2+, Zn2+, Fe2+/3+. After taking into account water flow of the Biała, Sokołda and Supraśl in every month, metals loads expressed in mg·h-1, transported by the Supraśl and its tributaries waters were calculated. In the study monthly metals loads discharged into the Biała, Sokołda and Supraśl by sewage treatment plants in Białystok, Sokółka and Gródek were also calculated. The studies have shown the impact of metals load in treated wastewater on metals loads in waters of studied rivers based on the obtained correlation. Most of the searched relations between loafs of Pb2+ – r = 0,88; Cd2+ – r = 0,98; Fe2+/3+ – r = 0,45; Ni2+ – r = 0,55; Zn2+ – r = 0,86 were obtained in case of wastewater treatment plant in Gródek and Supraśl waters. In the study period we observed a diversity in concentration of Cd2+, Fe2+/3+, Ni2+ and Zn2+ in treated sewage and in river waters, which affected loads of this metals.

  13. Catchment-coastal zone interaction based upon scenario and model analysis: Elbe and the German Bight case study

    NARCIS (Netherlands)

    Hofmann, J.; Behrendt, H.; Gilbert, A.J.; Janssen, R.; Kannen, A.; Kappenberg, J.W.; Lenhart, H.; Lise, W.; Nunneri, C.; Windhorst, W.

    2005-01-01

    This paper presents a holistic strategy on the interaction of activities in the Elbe river basin and their effects on eutrophication in the coastal waters of the German Bight. This catchment-coastal zone interaction is the main target of the EUROCAT (EUROpean CATchments, catchment changes and their

  14. Streamflow variation of forest covered catchments

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  15. Using modified multiple phosphorus sensitivity indices for mitigation and management of phosphorus loads on a catchment level

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2013-01-01

    Full Text Available The relationships between river and lake phosphorus sensitivity, environmental drivers and catchment characteristics within the upper Olifants River and Lake Loskop were studied over a period of four years to come up with mitigation and management...

  16. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe

    Science.gov (United States)

    Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy

    2017-08-01

    The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.

  17. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.W.; Uhlenbrook, S.

    2013-01-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches

  18. WATER QUALITY EVALUATION OF CRIŞUL ALB AND CRIŞUL NEGRU RIVERS CATCHMENTS, FROM CODRU-MOMA MOUNTAINS (WEST OF ROMANIA, USING BENTHIC INVERTEBRATES COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Andreea VARGA

    2010-01-01

    Full Text Available Water quality evaluation of the two watersheds involved the collection of thirteen samples from the tributaries of Crişul Alb and Crişul Negru rivers. The samples were collected in june 2010 with a benthic net, which had the mesh size of 250 µm, by disturbing the substrate, being thus qualitative samples. To get an overview, a series of physical-chemical parameters (water temperature, pH, oxygen, conductivity, cyanide, nitrates, nitrites, phosphates was studied in parallel with the study of benthic community. In most of the sampling points the major group of benthic macroinvertebrates were found and in some EPT group (Ephemeroptera, Plecoptera, Trichoptera prevailed even, which is known as a clean freshwater group, sensitive to pollution and human impact.

  19. Evaluation of the impact of farming activity in the water quality in surface catchment areas in hydrographic basin from Mogi-Guacu and Pardo Rivers, Sao Paulo

    International Nuclear Information System (INIS)

    Katsuoka, Lidia

    2001-01-01

    This study was performed in 10 small basins located in the Mogi-Guacu and Pardo Rivers, in the Northeastern area of Sao Paulo State. The land belonging of these basins is used to grow row crops of potato, coffee and pasture areas. This study aimed to characterize small basins, to evaluate water and sediment quality and to correlate basic aspects of climatology, hydrology, toxicology and land uses to the physical, chemical and toxicological characteristics of the water in the streams. Geographic Information System (GIS) was used as a tool of evaluation of land uses and risk assessment was performed for a final evaluation. The samplings were carried out from June/1999 to June/2000 in the 13 collecting points. It was verified that water quality is dependent upon the rainy and dry periods and the harvest periods. In the beginning of rainy periods were found large concentrations of metals and traces of herbicides leachate from soil and, in the dry period the same event was verified, caused by concentration of the water. In August, September and October phosphorus concentrations were very low getting an improvement in the water quality. Al, Fe and Mn are majority elements of chemical compositions of rocks of the study area, and exceed the Brazilian Guidelines. The stream waters were classified as 44% oligotrophic, 42% mesotrophic and 14% eutrophic. Jaguari-Mirim River presented the largest values of Trophic Index (TI). Sediment analyses showed a great variety of organic compounds coming from anthropogenic activities (industrial and farming activity). Toxicity tests with hyalella azteca in the sediments presented toxicity for sediments from Sao Joao da Boa Vista and Divinolandia. A methodology was developed for organochlorinated pesticides by gas chromatography coupled to mass spectrometry (GCMS). The presence of organochlorinated pesticides was not verified. (author)

  20. Sediment Size Distribution at Three Rivers with Different Types of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    sediment size distribution based on land use is very crucial in river maintenance. ... a basis for river catchment management study and can be used by river management .... small. In this case, the difference between upstream and downstream ...

  1. Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in upper Vistula Basin, Poland and lowland catchment in South Carolina, U.S.A

    Science.gov (United States)

    A. Walega; A. Cupak; D.M. Amatya; E. Drozdzal

    2017-01-01

    The aim of the study is to compare direct outflow from storm events estimated using modifications of original SCS-CN procedure. The study was conducted in a mountainous catchment of Kamienica River and a highland catchment draining Stobnica River located in Upper Vistula water region, both in Poland, and a headwater lowland watershed WS80 located at the Santee...

  2. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    Science.gov (United States)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  3. Response of floodplain sedimentation to catchment disturbances in different environments

    Science.gov (United States)

    Notebaert, B.; Houbrechts, G.; Verstraeten, G.; Petit, F.

    2009-04-01

    Holocene floodplain sediments are an important environmental archive, that can be accesed for reconstructing the past landscape dynamics either qualitatively (e.g. palynology) and quantitatively (e.g. sediment budgeting). In this study Holocene alluvial sediment deposition in two contrasting Belgian catchments was quantified and dated: the Lienne (148 km2) in the Ardennes massif and the Dijle (750 km2) in the loess region. These catchments experienced a comparable Holocene climatic variation, but differ in topography and geology with highest relief energy in the Lienne catchment. Land use history also differs with high land use intensities in the Dijle catchment since Roman times, but at least since the Middle Ages there were also large deforestations in the Lienne catchment. Detailed cumulative Holocene sediment deposition was assessed for each catchment using more then 1000 hand augerings. Detailed radiocarbon dating of fluvial deposits was performed in the Dijle catchment, while iron slag was used as a tracer for sediments deposited after 1350 AD in the Lienne catchment. Results show that sediment deposition is much larger in the Dijle catchment (~4.5 Mg ha-1 catchment area) then in the Lienne catchment (~0.2 Mg ha-1 catchment area). Dating results from the Dijle catchment show an increase of sediment deposition in the late Holocene, first starting in the colluvial valleys and later on prograding towards the main valleys. Variations in sedimentation rates can clearly be related to anthropogenous land use pressure, and the majority of the sediments found in colluvial and alluvial valleys were deposited in the last 4000 years, and in many cases even in the last 1000 years. Variations in sediment deposition within the catchment can partially be explained by differences in river valley physical settings (mainly valley slope), while in other cases hill slope sediment delivery (upstream erosion, connectivity between hill slopes and the river system) is the explaining

  4. GEODIVERSITY AUDIT AND ACTION PLAN FOR UPPER CATCHMENT AREA OF GERSA RIVER (RODNEI MOUNTAINS, BISTRIȚA-NĂSĂUD COUNTY, ROMANIA

    Directory of Open Access Journals (Sweden)

    Ioan Bâca

    2015-08-01

    Full Text Available Geodiversity Audit is an inventory and assessment process, wich represents the basis for elaborating the Geoconservation Action Plan. The geodiversity includes the abiotic factors (rocks, minerals, soils, landforms that sustain the life on the Earth, and owns economic, social, environmental, tourist and educational functions. This study proposes an audit of geodiversity from Gersa catcment area and an Action Plan for future planning and tourist valorization projects by local and county authorities. Gersa Valley is a geomorphological subunit located in the southern part of Rodnei Mountains (Bistrița-Năsăud County and contains in the superior sector some landforms with high degree of attractiveness, such as Izvorul Tăușoarelor Cave, Izvorul Calului Gorge and Bârlea Massif. By their configuration these landforms has a great potential for engaging in scientific and recreational activities (caving, hiking, gorge walking, canyoning, mountain biking. Keywords: geodiversity, geologic heritage, geoconservation, geosite, action plan, Rodnei Mountains, Gersa River, Izvorul Tăușoarelor Cave, speotourism, activ leisure

  5. THE CONTENT OF HEAVY METALS IN BOTTOM SEDIMENTS OF THE WATERCOURSE IN AGRICULTURAL CATCHMENT ON THE EXAMPLE OF THE RIVER GOWIENICA

    Directory of Open Access Journals (Sweden)

    Kamil Szydłowski

    2017-08-01

    Full Text Available Bottom sediments samples for chemical analysis were derived from Gowienica river and its tributaries. Samples were taken at 2014 and 2015 years from established sampling points on differently managed and utilized adjacent areas. Total content of heavy metals, i.e.: Cd, Co, Cr, Ni, Pb and Hg were measured in collected material. The results indicate that concentrations of lead, nickel, chromium and mercury exceeded level below which no harmful impact of pollution (TEL is noted, but none of the analyzed heavy metals exceeded the limit (PEL above which harmful effects of pollution on organisms can be observed. However, according to other classification (LAW analyzed sediments were located between two classes (deposits unpolluted - Class I, and deposits unpolluted / moderately polluted (class I-II. However, chemical analysis showed the various points exceeded the natural cobalt concentration (geochemical background; 2.0 mg⋅kg-1 for aquatic sediments in Poland. The reasons of cobalt concentration exceedance in natural sediments, among others, were surface runoff from fields and meadows in the form of fertilizers, plant protection products and the domestic waste water.

  6. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology

    Science.gov (United States)

    Malusà, Marco G.; Wang, Jiangang; Garzanti, Eduardo; Liu, Zhi-Chao; Villa, Igor M.; Wittmann, Hella

    2017-10-01

    Detrital thermochronology is often employed to assess the evolutionary stage of an entire orogenic belt using the lag-time approach, i.e., the difference between the cooling and depositional ages of detrital mineral grains preserved in a stratigraphic succession. The impact of different eroding sources to the final sediment sink is controlled by several factors, including the short-term erosion rate and the mineral fertility of eroded bedrock. Here, we use apatite fertility data and cosmogenic-derived erosion rates in the Po river catchment (Alps-Apennines) to calculate the expected percentage of apatite grains supplied to the modern Po delta from the major Alpine and Apenninic eroding sources. We test these predictions by using a cutting-edge dataset of trace-element and Nd-isotope signatures on 871 apatite grains from 14 modern sand samples, and we use apatite fission-track data to validate our geochemical approach to provenance discrimination. We found that apatite grains shed from different sources are geochemically distinct. Apatites from the Lepontine dome in the Central Alps show relative HREE enrichment, lower concentrations in Ce and U, and higher 147Sm/144Nd ratios compared to apatites derived from the External Massifs. Derived provenance budgets point to a dominant apatite contribution to the Po delta from the high-fertility Lepontine dome, consistent with the range independently predicted from cosmonuclide and mineral-fertility data. Our results demonstrate that the single-mineral record in the final sediment sink can be largely determined by high-fertility source rocks exposed in rapidly eroding areas within the drainage. This implies that the detrital thermochronology record may reflect processes affecting relatively small parts of the orogenic system under consideration. A reliable approach to lag-time analysis would thus benefit from an independent provenance discrimination of dated mineral grains, which may allow to proficiently reconsider many

  7. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    Science.gov (United States)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent

  8. Risk assessment of human exposure to polycyclic aromatic hydrocarbons via shrimp (Macrobrachium felicinum) consumption along the Imo River catchments, SE Nigeria.

    Science.gov (United States)

    Dosunmu, Miranda I; Oyo-Ita, Inyang O; Oyo-Ita, Orok E

    2016-12-01

    Shrimp species (Macrobrachium felicinum) collected from estuarine mangrove area of the Imo River is an important route of exposure to polycyclic aromatic hydrocarbons (PAHs). The estuarine associated sediment (EAS) composited sample showed higher TPAH, ΣAlkyl, ΣPAH carc and ΣPAH EPA concentrations (550.84, 172.36, 413.17 and 482.11 ng/g dry weight-dw) than their mean concentrations in shrimp samples (509.39 ± 354.21, 31.38 ± 18.49, 52.10 ± 1.35 and 460.06 ± 330.76 ng/g wet weight-ww), respectively. Among the individual PAHs congeners, phenanthrene was the dominant species detected in the EAS accounting for 21.02 % of the total PAH load and the decreasing order of 3- > 2- > 5- > 4- > 6-ring contamination was found. A different pattern predominated by naphthalene was observed for the shrimp species, suggesting that the organisms have different selectivity for a range of PAHs congeners. These variations may be attributed to different degree of bioavailability of these compounds, characteristic sandy lithology of the EAS and the protective capacity of soot particles associated with liquid fossil fuel combustion masking the uptake of high molecular weight PAHs by the organisms. Cancer risk associated with consumption of shrimps in the region was assessed using estimated daily intake (EDI) and compared with standards. The EDI values for naphthalene, benzo(a)pyrene and ∑PAH carc were lower than the USEPA benchmarks and EFSA levels of concern values for adult and children population, suggesting low probability of developing cancer.

  9. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    Science.gov (United States)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly

  10. Modeling of facade leaching in urban catchments

    Science.gov (United States)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  11. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  12. Measurement of the present activity concentration in the water of the Danube river (determination of Sr 89, Sr 90 and Cs 137 and gamma spectroscopy). Coordinated programme on radiological and environmental protection studies in the Danube river catchment area

    International Nuclear Information System (INIS)

    Tschurlovits, M.

    1983-07-01

    A monitoring system was developed which fulfills, as a compromise, a number of requirements. These are: sufficient sensitivity to assess the per caput and collective dose from water use in the Danube river; reasonable effort to carry out these measurements. The dose results mainly from natural radionuclides, although artificial radionuclides were also detected, and found to be more than two magnitudes lower than the natural external background. The origin of the artificial radionuclides was identified clearly as to be from nuclear fallout, although NPP were at least partly in operation upstream in the investigation period. This conclusion is proved by clear seasonal effects and simple constraints, e.g., the low activity actually released by NPP. The system can also be useful for assessment of radioecological parameters, e.g., the concentration of radionuclides in fish

  13. Flood routing in ungauged catchments using Muskingum methods ...

    African Journals Online (AJOL)

    Flood-routing techniques are utilised to estimate the stages, or rates of flow, in order to predict flood wave propagation along river reaches. Models can be developed for gauged catchments and their parameters related to physical characteristics such as slope, reach width, reach length so that the approach can be applied ...

  14. Probability based hydrologic catchments of the Greenland Ice Sheet

    Science.gov (United States)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  15. Sediment quality in the River Clyde catchment

    OpenAIRE

    Lass-Evans, Solveigh; Fordyce, Fiona

    2012-01-01

    Chemical pollution from past industrial development poses current and future environmental threats, as many substances are toxic in high concentrations, and could have longterm implications for ecosystems and human health.

  16. Representing macropore flow at the catchment scale: a comparative modeling study

    Science.gov (United States)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  17. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  18. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper reports on a major UK initiative to address deficiencies in understanding the hydro-ecological response of groundwater-dominated lowland catchments. The scope and objectives of this national programme are introduced and focus on one of three sets of research basins – the Pang/Lambourn Chalk catchments, tributaries of the river Thames in southern England. The motivation for the research is the need to support integrated management of river systems that have high ecological value and are subject to pressures that include groundwater abstraction for water supply, diffuse pollution, and land use and climate change. An overview of the research programme is provided together with highlights of some current research findings concerning the hydrological functioning of these catchments. Despite the importance of the Chalk as a major UK aquifer, knowledge of the subsurface movement of water and solutes is poor. Solute transport in the dual porosity unsaturated zone depends on fracture/matrix interactions that are difficult to observe; current experimental and modelling research supports the predominance of matrix flow and suggests that slow migration of a time-history of decades of nutrient loading is occurring. Groundwater flows are complex; catchments vary seasonally and are ill-defined and karst features are locally important. Groundwater flow pathways are being investigated using natural and artificial geochemical tracers based on experimental borehole arrays; stream-aquifer interaction research is using a combination of geophysics, borehole array geochemistry and longitudinal profiles of stream flow and solutes. A complex picture of localised subsurface inflows, linked to geological controls and karst features, and significant longitudinal groundwater flow below the river channel is emerging. Management implications are discussed. Strategies to control surface application of nutrients are expected to have little effect on groundwater

  19. Catchment Storage and Transport on Timescales from Minutes to Millennia

    Science.gov (United States)

    Kirchner, J. W.

    2017-12-01

    Landscapes are characterized by preferential flow and pervasive heterogeneity on all scales. They therefore store and transmit water and solutes over a wide spectrum of time scales, with important implications for contaminant transport, weathering rates, and runoff chemistry. Theoretical analyses predict, and syntheses of age tracer data confirm, that waters in aquifers are older - often by orders of magnitude - than in the rivers that flow from them, and that this disconnect between water ages arises from aquifer heterogeneity. Recent theoretical studies also suggest that catchment transit time distributions are nonstationary, reflecting temporal variability in precipitation forcing, structural heterogeneity in catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. In recent years, long-term isotope time series have been collected in many research catchments, and new technologies have emerged that allow quasi-continuous measurements of isotopes in precipitation and streamflow. These new data streams create new opportunities to study how rainfall becomes streamflow following the onset of precipitation. Here I present novel methods for quantifying the fraction of current rainfall in streamflow across ensembles of precipitation events. Benchmark tests with nonstationary catchment models demonstrate that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. Applications using high-frequency tracer time series from several experimental catchments demonstrate the utility of the new approach outlined here.

  20. Estimating retention potential of headwater catchment using Tritium time series

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe

    2018-06-01

    Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and

  1. Catchment areas for public transport

    DEFF Research Database (Denmark)

    Andersen, Jonas Lohmann Elkjær; Landex, Alex

    2008-01-01

    In the planning of public transport catchment areas of stops are often included to estimate potential number of travellers. There are different approaches to GIS-based catchment area analyses depending on the desired level of detail. The Circular Buffer approach is the fundamental, but also....../from stations. The article also shows how the refinement of the Service Area approach with additional time resistance results in smaller catchment areas when the feeder routes cross stairs. It is concluded that GIS-based catchment area analyses are a multiple decision support tool for planning of public...... transport where the level of detail can be suited to the purpose....

  2. Spatial patterns of lacustrine fish assemblages in a catchment of the Mississippi Alluvial Valley

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Goetz, Daniel B.; Kroger, Robert

    2014-01-01

    In the alluvial valley of the lower Mississippi River, floodplain lakes form isolated aquatic fragments that retain differing degrees of connectivity to neighbouring rivers. Within these floodplain lakes it was hypothesized that fish species composition, relative abundance, and biodiversity metrics would be shaped largely by aquatic connectivity within a catchment.

  3. RESEARCH ON HEAVY METAL POLLUTION OF THE RIVER MUREŞ IN HUNEDOARA COUNTY DUE TRIBUTARIES AFFECTED BY HUMAN ACTIVITIES, INDUSTRIAL AND MINING

    Directory of Open Access Journals (Sweden)

    SZOLLOSI-MOŢA ANDREI

    2014-05-01

    Full Text Available Mureş crosses over a length of 105 km, a broad tectonic corridor between mountains Şureanu, Poiana Rusca Mountains and the Apuseni Mountains in the north. Hunedoara County has significant quantities of mineral resources, mining specific activities effectively represents one of the main economic sectors. Ore processing gave rise to significant amounts of mining waste. Tailings dams and waste dumps obtained from ore processing in preparation plants are large and have led to changes in the morphology of the area. The purpose of this study is to examine the degree of pollution of the river Mures in Hunedoara county, with heavy metals due to various human activities. For monitoring and evaluation in terms of water quality of the river Mures and studying the degree and effects of pollution were collected and analyzed water samples from Mures River and tributaries from the main mining areas, such Certej. Samples were analyzed by emission spectrometry with inductively coupled plasma and the results of measurements allowed us to assess the degree of pollution of the aquatic environment and sediments . The effects of mining waste on the environment persists for a long time , even after the operation closed. Rehabilitation mining areas and those adjacent to improve the quality of life, as a prerequisite for sustainable development.

  4. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  5. In Hot Water. A study on sociotechnical intervention models and practices of water use in smallholder agriculture, Nyanyadzi catchment, Zimbabwe

    NARCIS (Netherlands)

    Bolding, J.A.

    2004-01-01

    This study focuses on intervention processes in smallholder agriculture in the Nyanyadzi river catchment, located in Chimanimani district, Manicaland Province Zimbabwe. In particular it concerns itself with sociotechnical interventions that were implemented by Agritex, the local extension and

  6. Unravelling mixed sediment signals in the floodplains of the Rhine catchment using end member modelling of grain size distributions

    NARCIS (Netherlands)

    Erkens, G.; Toonen, W.H.J.; Cohen, K.M.; Prins, M.A.

    2013-01-01

    During sediment transport downstream, river systems mix sediments from different parts of their catchments. During deposition, sediments are often unmixed again in different depositional environments (facies). During fluvial transport, between erosion and deposition of sediment, the sediment is

  7. Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos

    OpenAIRE

    Gourdin , E.; Huon , S.; Evrard , O.; Ribolzi , O.; Bariac , T.; Sengtaheuanghoung , O.; Ayrault , S.

    2015-01-01

    Tropical rivers of Southeast Asia are characterized by high specific carbon yields and supplies to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. The partly cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, ...

  8. Hydro-economic modelling in mining catchments

    Science.gov (United States)

    Ossa Moreno, J. S.; McIntyre, N.; Rivera, D.; Smart, J. C. R.

    2017-12-01

    Hydro-economic models are gaining momentum because of their capacity to model both the physical processes related to water supply, and socio-economic factors determining water demand. This is particularly valuable in the midst of the large uncertainty upon future climate conditions and social trends. Agriculture, urban uses and environmental flows have received a lot of attention from researchers, as these tend to be the main consumers of water in most catchments. Mine water demand, although very important in several small and medium-sized catchments worldwide, has received less attention and only few models have attempted to reproduce its dynamics with other users. This paper describes an on-going project that addresses this gap, by developing a hydro-economic model in the upper Aconcagua River in Chile. This is a mountain catchment with large scale mining and hydro-power users at high altitudes, and irrigation areas in a downstream valley. Relevant obstacles to the model included the lack of input climate data, which is a common feature in several mining areas, the complex hydrological processes in the area and the difficulty of quantifying the value of water used by mines. A semi-distributed model developed within the Water Evaluation and Planning System (WEAP), was calibrated to reproduce water supply, and this was complemented with an analysis of the value of water for mining based on two methods; water markets and an analysis of its production processes. Agriculture and other users were included through methods commonly used in similar models. The outputs help understanding the value of water in the catchment, and its sensitivity to changes in climate variables, market prices, environmental regulations and changes in the production of minerals, crops and energy. The results of the project highlight the importance of merging hydrology and socio-economic calculations in mining regions, in order to better understand trade-offs and cost of opportunity of using

  9. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    International Nuclear Information System (INIS)

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  10. Environmental care in agricultural catchments: Toward the communicative catchment

    Science.gov (United States)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  11. The Influence of temporal sampling regime on the WFD classification of catchments within the Eden Demonstration Test Catchment Project

    Science.gov (United States)

    Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim

    2014-05-01

    A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.

  12. Land use and cover changes in the Likangala catchment of the Lake ...

    African Journals Online (AJOL)

    High soil losses of 100t ha–1 yr–1 were estimated in the upper reaches of the catchment. High rainfall kinetic energy and poor vegetation cover were major determinants of soil loss. Sediment yield was high (374t km–2 yr–1) in the more degraded catchment of the Likangala River, compared to 315t km–2 yr–1 in the less ...

  13. Modeling of Faecal Contamination in Water from Catchment to Shellfish Growing Area

    OpenAIRE

    Bougeard, Morgane; Le Saux, Jean-claude; Perenne, Nicolas; Le Guyader, Soizick; Pommepuy, Monique

    2009-01-01

    During rainstorms, watersheds can introduce large amounts of faecal pollution into the rivers and sea, leading to shellfish contamination. In this study, we assessed Escherichia coli fluxes from a catchment, and their impact on estuarine water quality, using two assembled models. For the catchment, the agro-hydrological model SWAT was implemented integrating land uses, soil, topography, rainfall and other climatic data on Daoulas watershed (France). Initially, the SWAT model was calibrated an...

  14. Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.

    Science.gov (United States)

    Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram

    2017-08-19

    Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.

  15. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  16. A simple distributed sediment delivery approach for rural catchments

    Science.gov (United States)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The

  17. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments

    Science.gov (United States)

    Magin, Katrin; Somlai-Haase, Celia; Schäfer, Ralf B.; Lorke, Andreas

    2017-11-01

    Inland waters play an important role in regional to global-scale carbon cycling by transporting, processing and emitting substantial amounts of carbon, which originate mainly from their catchments. In this study, we analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from the catchments in a temperate stream network. The analysis included more than 200 catchment areas in southwest Germany, ranging in size from 0.8 to 889 km2 for which CO2 evasion from stream surfaces and downstream transport with stream discharge were estimated from water quality monitoring data, while NPP in the catchments was obtained from a global data set based on remote sensing. We found that on average 13.9 g C m-2 yr-1 (corresponding to 2.7 % of terrestrial NPP) are exported from the catchments by streams and rivers, in which both CO2 evasion and downstream transport contributed about equally to this flux. The average carbon fluxes in the catchments of the study area resembled global and large-scale zonal mean values in many respects, including NPP, stream evasion and the carbon export per catchment area in the fluvial network. A review of existing studies on aquatic-terrestrial coupling in the carbon cycle suggests that the carbon export per catchment area varies in a relatively narrow range, despite a broad range of different spatial scales and hydrological characteristics of the study regions.

  18. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  19. Zoning of the White Sea catchment area by the degree of continental runoff influence on the marine environment

    Directory of Open Access Journals (Sweden)

    Bulavina A. S.

    2018-03-01

    Full Text Available Methodologies for the integral evaluation of the potential impact of continental runoff on the marine aquatic environment have been developed and tested in relation to the catchment area of the White Sea. Integral indicators of pollution potential (PP and self-purification capacity (SPC of the river waters have been calculated within the boundaries of the hydrologic areas. The following indicators have been used to calculate the PP: the volume of wastewater and the population density in the catchment area (anthropogenic components of pollution, sediment load (a natural component of pollution. Such natural settings of the catchment as the lake percentage, woodiness and the role of topography in self-purification of rivers have been used to calculate the SPC. The quality of river waters, entering the sea, is the result of the ratio of the proposed integrated indicators. On the basis of the quantitative ratios of PP and SPC, the zoning of the catchment area according to the degree of the negative impact of river waters on water quality in the White Sea has been performed. The resulting zoning scheme is demonstrated as a holistic picture, representing a complex of natural-economic factors on the river catchments of the White Sea basin. It has been revealed that river runoff from a considerable part of the catchment area has not a significant negative impact on the water quality on the White Sea. The greatest pollution effect on the waters of the White Sea has the Northern Dvina River and the Niva River. The obtained data are well correlated with the data of hydrochemical observations in the bays of the White Sea. The objectivity of integrated assessment has been provided by the base on a large number of field data and the exception of the indicators that have not quantitative expression. The obtained results can be used to develop scientifically valid environmental programmes and to plan industrial development in the catchment area.

  20. Yield-reliability analysis and operating rules for run-of-river ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... Location of Siloam Village in A80A quaternary catchment. CASE STUDY AREA. Siloam Village falls under the quaternary catchment A80A of the Nzhelele River Catchment which is located in the Limpopo. Province of South ..... This enables allocation of more water to domestic users during times of high ...

  1. Scale and legacy controls on catchment nutrient export regimes

    Science.gov (United States)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  2. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    Science.gov (United States)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high

  3. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. © 2017 John Wiley & Sons Ltd.

  4. Morfometria de microbacias do Córrego Rico, afluente do Rio Mogi-Guaçu, Estado de São Paulo, Brasil Morphometric measures of Córrego Rico catchments, Mogi-Guaçu River, State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Tarlé Pissarra

    2010-08-01

    Full Text Available Este trabalho teve como objetivo avaliar as características morfométricas das microbacias (2ª, 3ª, 4ª e 5ª ordens de magnitude da bacia hidrográfica do córrego Rico, sub-bacia do Rio Mogi-Guaçu, localizada na região administrativa de Ribeirão Preto, Estado de São Paulo, Brasil. Para tanto, foram determinados os parâmetros físicos e a configuração topográfica natural do sistema de drenagem. Os procedimentos para a obtenção dos dados foram fundamentados em técnicas de sensoriamento remoto e geoprocessamento. A partir da vetorização das cartas topográficas correspondentes à área de estudo, realizou-se a análise morfométrica quanto às características dimensionais, do padrão de drenagem e do relevo no sistema de informação geográfica ArcView. A microbacia é considerada de sexta ordem de magnitude, com área estimada de 542 km², com 85 microbacias de segunda ordem, 22 de terceira, sete de quarta ordem e duas de quinta. Utilizando o critério geométrico, na disposição fluvial das sub-bacias de cabeceiras observou-se a predominância dos modelos dendríticos e subdendríticos, enquanto a jusante predominava o modelo subparalelo, respectivamente, nas áreas de ocorrências dos arenitos Bauru e rochas efusivas básicas.This study had as its objective to evaluate the morphometric characteristics of the catchments of the Córrego Rico watershed, the sub-basin of the Mogi-Guaçu River, located in the administrative region of Ribeirão Preto, the State of São Paulo, Brazil, in order to measure physical parameters and topographical features of the natural drainage system. The procedures for obtaining the data were all based on remote sensing and geographic information systems. The topographic maps corresponding to the study area were extracted for analysis in the geographical information systems ArcView of the dimensional characteristics of the drainage and relief patterns. The watershed is considered a sixth order of

  5. The influence of model parameters on catchment-response

    International Nuclear Information System (INIS)

    Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.

    2002-01-01

    This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)

  6. Hydrological impacts of urbanization at the catchment scale

    Science.gov (United States)

    Oudin, Ludovic; Salavati, Bahar; Furusho-Percot, Carina; Ribstein, Pierre; Saadi, Mohamed

    2018-04-01

    The impacts of urbanization on floods, droughts and the overall river regime have been largely investigated in the past few decades, but the quantification and the prediction of such impacts still remain a challenge in hydrology. We gathered a sample of 142 catchments that have a documented increase in urban areas over the hydrometeorological record period in the United States. The changes in river flow regimes due to urban spread were differentiated from climate variability using the GR4J conceptual hydrological model. High, low and mean flows were impacted at a threshold of a 10% total impervious area. Moreover, the historical evolution of urban landscape spatial patterns was used to further detail the urbanization process in terms of extent and fragmentation of urban areas throughout the catchment and to help interpret the divergent impacts observed in streamflow behaviors. Regression analysis pointed out the importance of major wastewater treatment facilities that might overpass the effects of imperviousness, and therefore further research should either take them explicitly into account or select a wastewater facility-free catchment sample to clearly evaluate the impacts of urban landscape on low flows.

  7. The politics of establishing catchment management agencies in South Africa: the case of the Breede-Overberg Catchment Management Agency

    Directory of Open Access Journals (Sweden)

    Richard Meissner

    2016-09-01

    Full Text Available We reflect on the politics of establishing catchment management agencies in South Africa with a specific focus on the Breede-Overberg Catchment Management Agency (BOCMA, which was recently replaced by the Breede-Gouritz Catchment Management Agency (BGCMA. We do so by applying the framework of adaptive comanagement and its institutional prescriptions: collaboration, experimentation, and a bioregional approach. We start by introducing the history of this catchment management agency (CMA and then describe the establishment of CMAs in South Africa in general and that of BOCMA in particular. We follow the framework for rule types and types of river basin organizations set out by the editors of this special feature with reference to adaptive comanagement where applicable. We then discuss the politics and strategies involved in the introduction of the CMA concept to the National Water Act and the latest developments around these institutions in South Africa. This is followed by reflections on what can be surmised about BOCMA's democratic functioning and performance to date. We conclude by reflecting on the future of operations of the new BGCMA and CMAs in South Africa in general. While our research shows that BOCMA's establishment process has featured several elements of adaptive comanagement and its institutional prescriptions, it remains to be seen to what extent it is possible to continue implementing this concept when further developing and operationalizing the BGCMA and the country's other CMAs.

  8. Hydrological picture of Nišava trans-boundary catchment

    Directory of Open Access Journals (Sweden)

    Hristova Nelly

    2010-01-01

    Full Text Available This work focuses on hydrographic and hydrological specific of Nišava River. It uses all hydrometric and cartographic information for the Bulgarian part of the catchment. Trans-boundary catchment of Nišava River includes four sub-basins, which are trans-borders too. There are a lot of karst areas in the river basin. The drainage density is 1.09 km/km2. Water resources of Nišava River are 170 million m3. They vary between 300.0 and 84.0 million m3. The period of high water appears in March/April and finishes in June. The frequency of monthly maximum is biggest in April or May. The monthly minimum appears most often in September or October. Floods in the catchment of the river Nišava are most often in March, May and June. Some of the rivers lose its waters in the karst areas and dries up during the summer. The average number of days with ice is between 10 and 70. The chemical and ecological status of river water is good. .

  9. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  10. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  11. The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments

    Directory of Open Access Journals (Sweden)

    J. L. Peña-Arancibia

    2010-11-01

    Full Text Available The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1 from the Global River Discharge Center (GRDC and a linear reservoir model were used to obtain baseflow recession coefficients (kbf for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR and aridity index (AI were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE, a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.

  12. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  13. C, N, P export regimes from headwater catchments to downstream reaches

    Science.gov (United States)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  14. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  15. Climate influences on Vaal River flow

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... enriched NW-cloud bands over the Vaal River catchment, during the flood case study of January 2010. Comparison of. (Pacific) Southern Oscillation and east Atlantic influence on Vaal River discharge reveals the former drives evaporative losses while the latter provides an advance warning of flow ...

  16. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  17. Estimation of transported pollutant load in Ardila catchment using the SWAT model

    OpenAIRE

    DURÃO, A.; LEITÃO, P.; BRITO, D.; FERNANDES, R.M.; NEVES, R.; MORAIS, M.

    2011-01-01

    Excess of organic matter and nutrients in the water body promotes algae blooms, which can accelerate the eutrophication process, situation often observed in the Ardila river. This river was identified as very polluted and classified as critical for Alqueva-Pedrogão System. The aim of this study was to estimate the transported nutrients load in a transboundary catchment using the SWAT (Soil and Water Assessment Tool) model and to determine the contribution off nutrients load in the entire catc...

  18. A tracer test to determine a hydraulic connection between the Lauchert and Danube karst catchments (Swabian Alb, Germany)

    Science.gov (United States)

    Knöll, Paul; Scheytt, Traugott

    2018-03-01

    A dye tracer experiment was conducted between the rivers Lauchert and Danube near Sigmaringen (Swabian Alb, southern Germany). After a flood event in the River Lauchert, it was suspected that flood water infiltrated into the karst system and drained towards springs in the Danube Valley. A potential connection of the two rivers is provided by the margin of a tectonic graben crossing the valleys. The aim of the tracer experiment was to gain insight into the dominant groundwater flow direction as well as to study a possible preferential connection between the Lauchert surface catchment area and springs in the Danube Valley. After introducing sodium-fluorescein into the unsaturated zone, six springs in the Danube Valley and the River Lauchert itself were observed. Tracer breakthrough at three springs showed that these springs are fed by groundwater originating in the Lauchert surface catchment. Adjacent springs were not affected by the experiment, indicating a rather sharp divide between separate spring catchments. Analyses of tracer breakthrough curves suggest that springs with a tracer occurrence are fed by the same conduit system. It was possible to show that spring catchments in Sigmaringen reach significantly into the Lauchert surface catchment. As a consequence, a drinking-water supplier has changed its supply strategy. The results also help to explain significant differences between flood damage in the central and lower courses of the River Lauchert.

  19. A new generic approach for estimating the concentrations of down-the-drain chemicals at catchment and national scale

    Energy Technology Data Exchange (ETDEWEB)

    Keller, V.D.J. [Centre for Ecology and Hydrology, Hydrological Risks and Resources, Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)]. E-mail: vke@ceh.ac.uk; Rees, H.G. [Centre for Ecology and Hydrology, Hydrological Risks and Resources, Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom); Fox, K.K. [University of Lancaster (United Kingdom); Whelan, M.J. [Unilever Safety and Environmental Assurance Centre, Colworth (United Kingdom)

    2007-07-15

    A new generic approach for estimating chemical concentrations in rivers at catchment and national scales is presented. Domestic chemical loads in waste water are estimated using gridded population data. River flows are estimated by combining predicted runoff with topographically derived flow direction. Regional scale exposure is characterised by two summary statistics: PEC{sub works}, the average concentration immediately downstream of emission points, and, PEC{sub area}, the catchment-average chemical concentration. The method was applied to boron at national (England and Wales) and catchment (Aire-Calder) scales. Predicted concentrations were within 50% of measured mean values in the Aire-Calder catchment and in agreement with results from the GREAT-ER model. The concentration grids generated provide a picture of the spatial distribution of expected chemical concentrations at various scales, and can be used to identify areas of potentially high risk. - A new grid-based approach to predict spatially-referenced freshwater concentrations of domestic chemicals.

  20. THE FORMATION OF THE OUTFLOW IN THE URBANISED CATCHMENT AREA ON THE EXAMPLE OF THE CATCHMENT OF STRZYŻA

    Directory of Open Access Journals (Sweden)

    Magda Sikora

    2015-01-01

    Full Text Available The aim of the study is to determine what influence made various forms of land use of catchment area on the size and variability of the outflow. Linking the flow rate with the forms of land use will determine which factors affect the runoff in the basin. The object of the research is Strzyża river basin situated within the administrative boundaries of the city of Gdańsk. It was found that streams flowing through urban areas, including the city of Gdańsk (river Strzyża, quickly react to any excess water. Heavy rain combined with the discharge of water through the storm sewer system results of increasing the flow and runoff in streams, among others, Strzyża river.

  1. Effect of spatiotemporal variation of rainfall on dissolved oxygen depletion in integrated catchment studies

    NARCIS (Netherlands)

    Moreno Rodenas, A.M.; Cecinati, F.; ten Veldhuis, J.A.E.; Langeveld, J.G.; Clemens, F.H.L.R.

    2016-01-01

    This study addresses the effect of spatial and temporal resolution of rainfall fields on the performance of a simplified integrated catchment model for predicting dissolved oxygen concentrations in a river. For that purpose we propose a procedure to generate rainfall products with increasing spatial

  2. Impact of spatiotemporal characteristics of rainfall inputs on integrated catchment dissolved oxygen simulations

    NARCIS (Netherlands)

    Moreno Rodenas, A.M.; Cecinati, Francesca; Langeveld, J.G.; Clemens, F.H.L.R.

    2017-01-01

    Integrated Catchment Modelling aims to simulate jointly urban drainage systems, wastewater treatment plant and rivers. The effect of rainfall input uncertainties in the modelling of individual urban drainage systems has been discussed in several studies already. However, this influence changes

  3. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    Science.gov (United States)

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii

  4. Estimasi Potensi PLTMH dengan Metode Regionalisasi pada Ungauged Catchments di Kecamatan Suoh

    Directory of Open Access Journals (Sweden)

    Dyah Indriana Kusumastuti

    2016-04-01

    Full Text Available Electricity is the major problem in Suoh sub-district because there is no electricity distributed by National Electricity Company (PLN. Suoh is located in the upstream of Way Semaka and water is available in river tributaries throughout the year which can be utilized for micro hydro power. This research aims to analyse the potency of the rivers including Way Hantatai, Way Sekandak and Way Gunung Lanang. The three rivers are categorised as ungauged catchments. Research method includes analysis of hydrologic similarity berween Way Semaka and Way Besai catchments, application of regionalization method where FDC for Way Semaka was developed from discharge data from Way Besai located close to Way Semaka. Measurement of flow variables in the rivers are used to verify dependable discharge calculated by regionalization method. The potency of electricity power is calculated based on dependable discharge Q50 and head. The result shows that hydrologic similarity exists between Way Semaka and Way Besai catchments. Calculated discharges based on river measurements comparable to dependable discharges between 80%-93% from the FDCs for the three rivers. The maximum electricity power which can be generated are 15.26 KW, 4.12 KW and 2.71 KW for Way Hantatai, Way Sekandak and Way Gunung Lanang respectively.

  5. Plio-Quaternary river incision rates inferred from burial dating (Al-26/Be-10) of in cave-deposited alluvium in the Meuse catchment (E Belgium): new insights into the uplift history of the Ardennes massif

    Science.gov (United States)

    Rixhon, Gilles; Bourlès, Didier; Braucher, Régis; Peeters, Alexandre; Demoulin, Alain

    2017-04-01

    Although the Late Cenozoic uplift of the intraplate Variscan Ardennes/Rhenish massif (N Europe) has been long studied, its causes, shape and timing are still under debate (Demoulin & Hallot, 2009). This is mainly due to the scarcity of reliable ages for uplift markers, such as Quaternary terrace staircases along the deeply-incised valleys or Late Tertiary planation surfaces. In parallel, multi-level cave systems in limestone rocks, wherein abandoned phreatic passages filled with alluvium represent former phases of fluvial base-level stability, record the history of regional river incision (Anthony & Granger, 2007). Here, we present new burial ages (Al-26/Be-10) from fluvial gravels washed in a multi-level cave system developed in Devonian limestones of the lower Ourthe valley (main Ardennian tributary of the Meuse). Our results highlight a significant increase of incision rates from the Middle Pleistocene on, and allow reconstructing the incision history in the northern part of the Ardennes over the last 3.4 Ma. These long-term incision rates derived from burial ages are then discussed in relation to the existing studies dealing with river incision and/or tectonic uplift of the Ardennes/Rhenish massif (e.g. Demoulin & Hallot, 2009; Rixhon et al., 2011). Our cosmogenic nuclide ages thus enlarge the data pool required to explore the spatio-temporal characteristics of the drainage system's incision response to combined tectonic and climatic signals. References Anthony, D., Granger, D.E., 2007. A new chronology for the age of Appalachian erosional surfaces determined by cosmogenic nuclides in cave sediments. Earth Surf. Process. Landforms 32, 874-887 Demoulin, A., Hallot, E., 2009. Shape and amount of the Quaternary uplift of the western Rhenish shield and the Ardennes (western Europe). Tectonophysics 474, 696-708. Rixhon, G., et al., 2011. Quaternary river incision in NE Ardennes (Belgium): Insights from Be-10/Al-26 dating of rive terraces. Quaternary Geochronology 6

  6. The frequency of precipitation days in the Yangtze Catchment from 1950 to 2000

    International Nuclear Information System (INIS)

    Wu Yijin; Becker, Stefan; Jiang Tong; Harmann, Heike; Su Bu Da

    2004-01-01

    This paper explores the frequency of precipitation days by using different percentiles in the Yangtze River catchment from 1950 to 2000. Some interesting facts have been revealed through the present study. The positive (increasing) trends of the yearly precipitation days at the 75 th percentile appears in most of the Yangtze River catchment, especially in the northern regions of the upper and the middle reaches of the catchment. The Sichuan basin is the only region with negative trends. The transitional area from negative to positive trends is found east of the Sichuan basin in the Three Gorges area. For the 95 th percentile, the negative trend regions are still mainly in Sichuan basin but extend to northern regions and there are also obviously increasing trend centers in the middle and lower reaches of Yangtze river catchment. On the decadal time scale, the most significant positive trends at the 75th percentiles are in the middle reaches in 1980s and 1990s. The lower reaches show significant positive trends in 1980s. Those positive phases greatly contribute to the positive trends of the whole catchment during the last two decades. The most significant negative phase also occurs in the middle reaches during the earlier three decades. For this case, it seems that the precipitation days in the middle reaches are more sensitive to changes than other regions in the Yangtze River catchment. Take the Yangtze River catchment as a whole, a positive trend is very obvious for this percentile. For the 95 th percentile, the trends between the middle and lower reaches of the Yangtze River catchment are coherent: after two decades (1960s and 1970s) of negative phases, the most significant increasing trend is shown in the last two decades. On the other side, the fluctuation of the precipitation days in the catchment of the upper reaches over the 50 years is somewhat smoother than for other regions. For the whole catchment, the precipitation days in the 1950s and in the 1990s are

  7. Sedimentation studies at MUDA catchment area, Kedah, Malaysia

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Juhari Yusuf; Wan Abdul Aziz; Juhari Latiff

    2000-01-01

    A study on the sediment size distribution and determination of sediment density profile in the selected area of Muda dam catchment area, Kedah is presented. The objective of the study was to establish a base line data of the input sedimentation with regards to the effects of development within the catchment in the future. Three main sampling locations were identified namely at Sungai Teliang, Sungai Muda and Muda reservoir. Measurement of sediment thickness was performed by using nuclear gauges i.e. direct transmission and backscattering methods. Results showed that the grain size distribution of sediment ranges from gravel to clay sizes. In the reservoir and downstream of the river, most of the samples studied consisting of fine sediment i.e silt and clay sizes (<63,um). However, sediment distribution in the upstream section of Sungai Teliang mainly consist of fine to coarse sand. Sediment density profiles in the reservoir showed little changes, whereas bed sediment profiles in the river cross-sectional areas exhibit some changes. The results also showed that thickness of bedload sediment were different from one location to another, in which the thickness may achieve up to 0.75 metre in some areas. Based on the sediment distribution profile analysis, the study site could be divided into two parts comprising of dynamic area (region) covering selected locations along the river and deposited sediment in the reservoir. Basic information derived from this study may provide as one of the important inputs for the MADA reservoir management authority in monitoring, supervising y and identifying rate and source of sediment in the catchment area

  8. Sediment dynamics during the rainy season in tropical highland catchments of central Mexico using fallout radionuclides

    International Nuclear Information System (INIS)

    Evrard, Olivier; Ayrault, Sophie; Lefevre, Irene; Bonte, Philippe; Nemery, Julien; Gratiot, Nicolas; Duvert, Clement; Prat, Christian; Esteves, Michel; Poulenard, Jerome

    2010-01-01

    Tropical regions are affected by intense soil erosion associated with deforestation, overgrazing, and cropping intensification. This land degradation leads to important on-site (e.g., decrease in soil fertility) and off-site (e.g., reservoir siltation and water pollution) impacts. This study determined the mean soil particle and sediment residence times in soils and rivers of three sub-catchments (3-12 km 2 ) with contrasted land uses (i.e., cropland, forests, and rangelands) draining to a reservoir located in highlands of the trans-volcanic Mexican belt. Calculations were based on rainfall amount and river discharges as well as on fallout radionuclide measurements (Be-7, Cs-137, and Pb-210) conducted on rainfall precipitated samples, soil sampled in the catchments, and suspended sediment collected by automatic samplers in the river during most storms recorded throughout the 2009 rainy season. Calculations using a radionuclide two-box balance model showed that the mean residence time of particles in soils ranged between 5000 ± 1500 and 23, 300 ± 7000 years. In contrast, sediment residence time in rivers was much shorter, fluctuating between 50 ± 30 and 200 ± 70 days. The shortest mean residence times were measured in a hilly catchment dominated by cropland and rangelands, whereas they were the longest in an undulating catchment dominated by forests and cropland. Calculation of the Be-7/excess-Pb-210 in both rainfall and sediment allowed gaining insight on sediment dynamics throughout the rainy season. The first heavy storms of the year exported the bulk of the sediment stock accumulated in the river channel during the previous year. Then, during the rainy season, the two steeper catchments dominated by cropland and rangelands reacted strongly to rainfall. Sediment was indeed eroded and exported from both catchments during single heavy storms on several occasions in 2009. In contrast, the agro-forested catchment with gentler slopes exported sediment at a

  9. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Science.gov (United States)

    Yu, M. C. L.; Cartwright, I.; Braden, J. L.; de Bree, S. T.

    2013-12-01

    Radon (222Rn) and major ion geochemistry were used to define and quantify the catchment-scale groundwater-surface water interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the Ovens River is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through the permeable aquifers increases the water table. The rising water table, referred to as hydraulic loading, increases the hydraulic head gradient toward the river and hence causes high baseflow to the river during wet (high flow) periods. In the lower catchment, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower but more constant groundwater inflows. The water table in the lower reaches has a shallow gradient, and small changes in river height or groundwater level can result in fluctuating gaining and losing behaviour. The middle catchment represents a transition in river-aquifer interactions from the upper to the lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flowing over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflows are 2 to 17% of total flow with higher inflows occurring during high flow periods. In comparison to 222Rn activities, estimates of groundwater inflows from Cl concentrations are higher by up to 2000% in the upper and middle catchment but lower by 50 to 100% in the lower catchment. The high baseflow estimates using

  10. Spatiotemporal patterns of non-point source nitrogen loss in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    Jian-feng Xu

    2016-04-01

    Full Text Available Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008–2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.

  11. High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments

    Science.gov (United States)

    Outram, F. N.; Lloyd, C.; Jonczyk, J.; Benskin, C. McW. H.; Grant, F.; Dorling, S. R.; Steele, C. J.; Collins, A. L.; Freer, J.; Haygarth, P. M.; Hiscock, K. M.; Johnes, P. J.; Lovett, A. L.

    2013-12-01

    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011-2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that

  12. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  13. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  14. Main tributary influence on the River Vardar water quantity

    International Nuclear Information System (INIS)

    Unevska, Blaga; Stojov, Vasko; Milevski, Josif

    2004-01-01

    Hydrology in all catchments is defined like complex of geophysics and hydro-geologic parameters. Regular defining on the hydrological parameters is essential for planning, improving and developing management on every country. The main aim of this topic is to demonstrate disparity disposal on water resources in Republic of Macedonia depending on the different catchments areas. Here will be talk about different percentage of tributaries, which have influence on river Vardar. River Vardar is main recipient on water in Macedonia.(Author)

  15. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549

  16. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  17. Catchment Morphing (CM): A Novel Approach for Runoff Modeling in Ungauged Catchments

    Science.gov (United States)

    Zhang, Jun; Han, Dawei

    2017-12-01

    Runoff prediction in ungauged catchments has been one of the major challenges in the past decades. However, due to the tremendous heterogeneity of the catchments, obstacles exist in deducing model parameters for ungauged catchments from gauged ones. We propose a novel approach to predict ungauged runoff with Catchment Morphing (CM) using a fully distributed model. CM is defined as by changing the catchment characteristics (area and slope here) from the baseline model built with a gauged catchment to model the ungauged ones. As a proof of concept, a case study on seven catchments in the UK has been used to demonstrate the proposed scheme. Comparing the predicted with measured runoff, the Nash-Sutcliffe efficiency (NSE) varies from 0.03 to 0.69 in six catchments. Moreover, NSEs are significantly improved (up to 0.81) when considering the discrepancy of percentage runoff between the target and baseline catchments. A distinct advantage has been experienced by comparing the CM with a traditional method for ungauged catchments. The advantages are: (a) less demand of the similarity between the baseline catchment and the ungauged catchment, (b) less demand of available data, and (c) potentially widely applicable in varied catchments. This study demonstrates the feasibility of the proposed scheme as a potentially powerful alternative to the conventional methods in runoff predictions of ungauged catchments. Clearly, more work beyond this pilot study is needed to explore and develop this new approach further to maturity by the hydrological community.

  18. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    Science.gov (United States)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by

  19. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  20. Hydrological Response of Semi-arid Degraded Catchments in Tigray, Northern Ethiopia

    Science.gov (United States)

    Teka, Daniel; Van Wesemael, Bas; Vanacker, Veerle; Hallet, Vincent

    2013-04-01

    To address water scarcity in the arid and semi-arid part of developing countries, accurate estimation of surface runoff is an essential task. In semi-arid catchments runoff data are scarce and therefore runoff estimation using hydrological models becomes an alternative. This research was initiated in order to characterize runoff response of semi-arid catchments in Tigray, North Ethiopia to evaluate SCS-CN for various catchments. Ten sub-catchments were selected in different river basins and rainfall and runoff were measured with automatic hydro-monitoring equipments for 2-3 years. The Curve Number was estimated for each Hydrological Response Unit (HRU) in the sub-catchments and runoff was modeled using the SCS-CN method at λ = 0.05 and λ = 0.20. The result showed a significant difference between the two abstraction ratios (P =0.05, df = 1, n= 132) and reasonable good result was obtained for predicted runoff at λ = 0.05 (NSE = -0.69; PBIAS = 18.1%). When using the CN values from literature runoff was overestimated compared to the measured value (e= -11.53). This research showed the importance of using measured runoff data to characterize semi-arid catchments and accurately estimate the scarce water resource. Key words: Hydrological response, rainfall-runoff, degraded environments, semi-arid, Ethiopia, Tigray

  1. Comparison of Water Flows in Four European Lagoon Catchments under a Set of Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Cornelia Hesse

    2015-02-01

    Full Text Available Climate change is supposed to remarkably affect the water resources of coastal lagoons as they are highly vulnerable to changes occurring at their catchment and/or ocean or sea boundaries. Probable impacts of projected climate changes on catchment hydrology and freshwater input were assessed using the eco-hydrological model SWIM (Soil and Water Integrated Model for the drainage areas of four European lagoons: Ria de Aveiro (Portugal, Mar Menor (Spain, Tyligulskyi Liman (Ukraine and Vistula Lagoon (Poland/Russia under a set of 15 climate scenarios covering the time period until the year 2100. Climate change signals for all regions show continuously increasing trends in temperature, but various trends in precipitation. Precipitation is projected to decrease in two catchments on the Iberian Peninsula and increase in the Baltic region catchment, and does not show a clear trend in the catchment located near the Black Sea. The average projected changes in freshwater inputs reflect these changes in climate conditions, but often show variability between the scenarios, in future periods, and within the catchments. According to the individual degrees of water management influences in the four drainage basins, the climate sensitivity of river inflows is differently pronounced in each.

  2. Establishing an Integrated Catchment Management (ICM) program in East Java, Indonesia.

    Science.gov (United States)

    Booth, C A; Warianti, A; Wrigley, T

    2001-01-01

    The Brantas is one of Indonesia's most important catchments. It is the "rice bowl" of Java and nationally important for its industrial activity. Surabaya, Indonesia's second largest city, is located at the mouth of the Brantas River which is pivotal to the city's water supply. The challenges associated with the institutional framework for natural resource management in East Java parallels that of many states and provinces around the globe. It is multi-layered and complex. Integrated Catchment Management (ICM) may be defined as "the co-ordinated and sustainable management of land, water, soil vegetation, fauna and other natural resources on a water catchment basis". Over a period of six months, an ICM Strategy was researched and facilitated for the Brantas River Catchment in East Java via a short term advisor attachment. The aim of the Strategy is to improve coordination, co-operation, communication and consistency of government and community efforts towards sustaining the catchment's environmental, economic and social values. The attachment was part of the Pollution Control Implementation (PCI) Project funded by AusAid and the Indonesian Government. The ICM Strategy developed was broad based and addressed the priority natural resource management issues facing the Brantas Catchment. It was co-ordinated by BAPEDALDA, the Provincial Environmental Protection Agency, and developed by all agencies involved in natural resource management in the catchment. Various Universities and Non Government Organisations (NGOs) were also involved in the ICM process which developed the Strategy. At the conclusion of the attachment, a draft ICM Strategy and a proposed institutional framework had been developed. A working group of key agencies was also established to further enhance local "ownership", finalise timescales and implementation responsibilities within the Strategy and bring the institutional arrangements into being through a Governor's Decree.

  3. Sediment sources in the Upper Severn catchment: a fingerprinting approach

    Directory of Open Access Journals (Sweden)

    A. L. Collins

    1997-01-01

    Full Text Available Suspended sediment sources in the Upper Severn catchment are quantified using a composite fingerprinting technique combining statistically-verified signatures with a multivariate mixing model. Composite fingerprints are developed from a suite of diagnostic properties comprising trace metal (Fe, Mn, AI, heavy metal (Cu, Zn, Pb, Cr, Co, Ni, base cation (Na, Mg, Ca, K, organic (C, N, radiometric (137Cs, 210Pb, and other (total P determinands. A numerical mixing model, to compare the fingerprints of contemporary catchment source materials with those of fluvial suspended sediment in transit and those of recent overbank floodplain deposits, provides a means of quantifying present and past sediment sources respectively. Sources are classified in terms of eroding surface soils under different land uses and channel banks. Eroding surface soils are the most important source of the contemporary suspended sediment loads sampled at the Institute of Hydrology flow gauging stations at Plynlimon and at Abermule. The erosion of forest soils, associated with the autumn and winter commercial activities of the Forestry Commission, is particularly evident. Reconstruction of sediment provenance over the recent past using a sediment core from the active river floodpiain at Abermule, in conjunction with a 137Cs chronology, demonstrates the significance of recent phases of afforestation and deforestation for accelerated catchment soil erosion.

  4. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  5. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.

    Science.gov (United States)

    Schwientek, Marc; Selle, Benny

    2016-02-01

    As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered.

  6. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  7. Soil erosion and sediment delivery issues in a large hydro-electric power reservoir catchment, Ethiopia

    Science.gov (United States)

    Nebiyu, Amsalu; Dume, Bayu; Bode, Samuel; Ram, Hari; Boeckx, Pascal

    2017-04-01

    Land degradation and associated processes such as gullying, flooding and sedimentation, are among the developmental challenges in many countries and HEP reservoirs in the Gilgel Gibe catchment, Ethiopia, are under threat from siltation. Soil erosion is one of the biggest global environmental problems resulting in both on-site and offsite effects which have economic implications and an essential actor in assessing ecosystem health and function. Sediment supply in a catchment is heterogeneous in time and space depending on climate, land use and a number of landscape characteristics such as slope, topography, soil type, vegetation and drainage conditions. In the Ethiopian highlands, sediment delivery depends on discharge, the onset of rainfall, land use and land cover, which varies between rainfall seasons. There is also a variation among catchments in suspended sediment concentration due to the variation in the catchments characteristics in Ethiopia. Rainfall-runoff relationship, sediment production and delivery to rivers or dams is variable and poorly understood; due to heterogeneous lithology; various climatic conditions across small spatial scales; land use and land management practices in Ethiopia. Spatial variation in sediment yield in Africa varies to differences in seismic activity, topography, vegetation cover and annual runoff depth. In the Gilgel-Gibe catchment, the annual sediment load of the Gilgel-Gibe River has been estimated to be about 4.5×107 tons taking the contribution of sheet erosion alone. Also, the suspended sediment yield of the tributaries in Gilgel-Gibe catchment has been estimated to be in the range of 0.4-132.1 tons per hectare per year. The soil loss due to landslide alone in the past 20 years in the catchment was about 11 t/ha/yr. Heavy rainfall, bank erosion and river incisions have been indicated as the main triggering factors for landslides and the associated sediment delivery in the Gilgel-Gibe catchment. Approaches for catchment

  8. Catchment-Wide Atmospheric Greenhouse Gas Exchange as Influenced by Land Use Diversity

    DEFF Research Database (Denmark)

    Herbst, Mathias; Friborg, Thomas; Ringgaard, Rasmus

    2011-01-01

    The turbulent fl uxes of carbon dioxide between the land surface and the atmosphere were measured with the eddy covariance technique above three contrasO ng land use types in the Skjern River catchment in western Denmark, namely an agricultural area, a forest plantation, and a wet grassland...... of the site by one-third. At the agricultural site this sink strength was reduced by 9% through the N2O emissions. Scaled up to the catchment, the observed net uptake of CO2 by the land surface was reduced by roughly one-tenth, in terms of CO2 equivalents, due to the emission of CH4 and N2O....

  9. Contrasting effects of wildfire and clearfelling on the hydrology of a small catchment

    CSIR Research Space (South Africa)

    Scott, DF

    1997-05-01

    Full Text Available in total ¯ow recorded after ®res in the Wilson River catchment in Oregon (Anderson, 1976), the Burns Watershed in Washington (Helvey et al., 1976) and the Etajima Island catchments in the Hiroshima Prefecture of Japan (Kusaka et al., 1983). The second... repellency in the soil (DeBano and Krammes, 1966; Dyrness, 1976; John, 1978; Scott and Van Wyk, 1990). Fire-induced water repellency in soils has been observed mostly in chaparral areas in southern California (Krammes and DeBano, 1965; DeBano and Krammes...

  10. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  11. Water winning in aquifers in the catchment area of the Elbe river. Task report no. 5: Radon applied for characterisation of geohydraulic processes; Wassergewinnung in Talgrundwasserleitern im Einzugsgebiet der Elbe. Teilbericht zum Thema Nr. 5: Radon zur Charakterisierung geohydraulischer Prozesse

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, J.; Nestler, W. [Hochschule fuer Technik und Wirtschaft, Dresden (Germany). Lab. fuer Geotechnik und Wasserwesen; Freyer, K.; Treutler, H.C. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Sektion Analytik

    1998-06-09

    The work performed has two objectives. The first is to test a new method for determination of optimal volumes of pumped groundwater samples at official sampling and measuring sites, in order to significantly enhance the level of representativity of groundwater samples. The second is to establish information about the required framework conditions which enable natural radon activity concentrations in river bank filtrates to be used for determination of residence times or infiltration velocities, respectively, of infiltration from surface waters to aquifers. Aspects of required equipment and instrumentation for both objectives are explained in the report. (orig./CB) [Deutsch] Mit dieser Arbeit werden zwei Ziele verfolgt. Mit dem neuen Verfahren zur Bestimmung optimaler Abpumpvolumen von Grundwassermessstellen soll die Repraesentativitaet von Grundwasserproben bei der Probennahme deutlich verbessert werden. Das zweite Ziel besteht in der Untersuchung der Voraussetzungen, unter denen die natuerliche Radonaktivitaetskonzentration des Uferfiltrats zur Bestimmung von Aufenthaltszeiten bzw. Infiltrationsgeschwindigkeiten von infiltriertem Oberflaechenwasser in Talgrundwasserleitern genutzt werden kann. Fuer beide Zielstellungen werden Moeglichkeiten fuer eine geraetetechnische Umsetzung aufgezeigt. (orig.)

  12. THE CONFLUENCE RATIO OF THE TRANSYLVANIAN BASIN RIVERS

    Directory of Open Access Journals (Sweden)

    ROŞIAN GH.

    2014-03-01

    Full Text Available There are many possibilities to assess the hydrological and geomorphological evolution of a territory. Among them, one remarks the confluence ratio of the rivers belonging to different catchment areas. The values of this indicator may provide information regarding the stage of evolution of the fluvial landforms in the Transylvanian Basin. Also, the values may serve for the calculation of other parameters of catchment areas like: the degree of finishing of the drainage basin for its corresponding order, the density of river segments within a catchment area etc. To calculate the confluence ratio, 35 catchment areas of different orders have been selected. The confluence ratio varies between 3.04 and 6.07. The large range of values demonstrates the existence of a heterogeneous lithology and of morphological and hydrographical contrasts from one catchment area to the other. The existence of values above 5, correlated also with observations in the field, reveals an accelerated dynamics of the geomorphological processes in those catchment areas. This dynamic is mainly supported by the high landform fragmentation due to the first order rivers. In contrast, the catchment areas that have a confluence ratio below 5 are in a more advanced stage of evolution with stable slopes, unable to initiate new first order river segments.

  13. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  14. River ecosystem response to prescribed vegetation burning on Blanket Peatland.

    Science.gov (United States)

    Brown, Lee E; Johnston, Kerrylyn; Palmer, Sheila M; Aspray, Katie L; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.

  15. Quantifying sediment-associated metal dispersal using Pb isotopes: Application of binary and multivariate mixing models at the catchment-scale

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-01-01

    In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream. - Pb isotopic evidence used to quantify sediment-associated metal delivery within a mining-affected river catchment.

  16. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    Science.gov (United States)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  17. Determination of Curve Number for snowmelt-runoff floods in a small catchment

    Directory of Open Access Journals (Sweden)

    L. Hejduk

    2015-06-01

    Full Text Available One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN method, developed by Soil Conservation Service (SCS of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2 of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.

  18. Hazard assessment for small torrent catchments - lessons learned

    Science.gov (United States)

    Eisl, Julia; Huebl, Johannes

    2013-04-01

    The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam

  19. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-03-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  20. A novel approach for runoff modelling in ungauged catchments by Catchment Morphing

    Science.gov (United States)

    Zhang, J.; Han, D.

    2017-12-01

    Runoff prediction in ungauged catchments has been one of the major challenges in the past decades. However, due to the tremendous heterogeneity of hydrological catchments, obstacles exist in deducing model parameters for ungauged catchments from gauged ones. We propose a novel approach to predict ungauged runoff with Catchment Morphing (CM) using a fully distributed model. CM is defined as by changing the catchment characteristics (area and slope here) from the baseline model built with a gauged catchment to model the ungauged ones. The advantages of CM are: (a) less demand of the similarity between the baseline catchment and the ungauged catchment, (b) less demand of available data, and (c) potentially applicable in varied catchments. A case study on seven catchments in the UK has been used to demonstrate the proposed scheme. To comprehensively examine the CM approach, distributed rainfall inputs are utilised in the model, and fractal landscapes are used to morph the land surface from the baseline model to the target model. The preliminary results demonstrate the feasibility of the approach, which is promising in runoff simulation for ungauged catchments. Clearly, more work beyond this pilot study is needed to explore and develop this new approach further to maturity by the hydrological community.

  1. Microbial source tracking and transfer hydrodynamics in rural catchments.

    Science.gov (United States)

    Murphy, Sinead; Bhreathnach, Niamh; O'Flaherty, Vincent; Jordan, Philip; Wuertz, Stefan

    2013-04-01

    In Ireland, bacterial pathogens from continual point source pollution and intermittent pollution from diffuse sources can impact both drinking water supplies and recreational waters. This poses a serious public health threat. Observing and establishing the source of faecal pollution is imperative for the protection of water quality and human health. Traditional culture methods to detect such pollution via faecal indicator bacteria have been widely utilised but do not decipher the source of pollution. To combat this, microbial source tracking, an important emerging molecular tool, is applied to detect host-specific markers in faecally contaminated waters. The aim of this study is to target ruminant and human-specific faecal Bacteroidales and Bacteroides 16S rRNA genes within rural river catchments in Ireland and investigate hydrological transfer dependencies. During storm events and non-storm periods, 1L untreated water samples, taken every 2 hours over a 48-hour time period at the spring (Cregduff) or outlet (Dunleer), and large (5-20L) untreated water samples were collected from two catchment sites. Cregduff is a spring emergence under a grassland karst landscape in Co. Mayo (west coast of Ireland) and Dunleer is a mixed landuse over till soils in Co. Louth (east coast). From a risk assessment point of view, the catchments are very different. Samples were filtered through 0.2µm nitrocellulose filters to concentrate bacterial cells which then underwent chemical extraction of total nucleic acids. Animal and human stool samples were also collected from the catchments to determine assay sensitivity and specificity following nucleic acid extraction. Aquifer response to seasonal events was assessed by monitoring coliforms and E. coli occurrence using the IDEXX Colisure® Quanti Tray®/2000 system in conjunction with chemical and hydrological parameters. Autoanalysers deployed at each catchment monitor multiple water parameters every 10 min such as phosphorus, nitrogen

  2. Health at the Sub-catchment Scale: Typhoid and Its Environmental Determinants in Central Division, Fiji.

    Science.gov (United States)

    Jenkins, Aaron Peter; Jupiter, Stacy; Mueller, Ute; Jenney, Adam; Vosaki, Gandercillar; Rosa, Varanisese; Naucukidi, Alanieta; Mulholland, Kim; Strugnell, Richard; Kama, Mike; Horwitz, Pierre

    2016-12-01

    The impact of environmental change on transmission patterns of waterborne enteric diseases is a major public health concern. This study concerns the burden and spatial nature of enteric fever, attributable to Salmonella Typhi infection in the Central Division, Republic of Fiji at a sub-catchment scale over 30-months (2013-2015). Quantitative spatial analysis suggested relationships between environmental conditions of sub-catchments and incidence and recurrence of typhoid fever. Average incidence per inhabited sub-catchment for the Central Division was high at 205.9/100,000, with cases recurring in each calendar year in 26% of sub-catchments. Although the numbers of cases were highest within dense, urban coastal sub-catchments, the incidence was highest in low-density mountainous rural areas. Significant environmental determinants at this scale suggest increased risk of exposure where sediment yields increase following runoff. The study suggests that populations living on large systems that broaden into meandering mid-reaches and floodplains with alluvial deposition are at a greater risk compared to small populations living near small, erosional, high-energy headwaters and small streams unconnected to large hydrological networks. This study suggests that anthropogenic alteration of land cover and hydrology (particularly via fragmentation of riparian forest and connectivity between road and river networks) facilitates increased transmission of typhoid fever and that environmental transmission of typhoid fever is important in Fiji.

  3. Remote sensing entropy to assess the sustainability of rainfall in tropical catchment

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul

    2018-02-01

    This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.

  4. Modeling sediment yield in small catchments at event scale: Model comparison, development and evaluation

    Science.gov (United States)

    Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.

    2017-12-01

    Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.

  5. On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area

    Science.gov (United States)

    Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.

    2018-01-01

    It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.

  6. Remotely Sensed, catchment scale, estimations of flow resistance

    Science.gov (United States)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  7. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment

    DEFF Research Database (Denmark)

    Milzow, Christian; Krogh, Pernille Engelbredt; Bauer-Gottwein, Peter

    2011-01-01

    The availability of data is a major challenge for hydrological modelling in large parts of the world. Remote sensing data can be exploited to improve models of ungauged or poorly gauged catchments. In this study we combine three datasets for calibration of a rainfall-runoff model of the poorly...... gauged Okavango catchment in Southern Africa: (i) surface soil moisture (SSM) estimates derived from radar measurements onboard the Envisat satellite; (ii) radar altimetry measurements by Envisat providing river stages in the tributaries of the Okavango catchment, down to a minimum river width of about...... one hundred meters; and (iii) temporal changes of the Earth's gravity field recorded by the Gravity Recovery and Climate Experiment (GRACE) caused by total water storage changes in the catchment. The SSM data are shown to be helpful in identifying periods with over-respectively underestimation...

  8. Final report on impact of catchment scale processes and climate change on cause-effect and recovery-chains

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Keizer-Vlek, H.E.; Spears, B.; Brucet, S.; Johnson, R.; Feld, C.; Kernan, M.

    2012-01-01

    Catchment wide integrated basin management requires knowledge on cause-effect and recovery chains within water bodies as well as on the interactions between water bodies and categories. In the WISER WP6.4 recovery processes in rivers, lakes and estuarine and coastal waters were evaluated. The major

  9. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    Science.gov (United States)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  10. Longitudinal sediment-connectivity in a dammed river system using fine sediment analyses - a case study in the Kaja river, Lower Austria

    Science.gov (United States)

    Bertsch, R.; Poeppl, R. E.; Glade, T.

    2012-04-01

    In the recent past the concept of connectivity gained increased significance for the understanding of the linkage between different subsystems within river channels and catchments. Based on fine sediment (reservation in this fraction.

  11. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    Science.gov (United States)

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  12. Impact of farm dams on river flows; A case study in the Limpopo River basin, Southern Africa

    NARCIS (Netherlands)

    Meijer, E.; Querner, E.P.; Boesveld, H.

    2013-01-01

    The study analysed the impact of a farm dam on the river flow in the Limpopo River basin. Two methods are used to calculate the water inflow: one uses the runoff component from the catchment water balance; the other uses the drainage output of the SIMFLOW model. The impact on the flow in a

  13. Links between river water acidity, land use and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.; Celebi, A.; Kloeve, B. [Oulu Univ. (Finland). Water Resources and Environmental Eng. Lab.], Email: tuomas.saarinen@oulu.fi

    2013-11-01

    In western Finland, acid leaching to watercourses is mainly due to drainage of acid sulphate (As) soils. This study examined how different land-use and land-cover types affect water acidity in the northwestern coastal region of Finland, which has abundant drained AS soils and peatlands. Sampling conducted in different hydrological conditions in studied river basins revealed two different catchment types: catchments dominated by drained forested peatlands and catchments used by agriculture. Low pH and high electric conductivity (EC) were typical in rivers affected by agriculture. In rivers dominated by forested peatlands and wetlands, EC was considerably lower. During spring and autumn high runoff events, water quality was poor and showed large spatial variation. Thus it is important to ensure that in river basin status assessment, sampling is carried out in different hydrological situations and in also water from some tributaries is sampled. (orig.)

  14. Isotope techniques in catchment behaviour studies with particular emphasis on snowmelt runoff investigations

    International Nuclear Information System (INIS)

    Yurtsever, Y.

    1984-05-01

    The dynamics of runoff occurring mainly by snowmelt have been investigated by the aid of environmental isotopes. Regular samples collected from river water and snow cover throughout 1978 to 1981 at two selected catchment basins in eastern Turkey were analysed for their oxygen-18, deuterium and tritium contents. The tritium results together with detailed hydrological and hydro-meteorological data have enabled to study the time distribution of various component flow systems involved in the total runoff resulting from snowmelt

  15. Hydroclimatic control of sediment and metal export from a rural catchment in Northwest Spain

    OpenAIRE

    L. Palleiro; M. L. Rodríguez-Blanco; M. M. Taboada-Castro; M. T. Taboada-Castro

    2014-01-01

    This paper examines sediment and metal (Al, Fe, Mn, Cu, and Zn) exportation at different time scales (annual, seasonal and event) during a three-year period (2005–2008) in the Mero River headwater, a rural catchment under humid temperate climate. Inter-annual differences were found both in annual loads and their distributions throughout the year. At annual scale, sediment and particulate metal loads followed the same trend as streamflow, while dissolved metals showed differe...

  16. Hydroclimatic control of sediment and metal export from a rural catchment in northwestern Spain

    OpenAIRE

    Palleiro, L.; Rodríguez-Blanco, M. L.; Taboada-Castro, M. M.; Taboada-Castro, M. T.

    2014-01-01

    This paper examines sediment and metal (Al, Fe, Mn, Cu, and Zn) exportation at different timescales (annual, seasonal and event) during a 3-year period (2005–2008) in the Mero River headwater, a rural catchment under humid temperate climate. Interannual differences were found both in annual loads and their distributions throughout the year. At annual scale, sediment and particulate metal loads followed the same trend as streamflow, while dissolved metals showed different pat...

  17. Review article: Hydrological modeling in glacierized catchments of central Asia – status and challenges

    OpenAIRE

    Y. Chen; W. Li; G. Fang; Z. Li

    2017-01-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeli...

  18. Human impacts on fluvial systems - A small-catchment case study

    Science.gov (United States)

    Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth

    2010-05-01

    Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological

  19. River water quality in the northern sugarcane-producing regions of ...

    African Journals Online (AJOL)

    Sugarcane is the major irrigated crop with regards to area cultivated in the Crocodile, Komati-Lomati and Pongola River catchments. Increasing demand for and use of water resources in these catchments has led to concerns about deterioration in water quality. In this study, chemical water quality data obtained from the ...

  20. Land Use Impacts on Water Quality of Rivers draining from Mulanje ...

    African Journals Online (AJOL)

    Land Use Impacts on Water Quality of Rivers draining from Mulanje Mountain: A Case of Ruo River in the Southern Malawi. ... The research recommends an integrated water resources management approach where all users and relevant stakeholders should take an active role in the conservation of Ruo River catchment in ...

  1. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    Science.gov (United States)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    Fine sediment source fingerprinting techniques have been widely applied in agricultural river catchments. Successful source discrimination in agricultural environments depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. In this study, we re-examine this critical assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment (920 km2) in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides (137Cs, excess 210Pb), major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. However, source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources, and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, a combination of metal pollution from abandoned historic mines and organic enrichment of

  2. Influence of the permafrost boundary on dissolved organic matter characteristics in rivers within the Boreal and Taiga plains of western Canada

    International Nuclear Information System (INIS)

    Olefeldt, D; Turetsky, M R; Persson, A

    2014-01-01

    Catchment export of terrestrial dissolved organic matter (DOM) and its downstream degradation in aquatic ecosystems are important components of landscape scale carbon balances. In order to assess the influence of peatland permafrost on river DOM characteristics, we sampled 65 rivers along a 900 km transect crossing into the southern discontinuous permafrost zone on the Boreal and Tundra Plains of western Canada. Catchment peatland cover and catchment location north or south of the permafrost boundary were found together to have strong influences on dissolved organic carbon (DOC) concentrations and DOM chemical composition. River DOC concentrations increased with catchment peatland cover, but were consistently lower for catchments north of the permafrost boundary. In contrast, protein fluorescence (PARAFAC analysis), was unrelated to catchment peatland cover but increased significantly in rivers north of the permafrost boundary. Humic and fulvic acid contribution to DOM fluorescence was lower in rivers draining catchments with large lakes than in other rivers, consistent with extensive photodegradation, but humic and fulvic acid fluorescence were also lower in rivers north of the permafrost boundary than in rivers to the south. We hypothesize that shifts in river DOM characteristics when crossing the permafrost boundary are related to the influence of permafrost on peatland hydrological connectivity to stream networks, peatland DOM characteristics and differences in DOM degradation within aquatic ecosystems. (paper)

  3. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of

  4. Landscape elements and river chemistry as affected by river regulation – a 3-D perspective

    Directory of Open Access Journals (Sweden)

    E. Smedberg

    2009-09-01

    Full Text Available We tested the hypothesis whether individual land classes within a river catchment contribute equally to river loading with dissolved constituents or whether some land classes act as "hot spots" to river loading and if so, are these land classes especially affected by hydrological alterations. The amount of land covered by forests and wetlands and the average soil depth (throughout this paper soil refers to everything overlying bedrock i.e. regolith of a river catchment explain 58–93% of the variability in total organic carbon (TOC and dissolved silicate (DSi concentrations for 22 river catchments in Northern Sweden. For the heavily regulated Luleälven, with 7 studied sub-catchments, only 3% of the headwater areas have been inundated by reservoirs, some 10% of the soils and aggregated forest and wetland areas have been lost due to damming and further hydrological alteration such as bypassing entire sub-catchments by headrace tunnels. However, looking at individual forest classes, our estimates indicate that some 37% of the deciduous forests have been inundated by the four major reservoirs built in the Luleälven headwaters. These deciduous forest and wetlands formerly growing on top of alluvial deposits along the river corridors forming the riparian zone play a vital role in loading river water with dissolved constituents, especially DSi. A digital elevation model draped with land classes and soil depths which highlights that topography of various land classes acting as hot spots is critical in determining water residence time in soils and biogeochemical fluxes. Thus, headwater areas of the Luleälven appear to be most sensitive to hydrological alterations due to the thin soil cover (on average 2.7–4.5 m and only patchy appearance of forest and wetlands that were significantly perturbed. Hydrological alterations of these relatively small headwater areas significantly impacts downstream flux of dissolved constituents and their delivery to

  5. Spatial and temporal variations in landscape evolution: historic and longer-term sediment flux through global catchments

    Science.gov (United States)

    Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur

    2013-01-01

    Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.

  6. The water quality of the LOCAR Pang and Lambourn catchments

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and 'uniform pattern' characteristic of aquifer drainage with, superimposed, a series of 'flashier' spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the 'flashier' responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river. Keywords: water quality, nitrate, ammonium, phosphorus, pH, alkalinity, nutrients, major elements, trace elements, rainfall, river, Pang, Lambourn, LOCAR

  7. Export of nitrogen from catchments: A worldwide analysis

    International Nuclear Information System (INIS)

    Alvarez-Cobelas, M.; Angeler, D.G.; Sanchez-Carrillo, S.

    2008-01-01

    This study reviews nitrogen export rates from 946 rivers of the world to determine the influence of quantitative (runoff, rainfall, inhabitant density, catchment area, percentage of land use cover, airborne deposition, fertilizer input) and qualitative (dominant type of forest, occurrence of stagnant waterbodies, dominant land use, occurrence of point sources, runoff type) environmental factors on nitrogen fluxes. All fractions (total, nitrate, ammonia, dissolved organic and particulate organic) of nitrogen export showed a left-skewed distribution, which suggests a relatively pristine condition for most systems. Total nitrogen export showed the highest variability whereas total organic nitrogen export comprised the dominant fraction of export. Nitrogen export rates were only weakly explained by our qualitative and quantitative environmental variables. Our study suggests that the consideration of spatial and temporal scales is important for predicting nitrogen export rates using simple and easy-to-get environmental variables. Regionally based modelling approaches prove more useful than global-scale analyses. - Spatial and temporal scales are important determinants for nitrogen export from catchments and emphasis should be put on regional approaches

  8. Sustainable Ecosystem Services Framework for Tropical Catchment Management: A Review

    Directory of Open Access Journals (Sweden)

    N. Zafirah

    2017-04-01

    Full Text Available The monsoon season is a natural phenomenon that occurs over the Asian continent, bringing extra precipitation which causes significant impact on most tropical watersheds. The tropical region’s countries are rich with natural rainforests and the economies of the countries situated within the region are mainly driven by the agricultural industry. In order to fulfill the agricultural demand, land clearing has worsened the situation by degrading the land surface areas. Rampant land use activities have led to land degradation and soil erosion, resulting in implications on water quality and sedimentation of the river networks. This affects the ecosystem services, especially the hydrological cycles. Intensification of the sedimentation process has resulted in shallower river systems, thus increasing their vulnerability to natural hazards (i.e., climate change, floods. Tropical forests which are essential in servicing their benefits have been depleted due to the increase in human exploitation. This paper provides an overview of the impact of land erosion caused by land use activities within tropical rainforest catchments, which lead to massive sedimentation in tropical rivers, as well as the effects of monsoon on fragile watersheds which can result in catastrophic floods. Forest ecosystems are very important in giving services to regional biogeochemical processes. Balanced ecosystems therefore, play a significant role in servicing humanity and ultimately, may create a new way of environmental management in a cost-effective manner. Essentially, such an understanding will help stakeholders to come up with better strategies in restoring the ecosystem services of tropical watersheds.

  9. Land Use Impacts on Water Quality of Rivers draining from Mulanje ...

    African Journals Online (AJOL)

    The population growth has put pressure on the Africa's environment to ... of Malawi's exports have their source in natural resources, the economic cost of the major ...... Upper Catchment of Lilonger River – Malawi. unpublished masters thesis.

  10. Application of PCARES in locating the soil erosion Hotspots in the Manupali River Watershed

    OpenAIRE

    Paningbatan, E.

    2004-01-01

    In this presentation the author covers: GIS mapping of land attributes, dynamic modeling of soil erosion at watershed scale using PCARES (Predicting Catchment Runoff and Soil Erosion for Sustainability), identifying soil erosion "hotspots" in the Manupali River watershed

  11. Controls on hillslope stability in a mountain river catchment

    Science.gov (United States)

    Golly, Antonius; Turowski, Jens; Hovius, Niels; Badoux, Alexandre

    2015-04-01

    Sediment transport in fluvial systems accounts for a large fraction of natural hazard damage costs in mountainous regions and is an important factor for risk mitigation, engineering and ecology. Although sediment transport in high-gradient channels gathered research interest over the last decades, sediment dynamics in steep streams are generally not well understood. For instance, the sourcing of the sediment and when and how it is actually mobilized is largely undescribed. In the Erlenbach, a mountain torrent in the Swiss Prealps, we study the mechanistic relations between in-channel hydrology, channel morphology, external climatic controls and the surrounding sediment sources to identify relevant process domains for sediment input and their characteristic scales. Here, we analyze the motion of a slow-moving landslide complex that was permanently monitored by time-lapse cameras over a period of 70 days at a 30 minutes interval. In addition, data sets for stream discharge, air temperature and precipitation rates are available. Apparent changes in the channel morphology, e.g. the destruction of channel-spanning bed forms, were manually determined from the time-lapse images and were treated as event marks in the time series. We identify five relevant types of sediment displacement processes emerging during the hillslope motion: concentrated mud flows, deep seated hillslope failure, catastrophic cavity failure, hillslope bank erosion and individual grain loss. Generally, sediment displacement occurs on a large range of temporal and spatial scales and sediment dynamics in steep streams not only depend on large floods with long recurrence intervals. We find that each type of displacement acts in a specific temporal and spatial domain with their characteristic scales. Different external climatic forcing (e.g. high-intensity vs. long-lasting precipitation events) promote different displacement processes. Stream morphology and the presence of boulders have a large effect on sediment input through deep seated failures and cavity failures while they have only minor impact on the other process types. In addition to large floods, which are generally recognized to produce huge amounts of sediment, we identify two relevant climatic regimes that play an important role for the sediment dynamics: a) long-lasting but low-intensity rainfall that explicitly trigger specific sediment displacement processes on the hillslopes and b) smaller discharge events with recurrence intervals of approximately one year that mobilize sediments from the hillslope's toes along the channel.

  12. SMOS validation in the Skjern River Catchment, Denmark

    DEFF Research Database (Denmark)

    Bircher, Simone

    model. This dissertation is not only a valuable contribution to SMOS validation, but can also be supportive for upcoming space missions such as NASA’s Soil Moisture Active and Passive, SMAP. Knowing the current caveats the use of SMOS data in regional and global modeling of water resources and climate......Soil moisture is a key variable for water resources management, weather and climate predictions as well as hazard analysis. It is highly variable in space and time across scales, and thus difficult to assess. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite...... with a passive L-band microwave radiometer on board is the first mission dedicated to surface soil moisture monitoring from space with global coverage every three days. By means of a complex retrieval algorithm, soil moisture is derived from the acquired brightness temperatures. Currently, data validation...

  13. Monitoring of microcystin-LR in Luvuvhu River catchment ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... The water quality of the shallow hand dug wells and reservoir water were almost similar. .... formation of Sibasa basalt in the area (SRR, 2001). The cyanobacteria usually ... 3D). The nitrate level in sampling site 2 exceeded 6 mg/l. DWAF guideline .... The 1 µg/l is the safe limit suggested by the Word. Health ...

  14. Landscape Controls of CH4 Fluxes in a Catchment of the Forest Tundra in Northern Siberia

    Science.gov (United States)

    Flessa, H.; Rodionov, A.; Guggenberger, G.; Fuchs, H.; Magdon, P.; Shibistova, O.; Zrazhevskaya, G.; Kasansky, O.; Blodau, C.

    2007-12-01

    Soils have the capacity to both produce and consume atmospheric methane. The direction and the size of net- CH4 exchange between soils and atmosphere is mainly controlled by the soil aeration, temperature and the amount of bioavailable organic matter. All these factors are strongly influenced by distribution and seasonal dynamics of permafrost. Thus, distribution of permafrost and the thickness of the active layer can exert strong influence on CH4 dynamics in artic and northern boreal ecosystems. We analyzed the spatial and temporal variability of net-CH4 exchange within a catchment located in the Siberian forest tundra at the eastern shore of the lower Yenissej River to constrain the current function of this region as a sink or source of atmospheric CH4 and to gain insight into the potential for climatic change to alter the rate and form of carbon cycling and CH4 fluxes in this region. Net-fluxes of CH4 were measured from July to November 2003 and from August 2006 to July 2007 on representative soils of the catchment (mineral soils with different thawing depth, soils of bog plateaux) and on a thermokarst pond. In addition, dissolved CH4 in the stream draining the catchment was determined. Field observations, classification of landscape structures from satellite images and flux measurements were combined to estimate total catchment CH4 exchange. Nearly all soils of the catchment were net-sinks of atmospheric CH4 with annual CH4-C uptake rates ranging between 1.2 and 0.2 kg ha-1 yr-1. The active layer depth was the main factor determining the size of CH4 uptake. Total net-exchange of CH4 from the catchment was dominated by ponds that covered only about 2% of the catchment area. Due to high CH4 emission from these aquatic systems, the catchment was a net source of atmospheric CH4 with a mean annual emission of approximately 170 kg CH4-C ha-1. CH4 concentration in streams draining the catchment can help to identify areas with high CH4 production. The results suggest

  15. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  16. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    Science.gov (United States)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the

  17. Land Management, River Restoration and the Water Framework Directive

    Science.gov (United States)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    The influence of catchment land-use on river ecosystems is well established, with negative changes in hydrology, sediment supply and pollutants causing widespread degradation in modified catchments across Europe. The strength of relationship found between different land-use types and impacts on river systems varies from study to study as a result of issues around data quality, scale, study design and the interaction of stressors at multiple scales. Analysis of large-scale datasets can provide important information about the way that catchments pressures affect WFD objectives at a national scale. Comparisons of relationships between land-use and WFD status in different types of catchment within the UK allow an assessment of catchment sensitivity and analysis of the catchment characteristics which influence these relationships. The results suggest prioritising catchments at or near land-use thresholds, or targeting waterbodies with limited land-use pressures but which are failing to achieve GES or GEP. This paper uses UK datasets on land cover and WFD waterbody status to examine how catchment land-use impacts on WFD status and to evaluate opportunities to achieve Good Ecological Status or Good Ecological Potential. Agricultural and urban land-use are shown to have different types of relationship with respect to the likelihood of achieving Good Ecological Status, and with clear threshold effects apparent for urban land-use in the catchment. Broad-scale analysis shows the influence of different sized buffer strips in mitigating the negative effects of different types of land-cover, and reinforces the positive effects of riparian woodland on river ecosystems and their potential under the WFD.

  18. Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The aims of this study are to identify the capacities of applying an ecohydrological model for simulating flow and to assess the impact of point and non-point source pollution on nitrate loads in a complex lowland catchment, which has special hydrological characteristics in comparison with those of other catchments. The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants.

    Ecohydrological models like the SWAT model (Soil and Water Assessment Tool are useful tools for simulating nutrient loads in river catchments. Diffuse entries from the agriculture resulting from fertilizers as well as punctual entries from the wastewater treatment plants are implemented in the model set-up.

    The results of this study show good agreement between simulated and measured daily discharges with a Nash-Sutcliffe efficiency and a correlation coefficient of 0.76 and 0.88 for the calibration period (November 1998 to October 2004; 0.75 and 0.92 for the validation period (November 2004 to December 2007. The model efficiency for daily nitrate loads is 0.64 and 0.5 for the calibration period (June 2005 to May 2007 and the validation period (June 2007 to December 2007, respectively. The study revealed that SWAT performed satisfactorily in simulating daily flow and nitrate loads at the lowland catchment in Northern Germany.

  19. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    Science.gov (United States)

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  20. Catchment Dispersion Mechanisms in an Urban Context

    Science.gov (United States)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  1. Catchment Classification: Connecting Climate, Structure and Function

    Science.gov (United States)

    Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.

    2010-12-01

    Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).

  2. Human-induced landscape changes and geo-hydrological risk: the Rupinaro catchment, Liguria, Italy

    Science.gov (United States)

    Giostrella, Paola; Faccini, Francesco; Maggi, Roberto; Cesare Mondini, Alessandro; Tarolli, Paolo; Guzzetti, Fausto

    2015-04-01

    Small and steep watersheds are typical of Liguria, northern Italy. In these small watersheds, geo-hydrological hazards, including flash floods and shallow landslides, caused by high intensity rainfall are frequent and abundant. In the coastal valleys of Liguria, narrow flood plains have hosted human settlements and communication lines since the protohistoric period. Since then, a variety of human activities have modified the natural landscape significantly, and chiefly through land-use changes first in the flood-plains, and next along the slopes. We have studied the 11-square km Rupinaro catchment, west of Chiavari, which has been inhabited since the 8th century BC. Progressive human actions have modified the main river and its tributaries, which have become narrower and canalized, and locally they were covered completely. Human actions have also contributed to the increase in the runoff coefficients, and to the progradation of the main river into the Ligurian Sea. Demographic growth, socio-economic development and urbanization are the main drivers for the land use changes occurred in the Rupinaro catchment. Through a combined analysis of archaeological and palynologycal data, and the multi-temporal analysis of historical maps, aerial photographs and satellite imagery of different vintages, we have reconstructed phases of modifications of the river and the tributaries. We determined the land use changes calculating the loss of soil, analyzing statistics of buildings and demography for the last 150 years, and interpreting historical maps and aerial and satellite imagery. We found that land reclamations, the construction of embankments, and the rectification of rivers are the main human actions performed to obtain building areas along the main river course. Expansion of urban settlements in flood prone areas, and even in the main riverbed, have reached a critical limit has shown by the destructive flood event that has affected the Rupinaro catchment, and chiefly the

  3. Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment

    Directory of Open Access Journals (Sweden)

    P. Rodgers

    2005-01-01

    Full Text Available δ18O measurements in precipitation and stream waters were used to investigate hydrological flow paths and residence times at nested spatial scales in the mesoscale (233 km2 River Feugh catchment in the northeast of Scotland over the 2001-2002 hydrological year. Precipitation δ18O exhibited strong seasonal variation, which although significantly damped within the catchment, was reflected in stream water at six sampling sites. This allowed δ18O variations to be used to infer the relative influence of soil-derived storm flows with a seasonally variable isotopic signature, and groundwater of apparently more constant isotopic composition. Periodic regression analysis was then used to examine the sub-catchment difference using an exponential flow model to provide indicative estimates of mean stream water residence times, which varied between approximately 3 and 14 months. This showed that the effects of increasing scale on estimated mean stream water residence time was minimal beyond that of the smallest (ca. 1 km2 headwater catchment scale. Instead, the interaction of catchment soil cover and topography appeared to be the dominant controlling influence. Where sub-catchments had extensive peat coverage, responsive hydrological pathways produced seasonally variable δ18O signatures in runoff with short mean residence times (ca. 3 months. In contrast, areas dominated by steeper slopes, more freely draining soils and larger groundwater storage in shallow valley-bottom aquifers, deeper flow paths allow for more effective mixing and damping of δ18O indicating longer residence times (>12 months. These insights from δ18O measurements extend the hydrological understanding of the Feugh catchment gained from previous geochemical tracer studies, and demonstrate the utility of isotope tracers in investigating the interaction of hydrological processes and catchment characteristics at larger spatial scales.

  4. Hydrological Regimes of Small Catchments in the High Tatra Mountains Before and After Extraordinary Wind-Induced Deforestation

    Science.gov (United States)

    Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan

    2009-01-01

    The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.

  5. CRA-W's committee of intervention: analyse of catchments polluted with pesticides.

    Science.gov (United States)

    Noel, S; Bah, B B; Collinet, G; Buffet, D; Sorel, A; Hallet, V

    2008-01-01

    In the Walloon Region of Belgium, a committee of intervention has been created to investigate problems of pesticide contamination of various catchments use for drinking water production. This committee involves the Agricultural Research centre--Wallonia (CRA-W, project coordinator) and some University experts. It is funded by the Société Publique de Gestion des Eaux (SPGE). The diagnosis method, base on the AQUAPLAINE method (Arvatis-France), consists of 4 steps. The first step is the preparation of diagnosis (at the office) that takes into account the paper risk of active ingredients. and their uses, the identification of the agricultural parcels, the collection of cartographic and numeric data, the description of the hydrogeological and pedological contexts and the study of the meteorological data in relation with the period of pollution. The second step consists of making a plot diagnosis (on the field) to identify the way of transfer inside the plot and collecting data. At the third step, the people who can apply PPP treatment close to the catchment are met (farmers and city services). Information are collected on treatments applied and on the state of parcels. Based on the hypothesis of pollution cause, the committee proposes solution to solve the problem. One of the catchment that has been investigated by the committee is located at Biesmerée, (Namur province, in Belgium). A temporally contamination was caused by 4 pesticides : chlortoluron, isoproturon, trifluralin and diflufenican. After investigations, it seems that the pollution was probably due to the hydrogeological context. As the river is locally perched over the aquifer, the presence of Poly-aromatic hydrocarbons (PAHs) could be due to the infiltration of surface water inside the catchment or/and to the presence of a sinkhole temporally activated during river flood period. Infiltration rate has to be assessed and river bank impermeabilization is recommended.

  6. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  7. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    Science.gov (United States)

    Wieczorek, Michael; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5

  8. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  9. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins

  10. Variability in source sediment contributions by applying different statistic test for a Pyrenean catchment.

    Science.gov (United States)

    Palazón, L; Navas, A

    2017-06-01

    Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km 2 , Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Application of GIS-based SCS-CN method in West Bank catchments, Palestine

    Directory of Open Access Journals (Sweden)

    Sameer Shadeed

    2010-03-01

    Full Text Available Among the most basic challenges of hydrology are the prediction and quantification of catchment surface runoff. The runoff curve number (CN is a key factor in determining runoff in the SCS (Soil Conservation Service based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number is very tedious and consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS are now being used in combination with the SCS-CN method. This paper assesses the modeling of flow in West Bank catchments using the GIS-based SCS-CN method. The West Bank, Palestine, is characterized as an arid to semi-arid region with annual rainfall depths ranging between 100 mm in the vicinity of the Jordan River to 700 mm in the mountains extending across the central parts of the region. The estimated composite curve number for the entire West Bank is about 50 assuming dry conditions. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in West Bank catchments, representing arid to semi-arid catchments of Palestine.

  12. Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A six-month series of high-resolution synchronous stream discharge and total phosphorus (TP concentration data is presented from a 5 km2 agricultural catchment in the Lough Neagh basin, Northern Ireland. The data are hourly averages of 10-minute measurements using a new bankside, automatic, continuous monitoring technology. Three TP transfer "event-types" occur in this catchment: (1 chronic, storm independent transfers; (2 acute, storm dependent transfers; (3 acute, storm independent transfers. Event-type 2 transferred over 90% of the total 279 kg TP load in 39% of the total period; it corresponded to diffuse transfers from agricultural soils. Event-types 1 and 3, however, maintained the river in a highly eutrophic state between storm events and were characteristic of point source pollution, despite there being no major industrial or municipal point sources. Managing P transfers at the catchment scale requires a robust monitoring technology to differentiate between dynamic, multiple sources and associated event types and so enable a reliable assessment of the performance of mitigation measures, monitored at catchment outlets. The synchronous and continuous TP and discharge data series generated in this study demonstrate how this is possible.

  13. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  14. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    Science.gov (United States)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  15. "Upstream Thinking": the catchment management approach of a water provider

    Science.gov (United States)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not

  16. Mapping the temporary and perennial character of whole river networks

    Science.gov (United States)

    González-Ferreras, A. M.; Barquín, J.

    2017-08-01

    Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.