WorldWideScience

Sample records for cern proton synchrotron

  1. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  2. Fifty years of the CERN Proton Synchrotron Volume 2

    CERN Document Server

    CERN. Geneva; Manglunki, Django; Burnet, Jean-Paul; Carli, Christian; Chanel, Michel; Garoby, Roland; Giovannozzi, Massimo; Hancock, Steven; Haseroth, Helmut; Hübner, Kurt; Küchler, Detlef; Lewis, Julian; Lombardi, Alessandra; Martini, Michel; Maury, Stephan; Métral, Elias; Möhl, Dieter; Plass, Günther; Rinolfi, Louis; Scrivens, Richard; Steerenberg, Rende; Steinbach, Charles; Vretenar, Maurizio; Zickler, Thomas

    2013-01-01

    This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners. The second volume describes the other machines in the PS complex: the proton linear accelerators, the PS Booster, the LEP pre-injector, the heavy-ion linac and accumulator, and the antiproton rings.

  3. Fifty years of the CERN Proton Synchrotron Volume 1

    CERN Document Server

    CERN. Geneva; Carli, Christian; Chanel, Michel; Garoby, Roland; Gilardoni, Simone; Giovannozzi, Massimo; Hancock, Steven; Haseroth, Helmut; Hübner, Kurt; Küchler, Detlef; Lewis, Julian; Lombardi, Alessandra; Manglunki, Django; Martini, Michel; Maury, Stephan; Métral, Elias; Möhl, Dieter; Plass, Günther; Rinolfi, Louis; Scrivens, Richard; Steerenberg, Rende; Steinbach, Charles; Vretenar, Maurizio; Zickler,Thomas

    2011-01-01

    This report sums up in two volumes the first 50 years of operation of the CERN Proton Synchrotron. After an introduction on the genesis of the machine, and a description of its magnet and powering systems, the first volume focuses on some of the many innovations in accelerator physics and instrumentation that it has pioneered, such as transition crossing, RF gymnastics, extractions, phase space tomography, or transverse emittance measurement by wire scanners. The second volume describes the other machines in the PS complex: the proton linear accelerators, the PS Booster, the LEP pre-injector, the heavy-ion linac and accumulator, and the antiproton rings.

  4. Space Charge Effects and Limitations in the CERN Proton Synchrotron

    CERN Document Server

    Wasef, R; Damerau, H; Gilardoni, S; Hancock, S; Hernalsteens, C; Huschauer, A; Schmidt, F; Franchetti, G

    2013-01-01

    Space charge produces a large incoherent tune-spread which, in presence of betatronic resonances, could lead to beam losses and emittance growth. In the CERN Proton Synchrotron, at the current injection kinetic energy (1.4 GeV) and even at the future kinetic energy (2 GeV), space charge is one of the main limitations for high brightness beams and especially for the future High- Luminosity LHC beams. Several detailed studies and measurements have been carried out to improve the understanding of space charge limitations to determine the maximum acceptable tune spread and identify the most important resonances causing losses and emittance growth.

  5. Beam loss monitors comparison at the CERN Proton Synchrotron

    CERN Document Server

    Gilardoni, S S; Effinger, E; Gil-Flores, J; Wienands, U

    2011-01-01

    CERN is planning the renovation and upgrade of the beam loss detection system for the Proton Synchrotron (PS). Improved performance in speed–to be able to monitor beam loss on a bunch-by-bunch basis–and in longterm stability–to reduce or avoid the need for periodic calibration–are aimed for. To select the most suitable technology, different detectors were benchmarked in the machine with respect to the same beam loss. The characteristics of the different detectors, the results of the measurement campaign and their suitability as future monitors for the PS are presented.

  6. CERN Proton Synchrotron Complex High-Level Controls Renovation

    CERN Document Server

    Deghaye, S; Garcia Quintas, D; Gourber-Pace, M; Kruk, G; Kulikova, O; Lezhebokov, V; Pasinelli, S; Peryt, M; Roderick, C; Roux, E; Sobczak, M; Steerenberg, R; Wozniak, J; Zaharieva, Z

    2009-01-01

    After a detailed study of the Proton Synchrotron (PS) complex requirements by experts of CERN controls & operation groups, a proposal to develop a new system, called Injector Controls Architecture (InCA), was presented to and accepted by the management late 2007. Aiming at the homogenisation of the control systems across CERN accelerators, InCA is based on components developed for the Large Hadron Collider (LHC) but also new components required to fulfil operation needs. In 2008, the project was in its elaboration phase and we successfully validated its architecture and critical use-cases during several machine development sessions. After description of the architecture put in place and the components used, this paper describes the planning approach taken combining iterative development phases with deployment in operation for validation sessions.

  7. Multi-turn injection of 50 MeV protons into the CERN Proton Synchrotron booster

    CERN Document Server

    Raginel, V; Carli, C; Mikulec, B

    2013-01-01

    Since 1978, Linac2 produces beams of 50 MeV protons with a current around 160 mA, which are injected into the CERN Proton Synchrotron Booster (PSB) with conventional multi-turn injection using a horizontal septum. It is planned to replace Linac2 during a future long stop with a new H- linac, Linac4, injecting at higher energy (160 MeV) and making use of the modern chargeexchange injection principle. Due to the age of Linac2 and to a delicate vacuum situation the risk of a serious Linac2 breakdown has to be considered. Therefore it is necessary to study if the PSB could produce beams useful for the LHC and other experiments injecting a Linac4 proton beam at 50 MeV with much lower average current compared to Linac2 and without the need for a long installation of the 160 MeV H- injection hardware. Benchmarking of the PSB injection model with the existing injection system with Linac2 using the ORBIT code has been done for a LHC-type beam and then the injection model was used to estimate the brightness for LHC-typ...

  8. Multi-turn injection of 50 MeV protons into the CERN Proton Synchrotron Booster

    CERN Document Server

    Raginel, V; Carli, C; Mikulec, B

    2013-01-01

    Since 1978, Linac2 produces beams of 50 MeV protons with a current around 160 mA, which are injected into the CERN Proton Synchrotron Booster (PSB) with conventional multi-turn injection using a horizontal septum. It is planned to replace Linac2 during a future long stop with a new H- linac, Linac4, injecting at higher energy (160 MeV) and making use of the modern chargeexchange injection principle. Due to the age of Linac2 and to a delicate vacuum situation the risk of a serious Linac2 breakdown has to be considered. Therefore it is necessary to study if the PSB could produce beams useful for the LHC and other experiments injecting a Linac4 proton beam at 50 MeV with much lower average current compared to Linac2 and without the need for a long installation of the 160 MeV H- injection hardware. Benchmarking of the PSB injection model with the existing injection system with Linac2 using the ORBIT code has been done for a LHC-type beam and then the injection model was used to estimate the brightness for LHC-typ...

  9. Experience with interactive control software at the CERN proton synchrotron

    CERN Document Server

    Carpenter, B E

    1973-01-01

    The computer system includes, in addition to the central computer, a Varian 620 used for real-time function generation and two Imlac PDS1 display mini-computers used as operator consoles. The configuration is being expanded to include 3 PDP-11/45's and links with various other online computers associated with the synchrotron, and the present survey of interactive control software in use with the old configuration was carried out as part of the planning of this expansion. This paper describes the various means of computer access available to the synchrotron operators and development engineers, and outlines the associated software. One of the more flexible pieces of software, an on-line syntax handler, is discussed in more detail. (3 refs).

  10. Metrological Performance of a Ferrimagnetic Resonance Marker for the Field Control of the CERN Proton Synchrotron

    CERN Document Server

    Arpaia, P; Caspers, F; Golluccio, G; Oberson, D

    2012-01-01

    In particle accelerators, “field markers” provide a digital trigger when the magnetic field crosses a given threshold. In this paper, the metrological characterization of a magnetic field marker, based on a ferrimagnetic resonance transducer referencing the flux sensed by a coil, is reported. The experimental results of a validation test campaign at the European Organization for Nuclear Research (CERN) to test the marker in static as well as fast ramping fields (up to 2.5 T/s) are illustrated. The repeatability of ±4 μT attained in the range (60 to 100) mT is very promising to increase the performance of the Proton Synchrotron accelerator at CERN.

  11. Development of a new Frequency Program in the CERN Proton Synchrotron

    CERN Document Server

    Sundal, Magnus; Larsen, Ragnhild; Johnsen, Ragnar

    The development of a new frequency program in the Proton Synchrotron (PS) is a project that links existing and new infrastructure in the first particle accelerator built at CERN. In a particle synchrotron, the magnetic field strength of the bending magnets and the revolution frequency of the particles are coupled to keep a circulating beam at fixed orbit during acceleration. The frequency program delivers a revolution frequency based on the measurements of the bending magnets. Ongoing renovations in the magnet measurement system are changing the way the information is distributed from the magnets. Once implemented, it will represent a step towards fully digital beam controls. This project involves development of both Very High Speed Integrated Circuit Hardware Description Language (VHDL) firmware and Printed Circuit Boards (PCBs) in the form of FPGA Mezzanine Cards (FMCs) to adapt the frequency program to the new transmission protocol called White Rabbit. The White Rabbit is a network solution that provides s...

  12. Tune measurement for the CERN proton synchrotron booster rings using DSP in VME

    CERN Document Server

    Chapman-Hatchett, A; D'Amico, T E

    1999-01-01

    The CERN PS Booster (PSB) consists of 4 superposed rings supplied with protons from a 50 MeV Linac The CERN PS Booster (PSB) consists of 4 superposed rings supplied with protons from a 50 MeV Linac. The proton beam is then accelerated to 1 GeV and sent either to the 26 GeV Proton Synchrotron (PS) or to the ISOLDE facility. This is carried out in a multi-cycle mode every 1.2 s. For high-intensity beams, the working-point in the tune diagram needs to be changed considerably during acceleration from 50 MeV to 1 GeV and the repeated measurement of the tunes throughout the cycle is an important requirement. Up to now, tune values were obtained through calculations based on quadrupole currents. However, practical experience has shown the need for a direct tune measurement system. For this purpose, a classical kick technique is used. A fixed amplitude kick of duration equal to one revolution period excites coherent betatron oscillations. For fast treatment, a Digital Signal Processing (DSP) module in a VME-standard ...

  13. Search for critical behavior of strongly interacting matter at the CERN Super Proton Synchrotron

    CERN Document Server

    Gazdzicki, Marek

    2015-01-01

    History, status and plans of the search for critical behavior of strongly interacting matter created in nucleus-nucleus collisions at the CERN Super Proton Synchrotron is reviewed. In particular, it is expected that the search should answer the question whether the critical point of strongly interacting matter exists and, if it does, where it is located. First, the search strategies are presented and a short introduction is given to expected fluctuation signals and to the quantities used by experiments to detect th The most important background effects are also discussed. Second, relevant experimental results are summarized and discussed. It is intriguing that both the fluctuations of quantities integrated over the full experimental acceptance (event multiplicity and transverse momentum) as well as the bin size dependence of the second factorial moment of pion and proton multiplicities in medium-sized Si+Si collisions at 158A GeV/c suggest critical behaviour of the created matter. These results provide strong...

  14. CERN Proton Synchrotron booster space charge simulations with a realistic model for alignment and field errors*

    Science.gov (United States)

    Forte, V.; Benedetto, E.; McAteer, M.

    2016-12-01

    The CERN Proton Synchrotron booster (PSB) is one of the machines of the LHC injector chain which will be upgraded within the LHC Injectors Upgrade (LIU) project. The injection energy of the PSB will be increased to 160 MeV in order to mitigate direct space charge effects, considered to be the main performance limitation, aiming to double the brightness for the LHC beams. In order to better predict the gain to be expected, space charge simulations are being carried out. As a first step, benchmarking between simulations and measurements is needed. Efforts to establish a realistic modeling of field and alignment errors aim at extending the basic model of the machine toward a more realistic one. Simulations of beam dynamics with strong space charge and realistic errors are presented and analyzed in this paper.

  15. Forward production of charged pions with incident protons on nuclear targets at the CERN Proton Synchrotron

    CERN Document Server

    Apollonio, M; Bagulya, A; Barr, G; Blondel, A; Bobisut, F; Bogomilov, M; Bonesini, M; Booth, C; Borghi, S; Bunyatov, S; Burguet-Castell, J; Catanesi, M G; Cervera-Villanueva, A; Chimenti, P; Coney, L; Di Capua, E; Dore, U; Dumarchez, J; Edgecock, R; Ellis, M; Ferri, F; Gastaldi, U; Giani, S; Giannini, G; Gibin, D; Gilardoni, S; Gorbunov, P; Gößling, C; Gómez-Cadenas, J J; Grant, A; Graulich, J S; Grégoire, G; Grichine, V; Grossheim, A; Guglielmi, A; Howlett, L; Ivanchenko, A; Ivanchenko, V; Kayis-Topaksu, A; Kirsanov, M; Kolev, D; Krasnoperov, A; MartíinAlbo, J; Meurer, C; Mezzetto, M; B Mills, G; Morone, M C; Novella, P; Orestano, D; Palladino, V; Panman, J; Papadopoulos, I; Pastore, F; Piperov, S; Polukhina, N; Popov, B; Prior, G; Radicioni, E; Schmitz, D; Schroeter, R; Skoro, G; Sorel, M; Tcherniaev, E; Temnikov, P; Tereschenko, V; Tonazzo, A; Tortora, L; Tsenov, R; Tsukerman, I; Vidal-Sitjes, G; Wiebusch, C; Zucchelli, P

    2009-01-01

    Measurements of the double-differential charged pion production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta <0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles were identified by an elaborate system of beam detectors. The data were taken with thin targets of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross section mainly at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets which can serve as a tool for quick yield...

  16. CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

    CERN Multimedia

    1969-01-01

    CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

  17. Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    Science.gov (United States)

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Damyanova, A.; Davis, N.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Luise, S. Di; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A. E.; Hierholzer, M.; Hylen, J.; Igolkin, S.; Ivashkin, A.; Johnson, S. R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kiełbowicz, M.; Kisiel, J.; Knezević, N.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kovalenko, V.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lundberg, B.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marchionni, A.; Marcinek, A.; Marino, A. D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Merzlaya, A.; Messerly, B.; Mills, G. B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Ozvenchuk, V.; Panagiotou, A. D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rameika, R.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B. T.; Rustamov, A.; Rybczynski, M.; Rybicki, A.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Walewski, M.; Wickremasinghe, A.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.; Zimmerman, E. D.; Zwaska, R.

    2017-02-01

    Results on two-particle Δ η Δ φ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models.

  18. A quadrature frequency converter in a feedback loop of high frequency cavities in the Proton Synchrotron at CERN.

    CERN Document Server

    Truszczynski, T

    This thesis presents the author’s work during the internship at the European Laboratory for Particle Physics (CERN). The quadrature frequency converter is one of the modules that has been developed to upgrade the Proton Synchrotron RF system. Basic information about accelerators, fundamentals of IQ signal representation, mixing and phase shifting techniques are introduced. The development process of the converter is presented with the design details and measurements of the prototype board.

  19. Transverse beam splitting made operational: Recent progress of the multi-turn extraction at the CERN proton synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Borburgh, Jan; Damjanovic, Sanja; Gilardoni, Simone; Giovannozzi, Massimo; Hourican, Michael; Kahle, Karsten; Michels, Olivier; Sterbini, Guido; Hernalsteens, Cedric; Le Godec, Gilles

    2016-01-01

    Following a successful commissioning period, the Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving Continuous Transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of non-linear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and non-linear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. The results of the related experimental and simulation studies, a summary ...

  20. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  1. Numerical Simulation Study of the Montague Resonance at the CERN Proton Synchrotron

    CERN Document Server

    Qiang, J; Franchetti, G; Hofmann, I; Metral, E

    2012-01-01

    The Montague resonance provides a coupling between the vertical and the horizontal dynamics of beam and can cause particle losses due to unequal aperture sizes of the accelerator. In this paper, we present a new numerical simulation study of a previous Montague resonance crossing experiment at the CERN PS including detailed three-dimensional space-charge effects and machine nonlinearity. The simulation reproduces the experimental data well and suggests that the longitudinal synchrotron motion played an important role in enhancing transverse resonance coupling.

  2. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  3. Comparison of the performance of different instruments in the stray neutron field around the CERN Proton Synchrotron.

    Science.gov (United States)

    Aza, Eleni; Caresana, Marco; Cassell, Christopher; Colombo, Valeria; Damjanovic, Sanja; Gilardoni, Simone; Manessi, Giacomo Paolo; Pangallo, Michel; Perrin, Daniel; Silari, Marco

    2014-10-01

    This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead time.

  4. Shielding Studies for the CERN Super-Proton-Synchrotron at Experimental Point 5

    CERN Document Server

    Müller, Mario J

    2004-01-01

    The European Laboratory for Particle Research, CERN has been operated the Super Proton Sychrotron (SPS) for more than 30 years with the shielding design knowledge of the early 70s. At that time particle transport codes were neither available nor capable of dealing with deep lateral shielding calculations. For the future LHC increasing projected values of beam intensity in the SPS and decreasing limits to radiation exposure have led to the need to re-assess the shielding at point 5 of the SPS. 20 years ago this area housed the UA1 experiment of Carlo Rubbia (nobel-price 1984). The thesis describes a re-assessment based on simulations using the multi-purpose radiation transport codes FLUKA and MCNPX. The latter one was utilized for geometry design and to compare variance reduction methods. Different assumed beam-loss points along the beam-line together with fluence-to-doserate conversion calculations were used to find the worst case scenario. Dose-rates as well as particle-energy spectra inside the accessible a...

  5. Speech to be delivered by Mr. François de Rose, president of Council of the european organization for nuclear research on the occasion of the inauguration of the CERN proton synchrotron on 5 february 1960

    CERN Multimedia

    CERN Press Office. Geneva

    1960-01-01

    Speech to be delivered by Mr. François de Rose, president of Council of the european organization for nuclear research on the occasion of the inauguration of the CERN proton synchrotron on 5 february 1960

  6. Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p+p interactions at the CERN Super Proton Synchrotron

    CERN Document Server

    Aduszkiewicz, A.; Andronov, E.; Antici, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Damyanova, A.; Davis, N.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A.E.; Hierholzer, M.; Hylen, J.; Igolkin, S.; Ivashkin, A.; Johnson, S.R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kiełbowicz, M.; Kisiel, J.; Knezevic, N.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kovalenko, V.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lundberg, B.; Lyubushkin, V.V.; Mackowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manic, D.; Marchionni, A.; Marcinek, A.; Marino, A.D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Merzlaya, A.; Messerly, B.; Mills, G.B.; Morozov, S.; Mrówczynski, S.; Nagai, Y.; Nakadaira, T.; Naskret, M.; Nirkko, M.; Nishikawa, K.; Ozvenchuk, V.; Panagiotou, A.D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała, M.; Puławski, S.; Puzovic, J.; Rameika, R.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B.T.; Rustamov, A.; Rybczynski, M.; Rybicki, A.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Walewski, M.; Wickremasinghe, A.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszynski, O.; Zambelli, L.; Zimmerman, E.D.; Zwaska, R.

    2017-01-01

    Results on two-particle d eta - d phi correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.

  7. Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p+p interactions at the CERN Super Proton Synchrotron

    CERN Document Server

    Aduszkiewicz, A.; Andronov, E.; Antici, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Damyanova, A.; Davis, N.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A.E.; Hierholzer, M.; Hylen, J.; Igolkin, S.; Ivashkin, A.; Johnson, S.R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kiełbowicz, M.; Kisiel, J.; Knezevic, N.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kovalenko, V.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lundberg, B.; Lyubushkin, V.V.; Mackowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manic, D.; Marchionni, A.; Marcinek, A.; Marino, A.D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Merzlaya, A.; Messerly, B.; Mills, G.B.; Morozov, S.; Mrówczynski, S.; Nagai, Y.; Nakadaira, T.; Naskret, M.; Nirkko, M.; Nishikawa, K.; Ozvenchuk, V.; Panagiotou, A.D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała, M.; Puławski, S.; Puzovic, J.; Rameika, R.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B.T.; Rustamov, A.; Rybczynski, M.; Rybicki, A.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Walewski, M.; Wickremasinghe, A.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszynski, O.; Zambelli, L.; Zimmerman, E.D.; Zwaska, R.

    2016-01-01

    Results on two-particle d eta - d phi correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.

  8. Digital Beam Trajectory and Orbit System, for the CERN Proton Synchrotron

    CERN Document Server

    Kasprowicz, G; Raich, U

    2008-01-01

    A new trajectory and orbit measurement system using fast signal sampling and digital signal processing in an FPGA is proposed for the CERN PS. The system uses a constant sampling frequency while the beam revolution frequency changes during acceleration. Synchronization with the beam is accomplished through a numerical PLL algorithm. This algorithm is also capable of treating RF gymnastics like bunch splitting or batch compression with the help of external timing signals. Baseline and position calculation are provided in the FPGA code as well. After having implemented the algorithms in C and MatLab and tested them with data from a test run at the PS, they have now been implemented in the FPGA for online use. Results of measurements on a single beam position monitor in the CERN PS and the SIS-18 at GSI will be presented.

  9. Interaction of Super Proton Synchrotron beam with solid copper target: Simulations of future experiments at HiRadMat facility at CERN

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Fortov, V E; Piriz, A R; Deutsch, C; Hoffmann, D H H

    2009-01-01

    In this paper we present numerical simulations of interaction of 450 GeV/c proton beam that is generated by Super Proton Synchrotron (SPS) at CERN, with a solid copper target. These simulations have been carried out using a two-dimensional hydrodynamic computer code, BIG2. This study has been done to assess the damage caused by these highly relativistic protons to equipment including collimators, absorbers and others in case of an uncontrolled accidental release of the beam. In fact a dedicated experimental facility named HiRadMat is under construction at CERN that will allow one to study these problems experimentally. The simulations presented in this paper will be very useful in designing these experiments and later to interpret the experimental results.

  10. Comprehensive interpretation of thermal dileptons measured at the CERN super proton synchrotron.

    Science.gov (United States)

    van Hees, Hendrik; Rapp, Ralf

    2006-09-01

    Employing thermal dilepton rates based on a medium-modified electromagnetic correlation function we show that recent dimuon spectra of the NA60 Collaboration in central In-In collisions at the CERN-SPS can be understood in terms of radiation from a hot and dense hadronic medium. Earlier calculated in-medium rho-meson spectral functions provide an accurate description of the data up to dimuon invariant masses of about M approximately or equal to 0.9 GeV, with good sensitivity to the predicted rho-meson line shape, identifying baryon-induced modifications as the prevalent ones. A reliable evaluation of the contribution enables the study of further medium effects: at masses M>0.9 GeV, 4-pion type annihilation accounts for the experimentally observed excess (possibly augmented by effects of "chiral mixing"), while predictions for thermal emission from in-medium omega and phi mesons may be tested in the future.

  11. Comparison of Enamel and Stainless Steel Electron Cloud Clearing Electrodes Tested in the CERN Proton Synchrotron

    CERN Document Server

    Caspers, Friedhelm; Mahner, C; Wendel, JC

    2010-01-01

    During the 2007 run with the nominal LHC proton beam, electron cloud has been clearly identified and characterized in the PS using a dedicated setup with shielded button-type pickups. Efficient electron cloud suppression could be achieved with a stainless steel stripline-type electrode biased to negative and positive voltages up to ± 1 kV. For the 2008 run, a second setup was installed in straight section 84 of the PS where the stainless steel was replaced by a stripline composed of an enamel insulator with a resistive coating. In contrast to ordinary stripline electrodes this setup presents a very low beam coupling impedance and could thus be envisaged for long sections of high-intensity machines. Here, we present first comparative measurements with this new type of enamel clearing electrode using the nominal LHC beam with 72 bunches and 25 ns bunch spacing.

  12. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  13. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    Energy Technology Data Exchange (ETDEWEB)

    NA49 Collaboration; Anticic, T.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  14. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Udrea, S; Hoffmann, D H H; Fortov, V E; Deutsch, C

    2009-01-01

    A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code (Fasso et al....

  15. Shielding design of an underground experimental area at point 5 of the CERN Super Proton Synchrotron (SPS).

    Science.gov (United States)

    Mueller, Mario J; Stevenson, Graham R

    2005-01-01

    Increasing projected values of the circulating beam intensity in the Super Proton Synchrotron (SPS) and decreasing limits to radiation exposure, taken with the increasing non-acceptance of unjustified and unoptimised radiation exposures, have led to the need to re-assess the shielding between the ECX and ECA5 underground experimental areas of the SPS. Twenty years ago, these experimental areas at SPS-Point 5 housed the UA1 experiment, where Carlo Rubbia and his team verified the existence of W and Z bosons. The study reported here describes such a re-assessment based on simulations using the multi-purpose FLUKA radiation transport code. This study concludes that while the main shield which is made of concrete blocks and is 4.8 m thick satisfactorily meets the current design limits even at the highest intensities presently planned for the SPS, dose rates calculated for liaison areas on both sides of the main shield significantly exceed the design limits. Possible ways of improving the shielding situation are discussed.

  16. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  17. CERN Proton Synchrotron working point control using an improved version of the pole-face-windings and figure-of-eight loop powering

    CERN Document Server

    Burnet, Jean Paul; Métral, E; Michels, O; Steerenberg, R; Vandorpe, B

    2006-01-01

    The working point of the CERN Proton Synchrotron, which is equipped with combined function magnets, is controlled using pole-face-windings. Each main magnet consists of one focusing and one de-focusing half-unit on which four pole-face-winding plates are mounted containing two separate coils each, called narrow and wide. At present they are connected in series, but can be powered independently. In addition, a winding called the figure-of-eight loop, contours the pole faces and crosses between the two half units, generating opposite fields in each half-unit. The four optical parameters, horizontal and vertical tune and chromaticity, are adjusted by acting on the pole-face-winding currents in both half units and in the figure-of-eight loop, leaving one physical quantity free. The power supply consolidation project opened the opportunity to use five independent power supplies, to adjust the four parameters plus an additional degree of freedom. This paper presents the results of the measurements that have been ma...

  18. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  19. Implications of energy and momentum conservation for particle emission in A +A collisions at energies available at the CERN Super Proton Synchrotron

    Science.gov (United States)

    Szczurek, Antoni; Kiełbowicz, Mirosław; Rybicki, Andrzej

    2017-02-01

    We construct a simple model of heavy-ion collisions, local in the impact parameter plane, and appropriate for energies available at the CERN Super Proton Synchrotron (SPS). This model can be regarded as a new realization of the "fire-streak" approach, originally applied to studies of lower-energy nucleus-nucleus reactions. Starting from local energy and momentum conservation, we nicely describe the broadening of the pion rapidity distribution when going from central to peripheral Pb +Pb collisions at √{sN N}=17.3 GeV. The results of our calculations are compared with SPS experimental data. We discuss the resulting implications on the role of energy and momentum conservation for the dynamics of particle production in heavy-ion collisions. A specific space-time picture emerges, where the longitudinal evolution of the system strongly depends on the position in the impact parameter (bx,by ) plane. This picture is consistent with our earlier findings on the longitudinal evolution of the system as deduced from electromagnetic effects on charged-pion directed flow and can provide an explanation for specific low-pT phenomena seen in the fragmentation region of Pb +Pb collisions.

  20. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u In49+ ions at the CERN Super Proton Synchrotron

    Science.gov (United States)

    Mahner, E.; Efthymiopoulos, I.; Hansen, J.; Page, E.; Vincke, H.

    2004-10-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 104 to 107 molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  1. PERFORMANCE ANALYSIS OF MULTI-TURN EXTRACTION FROM THE PROTON SYNCHROTRON TO THE SUPER PROTON SYNCHROTRON

    CERN Document Server

    Abernethy, Samuel

    2016-01-01

    Within CERN's accelerator complex, the extraction from the Proton Synchrotron to the Super Proton Synchrotron has been done using the so-called ``Continuous Transfer" (CT) method since the 1970's. A new technique, known as Multi-Turn Extraction (MTE), has now been implemented and is in full operation. This report examines a holistic performance analysis of the novel technique in multiple aspects of the accelerator complex, as well as a direct comparison with its predecessor, CT, from the implementation of MTE in 2010 until the end of 2015.

  2. The European 400 GeV proton synchrotron

    CERN Document Server

    Middelkoop, Willem Cornelis

    1977-01-01

    On 19th February 1971, CERN decided to build a super proton synchrotron at a cost of 1150*10/sup 6/ Swiss francs. The design target of 400 GeV with a beam intensity of 10/sup 13/ protons/pulse was reached on the 4th of November 1976 within the original budget, allowing for inflation. The technical aspects of the SPS are reviewed, together with operating experience since May 1976. (2 refs).

  3. Golden Jubilee photos: The Proton Synchrotron

    CERN Multimedia

    2004-01-01

    Energy record Standing before the CERN personnel in the Main Auditorium on 25 November 1959, John Adams held not a bottle of champagne but a bottle of vodka. It had been presented to him a few months earlier during a visit to Dubna in the Soviet Union, where the world's most powerful accelerator had just been commissioned. He had been given strict instructions not to open the bottle until Dubna's energy record of 10 GeV had been broken. On 24 November, the record was smashed by CERN's brand new machine, the Proton Synchrotron, which accelerated protons at 24 GeV, over twice the energy of the Dubna machine. Before sending the empty bottle back to the Soviet Union, John Adams, who had headed the accelerator's construction, placed the recording of the signal in it as proof of the record. More than 40 years later, the PS is still going strong, delivering beams with particle densities a thousand times greater than when it first started operation. Over the years, other accelerators have grown up around it and the...

  4. Allocution prononcée par M. François de Rose, Président du Conseil de l'organisation européenne pour la recherche nucléaire à l'occasion de l'inauguration du synchrotron à protons du CERN le 5 février 1960

    CERN Multimedia

    CERN Press Office. Geneva

    1960-01-01

    Allocution prononcée par M. François de Rose, Président du Conseil de l'organisation européenne pour la recherche nucléaire à l'occasion de l'inauguration du synchrotron à protons du CERN le 5 février 1960

  5. The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Control Centre for LHC operations, located in Prevessin.

    CERN Multimedia

    Husi C.

    2007-01-01

    The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Control Centre for LHC operations, located in Prevessin.

  6. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  7. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  8. La nouvelle alimentation pulsée de 60MW à 0.5Hz pour le Synchrotron à protons du CERN un système totalement statique avec stockage d’énergie par condensateurs

    CERN Document Server

    Burnet, Jean-Paul

    2010-01-01

    Le Synchrotron à proton (PS) du CERN est un accélérateur de particules mis en service en 1959. Aujourd’hui, il est plus que jamais un élément essentiel de la chaine des accélérateurs du CERN. Il reçoit les protons d’un pré-accélérateur à une énergie de 1.4GeV et il les accélère jusqu’à 25GeV. Les cycles d’accélération durent 1.2 ou 2.4 secondes et s’enchainent les uns à la suite des autres, 5000 heures par an. Cent un aimants sont répartis sur les six cents mètres de circonférence de la machine et créent un champ magnétique qui permet de conserver les protons sur la trajectoire circulaire de la machine. Ils sont tous connectés en série et alimentés par un seul convertisseur de puissance. En réalité, ce convertisseur est un système de puissance complexe comprenant un groupe tournant de 90MVA. Ce groupe est en service depuis 1968 et après plus de 200 millions de cycles, montre des signes de fatigue. Une nouvelle alimentation prendra bientôt la relève. La solution reten...

  9. The Proton Synchrotron (PS) in its tunnel.

    CERN Multimedia

    Patrice Loïez

    1996-01-01

    The PS accelerated protons for the first time on 24 November 1959. Since then, the intensity of its proton beam has increased a thousandfold, and in the course of its history it has accelerated many other kinds of particles. Permanently rejuvenated and upgraded, the PS is still the central workhorse of CERN's accelerator complex. The combined-function magnets, prominently visible in this picture, are still the original ones.

  10. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2016-01-01

    To perform proton irradiation experiments, CERN built during LS1 a new irradiation facility in the East Area at the Proton Synchrotron accelerator. At this facility, named IR-RAD, a high-intensity 24 GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  11. Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

    CERN Document Server

    Urschütz, Peter; Benedikt, Michael

    2004-01-01

    The CERN PS Booster synchrotron is the first circular accelerator in the proton injector chain of the future Large Hadron Collider and links the linear accelerator, Linac2, with the Proton Synchrotron. Apart from serving as a pre-injector for the LHC, the PS Booster provides high intensity beams for the ISOLDE physics facility and various other beams for the Proton Synchrotron and its users. The 50 MeV proton beam coming from Linac2 is accumulated in the PS Booster by means of a multi-turn-injection scheme. Throughout injection, rf-capture and early acceleration, the individual particles in the beam “see” large, fluctuating incoherent space-charge tune shifts, consequently sweeping a large area in the tune diagram and covering many resonances. Thus, the beam suffers amplitude blow-up from transverse betatron resonances and an efficient compensation is required to avoid subsequent particle losses. The presently used resonance compensation scheme was established 25 years ago by orthogonal search of coupled ...

  12. The Proton Synchrotron, going strong at fifty years

    CERN Multimedia

    Django Manglunki

    It was on the evening of 24 November 1959 that an incredulous Hildred Blewett, on detachment to CERN from the Brookhaven laboratory, exclaimed “Yes! We’re through transition!” The first beam of ten billion protons had not only broken through the 5.2 GeV barrier but gone on all the way to 24 GeV, the machine’s top energy at that time.   An operational screenshot from the PS, taken on its 50th anniversary. The three white peaks depict different phases (cycles) of the PS’s operation. In the first and third cycle, the PS is producing a very low-intensity beam for LHC commissioning. In the second cycle, protons are being spilled out for use in the East Area. Fifty years ago the PS, the first strong-focusing proton synchrotron using alternating gradient technology, first began to circulate beams at an unprecedented level of energy. Over the years, a complex of linear and circular accelerators and storage rings grew up around the PS. In the mid-1990s ...

  13. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Science.gov (United States)

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  14. Measurement of small-angle antiproton-proton and proton-proton elastic scattering at the CERN intersecting storage rings

    NARCIS (Netherlands)

    Amos, N.; Block, M.M.; Bobbink, G.J.; Botje, M.A.J.; Favart, D.; Leroy, C.; Linde, F.; Lipnik, P.; Matheys, J-P.; Miller, D.

    1985-01-01

    Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at . Using the optical theorem, total cross sections are obtained with an accuracy of about

  15. Measurements of forward proton production with incident protons and charged pions on nuclear targets at the CERN Proton Synchroton

    CERN Document Server

    Apollonio, M; Bagulya, A; Barr, G; Blondel, A; Bobisut, F; Bogomilov, M; Bonesini, M; Booth, C; Borghi, S; Bunyatov, S; Burguet–Castell, J; Catanesi, M G; Cervera–Villanueva, A; Chimenti, P; Coney, L; Di Capua, E; Dore, U; Dumarchez, J; Edgecock, R; Ellis, M; Ferri, F; Gastaldi, U; Giani, S; Giannini, G; Gibin, D; Gilardoni, S; Gorbunov, P; Gößling, C; Gómez–Cadenas, J J; Grant, A; Graulich, J S; Grégoire, G; Grichine, V; Grossheim, A; Guglielmi, A; Howlett, L; Ivanchenko, A; Ivanchenko, V; Kayis-Topaksu, A; Kirsanov, M; Kolev, D; Krasnoperov, A; Martín–Albo, J; Meurer, C; Mezzetto, M; Mills, G B; Morone, M C; Novella, P; Orestano, D; Palladino, V; Panman, J; Papadopoulos, I; Pastore, F; Piperov, S; Polukhina, N; Popov, B; Prior, G; Radicioni, E; Schmitz, D; Schroeter, R; Skoro, G; Sorel, M; Tcherniaev, E; Temnikov, P; Tereschenko, V; Tonazzo, A; Tortora, L; Tsenov, R; Tsukerman, I; Vidal–Sitjes, G; Wiebusch, C; Zucchelli, P

    2010-01-01

    Measurements of the double-differential proton production cross-section in the range of momentum 0.5 GeV/c leq p le 8.0 GeV/c and angle 0.05 rad leq heta le 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper,tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5% of a nuclear interaction length.The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators

  16. AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E

    2014-01-01

    Plasma wakefield acceleration is a promising alternative reaching accelerating fields a magnitude of up to 3 higher (GV/m) when compared to conventional RF acceleration. AWAKE, world’s first proton-driven plasma wakefield experiment, was launched at CERN to verify this concept. In this experiment proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent to the plasma cell, where the proton beam drives the plasma wakefields and creates a large accelerating field. This large gradient of ~GV/m can be achieved by relying on the self-modulation instability (SMI) of the proton beam; when seeded by ionization through a short laser pulse, a train of micro-bunches with a period on the order of the plasma wavelength (~mm) develops, which can drive such a large amplitude wake from a long proton bunch (~12 cm). An electron beam will be injected into the plasma to probe the accelerating wakefield. The AWAKE experiment is being installed at CERN in the former CNGS facility, which must be modified to mat...

  17. High-Power Proton Linac Technology at CERN

    Science.gov (United States)

    Gerigk, Frank

    The construction of Linac4, a 160 MeV H- linac started in 2008 and is now in the beam commissioning phase. The RFQ and MEBT line have been successfully commissioned; and installation and beam measurements of the 50 MeV DTL have started in 2014. Linac4 was conceived as the normal conducting front-end for a Superconducting Proton Linac (SPL), providing 5 GeV protons for a future neutrino facility at CERN. In the last 2 years the CERN infrastructure for the construction, surface treatment and testing of superconducting cavities has been upgraded to be compatible with the prototyping of a 4-cavity SPL type cryomodule. The 704 MHz 5-cell Niobium cavities, presently being built and tested at CERN are of interest also for other potential future projects at CERN and therefore the SPL R&D effort is well supported over the coming years. This paper reviews the context and status of Linac4 and SPL and highlights some of the technological developments, which have been done at CERN and which are foreseen within the next years.

  18. The Beam Profile Monitoring System for the IRRAD Proton Facility at the CERN PS East Area

    CERN Document Server

    Gkotse, Blerina; Matli, Emanuele; Ravotti, Federico; Gan, Kock Kiam; Kagan, Harris; Smith, Shane; Warner, Joseph

    2016-01-01

    In High Energy Physics (HEP) experiments, devices are frequently required to withstand a certain radiation level. As a result, detectors and electronics must be irradiated to determine their level of radiation tolerance. To perform these irradiations, CERN built a new irradiation facility in the East Area at the Proton Synchrotron (PS) accelerator. At this facility, named IRRAD, a high-intensity 24 GeV/c proton beam is used. During irradiation, it is necessary to monitor the intensity and the transverse profile of the proton beam. The Beam Profile Monitor (BPM) for IRRAD uses 39-channel pixel detectors to monitor the beam position. These pixel detectors are constructed using thin foil copper pads positioned on a flex circuit. When protons pass through the copper pads, they induce a measurable current. To measure this current and determine the total flux of protons passing through the thin foil copper detectors, a new data acquisition system was designed as well as a new database and on-line display system. In...

  19. Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures $\\Delta[P_T, N]$ and $\\Sigma[P_T, N]$ in nucleus-nucleus collisions at the CERN Super Proton Synchrotron

    CERN Document Server

    Anticic, T; Bartke, J; Beck, H; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Book, J; Botje, M; Buncic, P; Christakoglou, P; Chung, P; Chvala, O; Cramer, J; Eckardt, V; Fodor, Z; Foka, P; Friese, V; Gazdzicki, M; Grebieszkow, K; Hohne, C; Kadija, K; Karev, A; Kolesnikov, V; Kowalski, M; Kresan, D; Laszlo, A; Lacey, R; van Leeuwen, M; Mackowiak-Pawlowska, M; Makariev, M; Malakhov, A; Melkumov, G; Mitrovski, M; Mrowczynski, S; Palla, G; Panagiotou, A; Pluta, J; Prindle, D; Puhlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Rustamov, A; Schmitz, N; Schuster, T; Seyboth, P; Sikler, F; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strobele, H; Susa, T; Szuba, M; Varga, D; Vassiliou, M; Veres, G; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek-Szwarc, A

    2015-01-01

    Results from the NA49 experiment at the CERN SPS are presented on event-by-event transverse momentum and multiplicity fluctuations of charged particles, produced at forward rapidities in central Pb+Pb interactions at beam momenta 20$A$, 30$A$, 40$A$, 80$A$, and 158$A$ GeV/c, as well as in systems of different size ($p+p$, C+C, Si+Si, and Pb+Pb) at 158$A$ GeV/c. This publication extends the previous NA49 measurements of the strongly intensive measure $\\Phi_{p_T}$ by a study of the recently proposed strongly intensive measures of fluctuations $\\Delta[P_T, N]$ and $\\Sigma[P_T, N]$. In the explored kinematic region transverse momentum and multiplicity fluctuations show no significant energy dependence in the SPS energy range. However, a remarkable system size dependence is observed for both $\\Delta[P_T, N]$ and $\\Sigma[P_T, N]$, with the largest values measured in peripheral Pb+Pb interactions. The results are compared with NA61/SHINE measurements in $p+p$ collisions, as well as with predictions of the UrQMD and ...

  20. A new proton spill from CERN to Gran Sasso

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Since 21 October, CERN has been sending a new type of neutrino beam to Gran Sasso. The new configuration is intended to allow the experiments to define the departure time of the neutrinos more accurately and thus check the previous results obtained using the nominal beam configuration.   The CERN Neutrino to Gran Sasso (CNGS) beam no longer operates using the standard beam time structure. Instead, a new type of proton pulse is being produced by CERN’s accelerators and sent to the graphite target to generate neutrinos. “We are now producing extremely short beam pulses,” explains Edda Gschwendtner, the physicist in charge of the CNGS secondary beam. “During a CNGS cycle we now have a LHC type bunched beam with four bunches, each about 2 ns long. Each bunch contains more than 2.5 x 1011 protons; bunches are spaced by 500 ns. In total, this makes about 1012 protons on target for each extraction from the SPS.” The CNGS beam was originally designed to m...

  1. Longitudinal tracking studies for a high intensity proton synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K. [Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States)

    1996-06-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed. {copyright} {ital 1996 American Institute of Physics.}

  2. Design of Injection and Extraction Systems with Optimisation of Lattice and Layout for the CERN PS2 Synchrotron

    CERN Document Server

    Bartmann, W

    2009-01-01

    The CERN Proton Synchrotron PS2 is one of the foreseen accelerators for the LHC injector upgrade. This upgrade aims first at increasing the instantaneous luminosity of LHC and second at providing a reliable beam for the CERN accelerator complex. From this aspect, the main characteristics of the PS2 are high reliability for high intensity beams. The goal of this thesis was the design of the machine’s lattice and injection/extraction systems meeting the constraints coming mainly from the LHC beam type but also from beam requirements of experiments at PS2 and the SPS. In the design, the given energy range together with filling schemes for different beam types and RF cogging were first used to define the circumference of the machine. Estimates on the space requirements of injection/extraction systems were made in order to divide the total machine length between arc and long straight section. Existing tunnels for transfer lines together with the minimisation of the total transfer line length favoured a race trac...

  3. Electron cloud observations at the ISIS Proton Synchrotron

    CERN Document Server

    Pertica, A

    2013-01-01

    The build up of electron clouds inside a particle accelerator vacuum chamber can produce strong transverse and longitudinal beam instabilities which in turn can lead to high levels of beam loss often requiring the accelerator to be run below its design specification. To study the behaviour of electron clouds at the ISIS Proton Synchrotron, a Micro-Channel Plate (MCP) based electron cloud detector has been developed. The detector is based on the Retarding Field Analyser (RFA) design and consists of a retarding grid, which allows energy analysis of the electron signal, and a MCP assembly placed in front of the collector plate. The MCP assembly provides a current gain over the range 300 to 25K, thereby increasing the signal to noise ratio and dynamic range of the measurements. This paper presents the first electron cloud observations at the ISIS Proton Synchrotron. These results are compared against signals from a beam position monitor and a fast beam loss monitor installed at the same location.

  4. Energy dependence of negatively charged pion production in proton-proton interactions at the CERN SPS

    CERN Document Server

    AUTHOR|(SzGeCERN)663936; Dominik, Wojciech; Gaździck, Marek

    2016-01-01

    This thesis presents inclusive spectra of the negatively charged pions produced in inelastic proton-proton interactions measured at five beam momenta: 20, 31, 40, 80 and 158 GeV/c. The measurements were conducted in the NA61/SHINE experiment at CERN using a system of five Time Projection Chambers. The negatively charged pion spectra were calculated based on the negatively charged hadron spectra. Contribution of hadrons other than the primary pions was removed using EPOS simulations. The results were corrected for effects related to detection, acceptance, reconstruction efficiency and the analysis technique. Two-dimensional spectra were derived as a function of rapidity and transverse momentum or transverse mass. The spectra were parametrised by widths of the rapidity distributions, inverse slope parameters of the transverse mass distributions, mean transverse masses and the total pion multiplicities. The negatively charged pion spectra in proton-proton interactions belong to a broad NA61/SHINE programme of se...

  5. Proton extraction from the CERN SPS using bent silicon crystals

    Science.gov (United States)

    Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.

    1996-10-01

    The extraction of high energy particles from a circular accelerator by means of channeling in bent crystals is an attractive alternative to classical extraction schemes, in particular for high energy proton colliders where a classical scheme becomes expensive and incompatible with normal operation. This paper reviews the ongoing extraction experiments at the CERN-SPS with bent silicon crystals. It describes the principles of beam extraction by means of a bent crystal and the different extraction schemes used: first- and multi-pass extraction and the methods to create diffusion. The limitations in tuning the accelerator to the desired impact parameters and crucial items concerning crystal preparation, bending and pre-alignment are discussed. The experimental procedures including an overview of the detection of circulating and extracted beam are given. Finally, the paper summarizes the results of these experiments together with ideas for future developments.

  6. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  7. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Grenier, D.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Blanco Sancho, J. [CERN-AB, 1211 Geneva 23, Switzerland and Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  8. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  9. First results on proton extraction from the CERN-SPS with a bent crystal

    Science.gov (United States)

    Akbari, H.; Altuna, X.; Bardin, S.; Bellazzini, R.; Biryukov, V.; Brez, A.; Bussa, M. P.; Busso, L.; Calcaterra, A.; Carboni, G.; Costantini, F.; de Sangro, R.; Elsener, K.; Ferioli, F.; Ferrari, A.; Ferri, G. P.; Ferroni, F.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Hilaire, A.; Jensen, B. N.; Klem, J.; Lanceri, L.; Maier, K.; Massai, M. M.; Mertens, V.; Møller, S. P.; Morganti, S.; Palamara, O.; Peraire, S.; Petrera, S.; Placidi, M.; Santacesaria, R.; Scandale, W.; Schmidt, R.; Taratin, A. M.; Tosello, F.; Uggerhøj, E.; Vettermann, B.; Vita, P. F.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1993-09-01

    The feasibility of extracting protons from the halo of a high energy beam by means of a bent silicon crystal has been investigated. Protons diffusing from a GeV beam circulating in the SPS at CERN have been extracted at an angle of 8.5 mrad. Efficiencies of abour 10 percent, orders of magnitude higher than the values achieved previously, have been measured. The present results are promising in view of beam extraction from future multi-TeV proton accelerators.

  10. 50 GeV proton synchrotron for JAERI/KEK Joint project

    CERN Document Server

    Mori, Y

    2001-01-01

    This paper describes a design of a 50 GeV proton synchrotron for a JAERI-KEK Joint (JKJ) project which has been proposed by High Energy Research Organization (KEK) and Japan Atomic Energy Research Institute (JAERI). The site of the proposed accelerators is JAERI Tokai site. The JKJ project includes particle physics, nuclear physics, material science, life science and nuclear technology, using a new proton accelerator complex. The high beam power allows the production of a variety of intense secondary beams. The accelerator complex consists of the linac, 3 GeV synchrotron and 50 GeV synchrotron. The 3 GeV synchrotron is a rapid cycling synchrotron with the repetition rate of 25 Hz and provides a 1 MW beam for the spallation neutron source and muon facility. At the 50 GeV synchrotron, nuclear and particle physics experiments using anti- protons, kaons, hyperons and primary proton beam are planned. The long-baseline neutrino oscillation from JKJ to Super Kamiokande is also planned. The 50 GeV synchrotron will pr...

  11. The precision of respiratory-gated delivery of synchrotron-based pulsed beam proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong Lei; Balter, Peter; Mohan, Radhe [Department of Radiation Physics, Unit 94, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Umezawa, Masumi, E-mail: ytsunash@mdanderson.or [Accelerator System Group Medical System Project, Hitachi, Ltd, Energy and Environmental Systems Laboratory, 2-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken 319-1221 (Japan)

    2010-12-21

    A synchrotron-based proton therapy system operates in a low repetition rate pulsed beam delivery mode. Unlike cyclotron-based beam delivery, there is no guarantee that a synchrotron beam can be delivered effectively or precisely under the respiratory-gated mode. To evaluate the performance of gated synchrotron treatment, we simulated proton beam delivery in the synchrotron-based respiratory-gated mode using realistic patient breathing signals. Parameters used in the simulation were respiratory motion traces (70 traces from 24 patients), respiratory gate levels (10%, 20% and 30% duty cycles at the exhalation phase) and synchrotron magnet excitation cycles (T{sub cyc}) (fixed T{sub cyc} mode: 2.7, 3.0-6.0 s and each patient breathing cycle, and variable T{sub cyc} mode). The simulations were computed according to the breathing trace in which the proton beams were delivered. In the shorter fixed T{sub cyc} (<4 s), most of the proton beams were delivered uniformly to the target during the entire expiration phase of the respiratory cycle. In the longer fixed T{sub cyc} (>4 s) and the variable T{sub cyc} mode, the proton beams were not consistently delivered during the end-expiration phase of the respiratory cycle. However we found that the longer and variable T{sub cyc} operation modes delivered proton beams more precisely during irregular breathing.

  12. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    Science.gov (United States)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  13. Search for Charmed Particle Production in Proton Proton Collisions at the CERN ISR

    CERN Document Server

    Marsh, William L

    1977-01-01

    Experimental results on a search for charmed particle production in proton-proton collisions at the center of mass energy (..sqrt..s) of 53 GeV are presented. Evidence of cidences, a signature of charmed particle production, was sought. The inclusive e/..pi.. ratio was measured with a magnetic spectrometer located at 32/sup 0/ from Beam 1 of Intersection I6 of the CERN Intersecting Storage Rings (ISR). The e/..pi.. ratio from direct (unknown) sources was found to rise from 1.06 x 10/sup -4/ at p/sub perpendicular to/ = 1.5 GeV/c to 5.53 x 10/sup -4/ at p/sub perpendicular to/ = 0.25 GeV/c. One possible source for this signal is the semi-leptonic decay of charmed particles (e.g., D ..-->.. K/sup 0/ e..nu..). If so, then electron-strange particle (e.g., ..lambda../sup 0/,K/sup 0/) coincidences are expected. The charged decay products of ..lambda../sup 0/ and K/sup 0/ were detected in a multiparticle spectrometer surrounding Beam 1 downstream of the intersection. To determine if there is an electron-strange part...

  14. Accelerator Studies on a possible Experiment on Proton-Driven Plasma Wakefields at CERN

    CERN Document Server

    Assmann, R W; Fartoukh, S; Geschonke, G; Goddard, B; Hessler, C; Hillenbrand, S; Meddahi, M; Roesler, S; Zimmermann, F; Caldwell, A; Muggli, P; Xia, G

    2011-01-01

    There has been a proposal by Caldwell et al to use proton beams as drivers for high energy linear colliders. An experimental test with CERN’s proton beams is being studied. Such a test requires a transfer line for transporting the beam to the experiment, a focusing section for beam delivery into the plasma, the plasma cell and a downstream diagnostics and dump section. The work done at CERN towards the conceptual layout and design of such a test area is presented. A possible development of such a test area into a CERN test facility for high-gradient acceleration experiments is discussed.

  15. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    OpenAIRE

    Gschwendtner, E; Adli, E.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.(CERN, Geneva, Switzerland); Caldwell, A.; Cascella, M.; AMORIM, L.; Chevallay, E.; Cipiccia, S.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D; experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of ...

  16. Au Cern, premières collisions de protons hier

    CERN Document Server

    Galeazzi, Juliette

    2009-01-01

    "Hier, les scientifiques du monde entier ont salué le redémarrage du LHC, grand collisionneur de hadrons, au Cern à Genève. Après quatorze mois d'arrêt, à la suite d'une panne, les expériences ont pris et les premières collisions ont eu lieu" (2 pages)

  17. 50 million million protons for CERN's fiftieth anniversary

    CERN Multimedia

    2004-01-01

    The SPS set a new intensity record at the end of September. This performance was the result of work on the whole accelerator chain, from the proton source to the SPS. The aim was to explore the limits of the machines in providing protons for the CNGS facility, which needs very high intensities.

  18. The design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    CERN Document Server

    Huang, Liang-Sheng; Ji, Hong-Fei

    2016-01-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary application, such as biology, material and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design was worked out, and all the important beam dynamics issues were investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, the achromatic structure is proposed and slow extraction method with RF knock-out is adopted and optimized.

  19. The optimization for the conceptual design of a 300 MeV proton synchrotron

    CERN Document Server

    An, Yuwen; Wang, Sheng; Huang, Liangsheng

    2016-01-01

    A research complex for aerospace radiation effects research has been proposed in Harbin Institute of Technology. Its core part is a proton accelerator complex, which consists of a 10 MeV injector, a 300 MeV synchrotron and beam transport lines. The proton beam extracted from the synchrotron is utilized for the radiation effects research. Based on the conceptual design [1], the design study for optimizing the synchrotron has been done. A new lattice design was worked out, and the multi-turn injection and slow extraction system were optimized with the new lattice design. In order to improve the time structure of the extracted beam, a RF knock-out method is employed. To meet the requirement of accurate control of dose, the frequency of the RF kicker is well investigated.

  20. A fast beam loss monitor system for the KEK proton synchrotron complex

    Science.gov (United States)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  1. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    Science.gov (United States)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  2. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  3. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gschwendtner, E. [CERN, Geneva (Switzerland); Adli, E. [University of Oslo, Oslo 0316 (Norway); Amorim, L. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Apsimon, R. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Lancaster University, Lancaster LA1 4YR (United Kingdom); Assmann, R. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Bachmann, A.-M.; Batsch, F. [Max Planck Institute for Physics, Föhringer Ring 6, München 80805 (Germany); Bauche, J. [CERN, Geneva (Switzerland); Berglyd Olsen, V.K. [University of Oslo, Oslo 0316 (Norway); Bernardini, M. [CERN, Geneva (Switzerland); Bingham, R. [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Biskup, B. [CERN, Geneva (Switzerland); Czech Technical University, Zikova 1903/4, 166 36 Praha 6 (Czech Republic); Bohl, T.; Bracco, C. [CERN, Geneva (Switzerland); Burrows, P.N. [John Adams Institute for Accelerator Science, Oxford (United Kingdom); University of Oxford, Oxford OX1 2JD (United Kingdom); Burt, G. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Buttenschön, B. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, Greifswald 17491 (Germany); Butterworth, A. [CERN, Geneva (Switzerland); Caldwell, A. [Max Planck Institute for Physics, Föhringer Ring 6, München 80805 (Germany); Cascella, M. [UCL, Gower Street, London WC1E 6BT (United Kingdom); and others

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  4. CERN OVERVIEW animation

    CERN Multimedia

    Arzur Catel Torres

    2015-01-01

    This animation shows how the Large Hadron Collider (LHC) works. The film begins with an aerial view of CERN near Geneva, with outlines of the accelerator complex, including the underground Large Hadron Collider (LHC), 27-km in circumference. The positions of the four largest LHC experiments, ALICE, ATLAS, CMS and LHCb are revealed before we see protons travelling around the LHC ring. The proton source is a simple bottle of hydrogen gas. An electric field is used to strip hydrogen atoms of their electrons to yield protons. Linac 2, the first accelerator in the chain, accelerates the protons to the energy of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450 GeV. The protons are finally transferred to the two beam pipes of the LHC. The beam in one pipe circulates clockwise while ...

  5. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  6. La neutrino factory del CERN e i problemi radiologici dell'annesso proton driver

    CERN Document Server

    Bressan, Beatrice Alessandra

    2001-01-01

    The thesis, La Neutrino Factory del CERN e i problemi radiologici dell’annesso proton driver (CERN Neutrino Factory and the radiological problems of the annex proton driver), deals with the new particle accelerators for the post LHC (Large Hadron Collider) era. The first part of the work describes these innovative accelerators with particular emphasis on the muon collider which, producing μ+/μ− collisions in the 100 GeV energy range, should explore deeply the Higgs Boson physics. The second part of the thesis describes the three-step scenario proposed for the muon accelerators: Neutrino Factory, Higgs Factory and a collider with TeV C.M. energy. The third chapter explains how a Neutrino Factory works. In a Neutrino Factory the neutrino beam is generated by high-energy muons decaying in a storage ring. The muons are produced by pions generated in a target bombarded by an intense proton beam. In the CERN project, the proton beam is produced by a super conducting LINAC (with 75 Hz frequency and 2.2 GeV ene...

  7. A Proton-Driven Plasma Wakefield Acceleration experiment at CERN

    CERN Multimedia

    The AWAKE Collaboration has been formed in order to demonstrate protondriven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial 3–4 yea...

  8. A simple model for multiturn injection into AG proton synchrotrons

    CERN Document Server

    Can der Stok, P D V

    1977-01-01

    Analytical expressions are derived in order to compute the optimum injection parameters for betatron stacking into a chosen fraction of the total accelerator acceptance in the Q range N+0.1CERN PS Booster (PSB) is worked out. The efficiency of the process is calculated using standard numerical integration algorithms with a Gaussian distribution of the incoming beam. Other types of distribution can also be dealt with. The results show that the installation of pulsed dipole and quadrupole supplies to obtain steering and focusing conditions which vary during the injection process will improve the injected current by only 3% in the case of the PSB. (6 refs).

  9. From the CERN web: antihydrogen, ROOT, protons and more

    CERN Multimedia

    2015-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   A top quark candidate in the CMS detector. (Image: CMS Collaboration). Where no-one has gone before 30 September – CMS Collaboration Born at the end of the ’70s, I was still in school when the heaviest of all quarks was discovered at the Tevatron: the top quark. Back then I had no idea what it was about. But reading an article in the newspaper I felt the excitement surrounding such a discovery. My interest for the smallest and most basic building blocks of the universe had been awakened. When I joined the CMS Collaboration in 2014, I had no doubt that the first measurement I would like to do was that of the production rates of top-quark pairs at the new energy regime of 13 TeV. Shortly after the restart of the LHC in summer this year, we began a journey where no-one has gone before. Continue...

  10. Beam Tests and Plans for the CERN PS Transverse Damper System

    CERN Document Server

    Blas, A; Sterbini, G

    2013-01-01

    The CERN Proton Synchrotron (CPS) has been running without any transverse damping equipment since 1998, thanks to the stabilizing effect of the linear coupling applied between horizontal and vertical planes. \

  11. Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong, Lei; Bues, Martin; Balter, Peter; Smith, Alfred; Mohan, Radhe [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd., Unit 94, Houston, TX 77030 (United States); Umezawa, Masumi [Hitachi America Ltd, PTC-H Construction Site, 7707 Fannin Street, Suite 203, Houston, TX 77054 (United States); Sakae, Takeji [Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-0801 (Japan)], E-mail: svedam@mdanderson.org

    2008-04-07

    Significant differences exist in respiratory-gated proton beam delivery with a synchrotron-based accelerator system when compared to photon therapy with a conventional linear accelerator. Delivery of protons with a synchrotron accelerator is governed by a magnet excitation cycle pattern. Optimal synchronization of the magnet excitation cycle pattern with the respiratory motion pattern is critical to the efficiency of respiratory-gated proton delivery. There has been little systematic analysis to optimize the accelerator's operational parameters to improve gated treatment efficiency. The goal of this study was to estimate the overall efficiency of respiratory-gated synchrotron-based proton irradiation through realistic simulation. Using 62 respiratory motion traces from 38 patients, we simulated respiratory gating for duty cycles of 30%, 20% and 10% around peak exhalation for various fixed and variable magnet excitation patterns. In each case, the time required to deliver 100 monitor units in both non-gated and gated irradiation scenarios was determined. Based on results from this study, the minimum time required to deliver 100 MU was 1.1 min for non-gated irradiation. For respiratory-gated delivery at a 30% duty cycle around peak exhalation, corresponding average delivery times were typically three times longer with a fixed magnet excitation cycle pattern. However, when a variable excitation cycle was allowed in synchrony with the patient's respiratory cycle, the treatment time only doubled. Thus, respiratory-gated delivery of synchrotron-based pulsed proton irradiation is feasible and more efficient when a variable magnet excitation cycle pattern is used.

  12. H$^{-}$ painting injection system for the JKJ 3 GeV high-intensity proton synchrotron

    CERN Document Server

    Sakai, I; Irie, Y; Ishi, Y; Machida, S; Noda, F; Shigaki, K; Shimada, T; Sugai, I; Takeda, Y; Watanabe, Y; Yamamoto, K

    2002-01-01

    The JAERI KEK Joint Project 3 GeV proton synchrotron is designed to accelerate 8.3*l0/sup 13/ protons per pulse at a 25 Hz repetition rate. The incoming beam emittance of the 400 MeV linac is 4 pi .mm.mrad and the acceptance in the 3 GeV synchrotron is 324 pi .mm.mrad in both the horizontal and vertical planes. Painting injection is designed to realize a uniform distribution of charged particles in real space. The bump orbit for painting injection is designed to have a full acceptance of the circulating orbit through the injection period. A full-acceptance bump orbit will enable both correlated and anticorrelated painting injection. (4 refs).

  13. Experimental tests of an advanced proton-to-neutron converter at ISOLDE-CERN

    CERN Document Server

    Gottberg, A; Luis, R; Ramos, J P; Seiffert, C; Cimmino, S; Marzari, S; Crepieux, B; Manea, V; Wolf, R N; Wienholtz, F; Kreim, S; Fedosseev, V N; Marsh, B A; Rothe, S; Vaz, P; Marques, J G; Stora, T

    2014-01-01

    The suppression of isobaric contaminations is of growing importance for many scientific programs using radioactive isotopes produced at isotope separation on-line (ISOL) facilities, such as ISOLDE-CERN. A solid tungsten proton-to-neutron converter has been used for ten years to produce neutron-rich fission fragments from an UC x target while suppressing the production of neutron-deficient isobaric contaminants. The remaining contamination is mainly produced by primary protons that are scattered by the heavy neutron converter and finally impinge on the UC x target itself. Therefore, the knowledge of the energy-dependant cross-sections of proton and neutron induced fission events is crucial in order to evaluate future converter concepts.

  14. IRRAD: The New 24GeV/c Proton Irradiation Facility at CERN

    CERN Document Server

    Gkotse, Blerina; Moll, Michael; Ravotti, Federico

    2016-01-01

    The proton and mixed-field irradiation facilities at the CERN PS East Area (known as IRRAD1 and IRRAD2), have been heavily exploited for irradiation of particle detectors, electronic components and materials since 1992. With the increasing demand of irradiation experiments, and in view of the High-Luminosity upgrade of the CERN Large Hadron Collider (HL-LHC), these facilities suffered of a number of unpleasant restrictions such as the space availability, the maximum achievable particle flux and several access constraints. In the framework of the AIDA project, an upgrade of these facilities was carried out during the Long Shutdown 1 (LS1) of the CERN accelerator complex. The new combined East Area IRRADiation facility (EA-IRRAD) started the commissioning in October 2014. While the new proton facility (IRRAD) continue to be mainly devoted to the radiation hardness studies for the High Energy Physics community, the new mixed-field facility (CHARM) mainly hosts irradiation experiments for the validation of electr...

  15. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  16. Special diagnostic methods and beam loss control on high intensity proton synchrotrons and storage rings Circular proton accelerator

    CERN Document Server

    Warsop, C M

    2002-01-01

    Two topics concerning high intensity, medium energy, circular proton accelerators have been studied: specialist diagnostics and beam loss control. The use of specially configured, low intensity diagnostic beams to help measure, understand and control high intensity beams is described. The ideas are developed and demonstrated on the ISIS 800 MeV, high intensity proton synchrotron at the Rutherford Appleton Laboratory in the UK. It is shown that these techniques make much new and valuable information available, which is particularly useful in achieving the precise beam optimisation required for low and controlled losses. Beam loss control in the proposed European Spallation Source (ESS) accumulator rings is studied. The expected losses are summarised, and a design for the beam collimation system presented. A new code for the simulation of loss control is outlined, and then used to test the collimation system under most foreseeable conditions. It is expected that the required loss control levels will be achievab...

  17. Control of the slow extraction process in a dedicated proton synchrotron for hadron therapy

    CERN Document Server

    Molodozhentsev, A Yu

    1999-01-01

    The ring design of the synchrotron for cancer treatment, based on the third-order resonant extraction, was been performed to meet the special medical requirements. The uniformity of the slow extracted beam from the proton synchrotron is the main requirement on the beam quality determined by the medical application. The smooth extraction during at least 400 msec should be realized for the `raster' scanning of tumours. Control of the slow extraction over the whole spill time is discussed in this report. To keep all lattice functions of the ring constant during the extraction a slow movement of the accelerated particles into the resonance can be used. To reduce degradation of the uniformity of the extracted beam by ripples from the power converters of the magnetic elements, the RF empty-bucket channeling method should be utilized. This method allows reduce the ripple influence during slow extraction. Both methods are analyzed to control the slow extraction for the dedicated proton synchrotron. The main parameter...

  18. Status of the proton and electron transfer lines for the AWAKE Experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.S., E-mail: janet.schmidt@cern.ch [CERN, Geneva (Switzerland); Bauche, J. [CERN, Geneva (Switzerland); Biskup, B. [CERN, Geneva (Switzerland); Czech Technical University, Prague (Czech Republic); Bracco, C.; Doebert, S.; Goddard, B.; Gschwendtner, E.; Jensen, L.K.; Jones, O.R.; Mazzoni, S.; Meddahi, M.; Pepitone, K.; Petrenko, A.; Velotti, F.M.; Vorozhtsov, A. [CERN, Geneva (Switzerland)

    2016-09-01

    The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration with an externally injected electron beam. Therefore two transfer lines are being designed in order to provide the proton beam from the SPS and the electron beam from an RF gun to the plasma cell. The commissioning of the proton line will take place in 2016 for the first phase of the experiment, which is focused on the self-modulation of a 12 cm long proton bunch in the plasma. The electron line will be added for the second phase of AWAKE in 2017, when the wakefield will be probed with an electron beam of 10–20 MeV/c. The challenge for these transfer lines lies in the parallel operation of the proton, electron and laser beam used to ionize the plasma and seed the self-modulation. These beams, of different characteristics, need to be synchronized and positioned for optimized injection conditions into the wakefield. This task requires great flexibility in the transfer line optics. The status of these designs will be presented in this paper.

  19. Status of the proton and electron transfer lines for the AWAKE Experiment at CERN

    Science.gov (United States)

    Schmidt, J. S.; Bauche, J.; Biskup, B.; Bracco, C.; Doebert, S.; Goddard, B.; Gschwendtner, E.; Jensen, L. K.; Jones, O. R.; Mazzoni, S.; Meddahi, M.; Pepitone, K.; Petrenko, A.; Velotti, F. M.; Vorozhtsov, A.

    2016-09-01

    The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration with an externally injected electron beam. Therefore two transfer lines are being designed in order to provide the proton beam from the SPS and the electron beam from an RF gun to the plasma cell. The commissioning of the proton line will take place in 2016 for the first phase of the experiment, which is focused on the self-modulation of a 12 cm long proton bunch in the plasma. The electron line will be added for the second phase of AWAKE in 2017, when the wakefield will be probed with an electron beam of 10-20 MeV/c. The challenge for these transfer lines lies in the parallel operation of the proton, electron and laser beam used to ionize the plasma and seed the self-modulation. These beams, of different characteristics, need to be synchronized and positioned for optimized injection conditions into the wakefield. This task requires great flexibility in the transfer line optics. The status of these designs will be presented in this paper.

  20. Quantum Field Theoretic Treatment of Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields: Effects of Landau Levels

    CERN Document Server

    Maruyama, Tomoyuki; Kajino, Toshitaka; Kwon, Yongshin; Mathews, Grant J; Ryu, Chung-Yeol

    2015-01-01

    We study pion production from proton synchrotron radiation in the presence of strong magnetic fields. We derive the exact proton propagator from the Dirac equation in a strong magnetic field by explicitly including the anomalous magnetic moment. In this exact quantum-field approach the magnitude of pion synchrotron emission turns out to be much smaller than that obtained in the semi-classical approach. However, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two order magnitude.

  1. Results from the CERN pilot CLOUD experiment

    DEFF Research Database (Denmark)

    Duplissy, J.; Enghoff, Martin Andreas Bødker; Aplin, K.L.;

    2010-01-01

    During a 4-week run in October-November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment...

  2. Design studies for a large proton-synchrotron and its laboratory

    CERN Document Server

    Adams, John Bertram

    1970-01-01

    Analysis of the growth pattern of CERN-Meyrin leads to a model for the development of the proposed European 300 GeV Laboratory. The model must allow for flexibility in the development of the machine so that one may exploit future technological advances, e.g. pulsed superconducting magnets. The maximum use must be made of existing capital investment and infrastructure yet provision must also be made for a steady expansion in experimental utilization for 30 years to come. Various types of synchrotron with separated and combined- function lattices and missing-magnet, missing-power and fixed-energy configurations have been designed and costed. Their relative merits are discussed in the context of the model for the new Laboratory.

  3. Experimental tests of an advanced proton-to-neutron converter at ISOLDE-CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gottberg, A. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Consejo Nacional de Pesquisas Cientificas CSIC, Instituto de Estructura de la Materia, 28006 Madrid (Spain); Mendonca, T.M. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); IFIMUP and IN – Institut of Nanosciences and Nanotechnologies, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Luis, R. [Instituto Superior Técnico, Campus Tecnológico e Nuclear – IST-CTN, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS (Portugal); Ramos, J.P. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne – EPFL, 1015 Lausanne (Switzerland); Seiffert, C. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Technische Universität Darmstadt, 64289 Darmstadt (Germany); Cimmino, S.; Marzari, S.; Crepieux, B. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Manea, V. [CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay (France); Wolf, R.N.; Wienholtz, F. [Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald (Germany); Kreim, S. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Fedosseev, V.N.; Marsh, B.A.; Rothe, S. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); and others

    2014-10-01

    The suppression of isobaric contaminations is of growing importance for many scientific programs using radioactive isotopes produced at isotope separation on-line (ISOL) facilities, such as ISOLDE-CERN. A solid tungsten proton-to-neutron converter has been used for ten years to produce neutron-rich fission fragments from an UC{sub x} target while suppressing the production of neutron-deficient isobaric contaminants. The remaining contamination is mainly produced by primary protons that are scattered by the heavy neutron converter and finally impinge on the UC{sub x} target itself. Therefore, the knowledge of the energy-dependant cross-sections of proton and neutron induced fission events is crucial in order to evaluate future converter concepts. In this paper, an improved neutron converter prototype design is presented together with the experimentally assessed radioisotope production of Rb, Zn, Cu, Ga and In that validate the converter concept aiming at beams of higher purity neutron-rich isotopes. The experimentally derived release efficiencies for isotopes produced by the 1.4 GeV protons available at ISOLDE are used to evaluate the Monte Carlo code FLUKA and the cross-section codes TALYS and ABRABLA, respectively.

  4. Simon van der Meer and Carlo Rubbia celebrate their awarding of the Nobel Prize in 1984 with a toast at CERN.

    CERN Multimedia

    1984-01-01

    CERN's 1984 Nobel prizewinners Carlo Rubbia (left) and Simon van der Meer, who were awarded the prize for their roles in discovering the W+, W- and Z0 particles, the carriers of Nature's weak force. Carlo Rubbia's work allowed CERN's Super Proton Synchrotron (SPS) to collide protons and antiprotons, while Simon van der Meer's technical virtuosity made the project possible.

  5. Study of the Charge Density Control Method Including the Space Charge Effect in the Proton Synchrotron

    Science.gov (United States)

    Kato, Shinichi; Harada, Hiroyuki; Hotchi, Hideaki; Okabe, Kota; Yamamoto, Kazami; Kinsho, Michikazu

    For high intensity proton accelerators, one of the beam loss sources is the incoherent tune spread caused by the space charge force. In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, beams are injected sequentially and shifted slightly from the central orbit in order to increase the beam size intentionally and suppress the charge density and incoherent tune spread. This injection method has been adopted and suppressed the beam loss. However, simulations clarified that beams did not spread as much as expected because of the space charge effect in the high current case. As simulation results of the optimized beam shift pattern when the space charge effect is considered, it was obtained that the incoherent tune spread could be suppressed to an extent that has not been achieved previously.

  6. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Science.gov (United States)

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Cirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Herve, A.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marcinek, A.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Morozov, S.; Mrówczyński, S.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A. D.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Zambelli, L.

    2016-11-01

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80, and 158 { GeV }/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations Δ [PT,N], Σ [PT,N] and Φ_{p_T} are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models Epos and Ur qmd do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.

  7. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    CERN Document Server

    Aduszkiewicz , A; Andronov, E.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Herve, A.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lewicki, M.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Maksiak, B.; Malakhov, A.I.; Manic, D.; Marcinek, A.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Morozov, S.; Mrowczynski, S.; Nakadaira, T.; Naskret, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A.D.; Pavin, M.; Petukhov, O.; Pistillo, C.; Planeta, R.; Popov, B.A.; Posiadala, M.; Pulawski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Rohrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Strobele, H.; Susa, T.; Szuba, M.; Tada, M.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszynski, O.; Zambelli, L.

    2016-01-01

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \\$\\Delta[P_{T},N]\\$, \\$\\Sigma[P_{T},N]\\$ and \\$\\Phi_{p_T}\\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions ...

  8. Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Ali, Y.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, St. Petersburg (Russian Federation); Anticic, T.; Kadija, K.; Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zurich (Switzerland); Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [University of Paris VI and VII, LPNHE, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M. [Institute for Particle and Nuclear Studies, KEK, Tsukuba (Japan); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Center for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (Poland); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (Poland); Pavin, M. [Ruder Boskovic Institute, Zagreb (Croatia); University of Paris VI and VII, LPNHE, Paris (France); Popov, B.A. [University of Paris VI and VII, LPNHE, Paris (France); Joint Institute for Nuclear Research, Dubna (RU); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (DE); Roehrich, D. [University of Bergen, Bergen (NO); Rustamov, A. [National Nuclear Research Center, Baku (AZ); University of Frankfurt, Frankfurt (DE); Zambelli, L. [University of Paris VI and VII, LPNHE, Paris (FR); Institute for Particle and Nuclear Studies, KEK, Tsukuba (JP)

    2016-11-15

    Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80, and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations Δ[P{sub T},N], Σ[P{sub T},N] and Φ{sub p{sub T}} are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models Epos and Urqmd do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume. (orig.)

  9. Messung des differentiellen Wirkungsquerschnitts $d\\delta/dt$ der elastischen Proton-Proton Streuung an den CERN-Protonen-Speicherringen bei $\\sqrt{s}$ = 23 GeV und $\\sqrt{s}$ = 62 GeV Schwerpunktsenergie

    CERN Document Server

    Brandt, A; Schmidt-Parzefall, W; Schubert, Klaus R; Winter, Klaus; Dibon, Heinz; Flügge, G; Niebergall, F; Schumacher, P E; Aubert, Jean-Jacques; Broll, C; Coignet, G; Favier, Jean; Massonet, L; Vivargent, M; Bartl, Walter; Eichinger, H; Gottfried, Christian; Neuhofer, Günther; Brandt, A; Nagy, E no 2; Schmidt-Parzefall, W no 2; Schubert, K R no 2; Winter, K no 2; Dibon, H no 2; Fluegge, G; Niebergall, F; Schumacher, P E; Aubert, J J no 3; Broll, C no 3; Coignet, G no 3; Favier, J no 3; Massonet, L no 3; Vivargent, M no 3; Bartl, W no 4; Eichinger, H no 4; Gottfried, C no 4; Neuhofer, G no 4

    1975-01-01

    Messung des differentiellen Wirkungsquerschnitts $d\\delta/dt$ der elastischen Proton-Proton Streuung an den CERN-Protonen-Speicherringen bei $\\sqrt{s}$ = 23 GeV und $\\sqrt{s}$ = 62 GeV Schwerpunktsenergie

  10. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Science.gov (United States)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  11. Aerial view of CERN under the snow

    CERN Multimedia

    1963-01-01

    In this photograph taken in the winter of 1963, CERN still looks quite bare under its mantle of snow. The Proton Synchrotron (PS), resembling a bicycle wheel in shape, had been in operation since the summer of 1959. A proposal had just been made for the site of CERN's second large project, the Intersecting Storage Rings (ISR): France was to house the world's first proton-proton collider. In September 1965, the French authorities signed an agreement making more than 40 hectares of land available for the extension of the CERN site established in Switzerland into French territory. The ISR project received final approval from the CERN Council in December 1965. The civil engineering work on the French part began in November 196

  12. Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Hachemite Kingdom of Jordan and the Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME)

    CERN Document Server

    2004-01-01

    Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Hachemite Kingdom of Jordan and the Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME)

  13. The CERN antiproton target: hydrocode analysis of its core material dynamic response under proton beam impact

    CERN Document Server

    Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-01-01

    Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...

  14. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    Science.gov (United States)

    Martin, Claudio Torregrosa; Perillo-Marcone, Antonio; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-07-01

    Antiprotons are produced at CERN by colliding a 26 GeV /c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of end-of-pulse tensile waves and its relevance on the overall response (iii) A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  15. Observation of Proton Reflection on Bent Silicon Crystals at the CERN SPS

    CERN Document Server

    Scandale, Walter

    2007-01-01

    We report the observation of the so-called volume reflection effect with 400 GeV/c protons interacting with bent silicon crystals in the H8 beam line performed by the H8RDD22 Collaboration at the CERN SPS. The volume reflection is an effect of the same nature of the particle channeling among the crystalline planes of a bent crystal. The reflection occurs at the tangency point of a particle trajectory with the bent crystalline planes where the transverse component of the particle momentum is reversed. The measurements were realized with a high spatial resolution detector mainly based on silicon microstrips showing the effect on particle trajectories of bent silicon crystals in several configurations. The proton beam was deviated in a direction opposite to that of channeling by 12-14 mrad, which is 1.3 times the critical angle, with an efficiency greater than 97% in a range of the proton-to-crystal incident angle as wide as the bending angle of crystallographic planes. This evidence opens new perspectives for m...

  16. Proton and Pb ion beam extraction experiments with bent crystals at the CERN-SPS

    CERN Document Server

    Elsener, K; Klem, J T; CERN. Geneva. SPS and LEP Division

    1997-01-01

    Extraction of particle beams from the CERN-SPS using bent silicon crystals is described. A summary of the early results is given. Emphasis is on the recent experiments, in particular on the energy dependence of proton extraction at 14, 120 and 270 GeV. 'U-shaped' crystals of different thickness and with a different miscut angle have been compared at 120 GeV. Non-linear excitation of the beam was used in one experiment, with the aim to achieve larger impact parameters - the results show a particular behaviour in the tails of the beam. Finally, the first experimental result on extraction of a 22 TeV fully stripped Pb ion beam with a bent crystal is also described.

  17. Physics of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron

    CERN Document Server

    Peng, J C; Moss, J M; Sawada, S; Chiba, J

    2000-01-01

    We discuss the physics interest and the experimental feasibility for detecting high-mass dimuon pairs using the planned 50-GeV Proton Synchrotron (PS) at the KEK/JHF and JAERI/NSP joint accelerator project. The Drell-Yan measurement of $p+d$ versus $p+p$ at 50 GeV will provide unique information on the flavor asymmetry of proton's up and down sea-quark distributions in the large-$x$ region. A study of the nuclear dependences of Drell-Yan cross sections can reveal the modification of antiquark distributions in nuclei. Furthermore, the effect of energy loss for fast partons traversing nuclear medium could also be sensitively measured. If polarized proton beam becomes available at the 50-GeV PS, unique information on the sea-quark polarization could be obtained. Study of heavy quarkonium production at the 50-GeV PS can set important constraints on the mechanism of vector meson productions. Using a prototype dimuon spectrometer, we have simulated the sensitivities for a variety of measurements.

  18. Report from IPNS research plan committee on particle and nuclear physics studies at JHF 50-GeV proton synchrotron

    CERN Document Server

    Enyo, H; Okada, Y

    2003-01-01

    This report summarizes the evaluations and suggestions of IPNS research programs for JHF 50-GeV proton synchrotron. The following subjects are described: the role of JHF for particle and nuclear physics, neutrino oscillation experiment, physics of rare decay K(+) and high intense muon sources, strangeness nuclear physics, experiments of hadron physics and antiproton science experiments. (J.P.N.)

  19. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  20. Full-beam performances of a PET detector with synchrotron therapeutic proton beams

    Science.gov (United States)

    Piliero, M. A.; Pennazio, F.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P. G.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Morrocchi, M.; Peroni, C.; Pirrone, G.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by {β+} -decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.

  1. Kicker impedance measurements for the future multiturn extraction of the CERN Proton Synchrotron

    CERN Document Server

    Métral, Elias; Giovannozzi, Massimo; Grudiev, Alexei; Kroyer, Tom; Sermeus, Luc

    2006-01-01

    In the context of the novel multi-turn extraction, where charged particles are trapped into stable islands in transverse phase space, the ejection of five beamlets will be performed by means of a set of three new kickers. Before installing them into the machine, a measurement campaign has been launched to evaluate the impedance of such devices. Two measurement techniques were used to try to disentangle the driving and detuning impedances. The first consists in measuring the longitudinal impedance for different transverse offsets using a single displaced wire. The sum of the transverse driving and detuning impedances is then deduced applying Panofsky- Wenzel theorem. The second uses two wires excited in opposite phase and yields the driving transverse impedance only. Finally, the consequences on the beam dynamics are also analyzed.

  2. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Schmidt, R.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Raginel, V. [CERN-AB, 1211 Geneva 23, Switzerland and TU Vienna, Vienna (Austria); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2015-08-07

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the

  3. Energy and centrality dependence of antiproton and proton production in relativistic Pb+Pb collisions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B.; Barna, D.; Bartke, J.; Betev, L.; Bialkowska, H.; Blume, C.; Boimska, B.; Botje, M.; Bracinik, J.; Bramm, R.; Buncic, P.; Cerny, V.; Christakoglou, P.; Chvala, O.; Cramer, J.G.; Csato, P.; Dinkelaker, P.; Eckardt, V.; Flierl, D.; Fodor, Z.; Foka, P.; Friese, V.; Gal, J.; Gazdzicki, M.; Genchev, V.; Georgopoulos, G.; Gladysz, E.; Grebieszkow, K.; Hegyi, S.; Hohne, C.; Kadija, K.; Karev, A.; Kliemant, M.; Kniege, S.; Kolesnikov, V.I.; Kornas, E.; Korus, R.; Kowalski, M.; Kraus, I.; Kreps, M.; Laslo, A.; van Leeuwen, M.; Levai, P.; Litov, L.; Lungwitz, B.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mischke, A.; Mitrovski, M.; Molnar, J.; Mrowczynski, St.; Nicolic, V.; Palla, G.; Panagiotou, A.D.; Panayotov, D.; Petridis, A.; Pikna, M.; Prindle, D.; Puhlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Stefanek, G.; Stock, R.; Strabel, C.; Strobele, H.; Susa, T.; Szentpetery, I.; Sziklai, J.; Szymanski, P.; Trubnikov, V.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wetzler, A.; Wlodarczyk, Z.; Yoo, I.K.; Zimanyi, J.

    2005-01-01

    The transverse mass distributions for antiprotons are measured at midrapidity for minimum bias Pb+Pb collisions at 158A GeV and for central Pb+Pb collisions at 20, 30, 40 and 80 A GeV beam energies in the NA49 experiment at the CERN SPS. The rapidity density, inverse slope parameter and mean transverse mass derived from the transverse mass distributions are studied as a function of the incident energy and the collision centrality and compared to the relevant proton data. The shapes of the m_T distributions of antiprotons and protons are very similar. The ratios of the particle yields, antiproton/proton and antilambda/antiproton, are also analysed. The antiproton/proton ratio exhibits an increase with diminishing centrality and a steep rise with increasing beam energy. The antilambda/antiproton ratio increases beyond unity with decreasing beam energy.

  4. Development of new target concepts for proton beams at CERN/ISOLDE

    CERN Document Server

    Delonca, Melanie; Montavon, Ghislain; Peyraut, Francois

    More and more, the power of primary beam sent onto targets increases until reaching several kiloWatts of magnitude, inducing new problematic and challenges. Consequently, the need of new target design arises and leads to new conceptual design proposal. Amongst them, a concept of Lead Bismuth Eutectic (LBE) loop target making use of an heat exchanger (HEX) and a pump has been proposed during the European project EURISOL Design Study. This concept proposed an improvement in terms of release efficiency of short-lived species by transforming the irradiated liquid into droplets shape. This thesis presents the development of this target design proposal. A prototype target has been developed and will be tested under proton beam at ISOLDE at Cern, Geneva. Several analytical tools for the study of this kind of targets are proposed, taking into account different design parameters. These tools can be applied for other high power target concept and allow an easy dimensioning of this kind of targets. As well, an innovativ...

  5. The Beam Position System of the CERN Neutrino to Gran Sasso Proton Beam Line

    CERN Document Server

    Bogey, T

    2008-01-01

    The CERN Neutrino to Gran Sasso (CNGS) experiment uses 400GeV protons extracted from the SPS, which travel along 825 meters of beam line before reaching the CNGS target. This beam line is equipped with 23 BPMs capable of measuring both the horizontal and vertical position of the beam. The final BPM is linked to the target station and due to radiation constraints has been designed to work in air. This contribution will give an overview of the BPMs used in the transfer line. It will also provide a detailed explanation of their logarithmic amplifier based acquisition electronics, which consists of an autotriggered sequencer controlling an integrator, the A/D conversion and the Manchester encoded transmission of the digital data to the surface. At the surface the digital data is acquired using the Digital Acquisition Board (DAB) developed by TRIUMF (Canada) for the LHC BPM system. Results from both laboratory measurements and beam measurements during the 2006 CNGS run will also be presented.

  6. Fluctuations of K/7r Ratios in Pb-Pb Collisions at Super ProtonSynchrotron Energies

    Institute of Scientific and Technical Information of China (English)

    周代梅; 王晓荣; 杨纯斌; 蔡勖

    2001-01-01

    The Monte Carlo generator (LUCIAE) is used to investigate the fluctuations of K/π ratios at super proton synchrotron energies. The distribution of K/π ratios seems to be Gaussian from the simulation and the distribution width, and the relative variances are larger than those from the Poissonian-type pure-statistical fluctuations.This discrepancy might be attributed to the dynamical fluctuations involved in the LUCIAE model.

  7. Power Supply for Magnet of Compact Proton and/or Heavy Ion Synchrotron for Radiotherapy

    CERN Document Server

    Yamanaka, Shinji; Endo, Kuninori; Fang, Zhigao

    2005-01-01

    A resonant type pulse power supply, for an application to a compact proton and/or heavy ion synchrotron with a several Hz repetition rate, is attractive from the view point of attaining an average beam current that is enough for the radiation therapy. Maximum ampere-turn of the dipole magnet is as large as 200 kAT to make the bending radius as small as possible. Pulse current is generated by discharging the stored energy in a capacitor bank through a pulse transformer. Moreover, the auxiliary power supply for the dipole magnets which adds the flat magnetic field (10-20μs) for the multi-turn beam-injection is being developed. The power supply for the quadrupole magnets is the high switching frequency (20 kHz × 5) switching-mode Power Supply for the adjusting tune and the tracking between the quadrupole and the dipole fields.Detailed analyses on these pulse power supplies will be presented.

  8. Proton enhancement at large pT at the CERN large hadron collider without structure in associated-particle distribution.

    Science.gov (United States)

    Hwa, Rudolph C; Yang, C B

    2006-07-28

    The production of pions and protons in the pT range between 10 and 20 GeV/c for Pb+Pb collisions at CERN LHC is studied in the recombination model. It is shown that the dominant mechanism for hadronization is the recombination of shower partons from neighboring jets when the jet density is high. Protons are more copiously produced than pions in that pT range because the coalescing partons can have lower momentum fractions, but no thermal partons are involved. The proton-to-pion ratio can be as high as 20. When such high pT hadrons are used as trigger particles, there will not be any associated particles that are not in the background.

  9. CERN is 25 years old

    CERN Document Server

    Anthoine, R

    1979-01-01

    Reviews the history of CERN, the European Organisation for Nuclear Research, which has just celebrated its twenty-fifth anniversary. The member states, the site (Geneva) and accelerators, and the research carried out are all discussed. Amongst the apparatus and research described are the SPS (Super Proton Synchrotron), the ISOLDE linear isotope separator, BEBC (Big European Bubble Chamber), and the ISR (Intersecting Storage Rings). Discoveries made since the founding of CERN include that of neutral currents, measurement of the magnetic characteristics of the muon to a great accuracy, creation of exotic atoms, neutrino analysis of proton and neutron structure, hadron classification, future/past time asymmetry in neutral kaons, and the first measurements of the lifetimes of charmed hadrons. Future projects considered include LEP, the Large Electron Positron Ring. (0 refs).

  10. GPS Precision Timing at CERN

    CERN Document Server

    Beetham, C G

    1999-01-01

    For the past decade, the Global Positioning System (GPS) has been used to provide precise time, frequency and position co-ordinates world-wide. Recently, equipment has become available specialising in providing extremely accurate timing information, referenced to Universal Time Co-ordinates (UTC). This feature has been used at CERN to provide time of day information for systems that have been installed in the Proton Synchrotron (PS), Super Proton Synchrotron (SPS) and the Large Electron Positron (LEP) machines. The different systems are described as well as the planned developments, particularly with respect to optical transmission and the Inter-Range Instrumentation Group IRIG-B standard, for future use in the Large Hadron Collider (LHC).

  11. Refrigerating systems for the big CERN bubble chamber

    CERN Document Server

    Giger, U; Trepp, C

    1974-01-01

    A combined helium-hydrogen refrigerator has been installed for cooling the new CERN bubble chamber at Geneva. This article describes the cool-down of the bubble chamber and magnet, as well as emergency operation and control of the refrigerator. Besides the choice of basic conception and circuit, the plant components are dealt with too. The function of the bubble chamber and the development of the CERN proton synchrotron are described in order to facilitate understanding of the relationship between the Sulzer cryogenic plant and the CERN bubble chamber. Installations and equipment not manufactured by Sulzer are also mentioned. (1 refs).

  12. Possible Proton Synchrotron Origin of X-Ray & Gamma Ray Emission in Large Scale Jet of 3C 273

    CERN Document Server

    Kundu, Esha

    2014-01-01

    The large scale jet of quasar 3C 273 has been observed in radio to $\\gamma$ ray frequencies. Earlier the X-ray emission from knot A of this jet has been explained with inverse Compton scattering of the cosmic microwave background radiations by the shock accelerated relativistic electrons in the jet. More recently it has been shown that this mechanism overproduces the gamma ray flux at GeV energy and violates the observational results from Fermi LAT. We have considered the synchrotron emission from a broken power law spectrum of accelerated protons in the jet to explain the observed X-ray to $\\gamma$ ray flux from knot A. The two scenarios discussed in our work are (i) magnetic field is high, synchrotron energy loss time of the protons is shorter than their escape time from the knot region and the age of the jet (ii) their escape time is shorter than their synchrotron energy loss time and the age of the jet. These scenarios can explain the observed photon spectrum well for moderate values of Doppler factor. Th...

  13. Charm content in jets in proton-proton collisions with the ALICE experiment at CERN-LHC

    NARCIS (Netherlands)

    Grelli, A.

    2010-01-01

    Charm and bottom quarks have been proposed as probes to study partonic matter produced in high-energy heavy-ion collisions. The detailed understanding of the production mechanisms in proton-proton collisions is of considerable interest as a QCD test tool and as reference calibration for heavy-ion st

  14. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    Science.gov (United States)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  15. Operational performance of the CERN injector complex with transversely split beams

    Science.gov (United States)

    Abernethy, S.; Akroh, A.; Bartosik, H.; Blas, A.; Bohl, T.; Cettour-Cave, S.; Cornelis, K.; Damerau, H.; Gilardoni, S.; Giovannozzi, M.; Hernalsteens, C.; Huschauer, A.; Kain, V.; Manglunki, D.; Métral, G.; Mikulec, B.; Salvant, B.; Sanchez Alvarez, J.-L.; Steerenberg, R.; Sterbini, G.; Wu, Y.

    2017-01-01

    With the progress made in 2015, the beams produced by the CERN Proton Synchrotron using multiturn extraction (MTE) have been delivered to the Super Proton Synchrotron (SPS) for the fixed-target physics run. Operation successfully started in the second half of September 2015 and continued until the end of the proton physics program by mid November. In this paper the overall performance and beam quality is discussed in detail considering the complete chain of accelerators, from the PS-Booster to the SPS. Moreover, a thorough comparison of the global performance of the MTE scheme against the previously used technique, the so-called continuous transfer (CT), is also carried out.

  16. $\\phi$ meson production in proton-proton collisions in the NA61/SHINE experiment at CERN SPS

    CERN Document Server

    AUTHOR|(CDS)2070082

    This thesis presents results on $\\phi$ meson production in p+p collisions at CERN SPS energies. They are derived from data collected by the NA61/SHINE experiment, by means of invariant mass spectra fits in $\\phi \\to K^+K^−$ decay channel, using the so-called tag-and-probe method to remove bias due to inefficiency of kaon candidates selection with dE/dx. These results include double differential spectra (first for $\\phi$ mesons at CERN SPS energies) of rapidity y and transverse momentum $p_T$ for beam momenta of 158 GeV/c and 80 GeV/c, as well as singly differential spectra of y or $p_T$ for beam momentum of 40 GeV/c. Additionally, y spectra integrated over $p_T$ were obtained from double differential spectra. Also total $\\phi$ yields were determined by integration and extrapolation of y spectra and widths of these spectra along with yields at y = 0 were calculated from fits of the distributions with Gaussian functions. Results were compared with world data on $\\phi$ meson production in p+p collisions showin...

  17. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  18. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  19. Measurement of the Antiproton-Proton Total Cross-Section at the CERN ISR

    CERN Multimedia

    2002-01-01

    This experiment is a measurement of small angle scattering of antiprotons on protons and of protons on protons at 15/15, 22/22, 26/26 and 31/31 GeV, with the aim of obtaining data on the total cross-section for the scattering of protons on protons, and of determining the ratio of the real to the imaginary scattering amplitude at zero momentum transfer for antiprotons on protons. The measurement is divided into two parts: \\item 1) The measurement of @s^t^o^t(@*p) and @s^t^o^t(pp), using hodoscopes placed at small angles, outside the vacuum pipe, at approximately 9 metres from the intersection point. \\item 2) The measurement of the region in !t!, the momentum transfer squared, around the value !t^c!, where Coulomb and nuclear scattering are equal, in order to deduce the quantity @r = Re f(t=0)/Im f(t=0). This latter measurement is done by employi in earlier @s^t(pp) and @r experiments at the ISR. \\end{enumerate} In both set-ups the measurements are made by recording coincidences between collinear counters in th...

  20. Inside CERN's Large Hadron Collider from the proton to the Higgs boson

    CERN Document Server

    Campanelli, Mario

    2016-01-01

    The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

  1. Simulating Proton Synchrotron Radiation in the Arcs of the LHC, HL-LHC, and FCC-hh

    CERN Document Server

    Guillermo Cantón, Gerardo; Zimmermann, Frank

    2016-01-01

    At high proton-beam energies, beam-induced synchrotron radiation is an important source of heating, of beam-related vacuum pressure increase, and of primary photoelectrons, which can give rise to an electron cloud. We use the Synrad3D code developed at Cornell to simulate the photon distributions in the arcs of the LHC, HL-LHC, and FCC-hh. Specifically, for the LHC we study the effect of the “sawtooth” chamber, for the HL-LHC the consequences of the ATS optics with large beta beating in the arcs, and for the FCC-hh the effect of a novel beam-screen design, with a long slit surrounded by a “folded” antechamber.

  2. Observation of an Exotic S = -2, Q = -2 Baryon Resonance in Proton-Proton Collisions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Behler, M; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-01

    Results of resonance searches in the Xi- pi-, Xi- pi+, antiXi+ pi- and antiXi+ pi+ invariant mass spectra in proton-proton collisions at sqrt{s}=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi- pi- baryon resonance with mass of 1.862+/-0.002 GeV/c^2 and width below the detector resolution of about 0.018 GeV/c^2. The significance is estimated to be 4.0 sigma. This state is a candidate for the hypothetical exotic Xi_(3/2)^-- baryon with S = -2, I = 3/2 and a quark content of (d s d s ubar). At the same mass a peak is observed in the Xi- pi+ spectrum which is a candidate for the Xi_(3/2)^0 member of this isospin quartet with a quark content of (d s u s dbar). The corresponding antibaryon spectra also show enhancements at the same invariant mass.

  3. Evidence for an exotic S=-2, Q=-2 baryon resonance in proton-proton collisions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Palla, G K; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-01

    Results of resonance searches in the Xi /sup -/ pi /sup -/, Xi /sup - / pi /sup +/, Xi /sup +/ pi /sup -/, and Xi /sup +/ pi /sup +/ invariant mass spectra in proton-proton collisions at square root s =17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi /sup -/ pi /sup -/ baryon resonance with mass of 1.862+or-0.002 GeV/c/sup 2/ and width below the detector resolution of about 0.018 GeV/c/sup 2/. The significance is estimated to be above 4.2 sigma . This state is a candidate for the hypothetical exotic Xi /sub 3/2//sup --/ baryon with S=-2, I=/sup 3///sub 2/, and a quark content of (dsdsu). At the same mass, a peak is observed in the Xi /sup -/ pi /sup +/ spectrum which is a candidate for the Xi /sub 3/2//sup 0/ member of this isospin quartet with a quark content of (dsusd). The corresponding antibaryon spectra also show enhancements at the same invariant mass. (21 refs).

  4. Evidence for an exotic S= -2, Q= -2 baryon resonance in proton-proton collisions at the CERN SPS.

    Science.gov (United States)

    Alt, C; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Białkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncić, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gaździcki, M; Georgopoulos, G; Gładysz, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; van Leeuwen, M; Lévai, P; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczyński, St; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Retyk, W; Roland, C; Roland, G; Rybczyński, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitar, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranić, D; Wetzler, A; Włodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-30

    Results of resonance searches in the Xi(-)pi(-), Xi(-)pi(+), Xi;(+)pi(-), and Xi;(+)pi(+) invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi(-)pi(-) baryon resonance with mass of 1.862+/-0.002 GeV/c(2) and width below the detector resolution of about 0.018 GeV/c(2). The significance is estimated to be above 4.2sigma. This state is a candidate for the hypothetical exotic Xi(--)(3/2) baryon with S=-2, I=3 / 2, and a quark content of (dsdsū). At the same mass, a peak is observed in the Xi(-)pi(+) spectrum which is a candidate for the Xi(0)(3/2) member of this isospin quartet with a quark content of (dsus[-]d). The corresponding antibaryon spectra also show enhancements at the same invariant mass.

  5. Design Options of a High-power Synchrotron for Laguna-LBNO

    CERN Document Server

    Papaphilippou, Y; Alekou, A; Antoniou, F; Benedikt, M; Efthymiopoulos, I; Garoby, R; Gerigk, F; Goddard, B; Lazaridis, C; Parfenova, A; Shaposhnikova, E; Steerenberg, R

    2013-01-01

    Design studies have been initiated at CERN, exploring the prospects of future high-power proton beams for producing neutrinos, within the LAGUNA-LBNO project. These studies include the design of a 2 MW high-power proton synchrotron (HP-PS) using the LP-SPL as injector. This paper resumes the design options under study in order to reach this high power, and their implications regarding layout, magnet technology, beam loss control and RF considerations

  6. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  7. Preparation of a primary argon beam for the CERN fixed target physics

    Energy Technology Data Exchange (ETDEWEB)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R. [CERN, BE Department, 1211 Geneva 23 (Switzerland); Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa)

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  8. Preparation of a primary argon beam for the CERN fixed target physics.

    Science.gov (United States)

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  9. Charmonia and Drell-Yan production in proton-nucleus collisions at the CERN SPS

    CERN Document Server

    Alessandro, B; Arnaldi, R; Atayan, M; Baglin, C; Beolè, S; Boldea, V; Bordalo, P; Borenstein, S R; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N; CERN. Geneva

    2003-01-01

    Charmonium production in p-A collisions is a unique tool for the study of the interaction of bound ccbar in nuclear matter. It can provide details on the basic features of the resonance formation mechanism and, in particular, on its non-perturbative aspects. In this Letter, we present an experimental study of Charmonia and Drell-Yan production in proton-nucleus collisions at 450GeV/c. The results are analyzed in the framework of the Glauber model and lead to the values of the nuclear absorption cross-section sigma^abs_pA for j/psi and psi'. Then, we compare the J/psi absorption in proton-nucleus and sulphur-uranium interactions, using NA38 data. We obtain that, for the J/psi, omega^abs_pA and omega^abs_SU are compatible, showing that no sizeable additional suppression mechanism in present S-U collisions, and confirming that the anomalous J/psi suppression only sets in for Pb-Pb interactions.

  10. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  11. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  12. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  13. CERN's Fixed Target Primary Ion Programme

    CERN Document Server

    Manglunki, Django; Axensalva, Jerome; Bellodi, Giulia; Blas, Alfred; Bodendorfer, Michael; Bohl, Thomas; Cettour-Cave, Stephane; Cornelis, Karel; Damerau, Heiko; Efthymiopoulos, Ilias; Fabich, Adrian; Ferreira Somoza, Jose; Findlay, Alan; Freyermuth, Pierre; Gilardoni, Simone; Hancock, Steven; Holzer, Eva Barbara; Jensen, Steen; Kain, Verena; Küchler, Detlef; Lombardi, Alessandra; Michet, Alice; O'Neil, Michael; Pasinelli, Sergio; Scrivens, Richard; Steerenberg, Rende; Tranquille, Gerard

    2016-01-01

    The renewed availability of heavy ions at CERN for the needs of the LHC programme has triggered the interest of the fixed-target community. The project, which involves sending several species of primary ions at various energies to the North Area of the Super Proton Synchrotron, has now entered its operational phase. The first argon run, with momenta ranging from 13 AGeV/c to 150 AGeV/c, took place from February 2015 to April 2015. This paper presents the status of the project, the performance achieved thus far and an outlook on future plans.

  14. Results from the CERN pilot CLOUD experiment

    DEFF Research Database (Denmark)

    Duplissy, J.; Enghoff, Martin Andreas Bødker; Aplin, K. L.

    2009-01-01

    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the CLOUD1 experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory...... are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely...

  15. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  16. Characteristics of a betatron core for extraction in a proton-ion medical synchrotron

    CERN Document Server

    Badano, L

    1997-01-01

    Medical synchrotrons for radiation therapy require a very stable extraction of the beam over a period of about one second. The techniques for applying resonant extraction to achieve this long spill can be classified into two groups, those that move the resonance and those that move the beam. The latter has the great advantage of keeping all lattice functions, and hence the resonance conditions, constant. The present report examines the possibility of using a betatron core to accelerate the waiting ion beam by induction into the resonance. The working principle, the proposed characteristics and the expected performances of this device are discussed. The betatron core is a smooth high-inductance device compared to the small quadrupole lenses that are normally used to move the resonance and is therefore better suited to delivering a very smooth spill. The large stored energy in a betatron core compared to a small quadrupole is also a safety feature since it responds less quickly to transients that could send lar...

  17. News from the Library: About a dozen prestigious CERN physicists contribute to a special issue of EPJ H

    CERN Multimedia

    CERN Library

    2012-01-01

    European Physical Journal H is a journal published by Springer that focuses on the historical development of ideas in contemporary physics. Since 2009 it has partially replaced the journal "Annales de Physique" published by EDP sciences.   The journal recently published a special issue about CERN accelerators entitled "CERN's accelerators, experiments and international integration 1959-2009", with the former CERN Director-General, Herwig Schopper, as guest editor. The origin of this issue is a symposium that took place at CERN on 3-4 December 2009: "50 years of Nobel Memories in High-Energy Physics", for the 50th anniversary of the CERN Proton Synchrotron. Some of the contributions to this symposium became articles that are a real treasure for physicists and historians. Many of these are actually personal recollections from the main actors of the CERN accelerators. In addition, regular papers have been invited to make this ...

  18. The new dc power supply system for the main ring magnets of the 28 GeV CERN proton synchrotron

    CERN Document Server

    Jahn, K; Steckmann, E

    1972-01-01

    High overload capacity, low residual ripple, exact reproducibility of periodic current pulses and very great reliability in long-term duty are essential requirements for a modern power supply system for feeding beam-guide magnets. These requirements can be met with certainty and at reasonable cost by the use of high-performance single-anode mercury-arc converters with suitable electronic control and protective equipment. (4 refs).

  19. Software system for open loop control of a synchrotron via special purpose consoles

    CERN Document Server

    Benincasa, G P; Heymans, P

    1973-01-01

    Most of the physics experiments performed at CERN require protons with an energy of 28 GeV. This is obtained in three stages: a linear accelerator, Linac, where the protons are created and brought to 50 Me V; next a first circular accelerator, Synchrotron Injector or Booster, where they reach 800 MeV; eventually the high energy synchrotron, PS (Proton Synchrotron), where they are accelerated to the required top energy. In contrast to the Linac and PS, the Booster has been designed very recently and is still running-in. From the beginning, it was intended to be fully computer controlled, i.e. acquisition and/or control of most of its variables. Whereas the computer control has always been implemented both at PS and Linac in parallel with an existing 'manual' control system, at the Booster its design could be imbedded within the study of the overall project. (5 refs).

  20. Some aspects of radiation protection near high-energy proton accelerators

    CERN Document Server

    Tuyn, Jan Willem Nicolaas

    1977-01-01

    The CERN site near Geneva borders Satigny and Meyrin in Switzerland and Saint-Genis-Pouilly and Prevention in France. The 600 MeV proton synchrocyclotron (SC) has been in operation since 1957, the 28 GeV proton synchrotron (PS) since 1960, and the Intersecting Storage Rings (ISR) since 1971. A fourth large accelerator, the 400 GeV super proton synchrotron (SPS), will soon be in service. The internal and external radiation protection problems caused by these machines, together with the solutions, are reviewed in the light of experience. (5 refs).

  1. Communication: Protonation process of formic acid from the ionization and fragmentation of dimers induced by synchrotron radiation in the valence region

    Science.gov (United States)

    Arruda, Manuela S.; Medina, Aline; Sousa, Josenilton N.; Mendes, Luiz A. V.; Marinho, Ricardo R. T.; Prudente, Frederico V.

    2016-04-01

    The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flight mass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)ṡD+ is also determined.

  2. Possible proton synchrotron origin of X-ray and gamma-ray emission in large-scale jet of 3C 273

    Science.gov (United States)

    Kundu, Esha; Gupta, Nayantara

    2014-10-01

    The large-scale jet of quasar 3C 273 has been observed in radio to gamma-ray frequencies. Earlier the X-ray emission from knot A of this jet has been explained with inverse Compton scattering of the cosmic microwave background radiations by the shock accelerated relativistic electrons in the jet. More recently it has been shown that this mechanism overproduces the gamma-ray flux at GeV energy and violates the observational results from Fermi LAT. We have considered the synchrotron emission from a broken power-law spectrum of accelerated protons in the jet to explain the observed X-ray to gamma-ray flux from knot A. The two scenarios discussed in our work are (i) magnetic field is high, synchrotron energy loss time of the protons is shorter than their escape time from the knot region and the age of the jet and (ii) their escape time is shorter than their synchrotron energy loss time and the age of the jet. These scenarios can explain the observed photon spectrum well for moderate values of Doppler factor. The required jet luminosity is high ˜1046 erg s-1 in the first scenario and moderate ˜1045 erg s-1 in the second, which makes the second scenario more favourable.

  3. Design of a high-precision fast wire scanner for the SPS at CERN

    CERN Document Server

    Veness, R; Dehning, B; Emery, J; Herranz Alvarez, J; Koujili, M; Samuelsson, S; Sirvent, J-L

    2012-01-01

    Studies are going on of a new wire scanner concept. All moving parts are inside the beam vacuum and it is specified for use in all the machines across the CERN accelerator complex. Key components have been developed and tested. Work is now focussing on the installation of a prototype for test in the Super Proton Synchrotron (SPS) accelerator. This article presents the specification of the device and constraints on the design for integration in the different accelerators at CERN. The design issues of the mechanical components are discussed and optimisation work shown. Finally, the prototype design, integrating the several components into the vacuum tank is presented.

  4. The RF Cycle of the PIMMS Medical Synchrotron

    CERN Document Server

    Crescenti, M; Knaus, P

    2000-01-01

    This paper presents the design of the RF cycle of the medical synchrotron of the PIMMS (Proton-Ion Medical Machine Study) hosted at CERN. The cycle comprises adiabatic trapping, acceleration and RF gymnastics, for either protons or fully stripped carbon ions. The injection energy is 20 MeV for protons and 7 MeV/u for carbon. Maximum extraction energies are 250 MeV for protons and 400 MeV/u for carbon ions. The cycle duration is less than 1 s, with a maximum magnetic field ramp below 3 T/s. The simulations show that the beam stays inside the aperture of the machine, and that, theoretically, there are no longitudinal losses. At the end of the cycle, the beam is ready for extraction with a Dp/p = 0.4 %. The peak RF voltage is 3 kV and the frequency ranges from 0.4 to 3 MHz.

  5. Prompt D*+ production in proton-proton and lead-lead collisions, measured with the ALICE experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    de Rooij, R. S.

    2013-01-01

    In this thesis the results are presented of the first measurements of the D*+ meson nuclear modification factor RAA in heavy ion collisions at the Large Hadron Collider (LHC) using the ALICE (A Large Ion Collider Experiment) detector at CERN. These open charmed mesons are a useful tool to investigat

  6. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  7. Calculation of the characteristics of infrared synchrotron radiation

    CERN Document Server

    Maslova, M V; Maltsev, M A

    2005-01-01

    Subroutines for calculating the spectral and angular characteristics of infrared synchrotron radiation are developed. Corresponding calculations are carried out for a number of proton and electron accelerators. The results obtained enable methods to be developed for beam diagnostics as well as highly sensitive detectors of infrared radiation for remote contactless nondestructive diagnostics and for investigating bunches and high-speed processes in ring-type (CERN /SEPS-LHC) and linear (GSI bunch target) accelerators, and also the thermal fields in nuclear power plants.

  8. TARC experiment at CERN; L`experience TARC au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Andriamonje, S.; Arnould, H.; Bompas, C.A.; Del Moral, R.; Lacoste, V. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); TARC Collaboration under leadership of C.Rubbia

    1997-06-01

    It is well-known that a significant part of the world electricity is of nuclear origin (75% in case of France). One of the major current preoccupation is the search for ways to solve the important problems raised by the wastes produced in the nuclear plants to which the wastes of military origin must by added. It is urgently necessary of finding solutions to reduce the amount of wastes produced in the nuclear facilities and plants and if possible to destroy the huge present stocks. To solve these problems a solution advanced by Nobel prize winner C. Rubbia and coll. is the utilisation of hybrid systems i.e the coupling of a particle acceleration to an under-critical reactor. The research of the hybrid system efficiency in transmuting the nuclear wastes, particularly, of the long-lived fission products is presently under way at CERN. The proton beam from the proton synchrotron is injected into a massive hyper-pure lead block. The TARC (Transmutation by Adiabatic Resonance Crossing) experiment is the second stage for the determination of the fundamental parameters associated to the Energy Amplifier Project. The main goal of TARC is to measure the spallation neutron flux and to determine the efficiency of the hybrid systems intended to incinerate the nuclear wastes. The different techniques used are described. The large amount of obtained data are now processed 3 refs.

  9. Synchrotrons for Hadrontherapy

    Science.gov (United States)

    Pullia, Marco G.

    Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.

  10. Design, Manufacture and Test of a 1.3 T / 10 Hz dipole model for Rapid Cycling Synchrotrons

    CERN Document Server

    Newborough, A

    2013-01-01

    The construction of a compact rapid cycling synchrotron has recently been studied at CERN to replace the first stage of its accelerator complex, the proton synchrotron booster. Although currently there are no plans to build this machine, fast cycled accelerator magnets are of general interest for numerous reasons. This has led to the design, manufacture and testing of a scaled model dipole as detailed in this paper to show the capability of producing and characterising a magnet design based on high-silicon content grain-oriented steel able to operate up to 1.3 T at 10 Hz.

  11. Possible evidence of disoriented chiral condensates from the anomaly in and $\\overline{}$ abundances at the super proton synchrotron

    Indian Academy of Sciences (India)

    J I Kapusta; S M H Wong

    2003-05-01

    No conventional picture of nucleus–nucleus collisions has yet been able to explain the abundance of and $\\overline{}$ in central collisions between Pb nuclei at 158 A GeV at the CERN SPS. We argue that such a deviation from predictions of statistical thermal models and numerical simulations is the evidence that they are produced as topological defects in the form of skyrmions arising from the formation of disoriented chiral condensates. The estimated domain size falls in the right range to be consistent with the so far non-observation of disoriented chiral condensate (DCC) from the distribution of neutral pions.

  12. The RF Cycle of the PIMMS Synchrotron

    CERN Document Server

    Crescenti, M; Rossi, S

    1999-01-01

    This paper deals with the study of the rf cycle of the synchrotron of the Proton-Ion Medical Machine Study (PIMMS) hosted at CERN. The cycle comprises the adiabatic trapping, the acceleration and the rf gymnastics, both for protons and fully stripped carbon ions. The injection energy is 20 MeV for protons and 7 MeV/u for carbon. The maximum extraction energies are 250 MeV for protons and 400 MeV/u for carbon ions. The reserved time is less than 1 s, with a maximum magnetic field ramp of less than 3 T/s. The simulations show that the beam stays inside the aperture of the machine, and that there are no longitudinal losses. At the end of the cycle the beam is ready for extraction with a Dp/p of 0.4 %. The peak rf voltage is 3 kV and the frequency range is from 0.49 to 2.85 MHz.

  13. SU-E-T-266: Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T; Fujii, Y [Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Hitachi Ltd., Hitachi-shi, Ibaraki (Japan); Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y [Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Koyano, H; Shirato, H [Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Nihongi, H; Umezawa, M; Matsuda, K [Hitachi Ltd., Hitachi-shi, Ibaraki (Japan); Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan)

    2015-06-15

    Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST

  14. SU-E-T-755: Timing Characteristics of Proton and Carbon Ion Treatments Using a Synchrotron and Modulated Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J [Fudan university Shanghai Cancer center, Shanghai, Shanghai (China); Li, Y; Huang, Z; Deng, Y [Shanghai Proton and Heavy Ion Center, Shanghai, Shanghai (China); Sun, L [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China); Moyers, M [Shanghai Proton and Heavy Ion Center, Colton, CA (China); Hsi, W [Shanghai Proton and Heavy Ion Center, Shanghai (China); Wu, X [University of Iowa, Iowa City, Iowa (United States)

    2015-06-15

    Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable.

  15. Pseudorapidity distributions of charged particles in Pb–Pb collisions at super proton synchrotron energies from the NA50 experiment

    Indian Academy of Sciences (India)

    Marek Idzik; M C Abreu; B Alessandro; C Alexa; R Arnaldi; M Atayan; C Baglin; A Baldit; M Bedjidian; S Beolè; V Boldea; P Bordalo; G Borges; A Bussière; L Capelli; C Castanier; J Castor; B Chaurand; I Chevrot; B Cheynis; E Chiavassa; C Cicalò; T Claudino; M P Comets; N Constans; S Constantinescu; P Cortese; A De Falco; N De Marco; G Dellacasa; A Devaux; S Dita; O Drapier; L Ducroux; B Espagnon; J Fargeix; P Force; M Gallio; Y K Gavrilov; C Gerschel; P Giubellino; M B Golubeva; M Gonin; A A Grigorian; S Grigorian; J Y Grossiord; F F Guber; A Guichard; H Gulkanyan; R Hakobyan; R Haroutunian; M Idzik; D Jouan; T L Karavitcheva; L Kluberg; A B Kurepin; Y Le Bornee; C Lourenço; P Macciotta; M Mac Cormick; A Marzari-Chiesa; M Masera; A Masoni; M Monteno; A Musso; P Petiau; A Piccotti; J R Pizzi; W L Prado da Silva; F Prino; G Puddu; C Quintans; L Ramello; S Ramos; P Rato Mendes; L Riccati; A Romana; H Santos; P Saturnini; E Scalas; E Scomparin; S Serci; R Shahoyan; F Sigaudo; S Silva; M Sitta; P Sonderegger; X Tarrago; N S Topilskaya; G L Usai; E Vercellin; L Villatte; N Willis; NA50 Collaboration

    2003-05-01

    We present the measurements of charged particle pseudorapidity distributions dch/d performed by the NA50 experiment in Pb–Pb collisions at the CERN SPS. Measurements were done at incident energies of 40 GeV ($\\sqrt{s}=8.77$ GeV) and 158 GeV ($\\sqrt{s}=17.3$ GeV) per nucleon over a broad impact parameter range. The multiplicity distributions are studied as a function of centrality using the number of participating nucleons (part), or the number of binary nucleon–nucleon collisions (coll). Their values at midrapidity exhibit a linear scaling with part at both energies. Particle yield increases approximately by a factor of 2 between $\\sqrt{s}=8.77$ GeV and $\\sqrt{s}=17.3$ GeV.

  16. Pseudorapidity distributions of charged particles in Pb-Pb collisions at super proton synchrotron energies from the NA50 experiment

    CERN Document Server

    Idzik, M; Alessandro, B; Alexa, C; Arnaldi, R; Atayan, M; Baglin, C; Baldit, A; Bedjidian, Marc; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Chevrot, I; Cheynis, B; Chiavassa, E; Cicalò, C; Claudino, T; Comets, M P; Constans, N; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Ducroux, L; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hakobyan, R S; Haroutunian, R; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; MacCormick, M; Macciotta, P; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Silva, S; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, Ermanno; Villatte, L; Willis, N

    2003-01-01

    We present the measurements of charged particle pseudorapidity distributions dN/sub ch//d eta performed by the NA50 experiment in Pb-Pb collisions at the CERN SPS. Measurements were done at incident energies of 40 GeV ( square root s = 8.77 GeV) and 158 GeV ( square root s = 17.3 GeV) per nucleon over a broad impact parameter range. The multiplicity distributions are studied as a function of centrality using the number of participating nucleons (N/sub part/), or the number of binary nucleon-nucleon collisions (N/sub coll/). Their values at midrapidity exhibit a linear scaling with N/sub part/ at both energies. Particle yield increases approximately by a factor of 2 between square root s = 8.77 GeV and square root s = 17.3 GeV. (5 refs).

  17. A logarithmic processor for Beam Position Measurements applied to a Transfer Line at CERN

    CERN Document Server

    Schmickler, Hermann

    2001-01-01

    The transfer line from the CERN proton synchrotron (PS) to the super proton synchrotron (SPS) requires a new beam position measurement system in view of the LHC. In this line, the single passage of various beam types (up to 7), induces signals with a global signal dynamics of more than 100 dB and with a wide frequency spectral distribution. Logarithmic amplifiers, have been chosen as technical solution for the challenges described above. The paper describes the details of the adopted solutions to make beam position measurements, with a resolution down to few 10-4 of the full pickup aperture over more than 50 dB of the total signal dynamics. The reported performances has been measured on the series production cards, already installed into the machine and on one pickup in the transfer line.

  18. NA61/SHINE facility at the CERN SPS: beams and detector system

    Science.gov (United States)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  19. NA61/SHINE facility at the CERN SPS: beams and detector system

    CERN Document Server

    Abgrall, N; Aduszkiewicz, A; Ali, Y; Anticic, T; Antoniou, N; Baatar, B; Bay, F; Blondel, A; Blumer, J; Bogomilov, M; Bogusz, M; Bravar, A; Brzychczyk, J; Bunyatov, S A; Christakoglou, P; Czopowicz, T; Davis, N; Debieux, S; Dembinski, H; Diakonos, F; Di Luise, S; Dominik, W; Drozhzhova, T; Dumarchez, J; Dynowski, K; Engel, R; Efthymiopoulos, I; Ereditato, A; Fabich, A; Feofilov, G A; Fodor, Z; Fulop, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Haesler, A; Hasegawa, T; Hierholzer, M; Idczak, R; Igolkin, S; Ivashkin, A; Jokovic, D; Kadija, K; Kapoyannis, A; Kaptur, E; Kielczewska, D; Kirejczyk, M; Kisiel, J; Kiss, T; Kleinfelder, S; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kondratiev, V P; Korzenev, A; Koversarski, P; Kowalski, S; Krasnoperov, A; Kurepin, A; Larsen, D; Laszlo, A; Lyubushkin, V V; Mackowiak-Pawlowska, M; Majka, Z; Maksiak, B; Malakhov, A I; Maletic, D; Manglunki, D; Manic, D; Marchionni, A; Marcinek, A; Marin, V; Marton, K; Mathes, H J; Matulewicz, T; Matveev, V; Melkumov, G L; Messina, M; Mrowczynski, St; Murphy, S; Nakadaira, T; Nirkko, M; Nishikawa, K; Palczewski, T; Palla, G; Panagiotou, A D; Paul, T; Peryt, W; Petukhov, O; Pistillo, C; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Pulawski, S; Puzovic, J; Rauch, W; Ravonel, M; Redij, A; Renfordt, R; Richter-Was, E; Robert, A; Rohrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rustamov, A; Rybczynski, M; Sadovsky, A; Sakashita, K; Savic, M; Schmidt, K; Sekiguchi, T; Seyboth, P; Sgalaberna, D; Shibata, M; Sipos, R; Skrzypczak, E; Slodkowski, M; Sosin, Z; Staszel, P; Stefanek, G; Stepaniak, J; Stroebele, H; Susa, T; Szuba, M; Tada, M; Tereshchenko, V; Tolyhi, T; Tsenov, R; Turko, L; Ulrich, R; Unger, M; Vassiliou, M; Veberic, D; Vechernin, V V; Vesztergombi, G; Vinogradov, L; Wilczek, A; Wlodarczyk, Z; Wojtaszek-Szwarz, A; Wyszynski, O; Zambelli, L; Zipper, W

    2014-01-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March ...

  20. Transversal effects of the space charge in an electrified particle beam (the proton synchrotron Saturne) (1963); Les effets transversaux de la charge d'espace dans les faisceaux de particules electrisees (synchrotron a protons Saturne) (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J.; Gouttefangeas, M.; Levy-Mandel, R.; Vienet, R.; Lago, B.; Loeb, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This is a study of the repulsive electrostatic forces existing inside a proton beam focused by the magnetic field of a circular accelerator. The general equation that rules the variation of beam density versus time can be rewritten by a fairly simple reasoning, A numerical method to solve this equation is then developed. The next step is then to find an optimum beam, a gaussian distribution of density being proposed allowing to find an analytical solution to the problem. (authors) [French] On etudie l'action des forces electrostatiques de repulsion qui existent dans un faisceau de protons focalise par le champ magnetique d'un accelerateur circulaire. L'equation generale qui regit la variation de densite du faisceau au cours du temps est retrouvee par un raisonnement simple. On developpe une methode numerique de resolution de cette equation. On pose le probleme de la recherche d'un faisceau optimal et on propose une loi de repartition gaussienne de densite qui permet de trouver une solution analytique au probleme. (auteurs)

  1. Fragmentation of the CH{sub 2}Cl{sub 2} molecule by atto second proton beams and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, K.F.; Gomes, A.H.A.; Soriano, S.; Oliveira, V.; Sigaud, L.; Wolf, W.; Rocha, A.B.; Santos, A.C.F. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil)

    2011-07-01

    Full text. The absorption of a V UV photon by a molecule or its interaction with a charged particle, gives rise to an efficient molecular fragmentation which presents many open theoretical questions. Measurements of the ion yield and energy distributions of the fragmentation products in an ion-molecule collision have provided useful information about the molecular structure, the amount of energy transferred from the incoming particle to the molecule, and how this energy is spread among the molecular states. In this work, we have carried out fragmentation studies of the CH{sub 2}Cl{sub 2} molecule by 12-90 eV photons and 0.2-2.0 MeV p{sup +} impact. The mass spectrum obtained between 12-20 eV photons closely resembles the mass spectrum for the same molecule measured at 70 eV electron impact energy . Two sets of cations are clearly observed: namely CH{sub n}Cl{sub 2}{sup +} (n= 0,1,2), which corresponds to the parent molecule and the corresponding fragments related to a loss of one or two hydrogen atoms, and CH{sub n}Cl{sup +}. On the other hand, the abundances in the proton induced fragmentation mass spectra do not drastically depend on the proton collision energy. The main changes in the relative contributions of the fragments are observed in the 200-400 keV energy impact. The parent ion, CH{sup 2}Cl{sub 2}{sup +} (CHCl{sub 2}{sup +}; CCl{sub 2}{sup +}) is the second dominant structure (21% to 32%) in the mass spectra, also increasing as the proton energy increases. As opposed to the heavier fragments, the contribution from lighter fragments (C{sup l}+ and CH{sub n}{sup +}) of the CH{sub 2}Cl{sub 2} molecule to the mass spectra tend to decrease in their relative intensity as the proton energy increases

  2. From the Proton Synchrotron to the Large Hadron Collider: 50 Years of Nobel Memories in High-Energy Physics

    CERN Multimedia

    Directorate Office

    As a new era in particle physics approaches with the start of the LHC, a symposium to commemorate many significant events that have marked high-energy physics in the past 50 years will be held at CERN on 3-4 December 2009. The list of confirmed distinguished speakers reads like the Who’s Who of particle physics of the second half of the 20th Century, including the Nobel Laureates James Cronin, Jerome Friedman, Sheldon Glashow, David Gross, Gerardus ‘t Hooft, Leon Lederman, Burton Richter, Carlo Rubbia, Jack Steinberger, Samuel Ting, Martinus Veltman, Stephen Weinberg and Frank Wilczek. They will share with us memories of several landmark events that, over the past 50 years, have shaped our field of science. These events include the discovery of the J/ψ particle by Richter and Ting in the 1970s; the work of Glashow, Salam and Weinberg on the theory of the unified weak and electromagnetic interactions; the discovery of fundamental asymmetries in the K-meson sector by Cronin and Fitch...

  3. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    Science.gov (United States)

    Cimino, R.; Baglin, V.; Schäfers, F.

    2015-12-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  4. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz

    2015-01-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  5. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders.

    Science.gov (United States)

    Cimino, R; Baglin, V; Schäfers, F

    2015-12-31

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  6. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  7. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    Science.gov (United States)

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  8. A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics

    CERN Document Server

    Rubbia, A

    2010-01-01

    The feasibility of a European next-generation very massive neutrino observatory in seven potential candidate sites located at distances from CERN ranging from 130 km to 2300 km, is being considered within the LAGUNA design study. The study is providing a coordinated technical design and assessment of the underground research infrastructure in the various sites, and its coherent cost estimation. It aims at a prioritization of the sites within summer 2010 and a start of operation around 2020. In addition to a rich non-accelerator based physics programme including the GUT-scale with proton decay searches, the detection of a next-generation neutrino superbeam tuned to measure the flavor-conversion oscillatory pattern (i.e. 1st and 2nd oscillation maxima) would allow to complete our understanding of the leptonic mixing matrix, in particular by determining the neutrino mass hierarchy and by studying CP-violation in the leptonic sector, thereby addressing the outstanding puzzle of the origin of the excess of matter ...

  9. Proton Football European Championship 2016

    CERN Multimedia

    2016-01-01

    Check out the European championship of proton football 2016 at CERN. Produced by: CERN Audiovisual Productions Service Director: Jacques Fichet Editor: Jacques Fichet Music : Burnt of Jingle Punks You can follow us on:

  10. Emittance growth induced by electron cloud in proton storage rings

    CERN Document Server

    Benedetto, Elena; Coppa, G

    2006-01-01

    In proton and positron storage rings with many closely spaced bunches, a large number of electrons can accumulate in the beam pipe due to various mechanisms (photoemission, residual gas ionization, beam-induced multipacting). The so-formed electron cloud interacts with the positively charged bunches, giving rise to instabilities, emittance growth and losses. This phenomenon has been observed in several existing machines such as the CERN Super Proton Synchrotron (SPS), whose operation has been constrained by the electron-cloud problem, and it is a concern for the Large Hadron Collider (LHC), under construction at CERN. The interaction between the beam and the electron cloud has features which cannot be fully taken into account by the conventional and known theories from accelerators and plasma physics. Computer simulations are indispensable for a proper prediction and understanding of the instability dynamics. The main feature which renders the beam-cloud interactions so peculiar is that the the electron cloud...

  11. Leptonic and charged kaon decay modes of the $\\phi$ meson measured in heavy-ion collisions at the CERN Super Proton Synchrotron

    CERN Document Server

    Adamova, D; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Miskowiec, D; Ortega, R; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schükraft, J; Sedykh, S; Shimansky, S S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2006-01-01

    We report a measurement of $\\phi$ meson production in central Pb+Au collisions at E$_{lab}$/A=158 GeV. For the first time in heavy-ion collisions, $\\phi$ mesons were reconstructed in the same experiment both in the K$^+$K$^-$ and the dilepton decay channel. Near mid-rapidity, this yields rapidity densities, corrected for production at the same rapidity value, of 2.05 +- 0.14(stat) +- 0.25(syst) and 2.04 +- 0.49(stat)+-{0.32}(syst), respectively. The shape of the measured transverse momentum spectra is also in close agreement in both decay channels. The data rule out a possible enhancement of the $\\phi$ yield in the leptonic over the hadronic channel by a factor larger than 1.6 at 95% CL.

  12. CERN Choir

    CERN Multimedia

    Staff Association

    2015-01-01

      Do you like singing? The CERN Choir is looking for basses and tenors Join us! Programme Spring Session 2015: Donizetti: Misere & Missa di Gloria e Credo Bellini: Salve Regina Bruckner: Requiem in D minor Next concert: Sunday 31 May 2015 at 17:00 Musicales de Comesières (GE) Rehearsals at CERN Main Auditorium, building 500 On Wednesdays from 20.00 to 22:00 Membership fee: January to June 150 CHF September to December: 100CHF Contact: Baudouin.bleus@cern.ch Facebook/Choeur-du-CERN

  13. Golden Jubilee photos: CERN gets a second Laboratory

    CERN Multimedia

    2004-01-01

    CERN's first large accelerator, the Proton Synchrotron (PS), had hardly come into operation at the beginning of the 1960s, when physicists started to dream of a machine ten times more powerful, operating at 300 Gigaelectronvolts. The construction of such an accelerator required a new laboratory to be built and several European sites were candidates. John Adams, the project leader, suggested using the PS as an injector for the new machine, to achieve the higher energy level at a lower cost. The new Laboratory was therefore to be built on a site adjacent to CERN. The project was approved in 1971, but the CERN Convention, which only provided for a single laboratory, had to be amended. An agreement was signed with France on 16 June 1972 (see photograph), establishing a new site at Prévessin, in the Pays de Gex. The two laboratories, which each had their own administrative structures and Directors-General, were merged in 1976.

  14. Courrier CERN

    CERN Multimedia

    2015-01-01

    Example of the cover page of the French version of the CERN Courier; Courrier CERN from January 1962. The journal was published both in English and French up to volume 45, no. 5, June 2005. Since then there is a single-language edition where articles are published either in French or English with an abstract in the other language.

  15. Upgrade of the Fast Beam Intensity Measurement System for the CERN PS Complex

    CERN Document Server

    Allica, JC; Andreazza, W; Belohrad, D; Favre, G; Favre, N; Jensen, L; Lenardon, F; Vollenberg, W

    2014-01-01

    The CERN Proton Synchrotron complex (CPS) has been operational for over 50 years. During this time the Fast Beam Current Transformers (FBCTs) have only been repaired when they ceased to function, or individually modified to cope with new requests. This strategy resulted in a large variation of designs, making their maintenance difficult and limiting the precision with which comparisons could be made between transformers for the measurement of beam intensity transmission. During the first long shutdown of the CERN LHC and its injectors (LS1) these systems have undergone a major consolidation, with detectors and acquisition electronics upgraded to provide a uniform measurement system throughout the PS complex. This paper discusses the solutions used and analyses the first beam measurement results.

  16. Development and test of a rectangular CERN ConFlat-type flange

    CERN Document Server

    Miarnau Marin, Ana; Veness, Raymond

    2015-01-01

    Standard circular ConFlat® (CF) flanges are widely used in industry due to their high sealing reliability after being subjected to a bakeout process. The Beam Gas Ionisation (BGI) instrument for the CERN Proton Synchrotron accelerator will require a CF-like rectangular sealing system. Although rectangular CF-type flanges with plastically deforming metal seals have been used, no published designs with validated tests for bakeout under UHV conditions are available. Existing circular CERN CF flanges were compared and a design for a rectangular CF flange was proposed. Two prototypes were manufactured along with copper gaskets. The flanges and gaskets were cleaned and prepared for extensive vacuum testing after bakeout cycles up to 350 °C. This paper summarises the design, analysis and manufacturing process and describes the testing procedures and results. Additionally, the limitations when designing a flange of any shape were explored.

  17. CERN & Society

    CERN Multimedia

    2016-01-01

    Non Member State Summer Students 2015 are interviewed about their decision to study STEM subjects, to apply for CERN NMSSS programme, their experience onsite @CERN and takeaways, their future goals and aspirations, offering also advice to fellow students.The Non Member State Summer Student Programme stands for a unique opportunity for students from all over the world to spend their summer at CERN in Geneva, getting involved in some of the world’s biggest experiments. For 8 weeks, summer students gather on-site at CERN and join in the day-to-day work of research. The Programme targets advanced undergraduate and beginning graduate students of physics, computing and engineering, particularly from developing countries. Participating students receive scientific training, attend lectures and work on laboratory-based projects alongside with CERN experts and fellow students.

  18. Electron cloud in the CERN accelerators (PS, SPS, LHC)

    CERN Document Server

    Iadarola, G

    2013-01-01

    Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and beam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, typical electron cloud phenomena have appeared also in this machine, when running with trains of closely packed bunches (i.e. with spacings below 150ns). Beside the above mentioned indicators, other typical signatures were seen in this machine (due to its operation mode and/or more refined detection possibilities), like heat load in the cold dipoles, bunch dependent emittance growth and degraded lifetime in store and bunch-by-bunch stable phase shift to compensate for the energy loss due to the electron cloud. An overview o...

  19. Denis Guedj at CERN

    CERN Multimedia

    2009-01-01

    Denis Guedj (right), pictured with Etiennette Auffray Hillemanns of the CMS collaboration and Hartmut Hillemanns of the DG-KTT group.French author Denis Guedj, who is also a mathematician and Professor of History of Science at Paris VIII University, visited CERN on 7 and 8 October. During a presentation in the CERN Library he discussed his 15 published books and likened the process of novel writing to working on a scientific experiment: it begins with a limited amount of data, and then questions arise, problems are solved and further research reveals truths. Denis Guedj works hard to ensure that his novels contain ‘true fiction’. His most recent visit to CERN will help him to write a new book set at the LHC in which he will combine his scientific interest in what happens when a proton and proton collide with a human story about what happens to a male and female physicist who meet in the LHC tunnel. "Visiting the CMS cavern was...

  20. Influence of the transverse beam sizes on the ep -> ep. gamma. cross section at the HERA and a FUTURE CERN electron-proton collider

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Polityko, S.I.; Serbo, V.G.; Schiller, A.

    1988-06-01

    In the process ep -> ep..gamma.., proposed for luminosity measurements at HERA, impact parameters occur which are larger than the transverse beam sizes in the ep-colliders in HERA and a CERN option (LHC+LEP). This decreases the number of observed photons compared to the standard QED calculation. The difference is larger than 10% at photon energies E/sub ..gamma../ < 0.4E/sub e/ for the CERN option and E/sub ..gamma../ < 0.01E/sub e/ for HERA. (orig.)

  1. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  2. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  3. Passive beam sprending systems and light-weight gentries for synchrotron based hadron therapy

    CERN Document Server

    Maier, A T

    1998-01-01

    Hadron therapy is a promising technique that uses beams of protons or light ions for the treatment of cancer. In order to open this technique to a wider application, hospital based treatment centres are now needed. The extbf{P}roton- extbf{I}on extbf{M}edical extbf{M}achine extbf{S}tudy (PIMMS) in CERN is concerned with the design of such a centre that would use both protons and light ions. The dual species operation makes it preferable to base the centre on a synchrotron. The present thesis is concerned with the beam delivery for the protons. After introducing the basic vocabulary of linear beam optics, the feasibility of a light-weight gantry with passive beam spreading fed by a synchrotron is investigated. The device is a non-linear magnetic structure, which can be described as a emph{magnetic guide} or as a emph{proton pipe}. Detailed studies show that while it is possible to design an optically stable 270$^circ$ section, which would be necessary for a gantry, the properties do not fulfil the requirements...

  4. Council Delegates meet at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Reporting on the Laboratory's physics programme, the Director-General congratulated staff on the excellent start-up of the accelerators this year. Performance has improved so much that proton-beam experiments can now collect data twice as fast as in 1994. This very promising start was brought to a halt by a fire which broke out on 13 May in a power supply for the Super Proton Synchrotron.

  5. Workshop on Electron-Cloud Simulations for Proton and Positron Beams (ECLOUD'02) organized by the SL Accelerator Physics Group at CERN.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    This workshop was organized by the SL Accelerator Physics group at CERN from 15 to 18 April 2002. More than 60 participants from 17 institutes reflect the great worldwide interest in the electron-cloud phenomenon, which presently limits the performance of several storage rings and has become a concern for the LHC.

  6. Beam Transfer Systems for the LAGUNA-LBNO Long Baseline Neutrino Beam from the CERN SPS

    CERN Document Server

    Goddard, B; Efthymiopoulos, I; Papaphilippou, Y; Parfenova, A

    2013-01-01

    For the Long Baseline neutrino facility under study at CERN (LAGUNA-LBNO) it is initially planned to extract a 400 GeV beam from the second long straight section in the SPS into the existing transfer channel TT20 leading to the North Area experimental zone, to a new target aligned with a far detector at a distance of 2300 km [1]. In a second phase a new High-Power Proton Synchrotron (HPPS) accelerator is proposed, to give a 2 MW beam at about 50 GeV on the same target. In this paper the required beam transfer systems are outlined, including the new sections of transfer line between the Superconducting Proton Linac (SPL), HP-PS and SPS, and from the SPS to the target, and also the injection and extraction systems in the long straight section of the HPPS. The feasibility of a 4 GeV H- injection system is discussed.

  7. Sixty Days Remaining, Forty Years of CERN, Two Brothers, One Exclusive Interview

    CERN Multimedia

    2001-01-01

    Twins Marcel and Daniel Genolin while sharing memories of their CERN experiences, point out just how much smaller the Meyrin site once was. In a place such as CERN where the physical sciences are in many ways the essence of our daily lives and where technological advancement is an everyday occurrence, it is easy to lose track of the days, months, and even years. But last week twin brothers, Daniel and Marcel Genolin, hired in the early sixties and getting ready to end their eventful forty year CERN experiences, made it clear that the winds of time bluster past us whether we are aware or not. 'CERN was very small when we started' says Marcel, who has worked in transport during his entire time here. A lot has changed. 'When I got here there were no phones in peoples' houses' he recalls,'when there were problems in the control room with the PS (Proton Synchrotron) they used to get a megaphone and tell us {the transport service} to go and get the necessary physicists from their homes in the area. We had to lo...

  8. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  9. Results from the CERN pilot CLOUD experiment

    CERN Document Server

    Duplissy, J; Reichl, U; Winkler, P M; Pedersen, E; Makhmutov, V; Viisanen, Y; Kulmala, M; Wilhelmsson, M; Weingartner, E; Avngaard, M; Curtius, J; Veenhof, R; Laakso, L; Gagne, S; Harrison, R G; Sipila, M; David, A; Seinfeld, J H; Nieminen, T; Verheggen, B; Aplin, K L; Stratmann, F; Arnold, F; Makela, J; Kellett, B; Fastrup, B; Marsh, N D; Lockwood, M; Carslaw, K; Wehrle, G; Aufmhoff, H; Pedersen, J O P; Baltensperger, U; Onnela, A; Laaksonen, A; Enghoff, M B; Svensmark, J; Wex, H; Lillestol, E; Wagner, P E; Kirkby, J; Stozhkov, Y; Polny, J; Bondo, T; Bingham, R; Svensmark, H

    2010-01-01

    During a 4-week run in October-November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm(-3) s(-1), and growth rates between 2 and 37 nm h(-1). The corresponding H2SO4 concentrations were typically around 10(6) cm(-3) or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid...

  10. Spotlight on CERN

    CERN Multimedia

    CERN video productions

    2009-01-01

    Welcome to the Globe of Science and Innovation for the first "Spotlight on CERN" just a few weeks before the restart of the LHC machine. Today our guest is Mike Lamont, who is in charge of the Operations Group for the accelerator beams. This weekend, protons were injected into the LHC for the first time since September 2008. But before we talk about that, let's go back a few weeks and look at the previous stage, which involved testing the transfer lines of the injection tunnels TI2/TI8. Our video team was there to film this operation.

  11. Measurements of π ^± differential yields from the surface of the T2K replica target for incoming 31 GeV/ c protons with the NA61/SHINE spectrometer at the CERN SPS

    Science.gov (United States)

    Abgrall, N.; Aduszkiewicz, A.; Ajaz, M.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A. E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S. R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marcinek, A.; Marino, A. D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messerly, B.; Mills, G. B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A. D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała-Zezula, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B. T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Yarritu, K.; Zambelli, L.; Zimmerman, E. D.; Friend, M.; Galymov, V.; Hartz, M.; Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.; Tzanov, M.; Yu, M.

    2016-11-01

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of π ^± -mesons from the surface of the T2K replica target for incoming 31 GeV/ c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.

  12. Measurements of π{sup ±} differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Ajaz, M.; Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala-Zezula, M. [University of Warsaw, Warsaw (Poland); Ali, Y. [Jagiellonian University, Cracow (Poland); COMSATS Institute of Information Technology, Department of Physics, Islamabad (Pakistan); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, Saint Petersburg (Russian Federation); Anticic, T.; Kadija, K.; Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zuerich (Switzerland); Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.E.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Brandin, A.; Selyuzhenkov, I.; Taranenko, A. [National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [LPNHE, University of Paris VI and VII, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Friend, M. [Institute for Particle and Nuclear Studies, Tsukuba (Japan); Johnson, S.R.; Marino, A.D.; Rumberger, B.T.; Zimmerman, E.D. [University of Colorado, Boulder (United States); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Centre for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (PL); Messerly, B.; Nagai, Y.; Paolone, V. [University of Pittsburgh, Pittsburgh (US); Mills, G.B.; Yarritu, K. [Los Alamos National Laboratory, Los Alamos (US); Morozov, S.; Petukhov, O. [Institute for Nuclear Research, Moscow (RU); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (RU); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (PL); Pavin, M. [Ruder Boskovic Institute, Zagreb (HR); LPNHE, University of Paris VI and VII, Paris (FR); Popov, B.A. [LPNHE, University of Paris VI and VII, Paris (FR); Joint Institute for Nuclear Research, Dubna (RU); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (DE); Roehrich, D. [University of Bergen, Bergen (NO); Rustamov, A. [National Nuclear Research Center, Baku (AZ); University of Frankfurt, Frankfurt (DE); Zambelli, L. [LPNHE, University of Paris VI and VII, Paris (FR); Institute for Particle and Nuclear Studies, Tsukuba (JP); Galymov, V. [IPNL, University of Lyon, Villeurbanne (FR); Hartz, M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba (JP); TRIUMF, Vancouver, BC (CA); Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K. [Kyoto University, Department of Physics, Kyoto (JP); Tzanov, M. [Louisiana State University, Department of Physics and Astronomy, Baton Rouge, LA (US); Yu, M. [York University, Department of Physics and Astronomy, Toronto, ON (CA); Collaboration: NA61/SHINE Collaboration

    2016-11-15

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of π{sup ±}-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed. (orig.)

  13. Measurements of charged pion differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

    CERN Document Server

    Abgrall, N; Ajaz, M; Ali, Y; Andronov, E; Anticic, T; Antoniou, N; Baatar, B; Bay, F; Blondel, A; Blümer, J; Bogomilov, M; Brandin, A; Bravar, A; Brzychczyk, J; Bunyatov, S A; Busygina, O; Christakoglou, P; Cirkovic, M; Czopowicz, T; Davis, N; Debieux, S; Dembinski, H; Deveaux, M; Diakonos, F; Di Luise, S; Dominik, W; Dumarchez, J; Dynowski, K; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Garibov, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Haesler, A; Hasegawa, T; Hervé, A E; Hierholzer, M; Igolkin, S; Ivashkin, A; Johnson, S R; Kadija, K; Kapoyannis, A; Kaptur, E; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kondratiev, V P; Korzenev, A; Kowalik, K; Kowalski, S; Koziel, M; Krasnoperov, A; Kuich, M; Kurepin, A; Larsen, D; László, A; Lewicki, M; Lyubushkin, V V; Mackowiak-Pawłowska, M; Maksiak, B; Malakhov, A I; Manic, D; Marcinek, A; Marino, A D; Marton, K; Mathes, H -J; Matulewicz, T; Matveev, V; Melkumov, G L; Messerly, B; Mills, G B; Morozov, S; Mrówczynski, S; Nagai, Y; Nakadaira, T; Naskret, M; Nirkko, M; Nishikawa, K; Panagiotou, A D; Paolone, V; Pavin, M; Petukhov, O; Pistillo, C; Płaneta, R; Popov, B A; Posiadała-Zezula, M; Puławski, S; Puzovic, J; Rauch, W; Ravonel, M; Redij, A; Renfordt, R; Richter-Was, E; Robert, A; Röhrich, D; Rondio, E; Roth, M; Rubbia, A; Rumberger, B T; Rustamov, A; Rybczynski, M; Sadovsky, A; Sakashita, K; Sarnecki, R; Schmidt, K; Sekiguchi, T; Selyuzhenkov, I; Seryakov, A; Seyboth, P; Sgalaberna, D; Shibata, M; Słodkowski, M; Staszel, P; Stefanek, G; Stepaniak, J; Ströbele, H; Šuša, T; Szuba, M; Tada, M; Taranenko, A; Tefelska, A; Tefelski, D; Tereshchenko, V; Tsenov, R; Turko, L; Ulrich, R; Unger, M; Vassiliou, M; Veberic, D; Vechernin, V V; Vesztergombi, G; Vinogradov, L; Wilczek, A; Włodarczyk, Z; Wojtaszek-Szwarc, A; Wyszynski, O; Yarritu, K; Zambelli, L; Zimmerman, E D; Friend, M; Galymov, V; Hartz, M; Hiraki, T; Ichikawa, A; Kubo, H; Matsuoka, K; Murakami, A; Nakaya, T; Suzuki, K; Tzanov, M; Yu, M

    2016-01-01

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of charged pions from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed

  14. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  15. Robot adventures at CERN

    CERN Multimedia

    2015-01-01

    Imagine if the CERN robots had an end-of-year party... From retrieving data tapes to handling material safely, the robots at CERN fulfill numerous tasks. Find out more: http://cern.ch/go/VjX7 Produced by: CERN Video Productions Director: Christoph M. Madsen Copyright © 2015 CERN. Terms of use: http://copyright.web.cern.ch/

  16. Characterization of CALET prototype TASC lead tungstate calorimeter using CERN beam test data

    Science.gov (United States)

    Javaid, Amir

    2013-04-01

    The CALorimetric Electron Telescope (CALET) is a high-energy cosmic ray experiment that will be placed on the International Space Station in 2014. The primary goals of CALET are to measure the cosmic ray electron spectra from 1 GeV to 20 TeV, gamma rays from 10 GeV to 10 TeV, and protons and nuclei from 10 GeV up to 1000 TeV. The detector consists of three main components: a Charge Detector (CHD), Imaging Calorimeter (IMC), and Total Absorption Calorimeter (TASC). The TASC consists of 192 lead tungstate (PbWO4) logs arranged in 12 layers. An understanding of the major characteristics of the TASC is important for accurately determining the incident particle shower energy deposition. In September 2012, a prototype CALET detector was exposed to electron, muon, and proton beams from the Super Proton Synchrotron (SPS) at CERN. Muon beams can be used to determine the detector response to minimum ionizing particles (MIP). In the present paper, we discuss the response of the TASC logs to muon beams as a function of position, and signal attenuation during propagation. Included is a discussion of parameterizations of position-dependent muon energy deposition and signal attenuation functions for the TASC logs based on the CERN beam test data.

  17. CERN choir

    CERN Multimedia

    2004-01-01

    Don't forget a special performance of Joseph Haydn's Creation, an oratorio in three parts, given by the CERN choir and the Annecy choir Pro Musica, this Sunday at 8.30 p.m. at the Grand Casino. Tickets (38 CHF) are available at Fnac Rive and Balexert.

  18. submitter Radiation Protection Studies for CERN LINAC4/SPL Accelerator Complex

    CERN Document Server

    Mauro, Egidio; Silari, Marco

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H$^-$ linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This thesis summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed 1) to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, 2) to estimate the radiological i...

  19. Experimental demonstration of the induction synchrotron.

    Science.gov (United States)

    Takayama, Ken; Arakida, Yoshio; Dixit, Tanuja; Iwashita, Taiki; Kono, Tadaaki; Nakamura, Eiji; Otsuka, Kazunori; Shimosaki, Yoshito; Torikai, Kota; Wake, Masayoshi

    2007-02-01

    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

  20. The "Silicon Wheel" prototype for the barrel of the silicon tracker deep inside the CMS detector at CERN'S future LHC proton collider

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Elements on a specially designed structure will track the emerging particles close to the beam pipe. The supporting structure is made out of special carbon fibre discs holding 112 detector modules (448 individual silicon detectors). The modules are arranged to provide three detection points per track and are distributed in seven layers on a spiral geometry to leave enough room for cables, cooling tubes, etc. The inner radius of the wheel is 20.5 cm; the overall diameter is 80 The prototype is a combined CMS silicon community effort; the main participating institutions were: Aachen (Germany), Bari (Italy), CERN, Florence (Italy), Imperial College (UK), Oulu (Finland), Padova, Perugia, Pisa (Italy), Rutherford Laboratory

  1. CERN Shuttle

    CERN Multimedia

    General Infrastructure Services Department

    2011-01-01

    As of Monday 21 February, a new schedule will come into effect for the Airport Shuttle (circuit No. 4) at the end of the afternoon: Last departure at 7:00 pm from Main Buildig, (Bldg. 500) to Airport (instead of 5:10 p.m.); Last departure from Airport to CERN, Main Buildig, (Bldg. 500), at 7:30 p.m. (instead of 5:40 p.m.). Group GS-IS

  2. Princess of Thailand returns to CERN

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    On Tuesday, 17 November 2015, HRH Princess Maha Chakri Sirindhorn of Thailand visited CERN. Princess Sirindhorn was visiting the Laboratory for the fifth time, following her last visit in 2010.   Princess Maha Chakri Sirindhorn of Thailand (center) witnesses the signing of the collaboration agreement between CERN and SLRI, represented by Rolf Heuer (right) and Professor Sarawut Sujitjorn (left) respectively. The Princess was accompanied by a delegation that included the Director of the Synchrotron Light Research Institute (SLRI) in Thailand, Professor Sarawut Sujitjorn, and a large group of Thailand’s Diplomatic Representatives in Switzerland. Upon her arrival, Princess Sirindhorn was welcomed by CERN Director-General Rolf Heuer and the Director-General Designate, Fabiola Gianotti. At CERN, the Princess was given a brief update on the Laboratory’s activities since her last visit, in April 2010. Later on, she witnessed the signature of the f...

  3. Measurement of elastic muon-neutrino scattering off protons

    CERN Document Server

    Faissner, Helmut; Bobisut, F; De Witt, H; Frenzel, F; Hansl, T; Hoffmann, D; Huzita, H; Loreti, M; Puglierin, G; Radermacher, E; Reithler, H; Samm, U

    1980-01-01

    Single recoil protons have been detected in a multiplate Al spark chamber exposed to the 2-GeV wideband neutrino beam from the CERN proton synchrotron. Neutron-induced protons were suppressed by suitable geometrical and kinematical cuts. After correction for remaining neutron background (110+or-15 events) and single-pion contribution (45+or-6 events), the final sample contains 62+or-19 genuine neutrino-induced single protons. This yields an effective ratio of neutral-current (NC) to charged-current (CC) events of R/sub N/=(15+or-5)%, in the range 0.2<-q/sup 2/<1.0 (GeV/c)/sup 2/. This number is due to a mixture of elastic neutrino scatterings off protons and neutrons. From the probability f/sub np/ for a recoil neutron to give an accepted proton, one derives a model-independent combination of the NC/CC ratios R/sub p/+f/sub np/R/sub n/, with f/sub np /=0.31+or-0.04. This favors axial-vector-isovector-dominant NC coupling constants and is consistent with the Weinberg-Salam model with sin/sup 2/ theta /su...

  4. ASACUSA Anti-protonic Helium_Final

    CERN Document Server

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION

    2016-01-01

    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  5. CERN moves to http://home.cern

    CERN Multimedia

    2015-01-01

    A new top-level domain for CERN will be inaugurated next week, with the migration of the core website to http://home.cern.   The new home.cern webpage. The .cern top-level domain is intended for the exclusive use of CERN and its affiliates, and will soon be open for applications from within the community. Clear governance mechanisms for registration and management of .cern domains have been put in place. Applications for domains may be submitted by current members of the CERN personnel, and must be sponsored by a CERN entity such as a department, experiment, project or CERN-recognised experiment. For more information please refer to the registration policy. The acquisition of the .cern top-level domain was negotiated via ICANN’s new gTLD programme by a board comprising members of the CERN Legal Service, Communications group and IT department. .cern is one of over 1,300 new top-level domains that will launch over the coming months and years. The .cern domain nam...

  6. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (mailto:caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web at: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 7372...

  7. What's new @CERN ?

    CERN Multimedia

    CERN video productions

    2011-01-01

    Le 30 mars 2010 – une date désormais gravée dans le marbre – le jour où le LHC, le grand collisionneur de hadrons, soit le plus puissant accélérateur de particules au monde a commencé à fonctionner à des énergies inédites. Depuis, les collisions s’enchainent avec la promesse de découvertes. Dans cette édition de What’s new at CERN?, nous allons faire le bilan des performances de cette machine et parler de son mode d’exploitation qui va changer dans quelques jours. Les mots clés de cette émission ? Performances – expériences – ions - protons - avenir Tout cela en compagnie de Steve Myers, directeur du CERN pour les accélérateurs et la technologie, et de Yves Schutz, physicien de l’expérience ALICE.

  8. Operational Experience with a LHC Collimator Prototype in the CERN SPS

    CERN Document Server

    Redaelli, S; Assmann, R; Dehning, B; Bracco, C; Jonker, M; Masi, A; Losito, R; Sapinski, M; Weiler, T; Zamantzas, C

    2010-01-01

    A full-scale prototype of the Large Hadron Collider (LHC) collimator was installed in 2004 in the CERN Super Proton Synchrotron (SPS) and has been extensively used for beam tests, for control tests and also LHC simulation benchmarking during four years of operation. This operational experience has been extremely valuable in view of the final LHC implementation as well as for estimating the LHC operational scenarios, most notably to establish procedures for the beam-based alignment of the collimators with respect to the circulating beam. These studies were made possible by installing in the SPS a first prototype of the LHC beam loss monitoring system. The operational experience gained at the SPS and the lessons learnt for the LHC operation are presented.

  9. OPERATIONAL EXPERIENCE WITH A LHC COLLIMATOR PROTOTYPE IN THE CERN SPS

    CERN Document Server

    Redaelli, S; Assmann, R; Dehning, B; Bracco, C; Jonker, M; Masi, A; Losito, R; Sapinski, M; Weiler, T; Zamantzas, C

    2009-01-01

    A full-scale prototype of the Large Hadron Collider (LHC) collimator was installed in 2004 in the CERN Super Proton Synchrotron (SPS) and has been extensively used for beam tests, for control tests and also LHC simulation benchmarking during four years of operation. This operational experience has been extremely valuable in view of the final LHC implementation as well as for estimating the LHC operational scenarios, most notably to establish procedures for the beam-based alignment of the collimators with respect to the circulating beam. These studies were made possible by installing in the SPS a first prototype of the LHC beam loss monitoring system. The operational experience gained at the SPS and the lessons learnt for the LHC operation are presented.

  10. The present status of the nTOF facility at CERN

    CERN Document Server

    Igashira, M

    2005-01-01

    The main aim of the n_TOF facility at CERN is to provide precise neutron cross-section data relevant to the R&D of accelerator driven systems, nuclear astrophysics, etc. It is composed of a spallation neutron source, a 187.5-m flight path, a variety of detectors, a data acquisition system, etc. A 20 GeV proton synchrotron is employed together with a lead target for the spallation neutron source. The measurement of capture and fission cross sections started in 2002 and had been performed until the mid of November in 2004. The capture and fission measurements were performed for 28 and 7 isotopes, respectively. The brief history, present status, and future plan of the n_TOF facility are reported.

  11. Measurements of π ^{± }, K^{± }, K^0_S, \\varLambda and proton production in proton-carbon interactions at 31 GeV/ c with the NA61/SHINE spectrometer at the CERN SPS

    Science.gov (United States)

    Abgrall, N.; Aduszkiewicz, A.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Damyanova, A.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Herve, A.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Joković, D.; Johnson, S. R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kiełczewska, D.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Marchionni, A.; Manić, D.; Marcinek, A.; Marino, A. D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messerly, B.; Mills, G. B.; Morozov, S.; Mrówczyński, S.; Murphy, S.; Nagai, Y.; Nakadaira, T.; Naskret, M.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Panagiotou, A. D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała-Zezula, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B. T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Yarritu, K.; Zambelli, L.; Zimmerman, E. D.

    2016-02-01

    Measurements of hadron production in p + C interactions at 31 GeV/ c are performed using the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4 % of a nuclear interaction length. Inelastic and production cross sections as well as spectra of π ^{± }, K^{± }, p, K^0_S and \\varLambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.

  12. Measurement of the multiplicity dependence of charm production in proton--proton collisions at $\\sqrt{s}$=7 TeV with the ALICE experiment at the CERN-LHC

    CERN Document Server

    Rauf, Aamer Wali

    2013-01-01

    Potential of the charm quark as a probe to study the Quark-Gluon Plasma (QGP) is best harnessed when its production mechanisms are disentangled from its propagation through the QGP. Proton-proton (pp) collisions help us to study charmed hadron production mechanisms. The measurement of D-meson yields in pp collisions as a function of the multiplicity of produced particles allows one to gain some insight into the processes occurring in the collision at a microscopic level. Here, the preliminary results are presented from this measurement at \\sqrt{s} = 7 TeV. The analysis strategy, the applied corrections, and the determination of the systematic uncertainties are described. The preliminary results are presented and compared with those from a similar, published, measurement of J/\\psi production.

  13. On the feasibility of establishing the provenance of Australian Aboriginal artefacts using synchrotron radiation X-ray diffraction and proton-induced X-ray emission

    Science.gov (United States)

    Creagh, D. C.; Kubik, M. E.; Sterns, M.

    2007-09-01

    Museums and galleries in Australia have extensive collections of Aboriginal artefacts in their custody. In particular, the National Museum of Australia and the National Gallery of Australia are custodians of works of very considerable significance, in both cultural and financial terms. Art fraud can occur, documentation relating to artefacts can be mislaid, or the artefacts can be incorrectly filed. Because of this, it has become essential to establish protocols for the objective determination of the provenance of artefacts through scientific tests. For the work reported here we are concerned with the comparison of very small quantities of materials, paint scrapings from artefacts. Scrapings from artefacts of unknown provenance are compared with those from artefacts of known provenance, and the database established using an extended set of analytical techniques by Kubik. We describe here our use of synchrotron radiation X-ray diffraction (SR-XRD) to determine the mineral phase compositions of very small amounts of pigment material (<50 μg), and the use of PIXE to give their atomic compositions to a threshold level of 1 ppm for similar masses of material.

  14. Multiharmonic rf feedforward system for compensation of beam loading and periodic transient effects in magnetic-alloy cavities of a proton synchrotron

    Science.gov (United States)

    Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2013-05-01

    Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.

  15. Measurement of elastic muon-neutrino scattering off protons

    Science.gov (United States)

    Faissner, H.; Frenzel, E.; Hansl, T.; Hoffmann, D.; Radermacher, E.; Reithler, H.; Samm, U.; de Witt, H.; Baldo-Ceolin, M.; Bobisut, F.; Huzita, H.; Loreti, M.; Puglierin, G.

    1980-02-01

    Single recoil protons have been detected in a multiplate Al spark chamber exposed to the 2-GeV wide-band neutrino beam from the CERN proton synchrotron. Neutron-induced protons were suppressed by suitable geometrical and kinematical cuts. After correction for remaining neutron background (110+/-15 events) and single-pion contribution (45+/-6 events), the final sample contains 62+/-19 genuine neutrino-induced single protons. This yields an effective ratio of neutral-current (NC) to charged-current (CC) events of RN=(15+/-5)%, in the range 0.2fnp for a recoil neutron to give an accepted proton, one derives a model-independent combination of the NC/CC ratios Rp+fnpRn, with fnp=0.31+/-0.04. This favors axial-vector-isovector-dominant NC coupling constants and is consistent with the Weinberg-Salam model with 2θW=0.29+0.21-0.11. In terms of this model, this corresponds to Rp=(10+/-3)% and Rn=(15+3-5)%.

  16. CERN The next 50 years

    CERN Document Server

    Maiani, Luciano

    2004-01-01

    The Large Hadron Collider (LHC) from CERN is a 14 TeV proton-proton collider that is at the cutting edge of technology, and is a heartening sign of both the public's support for basic science in Europe and beyond, and the determination of European countries to stay at the forefront of particle physics. Realization of this project started some 50 years ago. Now for the next 50 years, particle phycists not only at CERN are planning a new generation of experiments that will push the high-energy boundary back even further. At CERN, a high-energy electron-positron linear collider, such as the 3-5 TeV Compact Linear Collider (CLIC) project is being considered. At Fermilab, focus is on a Very Large Hadron Collider (VLHC) that would take physicists into the 200 TeV region. These two possibilities could be among the long-term goals of the global accelerator network, which would keep the world's particle physicists busy until 2050.

  17. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  18. Bienvenue au CERN !

    CERN Multimedia

    CERN Press Office. Geneva

    1998-01-01

    CERN, the Laboratory which invented the World-Wide Web has re-invented its public Web site. The new face of CERN has gone live at http://www.cern.ch/ Public . CERN's new Web pages have been designed to give visitors an informative introduction to the fascinating world of particle physics. For those whose whirl around the Web only allows a short stop, there's the 'CERN in two minutes' page.

  19. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  20. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web here. List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 73722.

  1. Google Science Fair winner visits CERN

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Google Science Fair Grand Prize winner Brittany Michelle Wenger today wrapped up a day-and-a-half's visit of the CERN site. Her winning project uses an artificial neural network to diagnose breast cancer – a non-invasive technique with significant potential for use in hospitals.   Brittany Michelle Wenger at CERN's SM18 Hall. Besides winning a $50,000 scholarship from Google and work experience opportunities with some of the contest hosts, Brittany was offered a personal tour of CERN. “This visit has just been incredible,” she says. “I got to speak with [CERN's Director for Accelerators and Technology] Steve Myers about some of the medical applications and technologies coming out of the LHC experiments and how they can be used to treat cancer. We talked about proton therapy and hadron therapy, which could really change the way patients are treated, improving success rates and making treatment not such an excruciating process. That ...

  2. Mapping of the thermal neutron distribution in the lead block assembly of the PS-211 experiment at CERN, using thermoluminescence and nuclear track detectors.

    Science.gov (United States)

    Savvidis, E; Eleftheriadis, C A; Kitis, G

    2002-01-01

    The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.

  3. Injection System design for a hadron therapy Synchrotron

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Quan; SONG Ming-Tao; WEI Bao-Wen

    2008-01-01

    A synchrotron is designed for tumour therapy with C6+ ions or proton.Its injector is a cyclotron, which delivers C5+or H+2 ions to the synchrotron.After comparing the methods of the single-turn injection, the multi-turn injection and the stripping injection,this paper chooses the stripping injection method.In addition,the concept design of the injection system is presented,in which the synchrotron lattice is optimized.

  4. The use of slow-cycling synchrotrons in injection systems

    CERN Multimedia

    1966-01-01

    The PS improvement programme is concerned with increasing the potential of the PS for high energy physics. It involves developing the performance of the proton synchrotron itself and providing major items of experimental equipment to be used on the machine.

  5. 上海质子治疗装置同步环真空布局及真空室设计%Vacuum Layout and Chamber Design for Synchrotron Ring of Shanghai Proton Therapy Facility

    Institute of Scientific and Technical Information of China (English)

    汤启升; 王志山; 李雪军

    2015-01-01

    同步环是上海质子治疗装置的主要加速器,其周长为24.6 m。环上各系统器件分布密集,机械安装空间紧张,动态真空度要优于1.33×10-6 Pa。在此前提下,真空器件布局和真空室结构要利于束流的均匀性、稳定性,并确保机械安装顺利以及将来运行维护便利。针对同步环物理布局紧凑的特点,真空布局上真空室尽量采用焊接连接,在满足要求的前提下尽量减少真空器件数量。二极铁(BM 铁)区段真空室采用矩形截面结构,四极铁(Q D铁、Q F铁)区段真空室采用圆管结构,相邻的矩形真空室和圆管真空室用过渡片焊接成一整体;束流引出区段真空室采用变截面岔口结构。设计结果表明,真空布局和真空室结构均满足束流的运行要求。%Synchrotron ring with 24.6 m circumference is main accelerator in Shanghai Proton Therapy Facility .The space for mechanical operation in the ring is very narrow because of many components . The vacuum for synchrotron ring need be better than 1.33 × 10 -6 Pa .T he requirement to vacuum components layout and chamber structure is to contribute to beam uniformity and stability ,and to facilitate mechanical assembly .To meet the lattice ,vacuum chambers were connected by welding as possible ,and the amounts of vacuum components were minimized .The cross section of chamber in BM was rectangular ,and in QD and QF was circular .Rectangular chamber and circular chamber were welded by a transitional plate .The chamber in beam splitting region was designed as a fork structure with variable section .The design result shows that the vacuum layout and chamber structure can meet the need of beam running .

  6. Past, present and future of the n_TOF facility at CERN

    CERN Document Server

    Chiaveri, E; Perkowski, J; Andriamonje, S; Carrapico, C; Wallner, A; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Calvino, F; Martinez, T; Guerrero, C; Andrzejewski, J; Karadimos, D; Mengoni, A; Mendoza, E; Ganesan, S; Vlachoudis, V; Praena, J; Becares, V; Cortes, G; Losito, R; Variale, V; Meaze, M; Vykydal, Z; Kappeler, F; Heil, M; Gunsing, F; Chin, M; Gramegna, F; Reifarth, R; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Audouin, L; Fernandez-Ordonez, M; Sarmento, R; Becvar, F; Plag, R; Goncalves, I F; Cennini, P; Ovejero, M C; Mosconi, M; Cortes-Giraldo, M; Tagliente, G; Duran, I; Hornillos, M B G; Ioannides, K; Weiss, C; Rubbia, C; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Vannini, C; Lebbos, E; Leeb, H; Cerutti, F; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    The n\\_TOF spallation neutron facility is operating at CERN since 2001. Neutrons are produced with a very wide energy range, from thermal up to 1 GeV and with a very high instantaneous flux (10(5)n/cm(2)/pulse at 200 m from target) thanks to the high intensity (7 x 10(12) protons/pulse) and low repetition rate of the Proton Synchrotron (PS) which is delivering protons to a lead spallation target. The experimental area is located at 200 m from the target, resulting in a very good energy resolution and beam quality thanks to the adoption of an optimal collimation system. At the end of 2008 the n\\_TOF facility has resumed operation after a halt of 3 years due to technical issues. This contribution will outline the main physics results obtained by the facility since its inception in 1999, and show the importance of the measured nuclear data in the field of Nuclear Astrophysics and Nuclear Technology. Then it will present the future perspectives of the facility, aiming mainly in the direction of measuring highly r...

  7. Prediction of the Field Distribution in CERN-PS Magnets

    CERN Document Server

    Schoerling, D

    2014-01-01

    The CERN Proton Synchrotron (PS) has a circumference of 628m and operates at an energy of up to 26 GeV. It uses one hundred combined function magnets, with pole shapes designed to create a dipolar and a quadrupolar field component. Each magnet is equipped with a main current circuit and five auxiliary current-circuits, which allows controlling the linear and non-linear magnetic fields. These magnets were installed in the 1950s, and part of the compensating circuits have been added or modified since then, resulting in the fact that detailed measurements of the field distribution in each individual magnet as a function of the six currents are not available. This study is performed to estimate, through deterministic and stochastic calculations, the expected mean value and standard deviation of the field harmonics of the installed magnets as input for beam dynamics simulations. The relevant results can be used to design correction schemes to minimise beam losses in the PS and to enable the acceleration of higher ...

  8. Hangout with CERN: Welcome to CERN (S01E01)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this first Hangout with CERN "Welcome to CERN" ATLAS physicist Steven Goldfarb, CERN theorist Alvaro De Rujula and Mick Storr from the CERN education group introduce CERN and answer some of the questions received via #askCERN on Twitter and Google+. Recorded live on 1st November 2012.

  9. Virgin Galactic explores CERN

    CERN Multimedia

    2016-01-01

    Virgin Galactic visited CERN with a group of future astronauts and Sir Richard Branson. During their visit the group was shown around various experiments, including the Globe, SM18, AMS and the CERN Control Centre.

  10. CERN Shop Christmas Sale

    CERN Multimedia

    Visits & Exhibition Service/ETT-VE

    2001-01-01

    11-13.12.2001 Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 11 to Thursday 13 December from 10.30 to 16.00. CERN Calendar 10.- CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt (M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 25.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- CERN watch 25.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'How the web was born' (English) 25.- The Search for Infinity (French, Italian, English, German) 40.-   If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs.

  11. Doing business with CERN

    CERN Multimedia

    2015-01-01

    The Procurement Service, in collaboration with the Communications group’s Design team, has recently launched a new information campaign targeted at companies wishing to supply their products and services to CERN. This campaign comprises:   A brochure, available in hard and soft copy:  http://procurement.web.cern.ch/brochures/doing-business-with-cern.   A 6-minute video overview: https://procurement-dev.web.cern.ch/doing-business-with-cern. This campaign is intended for Member State firms with whom CERN is yet to do business. The key objectives are: To emphasise that CERN can be considered a major customer across a wide range of activities;   To present CERN’s procurement procedures in a dynamic and digestible way;   To highlight the information available on CERN’s procurement website: http://procurement.web.cern.ch. Furthermore, a new section called “Having a contract with CERN” is also now ava...

  12. Proton-Ion Medical Machine Study (PIMMS), 2

    CERN Document Server

    Bryant, P J; Benedikt, Michael; Crescenti, M; Holy, P; Maier, A T; Pullia, M; Reimoser, S; Rossi, S; Borri, G; Knaus, P; Gramatica, F; Pavlovic, M; Weisser, L

    2000-01-01

    The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron capable of accelerating either light ions or protons. CERN agreed to support and host this study in its PS Division. A close collaboration was also set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complex-shaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive beam spreading were also included for protons. The study has been written in two parts. The more general and theoretical aspects are recorded in Part I and the specific technical design considerations are presented in the present volume, Part II. An accompa...

  13. France at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Rolf Heuer, CERN Director General, visits the exhibition "La France au CERN". The exhibition France at CERN, organized by UBIFRANCE in collaboration with CERN's GS/SEM (Site Engineering and Management) service, took place from Monday 7 to Wednesday 9 June in the Main Building. The 36 French firms taking part came to present their products and technologies related to the Organization's activities. The next exhibition will be "Netherlands at CERN" in November.

  14. Greece at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Greece, one of CERN*'s founding Member States, inaugurated its first Industrial Exhibition at the Meyrin site on Tuesday, 14 October. After a meeting with CERN's Director General, Professor Christopher Llewellyn Smith, Professor Emmanuel Frangoulis, the General Secretary of the Greek Ministry of Industry, accompanied by Prof Emmanuel Floratos, Greek delegate to CERN council visited the DELPHI experiment on the LEP collider, guided by Andromachi Tsirou, a Greek physicist.

  15. La Pologne au CERN

    CERN Document Server

    CERN Press Office. Geneva

    1995-01-01

    On 28 November 1995 the first Polish industrial and technological exhibition opened at CERN. In his inaugural speech Prof Aleksander Luczak, the Polish Deputy Prime Minister, announced : "The first Polish exhibition which I am opening today indicates a new stage of our presence at CERN. It provides an opportunity for CERN to get better acquainted with our industrial potential and, on the other hand, provides an opportunity for our exhibitors to learn more about CERN and the extraordinary people who work here.

  16. The CERN Library

    CERN Multimedia

    Hester, Alec G

    1968-01-01

    Any advanced research centre needs a good Library. It can be regarded as a piece of equipment as vital as any machine. At the present time, the CERN Library is undergoing a number of modifications to adjust it to the changing scale of CERN's activities and to the ever increasing flood of information. This article, by A.G. Hester, former Editor of CERN COURIER who now works in the Scientific Information Service, describes the purposes, methods and future of the CERN Library.

  17. In the CERN Library

    CERN Multimedia

    1963-01-01

    Seen in this picture is Noria Christophoridou, librarian of the Greek Atomic Energy Commission, who has been sent by her government to CERN for a year to widen her experience of library and documentation services. In the photograph she is providing information to Kurt Gottfried, a CERN visiting scientist from Harvard University, who is spending a year with CERN's Theory Division

  18. 2005 CERN Relay Race

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    The CERN Relay Race takes place each year in May and sees participants from all areas of the CERN staff. The winners in 2005 were The Shabbys with Los Latinos Volantes in second and Charmilles Technologies a close third. To add a touch of colour and levity, the CERN Jazz Club provided music at the finishing line.

  19. CERN Photowalk 2015

    CERN Multimedia

    2015-01-01

    CERN is organising a Photowalk on Friday 25 September 2015. At this event a few selected photographers will get the chance to come to CERN, the European Organization for Nuclear Research, for an exclusive behind-the-scenes tour of the laboratory. For more information: http://photowalk2015.web.cern.ch/

  20. [The CERN and the megascience].

    Science.gov (United States)

    Aguilar Peris, José

    2006-01-01

    In this work we analyse the biggest particle accelerator in the world: the LHC (Large Hadron Collider). The ring shaped tunnel is 27 km long and it is buried over 110 meters underground, straddling the border betwen France and Switzerland at the CERN laboratory near Geneva. Its mission is to recreate the conditions that existed shortly after the Big-Bang and to look for the hypothesised Higgs particle. The LHC will accelerate protons near the speed of the light and collide them head on at an energy of to 14 TeV (1 TeV = 10(12) eV). Keeping such high energy in the proton beams requires enormous magnetic fields which are generated by superconducting electromagnets chilled to less than two degrees above absolute zero. It is expected that LHC will be inaugurated in summer 2007.

  1. 90° Neutron emission from high energy protons and lead ions on a thin lead target

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Mitaroff, A.; Silari, M.; Ulrici, L.

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: 208Pb 82+ lead ions at 40 GeV/ c per nucleon and 158 GeV/ c per nucleon, and 40 GeV/ c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90° with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that—for such high energy heavy ion beams—a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0.84.

  2. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    Science.gov (United States)

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  3. CERN Video News

    CERN Multimedia

    2003-01-01

    From Monday you can see on the web the new edition of CERN's Video News. Thanks to a collaboration between the audiovisual teams at CERN and Fermilab, you can see a report made by the American laboratory. The clip concerns the LHC magnets that are being constructed at Fermilab. Also in the programme: the spectacular rotation of one of the ATLAS coils, the arrival at CERN of the first American magnet made at Brookhaven, the story of the discovery 20 years ago of the W and Z bosons at CERN. http://www.cern.ch/video or Bulletin web page.

  4. CERN Cricket Club

    CERN Multimedia

    CERN Cricket Club

    2010-01-01

    CERN Cricket Club Match Reports The cricket season is well under way, despite the weather, and several matches have been played. The match reporters have, however, found it too difficult to limit their reports to ¼ of a page, hence the reports have not appeared in the bulletin. All reports can be found at http://cern.ch/Club-Cricket/reports/reports.html The list of forthcoming matches can be consulted at http://cern.ch/Club-Cricket/fixtures.html Further information about the CERN Cricket Club can be found at http://cern.ch/Club-Cricket/

  5. CERN Photo club

    CERN Multimedia

    CERN Photo club

    2016-01-01

    The CERN Photo Club organizes in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016. Send your three best pictures at  Photo.Contest@cern.ch with a short description explaining the images. Further information on the Photo club website: http://photoclub.web.cern.ch/content/photo-contest-october-2016

  6. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  7. Britain at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    On 8 October, H.E. Mr David Beattie, British Ambassador to Switzerland, Mr John R. Nichols, H.M. Consul-General in Geneva and, Prof. Christopher Llewellyn Smith, CERN*'s Director General, formally opened the industrial exhibition of thirty-three British hi-tech companies at CERN, which takes place from 8 to 11 October, 1996. The exhibition offers British companies the opportunity to display their products in fields that are of immediate importance to the scientists, engineers and technicians working at CERN, and also to scientists from non-Member States who take part in research projects at CERN.

  8. CERN honours Georges Charpak

    CERN Multimedia

    2009-01-01

    CERN pays tribute to the work of Georges Charpak at a colloquium in honour of his 85th birthday. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-Multirate-200-to-753-kbps-480x360.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-posterframe-480x360-at-10-percent.jpg', '1167500', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video conference of Georges Charpak.   On 9 March CERN’s Main Auditorium was the venue for a fascinating and moving celebration marking the 85th birthday of Georges Charpak, who was awarded the Nobel Prize for Physics in 1992 for his inven...

  9. CERN Holiday Gift Guide

    CERN Multimedia

    2013-01-01

    Do you have last-minute gifts to get? Stuck for ideas? The CERN Shop and the ATLAS and CMS secretariats have some wonderfully unique gifts and stocking-fillers for sale this year - perfect for the physics fanatics in your life. Let's take a look...   1. CERN Notebook, 10 CHF - 2. CERN Pop-up book, 30 CHF - 3. USB Stick 8GB, 25 CHF - 4. CERN Tumbler, 12 CHF 5. ATLAS 3D Viewer, 5 CHF - 6. ATLAS Puzzle, 15 CHF - 7. CMS Umbrella, 25 CHF   These gifts are all available at the CERN Shop, with the exception of the ATLAS 3D Viewer and the CMS umbrella, which are only available from the respective secretariats. Don’t forget! If you’re from CERN, you still have time to take advantage of a 10% off discount at the CERN shop. Offer ends 20 December.

  10. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  11. Synchrotron based spallation neutron source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.

    1998-07-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required {approx} 1 {micro}s. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources.

  12. Radiation protection studies for a high-power 160 MeV proton linac

    CERN Document Server

    Mauro, Egidio

    2009-01-01

    CERN is presently designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160 MeV room-temperature H− linac (Linac4) to replace the present 50 MeV proton linac injector, a 3.5 GeV Superconducting Proton Linac (SPL) to replace the 1.4 GeV PS Booster (PSB) and a 50 GeV synchrotron (named PS2) to replace the 26 GeV PS. Linac4 has been funded and the civil engineering work started in October 2008, whilst the SPL is in an advanced stage of design. Beyond injecting into the future 50 GeV PS, the ultimate goal of the SPL is to generate a 4 MW beam for the production of intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted for Linac4. FLUKA Monte Carlo simulations, complemented by analytical estimates, were performed to evaluate the propagation of neutrons through the waveguide, ventilation and cable ducts placed along the accelerator, to estimate the radiological impact of ...

  13. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  14. Observation of wide rf induced synchrotron sideband depolarizing resonances.

    Science.gov (United States)

    Bychkov, M. A.; Anferov, V. A.; Blinov, B. B.; Courant, E. D.; Crandell, D. A.; Derbenev, Ya. S.; Kaufman, W. A.; Krisch, A. D.; Lorenzon, W.; Nurushev, T. S.; Phelps, R. A.; Wong, V. K.; Caussyn, D. D.; Chu, C. M.; Ellison, T. J. P.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; von Przewoski, B.; Ohmori, C.; Minty, M. G.; Russell, A. D.

    1997-04-01

    In a recent experiment with a stored 104.1 MeV vertically polarized proton beam at the IUCF Cooler Ring, we depolarized the beam using an rf solenoid with a magnetic field of about 1.3\\cdot10-3T\\cdotm. We observed the two expected rf depolarizing resonances centered around the protons' 1.5 MHz circulation frequency as in previous experiments. Near each of these resonances, we also found synchrotron sidebands which are caused by the proton's energy oscillations. The strengths and widths of the synchrotron resonances were quite different for the sidebands above and below the circulation frequency.

  15. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  16. le LHC, le plus puissant collisionneur de protons du monde

    CERN Multimedia

    2006-01-01

    LHC, the most powerful proton-proton collider in the world is currently being built in the CERN tunnel in Geneva. A few weeks from the final installation of two of the great detectors of the future LHC, review on the stakes of this project and on the role of CEA and CNRS in this new installation of CERN (1 page)

  17. Germany at CERN

    CERN Document Server

    2005-01-01

    From left to right: Maximilian Metzger, CERN's Secretary-General, Hermann Schunck, Director at the German Federal Ministry of Education and Research, and Robert Aymar, CERN's Director-General, talking to Wolfgang Holler from Butting, one of the companies at the "Germany at CERN" exhibition. Far right : Susanne-Corinna Langer-Greipl from BMBF, delegate to the CERN Finance Committee. For three days, CERN's Main Building was transformed into a showcase for German industry. Twenty-nine companies from sectors related to particle physics (electrical engineering, vacuum and low temperature technology, radiation protection, etc.) were here for the ninth "Germany at CERN" exhibition, organised by the German Federal Ministry of Education and Research (BMBF), which gave them the opportunity to meet scientists and administrators from the Laboratory. On 1 March the exhibition was visited by a German delegation headed by Dr Hermann Schunck, Director at BMBF.

  18. CERN Cricket club

    CERN Multimedia

    CERN Cricket club

    2015-01-01

    The CERN Cricket Club 2015 season begins soon, the first net practice is scheduled (weather permitting) for Thursday April 16th, at 18:00! The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/ or turn up for net practice, which takes place each Thursday evening from April 16th (apart from CERN official holidays) until the end of September (starting at 18:00 to around 19:30) at the CERN Prévessin site: http://club-cricket.web.cern.ch/Club-Cricket/CERN-Ground.html The first match will be at home on Sunday, April 19th against Rhone CC from Lyon.

  19. German visits to CERN

    CERN Multimedia

    2007-01-01

    State secretary to Germany's Federal Ministry of Education and Research, Frieder Meyer-Krahmer, with CERN's Director-General Robert Aymar.On 21 February, Professor Frieder Meyer-Krahmer, State Secretary to Germany's Federal Ministry of Education and Research, came to CERN. He visited the ALICE and ATLAS experiments and the computing centre before meeting the CERN's Director-General, some German physicists and members of the top management. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Peter Frankenberg, and CERN's Director-General, Robert Aymar, signing an agreement on education. In the background: Sigurd Lettow, CERN's Director of Finance and Human Resources, and Karl-Heinz Meisel, Rector of the Fachhochschule Karlsruhe. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Prof. Peter Frankenberg, visited CERN on 23 February. He was accompanied by the Rector of the Fachhochschule Karlsruhe, Prof. Karl-Heinz Meisel, and b...

  20. CERN and the environment

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    New webpages answer common questions about CERN and the environment.   One of the new public webpages dedicated to CERN and the environment. Do your neighbours ever ask you about CERN’s environmental impact? And about radiation in particular? If so, the answers to those questions can now be found online on a new set of public webpages dedicated to CERN and the environment. These pages, put together by the Occupational Health, Safety and Environmental Protection (HSE) unit and the groups responsible for CERN's site maintenance, contain a wealth of information on topics linked to the environment, such as biodiversity at CERN, waste management, ionising radiation, and water and electricity consumption. “CERN forms part of the local landscape, with its numerous sites and scientific activities. It’s understandable that people living nearby have questions about the impact of these activities and it’s important that we respond with complete transp...

  1. Young Artists@ CERN

    CERN Multimedia

    2004-01-01

    In view of 50th anniversary of CERN, about 20 young artists will be visiting CERN from 26 to 31 January to learn about the laboratory's research and the mysterious world of particle physics. The impressions they take home will be the main inspiration for the artwork they will then produce for an exhibition to be inaugurated in October 2004 as part of CERN's 50th anniversary celebration. We are looking for scientists who are interested in the Art-Science synergy and who can volunteer to discuss their work at CERN to these young artists during this week (25-31/01). Please contact renilde.vanden.broeck@cern.ch if you are interested. The project is called Young Artists@ CERN and for more information look at this website: http://www.hep.ucl.ac.uk/~andy/CERNart/

  2. CERN - better than science fiction!

    CERN Multimedia

    2007-01-01

    From left to right: Allan Cameron (Production Designer), Sam Breckham (Location Manager), James Gillies (Head of Communication at CERN), Jacques Fichet (from the CERN audiovisual service), Rolf Landua (former spokesman of the ATHENA antihydrogen experiment at CERN and Head of CERN's Education Group), Ron Howard, and Renilde Vanden Broeck (CERN press officer).

  3. Results from the CERN pilot CLOUD experiment

    Directory of Open Access Journals (Sweden)

    J. Duplissy

    2009-09-01

    Full Text Available During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the CLOUD1 experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in

  4. CERN Relay Race

    CERN Document Server

    CERN Running Club

    2010-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 20 May, starting at 12.15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the route, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay

  5. The CERN PC farm

    CERN Multimedia

    Serge Bellegarde

    2005-01-01

    Housed in the CERN Computer Centre, these banks of computers process and store data produced on the CERN systems. When the LHC starts operation in 2008, it will produce enough data every year to fill a stack of CDs 20 km tall. To handle this huge amount of data, CERN has also developed the Grid, allowing the processing power to be shared between computer centres around the world.

  6. Sharing resources@CERN

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Photo 01: L. to r. Eduardo Aldaz, from the PS division, Corrado Pettenati, Head Librarian, and Isabel Bejar, from the ST division, read their divisional copies of the same book.

  7. Dear CERN Computing Community,

    CERN Multimedia

    2003-01-01

    This is to remind you that LXPLUS6 cluster will be switched off on: Friday May 30th 2003 12:00 CETPlease start using lxplus.cern.ch now to avoid unnecessary problems at the last minute. Note especially, that telnet and ftp to lxplus.cern.ch are not provided and will not work, instead secure protocols such as ssh and sftp should be used. Also LINUX6 resources in LXBATCH will no longer be available from the same date - Friday May 30th 2003 8:00 CET. See: http://cern.ch/plus/issues.html for other know issues. Vladimir Bahyl CERN/IT/FIO/FS

  8. Dear CERN Computing Community,

    CERN Multimedia

    2003-01-01

    This is to remind you that LXPLUS6 cluster will be switched off on: Friday May 30th 2003 12:00 CET Please start using lxplus.cern.ch now to avoid unnecessary problems at the last minute. Note especially, that telnet and ftp to lxplus.cern.ch are not provided and will not work, instead secure protocols such as ssh and sftp should be used. Also LINUX6 resources in LXBATCH will no longer be available from the same date - Friday May 30th 2003 8:00 CET. See: http://cern.ch/plus/issues.html for other know issues. Vladimir Bahyl CERN/IT/FIO/FS

  9. Integrity at CERN

    CERN Document Server

    Department, HR

    2015-01-01

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  10. Britain at CERN

    CERN Multimedia

    2000-01-01

    H. E. Mr Christopher Hulse, Ambassador of United Kingdom in Switzerland, CERN Director General Luciano Maiani, Sir David Wright, Chief Executive of British Trade International and Roger Cashmore, CERN Director of research visit the Britain at CERN exhibition. From 14 to 17 November 30 British companies exhibited leading edge technologies at CERN. This is Britain's 18th exhibition at CERN since 1968. Out of the 30 companies, which attended the Britain at CERN exhibition in 1998, 25 have received an order or a contract relating to CERN during the last two years. The exhibition was inaugurated on Tuesday by Sir David Wright, Chief Executive of British Trade International. He was accompanied by H.E. Mr Christopher Hulse CMG, OBE, Her Majesty's Ambassador to Switzerland, and Mr. David Roberts, Deputy Head of Mission and Director of Trade Promotion at the British Embassy in Bern. CERN Director-General, Professor Luciano Maiani, underlined the major contribution of British physicists to CERN, pointing out the fact ...

  11. Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal

    CERN Document Server

    Bandiera, L; Bagli, E; Germogli, G; Guidi, V; Sytov, A; Kirillin, I V; Shul'ga, N F; Berra, A; Lietti, D; Prest, M; De Salvador, D; Vallazza, E

    2016-01-01

    An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We firmly individuated a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We demonstrated that with a short bent crystal, aligned with one of its main axis to the beam direction, it is possible to realize either a total beam steerer or a beam splitter with adjustable intensity. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels.

  12. Relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, L.; Mazzolari, A.; Bagli, E.; Germogli, G.; Guidi, V. [Universita di Ferrara, Dipartimento di Fisica, Ferrara (Italy); INFN, Ferrara (Italy); Sytov, A. [Universita di Ferrara, Dipartimento di Fisica, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Kirillin, I.V. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Akhiezer Institute for Theoretical Physics, Kharkov (Ukraine); Shul' ga, N.F. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Akhiezer Institute for Theoretical Physics, Kharkov (Ukraine); V.N. Karazin Kharkov National University, Kharkov (Ukraine); Berra, A.; Lietti, D.; Prest, M. [Universita dell' Insubria, Como (Italy); INFN Sezione di Milano Bicocca, Milan (Italy); De Salvador, D. [INFN Laboratori Nazionali di Legnaro, Legnaro (Italy); Universita di Padova, Dipartimento di Fisica, Padua (Italy); Vallazza, E. [INFN Sezione di Trieste, Trieste (Italy)

    2016-02-15

    An investigation on the mechanism of relaxation of axially confined 400 GeV/c protons to planar channeling in a bent crystal was carried out at the extracted line H8 from CERN Super Proton Synchrotron. The experimental results were critically compared to computer simulations, showing a good agreement. We identified a necessary condition for the exploitation of axial confinement or its relaxation for particle beam manipulation in high-energy accelerators. We introduce the idea of using a short bent crystal, aligned with one of its main axis to the beam direction, as a beam steerer or a beam splitter with adjustable intensity in the field of particle accelerators. In particular, in the latter case, a complete relaxation from axial confinement to planar channeling takes place, resulting in beam splitting into the two strongest skew planar channels. (orig.)

  13. Inside CERN : Devoiler l'inaccessible

    CERN Multimedia

    Denis Postle; Edwin Shaw

    1974-01-01

    Presentation of what goes on at CERN. Animation of protons going around a ring, then sent to a target and detectors look at them. SC. PS. ISR. Interesting animation: a red light is superimposed on the accelerator to indicate the beam path. (PS and ISR) BEBC. Scanning, with a nice moment of the tracks arriving. Omega. Tracks. Map showing where SPS will be. The Robbins. Other aspects of SPS construction: magnets, RF cavaties, vacuum tube.

  14. Greetings for CERN Alumni 2016-2017

    CERN Document Server

    2016-01-01

    Our card represents the thousands of physicists, engineers and technicians from all over the world who push the frontiers of knowledge and technology at CERN for the benefit of all of society. Together, they made 2016 a year of record-breaking achievements across our diverse scientific programme. The LHC accelerator produced 7 quadrillion proton-proton collisions. That is an astronomical number, but just 1% of the target for the LHC’s full operational lifetime. Many exciting scientific and technological accomplishments lie ahead, and we look forward to another year of brilliant performance across the varied work of the laboratory.

  15. Greetings from CERN 2016-2017

    CERN Document Server

    Daniel Domiguez

    2016-01-01

    Our card represents the thousands of physicists, engineers and technicians from all over the world who push the frontiers of knowledge and technology at CERN for the benefit of all of society. Together, they made 2016 a year of record-breaking achievements across our diverse scientific programme. The LHC accelerator produced 7 quadrillion proton-proton collisions. That is an astronomical number, but just 1% of the target for the LHC’s full operational lifetime. Many exciting scientific and technological accomplishments lie ahead, and we look forward to another year of brilliant performance across the varied work of the laboratory.

  16. The CMS experiment at the CERN LHC

    OpenAIRE

    Adolphi et al., R.

    2008-01-01

    This article is available open access. Copyright @ 2008 IOP Publishing Ltd and SISSA. The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm−2 s−1 (1027 cm−2 s−1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid s...

  17. CERN technology in the service of medicine

    CERN Multimedia

    2001-01-01

    The prototype of the first module of the LInac BOster (LIBO) has been constructed and tested at CERN. This new medical accelerator offers new perspectives in deep-seated tumour treatment.   Accelerator technology developed at CERN is set to bring about important advances in cancer therapy. The linac booster - LIBO - project aims to build a 3GHz proton linear accelerator to boost to 200 MeV the energy of the beam from 50-70 MeV cyclotrons, existing in several hospitals and laboratories. This will allow deep-seated tumours to be treated (see box). The prototype of the first LIBO module has just passed high power RF tests at CERN. Two members of the LIBO collaboration, Riccardo Zennaro and Paolo Berra, with the first LIBO module installed in the LIL tunnel. The LIBO idea goes back to 1993 when it was conceived by CERN's Ugo Amaldi, founder of Italy's TERA foundation. From the beginning, Mario Weiss, a former CERN staff member has led the project. A decisive step was taken in 1998 when a collaboration...

  18. Conceptual Design of the Low-Power and High-Power SPL A Superconducting H$^-$ Linac at CERN

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Bartmann, W; Borburgh, J; Brunner, O; Calatroni, S; Capatina, O; Chambrillon, J; Ciapala, E; Eshraqi, M; Ferreira, L; Garoby, R; Goddard, B; Hessler, C; Hofle, W; Horvath-Mikulas, S; Junginger, T; Kozlova, E; Lebbos, E; Lettry, J; Liao, K; Lombardi, A M; Macpherson, A; Montesinos, E; Nisbet, D; Otto, T; Paoluzzi, M; Papke, K; Parma, V; Pillon, F; Posocco, P; Ramberger, S; Rossi, C; Schirm, K; Schuh, M; Scrivens, R; Torres Sanchez, R; Valuch, D; Valverde Alonso, N; Wegner, R; Weingarten, W; Weisz, S

    2014-01-01

    The potential for a superconducting proton linac (SPL) at CERN started to be seriously considered at the end of the 1990s. In the first conceptual design report (CDR), published in 2000 [1], most of the 352 MHz RF equipment from LEP was re-used in an 800 m long linac, and the proton beam energy was limited to 2.2 GeV. During the following years, the design was revisited and optimized to better match the needs of a high-power proton driver for neutrino physics. The result was a more compact (470 m long) accelerator capable of delivering 5 MW of beam power at 3.5 GeV, using state-of-the-art superconducting RF cavities at 704 MHz. It was described in a second CDR, published in 2006 [2]. Soon afterwards, when preparation for increasing the luminosity of the LHC by an order of magnitude beyond nominal became an important concern, a low-power SPL (LP-SPL) was studied as a key component in the renovation of the LHC injector complex. The combination of a 4 GeV LP-SPL injecting into a new 50 GeV synchrotron (PS2) was ...

  19. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  20. The Australian synchrotron; Le synchrotron australien

    Energy Technology Data Exchange (ETDEWEB)

    Farhi, R

    2005-06-15

    This document recalls the historical aspects of the Australian Synchrotron which will be implemented in 2007. It presents then the objectives of this program, the specifications of the ring and the light lines. (A.L.B.)

  1. Synchronization of Synchrotrons for bunch-to-bucket Transfers

    CERN Document Server

    Ferrand, Thibault; Damerau, Heiko; CERN. Geneva. ATS Department

    2015-01-01

    To reach high particle energies with synchrotrons, a chain of several accelerators is required, as the ratio of extraction and injection energy is in the range of 10 to 20 per synchrotron. Hence the beam must be transfered from one accelerator to the next one. This document deals with the bunch-to-bucket transfer method to inject particle bunches composing the beam from a source synchrotron to a target synchrotron. After we highlight the theoretical concept of the bunch-to-bucket transfer, we determine physical limitations due to the beam dynamics and the adiabatic aspect of the particle bunches. A summary of the currently performed bunch-to-bucket transfer scenarios between the accelerators at CERN is given and set in relation with the mentioned theoretical concepts.

  2. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  3. ESO: The CERN Years

    CERN Multimedia

    Schaeffer, A

    2012-01-01

    In 1970, CERN and ESO signed a collaboration agreement for the construction of the Observatory’s first telescope. That same year, ESO’s Telescope Division and Sky Atlas laboratory settled on the CERN site in Meyrin. Let’s turn back to the beginnings of this lasting and fruitful alliance.

  4. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  5. CERN's Early History Revisited

    CERN Multimedia

    Schopper, Herwig Franz; Krige, Gerhard John

    2005-01-01

    As a member of the group of historians charged to write the history of the founding of CERN, John Krige particularly underlines the important role I.I. Rabi played. The first author, former Director General of CERN add a few comments. S.A. Khan gives precisions about the role played by E. Amaldi and P. Auger; then J. Krige replies

  6. CERN openlab Open Day

    CERN Multimedia

    Purcell, Andrew Robert

    2015-01-01

    The CERN openlab Open Day took place on 10 June, 2015. This was the first in a series of annual events at which research and industrial teams from CERN openlab can present their projects, share achievements, and collect feedback from their user communities.

  7. Punctualizaciones del CERN

    CERN Document Server

    2002-01-01

    "Viene de la pagina anterior. Puntualizaciones del CERN. La valoracion que me merece la aprobacion en el Consejo de Ministros el 24 de mayo de un acuerdo de colaboracion entre el MCYT y el CERN para el proyecto de neutrinos al Gran Sasso es positiva" (1 page).

  8. Integration of CERN staff

    CERN Multimedia

    1965-01-01

    An example of the integration of CERN staff in the neighbouring communes is provided by the hamlet of Bugnon at St-Genis-Pouilly (Ain), FRance. The CERN installation on the Swiss site are visible on the left in the background. Behind them the Saleve mountain in Haute-Savoie.

  9. UK Mission to CERN

    CERN Multimedia

    2004-01-01

    At the end of June, nine experts from UK industry visited CERN to study techniques for developing distributed computing systems and to look at some specific applications. In a packed three-day programme, almost 40 CERN experts presented a comprehensive survey of achievements.

  10. Hyperon Production in P-BE Interactions at 158 GeV/c per nucleon at the WA97 CERN Experiment

    CERN Document Server

    Norman, P I

    1999-01-01

    Strange particle production is one of the most useful probes of matter under extreme conditions of temperature and density. Due to the differences between quark masses in a Quark Gluon Plasma and hadron masses in a hadron gas scenario, there is a significant difference in the equilibration times for strange quark production under these two mechanisms. This difference in equilibration times will manifest itself in a much greater yield of strange particles from a QGP with respect to a hadron gas. It is believed that collisions of heavy ions at high energy may provide sufficient conditions for a QGP to be formed. The aim of the WA97 experiment is, therefore, to investigate relativistic heavy ion collisions at the CERN OMEGA Spectrometer, following on from the work of the WA85 and WA94 collaborations. Using a lead ion beam from the CERN Super Proton Synchrotron and a lead target, data were taken in both 1995 and 1996. As a control, in the autumn of 1995, data were also taken using a proton beam incident on a lead...

  11. CERN Mobility Survey

    CERN Multimedia

    GS Department

    2011-01-01

    The Institute of Shipping and Transport of the University of the Aegean and the National Technical University of Athens are partners with CERN in a study of mobility patterns between and within the CERN sites and to that effect have realized a mobility survey dedicated to the CERN community.         The study aims to understand: How you presently get around the CERN sites; What problems you encounter regarding mobility; What your needs are; What improvements you’d like to see; What measures you would like to see implemented most. The replies we receive will enable us to define a general policy promoting the diversity of mobility at CERN and to establish and quantify the strategic actions to be implemented for both the short and medium term. The objectives of the transport mobility plans are to: Facilitate mobility within and between the CERN sites by identifying adequate solutions in response to individual ...

  12. France at CERN

    CERN Document Server

    2001-01-01

    From 19 to 22 June, for the 8th edition of France at CERN, 31 French companies presented their latest technology to the Laboratory. Demonstrating the latest in French technology during France at CERN. The France at CERN exhibition was inaugurated by Mr. Bernard Frois, Director of the Department Energy, Transport, Environment and Natural Resources at the Technology Directorate of the Ministry of Research. 'France is happy to be a Member of CERN, which is a successful example of the construction of scientific Europe,' he declared during the inauguration, 'this exhibition is an excellent opportunity to put fundamental research and advanced technology in contact.' Mr. Philippe Petit, French Ambassador to Switzerland, and Mr. Alexandre Defay, technical adviser of the Minister of Research, were also present to represent France and its industry. Representing CERN at the 19 June opening of the exhibition was Claude Detraz, who said, 'I hope that this exhibition will make it possible to weave stronger links between ...

  13. Lectures for CERN pensioners

    CERN Multimedia

    GS Department

    2009-01-01

    The CERN Medical Service and the Pensioners Association are pleased to invite CERN pensioners to a series of lectures given by professors and specialists from the Teaching Hospitals and the Faculty of Medicine of the University of Geneva on the following topic: PROMOTION OF OPTIMUM BRAIN AGEING The lectures will take place in the Main CERN Auditorium (Building 60) from 2.30 p.m. to 4.30 p.m. on the following dates: Thursday 15 January 2009: Diagnosing and treating Alzheimer’s disease Pr Gabriel GOLD Wednesday 25 February 2009: What is the brain reserve? Speaker’s name to be announced at a later date. The lectures will be given in French, with transparencies in English, and will be followed by a wide-ranging debate with the participants. CERN Medical Service - Pensioners Association - CERN-ESO (GAC-EPA)

  14. Romanian President Visits CERN

    CERN Multimedia

    2001-01-01

    Director General Luciano Maiani watches as Romanian President Ion Iliescu signs the CERN guest book. On Friday the 12th of October, Romanian President Ion Iliescu arrived at CERN and was warmly greeted by Director General Luciano Maiani at the steps of building 500. After initial greetings and a general presentation of the laboratory, President Iliescu and his entourage embarked on a whistle stop tour of the CERN facilities. They visited the CMS magnet assembly hall and civil engineering work where presentations were made by CMS spokesperson Michel Della Negra and the ATLAS Tile Calorimeter where the president was introduced to Romanian physicists working here at CERN. Michel Della Negra explains some of the general principles behind CMS to President Iliescu during his visit last week. The Romanian teams working on CERN projects make very visible contributions, for example to the construction of the ATLAS experiment and to the preparation of its eventual scientific exploitation. 'Those of us on the ATLAS ...

  15. CERN in the park

    CERN Multimedia

    2002-01-01

    CERN will be the centre of debate at a 'Café scientifique' on Monday 29 April. The aim of the Cafés scientifiques, which are organised by the association of Bancs Publics, is to kindle discussion between ordinary people and specialists in a scientific field. This Monday, Maurice Bourquin, President of the CERN Council, Hans Hoffmann, Director of Technology Transfer and Scientific Computing at CERN, Gilbert Guignard, a physicist at CERN, and Ruhal Floris, who teaches mathematical didactics at the University of Geneva, will explain the usefulness and contributions to science of the world's biggest laboratory for particle physics. What is CERN for? Monday 29 April at 18.30 Musée d'histoire des sciences, Geneva (in the park Perle du Lac) Entry free Wine and buffet after the discussion

  16. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  17. Vacuum chambers full of ideas for the Swedish synchrotron

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    CERN’s Vacuum, Surfaces and Coatings group has contributed to the development of vacuum chambers for the MAX IV synchrotron, which has just been officially opened in Sweden.   A section of the new 3 GeV MAX IV synchrotron at the time of installation. In the centre of the magnets you can see the vacuum chamber developed in collaboration with CERN. (Photo: Marek Grabski, MAX IV Vacuum group) On 21 June, the King and the Prime Minister of Sweden officially opened MAX IV, a brand-new synchrotron in Lund, Sweden. The summer solstice, the longest day of the year, was deliberately chosen for the ceremony: MAX IV, a cutting-edge synchrotron, will deliver the brightest X-rays ever produced to more than 2000 users. Some 1500 kilometres away, a team at CERN followed the opening ceremony with a touch of pride. The Vacuum, Surfaces and Coatings group in the Technology department (TE-VSC) participated in the construction of this new synchrotron. Its contribution lies at the very hea...

  18. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  19. CERN in 2030

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    A competition will soon be launched to select the architect, urban planner or landscape designer to undertake the first phase of redevelopment of the parking area by the flagpoles, between Entrances A and B. This will be the first stage in a wider development project aimed at sprucing up the CERN site and enhancing its image. Work to create a pleasant and harmonious area at the CERN entrance will start in 2013 while preparatory work for other developments inside the CERN site has already begun…   CERN as it is today.  By 2030, CERN will be a greener place, much like a university campus. The arrival of the tramway on 30 April will be an opportunity to forge ahead with the urban plan aimed at rejuvenating the CERN site and redefining how it is organised. "Nearly sixty years after CERN's first buildings went up, this plan will help transform the site and give it a welcoming, friendly face, a bit like a university campus," explains Thierry Chanard, urban plannin...

  20. CERN honours its guides

    CERN Multimedia

    2004-01-01

    At the end of January, CERN's guides were rewarded for their devotion to the Laboratory. They have a passion for their work, know CERN inside-out and for 40 years have shown people of all ages and nationalities, from all walks of life, around the Laboratory. Who are they? Why, the CERN guides, of course. On 27 January, ten of CERN's 180 guides received special honours for their impressive number of guided tours in 2003. Presenting the awards in the Microcosm hall, CERN's Director-General Robert Aymar congratulated the winners on the key role they play with respect to the general public. "CERN would be nothing without you who show them its activities," he stressed. CERN's Director-General Robert Aymar congratulates Alberto Ribon for his tally of over 40 visits in the course of 2003.One of the prizes was the book «The Particle Odyssey». Here the book's co-author Christine Sutton dedicates it for Sijin Qian. Tzanko Spassoff (PH) and retired staff members Klaus Batzner and Antonio Francano wo...

  1. CERN: Digitally open, too

    CERN Multimedia

    Computer Security Team

    2013-01-01

    The Open Days are here!! From tomorrow onwards, we will be welcoming thousands of people to CERN. No barriers, no boundaries!   For decades, we have welcomed researchers and visitors from around the world to work at CERN, discuss physics research and attend our training sessions, lectures and conferences. This is how fundamental research should be conducted!!! But have you ever noticed how you are welcome at CERN in the digital world, too? Once you are affiliated and are registered with CERN, you receive a CERN computing account and e-mail address.  You can register your laptops, PCs and smartphones to use our (wireless) network, you can easily create your personal webpage, and profit from a vast disk space for file storage (AFS and DFS). CERN is indeed an Open Campus and not only during the Open Days. CERN is an Open Campus in the digital world. This digital Open Campus culture is exactly the reason why “computer security” has been dele...

  2. CERN Control Centre Animations

    CERN Multimedia

    2014-01-01

    The journey of the LHC protons begin in a hydrogen bottle. Hydrogen is the simplest element: its atom has a single proton with one electron orbiting around it. The pressure in the bottle forces the hydrogen atoms out, where they are captured in a device, the proton source. Inside, a powerful electrical discharge strips the electrons away from the protons. Under the force of an electric field, the protons whizz off into a cavity where they are accelerated and concentrated.

  3. Italy at CERN

    CERN Multimedia

    2003-01-01

    From 23 to 26 June, Italian industry went on display at CERN for the ninth time. Twenty-four Italian firms working closely with CERN showed off the latest high-energy physics technology developed by them. Guido Possa, Vice-Minister for Education, Universities and Research, inaugurated the exhibition on 24 June. He took the opportunity afforded by his visit to tour Building SM18, where LHC magnets are tested and assembled, before inspecting the assembly hall for ATLAS detector components. Guido Possa, Italian Vice-Minister for Education, Universities and Research, is seen visiting one of the "Italy at CERN" exhibition stands.

  4. CERN Infrastructure Evolution

    CERN Document Server

    Bell, Tim

    2012-01-01

    The CERN Computer Centre is reviewing strategies for optimizing the use of the existing infrastructure in the future, and in the likely scenario that any extension will be remote from CERN, and in the light of the way other large facilities are today being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote computer centres. This presentation will give the details on the project’s motivations, current status and areas for future investigation.

  5. Signature CERN-URSS

    CERN Document Server

    Jentschke,W

    1975-01-01

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  6. La Hollande au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    On 17 October the third industrial exhibition, "Holland at CERN" was officially opened by Dr R.J. van Duinen, President of the Dutch Organisation for Scientific Research (NWO). In his opening speech he encouraged scientific organisations such as CERN to take full advantage of industry's ability to design and invent new processes and equipment stressing that the purpose of the "Holland at CERN" exhibition was not simply to sell equipment, but to establish an efficient cross-fertilisation between fundamental science and industry.

  7. Proton-therapy, present status.

    Science.gov (United States)

    Salvadori, R P; Rembado, D; Serrato, R

    1993-06-01

    At the moment, proton-therapy is the most advanced radiotherapeutic technique in cancer treatment. The use of the high energy proton beam (from 70 MeV to 200 MeV) lets a Bragg's peak be moved to different depths, so allowing personal radiotherapeutic treatment. In recent years, many proton-therapy centers have grown up throughout the world with very satisfactory clinical results, first of all in eye melanoma treatment. The future expectations are very promising, even if the very high installation and maintenance expenses of a synchrotron (for proton production) hinder the development of such a method.

  8. CERN at ESOF 2016

    CERN Multimedia

    James Gillies

    2016-01-01

    CERN had a major presence at the ESOF2016 conference this week, largely in collaboration with our EIROforum partners. A keynote session featuring the CERN Director-General, Fabiola Gianotti, EMBL Director-General, Iain Mattaj, and ESO Director for Science, Rob Ivison, and chaired by BBC science correspondent Pallab Ghosh debated the value of European collaboration in science.   The focal point of EIROforum’s presence was a stand highlighting the societal benefit of EIROforum science. (Image: Matt Wilkinson Photography/ ESOF 2016) A double session covered the science of the EIROs, with ATLAS physicist Claire Lee representing CERN, and there was a session exploring the ways that the EIROforum organisations create business value locally, with the leader of the Knowledge Transfer group, Giovanni Anelli, representing CERN. The focal point of EIROforum’s presence was a stand highlighting the societal benefit of EIROforum science. Side events linked to the stand discussed subjects su...

  9. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  10. Safety at CERN

    CERN Multimedia

    2009-01-01

    Safety is an integral part of our working lives, and should be in our minds whatever job we do at CERN. Ultimately, safety is the responsibility of the Director General – your safety is my concern. That’s why I have this week appointed a new Safety Policy Committee (SAPOCO) that reflects the new Organizational structure of CERN. CERN’s Staff Rules and Regulations clearly lay out in chapter 3 the scope of safety at CERN as well as my responsibilities and yours in safety matters. At CERN, safety is considered in the broadest sense, encompassing occupational Health and Safety, environmental protection, and the safety of equipment and installations. It is my responsibility to put appropriate measures in place to ensure that these conditions are met. And it is the responsibility of us all to ensure that we are fully conversant with safety provisions applicable in our areas of work and that we comply with them. The appointment of a n...

  11. La nascita del CERN

    CERN Multimedia

    Fidecaro, Giuseppe

    2004-01-01

    CERN was born on 30th September 1954, after the ratification of the Convention by the Member States. After the war, there was a need for international collaboration to rebuild the half-destroyed Europe (2 pages)

  12. Star spotting at CERN

    CERN Multimedia

    2008-01-01

    This June, two American celebrities (and physics enthusiasts!) came to CERN. Brian Cox gave Mike Einziger (right), lead guitarist with the rock band Incubus, the star treatment in the ATLAS cavern. Jesse Dylan embraces the spirit of ATLAS! Mike Einziger, lead guitarist with the rock band Incubus, visited CERN on Friday 13 June between concerts in Finland and England. Einziger, a lifelong science enthusiast descended into the ATLAS and CMS caverns and visited the SM18 test magnet facility during his brief tour of CERN. Einziger learned about the LHC through watching online lectures from University of Manchester and ATLAS physicist Brian Cox, and was thrilled to have the chance to see the detectors in person. The musician has created an orchestral piece, inspired in part by the work being done at CERN for the LHC, which will have its debut in Los Angeles on 23 August. Just over a week earlier, Jesse Dylan, Hollywood film director a...

  13. CERN scientists predict supernova

    CERN Multimedia

    2003-01-01

    "A team of theoretical physicists working at CERN and the Technion Institute of Technology in Israel has developed a theory to account for the mysterious gamma ray bursts that come from the depths of the Universe" (1/2 page).

  14. PACMAN at CERN

    CERN Multimedia

    2015-01-01

    PACMAN Particle Accelerator Components Metrology and Alignment to the Nanometre scale. PACMAN is an Innovative Doctoral Program Network, offering training to 10 Early Stage Researchers hosted by CERN thanks to The European Commission FP7 Marie Curie Actions.

  15. Indian President visits CERN

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 1 October, her Excellency Mrs Pratibha Devisingh Patil, President of India, picked CERN as the first stop on her official state visit to Switzerland. Accompanied by a host of Indian journalists, a security team, and a group of presidential delegates, the president left quite an impression when she visited CERN’s Point 2!   Upon arrival, Pratibha Patil was greeted by CERN Director General Rolf Heuer, as well as senior Indian scientists working at CERN, and various department directors. After a quick overview of the Organization, Rolf Heuer and the President addressed India’s future collaboration with CERN. India is currently an Observer State of the Organization, and is considering becoming an Associate Member State. A short stop in LHC operations gave Steve Myers and the Accelerator team the opportunity to take the President on a tour through the LHC tunnel. From there, ALICE’s Tapan Nayak and Spokesperson Paolo Giubellino took Pratibha Patil to the experiment&am...

  16. CERN confirms LHC schedule

    CERN Multimedia

    2003-01-01

    The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.

  17. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  18. YOUR LIFE@CERN

    CERN Document Server

    Guinot, Genevieve

    2016-01-01

    Balancing work and home life, getting support for your family and thriving in an inclusive and respectful workplace: find out more about the support structures in place to enhance your working life@CERN!

  19. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  20. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  1. Ex / Noise / CERN / Deerhoof

    CERN Multimedia

    CERN, SM18,

    2015-01-01

    Indie rockers Deerhoof battled with the noise of CERN’s magnet test facilities on 30 August 2015. The band visited CERN at the invitation of ATLAS physicist James Beacham, whose pilot project Ex/Noise/CERN collides experimental music artists with experimental particle physics. Credits: -Producer- CERN Video Productions James Beacham François Briard -Director- Noemi Caraban -Camera- Yann Krajewski Piotr Traczyk Noemi Caraban -Crane operator- Antonio Henrique Jorge-Costa -Live recording at CERN- Mixing at Rec studio/Geneva By Serge Morattel -Infography- Daniel Dominguez Noemi Caraban -Deerhoof- John Dieterich Satomi Matsuzaki Ed Rodriguez Greg Saunier w/Deron Pulley SPECIAL THANKS TO: Michal Strychalski Marta Bajko Maryline Charrondiere Luca Bottura Christian Giloux Rodrigue Faes Mariane Catallon Georgina Hobgen Hailey Reissman Marine Bass

  2. CERN stationery rejuvenated

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    With the introduction of CERN’s new graphic charter, our complete range of official communications stationery has been redesigned. Discover the newly harmonised and standardised range of CERN stationery.   As the Director-General announced in Bulletin 41-42/2012, a new graphic charter is now in force at CERN. The graphics team has taken this opportunity to redesign all the official CERN stationery, such as business cards, correspondence cards, letterheads, envelopes and file holders, all of which will now boast the same, unified format. In keeping with CERN’s new graphic charter, even the business cards have had a makeover: of a better quality than their predecessors, they now elegantly display the CERN colours (namely the familiar Pantone 286 blue). These new cards, which all follow a standardised format, help to project a standardised corporate image of the Organization. Order them online now! As the Director-General highlighted, “it's increasingly imp...

  3. CERN recognises LHC suppliers

    CERN Multimedia

    2002-01-01

    CERN has just presented the first awards recognising LHC suppliers. The Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang are the recipients of the first 'Golden Hadrons'.

  4. Iran approaches CERN

    CERN Multimedia

    2002-01-01

    Members of Parliament from the Islamic Republic of Iran visit SM18. From left to right : Ali Mojtahed-Shabestari, Deputy Ambassador of the Islamic Republic of Iran in Geneva, Diether Blechschmidt, from CERN, Abdol-Rahim Baharvand and Hossain Amiri, from the Iranian Parliament, Norbert Siegel, from CERN, Hossain Afarideh, Rasool Seddighi and Ahmad Shirzad from the Iranian Parliament. Five members of the Parliament of the Islamic Republic of Iran visited CERN for three days at the beginning of May. All of them have PhD's in Physics, as well as holding their job in politics. They are involved in legislation for science, research and education funding in Iran. Apart from their interest in CERN in general, they were especially attracted to the CMS detector, since an Iranian contribution to the LHC is now starting through a collaboration with the Institute for Studies in Theoretical Physics and Mathematics in Tehran.

  5. CERN meets Facebook

    CERN Multimedia

    2012-01-01

    Social networking sites like LinkedIn, MySpace, Google+ and Facebook are on the rise. In particular, the life of youngsters revolves more and more around these sites as they facilitate communication, networking and the exchange of niceties. Who does not today already have an account registered with one of them? A Facebook profile can contain photos, listings of hobbies, job information, preferences…   The on-going effort to externalise some of CERN's computing resources continues, and in order to promote a unified interface for personal information, CERN has decided to establish a partnership with Facebook starting on 1stApril. "CERN is a public and trustworthy international organisation, and as such, our staff and users have nothing to hide from the general public," said Alexi Spiner (IT), project leader responsible for this migration: * The computer profiles of all CERN users will be integrated into the Facebook portal; * In addition, we will also ...

  6. Calculations of dose attenuation in slowly curving tunnel geometries at a high-energy proton accelerator

    CERN Document Server

    Vincke, Helmut H

    2003-01-01

    The CERN Neutrino beam to Gran Sasso (CNGS) project and the Large Hadron Collider (LHC) will receive 450 GeV/c protons extracted from the Super Proton Synchrotron (SPS). In the tunnels leading to the CNGS target and the LHC accelerator there is a 150 m straight section where a beam dump (TED) can be moved into the beam chamber, intercepting the proton beam. After the TED, the beam is routed into either the 700m slowly curving TT41 tunnel (CNGS) or the TI8 tunnel consisting of a 400 m straight section followed by a curved 1.5 km long tunnel (LHC). The curved tunnels have a radius of approximately 1 km. During tests a proton beam of 1.2 multiplied by 10**1**3 s**- **1 could be sent to the dump. The question posed was how close to the TED could access be allowed during dumping operations. Initial simulations using the FLUKA Monte-Carlo transport program were optimised assuming that the high-energy muon contribution dominates. Discrepancies with an analytically based calculation led to a revision of this optimisa...

  7. Design of a compact synchrotron for medical applications

    CERN Document Server

    Harbi, N A

    2003-01-01

    An optimal design of a low energy (300 MeV) proton synchrotron for medical applications is addressed. The machine has the following properties: (1) The transition energy is higher than the targets final proton beam energy of 300 MeV; (2) the betatron tunes are chosen such that the machine is free of systematic resonances; (3) the machine can accommodate both slow and fast extraction systems; and (4) the machine can provide rapid cycling operations depending on the rf cavity voltage. Applications of this low energy synchrotron are discussed. (10 refs).

  8. Germany at CERN

    CERN Multimedia

    2001-01-01

    The Eighth Exhibition of German Industry, "Germany at CERN" started this week and offers German companies the opportunity to establish professional contacts with CERN. From left to right in the foreground: Maximilian Metzger (BMBF), Bettinna Schöneseffen (BMBF), Karl-Heinz Kissler (SPL division leader), Horst Wenninger, and Hans Hoffman. Behind and to the right of Karl-Heinz Kissler is His Excellency Mr Walter Lewalter, Ambassador and permanent representative of Germany to the UN office in Geneva.

  9. CERN permanent exhibitions

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  10. CERN, Accelerating Science

    CERN Multimedia

    AUTHOR|(CDS)2086185

    2015-01-01

    What is the Universe made of? Where did it come from, where is it going and why does it behave the way it does? These are some of the questions that CERN set out to address when a small number of pioneering scientists created Europe’s first scientific international organization. Founded in 1954, in the aftermath of the Second World War, CERN is not only a first-class centre for fundamental research but also a pioneering adventure in international collaboration.

  11. CERN expositions permanentes

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  12. Cern Women's Club

    CERN Multimedia

    Cern Women's Club

    2014-01-01

      CERN WOMEN’S CLUB   Coffee Morning Tuesday 10th  June 2014, 12:30   Annual Club Lunch at the restaurant “Le Coq Rouge” in St-Genis-Pouilly Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://web.cern.ch/Club-WomensClub/

  13. Cern women's club

    CERN Multimedia

    Club des cernoises

    2014-01-01

    CERN WOMEN’S CLUB Coffee Morning Tuesday 13th  May 2014, 9:30 Bldg 504,  (Restaurant No 2 – DSR) 1st Floor, Club Room 3   Annual General Meeting Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://cern.ch/Club-WomensClub/

  14. CERN Academic Training Programme 2011

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES 1, 2 and 3 February 2011 11:00-12:00 - Bldg. 222-R-001 - Filtration Plant LHC 2010: Summary of the Odyssey So Far and Near-Term Prospects by Paris Sphicas (CERN) In 2010, the LHC delivered proton-proton collisions at an energy of 7 TeV, significantly higher than what was previously attained. This has allowed the experiments to complete the commissioning of the detectors and to perform early measurements of key standard model processes. The inclusive production of particles, jets and photons, the observation of onia and heavy-flavored meson decays, the measurement of the W and Z cross sections, and the observation of top-quark production and decay constitute a full set of measurements which form the base from which searches for physics beyond the standard model can be launched. The results from a number of searches for supersymmetry and some exotic signatures are now appearing. The lectures will review this impressive list of physics achievements from 2010 and consider briefly what 2011 m...

  15. CERN Library | Agnes Chavez @ CERN | 3 May

    CERN Multimedia

    CERN Library

    2016-01-01

    Agnes Chavez is an artist and educator participating in a two-week research stay through the ATLAS Experiment at CERN.   Tuesday 3 May at 4 p.m. CERN Library (52 1-052) Artist/educator, Agnes Chavez will share video outcomes from Projecting Particles, an Art + Science + Education collaboration with ATLAS. The Sci-Art project combines the International Masterclass with Projection Art in a series of teen-led youth workshops and projection events. In this presentation Chavez will share her vision and describe the research and development behind the project, now in its third year.  For the Projecting pARTicles series of art installations she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspired by emerging particle physics theories. Chavez’s art experiments with data visualization, sound and projections to create participatory environments. She collaborates with programmers t...

  16. Beam Size Estimation from Luminosity Scans at the LHC During 2015 Proton Physics Operation

    CERN Document Server

    Hostettler, Michael

    2016-01-01

    As a complementary method for measuring the beam size for high-intensity beams at 6.5 TeV flat-top energy, beam separation scans were done regularly at the CERN Large Hadron Collider (LHC) during 2015 proton physics operation. The luminosities measured by the CMS experiment during the scans were used to derive the convoluted beam size and orbit offset bunch-by-bunch. This contribution will elaborate on the method used to derive plane-by-plane, bunch-by-bunch emittances from the scan data, including uncertainties and corrections. The measurements are then compared to beam size estimations from absolute luminosity, synchrotron light telescopes, and wire scanners. In particular, the evolution of the emittance over the course of several hours in collisions is studied and bunch-by-bunch differences are highlighted.

  17. Sharing resources@CERN

    CERN Multimedia

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Until now many people were unaware that copies of the same book (or standard, or journal) are often held not only by the library but by different divisions. (Here Eduardo Aldaz, from the PS division, and Isabel Bejar, from the ST division, read their divisional copies of the same book.) The idea behind the library's new sharing resources@CERN' initiative is not at all to collect the books in individual collections at the CERN library, but simply to register them in the Library database. Those not belonging to the library will in principle be unavailable for loan, but should be able to be consulted by anybody at CERN who is interested. "When you need a book urgently and it is not available in the library,' said PS Division engineer Eduardo Aldaz Carroll, it is a sham...

  18. CREATIVE COLLISIONS: ARTS @CERN

    CERN Document Server

    CERN. Geneva

    2012-01-01

    In 2000, CERN hosted Signatures of the Invisible – one of the landmark initiatives in arts and science. In 2012, CERN is now initiating its own science/arts programme Collide@CERN in different arts disciplines. The first of these is in digital arts, and the international competition to find the winning artist is called the Prix Ars Electronica Collide@CERN. It was announced September 2011 at CERN’s first collaboration with an international arts festival – Ars Electronica in Linz. The competition attracted over 395 entries from 40 countries around the world. The winning artist, Julius Von Bismarck, will begin his two month residency here at CERN next month. Ariane Koek who leads on this initiative, discusses the residency programme, as well as the background about Art@CERN. History has shown that particle physics and the arts are great inspiration partners. The publication of the paper by Max Planck which gave birth to quantum mechanics as well as those by Einstein, heavily influenced some of the grea...

  19. CERN Relay Race

    CERN Multimedia

    Running Club

    2010-01-01

    This year’s CERN Relay Race will take place around the Meyrin site on Thursday 20th May at 12h00. This annual event is for teams of 6 runners covering distances of 1000m, 800m, 800m, 500m, 500m and 300m respectively. Teams may be entered in the Seniors, Veterans, Ladies, Mixed or Open categories. The registration fee is 10 CHF per runner, and each runner receives a souvenir prize. As usual, there will be a programme of entertainments from 12h in the arrival area, in front of the Restaurant no. 1. Drinks, food, CERN club information and music will be available for the pleasure of both runners and spectators. The race starts at 12h15, with results and prize giving at 13:15.   For details of the race, and of how to sign up a team, please visit: https://espace.cern.ch/Running-Club/CERN-Relay The event is organised by the CERN Running Club with the support of the CERN Staff Association.  

  20. CERN openlab Open Day

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is the unique public-private partnership between CERN and leading companies in the field of information and communication technology. The programme is now entering an exciting new phase and is expanding to include other public research organisations for the first time. A special event will be held at CERN to mark this occasion.   CERN openlab was created in 2001 and is now entering its fifth three-year phase (2015-2017). Its mission is to accelerate the development of cutting-edge solutions to be used by the scientific community to control the operations of complex machines and to analyse the vast amounts of data produced by physics experiments. During Run 2 of the LHC, it is expected that the CERN Data Centre will store more than 30 petabytes of data per year from the LHC experiments, which is equivalent to about 1.2 million Blu-ray discs, or 250 years of HD video. Testing in this demanding environment provides the companies collaborating in CERN openlab with valuable feedback o...

  1. CERN In Focus

    CERN Multimedia

    CERN audiovisual service

    2008-01-01

    First edition 2008 of Cern in Focus. On behalf of the audiovisual team, a selection of the latest videos filmed at CERN. Every six weeks, we will bring you the latest in CERN's activities, from LHC start up to the Computing Grid, featuring the experiments and many other goings-on at CERN. The agenda of this first edition of CERN in Focus features the visit of the prime minister of Malta, Lawrence Gonzi... CMS and the final descent of the YE-1 end cap... The departure of UA1 magnets to Japan... The start up of sectors 4 and 5... And finally, in our sports round up... We'll talk about football. New in brief this month... The final bolt is in place : On 7th November, in the bowels of the LHC tunnel, CERN's Director General Robert Aymar tightened a gold-plated bolt for the last arc interconnection of sector 1-2. This symbolic gesture marks the completion of all the arc interconnections of the LHC. Last welding work: it was never going to be an easy task. On this day last year just one sector had been completed,...

  2. CERN Pensioners Association

    CERN Multimedia

    The GAC Committee

    2004-01-01

    Open Day To all CERN retired staff As part of the celebrations organised for the 50th anniversary of CERN, an Open Day will be held on Saturday 16 October 2004. Anyone willing to act as a guide, either to help and inform visitors at the reception points or to guide groups of visitors, sharing your knowledge with them, is invited to fill in the attached form. A preparatory meeting will be arranged for those who left CERN some time ago and whose knowledge of the site may no longer be quite up-to-date. The Open Day organisers need your help, which will be very much appreciated. We hope that many pensioners will participate. People with internet access may enrol directly without coming to CERN, http://www.cern.ch/CERN50/openday The GAC Committee OPEN DAY : CALL FOR VOLUNTEERS 16th October 2004 So now you are excited about the Open Day, how can you participate? As you can imagine, for such a large number of activities, we need many volunteers. Please return the following form to Elena Battis...

  3. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 2.64E11 protons @ 440 GeV are impinging on the target.

  4. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    HiRadMat facility of CERN/SPS

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 1.7E11 protons @ 440 GeV are impinging on the target.

  5. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 1.85E11 protons @ 440 GeV are impinging on the target.

  6. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 2E11 protons @ 440 GeV are impinging on the target.

  7. Proton Induced Effects on Tungsten Powder

    CERN Multimedia

    2012-01-01

    In the HRMT-10 experiment, that took place in HiRadMat facility of CERN/SPS, the effects of a high-power incident proton beam on a tungsten powder target were investigated. In this video, 1.3E11 protons @ 440 GeV are impinging on the target.

  8. Proton therapy

    Science.gov (United States)

    Proton beam therapy; Cancer - proton therapy; Radiation therapy - proton therapy; Prostate cancer - proton therapy ... that use x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  9. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling proced

  10. The CERN Neutrino beam to Gran Sasso (NGS)

    CERN Document Server

    Bailey, R; Ball, A E; Bonnal, P; Buhler-Broglin, Manfred; Détraz, C; Elsener, Konrad; Ereditato, A; Faugeras, Paul E; Ferrari, A; Fortuna, G; Grant, A L; Guglielmi, A M; Hilaire, A; Hübner, Kurt; Jonker, M; Kissler, Karl Heinz; López-Hernandez, L A; Maugain, J M; Migliozzi, P; Palladino, Vittorio; Pietropaolo, F; Revol, Jean Pierre Charles; Sala, P R; Sanelli, C; Stevenson, Graham Roger; Vassilopoulos, N; Vincke, H H; Weisse, E; Wilhemsson, M

    1999-01-01

    The conceptual technical design of the NGS (CERN neutrino beam to Gran Sasso) facility has been presented in the report CERN 98-02 / INFN-AE/98-05. Additional information, in particular an update on various neutrino beam options for the NGS facility, has been provided in a memorandum to the CERN-SPSC Committee (CERN-SPSC/98-35). In the present report, further improvements on the NGS design and performance, in particular new scenarios for SPS proton cycles for NGS operation and a new version of the NGS "high energy" neutrino beam for nt appearance experiments, are described. This new NGS reference beam is estimated to provide three times more nt events per year than the beam presented in the 1998 report. The radiological aspects of the NGS facility have been re-examined with the new beam design. An updated version of the construction schedule is also presented.

  11. HOM Couplers for CERN SPL Cavities

    CERN Document Server

    Papke, Kai; Van Rienen, U

    2013-01-01

    Higher-Order-Modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the SPL, which is studied at CERN as the driver for future neutrino facilities. In order to limit beam-induced HOM effects, CERN considers the use of HOM couplers on the cut-off tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to modes of a specific frequency range. In this paper the design process is presented and a comparison is made between various design options for the medium and high-beta SPL cavities, both operating at 704.4 MHz. The RF characteristics and thermal behaviour of the various designs are discussed.

  12. Spotlight on CERN : Recruitment and professions at CERN

    CERN Multimedia

    CERN video productions

    2010-01-01

    Spotlight on CERN No. 3 Recruitment and professions at CERN Welcome to the Globe of Science and Innovation for this third edition of "Spotlight on CERN". When one thinks about professions at CERN, what springs to mind? Physicists? Engineers? In fact, the smooth operation of the Organisation relies on a diversity of professions and this in itself, poses a real challenge in terms of recruitment in CERN member states. Today, to tell us more about this challenge and about CERN professions in general, we welcome James Purvis, Head of the HR Recruitment, Programmes and Monitoring group, and Lore Taillieu, leader of the group's Recruitment section.

  13. The MedAustron Project at CERN, Status Report, May 2013

    CERN Document Server

    Benedikt, M; Gutleber, J

    2013-01-01

    MedAustron is a light ion-therapy and research centre based on a synchrotron accelerator complex under construction in Austria. It is the first large-scale accelerator facility in Austria. For the implementation of the required accelerator technologies, the county of Lower Austria and the company EBG MedAustron have set up dedicated agreements with CERN. These cover the assistance of CERN for the design and manufacturing follow-up of accelerator components and training of MedAustron personnel. CERN contributed to the MedAustron construction in particular by providing domain expertise, infrastructure, and manpower in relation with the design, the tendering and procurement processes.\

  14. Proton-Ion Medical Machine Study (PIMMS), 1

    CERN Document Server

    Badano, L; Bryant, P J; Crescenti, M; Holy, P; Maier, A T; Pullia, M; Rossi, S; Knaus, P

    2000-01-01

    The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron. CERN agreed to host this study in its PS Division and a close collaboration was set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complex-shaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive scanning were also included. The more general and theoretical aspects of the study are recorded in Part I and the more specific technical design considerations are presented in a second volume Part II. The PIMMS team started their work in January 1996 in the PS Division and continued for a period of three years.

  15. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  16. Apprenticeship at CERN

    CERN Multimedia

    Staff Association

    2016-01-01

    In 1961, based on the finding that the evolution of the labour market created a growing need for qualified staff, a first agreement between the Republic and Canton of Geneva and CERN was signed. One of the objectives of this agreement was the vocational training of young electronics and physics laboratory technicians. CERN, an important stakeholder in the local economy, highlighted with this agreement its willingness to participate in the local social and economic development. The first apprentice arrived at CERN in 1965. In 1971, the apprenticeship centre was created; it now hosts over twenty apprentices in total and welcomes about six new apprentices each year. These apprenticeships are for young people aged between 15 and 21 years, coming from one of the CERN Member States, and having completed their mandatory education, e.g. 11th grade in Switzerland or 3ème in France. The training is divided between working time at CERN and one or two days per week at school (CFPT in Geneva for electronics or ...

  17. Radiography at CERN

    CERN Multimedia

    HSE Unit

    2014-01-01

    What is industrial radiography? It is a non-destructive method with a wide variety of applications, such as inspecting the quality of a weld. It uses high-energy radioactive sources or an X-ray generator.   Is this inspection technique used at CERN? Yes, it is widely used at CERN by the EN-MME Group, which outsources the work to one or more companies, depending on the workload. Is it possible to carry out radiography anywhere at CERN? Yes, it is possible to carry out radiography in any building/accelerator/experiment area at CERN (including in areas which are not normally subject to radiological hazards). When is radiography carried out? It normally takes place outside of working hours (7 p.m. to 6 a.m.). How will I know if radiography is taking place in my building? If this activity is planned in a CERN building, notices will be affixed to all of its main entrance doors at least 24 hours in advance. What are the risks? There is a risk of exposure to very high levels of radiation, dep...

  18. CERN television news

    CERN Multimedia

    2002-01-01

    CERN events brought right to your desktop by the new video bulletin.   CERN now has its very own news broadcast , or rather 'webcast', with a host of special reports and even a star presenter. From today onwards, just go to the Bulletin's web page, click on the 'video news' link and sit back and enjoy the latest news about CERN, presented in images by Wendy Korda. The ten-minute newscast in both French and English, the Organization's two official languages, presents interviews, pictures of experiments and computer-generated graphics, bringing you right up to date with some of the Laboratory's latest stories. The show concludes with a selection of the best snapshots taken by the CERN Photo Lab. So every one or two months CERN's Audio-Video Service (ETT/DH) will be putting together a video news report that you can watch on your own desktop computer. Daniel Boileau, Patrick Gilbert de Vautibault and Jacques Fichet, the Service's three technicians, came up with the idea of producing this regular feat...

  19. Spaceflight participant visits CERN!

    CERN Multimedia

    Kathryn Coldham

    2016-01-01

    On 15 July, CERN welcomed spaceflight participant Anousheh Ansari.   Anousheh Ansari’s grin stretches from ear to ear, during an intriguing conversation with Nobel laureate Samuel C.C. Ting at AMS POCC. (Image: Maximilien Brice/CERN) Iranian-American Anousheh Ansari was the first-ever female spaceflight participant, spending eight days on the International Space Station (ISS) in 2006. She now has a new addition to her list of extraordinary sights ­– the home of the world’s largest particle accelerator: CERN.   On 15 July, Anousheh Ansari came to CERN and, unsurprisingly, visited the control room of the experiment attached to the ISS: the AMS. At the AMS Payload Operations Control Centre (AMS POCC) on CERN’s Prévessin site, she met the Nobel laureate Samuel Ting, spokesperson of the AMS experiment. Ansari and her accompanying guests were thrilled to expand their knowledge about CERN, its research and its...

  20. CERN Phonebook evolution

    CERN Multimedia

    Sébastien Dellabella

    2012-01-01

    Consolidating phonebooks at CERN We have had many phonebooks in the past, Xwho (now decommissioned), the NICE phonebook on Windows PCs, and more recently the web site people.cern.ch. However, diversity doesn’t always equate to improved efficiency or quality. So in order to reduce the maintenance effort and to improve the user experience, we have consolidated these various phonebooks into a single web application: phonebook.cern.ch Motivations for change The NICE Phonebook was introduced in the year 2000 when Windows 95 was the major desktop platform. Since then, a lot has changed not only in technology and the desktop landscape but also in the variety of devices used to access the data (notably smartphones and tablets). Updating the NICE phonebook is slow. Once the master database is modified it can take up to two days for the data to propagate to the application. Thus, we are now planning the retirement of the NICE phonebook application. The new Phonebook.cern.ch The new phonebook.cern.ch...

  1. Lectures for CERN pensioners

    CERN Multimedia

    SC Unit

    2008-01-01

    The CERN Medical Service and the Pensioners Association are pleased to invite CERN pensioners to a series of lectures given by professors and specialists from the Teaching Hospitals and the Faculty of Medicine of the University of Geneva on the following topic: PROMOTION OF OPTIMUM BRAIN AGEING The lectures will take place in the Main CERN Auditorium (Building 60) from 2.30 p.m. to 4.30 p.m. on the following dates: Wednesday 12 November 2008: Assessing the extent of brain ageing Dr Dina ZEKRY Friday 12 December 2008: Can memory decline be prevented? Pr Jean-Pierre MICHEL Thursday 15 January 2009: Diagnosing and treating Alzheimer’s disease Pr Gabriel GOLD Wednesday 25 February 2009: What is the brain reserve? Speaker’s name to be announced at a later date The lectures will be given in French, with transparencies in English, and will be followed by a wide-ranging debate with the participants. CERN Medical Service - Pensioners Association - CERN-ESO (GAC-EPA)

  2. EU Commissioner visits CERN

    CERN Multimedia

    2005-01-01

    European Commissioner Viviane Reding in front of one of the computers showing how the Grid works and, from left to right, Robert Aymar, CERN's Director-General, Wolfgang von Rüden, Head of the Information Technology Department, and Bob Jones, the newly appointed director of the EGEE project since 1st November. Viviane Reding, European Commissioner for Information Society and Media, visited CERN on 28 October. Accompanied throughout by CERN's Director-General, Robert Aymar, and the Head of the Information Technology Department, Wolfgang von Rüden, the Commissioner visited the ATLAS cavern before going on to the Information Technology Department, where she was given a complete overview of CERN's activities in the strategic field of Grid computing. Viviane Reding's visit coincided with the end of the EGEE (Enabling Grids for E-sciencE) conference, which took place in Pisa in Italy. Co-ordinated by CERN and funded by the European Commission, the EGEE project aims to set up a worldwide grid infrastructure for sc...

  3. CERN Relay Race

    CERN Document Server

    2009-01-01

    The CERN relay race, now in its 39th year, is already a well-known tradition, but this year the organizers say the event will have even more of a festival feeling. Just off the starting line of the CERN relay race.For the past few years, spectators and runners at the CERN relay race have been able to enjoy a beer while listening to music from the CERN music and jazz clubs. But this year the organizers are aiming for "even more of a festival atmosphere". As David Nisbet, President of the CERN running club and organizer of the relay race, says: "Work is not just about getting your head down and doing the theory, it’s also about enjoying the company of your colleagues." This year, on top of music from the Santa Luis Band and the Canettes Blues Band, there will be demonstrations from the Aikido and softball clubs, a stretching session by the Fitness club, as well as various stalls and of course, the well-earned beer from AGLUP, the B...

  4. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  5. Proton radiography for clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Talamonti, C., E-mail: cinzia.talamonti@unifi.i [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Reggioli, V. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Bruzzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Civinini, C. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Marrazzo, L. [Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Menichelli, D. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Pallotta, S. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Randazzo, N. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Sipala, V. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy)

    2010-01-11

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  6. CERN welcomes European science

    CERN Multimedia

    2002-01-01

    On 3 and 4 October CERN will host a special workshop for Marie Curie fellows. This programme is a key plank in the EU's strategy for creating a European research area.     With thousands of scientists from all over the continent working together, CERN is already an exemplary European science showcase. On 3 and 4 October, the Laboratory will contribute further to unifying all European science by hosting a special workshop for EU-funded Marie Curie fellows. This scheme gives young researchers from around the continent the mobility to go to wherever Europe's best facilities in their chosen field happen to be. The event that will take place at CERN, entitled 'Special workshop of Marie Curie Fellows on research and training in physics and technology', organised together with the European Commission, is a continuation of a series of workshops with the aim, among others, of promoting young researchers, supporting their training and mobility, and facilitating the interdisciplinary dissemination of knowledge. Dur...

  7. CERN UN Roundtable

    CERN Document Server

    CERN. Geneva; Del Rosso, Antonella; Gillies, James

    2014-01-01

    In the spirit of strengthening links and sharing best practices among the two Organizations, UNOG and CERN will be jointly organizing a round table discussion on the issue of “The challenge of communicating science and technology to the world: issues and solutions”. It is hoped that the discussions can highlight the experience of various organizations and institutions in their efforts to communicate and inform in several languages on topics – science and technology – that are often perceived as distant and arduous by the layman. ==>> Please note that registrations are now closed. It is not necessary to register for this event if you plan to watch it live on http://webcast.cern.ch. Send your questions to the speakers by email to: question@cern.ch

  8. Cern Cricket Club

    CERN Multimedia

    Cern Cricket Club

    2014-01-01

      Cern Cricket Club The CERN Cricket Club 2014 season has started earlier than usual, with a game scheduled for the first time ever on Easter Sunday.  Due to repair work for the damage done to the ground because of the “Bosons&More” party at the end of September, all games until June have had to be scheduled away. Net practice, which normally takes place on the ground from mid-April, will not start until mid-June. The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/    

  9. CERN Relay Race

    CERN Multimedia

    2005-01-01

    The CERN Relay Race will take place around the Meyrin site on Wednesday 18 May between 12.15 and 12.35. This year, weather permitting, there will be some new attractions in the start/finish area on the field behind the Main Building. You will be able to: listen to music played by the CERN Jazz Club; buy drinks at the bar organised by the CERN Running Club; buy lunch served directly on the terrace by the restaurant Novae. ATTENTION: concerning traffic, the recommendations are the same as always: If possible, please avoid driving on the site during this 20 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding.

  10. Kandinsky College Visits CERN

    CERN Multimedia

    CERN Video productions; Angelos Alexopoulos

    2012-01-01

    This video documents the visit of nine senior high school students of the Kandinsky College in Nijmegen (Netherelands) to CERN. The students visited many of CERN's experimental facilities, took part in a Cloud Chamber workshop, attended talks and roundtable discussions of SpacePart12 and worked on the evaluation of the Microcosm exhibition as part of a school inquiry-based research project. The students and their teacher, Paul de Haas (a participant of the High School Teachers 2012 Programme at CERN) were connected with Prof. Christine Kourkoumelis and George Vasileiadis at the University of Athens and learned hands-on how to analyse real physics events, including Higgs-like ones, from the ATLAS experiment at the LHC using the HYPATIA Applet.

  11. CERN and the Environment

    CERN Document Server

    Aymar, Robert

    2005-01-01

    The impact of CERN’s activities on the surrounding environment is carefully monitored by the Organization via a complete environmental monitoring programme, which is defined and run in agreement with the authorities of Switzerland and France. This programme covers both radiological and conventional aspects. So far the environmental impact of CERN was shown to be negligible. In particular, CERN’s radiological impact is a fraction of the variation of the natural exposure at different locations of the surrounding region. As the site of the Organization is on the territory of two countries and straddles the Swiss-French border, the implementation of its environmental policy requires specific procedures and a very transparent communication towards the Host States authorities and the public opinion. This paper reports the official CERN speech delivered for the opening of the international conference Enviroinfo 2004 that was held at CERN in October 2004.

  12. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  13. CHOEUR DU CERN

    CERN Multimedia

    CHOEUR DU CERN

    2010-01-01

    Les répétitions du chœur du CERN reprendront le mercredi 15 septembre à 20.00 heures à l’amphithéâtre principal – bâtiment 500. Au programme la préparation de notre concert de Noël avec la Missa Brevis, KV115, de Léopold Mozart et de la musique de Noël d’Europe. Les personnes qui aiment chanter, notamment des sopranes et des ténors, sont les bienvenues. Pour tout contact s’adresser à : Baudouin Bleus - (tél.CERN 767 82 44) -(baudouin.bleus@cern.ch) ou Martin Gatehouse ( martin.gatehouse@wanadoo.fr) ou Jean-Paul Diss (jean-pauldiss@wanadoo.fr).  

  14. The Old New Frontier: Studying the CERN-SPS Energy Range with NA61/SHINE

    Directory of Open Access Journals (Sweden)

    Szuba Marek

    2014-04-01

    Full Text Available With the Large Hadron Collider entering its third year of granting us insight into the highest collision energies to date, one should nevertheless keep in mind the unexplored physics potential of lower energies. A prime example here is the NA61/SHINE experiment at the CERN Super Proton Synchrotron. Using its large-acceptance hadronic spectrometer, SHINE aims to accomplish a number of physics goals: measuring spectra of identified hadrons in hadron-nucleus collisions to provide reference for accelerator neutrino experiments and cosmic-ray observatories, investigating particle properties in the large transverse-momentum range for hadron+hadron and hadron+nucleus collisions for studying the nuclear modification factor at SPS energies, and measuring hadronic observables in a particularly interesting region of the phase diagram of strongly-interacting matter to study the onset of deconfinement and search for the critical point of stronglyinteracting matter with nucleus-nucleus collisions. This contribution shall summarise results obtained so far by NA61/SHINE, as well as present the current status and plans of its experimental programme.

  15. Observation of radiation degradation of electrical insulators in the CERN particle accelerators

    Science.gov (United States)

    Chevalier, Ch.; Coste, V.; Fontaine, A.; Tavlet, M.

    1999-05-01

    For the selection of polymer-based materials to be used in radiation environments, radiation tests have been performed at the European Organization for Particle Physics Research (CERN) for several decades. According to the recommendations of the IEC Standard 544, mechanical tests are carried out, and the radiation degradation is measured after accelerated irradiations. It is well known that during long-term exposures, oxygen and moisture are allowed to diffuse in the materials and hence to induce more severe degradation; this phenomenon is known as the `dose-rate effect'. During machine shut-downs, samples of rigid and flexible polymeric insulators (magnet-coil resins and cable insulations) have been taken out and tested after several years of exposure in the Super Proton Synchrotron (SPS) and in the Large Electron-Position Collider (LEP). The mechanical test results are compared to the ones after the accelerated qualification tests, and to the ones of a study conducted in 1991 to estimate the lifetime of cables in the radiation environment of LEP 200. They confirm that thermoplastics are more sensitive to long-term irradiations than the thermosetting resins and the composites, but that the dose-rate effect cannot be neglected in the latter.

  16. Septum magnet MNP-23 for the CERN PS experimental area and its fast interlock system

    CERN Document Server

    Borburgh, J; Prost, A; Zickler, T

    2004-01-01

    Two MNP-23 septum-like magnets are installed at CERN in the transfer line from the Proton Synchrotron (PS) to the East Hall Experimental Area. They are exposed to extremely high doses of ionizing radiation. In the past, the magnets experienced two catastrophic failures due to overheating of its coils and cannot be repaired. The magnets of improved design which is subject of this article are built as replacements for the magnets presently installed. The MNP-23 is a resistive C shaped iron-dominated magnet made of solid low carbon steel blocks. The excitation windings consist of two water-cooled coils wound from hollow copper conductor. The septum design of these magnets implies a high current density which requires an efficient water cooling system. The newly designed cooling circuit provides better cooling performance and more reliability. To avoid failures due to coil overheating, an elaborate interlock system was developed and installed. It consists of two parts: firstly a slow, more classic sensor, to dete...

  17. Effect of ions on the measurement of sulphuric acid in the CLOUD experiment at CERN

    CERN Document Server

    Rondo, L; Ehrhart, S; Schobesberger, S; Franchin, A; Junninen, H; Petäjä, T; Sipilä, M; Worsnop, D R; Curtius, J

    2014-01-01

    Ternary aerosol nucleation experiments were conducted in the CLOUD chamber at CERN in order to investigate the influence of ions on new particle formation. Neutral and ion-induced nucleation experiments, i.e., with and without the presence of ions, were carried out under precisely controlled conditions. The sulphuric acid concentration was measured with a Chemical Ionization Mass Spectrometer (CIMS) during the new particle formation experiments. The added ternary trace gases were ammonia (NH3), dimethylamine (DMA, C2H7N) or oxidised products of pinanediol (PD, C10H18O2). When pinanediol was introduced into the chamber, an increase in the mass spectrometric signal used to determine the sulphuric acid concentration (m/z 97, i.e., HSO4−) was observed due to ions from the CLOUD chamber. The enhancement was only observed during ion-induced nucleation measurements by using either galactic cosmic rays (GCR) or the proton synchrotron (PS) pion beam for the ion generation, respectively. The ion effect typically invo...

  18. Stabilizing Effect of a Double-Harmonic RF System in the CERN PS

    CERN Document Server

    Bhat, C M; Damerau, H; Hancock, S; Mahner, E; Zimmermann, F

    2010-01-01

    Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h=21 to 26 GeV with the 10 MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h=42 from a 20 MHz cavity in anti-phase to the h=21 system. The voltage ratio V(h42)/V(h21) of about 0.5 was set according to simulations. For the next 140 ms,longitudinal profiles show stable bunches in the double harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. Measurements of electron cloud effects induced by the beam are also discussed. The results of beam dynamics simulatio...

  19. Stabilizing effect of a double-harmonic RF system in the CERN PS

    CERN Document Server

    Bhat, C M; Damerau, H; Hancock, S; Mahner, E; Zimmermann, F

    2010-01-01

    Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h = 21 to 26GeV with the 10MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h = 42 from a 20MHz cavity in anti-phase to the h = 21 system. The voltage ratio V (h42)/V (h21) of about 0.5 was set according to simulations. For the next 140 ms, longitudinal profiles show stable bunches in the double-harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. The results of beam dynamics simulations and their comparison with the measured data are presented.

  20. STABILIZING EFFECT OF A DOUBLE-HARMONIC RF SYSTEM IN THE CERN PS

    CERN Document Server

    Bhat, C M; Damerau, H; Hancock, S; Mahner, E; Zimmermann, F

    2009-01-01

    Motivated by the discussions on scenarios for LHC upgrades, beam studies on the stability of flat bunches in a double-harmonic RF system have been conducted in the CERN Proton Synchrotron (PS). Injecting nearly nominal LHC beam intensity per cycle, 18 bunches are accelerated on harmonic h = 21 to 26GeV with the 10MHz RF system. On the flat-top, all bunches are then transformed to flat bunches by adiabatically adding RF voltage at h = 42 from a 20MHz cavity in anti-phase to the h = 21 system. The voltage ratio V (h42)/V (h21) of about 0.5 was set according to simulations. For the next 140 ms, longitudinal profiles show stable bunches in the double-harmonic RF bucket until extraction. Without the second harmonic component, coupled-bunch oscillations are observed. The flatness of the bunches along the batch is analyzed as a measure of the relative phase error between the RF systems due to beam loading. The results of beamdynamics simulations and their comparison with the measured data are presented.

  1. Missing energy signature from invisible decays of dark photons at the CERN SPS

    Science.gov (United States)

    Gninenko, S. N.; Krasnikov, N. V.; Kirsanov, M. M.; Kirpichnikov, D. V.

    2016-11-01

    The dark photon (A' ) production through the mixing with the bremsstrahlung photon from the electron scattering off nuclei can be accompanied by the dominant invisible A' decay into dark-sector particles. In this work we discuss the missing energy signature of this process in the experiment NA64 aiming at the search for A'→invisible decays with a high-energy electron beam at the CERN SPS (The Super Proton Synchrotron). We show the distinctive distributions of variables that can be used to distinguish the A'→invisible signal from background. The results of the detailed simulation of the detector response for the events with and without A' emission are presented. The efficiency of the signal event selection is estimated. It is used to evaluate the sensitivity of the experiment and show that it allows us to probe the still unexplored area of the mixing strength 10-6≲ɛ ≲10-2 and masses up to MA'≲1 GeV . The results obtained are compared with the results from other calculations. In the case of the signal observation, a possibility of extraction of the parameters MA' and ɛ by using the shape of the missing energy spectrum is discussed.

  2. Spotlight on CERN : LHC is back !

    CERN Multimedia

    CERN video productions

    2009-01-01

    Welcome to the CERN Control Centre, which this weekend witnessed the restart of the LHC, more than a year after the initial launch on 10 September 2008. The atmosphere was electric as all eyes were trained on the monitors showing protons circulating in opposite directions at the injection energy of 450 giga-electronvolts. Today, I'm delighted to welcome Steve Myers, Director for Accelerators and Technology, who's here to tell us all about the restart of the LHC. But first let's enjoy some of the images that marked this historic day for the Organization.

  3. Inside CERN : Grosse Maschinen fur kleinste teilchen

    CERN Multimedia

    CERN Public Information Office

    1974-01-01

    A service station with a difference. Presentation of what goes on at CERN. Animation of protons going around a ring, then sent to a target and detectors look at them. SC. PS. ISR. Interesting animation: a red light is superimposed on the accelerator to indicate the beam path. (PS and ISR) BEBC. Scanning, with a nice moment of the tracks arriving. Omega. Tracks. Map showing where SPS will be. The Robbins. Other aspects of SPS construction: magnets, RF cavaties, vacuum tube.Comments : Calm, well constructed presentation without much film imagination, aside from the red light/beam animation.

  4. CERN AWAKE Facility Readiness for First Beam

    CERN Document Server

    Bracco, Chiara; Butterworth, Andrew; Damerau, Heiko; Döbert, Steffen; Fedosseev, Valentin; Feldbaumer, Eduard; Gschwendtner, Edda; Höfle, Wolfgang; Pardons, Ans; Shaposhnikova, Elena; Vincke, Helmut

    2016-01-01

    The AWAKE project at CERN was approved in August 2013 and since then a big effort was made to be able to probe the acceleration of electrons before the "2019-2020 Long Shutdown". The next steps in this challenging schedule will be a dry run of all the beam line systems, at the end of the HW commissioning in June 2016, and the first proton beam sent to the plasma cell one month later. The current status of the project is presented together with an outlook over the foreseen works for operation with electrons in 2018.

  5. CERN Photo Club (CPC) / Canon Contest - My View of CERN

    CERN Multimedia

    Steyaert, Didier

    2016-01-01

    The CERN Photo Club has organized in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016.

  6. First Tuesday @ CERN: Industrial Impact of Information Technology from CERN

    CERN Document Server

    CERN. Geneva

    2004-01-01

    CERN is where the web was born, and remains a hothouse of innovation in information technology (IT). In this fourth First Tuesday @ CERN, we look at industrial partnership at CERN in the IT area from several different angles. The approach taken by CERN with software licencing - a very hot topic in the world of IT - will be discussed. The benefits that CERN hardware and software suppliers gain from working with CERN will be presented, and the CERN openlab, a new approach to industrial partnership at CERN, will be covered. A novel ingredient of this First Tuesday @ CERN is that it will be run in parallel with a similar event for the business community in London, and there will be webcast presentations between the Queen Elizabeth II Conference Centre in London and CERN during the event. Thus, First Tuesday @ CERN will take on a truly European dimension, to reflect CERN's European character. More information: http://www.rezonance.ch, or view the joint UK event program

  7. Poland at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    On 17 October 2000, the second Polish industrial and technological exhibition opens at CERN*. The first one was held five years ago and nine of the companies that were present then have come back again this year. Six of those companies were awarded contracts with CERN in 1995. Three Polish officials were present at the Opening Ceremony today: Mrs Malgorzata Kozlowska, Under-secretary of State in the State Committee for Scientific Research, Mr Henryk Ogryczak, Under-secretary of State in Ministry of Economy and Prof. Jerzy Niewodniczanski, President of National Atomic Energy Agency.

  8. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  9. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  10. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    Are you running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch

  11. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2009-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual session of this course will take place on 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  12. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced using Windows XP. The next bilingual sessions of this course will take place on December 12, 2008 and January 30, 2009. Register using our catalogue : http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch

  13. The significance of Cern

    CERN Multimedia

    Weisskopf,V

    Le Prof. V.Weisskopf, DG du Cern de 1961 à 1965, est né à Vienne, a fait ses études à Göttingen et a une carrière académique particulièrement riche. Il a travaillé à Berlin, Copenhague et Berlin et est parti aux Etats Unis pour participer au projet Manhattan et était Prof. au MTT jusqu'à 1960. Revenu en Europe, il a été DG du Cern et lui a donné l'impulsion que l'on sait.

  14. CERN Diversity Newsletter - March 2017

    CERN Document Server

    Guinot, Genevieve; CERN. Geneva. HR Department

    2017-01-01

    The CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  15. CERN Diversity Newsletter - September 2016

    CERN Document Server

    Guinot, Genevieve

    2016-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  16. CERN Diversity Newsletter - November 2015

    CERN Document Server

    Kaltenhauser, Kristin; CERN. Geneva. HR Department

    2015-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  17. CERN Diversity Newsletter - March 2016

    CERN Document Server

    Kaltenhauser, Kristin; CERN. Geneva. HR Department

    2016-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  18. Une flamme pour le CERN

    CERN Multimedia

    2004-01-01

    For the 50th anniversary of CERN, letters posted from Saint Genis will bear a postmark to celebrate CERN's anniversary. Envelopes are also available from the Saint-Genis-Pouilly (France) post office (3 paragraphs)

  19. WILL I AM visits CERN

    CERN Multimedia

    Noemi Caraban

    2013-01-01

    Will.i.am visited CERN in December 2013, fulfilling a wish he made in a video-link appearance at TEDxCERN earlier that year http://tedxcern.web.cern.ch/video/choral-performance-reach-stars-william. During his visit, he was shown the Antimatter Decelerator, the underground ATLAS experiment cavern and the CERN Control Centre. He also took the opportunity to promote CERN’s beam line for schools competition.

  20. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Document Server

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  1. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Document Server

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  2. Resonant diffraction of synchrotron radiation: New possibilities

    Science.gov (United States)

    Ovchinnikova, E. N.; Mukhamedzhanov, E. Kh.

    2016-09-01

    Resonant diffraction of synchrotron radiation (SR) is a modern method of studying the structure and properties of condensed matter that can be implemented on third-generation synchrotrons. This method allows one to investigate local properties of media (including magnetic and electronic ones) and observe thermal vibrations, defects, and orbital and charge orderings. A brief review of the advance provided by SR resonant diffraction is presented, and the capabilities of this method for analyzing phase transitions are considered in more detail by the example of potassium dihydrogen phosphate and rubidium dihydrogen phosphate crystals. It is shown that the investigation of the temperature dependence of forbidden reflections not only makes it possible to observe the transition from para- to ferroelectric phase, but also gives information about the proton distribution at hydrogen bonds.

  3. CERN Video News on line

    CERN Document Server

    2003-01-01

    The latest CERN video news is on line. In this issue : an interview with the Director General and reports on the new home for the DELPHI barrel and the CERN firemen's spectacular training programme. There's also a vintage video news clip from 1954. See: www.cern.ch/video or Bulletin web page

  4. The CERN fire-fighters

    CERN Multimedia

    CERN PhotoLab

    1959-01-01

    CERN is one of the few laboratories to have its own fire station. The CERN fire brigade was set up in July 1956 to provide a rapid response in the event of an accident and to tackle the risks specific to the Organisation's activities. Six members of the CERN fire brigade in 1959. From left to right: Messrs. Ubertin, Dalbignat, Verny, Vosdey, Lissajoux, Favre.

  5. John Adams and CERN: Personal Recollections

    CERN Document Server

    Brianti, Giorgio

    2013-01-01

    By any standards, John Adams had a most remarkable career. He was involved in three important, emerging technologies, radar, particle accelerators and controlled fusion, and had an outstanding impact on the last two. Without a university education, he attained hierarchical positions of the highest level in prestigious national and international organizations. This article covers the CERN part of his career, by offering some personal insights into the different facets of his contributions to major accelerator projects, from the first strong-focusing synchrotron, the PS, to the SPS and its conversion to a proton–antiproton collider. In particular, it outlines his abilities as a leader of an international collaboration, which has served as an example for international initiatives in other disciplines.

  6. Measurements of $\\pi ^{\\pm }$ , $K^{\\pm }$ , $K^0_S$ , $\\varLambda $ and proton production in proton–carbon interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    CERN Document Server

    Abgrall, N.; Ali, Y.; Andronov, E.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Herve, A.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Johnson, S.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lewicki, M.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A.I.; Manic, D.; Marcinek, A.; Marino, A.D.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Morozov, S.; Mrowczynski, S.; Murphy, S.; Nakadaira, T.; Naskret, M.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Panagiotou, A.D.; Pavin, M.; Petukhov, O.; Pistillo, C.; Planeta, R.; Pluta, J.; Popov, B.A.; Posiadala-Zezula, M.; Pulawski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Rohrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Schmidt, K.; Sekiguchi, T.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Strobele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszynski, O.; Yarritu, K.; Zambelli, L.

    2016-01-01

    Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Interaction and production cross sections as well as spectra of pi+/0, K+/-, p, K0S and Lambda are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of NA61/SHINE measurements with predictions of several hadroproduction models is presented.

  7. Methods of computer processing of experimental data on the intensity of bunches in synchrotrons

    Science.gov (United States)

    Zhabitsky, V. M.

    2016-12-01

    Methods of computer processing of experimental data on the intensity of bunches in synchrotrons for the purpose of receiving functional dependences from time during the accelerating cycle for a number of circulating particles and the mean-square length of a bunch are discussed. Examples of such dependences for the beam at the nuclotron (JINR) and PSB (CERN) are presented.

  8. CERN celebrates Web anniversary

    CERN Document Server

    2003-01-01

    "Ten years ago, CERN issued a statement declaring that a little known piece of software called the World Wide Web was in the public domain. That was on 30 April 1993, and it opened the floodgates to Web development around the world" (1 page).

  9. Disney World sur CERN

    CERN Document Server

    Bieri, P

    1998-01-01

    "'Cela ressemble à un film de James Bond.' Des milliers de curieux se sont rendus, hier, dans le temple genevois de la science ouvert au public. Opération de charme réussie pour le CERN, qu i s'est ainsi refait une image" (1 page)

  10. A heatwave at CERN

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    It's getting hot in Buildings 201 and 860, over-heating even... But no reason to panic! We're talking about the superheated water boilers of CERN's two heating plants, which heat all the buildings on the Meyrin and Prévessin sites.   View of the three boilers and the control centre of the Meyrin heating plant. CERN's two heating plants each comprise three gas* boilers, with generators of 15 MW in the case of Meyrin and 5 MW in the case of Prévessin. Both inject pressurised water, superheated to 125 degrees, into several kilometres of pipes, 22 km on the Meyrin site and 5 km in Prévessin. "A single boiler is sufficient most of the time but a second kicks in automatically during very cold weather, and a third is there on stand-by," explains Christophe Martel, head of the GS Department section responsible for CERN's heating and air-conditioning systems. All of CERN's buildings have a sub-station that receives the superheated water from the boilers an...

  11. Commissaire Moulin visits CERN

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    The French actor and film-maker Yves Rénier was shown around the Laboratory on Friday 6 June by friends at CERN.   Yves Rénier at LEIR. (Photo: Ludwig Pregernig) A keen diver and star of the long-running French television police drama Commissaire Moulin, Yves Rénier took advantage of a stopover in Geneva on his way to the Red Sea to meet up with his friends from the CERN Diving Club, who were only too pleased to take him on a tour of the Laboratory. In the morning, Yves Rénier visited the CERN Control Centre (CCC), Linac2 and LEIR. After lunch at the brasserie in Restaurant No. 2, the actor continued his tour with the CERN Computer Centre, the SM18 superconducting magnet test facility, and lastly the ATLAS experiment. “Thank you so much for showing me around and introducing me to a world I knew so little about,” confided Yves Rénier. “It’s fascinating to see so many scientists of different cultures,...

  12. CERN Cricket Club

    CERN Multimedia

    Staff Association

    2014-01-01

    CERN CRICKET CLUB   The CERN Cricket Club 2014 season has been a good one so far with the team qualifying for the Swiss Cup semi-finals, with home advantage on the Prevessin ground on Sunday, August 24th. Their opponents will only be known the day before when the final game in the Eastern Division is played.  The CERN ground hasn’t quite recovered from the Bosons&More party last year, the wet weather making it impossible to roll the ground, but the new, wider strip is a big improvement. Net practice eventually started in late July, which is probably why the results at the beginning of the season weren’t so good. As match reports are too long to be included in the weekly bulletin, the full reports and the schedule can be found under “Matches (Fixtures, results, reports)” on the Cricket Club web site at http://cern.ch/Club-Cricket/    Anyone interested in playing cricket is welcome to join us at net practice, which takes pla...

  13. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  14. CERN's Guardian Angels

    CERN Multimedia

    2002-01-01

    Any trouble at CERN? The Technical Control Room operates the entire technical infrastructure of CERN every day, all year long. They deal with problems that go from simple water leaks to devastating power cuts.   The Technical Control Room with Kenneth Olesen and Mark Harvey, minutes before their starting time. This big room is probably the liveliest at CERN, since there's always someone there, everyday, all year long. Laurent Randot and Eric Lienard working in the Technical Control Room at CERN in building 212. They've started at 7 a.m. and today has been a relatively quiet day. There have been some microcuts in the electric net because of the wind. But these have been repaired rather quickly... The relief: It's 2.30 p.m. Time for Laurent Randot and Eric Lienard to show their colleagues Mark Harvey and Kenneth Olesen what has been going on during the morning. They are the next TCR team of the day. Mark Harvey and Kenneth Olesen start their working day. They will work until 11p.m., when another team wil...

  15. Tragic loss at CERN

    CERN Multimedia

    CERN Ski Club

    2015-01-01

    Tragic loss at CERN The CERN community is mourning the tragic loss of two members of the CERN Ski Club. On Sunday, April 12, an avalanche buried four out of five skiers, taking part in a ski touring in the region of the Becs de Bosson in Valais (CH). The fifth skier, who had not been buried in the snow,  courageously managed to save two of the skiers, but Hervé Milcent, 49 years, federal ski instructor, and Mattieu Cattin, 33 years, were buried under two to three meters of snow, far down the avalanche slope, and did not survive, despite the fast arrival of the mountain rescue. In its 40 years of existence, the CERN Ski Club, one of the biggest in the Geneva area, has never been confronted with such a tragedy. The passing of Hervé and Matthieu has deeply shocked and saddened all volunteers of the Club as well as the entire alpine community. The ski touring section of the club would like to honour its friend Hervé, who joined the club in 1998. In 2003 he became res...

  16. Improved safety at CERN

    CERN Multimedia

    2006-01-01

    As announced in Weekly Bulletin No. 43/2006, a new approach to the implementation of Safety at CERN has been decided, which required taking some managerial decisions. The guidelines of the new approach are described in the document 'New approach to Safety implementation at CERN', which also summarizes the main managerial decisions I have taken to strengthen compliance with the CERN Safety policy and Rules. To this end I have also reviewed the mandates of the Safety Commission and the Safety Policy Committee (SAPOCO). Some details of the document 'Safety Policy at CERN' (also known as SAPOCO42) have been modified accordingly; its essential principles, unchanged, remain the basis for the safety policy of the Organisation. I would also like to inform you that I have appointed Dr M. Bona as the new Head of the Safety Commission until 31.12.2008, and that I will proceed soon to the appointment of the members of the new Safety Policy Committee. All members of the personnel are deemed to have taken note of the d...

  17. Cern Golf Club

    CERN Multimedia

    Cern Golf Club

    2014-01-01

      The Cern Golf Club   Members are here with invited to the: Annual General Meeting which takes place Wednesday evening the 5th February 2014 at 18h00 in the Conference room in bldg 13-2-005. A committee member will be at CERN gate B, 17h50 and accompany “external” CGC members to the conference room. Agenda: 1. President’s report 2. Treasurer’s report 3. Election of the Committee for 2014 4. Election of  Auditors 5. Draft schedule for 2014 CGC-competitions and other events 6. “Corpo” report    7. Proposals and any other business Please forward any proposals (to any of the committee members) you have, including candidature for the 2014 committee minimum three days in advance before the meeting.      Cern Golf Club   Les membres de club de golf de CERN sont invités à l’Assemblée Géné...

  18. CERN celebrates another milestone

    CERN Multimedia

    2007-01-01

    "CERN (the European Organization for Nuclear Research) recently celebrated the lowering of the gigantic toroid magnet end-cap, using an EOT crane, onto the cavern floor. After a two-hour operation, the installation teams from ATLAS, PH-ATI and TS could finally breath a sigh of relief." (1/2 page)

  19. CERN's future secured

    CERN Multimedia

    2003-01-01

    The CERN Council held its 123rd session on 13 December under the chairmanship of Professor Maurice Bourquin. The election of the next Director General, the Baseline Plan for 2003-2010 and a new status for non-European states were among the items agreed. In addition, the European Investment Bank has agreed a loan of 300 million EUR to complete the LHC.

  20. CERN Women's club

    CERN Multimedia

    CERN Women's club

    2010-01-01

    The Welcome Center The Welcome Center website for CERN newcomers – and everyone else at CERN – has celebrated its first anniversary in operation. It began as a project to organize all the various information available at CERN into an easy to use site, with advice to help you make the most of your time here. It continues to be updated as new information becomes available. Lori Hakulinen and her helpers offer to meet with anyone who has questions. They can advise you on weekend activities, local restaurants and where to buy hard to find items or some of your favorite things from home, in addition to all of the practicalities you need to know, such as how to find housing or have a telephone installed, where to take language classes and much, much more. It’s all listed at: http://cern.ch/club-cwc-newcomers In general, meetings take place the first and third Thursdays in the month at Restaurant No. 1 in the Children’s Dining Room. (Please consult the Homepage for schedu...

  1. Women at CERN

    CERN Multimedia

    2004-01-01

    To mark International Women's Day on 8 March, the Weekly Bulletin has looked at the careers of six female physicists, engineers and administrators working at CERN. A frequent question on the lips of newcomers to CERN as they take a quick look around them is 'But where are the women?' However, while it's true that the Laboratory has never had a huge number of female personnel, a closer look reveals that there are in fact quite a few around. To mark International Women's Day, the Bulletin has interviewed six women working at CERN to find out how they see the Organization, what they do and what they think about their daily working lives. Creating a link 'Maybe because I grew up during World War II, my parents always taught me to respect people of other nationalities, religions, colour, etc., so one thing I have always appreciated about CERN is that it promotes this tolerance and understanding by giving us the great privilege of working side by side with colleagues from many cultures and walks of life.' Pegg...

  2. Give blood at CERN

    CERN Multimedia

    SC Unit

    2008-01-01

    ACCIDENTS and ILLNESSES don’t take a break! DO SOMETHING AMAZING - GIVE BLOOD! IT’S IN ALL OUR INTERESTS. 30 July 2008 from 9.30 a.m. to 4 p.m. CERN RESTAURANT NOVAE First floor - Salle des Pas Perdus After you have given blood, you are invited to partake of refreshments kindly offered by NOVAE.

  3. La Nascita del CERN

    CERN Multimedia

    Fidecaro, Giuseppe

    2004-01-01

    CERN is born on 30 Sep 1954, just after the signature in Paris of a Convention for the creation of an European Center for Nuclear Research. It was a need to recreate a multilateral collaboration to start again scientific Research after the War (2 pages)

  4. CERN in detail

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Before, you had to go on the TPG website to find a tram-route, use Google Maps to see an aerial photo of CERN, and look for CERN buildings on map.web.cern.ch. Now, that's ancient history, with a new Geographical Information System (GIS) Portal set up by the Design Office and Patrimony Service (GS/SEM/DOP).  It's a one-stop-shop for all this information and much more.   A screenshot of the GIS Portal. Over the past few days, you might have noticed the new interface called MAPSearch that pops up when you make a building search using the Building and Roads field on the CERN homepage. This is a simplified version of the new GIS web Portal, a project on which the GS Department's Design Office and Patrimony Service has been working since January 2010. "In today's informatics age, we need to respond ever more quickly to increasing numbers of specific user requests," explains Project Leader Youri Robert. This is more than just a new release of an old tool, it's a completely n...

  5. CERN CROQUET CLUB

    CERN Multimedia

    Cern Croquet Club

    2015-01-01

    CERN CROQUET CLUB   Prévessin site Introduction to croquet, and barbecue, at the club from 18.00 on Thursday 30th April. Please Email norferga@orange.fr by 28th April if you are coming.  Please wear flat-soled shoes. Looking forward to seeing. Norman Eatough, President

  6. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  7. Bhutan at CERN

    CERN Multimedia

    2002-01-01

    On Tuesday 12 March, CERN received an extraordinary visitor, a very great representative of a very tiny country. His Royal Highness, Dasho Jigme Khesar Namgyal Wangchuk, Crown Prince of Bhutan, visited the assembly site of CMS. For those whose geographical knowledge is weak, Bhutan is a tiny bhuddist kingdom, nestled in the Himalayas and surrounded by two giants, India and China.

  8. DESY greets CERN

    CERN Multimedia

    Helmut Dosch, Chairman of the DESY Board of Directors, continues the series of occasional exchanges between CERN and other laboratories world-wide. As part of this exchange, CERN Director-General Rolf Heuer wrote a message in DESY inForm. Helmut Dosch took over from Albrecht Wagner in March 2009. You may think that the connections between CERN and DESY are obvious – particle physics labs with record-breaking accelerators and users from all around the world trying to solve mankind’s great mysteries. We even exchanged a few Directors. But did you know that there are similarities that are much closer to home – for example that both labs have names for their staff in the host language that are untranslatable into English? You are CERNoises and CERNois, we are DESYanerinnen and DESYaner. And in the end it’s the people it all comes down to. We at DESY admire the resourcefulness, enthusiasm, dedication and perseverance with which you at CERN have designed, built, started ...

  9. CERN fellows and visitors

    CERN Multimedia

    Penney, R. W.

    1963-01-01

    This article describes the Fellowship and Visitor Programme as it is at present, detailing the various headings under which the visitors come and indicating the methods by which they are chosen. The way in which their work is integrated into the general scientific activity of CERN is discussed briefly.

  10. CERN in the blogosphere

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN communicates with the outside world in many different ways – websites, publications, through the media and via twitter to name but a few. As of January, CERN has a new way of engaging with the world: a CERN institutional blog.   CERN’s blog was launched on 10 January on the Quantum Diaries platform, adding a new strand to a well-established site. Quantum Diaries was launched in 2005 as an initiative for the World Year of Physics promoted by the InterAction collaboration, a group that brings together the communication offices of some of the world’s major particle physics labs and organisations. The launch of institutional blogs from Brookhaven, CERN, Fermilab and TRIUMF has added an extra dimension to Quantum Diaries. Visits to the site jumped to 3000 per day with the addition of the institutional blogs, and that number is already growing. CERN’s first post explains one of the reasons we’re doing this. With the incredible thirst for informati...

  11. CERN SHOP CHRISTMAS SALE

    CERN Multimedia

    Visits & Exhibition Service

    2000-01-01

    Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 12 to Thursday 14 December from 10.00 to 16.00.   Sweat-shirt col zippé, grey, blue, black (M, L, XL) 30.- Sweat-shirt col polo, grey, collar blue (M, L, XL) 30.- T-shirt, black, (M, L, XL) 15.- WWW T-shirt, white, bordeau (M, L, XL) 15.- CERN silk tie (3 colours) 33.- Fancy silk tie (blue, bordeau 25.- Silk scarf (blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- New model of CERN watch 25.- New CERN baseball cap 10.- Antimatter (English/anglais) 30.- The Search for Infinity (French, Italian, English,) 35.- Auf der Suche nach dem Unendlichen 45.- If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs (Shop will be closed at 12.00 on 22.12.).

  12. CERN apprenticeship scheme honoured

    CERN Multimedia

    2008-01-01

    Prestigious awards for two apprentices who did their practical training at CERN. Sylvain Heinzen, apprentice physics lab technician at CERN, receiving his award from Pierre-François UNGER, State Councillor responsible for the Federal Department of the Economy and Health. The other award-winner, Cédric Gerber, is on the right of the photo.Among Geneva’s top apprentices who were honoured by the Fondation sociale de l’Union industrielle genevoise (UIG) on 28 October this year, were two CERN apprentices. Electronics technician Cédric Gerber and physics lab technician Sylvain Heinzen both did their four-year sandwich course at CERN, obtaining their professional qualification, the Certificat fédéral de capacité (CFC), in June. On top of that, Cédric Gerber, who had been a particularly outstanding apprentice, received two further distinctions at the CFC awards ceremony - the State Council prize for achieving one of the top-ten o...

  13. CERN CAR CLUB

    CERN Multimedia

    Automobile club

    2009-01-01

    You are cordially invited to the next General Assembly of the CERN Car Club Tuesday 12 January 2010 at 5:45pm Bldg. 593 / room 11 As the end of 2009 is approaching, it is time to think about renewing your subscription. Therefore next time you are on the CERN-Meyrin site or at the Post Office counter don’t forget to fill in the payment slip to continue to be a part of our large family. The fee remains unchanged: 50 CHF. For those of you who are regular users of our equipment and who know of all the advantages that the club is in a position to offer, it seems pointless to give details, we are sure that many of you have made use of them and are satisfied. We remind you everyone working on CERN site is entitled to become a member of our club, this includes industrial support personnel and staff of companies which have a contract with CERN. If you are not yet a member, come and visit us! We will be happy to welcome you and show you the facilities, or you can visit our web site. The use of the club&...

  14. Satellite photo of CERN

    CERN Multimedia

    1991-01-01

    This photo from the Landsat5 orbital telescope shows the locations of CERN's Meyrin and Prevessin sites near Geneva on the Swiss-France border. The tunnels housing the LHC and SPS accelerators are also illustrated. Photo credit: US Geological Survey/photo by Jane Doe.

  15. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  16. Muse at CERN

    CERN Multimedia

    CERN Bulletin

    2016-01-01

    On 19 July, the world-famous, English rock band, Muse, visited CERN before taking centre-stage at Nyon’s Paléo Festival. They toured some of CERN’s installations, including the Synchrocyclotron and the Microcosm exhibition, and also looked in on CMS and the Antimatter Factory.    

  17. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  18. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2013-01-01

    Christmas SaleTuesday 26th November 2013, from 9:00 to 11:00 Main Building 60 Ground Floor Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch.

  19. CERN cars drive by the Geneva Motor Show

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    One of CERN's new gas-fuelled cars was a special guest at the press days of the Geneva motor show this year. The car enjoyed a prominent position on the Gazmobil stand, right next to the latest Mazeratis and Ferraris. Journalists previewing the motor show could discover CERN's support for green technologies and also find out more about the lab - home to the fastest racetrack on the planet, with protons in the LHC running at 99.9999991% of the speed of light.    

  20. CERN Enters the Second Year AD

    CERN Document Server

    2001-01-01

    2001 is the year that physics at CERN's new Antiproton Decelerator (AD) really gets up to speed. Changes to the AD since 2000 mean that this year the three experiments, ASACUSA, ATHENA, and ATRAP have had more intense antiproton beams to work with since physics started on 7 May. CERN's Antiproton Decelerator - major improvements for 2001. The AD is a unique machine. Its job is to decelerate not accelerate particle beams, and it has to handle beam energies that vary by an unprecedented factor of 35 from injection to ejection. Since the machine was designed to operate at fixed energy in its first incarnation as a collector of antiprotons for CERN's 1980s proton antiproton collider, this factor of 35 presented a big challenge to the AD team. The team's design goal was to hang onto a quarter of the injected antiprotons through their vertiginous fall in energy, and to repeat the deceleration cycle once per minute. Improvements to the machine over the winter shutdown and through the first four weeks of 2001 run...

  1. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  2. CERN data stories: CERN Analysis Preservation, CERN Open Data and HEPData

    OpenAIRE

    2016-01-01

    Presentation given at THOR Madrid Bootcamp, Ph.D. day. Introduction: CERN Community specific aspects: High-Energy Physics Motivation Resulting community services CERN Open Data HEPData CERN Analysis Preservation INSPIRE Conclusions and missing pieces​​​​​​

  3. CERN HEALTH INSURANCE SCHEME (CHIS)

    CERN Multimedia

    HR Department

    2002-01-01

    List of benefits for 2002 The CHIS list of benefits for 2002 is now available from the HR Division Website (under 'general information'). We wish to draw your attention to the fact that the copies of this list available at the CERN UNIQA Office are intended ONLY for CERN pensioners. CERN staff members are therefore kindly requested to print this list themselves from the Web. English version HERE We would like to take this opportunity to remind staff members that they should obtain medical expenses claim forms from their divisional secretariat and NOT from the CERN UNIQA Office, which has a limited supply intended for CERN pensioners ONLY. Human Resources Division Tel: 73635

  4. CERN & Society launches donation portal

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    The CERN & Society programme brings together projects in the areas of education and outreach, innovation and knowledge exchange, and culture and arts, that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. Today, CERN & Society is launching its "giving" website – a portal to allow donors to contribute to various projects and forge new relationships with CERN.   "The CERN & Society initiative in its embryonic form began almost three years ago, with the feeling that the laboratory could play a bigger role for the benefit of society," says Matteo Castoldi, Head of the CERN Development Office, who, with his team, is seeking supporters and ambassadors for the CERN & Society initiative. "The concept is not completely new – in some sense it is embedded in CERN’s DNA, as the laboratory helps society by creating knowledge and new technologies – but we would like to d...

  5. Stronger links between CERN and South Africa

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    iThemba LABS in South Africa is a research facility that, about twenty years ago, started to treat oncological patients with particle beams. Its collaboration with CERN has steadily grown over the years. After becoming a member of the ALICE and ATLAS Collaborations, today iThemba LABS is planning to buy a new medical-use cyclotron proton facility, and is seeking to strengthen its links with CERN and Europe also in this field by collaborating with ENLIGHT. The cyclotron will be dedicated to proton therapy – the only one of its kind in the southern hemisphere.   iThemba LABS (Laboratory for Accelerator Based Sciences) was established near Cape Town, South Africa almost 50 years ago as the continent's base for the Southern Universities Nuclear Institute that is now used mainly for material science research. In the 1980s, iThemba built a 200MeV cyclotron and, following its construction, in the early 1990s branched into a new scientific field: radiation and nuclear medicine. ...

  6. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    CERN Document Server

    Thurman-Keup, R; Hahn, A; Hurh, P; Lorman, E; Lundberg, C; Meyer, T; Miller, D; Pordes, S; Valishev, A

    2011-01-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measur...

  7. SYNCHROTRON RADIATION SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  8. Compact synchrotron light sources

    CERN Document Server

    Weihreter, Ernst

    1996-01-01

    This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel

  9. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  10. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  11. ERC rewards CERN researchers

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    The European Research Council (ERC) has awarded starting grants to Magdalena Kowalska, a member of the ISOLDE physics team, and Claude Duhr, CERN Theory Division. The funding will enable them to build their own research teams at CERN, engaging postdocs and PhD students.   Magdalena Kowalska and Claude Duhr. The ERC fosters scientific excellence in Europe through competitive funding. Its grants are awarded to projects headed by researchers – both beginning-of-career and established – via an open, peer-reviewed competition. In December 2014, Magdalena Kowalska and Claude Duhr were awarded grants to pursue research in ultra-sensitive nuclear magnetic resonance (NMR) in liquids and mathematical structures in scattering amplitudes, respectively. “Our research project aims to apply an ultra-sensitive NMR technique using radioisotopes to liquids in order to study the interaction of metal ions with biological molecules such as proteins, DNA or RNA,” says Mag...

  12. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor HEALTHY HEART? ♥ Evaluation of personal cardiac risks through the monitoring of: • Blood pressure • Cholesterol and sugar levels • Body Mass Index ... and more ♥ Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12am Building 65 FIRST AID COURSES ♥ What to do in a Cardiac Emergency (3 h duration) Places are limited and on reservation only (15 people / day) To book, E-mail the Medical Services on: service.medical@cern.ch

  13. CERN Heart Days

    CERN Document Server

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor No need to book HEALTHY HEART? Evaluation of personal cardiac risks through the monitoring of: Blood pressure Cholesterol and sugar levels Body Mass Index ... and more Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12am - Building 65 Please book (limited to 15 people/day) FIRST AID COURSES What to do in a Cardiac Emergency (3 h. duration) Places are limited and on reservation only (15 people/day). To book, e-mail the Medical Services on: service.medical@cern.ch

  14. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor no need to book HEALTHY HEART? • Evaluation of personal cardiac risks through the monitoring of: Blood pressure Cholesterol and sugar levels Body Mass Index ... and more • Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12 am - Building 65 Please book (limited to 15 people/day) FIRST AID COURSES • What to do in a Cardiac Emergency (3 h. duration) Places are limited and on reservation only (15 people/day). To book, e-mail the Medical Services on: service.medical@cern.ch

  15. CERN Courier goes digital

    CERN Document Server

    Christine Sutton, CERN Courier editor

    2013-01-01

    The January/February 2013 issue of the CERN Courier offers a new way to access the content – the first digital edition of the magazine.   The CERN Courier dates back to August 1959, when the first issue appeared, consisting of 8 black-and-white pages. Since then it has seen many changes in design and layout, leading to the current full-colour editions of more than 50 pages on average. It went on the web for the first time in October 1998, when IOP Publishing took over the production work. Now, we have taken another step forward with a digital edition that provides yet another means to access the content beyond the web and print editions, which continue as before. To download the digital edition, click here. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up.

  16. Monitoring Evolution at CERN

    CERN Document Server

    Andrade, P; Murphy, S; Pigueiras, L; Santos, M

    2015-01-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous ...

  17. Ombud's Corner: Respect @ CERN

    CERN Document Server

    Sudeshna Datta-Cockerill

    2014-01-01

    Since 2010 CERN has been a member of the Geneva-based association "Le respect, ça change la vie". Four years later and in conjunction with CERN’s celebration of its 60 years of ‘science for peace’, it is time to launch a new respectful workplace awareness campaign under the auspices of the Ombud.   Mutual respect is a basic pillar of peace. At CERN, we pride ourselves on our history, which started when a handful of Europe’s visionary scientists saw the opportunity that an international laboratory for fundamental research would present in bringing nations together. That idea has worked very well and, today, our success can be measured not only in terms of unprecedented scientific achievements but also in terms of training and education, and exemplary collaboration across borders, cultures and an extensive range of differences. In order for history to continue along these positive lines, and coming back to the awareness campai...

  18. Germany AT CERN

    CERN Multimedia

    2005-01-01

    From 1 to 2 March 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:30 - 17:30 Twenty nine companies will present their latest technology at the "Germany at CERN" exhibition. German industry will exhibit products and technologies related to the field of particle physics. The main sectors represented will be: mechanical engineering, particle detectors, electrical engineering, electronics, data processing, radiation protection and vacuum and low temperature techonology. The exhibition is organised by the Federal Ministry of Education and Research (BMBF), Bonn. The exhibitors are listed below. A detailed programme will be available in due course: from your Departemental secretariat, from the reception information desk, Building 33, at the exhibition itself. A detailed list of the participating firms is already available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS ACCEL Instruments GmbH APRA-NORM Elekt...

  19. ITALY AT CERN

    CERN Multimedia

    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows : - the list of exhibitors. A detailed programme will be available in due course at : - your Divisional secretariat, - the exhibition, - on the SPL homepage http://spl-div.web.cern.ch/spl-div/member_states/exhibitions_visits.htm LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Andalo' Gianni Srl15 Finsys...

  20. ITALY AT CERN

    CERN Multimedia

    2003-01-01

    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.30 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows: - the list of exhibitors. A detailed programme will be available in due course: - from your Divisional secretariat, - at the exhibition, - on the SPL homepage http://spl-div.web.cern.ch/spl-div/member_states/exhibitions_visits.htm LISTE DES EXPOSANTS / LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Anda...

  1. Italy at CERN

    CERN Multimedia

    Caroline Laignel

    2005-01-01

    15 - 17 November 2005 Main Building Bldg 60 - ground and 1st floor 09:00 - 17:30 Twenty-six companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: electrical engineering, electronics, logistics, mechanical engineering, vacuum and low-temperature technology.   The exhibition is being organised by the INFN in Padua. The exhibitors are listed below.   A detailed programme will be available in due course : from your Departmental secretariat, at the exhibition, on the FI homepage http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS  Ansaldo Superconduttori Spa CAEN Spa CECOM Snc Consorzio Canavese Export CPE Italia Spa Criotec Impianti Srl CTE Sistemi Srl Carpenteria S. Antonio Spa E.E.I. Equipaggiamenti Elettronici Industriali Elettronica Conduttori Srl Goma Elettronica Spa ICAR Spa Intercond Spa Keno...

  2. Germany at CERN

    CERN Multimedia

    C. Laignel / FI-DI

    2005-01-01

    From 1 to 3 march 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:30 - 17:30 Twenty eight companies will present their latest technology at the "Germany at CERN" exhibition. German industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: mechanical engineering, particle detectors, electrical engineering, electronics, data processing, radiation protection and vacuum and low temperature techonology. The exhibition is organised by the Federal Minister of Education and Research (BMBF), Bonn. There follows: the list of exhibitors A detailed programme will be available in due course at : your Departemental secretariat, the reception information desk, Building 33, the exhibition. A detailed list of firms is available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS ACCEL Instruments GmbH APRA-NORM Elektromechanik GmbH BABCOCK NOELL Nucle...

  3. Germany AT CERN

    CERN Multimedia

    C. Laignel / FI-DI

    2005-01-01

    From 1 to 3 march 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:30 - 17:30 Twenty nine companies will present their latest technology at the "Germany at CERN" exhibition. German industry will exhibit products and technologies related to the field of particle physics. The main sectors represented will be: mechanical engineering, particle detectors, electrical engineering, electronics, data processing, radiation protection and vacuum and low temperature techonology. The exhibition is organised by the Federal Minister of Education and Research (BMBF), Bonn. The exhibitors are listed below. A detailed programme will be available in due course: from your Departemental secretariat, from the reception information desk, Building 33, at the exhibition itself. A detailed list of the participating firms is already available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS ACCEL Instruments GmbH APRA-NORM Elekt...

  4. Great Britain at CERN

    CERN Multimedia

    2006-01-01

    From 14 to 16 November 2006 Administration Building, Bldg. 60/61 - ground and 1st floor 09.30 - 17.30 Fifteen companies will present their latest technologies at the 'Great Britain at CERN' exhibition. British industry will exhibit products and technologies related to the field of particle physics. The main fields represented will be computing technologies, electrical engineering, electronics, mechanical engineering, vacuum & low temperature technologies and particle detectors. The exhibition is organised by BEAMA Exhibitions (the British Electrotechnical and Allied Manufacturers Association). Below you will find: a list of the exhibitors. A detailed programme will be available in due course: from your Departmental secretariat, from the Reception information desk, Building 33, at the exhibition itself. A detailed list of the companies is available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS 3D Metrics Alma...

  5. Great Britain at CERN

    CERN Multimedia

    2006-01-01

    From 14 to 16 November 2006 Administration Building, Bldg. 60/61 - ground and 1st floor 09.30 - 17.30 Fifteen companies will present their latest technologies at the 'Great Britain at CERN' exhibition. British industry will exhibit products and technologies related to the field of particle physics. The main fields represented will be computing technologies, electrical engineering, electronics, mechanical engineering, vacuum & low temperature technologies and particle detectors. The exhibition is organised by BEAMA Exhibitions (the British Electrotechnical and Allied Manufacturers Association). Below you will find: a list of the exhibitors. A detailed programme will be available in due course: from your Departmental secretariat, from the Reception information desk, Building 33, at the exhibition itself. A detailed list of the companies is available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS 3D Metrics Almat...

  6. CERN School of Computing

    CERN Multimedia

    2007-01-01

    The 2007 CERN School of Computing, organised by CERN in collaboration with the University of Split (FESB) will be held from 20 to 31 August 2007 in Dubrovnik, Croatia. It is aimed at postgraduate students and research workers with a few years' experience in scientific physics, computing or related fields. Special themes this year are: GRID Technologies: The Grid track delivers unique theoretical and hands-on education on some of the most advanced GRID topics; Software Technologies: The Software track addresses some of the most relevant modern techniques and tools for large scale distributed software development and handling as well as for computer security; Physics Computing: The Physics Computing track focuses on informatics topics specific to the HEP community. After setting-the-scene lectures, it addresses data acquisition and ROOT. Grants from the European Union Framework Programme 6 (FP6) are available to participants to cover part or all of the cost of the School. More information can be found at...

  7. Belgian Firms Visit CERN

    CERN Document Server

    2001-01-01

    Fifteen Belgian firms visited CERN last 2 and 3 April to present their know-how. Industrial sectors ranging from precision machining to electrical engineering and electronics were represented. And for the first time, companies from the Flemish and Brussels regions of the country joined their Walloon compatriots, who have come to CERN before. The visit was organised by Mr J.-M. Warêgne, economic and commercial attaché at the Belgian permanent mission for the French-speaking region, Mr J. Van de Vondel, his opposite number for the Flemish region, and Mrs E. Solowianiuk, economic and commercial counsellor at the Belgian permanent mission for the Brussels-Capital region.

  8. CERN MicroClub

    CERN Multimedia

    CERN MicroClub

    2016-01-01

    Le CERN Micro Club (en partenariat avec Google Education et EU Code Week) organise un évènement éducatif exceptionnel autour de trois kits scientifiques basés sur le mini-ordinateur Raspberry Pi : Le Bras Robotique "Poppy Ergo Jr", conçu par l'équipe-projet Flowers (Centre de recherche Inria Bordeaux Sud-Ouest, ENSTA Paris Tech). Le kit de détection de rayons cosmiques "Muon Hunter", conçu en partenariat entre Mr Mihaly Vadai et les membres du CERN Micro Club. La voiture radio-commandée programmable Wifi "GianoPi", conçue en partenariat avec le campus "La Chataigneraie", pour l'Ecole Internationale de Genève.   Le vendredi 7 octobre (de 18h à 20h) : Une conférence gratuite et ouverte à tous (limitée à 100 personnes), pendant laquelle v...

  9. France at CERN

    CERN Multimedia

    2005-01-01

    From 04 to 06 october 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:00 - 17:30   Thirty-two companies will present their latest technology at the "France at CERN" exhibition. French industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: mechanical engineering, electrical engineering, electronics, data processing, various supplies, civil engineering and buildings, and vacuum and low temperature technology. The exhibition is organised by UBIFRANCE, the French Committee for Trade Events Abroad.  You will find below : the list of exhibitors.   A detailed programme will be available in due course at : your Departmental secretariat, the reception information desk, Building 33, the exhibition itself.   A detailed list of the firms involved is already available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm     LIST OF EXHIBITORS AIR LIQUIDE DTA ALSTO...

  10. France at CERN

    CERN Multimedia

    2005-01-01

    From 04 to 06 october 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:00 - 17:30   Thirty-two companies will present their latest technology at the "France at CERN" exhibition. French industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: mechanical engineering, electrical engineering, electronics, data processing, various supplies, civil engineering and buildings, and vacuum and low temperature technology. The exhibition is organised by UBIFRANCE, the French Committee for Trade Events Abroad.  You will find below : the list of exhibitors.   A detailed programme will be available in due course at : your Departmental secretariat, the reception information desk, Building 33, the exhibition itself.   A detailed list of the firms involved is already available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm     LIST OF EXHIBITORS AIR LIQUIDE DTA ALSTOM...

  11. CERN Relay Race 2009

    CERN Multimedia

    2009-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 14th May starting at 12:15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. More details on how to register your team for the relay race

  12. CERN Electronics Pool presentations

    CERN Multimedia

    2011-01-01

    The CERN Electronics Pool has organised a series of presentations in collaboration with oscilloscope manufacturers. The last one will take place according to the schedule below.   Time will be available at the end of the presentation to discuss your personal needs. The Agilent presentation had to be postponed and will be organised later. -     Lecroy: Thursday, 24 November 2011, in 530-R-030, 14:00 to 16:30.

  13. CERN Women's Club

    CERN Document Server

    CERN Women's Club

    2012-01-01

    offee Morning Tuesday 12th  June 2012, 12:30 Annual Club Lunch at "The Physalis" in Prévessin Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  14. CERN access cards

    CERN Multimedia

    HR Department

    2007-01-01

    Holders of CERN access cards are reminded that the card is an official document. It is important to carry it with you at all times when you are on the site. This applies also to those on standby duty who are called out for emergency interventions. As announced in Weekly Bulletin 13/2006, any loss or theft of access cards must be declared to the competent external authorities.

  15. Cern Women's Club

    CERN Multimedia

    Club des Cernoises

    2011-01-01

    Coffee Morning Tuesday 8th November 2011, 9:00 - 11:00 Bldg 504 (Restaurant No 2 - DSR) 1st Floor, Club Room 3 Organization of our Christmas Sale In favour of “Terre des Hommes” Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  16. CERN Women's Club

    CERN Multimedia

    CERN Women's Club

    2011-01-01

    Coffee Morning Tuesday 10th January 2012, 9:00 – 11:00 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Epiphany (French tradition – “Tirer les rois”) Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  17. Discovery Mondays - CERN Microcosm

    CERN Multimedia

    Antonio Marin

    2003-01-01

    Le public est venu nombreux au sixième Lundi Découverte du 6.10.2003 pour voir et manipuler les outils des géomètres du CERN, o le groupe de métrologie de positionnement et de topométrie leur a concocté des animations d'une redoutable précision.

  18. CERN, some astonishing ideas

    CERN Document Server

    Gourber, J P

    1982-01-01

    An account is given of the large (26.6 km) collision and storage ring of the CERN electron-positron collision accelerator under construction. This ring will incorporate a number of bending electromagnets, and the original and surprising design for them, the 'iron-concrete' cores are described, together with the technique for fabrication. A performance comparable with all-steel magnets but at considerably reduced cost is claimed.

  19. CERN Women's Club

    CERN Document Server

    Club des cernoises

    2011-01-01

    Coffee Morning Tuesday 11th October, 9:00 – 11:00 Bldg 504 (Restaurant No 2) 1st Floor, Club Room 3 Presentation of the charity to benefit from the Christmas Sale TERRE DES HOMMES New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  20. Les outils du CERN

    CERN Multimedia

    1999-01-01

    C'est le plus grand centre mondial de recherche en physique des particules. Les outils du Laboratoire, accélérateurs et détecteurs de particules, figurent parmi les instruments scientifiques les plus complexes au monde. Des prix Nobels ont d'ailleurs été attribués aux physiciens du CERN pour leurs développements.