WorldWideScience

Sample records for cern n-tof facility

  1. The N-TOF Facility at CERN: Status and Perspectives

    International Nuclear Information System (INIS)

    The outstanding features of the existing CERN n-TOF neutron beam are the very high instantaneous neutron flux, excellent n-TOF resolution, low intrinsic backgrounds and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform neutron-induced cross-section and angular distribution measurements for applications such as nuclear astrophysics, nuclear reactor technology and basic nuclear physics. This paper presents in detail all the characteristics of the present neutron beam in the different available configurations, which correspond to two different collimation systems and two choices of neutron moderator. The features include shape and intensity of the neutron flux, beam spatial profile, in-beam background components and the energy resolution broadening. The description of these features is based upon both dedicated measurements as well as Monte Carlo simulations, and includes an estimation of the systematic uncertainties in the mentioned quantities. The overall efficiency of the experimental program and the range of possible measurements will be expanded in the near future with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the present n-TOF spallation target. This upgrade, which will benefit from a neutron flux 25 times higher than the existing one, will provide a substantial improvement in measurement sensitivities and will open the possibility to measure neutron cross-section of isotopes with very short half-lives or available in very small quantities. The technical study for the construction of this new neutron beam will be presented, highlighting the main advantages compared to the presently existing Experimental Area (EAR-1). (author)

  2. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  3. The present status of the n-TOF facility at CERN

    International Nuclear Information System (INIS)

    The main aim of the n-TOF facility at CERN is to provide precise neutron cross-section data relevant to the R and D of accelerator driven systems, nuclear astrophysics, etc. It is composed of a spallation neutron source, a 187.5-m flight path, a variety of detectors, a data acquisition system, etc. A 20 GeV proton synchrotron is employed together with a lead target for the spallation neutron source. The measurement of capture and fission cross sections started in 2002 and had been performed until the mid of November in 2004. The capture and fission measurements were performed for 28 and 7 isotopes, respectively. The brief history, present status, and future plan of the n-TOF facility are reported. (author)

  4. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  5. Performance Test of a Triple GEM Detector at CERN n_TOF Facility

    CERN Document Server

    Claps, Gerardo; Murtas, Fabrizio; Pietropaolo, Antonino; Puddu, Silvia; Severino, Clizia Tecla; Silari, Marco

    2012-01-01

    The application of a triple GEM (Gas Electron Multiplier) for neutron detection was tested at the n_TOF facility at CERN. n_TOF allows the neutron energy distribution to be measured via a ~185 m time of flight path. A 20 GeV/c proton beam hits a lead target generating a neutron spectrum ranging from thermal energies to the GeV region. Due to their long flight path and short proton pulse, the neutron arrival times at the experimental area define their energy (1). A triple GEM detector with a 60 μm Polyethylene (PE) neutron converter and 40 μm of Aluminium, filled with an Ar-CO2 70-30% mixture, was installed a few meters downstream of the experimental area, just in front of the beam dump. The measurements were purely parasitic; they were conducted in parallel and without interfering with the official n_TOF scientific program. Using the n_TOF trigger it is possible to synchronize the GEM data acquisition in order to select a given neutron energy window and measure the detector efficiency as a function of neutr...

  6. The CERN n_TOF facility: a unique tool for nuclear data measurement

    Science.gov (United States)

    Mingrone, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Ganesan, S.; Garcia-Rios, A. A.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; Gonzàlez, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Lo Meo, S.; Lonsdale, S.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-06-01

    The study of the resonant structures in neutron-nucleus cross-sections, and therefore of the compound-nucleus reaction mechanism, requires spectroscopic measurements to determine with high accuracy the energy of the neutron interacting with the material under study. To this purpose, the neutron time-of-flight facility n_TOF has been operating since 2001 at CERN. Its characteristics, such as the high intensity instantaneous neutron flux, the wide energy range from thermal to few GeV, and the very good energy resolution, are perfectly suited to perform high-quality measurements of neutron-induced reaction cross sections. The precise and accurate knowledge of these cross sections plays a fundamental role in nuclear technologies, nuclear astrophysics and nuclear physics. Two different measuring stations are available at the n_TOF facility, called EAR1 and EAR2, with different characteristics of intensity of the neutron flux and energy resolution. These experimental areas, combined with advanced detection systems lead to a great flexibility in performing challenging measurement of high precision and accuracy, and allow the investigation isotopes with very low cross sections, or available only in small quantities, or with very high specific activity. The characteristics and performances of the two experimental areas of the n_TOF facility will be presented, together with the most important measurements performed to date and their physics case. In addition, the significant upcoming measurements will be introduced.

  7. Study of 234U(n,f) Resonances Measured at the CERN n_TOF Facility

    CERN Document Server

    Leal-Cidoncha, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Praena, J; Berthier, B; Ferrant, L; Isaev, S; Le Naour, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P.; Chepel, V; Chiaveri, E.; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S.; Dillmann, I; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A.; Ferreira-Marques, R; Fujii, K; Furman, W; Gonçalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A.; Igashira, M; Jericha, E; Kadi, Y.; Käppeler, F; Karadimos, D; Kerveno, M; Koehler, P; Kossionides, E; Krtička, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papadopoulos, C; Pavlik, A; Pavlopoulos, P.; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T.; Reifarth, R; Rubbia, C.; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L.; Savvidis, I; Tagliente, G; Tain, J L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A.; Villamarin, D; Vincente, M C; Vlachoudis, V.; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2014-01-01

    We present the analysis of the resolved resonance region for the U-234(n,f) cross section data measured at the CERN n\\_TOF facility. The resonance parameters in the energy range from 1 eV to 1500 eV have been obtained with the SAMMY code by using as initial parameters for the fit the resonance parameters of the JENDL-3.3 evaluation. In addition, the statistical analysis has been accomplished, partly with the SAMDIST code, in order to study the level spacing and the Mehta-Dyson correlation.

  8. Commissioning of the New Spallation Target for the nTOF facility at CERN

    International Nuclear Information System (INIS)

    The neutron Time of Flight (nTOF) facility at CERN is a source of high flux of neutrons obtained by the spallation process of 20 GeV/c protons onto a solid lead target and the remarkable beam density of the Protons Synchrotron (PS). From Nov 2008 the nTOF facility resumed operation after a halt of 4 years due to radio-protection issues. It features a new lead spallation target with a more robust design, more efficient cooling, separate moderator circuit and most important without any loss of the unique neutron performances of the previous target. The outstanding characteristics of this facility: high neutron flux 106n/cm/s.c. at 185 m, wide spectral function from thermal up to GeV, low repetition rates 1.2 s-1 1 and the excellent energy resolution of 2 x 104 open new possibilities for high precision cross section measurements, using radioactive samples of modest mass. Moreover the separate moderator circuit will permit in the future the use of borated or heavy water instead of normal water to reduce the 2.2 MeV γ background for the neutron capture measurements. The facility has been commissioned in Nov. 2008, with performances similar of the previous target and predicted by Monte Carlo simulations. (author)

  9. Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Žugec P.

    2015-01-01

    Full Text Available The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 – 100 keV, and their astrophysical implications were investigated.

  10. The CERN n_TOF facility: a unique tool for nuclear data measurement

    Directory of Open Access Journals (Sweden)

    Mingrone F.

    2016-01-01

    The characteristics and performances of the two experimental areas of the n_TOF facility will be presented, together with the most important measurements performed to date and their physics case. In addition, the significant upcoming measurements will be introduced.

  11. Status and outlook of the neutron time-of-flight facility n_TOF at CERN

    CERN Document Server

    Gunsing, F

    2007-01-01

    The neutron time-of-flight facility n_TOF at CERN, fully operational since 2002, combines a high instantaneous neutron flux with high energy resolution. The wide energy range and the high neutron flux per time-of-flight burst result in a much enhanced signal to background ratio for neutron capture of radioactive isotopes and makes this facility well suited for the measurement of high quality neutron-induced reaction cross-sections. Neutrons are created by spallation reactions induced by a pulsed 20 GeV/c proton beam impinging on a lead target. A 5 cm water slab surrounding the lead target serves as a coolant and at the same time as a moderator of the spallation neutron spectrum, providing a wide energy spectrum from 0.1 eV to about 250 MeV. By the end of 2005, a first phase of data taking has been successfully terminated. Fission and capture experiments have been performed on a variety of isotopes of interest for nuclear astrophysics, advanced nuclear technologies and for basic nuclear physics. The instrument...

  12. Measurement of radiative capture cross section on 238U at the nTOF CERN facility

    International Nuclear Information System (INIS)

    The need of sources of energy different from fossil fuels is nowadays a crucial point. As the EU-SET Plan points out, it is necessary to investigate new concepts for nuclear systems to improve the sustainability of nuclear energy. These concepts cover from energy production, through both advanced light water reactors and fast reactors foreseen in generation IV, to minimization and discharge of nuclear waste through subcritical fast systems (ADS). Despite many previous measurements and recent efforts, the present knowledge of basic nuclear data is still inadequate to fulfill the precision and accuracy required for the design and development of these new technologies. In this context the Nuclear Energy Agency addresses the most relevant isotopes, decay data, nuclear reaction channels and energy ranges that have to be investigated in more detail in the NEA High Priority Request List. The measurement of 238U(n,g) reaction cross section falls within this list because of its importance for the security of operating light water reactors and the design of generation IV reactors. Even if the number of measurements present in the EXFOR database is large, inconsistencies are still present for the 238U capture cross section both in the low energy and in the unresolved resonance region. This uncertainty influences both fast and thermal reactor systems, and contributes to the uncertainty on Pu isotope density at the end of fuel cycles. As such, there is a proposal of three independent measurement of the 238U(n,g) cross section in order to reach the required precision of 2% within an energy range from few eV to hundreds of keV. One measurement was performed at the EC-JRC-IRMM facility GELINA, while the other two at the nTOF facility at CERN. Combined together they should lead to the desired accuracy. Here the preliminary results of the 238U(n,g) cross section measurement are presented, which was performed at nTOF with C6D6 scintillation detectors on April 2012 and covers an

  13. Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Leal-Cidoncha E.

    2016-01-01

    In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f and 238U(n,f data in the extended energy range up to 200 MeV compared to the existing experimental data.

  14. Measurement of the 242Pu(n,f) Cross Section at the CERN n_TOF Facility

    CERN Document Server

    Tsinganis, A; Guerrero, C; Colonna, N; Calviani, M; Vlastou, R; Andriamonje, S; Vlachoudis, V; Gunsing, F; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    The accurate knowledge of relevant nuclear data is crucial for the design of advanced nuclear systems. These data include neutron cross sections of various plutonium isotopes and other minor actinides. The Pu-242(n,f) cross section was measured at the CERN n\\_TOF facility, taking advantage of the wide energy range (from thermal to GeV) and the high instantaneous flux of the neutron beam. Preliminary results for the measurement are presented.

  15. Astrophysics at nTOF facility

    International Nuclear Information System (INIS)

    The neutron time of flight (nTOF) facility at CERN is a neutron spallation source, its white neutron energy spectrum ranges from thermal to several GeV, covering the full energy range of interest for nuclear astrophysics, in particular for measurements of the neutron capture cross-section required in s-process nucleosynthesis. This contribution gives an overview on the astrophysical program made at nTOF facility, the results and the implications will be considered.

  16. Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233U, interesting for Th/U based nuclear fuel cycles, 241,243Am and 245Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)

  17. Design study for a new spallation target of the n-TOF facility at CERN

    International Nuclear Information System (INIS)

    The n-TOF facility is a time of flight spectrometer dedicated to measuring neutron capture and fission cross sections. The neutron source consists on a lead target bombarded by a high energetic proton beam. After finishing a successful period of data taking by the end of 2004, it has been decided to upgrade the neutron spallation source with a cladded target. In this study, Monte Carlo simulations are reported for the assessment and comparison of the neutron and gamma fluxes from different target configurations. In addition, the plans for a second vertical measuring station with a flight path of 20 m above the spallation target have been considered in the simulations as well. Results for the energy deposition and the target heating are also presented. The results show a possible solution to eliminate the potential radiological hazard of having spallation products in the cooling system by using different structural material for the target and a different coolant. The setup consisting of a tungsten target with a tantalum cladding cooled with air and with removable moderator not only is a safer system from the radiological point of view but a more flexible one extending the capabilities of the n-TOF facility

  18. Neutron cross-section for P and T and Ads at the N-TOF facility at CERN

    International Nuclear Information System (INIS)

    An innovative neutron time of flight facility (n-TOF) has recently become operative at CERN. Neutrons in a wide energy range (1 eVn<250 MeV) are generated by spallation of 20 GeV/c protons on a lead target. The instantaneously very intense neutron flux, low duty cycle, high resolution and low background make this facility unique for cross-section measurements relevant to Nuclear Astrophysics, fundamental Nuclear Physics, and particularly for Nuclear Technology, where most of the isotopes of interest are highly radioactive and available only in small samples. The n-TOF collaboration has proposed a vast experimental programme on capture, fission and (n,xn) reaction. The main objective is the study of isotopes and reactions relevant to Accelerator-driven Systems (ADS) for nuclear waste transmutation and nuclear energy production. Studies of capture reactions relevant to Nuclear Astrophysics will also benefit from the innovative characteristics of the n-TOF neutron beam. This paper presents the present status and the first raw results. This work is supported by the European Commission under the contract n. FIKW-CT-2000- 00107. (author)

  19. Study of the $^{234}$U(n,f) fission fragment angular distribution at the CERN n_TOF facility

    CERN Document Server

    Cidoncha-Leal, E; Paradela, C; Tarrío, D; Leong, L S; Audouin, L; Tassan-Got, L; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krticka, M; Kroll, J; Lampoudis, C; Langer, C; Lederer, C; Leeb, H; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Zugec, P

    2014-01-01

    The angular distribution of the f ssion fragments (FFAD) produced in neutron- induced reactions of actinides have been measured with a f ssion detection setup based on parallel-plate avalanche counters (PPACs) at the Neutron Time- Of-Flight (n_TOF) facility at CERN. The main features of the setup and pre- liminary results are reported here forthe 234 U(n,f)reaction measurement show- ing a high concordance with previous data, while providing new results up to 100 MeV.

  20. Measurement of the $^{240,242}$Pu(n,f) cross section at the CERN n_TOF facility

    CERN Document Server

    Tsinganis, A; Guerrero, C; Colonna, N; Calviani, M; Vlastou, R; Andriamonje, S; Vlachoudis, V; Gunsing, F; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtiˇcka, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Zugec, P

    2014-01-01

    Knowledge of neutron cross sections of various plutonium isotopes and other minor actinides is crucial for the design of advanced nuclear systems. The $^{240 , 242}$Pu(n,f) cross sections were measured at the CERN n_TOF facility, taking advantage of the wide energy range (from thermal to GeV) and the high instantaneous f ux of the neutron beam. In this work, preliminary results for $^{242}$Pu are presented along with a theoretical cross section calculation performed with the EMPIRE code.

  1. Fission Fragment Angular Distribution of 232Th(n,f) at the CERN n_TOF Facility

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I.; Paradela, C.; Tassan-Got, L; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The angular distribution of fragments emitted in neutron-induced fission of Th-232 was measured in the white spectrum neutron beam at the n\\_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the Th-232(n,f) between fission threshold and 100 MeV are presented here.

  2. The new vertical neutron beam line at the CERN n-TOF facility design and outlook on the performance

    International Nuclear Information System (INIS)

    At the neutron time-of-flight facility n-TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds

  3. The new vertical neutron beam line at the CERN n-TOF facility design and outlook on the performance

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, C., E-mail: christina.weiss@cern.ch [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Barros, S. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa (Portugal); Bergström, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Guerrero, C.; Sabaté-Gilarte, M. [Universidad de Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA) (Greece); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, Orsay (France); Bacak, M. [Atominstitut, Technische Universität Wien (Austria); Balibrea-Correa, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); and others

    2015-11-01

    At the neutron time-of-flight facility n-TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  4. The MICROMEGAS neutron detector for CERN n-TOF

    CERN Document Server

    Andriamonje, Samuel A; Giomataris, Ioanis; Jeanneau, F; Pancin, J; Papadopoulos, I M; Vlachoudis, V; Wendler, H; Cano-Ott, D; González, E; Heil, M; Plag, R; Ferrant, L; Ketlerov, V; Karamanis, D; Papaevangelou, T

    2002-01-01

    A novel neutron detector based on the MICROMEGAS concept is presented. One of the applications of this detector is the determination of the high performance and characteristics (neutron beam profile, flux and energy resolution) of the new high-flux spallation neutron source, the neutron Time-Of-Flight facility (n _TOF) at CERN. (11 refs).

  5. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  6. Measurement and analysis of the $^{241}$Am(n,$\\gamma$) cross section at the CERN n_TOF facility.

    CERN Document Server

    Fraval, Kevin

    In the context of the current nuclear technology, the radiotoxicity of the spent fuel of a typical PWR reactor is dominated by minor actinides for times greater than 104 years. In particular, 241Am and its 432 years half-life is responsible for about half of the minor actinide content of a PWR spent fuel. This thesis work consisted in measuring and analysing the 241Am(n, ) cross section at the CERN n TOF facility. After selecting exclusively the events obtained with lead shielding in front of the C6D6 detectors, the amplitude-energy calibration has to be adjusted with time, by using a photon coming from the 27Al(,,p)30Si reaction. Histogram extraction included applying a weighting function (obtained by MCNP simulation), a dead time correction, and a normalization to the compound nucleus excitation energy. The background corrected spectra were normalized relatively to the 4.9 eV resonance on 197Au. Finally, the resonance analysis was performed using the SAMMY code. The extracted thermal value is 678±68 barns,...

  7. Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    Science.gov (United States)

    Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tarrío, D.; Leong, L. S.; Tassan-Got, L.; Audouin, L.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2016-03-01

    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.

  8. Measurement and analysis of the $^{243}$Am neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Berthoumieux, E; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Balibrea, J; Baumann, P; Becvar, F; Belloni, F; Calvino, F; Calviani, M; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant†, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonz alez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Ketlerov, V; Kerveno, M; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lossito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martınez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O’Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2014-01-01

    Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimate...

  9. Measurement and analysis of the 241Am(n,γ) cross section at the CERN nTOF facility

    International Nuclear Information System (INIS)

    In the context of the current nuclear technology, the radiotoxicity of the spent fuel of a typical PWR reactor is dominated by minor actinides for times greater than 104 years. In particular, 241Am and its 432 years half-life is responsible for about half of the minor actinide content of a PWR spent fuel. This thesis work consisted in measuring and analysing the 241Am(n,γ) cross section at the CERN nTOF facility. After selecting exclusively the events obtained with lead shielding in front of the C6D6 detectors, the amplitude-energy calibration has to be adjusted with time, by using a photon coming from the 27Al(α,p)30Si* reaction. Histogram extraction included applying a weighting function (obtained by MCNP simulation), a dead time correction, and a normalization to the compound nucleus excitation energy. The background corrected spectra were normalized relatively to the 4.9 eV resonance on 197Au. Finally, the resonance analysis was performed using the SAMMY code. The extracted thermal value is 678±68 barns, the uncertainty being mostly due to the large background level. The resolved range was extended from 150 eV to 320 eV, with a total of 192 resonances that had to be added of heavily modified. The unresolved region was analysed up to 150 keV, yielding a larger average cross section than previously evaluated below 20 keV. (author)

  10. Neutron resonance spectroscopy at n-TOF at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n-TOF at CERN. (authors)

  11. Neutron resonance spectroscopy at n TOF at CERN

    OpenAIRE

    Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2007-01-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n TOF at CERN.

  12. Neutron resonance spectroscopy at n-TOF at CERN

    International Nuclear Information System (INIS)

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n-TOF at CERN. (authors)

  13. Measurement of Neutron Induced Fission of 235U, 233U and 245Cm with the FIC Detector at the CERN n()TOF Facility

    International Nuclear Information System (INIS)

    A series of measurements of neutron induced fission cross section of various TRU isotopes have been performed at the CERN n()TOF spallation neutron facility, in the energy range from thermal to nearly 250 MeV. The experimental apparatus consists in a fast ionization chamber (FIC), used as a fission fragment detector with a high efficiency. Good discrimination between alphas and fission fragments can be obtained with a simple amplitude threshold. In order to allow the monitoring of the neutron beam and to extract the n()TOF neutron flux, the well known cross section of the 235U(n,f) reaction, considered as a fission standard, has been used. Preliminary results for the cross section are shown for some selected isotopes such as 235U, 233U and 245Cm in the energy range from 0.050 eV to about 2 MeV.

  14. n_TOF facility past and future

    CERN Document Server

    Vlachoudis, V

    2010-01-01

    The neutron Time of Flight (n_TOF) facility at CERN is a source of high flux of neutrons obtained by the spallation process of 20 GeV/c protons onto a solid lead target and the remarkable beam intensity of the Proton Synchrotron (PS). From November 2008 the n_TOF facility resumed operation after a halt of 4 years due to radio-protection issues. It features a new lead spallation target with a more robust design, more efficient cooling, separate moderator circuit, target area ventilation and most important without any loss of the unique neutron performances of the previous target. Moreover the separate moderator circuit will permit in the future the use of borated or heavy water instead of normal water to reduce the 2.2 MeV gamma background for the neutron capture measurements. The facility has been commissioned in Nov 2008, with performances similar of the previous target and predicted by Monte Carlo simulations. The facility will resume operation for physics from May 2009 with 4 experimental proposals already...

  15. Measurement of the (236)U(n,f) cross section from 170 MeV to 2 MeV at the CERN n_TOF Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R. [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Goncalves, I. F. [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Vaz, P. [Instituto Tecnologico e Nuclear (ITN), Lisbon, Portugal; Carrapico, C. [Instituto Tecnologico e Nuclear (ITN), Lisbon, Portugal; Carrillo de Albornoz, A. [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Marques, L. [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Salgado, J. [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Tavora, L. [Instituto Tecnologico e Nuclear, Sacavem, Portugal; Calviani, M. [CERN, Geneva, Switzerland; Andriamonje, S. [CERN, Geneva, Switzerland; Chiaveri, E. [CERN, Geneva, Switzerland; Guerrero, C. [CERN, Geneva, Switzerland; Vlachoudis, V. [CERN, Geneva, Switzerland; Colonna, N. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Barbagallo, M. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Marrone, S. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Tagliente, G. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Terlizzi, R. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Belloni, F. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Fuji, K. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Milazzo, P. M. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Moreau, C. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Alvarez-Velarde, F. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Cano-Ott, D. [CIEMAT, Madrid; Gonzalez-Romero, E. [CIEMAT, Madrid; Guerrero, C. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Martinez, T. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Villamarin, D. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Vicente, M. C. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Andrzejewski, Jozef [ORNL; Karamanis, D. [University of Ioannina, Greece; Marganiec, J. [University of Lodz; Assimakopoulos, P. A. [University of Ioannina, Greece; Karadimos, D. [University of Ioannina, Greece; Papachristodoulou, C. [University of Ioannina, Greece; Patronis, N. [University of Ioannina, Greece; Audouin, L. [Universite Paris XI, Orsay, France; David, S. [CNRS, Orsay, France; Ferrant, L. [Universite Paris XI, Orsay, France; Isaev, S. [CNRS/IN2P3, Orsay, France; Stephan, C. [CNRS/IN2P3, Orsay, France; Tassan-Got, L. [CNRS/IN2P3, Orsay, France; Badurek, G. [Vienna University of Technology, Austria; Jericha, E. [Vienna University of Technology, Austria; Leeb, H. [Vienna University of Technology, Austria; Oberhummer, H. [Vienna University of Technology, Austria; Pigni, M. T. [Vienna University of Technology, Austria; Baumann, P. [CNRS, Strasbourg, France; Kerveno, M. [CNRS, Strasbourg, France; Lukic, S. [CNRS, Strasbourg, France; Rudolf, G. [CNRS, Strasbourg, France; Becvar, F. [Charles University, Prague, Czech Republic; Krticka, M. [Charles University, Prague, Czech Republic; Calvino, F. [Universidad Politecnica de Madrid, Spain; Capote, R. [International Atomic Energy Agency (IAEA); Frais-Koelbl, H. [International Atomic Energy Agency (IAEA); Griesmayer, E. [International Atomic Energy Agency (IAEA); Mengoni, A. [International Atomic Energy Agency (IAEA); Praena, J. [University of Seville; Capote, R. [University of Seville; Lozano, M. [University of Seville; Quesada, J. [University of Seville; Cennini (et al.), P. [INFN, Laboratori Nazionali di Legnaro, Italy; Chapel, V. [University of Ciombra, Portugal; Ferreira-Marques, R. [University of Ciombra, Portugal; Lindote, A. [University of Ciombra, Portugal; Lopes, I. [University of Ciombra, Portugal; Neves, F. [University of Ciombra, Portugal; et al.

    2011-01-01

    The neutron-induced fission cross section of {sup 236}U was measured at the neutron Time-of-Flight (n-TOF) facility at CERN relative to the standard {sup 235}U(n,f) cross section for neutron energies ranging from above thermal to several MeV. The measurement, covering the full range simultaneously, was performed with a fast ionization chamber, taking advantage of the high resolution of the n-TOF spectrometer. The n-TOF results confirm that the first resonance at 5.45 eV is largely overestimated in some nuclear data libraries. The resonance triplet around 1.2 keV was measured with high resolution and resonance parameters were determined with good accuracy. Resonances at high energy have also been observed and characterized and different values for the cross section are provided for the region between 10 keV and the fission threshold. The present work indicates various shortcomings of the current nuclear data libraries in the subthreshold region and provides the basis for an accurate re-evaluation of the {sup 236}U(n,f) cross section, which is of great relevance for the development of emerging or innovative nuclear reactor technologies.

  16. Neutron beam imaging with micromegas detectors in combination with neutron time-of-flight at the (nTOF) facility at CERN

    International Nuclear Information System (INIS)

    A bulk micromegas detector with the anode segmented in 2 orthogonal directions and equipped with a neutron/charged particle converter is employed at the neutron time-of-flight (nTOF) facility at CERN to determine the incident neutron beam profile and beam interception factor as a function of the neutron energy determined by the time of flight. Discrepancies between experimental results and simulations in the values of the beam interception factor range up to 12 % and are to be ascribed to a defect in the mesh of the bulk. Nevertheless the detector proved to be really useful for checking the alignment of the neutron beam optics of the facility. Measurements with a new pixelized bulk detector for the determination of the beam interception factor are for seen before the end of 2012

  17. Measurement of neutron induced fission of {sup 235}U, {sup 233}U and {sup 245}Cm with the FIC detector at the CERN n-TOF facility

    Energy Technology Data Exchange (ETDEWEB)

    Calviani, M.; Karadimos, D.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    A series of measurements of neutron induced fission cross section of various transuranic isotopes have been performed at the CERN n-TOF spallation neutron facility, in the energy range from thermal to nearly 250 MeV. The experimental apparatus consists in a fast ionization chamber (FIC), used as a fission fragment detector with a high efficiency. Good discrimination between alphas and fission fragments can be obtained with a simple amplitude threshold. In order to allow the monitoring of the neutron beam and to extract the n-TOF neutron flux, the well known cross section of the {sup 235}U(n,f) reaction, considered as a fission standard, has been used. Preliminary results for the cross section are shown for some selected isotopes such as {sup 235}U, {sup 233}U and {sup 245}Cm in the energy range from 0.050 eV to about 2 MeV. These results for {sup 235}U, {sup 233}U and {sup 245}Cm show results consistent with databases in the resonance region, with no normalization required for {sup 233}U. In the case of {sup 245}Cm, for the energy range between thermal and 20 eV, we obtained the first experimental data ever published, while showing a good agreement with previous data in the region above that value.

  18. Measurement of neutron induced fission of 235U, 233U and 245Cm with the FIC detector at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    A series of measurements of neutron induced fission cross section of various transuranic isotopes have been performed at the CERN n-TOF spallation neutron facility, in the energy range from thermal to nearly 250 MeV. The experimental apparatus consists in a fast ionization chamber (FIC), used as a fission fragment detector with a high efficiency. Good discrimination between alphas and fission fragments can be obtained with a simple amplitude threshold. In order to allow the monitoring of the neutron beam and to extract the n-TOF neutron flux, the well known cross section of the 235U(n,f) reaction, considered as a fission standard, has been used. Preliminary results for the cross section are shown for some selected isotopes such as 235U, 233U and 245Cm in the energy range from 0.050 eV to about 2 MeV. These results for 235U, 233U and 245Cm show results consistent with databases in the resonance region, with no normalization required for 233U. In the case of 245Cm, for the energy range between thermal and 20 eV, we obtained the first experimental data ever published, while showing a good agreement with previous data in the region above that value.

  19. Measurement and Analysis of $^{241}$Am(n,γ) Cross Sections with C$_6$D$_6$ Detectors at the n_TOF Facility at CERN

    CERN Document Server

    Fraval, K; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Žugec, P

    The 241Am(n,γ) cross sections have been measured at the n_TOF facility at CERN using C6D6 liquid scintillators and time of flight spectrometry. The results in the resolved resonance range bring new constraints to evaluations below 150 eV, and the energy upper limit can be extended from 150 eV to 320 eV. The analysis goes from thermal energy to 150 keV, and the unresolved resonance range cross section turns out to be larger than expected by evaluations or otherwise measured by previous works. The thermal cross section is found to be σthσth = 740 ± 74 barns, which is larger than expected by evaluations and most previous measurements.

  20. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    Science.gov (United States)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  1. Neutron capture measuremetns on minor actinides at the n_TOF facility at CERN: past, present and future

    OpenAIRE

    Cano Ott, Daniel; Colonna, Nicola; Tagliente, G; Belloni, Fabio; Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity stud- ies and reports [1-3] have identi ed the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n TOF collaboration has initiated an ambitious exper- imental program for the measurement of neutron capture cross sections of minor actinides. Two e...

  2. Measurement of the fission fragment angular distribution for 232Th(n,f) at the CERN n-TOF facility

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I; Leong, L S; Paradela, C; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcìa, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martìnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2012-01-01

    A fission reaction chamber was designed to measure the angular distribution of the fragments emitted in neutron-induced fission reactions at n_TOF. Up to ten Parallel Plate Avalanche Counters can be included and kept at controlled low-pressure gas. Counters are tilted 45º with respect to the neutron beam direction and up to nine targets can be interleaved in between. A first measurement of the 232Th(n,f) was recently done and preliminary experimental results demonstrating the suitability of the setup are presented here.

  3. Neutron Capture Measurements on Minor Actinides at the n-TOF Facility at CERN: Past, Present and Future

    International Nuclear Information System (INIS)

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n-TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C6D6 detectors for the less radioactive materials. (authors)

  4. Measurement of the fission cross-section of $^{240}$Pu and $^{242}$Pu at CERN's n_TOF Facility

    CERN Multimedia

    Pavlik, A F; Gonzalez romero, E M

    The n_TOF Collaboration proposes to continue the fission program, already started in 2002-2004, taking advantage of the newly constructed Work Sector Type A, with the measurement of the two isotopes : $^{240}$ Pu and $^{242}$ Pu. They are both of major importance for reactor physics applications and are included in the Nuclear Energy Agency (NEA) High Priority List [1], in the NEA WPEC Subgroup 26 Report on the accuracy of nuclear data for advanced reactor designe [2] and in the EU 6$^{th}$ Framework Programme IP-EUROTRANS/NUDATRA reports [3]. Based on those requests, the measurement of the fission cross-section of the two Pu isotopes is one of the objectives of the project ANDES of the FP7 EURATOM program [4].

  5. Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future

    CERN Document Server

    Cano-Ott, D; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Oshima, M; Gramegna, F; Wiescher, M; Pigni, M T; Wiendler, H; Mengoni, A; Quesada, J; Becvar, F; Rosetti, M; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Griesmayer, E; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Mendoza, E; Terlizzi, R; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Dolfini, R; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Tain, J L; Belloni, F; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Meaze, M H; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Konovalov, V; Kerveno, M; Marques, L; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; De Albornoz, A C; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Moreau, C; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Audouin, L; Tassan-Got, L; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Isaev, S; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Plag, R; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports {[}1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n\\_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) {[}4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.

  6. Neutron capture cross section measurement of $^{151}Sm$ at the CERN neutron Time of Flight Facility (nTOF)

    CERN Document Server

    Abbondanno, U; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, Samuel A; Andrzejewski, J; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Gonçalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wissha, K

    2004-01-01

    The measurement of **1**5**1Sm(n, gamma)**1**5**2Sm (samarium) cross section showed improved performance of the new spallation neutron facility. It covered a wide energy range with good resolution, high neutron flux, low backgrounds and a favourable duty factor. The samarium cross section was found to be of great importance for characterizing neutron capture nucleosynthesis in asymptotic giant stars. The combination of these features provided a promising basis for a broad experimental program directed towards application in astrophysics and advanced nuclear technologies. (Edited abstract)

  7. Commissioning of the n-TOF-Ph2 facility - 192

    International Nuclear Information System (INIS)

    The white spectrum neutron time-of-flight facility n-TOF is operating at CERN since 2001. The neutron beam has a very high instantaneous flux and high resolution in energy. The long distance of 187 m between the spallation target and the experimental area implies a favorable signal to background ratio for neutron capture and fission studies on radioactive isotopes, thus making the facility well suited for accurate cross-sections measurements. This is especially true for highly radioactive targets which are of major importance in new nuclear energy systems such as Gen-IV reactors, especially for those with a fast spectrum. Combined with state-of-the-art detectors and with advanced data acquisition systems, the innovative characteristics of the n-TOF neutron beam allows one to collect data on a variety of stable and radioactive isotopes of interest for nuclear astrophysics and for applications in advanced reactor technologies. The n-TOF facility resumed operation in 2008 after the old spallation target had been replaced. (authors)

  8. Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-03-01

    Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.

  9. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  10. The 234U neutron capture cross section measurement at the n TOF facility

    International Nuclear Information System (INIS)

    The neutron capture cross-section of 234U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n-TOF, based on a spallation source located at CERN. A 4π BaF2 array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt γ-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of Endf in the relevant energy region, indicating the good performance of the n-TOF facility and the TAC. (authors)

  11. The {sup 234}U neutron capture cross section measurement at the n TOF facility

    Energy Technology Data Exchange (ETDEWEB)

    Lampoudis, C.; Abbondanno, U.; Aerts, G.; A lvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, O.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    The neutron capture cross-section of {sup 234}U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n-TOF, based on a spallation source located at CERN. A 4{pi} BaF{sub 2} array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt {gamma}-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of Endf in the relevant energy region, indicating the good performance of the n-TOF facility and the TAC. (authors)

  12. Measurement of the neutron capture cross section of 234U in n-TOF at CERN

    International Nuclear Information System (INIS)

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of 234U(n, γ) reaction cross section is required for the design and realization of nuclear power stations based on the thorium fuel cycle. We have measured the neutron capture cross section of 234U at the recently constructed neutron time-of-flight facility n-TOF at CERN [2] in the energy range from 0.03 eV to 1 MeV with high accuracy due to a combination of features unique in the world: A high instantaneous neutron fluence and excellent energy resolution of the n-TOF facility, an innovative Data Acquisition System based on flash ADCs [3] and the use of a high performance 4Π BaF2 Total Absorption Calorimeter (TAC) as a detection device [4, 5], In this paper, we will describe the experimental apparatus including the various TAC components and its performance. We also will present results from the 234U(n, γ) measurement. A sample of 38.7 mg of 234U3O8 was pressed into a pellet and doubly encapsulated between Al and Ti foils which were 0.15 mm and 0.2 mm thick, respectively. Monte-Carlo simulations with GEANT4 [6] of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. Preliminary analysis of the capture yield in terms of R-matrix resonance parameters is discussed. (authors)

  13. Development of compression magnet for n-TOF facility

    International Nuclear Information System (INIS)

    A 30 MeV RF electron linac-based neutron source will be set up by APPD, BARC at IGCAR, Kalpakkam, This facility will include neutron activation of sodium by photo neutrons for FBR shielding studies and Time of Flight (n-TOF) facility for various research applications. In the n- TOF facility a 10 ns electron beam will be generated by an electron gun. It will be accelerated to 30 MeV by a S-band linac. The electron pulse at the exit of the linac will have 40% energy spread. A compression magnet is designed to compress 10 ns, 10 A electron pulse to 1 ns, 100 A. It will be a 360°, 5-sector, zero gradient magnet having rectangular yoke of dimensions 3.2 m x 2.7 m x 0.4 m and weight of ∼ 24 Ton. The pulse compression ratio of 10:1 will be achieved at a magnetic field of 0.1 T.A scale down model of the magnet is designed, fabricated and tested. This magnet provides 0.1 T field at 4200 A-turns. It can compress the 6 MeV electron pulse with 3:1 ratio. The present paper describes the magnet design, simulation results, fabrication details and the experimental results. (author)

  14. Neutron cross-sections for advanced nuclear systems. The nTOF project at CERN

    International Nuclear Information System (INIS)

    In 2012, nuclear energy continued to play an important role in global electricity production. Despite a small reduction of the total generating nuclear power capacity after the accident at the Fukushima Daiichi nuclear power plant, a significant growth, between 35% and 100% by 2030, is foreseen in the use of nuclear energy worldwide. The knowledge of a wide variety of nuclear processes is a fundamental prerequisite in nuclear technology, as well as in other field of fundamental and applied Nuclear Physics. In particular, neutron-induced reactions play a key role in the operation of present nuclear reactors as well as in the design of future ones aiming at minimizing nuclear waste, such as Generation-IV reactors, ADS or reactors based on Th/U fuel cycle. The cross sections of a large number of neutron-induced reactions are requested with high accuracy to improve safety and efficiency of current reactors, and for the design of future generation systems. Since 2001 nTOF, an innovative neutron Time-Of-Flight facility, has been operating at CERN with the aim of addressing the needs of nuclear data for basic and applied nuclear Physics. An extensive program on both neutron induced fission and capture reactions has been carried out so far. Thanks to the well suited features of the nTOF neutron beam, such as the high instantaneous neutron flux, the high resolution and the wide energy range covered, from thermal to a few GeV, coupled with state-of-the-art detectors and data acquisition system, it has been possible to collect high accuracy and high resolution neutron cross-section data on a variety of isotopes, many of which radioactive. In particular, important results for nuclear technologies have been obtained on isotopes of U, Pu and minor actinides with long half life. Recently the construction of a new, high-flux measuring station has started. A 25 times higher fluence relative to the existing experimental area will allow to measure isotopes with short half life, as

  15. National Ignition Facility (NIF) Neutron time-of-flight (nTOF) Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R A; Glebov, V Y; Moran, M J; McNaney, J M; Kilkenny, J D; Eckart, M; Zacharias, R A; Haslam, J J; Clancy, T J; Yeoman, M F; Warwas, D P; Sangster, T C; Stoeckl, C; Knauer, J; Horsfield, C J

    2010-05-13

    The first three of eighteen neutron time-of-flight (nTOF) channels have been installed at the National Ignition Facility (NIF). The role of these detectors includes yield, temperature, and bang time measurements. This article focuses on nTOF data analysis and quality of results obtained for the first set of experiments to use all 192 NIF beams. Targets produced up to 2 x 10{sup 10} 2.45-MeV neutrons for initial testing of the nTOF detectors. Differences in neutron scattering at the OMEGA laser facility where the detectors were calibrated and at NIF result in different response functions at the two facilities. Monte Carlo modeling shows this difference. The nTOF performance on these early experiments indicates the nTOF system with its full complement of detectors should perform well in future measurements of yield, temperature, and bang time.

  16. Analysis of the FIC detector data at the nTOF facility

    International Nuclear Information System (INIS)

    Fission cross-section measurements with the Fast Ionization Chamber (FIC) at the CERN nTOF facility were challenged by intense signals due to γ-rays and ultra-relativistic particles from the impact of the 20 GeV proton pulses on the neutron spallation target. A method for analyzing the data taken with Flash Analog to Digital Converters (FADC) was developed to treat these problems in an automated way to provide a reliable background subtraction and a fit routine for identifying fission events even at high energies. The analysis is illustrated at the example of the fission cross-section of 238U relative to that of 235U in the energy range from 40 keV to 300 MeV.

  17. Analysis of the FIC detector data at the n_TOF facility

    CERN Document Server

    Karadimos, D; Papachristodoulou, C; Vlachoudis, V; Assimakopoulos, P; Ioannides, K; Vlastou, R; Karamanis, D; Tsagas, N; Cennini, P; Konovalov, V; Ketlerov, V

    2010-01-01

    Fission cross-section measurements with the Fast Ionization Chamber (FIC) at the CERN n\\_TOF facility were challenged by intense signals due to gamma-rays and ultra-relativistic particles from the impact of the 20 GeV proton pulses on the neutron spallation target. A method for analyzing the data taken with Flash Analog to Digital Converters (FADC) was developed to treat these problems in an automated way to provide a reliable background subtraction and a fit routine for identifying fission events even at high energies. The analysis is illustrated at the example of the fission cross-section of U-238 relative to that of U-235 in the energy range from 40 key to 300 MeV. (C) 2010 Elsevier B.V. All rights reserved.

  18. Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN nTOF

    International Nuclear Information System (INIS)

    A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (nTOF) facility at CERN. The detectors and the samples were tilted 45° with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the 232Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup

  19. Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF

    CERN Document Server

    Tarrío, D; Audouin, L; Duran, I; Paradela, C; Tassan-Got, L; Le Naour, C; Bacri, C O; Petitbon, V; Mottier, J; Caamano, M; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cértes-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 1 with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the 232 Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup

  20. The Merit(nTOF-11) High Intensity Liquid Mercury Target Experiment at the CERN PS

    CERN Document Server

    Efthymiopoulos, I; Caretta, O; Carroll, A J; Fabich, A; Graves, V B; Grudiev, A; Haug, F; Kirk, H G; Lettry, Jacques; Loveridge, P; McDonald, K T; Mokhov, N; Palm, M; Park, H; Pernegger, H; Spampinato, P T; Steerenberg, R; Striganov, S; Tsang, T

    2008-01-01

    The MERIT(nTOF-11) experiment is a proof-ofprinciple test of a target system for a high power proton beam to be used as front-end for a neutrino factory or a muon collider. The experiment took data in autumn 2007 with the fast-extracted beam from the CERN Proton Synchrotron (PS) to a maximum intensity of $30 × 10^{12}$ per pulse. The target system, based on a free mercury jet, is capable of intercepting a 4-MW proton beam inside a 15-T magnetic field required to capture the low energy secondary pions as the source for intense muon beams. Partice detectors installed around the target setup measure the secondary particle flux out of the target and can probe cavitation effects in the mercury jet when excited by an intense proton beam.Preliminary results of the data analysis will be presented here.

  1. Measurement of the 232thorium capture cross section at n-TOF-CERN

    International Nuclear Information System (INIS)

    Within the context of nuclear power as a sustainable energy resource, a program of research is concentrated on a new nuclear fuel cycle based on thorium. The main advantage, as compared to the uranium cycle, is a lower production of minor actinides, of which the radiological impact on the long term constitutes a problem. At present, nuclear data libraries don't provide cross sections of a good enough quality, allowing more realistic calculations from simulations related to these reactors. The 232Th neutron capture cross section is an example. With the n-TOF collaboration, the measurement of this reaction was achieved in 2002 using two C6D6 detectors. The experimental area located at CERN, is characterized by an outstanding neutron energy resolution coupled to a high instantaneous neutron flux. The determination of the gamma-ray cascade detection efficiency, with a random behaviour, has been obtained by the use of weighting functions. These were deduced from Monte Carlo simulations with the code MCNP. Data extraction, reduction, and the description of the neutron flux have lead to the capture yield. In the resolved resonance region, the resonance parameters describing the cross section were deduced with the code SAMMY, using the R-matrix theory. In the unresolved resonance region, an uncertainty of 3,5% is found, and a comparison with recent measurements shows a good agreement. (author)

  2. Happy birthday n_TOF!

    CERN Multimedia

    2010-01-01

    Picture CERN-GE-1011313_58 : From left to right: Enrique Gonzalez-Romero, Chairman of Collaboration Board, Enrico Chiaveri, Spokesperson of n_TOF Experiment, and Carlo Rubbia, the creator of the n_TOF experiment.

  3. High-precision Measurement of the 238U(n,γ) Cross Section with the Total Absorption Calorimeter (TAC) at n_TOF, CERN

    CERN Document Server

    Wright, T; Billowes, J; Ware, T; Cano-Ott, D; Mendoza, E; Massimi, C; Mingrone, F; Gunsing, F; Berthoumieux, E; Lampoudis, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Giubrone, G; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mengoni, A; Milazzo, P M; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Weigand, M; Weiß, C; Žugec, P

    2014-01-01

    The neutron capture cross section of U-238 is fundamental to the design and operation of current reactors and future fast nuclear reactors, and thus must be measured to a high level of accuracy. An experiment has been performed at the CERN n TOF facility using a 4 pi Total Absorption Calorimeter (TAC) to measure the capture cross section in the resolved resonance region between 1 eV and 25 keV. A preliminary analysis of the TAC data is presented with particular emphasis to the experimental background in this energy region of interest.

  4. Measurement of the $^{12}$C($n,p$)$^{12}$B cross section at n_TOF (CERN) by in-beam activation analysis

    CERN Document Server

    Žugec, P; Bosnar, D; Mengoni, A; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Brugger, M; Calviani, M; Cano-Ott, F Calviño D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M A; Cosentino, L; Diakaki, M; Domingo-Pardo, C; Dressler, R; Duran, I; Eleftheriadis, C; Ferrari, A; Finocchiaro, P; Fraval, K; Ganesan, S; Garc\\'\\ia, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Heinitz, S; Jenkins, D G; Jericha, E; Käppeler, F; Karadimos, D; Kivel, N; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; LoMeo, S; Losito, R; Manousos, A; Marganiec, J; Mart\\'\\inez, T; Massimi, C; Mastinu, P; Mastromarco, M; Mendoza, E; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Musumarra, A; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarr\\'\\io, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T

    2014-01-01

    The integral cross section of the $^{12}$C($n,p$)$^{12}$B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n_TOF facility at CERN. The measurement relies on the activation technique, with the $\\beta$-decay of $^{12}$B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.

  5. Finding linear correlations in the data of the nTOF facility

    CERN Document Server

    Del Tessandoro, Emilio

    2013-01-01

    nTOF is a neutron time of flight facility located at CERN aimed to the study of neutron induced reactions. An high intensity neutron beam is produced from the reactions caused by an incoming proton pulse that hits a lead spallation target. The experimental area is located approximately 180m away from the spallation target. This flight path basically allows to compute the kinetic energy of the neutrons based their arrival time at the experimental area, allowing to fully characterize the produced neutron beam. The goals of this project are at least three: \\begin{description} \\item[Collecting the data] This part includes the retrieval of all the experimental data in a given temporal window specified at runtime. See sections \\ref{sec:slow} and \\ref{sec:fast} for details. \\item[Find linear correlations] This part aims to find linear correlations between different measures, e.g. the proton intensity with the number of peaks recorded by a detector. This is discussed in section \\ref{sec:correlations}. \\item[Learn and...

  6. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  7. Minimizing the background radiation in the new neutron time-of-flight facility at CERN FLUKA Monte Carlo simulations for the optimization of the n_TOF second experimental line

    CERN Document Server

    Bergström, Ida; Elfgren, Erik

    2013-06-11

    At the particle physics laboratory CERN in Geneva, Switzerland, the Neutron Time-of-Flight facility has recently started the construction of a second experimental line. The new neutron beam line will unavoidably induce radiation in both the experimental area and in nearby accessible areas. Computer simulations for the minimization of the background were carried out using the FLUKA Monte Carlo simulation package. The background radiation in the new experimental area needs to be kept to a minimum during measurements. This was studied with focus on the contributions from backscattering in the beam dump. The beam dump was originally designed for shielding the outside area using a block of iron covered in concrete. However, the backscattering was never studied in detail. In this thesis, the fluences (i.e. the flux integrated over time) of neutrons and photons were studied in the experimental area while the beam dump design was modified. An optimized design was obtained by stopping the fast neutrons in a high Z mat...

  8. Transmutation in ADS and needs for nuclear data, with an introduction to the n-TOF at CERN

    CERN Document Server

    González, E; Fernández, R; García, J; Villamarín, D

    1999-01-01

    Transmutation can help in the nuclear waste problem by reducing seriously the life and amount of the most dangerous isotopes (radiotoxicity, heat, packing volume and neutron multiplication reductions). ADS are one of the best technologies for nuclear waste transmutation at large scale. Although enough information is available to prepare conceptual designs and make assessments on their performance, a large R&D campaign is required to obtain the precision data required to optimize the detailed engineering design and refine our expectations calculations on waste reduction by the different transmutation strategies being proposed. In particular a large R&D effort is required in nuclear physics, where fundamental differential measurements and integral verification experiments are required. In this sense, the PS213 n-TOF at CERN PS (at Switzerland) will become one of the largest installations to perform the fundamental differential measurements and a wide international collaboration has been setup to perform...

  9. Measurement of the {sup 232}thorium capture cross section at n-TOF-CERN; Mesure de la section efficace de capture neutronique du {sup 232}Th a n-TOF au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, G

    2005-09-01

    Within the context of nuclear power as a sustainable energy resource, a program of research is concentrated on a new nuclear fuel cycle based on thorium. The main advantage, as compared to the uranium cycle, is a lower production of minor actinides, of which the radiological impact on the long term constitutes a problem. At present, nuclear data libraries don't provide cross sections of a good enough quality, allowing more realistic calculations from simulations related to these reactors. The {sup 232}Th neutron capture cross section is an example. With the n-TOF collaboration, the measurement of this reaction was achieved in 2002 using two C{sub 6}D{sub 6} detectors. The experimental area located at CERN, is characterized by an outstanding neutron energy resolution coupled to a high instantaneous neutron flux. The determination of the gamma-ray cascade detection efficiency, with a random behaviour, has been obtained by the use of weighting functions. These were deduced from Monte Carlo simulations with the code MCNP. Data extraction, reduction, and the description of the neutron flux have lead to the capture yield. In the resolved resonance region, the resonance parameters describing the cross section were deduced with the code SAMMY, using the R-matrix theory. In the unresolved resonance region, an uncertainty of 3,5% is found, and a comparison with recent measurements shows a good agreement. (author)

  10. Transmutation in ADS and needs for nuclear data, with an introduction to the n-TOF at CERN

    International Nuclear Information System (INIS)

    Transmutation can help in the nuclear waste problem by reducing seriously the life and amount of the most dangerous isotopes (radiotoxicity, heat, packing volume and neutron multiplication reductions). ADS are one of the best technologies for nuclear waste transmutation at large scale. Although enough information is available to prepare conceptual designs and make assessments on their performance, a large R and D campaign is required to obtain the precision data required to optimize the detailed engineering design and refine our expectations calculations on waste reduction by the different transmutation strategies being proposed. In particular a large R and D effort is required in nuclear physics, where fundamental differential measurements and integral verification experiments are required. In this sense, the PS213 n-TOF at CERN PS (at Switzerland) will become one of the largest installations to perform the fundamental differential measurements and a wide international collaboration has been setup to perform the cross section measuring campaign. Similarly, the MUSE and several other experiments taking place and in preparation in Europe, USA and Japan will provide the integral verification

  11. Transmutation in ADS and Needs for Nuclear Data, with an introduction to the n-TOF at CERN

    International Nuclear Information System (INIS)

    Transmutation can help in the nuclear waste problem by reducing seriously the life and amount of the most dangerous isotopes (radiotoxicity, heat, packing volume and neutron multiplication reductions). ADS are one of the best technologies for nuclear waste transmutation at large scale. Although enough information is available to prepare conceptual designs and make assessments on their performance, a large R and D campaign is required to obtain the precision data required to optimize the detailed engineering design and refine our expectations calculations on waste reduction by the different transmutation strategies being proposed. In particular a large R and D effort is required in nuclear physics, where fundamental differential measurements and integral verification experiments are required. In this sense, the PS213 n-TOF at CERN PS (At Switzerland) will become one of the largest installations to perform the fundamental differential measurements and a wide international collaboration has been setup to perform the cross section measuring campaign. Similarly, the MUSE and several other experiments taking place and in preparation in Europe, USA and Japan will provide the integral verification

  12. Measurement of the U-234(n,f) cross section with PPAC detectors at the nTOF facility

    International Nuclear Information System (INIS)

    The aim of this work was twofold: to measure the 234U neutron-induced fission cross section in an extended energy range with an unprecedented resolution, and, in the process, to validate the experimental method we used at the new n-TOF-CERN facility. The experiment was designed in order to take advantage of the unique characteristics of the n-TOF facility: the long flight path offers a high energy resolution and the high-intensity, instantaneous neutron flux greatly reduces the background from the sample activities, making it possible to measure highly radioactive samples. The fission detection setup is based on an innovative technique that benefits from the use of very thin targets and detectors. Up to nine targets of high purity fission samples are sandwiched by Parallel Plate Avalanche Counters (PPAC). When a fission event happens, the two complementary fission fragments are detected by the PPACs adjacent to the fissioning target in a narrow time coincidence. Because several targets are simultaneously placed in-beam, relative measurements with respect to reference nuclei can be obtained. In this work, an original data-reduction method has been developed to deal with the particular characteristics of both the n-TOF data acquisition system, which is based on very accurate Flash-ADC digitizers, and the fission detection setup. The data reduction includes the coincidence windows and the signal amplitude requirements that we obtained from preliminary data analysis. The applied coincidence method is very powerful for dealing with the background rejection such as contamination by α activity, which is quite high for 234U, and the signals produced by highly energetic reactions in the detectors. The data-reduction method also implements the fission event reconstruction using the position information obtained from the stripped cathodes and the delay line readout, which makes it possible to determine the fission fragment angular distributions, and the time-of-flight to

  13. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility

    International Nuclear Information System (INIS)

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as 232Th, 234U, 233U, 237Np, 209Bi, and natPb relative to 235U et 238U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  14. A new CVD Diamond Mosaic-Detector for (n,$\\alpha$) Cross-Section Measurements at the n_TOF Experiment at CERN

    CERN Document Server

    Weiss, C; Guerrero, C; Altstadt, S; Andrzejewski, J; Audouin, L; Badurek, G; Barbagallo, M; Becares, V; Becvar, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calvino, F; Cano-Ott, D; Carrapico, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortes, G; Cortes-Giraldo, M.A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcia, A.R; Giubrone, G; Gomez-Hornillos, M.B; Goncalves, I.F; Gonzalez-Romero, E; Gunsing, F; Gurusamy, P; Hernandez-Prieto, A; Jenkins, D.G; Jericha, E; Kadi, Y; KäPpeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krticka, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L.S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martinez, T; Massimi, C; Mastinu, P.F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P.M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J.M; Rauscher, T; Reifarth, R; Riego, A; Robles, M.S; Roman, F; Rubbia, C; Sabate-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J.L; Tarrio, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M.J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Wright, T; Zugec, P

    2013-01-01

    At the n_TOF experiment at CERN a dedicated single-crystal chemical vapor deposition (sCVD) Diamond Mosaic-Detector has been developed for (n,$\\alpha$) cross-section measurements. The detector, characterized by an excellent time and energy resolution, consists of an array of 9 sCVD diamond diodes. The detector has been characterized and a cross-section measurement has been performed for the $^{59}$Ni(n,$\\alpha$)$^{56}$Fe reaction in 2012. The characteristics of the detector, its performance and the promising preliminary results of the experiment are presented.

  15. Measurement of the neutron capture cross section of U{sup 234} in n-TOF at CERN for Generation IV nuclear reactors; Mesure de la section efficace de capture neutronique de l'{sup 234}U a n-TOF au CERN pour les reacteurs nucleaires de generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2006-11-15

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U{sup 234}(n,{gamma}) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U{sup 234}, with a 4{pi} BaF{sub 2} Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width <{gamma}{sub {gamma}}> is found to be (38.2 {+-} 1.5) meV and the mean spacing parameter is (11.0 {+-} 0.2) eV, both values agree well with recommended values.

  16. The 7Be(n,alpha)4He reaction and the Cosmological Lithium Problem: measurement of the cross section in a wide energy range at n_TOF (CERN)

    CERN Document Server

    Barbagallo, M; Cosentino, L; Maugeri, E; Heinitz, S; Mengoni, A; Dressler, R; Schumann, D; Kaeppeler, F; Colonna, N; Finocchiaro, P; Ayranov, M; Damone, L; Kivel, N

    2016-01-01

    The energy-dependent cross section of the 7Be(n,alpha)4He reaction, of interest for the so-called Cosmological Lithium Problem in Big Bang Nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of 7Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure 7Be, and a specifically designed experimental setup. Coincidences between the two alpha-particles have been recorded in two Si-7Be-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 60's at a nuclear reactor. The energy dependence here reported clearly indicates the inadequacy of the cross section estimates currently used in ...

  17. Measurement of the neutron capture cross section of the fissile isotope $^{235}$U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors

    CERN Document Server

    Mendoza, E; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Lampoudis, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Zugec, P

    2014-01-01

    Actual and future nuclear technologies require more accurate nuclear data on the (n, $\\gamma$) cross sections and $\\alpha$-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission $\\gamma$-ray background competing with the weaker $\\gamma$-ray cascades used as the experimental signature of the (n, $\\gamma$) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,$\\gamma$ ) cross section and $\\alpha$- ratios of fissile isotopes and used for the case of the $^{235}$U isotope. The setup consists in a set of micromegas fission detectors surrounding $^{235}$U samples and placed inside the segmented BaF$_2$ Total Absorption Calorimeter.

  18. Measurement of the Neutron Capture Cross Section of the Fissile Isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a Fission Tagging Based on Micromegas Detectors

    CERN Document Server

    Balibrea, J; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lampoudis, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    Current and future nuclear technologies require more accurate nuclear data on (n,γ) cross sections and the α-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission γ-ray background competing with the weaker γ-ray cascades used as the experimental signature of the (n,γ) process. A specific setup was used at the CERN n_TOF facility in 2012 for the measurement of the (n,γ) cross section and α-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists of a set of micromegas fission detectors surrounding the 235U samples all placed inside a segmented BaF2 Total Absorption Calorimeter.

  19. Design of compression magnet for neutron time of flight (N-TOF) facility

    International Nuclear Information System (INIS)

    A n-TOF experiment requires 1 ns duration pulses to get better energy resolution. This paper presents the design of a compression magnet that can compress a 10 ns electron pulse having energy variation from 18-30 MeV to 1 ns. A zero gradient, 5-sector magnet that will bend the beam through 360° and 348° is designed for the same. The beam dynamics calculations to calculate energy spread, analytical design of sector magnet and the simulation results of CST particle studio are presented. A combination of magnetic fields 0.1 T, 0.05 T and 0.02 T in different sectors of the magnet give the compressed pulse width of ∼ 1.3 ns. (author)

  20. n_TOF: a new experimental area under way

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On Thursday 23 May, CERN celebrated the laying of the foundation stone of the new experimental area (EAR-2) of n_TOF – CERN’s neutron source facility*. Under a mild sun, Rolf Heuer, CERN Director-General, Enrico Chiaveri, spokesperson for the n_TOF collaboration, Frédérick Bordry, head of CERN’s Technology Department, and other important figures at CERN raised their glasses to the launch of this new scientific adventure.   Rolf Heuer, CERN Director-General, driving a backhoe at the EAR-2 foundation stone laying ceremony. “This new experimental area is very important as it shows the diversity of the science we are doing at CERN,” says Rolf Heuer. “One of the Laboratory’s goals is to build infrastructures and to do science that is unique, or at least world leading. And that is exactly what we are doing here.” The n_TOF collaboration is taking advantage of the long shutdown (LS1) for the const...

  1. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility; Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium a n-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Ferrant, L

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as {sup 232}Th, {sup 234}U, {sup 233}U, {sup 237}Np, {sup 209}Bi, and {sup nat}Pb relative to {sup 235}U et {sup 238}U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  2. Happy birthday n_TOF!

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The “Neutron Time Of Flight” facility (n_TOF) has recently turned ten. A simple ceremony marked the date of the anniversary and provides a nice opportunity to retrace the successful history of this unique facility, whose scientific activity spans a range from astrophysics to the study of nuclear-waste transmutation processes.   From left to right: Enrique Gonzalez-Romero, Chairman of Collaboration Board, Enrico Chiaveri, Spokesperson of n_TOF Experiment, and Carlo Rubbia, the creator of the n_TOF experiment. Ten years after its first beam, n_TOF is just approaching maturity. Revitalized by the recent renovation of its infrastructures that allowed it to gain the unique label of “Class A” in radio-protection standards, n_TOF has a rich and challenging scientific programme. “One year ago, the beam line and the experimental area were completely rebuilt to comply with the Class A radio protection requirements in order to safely use almost all radionucl...

  3. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  4. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Lo meo, S; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Valenta, S; Weiss, C; Kokkoris, M; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Tain enriquez, J L; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Palomo pinto, F R; Vlachoudis, V; Calviani, M; Reifarth, R; Mendoza cembranos, E; Balibrea correra, J; Quesada molina, J M; Praena rodriguez, A J; Schumann, M D; Tsinganis, A; Saxena, A; Rauscher, T; Leal cidoncha, E; Calvino tavares, F; Bondarenko, I; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Chiaveri, E; Milazzo, P M; Ferro pereira goncalves, I M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  5. High accuracy determination of the $^{238}$U/$^{235}$U fission cross section ratio up to $\\sim$1 GeV at n_TOF (CERN)

    CERN Document Server

    Paradela, C; Tarrío, D; Leal-Cidoncha, E; Leong, L S; Tassan-Got, L; Naour, C Le; Duran, I; Colonna, N; Audouin, L; Mastromarco, M; Meo, S Lo; Ventura, A; Altstadt, S; Andrzejewski, J; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M A; Cosentino, L; Diakaki, M; Domingo-Pardo, C; Dressler, R; Eleftheriadis, C; Ferrari, A; Finocchiaro, P; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Heinitz, S; Jenkins, D G; Jericha, E; Käppeler, F; Karadimos, D; Kivel, N; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Musumarra, A; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Žugec, P

    2015-01-01

    The $^{238}$U to $^{235}$U fission cross section ratio has been determined at n_TOF up to $\\sim$1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets have been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of the neutron energy. The result confirms current evaluations up to 200 MeV. A good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solving a long-standing discrepancy between the two most important experimental dataset available so far above 20 MeV, while extending the neutron energy range for the first time up to $\\sim$1 GeV.

  6. CrossRef The Second Beam-Line and Experimental Area at n_TOF: A New Opportunity for Challenging Neutron Measurements at CERN

    CERN Document Server

    Colonna, Nicola; Chiaveri, Enrico

    2015-01-01

    Since 2001, a wealth of neutron capture and neutron-induced fission reactions has been measured at n_TOF, providing an important contribution to a wide variety of research fields. The experimental activity is driven mostly by two motivations: on the one hand, capture reactions are studied with the aim of improving current models of stellar nucleosynthesis of heavy elements. A review of the needs related to nuclear astrophysics and the contribution of the n_TOF program can be found in [1, 2].

  7. Review of the n_TOF experimental program for Reactor Applications

    Directory of Open Access Journals (Sweden)

    Guerrero C.

    2013-03-01

    Full Text Available The n_TOF facility at CERN is devoted mainly to the measurement of neutron-induced reaction cross section of interest for Nuclear Technologies, Astrophysics and Basic Physics. In particular, the list of measurements carried out during the 2nd Phase of experiments n_TOF-Ph2 (2009-2012 includes a significant number of capture and fission experiments on actinides which are considered key for the further development of nuclear reactors. This contribution will contain a description of all these experiments, some of which will be discussed in detail. The future of the n_TOF facility will be also addressed; in particular, the new vertical neutron beam line with a flight path of only 20 m will be presented and the expected performance discussed in detail.

  8. Silicon detectors for the n-TOF neutron beams monitoring

    OpenAIRE

    Cosentino, L.; Musumarra, A.; Barbagallo, M.; Colonna, N.; Damone, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.; collaboration, for the n-TOF

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. T...

  9. Beam dynamics study and design of 348° compression magnet for neutron time of flight (n-TOF) facility

    International Nuclear Information System (INIS)

    A n-TOF experiment requires 1 nsec duration pulses to get better energy resolution. The paper presents the design of a compression magnet that can compress a 10 nsec electron pulse to ∼ 1 nsec having energy variation from 18–30 MeV. A zero gradient, 5-sector magnet that will bend the beam through 348° is designed for the same. The beam dynamics to calculate energy spread, design of sector magnet and the simulation results of CST particle studio are presented. A combination of magnetic fields 0.1 T, 0.05 T and 0.02 T in different sectors of the magnet give the compressed pulse width of ∼ 1.3 nsec

  10. Silicon detectors for monitoring neutron beams in n-TOF beamlines.

    Science.gov (United States)

    Cosentino, L; Musumarra, A; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-07-01

    During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing (6)Li. The first one is based on four silicon pads and allows monitoring of the neutron beam flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational. PMID:26233385

  11. Measurement of the 242Pu(n,f cross section at n_TOF

    Directory of Open Access Journals (Sweden)

    Tsinganis A.

    2014-03-01

    Full Text Available Knowledge of neutron cross sections of various plutonium isotopes and other minor actinides is crucial for the design of advanced nuclear systems. The 242Pu(n,f cross sections were measured at the CERN n_TOF facility, taking advantage of the wide energy range (from thermal to GeV and the high instantaneous flux of the neutron beam. In this work, preliminary results are presented along with a theoretical cross section calculation performed with the EMPIRE code.

  12. Investigation of Neutron-induced Reactions at n_TOF: an Overview of the 2009–2012 Experimental Program

    CERN Document Server

    Guerrero, C; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The neutron time-of-flight facility n\\_TOF is operating at CERN (Switzerland) since 2001, having started in 2009 a new campaign with an upgraded spallation target. The ambitious program carried out includes a large number of experiments in nuclear technology, astrophysics, basic physics, detector development and medical applications. This paper is devoted to the physics program at n\\_TOF and the measurements performed between 2009 and 2012. Special attention is given to those experiments that have been most challenging, are more important for a particular field, have reached unprecedented levels of accuracy, or have been carried out for the first time ever.

  13. Measurement of the nTOF beam profile with a micromegas detector

    CERN Document Server

    Pancin, J; Aerts, G; Alvarez, H; Andriamonje, Samuel A; Angelopoulos, Angelos; Assimakopoulos, P A; Bacri, C O; Badurek, G; Baumann, P; Becvar, F; Beer, H; Benlliure, J; Berthier, B; Berthoumieux, E; Boffi, S; Borcea, C; Boscolo-Marchi, E; Bustreo, N; Calviño, F; Cano-Ott, D; Capote, R; Carlson, Per J; Cennini, P; Chepel, V Yu; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Delbart, A; Derré, J; Dolfini, R; Domingo, C; Duran-Escribano, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Lourenço, L; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Giomataris, Ioanis; Gonçalves, I; González-Romero, E M; Goverdovski, A A; Gramegna, F; Griesmayer, E; Gunsing, F; Haight, R; Heil, M; Herrera-Martínez, A; Ioannides, K G; Janeva, N; Jeanneau, F; Jericha, E; Käppeler, F K; Kadi, Y; Karamanis, D; Kelic, A; Ketlerov, V; Kitis, G; Köhler, P; Konovalov, V; Kossionides, E; Lacoste, V; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Markov, S; Marrone, S; Martínez-Val, J M; Mastinu, P; Mengoni, A; Milazzo, P; Minguez, E; Molina-Coballes, A; Moreau, C; Neves, F; Oberhummer, Heinz; O'Brien, S; Papadopoulos, I M; Papavengelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Pérez-Parra, A; Perlado, J; Perrot, L; Peskov, Vladimir; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Radici, M; Raman, S; Rapp, W; Reifarth, R; Rejmund, F; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Savvidis, E; Stéphan, C; Tagliente, G; Taín, J L; Tapia, C; Tassan-Got, L; Tavora, L; Terlizzi, R; Terrani, M; Tsangas, N; Vannini, G; Vaz, P; Ventura, A; Villamarín-Fernández, D; Vincente-Vincente, M; Vlachoudis, V; Vlastou, R; Voss, F; Wendler, H; Wiescher, M; Wisshak, K; Zanini, L

    2004-01-01

    A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the **6Li(n, alpha)t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility.

  14. Neutron cross-sections for next generation reactors: New data from n_TOF

    CERN Document Server

    Colonna, N; Eleftheriadis, C; Leeb, H; Tain, J L; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Konovalov, V; Marques, L; Wiescher, M; de Albornoz, A Carrillo; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Pigni, M T; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Kaeppeler, F; Cortes, G; Cox, J; Voss, F; Pretel, C; Berthoumieux, E; Dolfini, R; Vaz, P; Griesmayer, E; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Wendler, H; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Gramegna, F; Kerveno, M; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Baumann, P; Moreau, C; Oshima, M; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Vicente, M C; Tassan-Got, L; Cano-Ott, D; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Rosetti, M; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n\\_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n\\_TOF is presented, together with plans for new measurements related to nuclear industry. (C) 2010 Elsevier Ltd. All rights reserved.

  15. First results of the new n-TOF spallation target commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Berthoumieux, E.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Becares, V.; Becvar, F.; Belloni, F.; Berthier, B.; Brugger, M.; Calviani, M.; Calvino, F.; Cano-Ott, D.; Carrapico, C.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortes, G.; Cortes-Giraldo, M.A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Fernandez-Ordonez, M.; Ferrari, A.; Ganesan, S.; Giubrone, G.; Gomez-Hornillos, M.B.; Goncalves, I.F.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karadimos, D.; Krticka, M.; Lebbos, E.; Lederer, C.; Leeb, H.; Losito, R.; Lozano, M.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.F.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mosconi, M.; Nolte, R.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Roman, F.; Rubbia, C.; Sarmento, R.; Tagliente, G.; Tain, J.L.; Tarrio, D.; Tassan-Got, L.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vykydal, Z.; Wallner, A.; Weib, C.

    2009-07-01

    The Neutron Time of Flight facility n-TOF located at CERN started to take data in 2001. Due to an increase of radioactivity released in the cooling water the experiment was stopped by end of 2004. In 2008 a new spallation target has been installed. In 2009 the collaboration has performed the full commissioning of the facility, consisting in the determination of the fluence, the beam profile, and the energy resolution of the neutron beam. After a brief description of the new target assembly, very preliminary results concerning the shape of the neutron fluence and its absolute value will be given. Measurements of the neutron beam profile will also be shown. (authors)

  16. Commissioning of n_TOF EAR2

    CERN Multimedia

    The construction of the second beam line and experiment area (EAR2) of the n_TOF facility is currently ongoing and scheduled to be completed by July 2014. An extensive series of measurements is planned in order to determine the beam characteristics like the neutron flux, the spatial beam profile and the resolution function, as well as the response of several detectors considered for use in future measurements at EAR2. A rigorous study of backgrounds will be undertaken in various conditions.

  17. CLOUD: an atmospheric research facility at CERN

    OpenAIRE

    The Cloud Collaboration

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  18. CLOUD an atmospheric research facility at CERN

    CERN Document Server

    Fastrup, B; Lillestøl, Egil; Bosteels, Michel; Gonidec, A; Kirkby, Jasper; Mele, S; Minginette, P; Nicquevert, Bertrand; Schinzel, D; Seidl, W; Grundsøe, P; Marsh, N D; Polny, J; Svensmark, H; Viisanen, Y; Kurvinen, K L; Orava, Risto; Hameri, K; Kulmala, M; Laakso, I; O'Dowd, C D; Afrosimov, V; Basalaev, A; Panov, M; Laaksonen, B D; Joutsensaari, J; Ermakov, V; Makhmutov, V S; Maksumov, O; Pokrevsky, P; Stozhkov, Yu I; Svirzhevsky, N S; Carslaw, K; Yin, Y; Trautmann, T; Arnold, F; Wohlfrom, K H; Hagen, D; Schmitt, J; Whitefield, P; Aplin, K L; Harrison, R G; Bingham, R; Close, Francis Edwin; Gibbins, C; Irving, A; Kellett, B; Lockwood, M; Mäkelä, J M; Petersen, D; Szymanski, W W; Wagner, P E; Vrtala, A; CERN. Geneva. SPS-PS Experiments Committee

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  19. A Multi Purpose DAQ System Developed for the nTOF Commissioning

    Institute of Scientific and Technical Information of China (English)

    V.Vlachoudis

    2001-01-01

    The neutron Time Of Flight (nTOF) facility at CERN is a high flux spallation neutron source commissioned in Nov 2000 and APr 2001.For the commissioning phases an innovative multipurpose DAQ system was developed and used.This system is capable of handling high data rated(10Mb/s) with the use of the National Instruments PCI-VXI interface board to communicate with the VME crates.The graphical user interface is based on JavaTM and ROOT allowing immediate visualization of the data and providing a flexible way of creating configurations for various experimental setups.

  20. Measurement of the $^{233}$U neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Carrapiço, Carlos; Berthoumieux, Eric; Gonçalves, Isabel; Gunsing, Frank

    2012-12-12

    The Thorium-Uranium (Th-U) fuel cycle has been envisaged as an alternative to the Uranium-Plutonium (U-Pu) fuel cycle for electricity generation using nuclear power reactors. Indeed, thorium can be used as a nuclear fuel, and several studies and R&D programs seem to provide evidence on the sustainability of the Th-U fuel cycle, due to (i) the natural abundance of Thorium, (ii) the improved proliferation resistance offered by the Th-U fuel cycle relative to the U-Pu fuel cycle, (iii) the better neutronics performance of the Th-U fuel cycle throughout the whole neutron energy range compared to the U-Pu fuel cycle, (iv) the lower radiotoxicity of the generated spent fuel in reactors with Th-U fuel cycle and, consequently (v) better economics and public acceptance of the reactors operated using the Th-U fuel cycle compared to those using the U-Pu fuel cycle (prior to the Generation IV nuclear reactors). In a nuclear reactor operated using the Th-U fuel cycle, $^{233}$U is a key nuclide governing the neutr...

  1. Silicon detectors for the n-TOF neutron beams monitoring

    CERN Document Server

    Cosentino, L; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  2. Time-energy relation of the nTOF neutron beam: energy standards revisited

    International Nuclear Information System (INIS)

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the nTOF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of 193Ir, which is commonly considered as an energy standard

  3. CERN Heavy-Ion Facility design report

    International Nuclear Information System (INIS)

    The design of the CERN Heavy-Ion Facility is described. This facility will be based on a new ion linear accelerator (Linac 3), together with improvements to the other accelerators of the CERN complex to allow them to cope with heavy ions, i.e. to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). For this reference design, the pure isotope of lead, 208Pb, is considered. The bulk of the report describes Linac 3, a purpose-built heavy-ion linac mainly designed and constructed in collaboration with several CERN member state laboratories, but also with contributions from non-member states. Modifications and improvements to existing CERN accelerators essentially concern the RF acceleration, beam control and beam monitoring (all machines), beam kickers and septa at the input and output of the PSB, and major vacuum improvements, aiming to reduce the pressure by factors of at least seven and three in the PSB and PS respectively. After injection from the Electron Cyclotron Resonance source at 2.5 keV/u the partially stripped heavy-ion beam is accelerated successively by a Radio Frequency Quadrupole and an Interdigital-H linac to 4.2 MeV/u. After stripping to 208Pb53+, the beam is again accelerated, firstly in the PSB (to 98.5 MeV/u), then in the PS (to 4.25 GeV/u). The final stage of acceleration in the SPS takes the fully stripped 208Pb82+ ions to 177 GeV/u, delivering a beam of 4.108 ions per SPS supercycle (15.2 s) to the experiments. The first physics run with lead ions is scheduled for the end of 1994. Finally, some requirements for carrying out heavy-ion physics at the Large Hadron Collider are mentioned. (orig.)

  4. QART - the CERN facility for quality assurance

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    How would your detector perform in a very high magnetic field? Or at 60°C and high humidity? Will it work for 10 or more years? Answering these questions requires specialised and thorough testing. This can be done at the Quality Assurance and Reliability Testing Laboratory (QART) - a top-notch testing facility based at CERN, providing invaluable support for CERN projects. The QART lab has become a service in 2011, and invites all projects to use its equipment and expertise.   A portable high-sensitivity infra-red thermal imaging video camera (top left) is used to observe the thermal profile of a silicon strip sensor (top right). The thermal images taken before (bottom left) and after (bottom right) applying voltage to the device clearly show a hot spot developing on the sensor, indicating a serious defect. The infra-red camera is an example of the variety of sophisticated equipment in the QART lab available to CERN projects for the analysis of problems and enviro...

  5. GEANT4 simulations of the n_TOF spallation source and their benchmarking

    Science.gov (United States)

    Lo Meo, S.; Cortés-Giraldo, M. A.; Massimi, C.; Lerendegui-Marco, J.; Barbagallo, M.; Colonna, N.; Guerrero, C.; Mancusi, D.; Mingrone, F.; Quesada, J. M.; Sabate-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2015-12-01

    Neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n_TOF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources.

  6. The AWAKE Experimental Facility at CERN

    CERN Document Server

    Gschwendtner, E; Bracco, C; Butterworth, A; Cipiccia, S; Doebert, S; Fedosseev, V; Feldbaumer, E; Hessler, C; Hofle, W; Martyanov, M; Meddahi, M; Osborne, J; Pardons, A; Petrenko, A; Vincke, H

    2014-01-01

    AWAKE, an Advanced Wakefield Experiment is launched at CERN to verify the proton driven plasma wakefield acceleration concept. Proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent along a 750 m long proton line to a plasma cell, a Rubidium vapour source, where the proton beam drives wakefields reaching accelerating gradients of several gigavolts per meter. A high power laser pulse will copropagate within the proton bunch creating the plasma by ionizing the (initially) neutral gas. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility. First proton beam to the plasma cell is expected by end 2016. The installation planning and the baseline parameters of the experiment are shown. The design of the experimental area and the integration of the new beam-lines as well as the experimental equipment are presented. The needed modifications of the infrastructure in the facility and a few challenges are h...

  7. The SHiP facility at CERN

    CERN Document Server

    De Lellis, Giovanni

    2015-01-01

    Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experimental facility meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in dierent theoretical models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment and outline the performances of a detector operating at the same facility for the search for the tau --> mu mu mu decay

  8. Neutron-induced fission cross sections of 233U and 243Am in the energy range 0.5 Mev En 20 MeV @ n_TOF

    CERN Document Server

    Belloni, F; Milazzo, P M; Calviani, M; Colonna, N; Mastinu, P; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvár, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Koehler, P; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vazl, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross-sections of actinides have been recently measured at the neutron time of flight facility n_TOF at CERN in the frame of a research project involving isotopes relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a gas counter with good discrimination between nuclear fission products and background events. Neutron-induced fission cross-sections of 233U and 243Am were determined relative to 235U. The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

  9. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  10. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  11. n_TOF New target commissioning and beam characterization

    CERN Multimedia

    Igashira, M

    A full characterization of the neutron beam and experimental conditions for measurement with the new spallation target installed at the n_TOF facility is proposed. In a first step, the behavior the target assembly under the proton beam irradiation will be investigated, in order to complete the target commissioning. Subsequently the neutron beam parameters required to analyze the physics measurements, i.e. neutron fluence, beam profile, energy resolution function and beam related backgrounds as a function of the neutron energy, will be determined.

  12. Measurement of the 197Au(n,γ) cross section at n-TOF: towards a new standard

    International Nuclear Information System (INIS)

    Two different detectors and techniques are employed at n-TOF facility, at CERN, to improve the accuracy of the neutron capture cross section of 197Au(n,γ): a total absorption calorimeter and a set of C6D6. The accurate knowledge of this cross section is of great importance for all the (n,γ) reactions study. The neutron capture cross section and nuclear resonance parameters of the 197Au have been measured in the energy range of 1 eV to 1 KeV. The present work shows in average a good agreement with evaluated data libraries, although sizeable differences have been observed for some resonances. Two new resonances have also been discovered. The accuracy of the resonance partial widths has been improved and the main nuclear quantities such as the neutron strength function have been extracted. (authors)

  13. Measurement of the {sup 197}Au(n,{gamma}) cross section at n-TOF: towards a new standard

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, C.; Abbondanno, U.; Aerts, G.; Alvarez, H.; A lvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganie, J.; Marrone, S.; Martinez, T.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    Two different detectors and techniques are employed at n-TOF facility, at CERN, to improve the accuracy of the neutron capture cross section of {sup 197}Au(n,{gamma}): a total absorption calorimeter and a set of C{sub 6}D{sub 6}. The accurate knowledge of this cross section is of great importance for all the (n,{gamma}) reactions study. The neutron capture cross section and nuclear resonance parameters of the {sup 197}Au have been measured in the energy range of 1 eV to 1 KeV. The present work shows in average a good agreement with evaluated data libraries, although sizeable differences have been observed for some resonances. Two new resonances have also been discovered. The accuracy of the resonance partial widths has been improved and the main nuclear quantities such as the neutron strength function have been extracted. (authors)

  14. Experimental setup and procedure for the measurement of the $^{7}Be(n,{\\alpha}){\\alpha}$ reaction at n_TOF

    CERN Document Server

    Cosentino, L; Barbagallo, M; Pappalardo, A; Colonna, N; Damone, L; Piscopo, M; Finocchiaro, P; Maugeri, E; Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Aberle, O; Andrzejewski, J; Audouin, L; Ayranov, M; Bacak, M; Barros, S; Balibrea-Correa, J; Beecares, V; Becvar, F; Beinrucker, C; Berthoumieux, E; Billowes, J; Bosnar, D; Brugger, M; Caamano, M; Calviani, M; Calvino, F; Cano-Ott, D; Cardella, R; Casanovas, A; Castelluccio, D M; Cerutti, F; Chen, Y H; Chiaveri, E; Cortes, G; Cortes-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Dupont, E; Duran, I; Fernandez-Dominguez, B; Ferrari, A; Ferreira, P; Furman, W; Ganesan, S; Garcia-Rios, A; Gawlik, A; Gheorghe, I; Glodariu, T; Goebel, K; Goncalves, I F; Gonzalez-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Harada, H; Heftrich, T; Heyse, J; Jenkins, D G; Jericha, E; Kaeppeler, F; Katabuchi, T; Kavrigin, P; Kimura, A; Kokkoris, M; Krticka, M; Leal-Chidonca, E; Lerendegui, J; Lederer, C; Leeb, H; Meo, S Lo; Lonsdale, S; Losito, R; Macina, D; Marganiec, J; Martinez, T; Massimi, C; Mastinu, P; Mastromarco, M; Matteucci, F; Mazzone, A; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Montesano, S; Nolte, R; Oprea, A; Patronis, N; Pavlik, A; Perkowski, J; Praena, J; Quesada, J; Rajeev, K; Rauscher, T; Reifarth, R; Riego-Perez, A; Rout, P; Rubbia, C; Ryan, J; Sabate-Gilarte, M; Saxena, A; Schillebeeckx, P; Schmidt, S; Sedyshev, P; Stamatopoulos, A; Tagliente, G; Tain, J L; Tarifeno-Saldivia, A; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Vlachoudis, V; Vlastou, R; Vollaire, J; Wallner, A; Warren, S; Weigand, M; Weiß, C; Wolf, C; Woods, P J; Wright, T; Zugec, P

    2016-01-01

    The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the 7Be(n,{\\alpha}) reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge 7Be {\\gamma}-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutr...

  15. CERN AWAKE Facility Readiness for First Beam

    CERN Document Server

    Bracco, Chiara; Butterworth, Andrew; Damerau, Heiko; Döbert, Steffen; Fedosseev, Valentin; Feldbaumer, Eduard; Gschwendtner, Edda; Höfle, Wolfgang; Pardons, Ans; Shaposhnikova, Elena; Vincke, Helmut

    2016-01-01

    The AWAKE project at CERN was approved in August 2013 and since then a big effort was made to be able to probe the acceleration of electrons before the "2019-2020 Long Shutdown". The next steps in this challenging schedule will be a dry run of all the beam line systems, at the end of the HW commissioning in June 2016, and the first proton beam sent to the plasma cell one month later. The current status of the project is presented together with an outlook over the foreseen works for operation with electrons in 2018.

  16. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  17. Facilities Management a new strategy at CERN

    CERN Document Server

    Nonis, M; CERN. Geneva. ST Division

    2002-01-01

    Starting from 2002, the management of all the tertiary infrastructure of CERN in charge of ST Division shall be carried out through a single Contractor; this includes both maintenance activities on the buildings and their technical installations, and general services such as security, cleaning, gardening, and waste disposal. At present, all these activities are carried out by external contractors via several different contracts. The major purposes of the unification in one single contract is to transfer the coordination tasks of the contracts thus reducing the direct control operation costs, release internal resources in order to be better focused on the core business of the Division and the reduction of the costs of each activity by taking profit of the synergies among the different services. The authors will thoroughly report on the main aspects related to this new contract, focusing their attention in particular to the result oriented strategy through a Service Level Agreement, the key performance indicato...

  18. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  19. New measurement of the 242Pu(n,γ cross section at n_TOF

    Directory of Open Access Journals (Sweden)

    Lerendegui-Marco J.

    2016-01-01

    Full Text Available The use of MOX fuel (mixed-oxide fuel made of UO2 and PuO2 in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. With the use of such new fuel composition rich in Pu, a better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF and United States (ENDF nuclear data agencies. For the case of 242Pu, the two only neutron capture time-of-flight measurements available, from 1973 and 1976, are not consistent with each other, which calls for a new time-of flight capture cross section measurement. In order to contribute to a new evaluation, we have perfomed a neutron capture cross section measurement at the n_TOF-EAR1 facility at CERN using four C6D6 detectors, using a high purity target of 95 mg. The preliminary results assessing the quality and limitations (background, statistics and γ-flash effects of this new experimental data are presented and discussed, taking into account that the aimed accuracy of the measurement ranges between 7% and 12% depending on the neutron energy region.

  20. CERN accelerator school: Antiprotons for colliding beam facilities

    International Nuclear Information System (INIS)

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  1. The CERN linear collider test facility (CTF)

    International Nuclear Information System (INIS)

    The CTF (Collider Test Facility) was brought into service last year. The 3 GHz gun produced a beam of 3 MeV/c which was accelerated to 40 MeV/c. This beam, passing a prototype CLIC (linear collider) structure, generated a sizeable amount of 30 GHz power. This paper describes the results and experience with the gun driven by a 8 ns long laser pulse and its CsI photo cathode, the beam behaviour, the beam diagnostics in particular with the bunch measurements by Cerenkov or transition radiation light and streak camera, the photo cathode research, and the beam dynamics studies on space charge effects. (Author)4 figs., tab., 6 refs

  2. Measurement of the 90,91,92,93,94,96Zr(n,γ) and 139La(n,γ) cross sections at n-TOF

    International Nuclear Information System (INIS)

    Neutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the 139La is important to monitor the s-process abundances from Ba up to Pb. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of 90,91,92,93,94,96Zr and 139La have been measured at the n-TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated. The resonance parameters measured at n-TOF are for all the Zr samples in general 10-20% smaller than previously reported. The values of the Maxwellian-averaged cross section we calculated are: 90Zr - (18.1 ± 1) mb; 91Zr - (51.6 ± 8) mb; 92Zr - (29.7 ± 2) mb; 94Zr - (27.6 ± 1) mb; 96Zr - (7.5 ± 0.4) mb and 139La - (32.4 ± 3) mb.

  3. Measurement of the {sup 90,91,92,93,94,96}Zr(n,{gamma}) and {sup 139}La(n,{gamma}) cross sections at n-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Tagliente, G.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    Neutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the {sup 139}La is important to monitor the s-process abundances from Ba up to Pb. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of {sup 90,91,92,93,94,96}Zr and {sup 139}La have been measured at the n-TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated. The resonance parameters measured at n-TOF are for all the Zr samples in general 10-20% smaller than previously reported. The values of the Maxwellian-averaged cross section we calculated are: {sup 90}Zr - (18.1 {+-} 1) mb; {sup 91}Zr - (51.6 {+-} 8) mb; {sup 92}Zr - (29.7 {+-} 2) mb; {sup 94}Zr - (27.6 {+-} 1) mb; {sup 96}Zr - (7.5 {+-} 0.4) mb and {sup 139}La - (32.4 {+-} 3) mb.

  4. Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects

    Science.gov (United States)

    Lerendegui-Marco, J.; Lo Meo, S.; Guerrero, C.; Cortés-Giraldo, M. A.; Massimi, C.; Quesada, J. M.; Barbagallo, M.; Colonna, N.; Mancusi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2016-04-01

    The characteristics of the neutron beam at the new n_TOF-EAR2 facility have been simulated with the Geant4 code with the aim of providing useful data for both the analysis and planning of the upcoming measurements. The spatial and energy distributions of the neutrons, the resolution function and the in-beam γ-ray background have been studied in detail and their implications in the forthcoming experiments have been discussed. The results confirm that, with this new short (18.5m flight path) beam line, reaching an instantaneous neutron flux beyond 105n/μs/pulse in the keV region, n_TOF is one of the few facilities where challenging measurements can be performed, involving in particular short-lived radioisotopes.

  5. CHANGE OF CONTRACTOR FOR THE FACILITIES MANAGEMENT ACTIVITIES AT CERN

    CERN Document Server

    2003-01-01

    The Facilities Management contract at CERN, under the responsibility of ST Division, Group FM, is in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: - Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), cleansing, passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, - Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent control and insect control. Starting from the 1st June the present contractor will stop some activities that will be taken under its responsibility by the new one, INGEST Facility. The remaining activities (including cleaning) will be moved on the 1st July. Minor perturbation in the service might occur. The contact number will ...

  6. CHANGE OF CONTRACTOR FOR THE FACILITIES MANAGEMENT ACTIVITIES AT CERN

    CERN Multimedia

    2003-01-01

    The Facilities Management contract at CERN, under the responsibility of ST Division, Group FM, is in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: - Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), cleansing, passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, - Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent control and insect control. Starting from the 1st June the present contractor will stop some activities that will be taken under its responsibility by the new one, INGEST Facility. Others activities will be moved on the 1st July. Minor perturbation in the service might occur. The contact number will not change and will be opera...

  7. Physics at the new CERN neutron beam line

    CERN Document Server

    Guerrero, C

    2014-01-01

    A new neutron beam line (n_TOF EAR - 2) is being built at CERN within the n_TOF facility. Compared to the existing 185 meters long time - of - flight beam line, the new one (which will operate in parallel) will feature a shorter flight of 20 meters, providing a 2 7 times more intense neutron flux extending from thermal to 300 MeV. The scientific program is now bein g discussed and the first detailed proposals will be refereed by February 2014. This contribution is devoted to present and discuss the expected performance of the facility, briefly, and the details of some of the first measureme nts foreseen for 2014 and 2015.

  8. Μελέτη των χαρακτηριστικών της δέσμης νετρονίων και προσδιορισμός παραμέτρων συντονισμού της σύλληψης νετρονίων στο 234U με την μέθοδο της ολικής απορρόφησης, στην πειραματική διάταξη n_TOF του CERN

    CERN Document Server

    Lampoudis, Christos

    At an international level several issues accompany the long-term development of nuclear science and its applications: nuclear waste management, new reactor design, increasingly safety requirements, public acceptance etc. This has triggered many sophisticated R&D activities, such as Accelerator Driven Systems or next generation reactor concepts and enhanced the ongoing effort to expand and improve the existing nuclear data. Among other measurements of special interest, is the neutron capture cross section determination for several isotopes related to the nuclear fuel cycle. This text mainly presents the obtained results from the (n,γ) cross section measurement of 234U that was performed at n_TOF facility (CERN). In detail we describe the main features of the facility, the TAC (Total Absorption Calorimeter) detection arrangement and its performance under specific experimental conditions. Results in the form of R-matrix resonance parameters and cross sections are discussed in parallel with the existing ENDF...

  9. Plans for an ERL Test Facility at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Erik [CERN; Bruning, O S [CERN; Calaga, Buchi Rama Rao [CERN; Schirm, Karl-Martin [CERN; Torres-Sanchez, R [CERN; Valloni, Alessandra [CERN; Aulenbacher, Kurt [Mainz; Bogacz, Slawomir [JLAB; Hutton, Andrew [JLAB; Klein, M [University of Liverpool

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and their tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.

  10. Capture cross section measurements of 186,187,188Os at n-TOF: the resolved resonance region

    International Nuclear Information System (INIS)

    The neutron capture cross sections of 186,187,188Os have been measured at the CERN neutron time-of-flight facility, n-TOF, in the neutron energy range from 1 eV up to 1 MeV. In this contribution, we report the results of the analysis of the resolved resonance region (RRR). Resonance parameters have been extracted from a full R-matrix fit of the capture yields with the SAMMY code. A statistical analysis has been performed and the related average resonance parameters are derived. This information is crucial for a complete understanding and modeling in terms of the Hauser-Feshbach statistical model of the capture and inelastic reaction channels, required for the evaluation of the stellar reaction rates of these isotopes. Maxwellian average cross sections for the range of temperatures relevant for s-process nucleosynthesis have been derived from the combined information of the experimental data in the resolved and unresolved resonance regions. A brief account of the implications of this analysis in the estimation of the s-process component of the 187Os abundance and the related impact on the estimates of the time-duration of the galactic nucleosynthesis through the Re/Os clock is given. (authors)

  11. Capture cross section measurements of {sup 186,187,188}Os at n-TOF: the resolved resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K.; Mosconi, M.; Milazzo, P.M.; Domingo-Pardo, C.; Kappeler, F.; Mengoni, A.; Abbondanno, U.; Aerts, G.; Alvarez, H.; A lvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, H.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Moreau, C.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    The neutron capture cross sections of {sup 186,187,188}Os have been measured at the CERN neutron time-of-flight facility, n-TOF, in the neutron energy range from 1 eV up to 1 MeV. In this contribution, we report the results of the analysis of the resolved resonance region (RRR). Resonance parameters have been extracted from a full R-matrix fit of the capture yields with the SAMMY code. A statistical analysis has been performed and the related average resonance parameters are derived. This information is crucial for a complete understanding and modeling in terms of the Hauser-Feshbach statistical model of the capture and inelastic reaction channels, required for the evaluation of the stellar reaction rates of these isotopes. Maxwellian average cross sections for the range of temperatures relevant for s-process nucleosynthesis have been derived from the combined information of the experimental data in the resolved and unresolved resonance regions. A brief account of the implications of this analysis in the estimation of the s-process component of the {sup 187}Os abundance and the related impact on the estimates of the time-duration of the galactic nucleosynthesis through the Re/Os clock is given. (authors)

  12. Experimental setup and procedure for the measurement of the 7Be(n,α)α reaction at n_TOF

    Science.gov (United States)

    Cosentino, L.; Musumarra, A.; Barbagallo, M.; Pappalardo, A.; Colonna, N.; Damone, L.; Piscopo, M.; Finocchiaro, P.; Maugeri, E.; Heinitz, S.; Schumann, D.; Dressler, R.; Kivel, N.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Ayranov, M.; Bacak, M.; Barros, S.; Balibrea-Correa, J.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Duran, I.; Fernandez-Dominguez, B.; Ferrari, A.; Ferreira, P.; Furman, W.; Ganesan, S.; García-Rios, A.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Göbel, K.; Gonc̗alves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lerendegui, J.; Lederer, C.; Leeb, H.; Meo, S. Lo; Lonsdale, S.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J.; Sabate-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vollaire, J.; Wallner, A.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Woods, P. J.; Wright, T.; Z̆ugec, P.

    2016-09-01

    The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the 7Be(n,α)α reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge 7Be γ-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.

  13. Nuclear Data Experimental Program at CERN for Reactor Physics

    International Nuclear Information System (INIS)

    The neutron time-of-flight facility n-TOF, operating at CERN since 2001, features a neutron beam that covers the energy range from thermal to 1 GeV. Its most outstanding characteristics are its long flight path (185 m) and the high instantaneous intensity (0.5-12·106 neutrons/pulse depending on the collimator configuration). The ambitious program carried out in the last decade includes a large number of experiments in the fields of nuclear energy technologies, astrophysics, basic physics, detector development and medical applications. Within the field of nuclear energy technologies most measurements are focused on determining, for the first time and/or with unprecedented accuracies, the capture and fission cross sections of actinides, both at low (resolved resonance region) and high (keV-GeV) neutron energies. This paper present a summary of all the measurements carried out since 2001 at n-TOF, including some details for several of these experiments. (author)

  14. CNGS, CERN Neutrinos to Gran Sasso, Five Years of Running a 500 Kilowatt Neutrino Beam Facility at CERN

    CERN Document Server

    Gschwendtner, E; Efthymiopoulos, I; Kratschmer, I; Pardons, A; Vincke, H; Wenninger, J

    2013-01-01

    The CNGS facility (CERN Neutrinos to Gran Sasso) aims at directly detecting muon to tau neutrino oscillations. An intense muon-neutrino beam (1017 muon-neutrinos/day) is generated at CERN and directed over 732 km towards the Gran Sasso National Laboratory, LNGS, in Italy, where two large and complex detectors, OPERA and ICARUS, are located. The CNGS facility started with the physics program in 2008 and delivered until the end of the physics run in 2012 more than 81% of the approved protons on target (22.5·1019 pot). An overview of the performance and experience gained in operating this 500 kW neutrino beam facility is described. Major events since the commissioning of the facility in 2006 are summarized. Highlights on the CNGS beam performance are given.

  15. Cern

    CERN Multimedia

    2009-01-01

    "La réparation de l'accélérateur géant de particules LHC, qui devrait redémarrer mi-novembre aprés une panne de plus d'un an, a coûté 23 millions d'euros, selon un haut responsable du Centre européen de recherche nucléaire (CERN), cité vendredi par les médias espagnols" (1 paragraph)

  16. NA61/SHINE facility at the CERN SPS: beams and detector system

    OpenAIRE

    Ereditato, Antonio; Hierholzer, Martin; Messina, Marcello; Nirkko, Martti; Pistillo, Ciro; Redij, Asmita Ajit; Rossi, Biagio

    2014-01-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North A...

  17. Fluence measurement at the neutron time of flight experiment at CERN

    CERN Document Server

    Weiss, Christina; Jericha, Erwin

    At the neutron time of flight facility n_TOF at CERN a new spallation target was installed in 2008. In 2008 and 2009 the commissioning of the new target took place. During the summer 2009 a fission chamber of the Physikalisch Technische Bundesanstalt (PTB) Braunschweig was used for the neutron fluence measurement. The evaluation of the data recorded with this detector is the primary topic of this thesis. Additionally a neutron transmission experiment with air has been performed at the TRIGA Mark II reactor of the Atomic Institute of the Austrian Universities (ATI). The experiment was implemented to clarify a question about the scattering cross section of molecular gas which could not be answered clearly via the literature. This problem came up during the evaluations for n_TOF.

  18. Concept for a lead-ion accelerating facility at CERN

    International Nuclear Information System (INIS)

    After the successful acceleration of deuterons, alpha particles and in more recent years of oxygen and sulphur ions, interest arose for even heavier particles. This paper describes the problems associated with heavy ions. A proposal is made for a scenario which allows the CERN accelerators to cope with ions heavier than sulphur, e.g. lead. Discussed are the different options for the injector and the necessary upgrading for the circular machines. (orig.)

  19. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    CERN Multimedia

    Baron, T; Duran, G; Correia Fernandes, J; Ferreira, P; Gonzalez Lopez, J B; Jouberjean, F; Lavrut, L; Tarocco, N

    2013-01-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for video-conference or not), as well as maintenance and local support. Managing now nearly half of the 250 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper will focus on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audiovisual equipment monitoring systems, ...

  20. The alignment of the CERN west area neutrino facility

    International Nuclear Information System (INIS)

    This paper describes the alignment (completed in the spring of 1995) of the rebuilt CERN West Area neutrino beam line which is directed to the two neutrino experiments CHORUS and NOMAD. The neutrino target (T9)and the magnetic horn were aligned with respect to the proton beam using the intensity of the secondary particles produced and the intensity and profile of the muons detected in the pits in the beam line shielding. The improved geometry provides a better-centred neutrino beam (within 5 cm of the nominal centre) and a significant increase in the neutrino flux of 8% at the experiments. (orig.)

  1. Measurement at n-TOF of the 237Np(n, γ) and 240Pu(n, γ) cross sections for the transmutation of nuclear waste

    International Nuclear Information System (INIS)

    The final design, safety assessment and precise performance analysis of transmutation devices such as Accelerator Driven Systems (ADS) or Fast Critical Reactors, need accurate and reliable nuclear data. The cross sections of 237Np and 240Pu have been measured in 2004 at n-TOF with good accuracy due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the n-TOF facility [1], innovative Data Acquisition System based on flash ADCs and the use of a high performance BaF2 Total Absorption Calorimeter as a detection device. (authors)

  2. Emission Channeling with Short-Lived Isotopes (EC-SLI) at CERN's ISOLDE Facility

    Science.gov (United States)

    Wahl, U.; Correia, J. G.; Costa, A.; David-Bosne, E.; Pereira, L. M. C.; Amorim, L. M.; Augustyns, V.; Temst, K.; Vantomme, A.; da Silva, M. R.; Silva, D. J.; Araújo, J. P.; Miranda, P.; Bharuth-Ram, K.

    2015-11-01

    We give an overview on the historical development and current program for lattice location studies at CERN's ISOLDE facility, where the EC-SLI (Emission Channeling with Short-Lived Isotopes) collaboration maintains several setups for this type of experiments. We illustrate that the three most decisive factors for the success of the technique are access to facilities producing radioactive isotopes, position-sensitive detectors for the emitted decay particles, and reliable simulation codes which allow for quantitative analysis.

  3. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV En 20 MeV at nTOF at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, F. [Instituto Nazionale de Fisica Nucleare-Italy and CEA-France; Milazzo, P. M. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Calviani, M. [Laboratori Nazionali di Legnaro, Italy and CERN, Geneva, Switzerland; Colonna, N. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Mastinu, P. F. [INFN, Laboratori Nazionali di Legnaro, Italy; Abbondanno, U. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Aerts, G. [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Alvarez, H. [University of Santiago de Compostela, Spain; Alvarez-Velarde, F. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Andriamonje, S. [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Andrzejewski, J. [University of Lodz, Lodz, Poland; Assimakopoulos, P. A. [University of Ioannina, Greece; Audouin, L. [Centre National de la Recherche Scidntifique/IN2P3-IPN, Orsay, France; Badurek, G. [Vienna University of Technology, Austria; Barbagallo, M. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Baumann, P. [CNRS, Strasbourg, France; Becvar, F. [Charles University, Prague, Czech Republic; Berthoumieux, E. [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Calvino, F. [Universidad Politecnica de Madrid, Spain; Cerutti, F. [CERN, Geneva, Switzerland; Cano-Ott, D. [CIEMAT, Spain; Capote, R. [IAEA-Vienna, Austria and Universidad de Sevilla, Spain; Carrapico, C. [Instituto Tecnológico e Nuclear (ITN), Lisbon, Portugal; Carrillo de Albornoz, A. [Instituto Tecnológico e Nuclear (ITN), Lisbon, Portugal; Cennini, P. [CERN, Geneva, Switzerland; Chepel, V. [University of Ciombra, Portugal; Chiaveri, E. [CERN, Geneva, Switzerland; Cortes, G. [Universitat Politecnica de Catalunya, Barcelona, Spain; Couture, A. [University of Notre Dame, IN; Cox, J. [University of Notre Dame, IN; Dahlfors, M. [CERN, Geneva, Switzerland; David, S. [CNRS, Orsay, France; Dillmann, I. [Institut fur Kernphysik, Karlsruhe, Germany; Dolfini, R. [Universita di Pavia, Italy; Domingo-Pardo, C. [CSIC-Universidad de Valencia; Koehler, Paul [ORNL; The n_TOF Collaboration, [CERN, Geneva, Switzerland

    2012-01-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  4. Micromegas detector for $^{33}$S(n,$\\alpha$) cross section measurement at n_TOF

    CERN Multimedia

    The present proposal is a consequence of the successful tests performed in 2011 related to the Letter of Intent CERN-INTC-2010-023/I-092. The main goal of this proposal is a first (n,$\\alpha$) cross section measurement with the Micromegas detector presently running at n_TOF for monitoring purposes and fission cross section measurements. The $^{33}$S(n,$\\alpha$) cross section is of interest in astrophysics mainly due to the origin of $^{36}$S which is still an open question. $^{33}$S is also of interest in medical physics since it has been proposed as a possible/alternative cooperating target to boron neutron capture therapy. Important discrepancies between previous measurements of $^{33}$S(n,$\\alpha$) cross section and especially between the resonance parameters are found in the literature. We propose to measure the (n,$\\alpha$) cross section of the stable isotope $^{33}$S in the energy range up to 300 keV covering the astrophysical range of interest. The possibility of increasing this energy range will be st...

  5. NA61/SHINE facility at the CERN SPS: beams and detector system

    International Nuclear Information System (INIS)

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013

  6. NA61/SHINE facility at the CERN SPS: beams and detector system

    CERN Document Server

    Abgrall, N; Aduszkiewicz, A; Ali, Y; Anticic, T; Antoniou, N; Baatar, B; Bay, F; Blondel, A; Blumer, J; Bogomilov, M; Bogusz, M; Bravar, A; Brzychczyk, J; Bunyatov, S A; Christakoglou, P; Czopowicz, T; Davis, N; Debieux, S; Dembinski, H; Diakonos, F; Di Luise, S; Dominik, W; Drozhzhova, T; Dumarchez, J; Dynowski, K; Engel, R; Efthymiopoulos, I; Ereditato, A; Fabich, A; Feofilov, G A; Fodor, Z; Fulop, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Haesler, A; Hasegawa, T; Hierholzer, M; Idczak, R; Igolkin, S; Ivashkin, A; Jokovic, D; Kadija, K; Kapoyannis, A; Kaptur, E; Kielczewska, D; Kirejczyk, M; Kisiel, J; Kiss, T; Kleinfelder, S; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kondratiev, V P; Korzenev, A; Koversarski, P; Kowalski, S; Krasnoperov, A; Kurepin, A; Larsen, D; Laszlo, A; Lyubushkin, V V; Mackowiak-Pawlowska, M; Majka, Z; Maksiak, B; Malakhov, A I; Maletic, D; Manglunki, D; Manic, D; Marchionni, A; Marcinek, A; Marin, V; Marton, K; Mathes, H J; Matulewicz, T; Matveev, V; Melkumov, G L; Messina, M; Mrowczynski, St; Murphy, S; Nakadaira, T; Nirkko, M; Nishikawa, K; Palczewski, T; Palla, G; Panagiotou, A D; Paul, T; Peryt, W; Petukhov, O; Pistillo, C; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Pulawski, S; Puzovic, J; Rauch, W; Ravonel, M; Redij, A; Renfordt, R; Richter-Was, E; Robert, A; Rohrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rustamov, A; Rybczynski, M; Sadovsky, A; Sakashita, K; Savic, M; Schmidt, K; Sekiguchi, T; Seyboth, P; Sgalaberna, D; Shibata, M; Sipos, R; Skrzypczak, E; Slodkowski, M; Sosin, Z; Staszel, P; Stefanek, G; Stepaniak, J; Stroebele, H; Susa, T; Szuba, M; Tada, M; Tereshchenko, V; Tolyhi, T; Tsenov, R; Turko, L; Ulrich, R; Unger, M; Vassiliou, M; Veberic, D; Vechernin, V V; Vesztergombi, G; Vinogradov, L; Wilczek, A; Wlodarczyk, Z; Wojtaszek-Szwarz, A; Wyszynski, O; Zambelli, L; Zipper, W

    2014-01-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility - the beams and the detector system - before the CERN Long Shutdown I, which started in March ...

  7. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    Science.gov (United States)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  8. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    International Nuclear Information System (INIS)

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  9. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  10. CERN-MEDICIS (Medical Isotopes Collected from ISOLDE: A New Facility

    Directory of Open Access Journals (Sweden)

    Ricardo Manuel dos Santos Augusto

    2014-05-01

    Full Text Available About 50% of the 1.4 GeV CERN (European Organization for Nuclear Research, www.cern.ch protons are sent onto targets to produce radioactive beams by online mass separation at the Isotope Separator Online Device (ISOLDE facility, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to Phase I trials. Five hundred megabecquerel isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. A possible future upgrade with gigabecquerel pharmaceutical-grade i.e., current good manufacturing practices (cGMP batch production capabilities is finally presented.

  11. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    International Nuclear Information System (INIS)

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. (author)

  12. A study of the multigap RPC at the $\\gamma$ irradiation facility at CERN

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Baek, Y W; Basile, M; Cara Romeo, G; Cerron-Zeballos, E; Cifarelli, Luisa; Cindolo, F; Caro, A D; Pasquale, S D; Bartolomeo, A D; Fusco-Girard, M; Guida, M; Hatzifotiadou, D; Kisselev, S M; Laurenti, G; Luvisetto, M L; Margotti, A; Martemyanov, A N; Morozov, S; Nania, R; Pesci, A; Pierella, F; Scioli, G; Sellitto, S B; Smirnitsky, A V; Valenti, G; Vicinanza, D; Williams, M C S; Witoszynskyj, S; Zagreev, B V; Zichichi, A

    2002-01-01

    The selected device for the ALICE Time-of-Flight array is the Multigap Resistive Plate Chamber (MRPC). We have tested this device at the Gamma Irradiation Facility at CERN to evaluate the rate dependence. We find that the rate capability of the MRPC easily exceeds the 50 Hz/cm sup 2 maximum expected rate at the ALICE experiment. In addition, we have measured the power dissipated for an equivalent flux of 1.6 kHz/cm sup 2 of through-going muons to be 650 mW/m sup 2.

  13. GEANT4 simulation of the CERN-EU high-energy reference field (CERF) facility

    International Nuclear Information System (INIS)

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (Geometry And Tracking) tool-kit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made. (authors)

  14. Instrument intercomparison in the pulsed neutron fieldsat the CERN HiRadMat facility

    CERN Document Server

    Aza, E; Cassell, C; Charitonidis, N; Harrouch, E; Manessi, G P; Pangallo, M; Perrin, D; Samara, E; Silari, M

    2014-01-01

    An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fi elds in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fi fth is a novel instrument, called LUPIN, speci fi cally conceived for applications in pulsed neutron fi elds. The measurements were performed in the stray fi eld generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few m Sv per burst, whereas the gamma contribution to the total H*(10) was negligible. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst in- t...

  15. The CERN analysis facility-a PROOF cluster for day-one physics analysis

    International Nuclear Information System (INIS)

    ALICE (A Large Ion Collider Experiment) at the LHC plans to use a PROOF cluster at CERN (CAF - CERN Analysis Facility) for analysis. The system is especially aimed at the prototyping phase of analyses that need a high number of development iterations and thus require a short response time. Typical examples are the tuning of cuts during the development of an analysis as well as calibration and alignment. Furthermore, the use of an interactive system with very fast response will allow ALICE to extract physics observables out of first data quickly. An additional use case is fast event simulation and reconstruction. A test setup consisting of 40 machines is used for evaluation since May 2006. The PROOF system enables the parallel processing and xrootd the access to files distributed on the test cluster. An automatic staging system for files either catalogued in the ALICE file catalog or stored in the CASTOR mass storage system has been developed. The current setup and ongoing development towards disk quotas and CPU fairshare are described. Furthermore, the integration of PROOF into ALICE's software framework (AliRoot) is discussed

  16. Development of an In-Situ Radiological Classification Technique for Material from CERN's Accelerator Facilities

    CERN Document Server

    AUTHOR|(CDS)2081300; Froeschl, Robert; Forkel-Wirth, Doris

    CERN, the European Organization for Nuclear Research, operates high energy accelerators for particle physics research. Because of beam losses and subsequent particle interactions, radioactivity can be induced in certain accelerator components. Material and waste taken out of the accelerators facilities as a result of maintenance repair and upgrade actions as well as in case of decommissioning needs to be radiologically classied for future handling. Depending on the level of residual activity, some of these components are candidates for clearance from regulatory control in Switzerland. The Swiss radiation protection ordinance sets as criteria for clearance of material and waste from regulatory control the compliance with radionuclide specic limits for surface contamination and for specic activity as well as an ambient dose equivalent rate criterion. For objects with a mass below 1 kg a radionuclide specic clearance limit for total activity has to be respected. This work is focused on the specic activity criter...

  17. First Results of an Experiment on Advanced Collimator Materials at CERN HiRadMat Facility

    CERN Document Server

    Bertarelli, A; Assmann, R; Berthome, E; Boccone, V; Carra, F; Cerutti, F; Charrondiere, C; Dallocchio, A; Donze, M; Francon, P; Garlasche, M; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Moyret, P; Redaelli, S; Rossi, A; Calderon Cueva, M; Charitonidis, N; Peroni, L; Scapin, M

    2013-01-01

    A comprehensive, first-of-its-kind experiment (HRMT-14) has been recently carried out at CERN HiRadMat facility on six different materials of interest for Beam Intercepting Devices (collimators, targets, dumps). Both traditional materials (Mo, W and Cu alloys) as well as advanced metal/diamond and metal/graphite composites were tested under extreme conditions as to pressure, density and temperature, leading to the development of highly dynamic phenomena as shock-waves, spallation, explosions. Experimental data were acquired, mostly in real time, relying on extensive integrated instrumentation (strain gauges, temperature and vacuum sensors) and on remote acquisition devices (laser Doppler vibrometer and high-speed camera). The experiment was a success under all points of view in spite of the technological challenges and harsh environment. First measurements are in good agreement with results of complex simulations, confirming the effectiveness of the acquisition system and the reliability of advanced numerical...

  18. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    CERN Document Server

    Charitonidis, Nikolaos; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-01-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/201...

  19. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    CERN Document Server

    Abler, Daniel; Carli, Christian; Dosanjh, Manjit; Peach, Ken; Orecchia, Roberto

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN’s competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR an...

  20. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Charitonidis, Nikolaos [CERN; Efthymiopoulos, Ilias [CERN; Fabich, Adrian [CERN; Meddahi, Malika [CERN; Gianfelice-Wendt, Eliana [Fermilab

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  1. A Facility to Search for Hidden Particles (SHiP) at the CERN SPS

    CERN Document Server

    Anelli, M; Arduini, G; Back, J J; Bagulya, A; Baldini, W; Baranov, A; Barker, G J; Barsuk, S; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bellagamba, L; Bencivenni, G; Bertani, M; Bezshyyko, O; Bick, D; Bingefors, N; Blondel, A; Bogomilov, M; Boyarsky, A; Bonacorsi, D; Bondarenko, D; Bonivento, W; Borburgh, J; Bradshaw, T; Brenner, R; Breton, D; Brook, N; Bruschi, M; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Capoccia, C; Cecchetti, A; Chatterjee, A; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Ciambrone, P; Cicalo, C; Conti, G; Cornelis, K; Courthold, M; G Dallavalle, M; D'Ambrosio, N; De Lellis, G; De Serio, M; Dedenko, L; Di Crescenzo, A; Di Marco, N; Dib, C; Dietrich, J; Dijkstra, H; Domenici, D; Donskov, S; Druzhkin, D; Ebert, J; Egede, U; Egorov, A; Egorychev, V; El Alaoui, M A; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fedorova, G; Felici, G; Ferro-Luzzi, M; Fini, R A; Franke, M; Fraser, M; Galati, G; Giacobbe, B; Goddard, B; Golinka-Bezshyyko, L; Golubkov, D; Golutvin, A; Gorbunov, D; Graverini, E; Grenard, J-L; Guler, A M; Hagner, C; Hakobyan, H; Helo, J C; van Herwijnen, E; Horvath, D; Iacovacci, M; Iaselli, G; Jacobsson, R; Kadenko, I; Kamiscioglu, M; Kamiscioglu, C; Khaustov, G; Khotjansev, A; Kilminster, B; Kim, V; Kitagawa, N; Kodama, K; Kolesnikov, A; Kolev, D; Komatsu, M; Konovalova, N; Koretskiy, S; Korolko, I; Korzenev, A; Kovalenko, S; Kudenko, Y; Kuznetsova, E; Lacker, H; Lai, A; Lanfranchi, G; Lauria, A; Lebbolo, H; Levy, J -M; Lista, L; Loverre, P; Lukiashin, A; Lyubovitskij, V E; Malinin, A; Manfredi, M; Perillo-Marcone, A; Marrone, A; Matev, R; Messomo, E N; Mermod, P; Mikado, S; Mikhaylov, Yu; Miller, J; Milstead, D; Mineev, O; Mingazheva, R; Mitselmakher, G; Miyanishi, M; Monacelli, P; Montanari, A; Montesi, M C; Morello, G; Morishima, K; Movtchan, S; Murzin, V; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nurakhov, N; Obinyakov, B; Ocalan, K; Ogawa, S; Oreshkin, V; Orlov, A; Osborne, J; Pacholek, P; Panman, J; Paoloni, A; Paparella, L; Pastore, A; Patel, M; Petridis, K; Petrushin, M; Poli-Lener, M; Polukhina, N; Polyakov, V; Prokudin, M; Puddu, G; Pupilli, F; Rademakers, F; Rakai, A; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, R; Roganova, T; Rogozhnikov, A; Rokujo, H; Romaniouk, A; Rosa, G; Rostovtseva, I; Rovelli, T; Ruchayskiy, O; Ruf, T; Saitta, G; Samoylenko, V; Samsonov, V; Sanz Ull, A; Saputi, A; Sato, O; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shaposhnikov, M; Shatalov, P; Shaykhiev, A; Shchutska, L; Shevchenko, V; Shibuya, H; Shitov, Y; Silverstein, S; Simone, S; Skorokhvatov, M; Smirnov, S; Solodko, E; Sosnovtsev, V; Spighi, R; Spinetti, M; Starkov, N; Storaci, B; Strabel, C; Strolin, P; Takahashi, S; Teterin, P; Tioukov, V; Tommasini, D; Treille, D; Tsenov, R; Tshchedrina, T; Ustyuzhanin, A; Vannucci, F; Venturi, V; Villa, M; Vincke, Heinz; Vincke, Helmut; Vladymyrov, M; Xella, S; Yalvac, M; Yershov, N; Yilmaz, D; U Yilmazer, A; Vankova-Kirilova, G; Zaitsev, Y; Zoccoli, A; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below ${\\cal O}$(10)~GeV/c$^2$, including very weakly interacting low-energy SUSY states. The experimental programme of the proposed facility is capable of being extended in the future, e.g. to include direct searches for Dark Matter and Lepton Flavour Violation. The facility will be serviced by a new dedicated beam line branched off the splitter section on the North Area. It is followed by a new target station and a magnetic shield to suppress beam induced background. The proposed orientation of the beam line and the underground complex allows reserving more than 100~m of space beyond the experiment...

  2. CERN-MEDICIS (MEDical Isotopes Collected from ISOLDE): A new facility

    CERN Document Server

    Augusto, Ricardo Manuel dos Santos; Lawson, Zoe; Marzari, Stefano; Stachura, Monika; Stora, Thierry; CERN. Geneva. ATS Department

    2014-01-01

    About 50% of the 1.4GeV CERN’s protons are sent onto targets to produce radioactive beams by online mass separation at ISOLDE, for a wide range of studies in fundamental and applied physics. CERN-MEDICIS is a spin-off dedicated to R&D in life sciences and medical applications. It is located in an extension of the Class A building presently under construction. It will comprise laboratories to receive the irradiated targets from a new station located at the dump position behind the ISOLDE production targets. An increasing range of innovative isotopes will thus progressively become accessible from the start-up of the facility in 2015 onward; for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for pre-clinical trials, possibly extended to specific early phase clinical studies up to phase I trials. 500 MBq isotope batches purified by electromagnetic mass separation combined with chemical methods will be collected on a weekly basis. Possible future u...

  3. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    International Nuclear Information System (INIS)

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions

  4. The target of the CNGS facility at CERN, which will enable the production of neutrino

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The final target system (base table, alignment table with target magazine and BPKG) was installed in the target chamber on 8 March 2006. The pictures show the material in the test set-up in the laboratory, before transportation. On 29 May, CNGS (CERN Neutrinos to Gran Sasso) will send the first neutrino beams from CERN to the Gran Sasso Laboratory in Italy. The neutrinos will journey 730 km through the earth's crust.

  5. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  6. Study for cryogenic testing the Super-FRS magnets of FAIR in a new test facility at CERN

    Science.gov (United States)

    Derking, J. H.; Perin, A.; Benda, V.; Pirotte, O.

    2015-12-01

    The Super-FRS magnets of the international Facility for Antiproton and Ion Research (FAIR) being built at GSI in Germany will be tested at a new cryogenic test facility currently under construction at CERN. During nominal operation the magnets will be cooled with liquid helium to 4.5 K. Over a period of three years in total 57 magnets will be tested of three different types. A study is performed to determine the cryogenic requirements for testing the Super-FRS magnets. The required operational parameters for the cool down, magnet test and warm up phases are determined and the results are discussed in this paper. For pre-cooling the magnets to 90 K with a rate of 1 K·h-1, a maximum cooling power of 5.6 kW is required. Cooling down the magnets further to 4.5 K and filling will be performed with LHe within 24 h. For warming up the magnets a maximum heater power of 14 kW is needed. It is concluded that the planned test facility currently under construction at CERN fulfills the cryogenic requirements for testing the Super-FRS magnets.

  7. Study for cryogenic testing the Super-FRS magnets of FAIR in a new test facility at CERN

    CERN Document Server

    Derking, J H; Benda, V; Pirotte, O

    2015-01-01

    The Super-FRS magnets of the international Facility for Antiproton and Ion Research (FAIR) being built at GSI in Germany will be tested at a new cryogenic test facility currently under construction at CERN. During nominal operation the magnets will be cooled with liquid helium to 4.5 K. Over a period of three years in total 57 magnets will be tested of three different types. A study is performed to determine the cryogenic requirements for testing the Super-FRS magnets. The required operational parameters for the cool down, magnet test and warm up phases are determined and the results are discussed in this paper. For pre-cooling the magnets to 90 K with a rate of 1 Kcenterdoth-1, a maximum cooling power of 5.6 kW is required. Cooling down the magnets further to 4.5 K and filling will be performed with LHe within 24 h. For warming up the magnets a maximum heater power of 14 kW is needed. It is concluded that the planned test facility currently under construction at CERN fulfills the cryogenic requirements for t...

  8. HiRadMat at CERN/SPS - A dedicated facility providing high intensity beam pulses to material samples

    CERN Multimedia

    Charitonidis, N; Efthymiopoulos, I

    2014-01-01

    HiRadMat (High Radiation to Materials), constructed in 2011, is a facility at CERN designed to provide high‐intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, high power beam targets, collimators…) can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of up to 7.2 us, and with a maximum pulse energy of 3.4 MJ (3xE13 proton/pulse). In addition to protons, ion beams with energy of 440 GeV/charge and total pulse energy of 21 kJ can be provided. The beam parameters can be tuned to match the needs of each experiment. HiRadMat is not an irradiation facility where large doses on equipment can be accumulated. It is rather a test area designed to perform single pulse experiments to evaluate the effect of high‐intensity pulsed beams on materials or accelerator component assemblies in a controlled environment. The fa‐ cility is designed for a maximum of 1E16 protons per year, dist...

  9. GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at nTOF

    International Nuclear Information System (INIS)

    The neutron sensitivity of the C6D6 detector setup used at nTOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire nTOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a natC sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured natC yield has been discovered, which prevents the use of natC data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements

  10. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  11. A Cryogenic Current Comparator for the Low Energy Antiproton Facilities at CERN

    CERN Document Server

    Fernandes, M; Welsch, CP

    2014-01-01

    Several laboratories have shown the potential of using Superconducting QUantum Interference Device (SQUID) magnetometers together with superconductor magnetic shields to measure beam current intensities in the submicro-Ampere regime. CERN, in collaboration with GSI, Jena university and Helmholtz Institute Jena, is currently working on developing an improved version of such a current monitor for the Antiproton Decelerator (AD) and Extra Low ENergy Antiproton (ELENA) rings at CERN, aiming for better current resolution and overall system availability. This contribution will present the current design, including theoretical estimation of the current resolution; stability limits of SQUID systems and adaptation of the coupling circuit to the AD beam parameters; the analysis of thermal and mechanical cryostat modes.

  12. ELENA: the extra low energy anti-proton facility at CERN

    CERN Document Server

    Maury, Stephan; Bartmann, Wolfgang; Belochitskii, Pavel; Breuker, Horst; Butin, Francois; Carli, Christian; Eriksson, Tommy; Pasinelli, Sergio; Tranquille, Gerard

    2014-01-01

    At the last LEAP conference in Vancouver 2011 the authors stated that a project ”ELENA”, as an abbreviation for Extra Low ENergy Antiproton ring and as first discussed in 1982 for LEAR by H. Herr et al., was freshly proposed with a substantial new design and revised layout and that it was under consideration to be built at CERN. ELENA is an upgrade of the Anti-proton Decelerator (AD) at CERN and is devoted to special experiments with physics using low energy anti-protons. The main topics are the anti-hydrogen production and consecutive studies of the features of this anti-matter atom as well as the anti-proton nucleon interaction by testing the QED to high precision. During the last years the project underwent several steps in presentations at different committees at CERN and was finally approved such that the construction has started. ELENA will increase the number of useful anti-protons by about two orders of magnitude and will allow to serve up to four experiments simultaneously. Very first and convinc...

  13. High irradiation and ageing properties of resistive Micromegas detectors at the new CERN Gamma Irradiation Facility

    CERN Document Server

    Andreou, Dimitra

    2016-01-01

    Resistive Micromegas have been developed in recent years with the aim of making this technology usable in HEP experiments where the high sparking rate of classical Micromegas is not tolerable. A resistive Micromegas with four layers and an active surface of 0.5 m2 each, has been designed and built at CERN as prototype of the detectors to be used for the upgrade of the ATLAS experiment. The detector has been exposed to an intense gamma source of 16 TBq in order to study the effects of ageing and evaluate the detector behavior under high irradiation.

  14. Test beam results on resistive plate chamber prototype at gamma irradiation facility in CERN

    CERN Document Server

    Chung, C H; Kim, M J; Kim, M S; Kong, D J; Park, K H; Shim, H S; Yun, C W

    1999-01-01

    We report recent results on performances of 2 mm double-gap RPC operated with the CERN SPS X5 120 GeV muon beams under high rate /sup 137/Cs irradiation. We obtained the efficiency and time resolution and other related physical parameters. This was done for a three component gas mixture: (C/sub 2/H/sub 2/F/sub 4/:iso-C/sub 4/H/sub 10 /:SF/sub 6/=95.5:3.0:1.5). The best results were obtained under these conditions and the RPC prototype fulfilled all requirements as muon trigger for LHC. (12 refs).

  15. Design Study for a Future Laguna-LBNO Long-Baseline Neutrino Facility at CERN

    CERN Document Server

    Alabau-Gonzalvo, J; Antoniou, F; Benedikt, M; Calviani, M; Efthymiopoulos, I; Ferrari, A; Garoby, R; Gerigk, F; Gilardoni, S; Goddard, B; Kosmicki, A; Lazaridis, C; Osborne, J; Papaphillippou, Y; Parfenova, A; Shaposhnikova, E; Steerenberg, R; Velten, P; Vincke, H

    2013-01-01

    The Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA) study [1] investigated seven pre-selected underground sites in Europe (Finland, France, Italy, Poland, Romania, Spain and UK), capable of housing large volume detectors for terrestrial, accelerator generated and astrophysical neutrino research. The study was focused on geo-technical assessment of the sites, concluding that no show-stoppers exist for the construction of the required large underground caverns in the chosen sites. The LAGUNA-LBNO FP7/EC-funded design study extends the LAGUNA study in two key aspects: the detailed engineering of detector construction and operation, and the study of a long-baseline neutrino beam from CERN, and possibly other accelerator centres in Europe. Based on the findings of the LAGUNA study, the Pyh¨asalmi mine in Finland is chosen as prime site for the far detector location. The mine offers the deepest underground location in Europe (-1400 m) and a baseline of 2’300 km from CERN (Fig. 1). ...

  16. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Instrument intercomparison in the high-energy mixed field at the CERN-EU reference field (CERF) facility

    CERN Document Server

    Caresana, Marco; Manessi, Giacomo; Ott, Klaus; Scherpelz, Robert; Silari, Marco

    2014-01-01

    This paper discusses an intercomparison campaign performed in the mixed radiation field at the CERN-EU (CERF) reference field facility. Various instruments were employed: conventional and extended-range rem counters including a novel instrument called LUPIN, a bubble detector using an active counting system (ABC 1260) and two tissue-equivalent proportional counters (TEPCs). The results show that the extended range instruments agree well within their uncertainties and within 1σ with the H*(10) FLUKA value. The conventional rem counters are in good agreement within their uncertainties and underestimate H*(10) as measured by the extended range instruments and as predicted by FLUKA. The TEPCs slightly overestimate the FLUKA value but they are anyhow consistent with it when taking the comparatively large total uncertainties into account, and indicate that the non-neutron part of the stray field accounts for ∼30 % of the total H*(10).

  18. High Energy Beam Impact Tests on a LHC Tertiary Collimator at CERN HiRadMat Facility

    CERN Document Server

    Cauchi, M; Assmann, R; Bertarelli, A; Carra, F; Dallocchio, A; Deboy, D; Redaelli, S; Rossi, A; Salvachua, B; Lari, L; Mollicone, P; Sammut, N

    2013-01-01

    The correct functioning of the collimation system is crucial to safelyoperate the LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN HiRadMat (High Irradiation to Materials) facility, involved 440 GeV beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained together with some first outcomes from visual inspection.

  19. High Energy Tests of Advanced Materials for Beam Intercepting Devices at CERN HiRadMat Facility

    CERN Document Server

    Bertarelli, A; Berthome, E; Boccone, V; Carra, F; Cerutti, F; Dallocchio, A; Dos Santos, S; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Moyret, P; Redaeelli, S; Peroni, L; Scapin, M

    2012-01-01

    Predicting by simulations the consequences of LHC particle beams hitting Collimators and other Beam Intercepting Devices (BID) is a fundamental issue for machine protection: this can be done by resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, these codes require reliable material models that, at the extreme conditions generated by a beam impact, are either imprecise or non-existent. To validate relevant constitutive models or, when unavailable, derive new ones, a comprehensive experimental test foreseeing intense particle beam impacts on six different materials, either already used for present BID or under development for future applications, is being prepared at CERN HiRadMat facility. Tests will be run at medium and high intensity using the SPS proton beam (440 GeV). Material characterization will be carried out mostly in real time relying on embarked instrumentation (strain gauges, microphones, temperature and pressure sensors) and on remote acquisition dev...

  20. PROOF as a service on the cloud: a virtual analysis facility based on the CernVM ecosystem

    International Nuclear Information System (INIS)

    PROOF, the Parallel ROOT Facility, is a ROOT-based framework which enables interactive parallelism for event-based tasks on a cluster of computing nodes. Although PROOF can be used simply from within a ROOT session with no additional requirements, deploying and configuring a PROOF cluster used to be not as straightforward. Recently great efforts have been spent to make the provisioning of generic PROOF analysis facilities with zero configuration, with the added advantages of positively affecting both stability and scalability, making the deployment operations feasible even for the end user. Since a growing amount of large-scale computing resources are nowadays made available by Cloud providers in a virtualized form, we have developed the Virtual PROOF-based Analysis Facility: a cluster appliance combining the solid CernVM ecosystem and PoD (PROOF on Demand), ready to be deployed on the Cloud and leveraging some peculiar Cloud features such as elasticity. We will show how this approach is effective both for sysadmins, who will have little or no configuration to do to run it on their Clouds, and for the end users, who are ultimately in full control of their PROOF cluster and can even easily restart it by themselves in the unfortunate event of a major failure. We will also show how elasticity leads to a more optimal and uniform usage of Cloud resources.

  1. The CERN-EU High-energy Reference Field (CERF) facility for dosimetry at commercial flight altitudes and in space

    International Nuclear Information System (INIS)

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 deg. with respect to the direction of the incoming beam, made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme. (author)

  2. PROOF as a Service on the Cloud: a Virtual Analysis Facility based on the CernVM ecosystem

    CERN Document Server

    Berzano, Dario; Buncic, Predrag; Charalampidis, Ioannis; Ganis, Gerardo; Lestaris, Georgios; Meusel, René

    2014-01-01

    PROOF, the Parallel ROOT Facility, is a ROOT-based framework which enables interactive parallelism for event-based tasks on a cluster of computing nodes. Although PROOF can be used simply from within a ROOT session with no additional requirements, deploying and configuring a PROOF cluster used to be not as straightforward. Recently great efforts have been spent to make the provisioning of generic PROOF analysis facilities with zero configuration, with the added advantages of positively affecting both stability and scalability, making the deployment operations feasible even for the end user. Since a growing amount of large-scale computing resources are nowadays made available by Cloud providers in a virtualized form, we have developed the Virtual PROOF-based Analysis Facility: a cluster appliance combining the solid CernVM ecosystem and PoD (PROOF on Demand), ready to be deployed on the Cloud and leveraging some peculiar Cloud features such as elasticity. We will show how this approach is effective both for sy...

  3. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  4. Study of beam transport lines for a biomedical research facility at CERN based on LEIR

    CERN Document Server

    Abler, D; Garonna, A; Peach, K

    2014-01-01

    The Low Energy Ion Ring (LEIR) at CERN has been proposed to provide ion beams with magnetic rigidities up to 6.7 T.m for biomedical research, in parallel to its continued operation for LHC and SPS fixed target physics experiments. In the context of this project, two beamlines are proposed for transporting the extracted beam to future experimental end-stations: a vertical beamline for specific low-energy radiobiological research, and a horizontal beamline for radiobiology and medical physics experimentation. This study presents a first linear-optics design for the delivery of 1–5mm FWHM pencil beams and 5 cm 5 cm homogeneous broad beams to both endstations. High field uniformity is achieved by selection of the central part of a strongly defocused Gaussian beam, resulting in low beam utilisation.

  5. Child Care at CERN

    CERN Document Server

    CERN, Child Care Initiative

    2008-01-01

    This is a document summarizing a survey of child care needs of CERN staff and users which was performed in February 2008 by the CERN Child Care Initiative. The document presents the analysis of this data. Conclusions on the minimal facilities size are derived and possible funding source at the European Union are discussed.

  6. Fiftieth Anniversary at the summit : neither fear of heights nor the cold succeeded in cooling the ardour of four brave climbers from CERN who celebrated CERN's 50th Anniversary at the summit of Mount Kilimanjaro (5,895 metres).

    CERN Multimedia

    2005-01-01

    On the way back from the summit, Miguel Cerqueira Bastos (AB/PO), David Collados Polidura (IT/GM), Sandra Sequeira Tavares (PH/CMI) and Daniel Cano Ott (n_TOF) raised the official CERN Jubilee flag at 4750 metres altitude.

  7. An Integrated Testing Facility for the Global Trigger of the CMS Experiment at CERN

    CERN Document Server

    Themel, Thomas; Wulz, Claudia-Elisabeth

    2010-01-01

    The Global Trigger is part of the Level-1 Trigger of the CMS experiment at CERN, with the task to find the most interesting events corresponding to a rate of 100 kHz from the basic Large Hadron Collider interaction rate of 40 MHz. It is expected to render a decision within 3:2 $\\mu$s, which necessitates an implementation using custom hardware. The implementation makes heavy use of Field Programmable Gate Array (FPGA) technology to reconcile the performance requirements with the need for exibility. The complexity of the Global Trigger system (13 boards with 51 FPGA chips) makes it vulnerable to a multitude of errors, from electrical errors such as bad solder joints or plug contacts up to logical errors in the implementation of the firmrmware and the configuration software. The goal of the work described in this thesis was to provide an integrated system that allows users to easily determine whether the system is working correctly and assists experts in tracking down the internal causes of such errors within th...

  8. First Year of Operations in the HiRadMat Irradiation Facility at CERN

    CERN Document Server

    Fabich, A; Conan, N; Cornelis, K; De Paoli, D; Efthymiopoulos, I; Evrard, S; Gaillard, H; Grenard, J L; Lazzaroni, M; Pardons, A; Seraphin, Y; Theis, C; Weiss, K

    2013-01-01

    The HiRadMat facility [1] is designed to provide a test area where the effect of high-intensity pulsed beams on materials or accelerator component assemblies can be studied. The facility is not designed for long-term irradiation studies but rather for single pulse experiments to study the onset of material damage. The designed target is ten experiments per year, with 1015 protons or about 30 high intensity pulses per experiment, thus a total of 1016 protons per year for the whole facility. It is judged that for the majority of the experiments a small number of high intensity pulses would be sufficient in order to investigate the damage to the test samples whilst keeping the activation levels reasonably low such that post-irradiation tests could be performed after a reasonable cool-down period. The HiRadMat facility is situated in the former West Area Neutrino Facility (WANF) target tunnel and is about 35 m below ground. It takes the fast extracted beam from the long straight section LSS6 of SPS, the same use...

  9. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  10. THE NEW FACILITIES MANAGEMENT CONTRACT AT CERN FROM 1st JULY 2002

    CERN Multimedia

    Mauro Nonis

    2002-01-01

    Within the ST Division, all the Facilities Management activities have been under the ST/TFM group responsibility until the 30th June 2002, who has performed them using around 20 industrial support contracts. Starting from the 1st July 2002 a new unit, ST/FM, will take over these activities that will be unified into one single contract that has been adjudicated to the company Facilities Management Network SA. This contract will be in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent contro...

  11. The new Facilities Management contract at CERN from 1st July 2002

    CERN Document Server

    Mauro Nonis

    2002-01-01

    Within the ST Division, all the Facilities Management activities have been under the ST/TFM group responsibility until the 30th June 2002, who has performed them using around 20 industrial support contracts. Starting from the 1st July 2002 a new unit, ST/FM, will take over these activities that will be unified into one single contract that has been adjudicated to the company Facilities Management Network SA. This contract will be in charge of the maintenance and minor works on tertiary installations (i.e. all structures and installations that have no direct relation to the running of the accelerators) for the following trades: - Technical: heating, ventilation, air conditioning, plumbing, electricity, civil engineering (painting, roofing, glazing, blinds, fencing, masonry etc.), passenger and goods lifts, automatic and powered doors, kitchen equipment, roads, signs, keys and locks, office furniture, - Services: waste collection, security, green areas, cleaning and sanitary supplies, disinfection, rodent cont...

  12. Precision machining, sheet-metal work and welding at the heart of CERN

    CERN Multimedia

    2001-01-01

    From the writing of specifications and the production of high-tech components, to technology transfer and call-out work on-site, the MF group in EST Division offers CERN users a wide variety of services. Its full range of activities is presented in a new brochure. In addition to its many physicists and engineers, CERN also has teams of mechanics, welders and sheet-metalworkers whose expertise is a precious asset for the Organization. Within the MF Group (Manufacturing Facilities, EST Division) these teams perform precision machining, sheet-metal work and welding. As an example, the Group has been responsible for producing radiofrequency accelerating cells to a precision of the order of 1/100th mm and with a surface roughness of only 0.1 micron. The Group's workshops also manufactured the stainless steel vacuum chamber for the brand new n-TOF experiment (Bulletin n°47/2000), a 200-m long cylindrical chamber with a diameter of just 800 millimetres! The MF Group is assisted in its task of providing me...

  13. A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case

    CERN Document Server

    Alekhin, S; Asaka, T; Batell, B; Bezrukov, F; Bondarenko, K; Boyarsky, A; Craig, N; Choi, K; Corral, C; Curtin, D; Davidson, S; de Gouvea, A; Dell'Oro, S; deNiverville, P; Dev, B; Dreiner, H; Drewes, M; Eijima, S; Essig, R; Fradette, A; Garbrecht, B; Gavela, B; Giudice, G; Gorbunov, D; Gori, S; Grojean, C; Goodsell, M; Guffanti, A; Hambye, T; Hansen, S; Helo, J; Hernandez, P; Ibarra, A; Ivashko, A; Izaguirre, E; Jaeckel, J; Jeong, Y; Kahlhoefer, F; Kahn, Y; Katz, A; Kim, C; Kovalenko, S; Krnjaic, G; Lyubovitskij, V; Marcocci, S; Mccullough, M; McKeen, D; Mitselmakher, G; Moch, S; Mohapatra, R; Morrissey, D; Ovchynnikov, M; Paschos, E; Pilaftsis, A; Pospelov, M; Reno, M; Ringwald, A; Ritz, A; Roszkowski, L; Rubakov, V; Ruchayskiy, O; Shelton, J; Schienbein, I; Schmeier, D; Schmidt-Hoberg, K; Schwaller, P; Senjanovic, G; Seto, O; Shaposhnikov, M; Shuve, B; Shrock, R; Shchutska, L; Spannowsky, M; Spray, A; Staub, F; Stolarski, D; Strassler, M; Tello, V; Tramontano, F; Tripathi, A; Tulin, S; Vissani, F; Winkler, M; Zurek, K; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (Search for Hidden Particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\\tau\\to 3\\mu$ and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the Standard Model and describe interactions between new particles and four different portals - scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particle...

  14. 29 March 2012 - Austrian Niederösterreich Governor E. Pröll with Klubobmann and Chairman of EBG MedAustron GmbH Council K. Schneeberger, Director General for Cultural Policy Amabssador M.Eichtinger and Permanent Representative of Austria to the UNO and Austrian Delegate to CERN Council Ambassador C. Strohal in the MedAustron facility at CERN building 184.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    CERN-HI-1203078 01 - 13: visit of LINAC 3 with M. Benedikt CERN-HI-1203078 14 - 20: in the Roy Billinge room CERN-HI-1203078 21- 22: visit of the LEIR accelerator in building 354 CERN-HI-1203078 23 - 55: signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss CERN-HI-1203078 56 - 99: in building 184, Governor Pröll and CERN Director-General R. Heuer switch on the MedAustron ion source to produce the proton beam; visit MedAustron facility. CERN-HI-1203078 32:from left to right: Klubobmann and Chairman of EBG MedAustron GmbH Council K. Schneeberger; Director-General R. Heuer;Niederösterreich Governor E. Pröll;Head of International Relations F. Pauss;Permanent Representative of Austria to the UNO and Austrian Delegate to CERN Council Ambassador C. Strohal.

  15. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Grenier, D.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Blanco Sancho, J. [CERN-AB, 1211 Geneva 23, Switzerland and Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  16. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  17. Performance of the CERN SPS Fast Extraction for the CNGS Facility

    CERN Document Server

    Gaxiola, Enrique; Höfle, Wolfgang; Roncarolo, Federico; Vogel, Elmar; Vossenberg, Eugène B

    2005-01-01

    The SPS LSS4 fast extraction system will serve both the anti-clockwise ring of the LHC and the long baseline neutrino (CNGS) facility. For the latter two extractions spaced by 50 ms, each affecting half of the SPS, are foreseen. During the shutdown 2003-2004 the performance of the fast extraction kickers has been improved in order to match more closely the specifications required for the CNGS and LHC extractions. The kick rise and fall times were significantly reduced, as well as the post-pulse kick ripple. However, the latter remained outside specifications and oscillations were induced in the leading bunches of the batch remaining in the machine at the moment of the first extraction. While further improving the kicker pulse shape, the possibility of damping the beam oscillations using the transverse feedback system has been explored. Recent pulse improvements and results of beam tests are reported.

  18. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  19. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  20. Romanian President Visits CERN

    CERN Multimedia

    2001-01-01

    Director General Luciano Maiani watches as Romanian President Ion Iliescu signs the CERN guest book. On Friday the 12th of October, Romanian President Ion Iliescu arrived at CERN and was warmly greeted by Director General Luciano Maiani at the steps of building 500. After initial greetings and a general presentation of the laboratory, President Iliescu and his entourage embarked on a whistle stop tour of the CERN facilities. They visited the CMS magnet assembly hall and civil engineering work where presentations were made by CMS spokesperson Michel Della Negra and the ATLAS Tile Calorimeter where the president was introduced to Romanian physicists working here at CERN. Michel Della Negra explains some of the general principles behind CMS to President Iliescu during his visit last week. The Romanian teams working on CERN projects make very visible contributions, for example to the construction of the ATLAS experiment and to the preparation of its eventual scientific exploitation. 'Those of us on the ATLAS ...

  1. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Alan J. [University of New Mexico, Albuquerque, NM; Cooper, Gary Wayne [University of New Mexico, Albuquerque, NM; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that

  2. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  3. The HEP Game : Simulator Game of Particle Detector & HEP Laboratory Facilities PRESENTATION - Nathaniel Chandra Harjanto - Indonesia- CERN Summer Studentship 2013

    CERN Document Server

    Harjanto, Nathaniel Chandra

    2013-01-01

    Since the discovery of Higgs boson on 4 July 2012, CERN has increased its Outreach aspect to allow more people to gain knowledge about particle physics and the researches related to it especially in CERN. As part of CERN’s Outreach effort to spread the knowledge throughout the world, we work on a collaboration project between ATLAS and LHCb experiments to make a multi-platform game to educate players about particle physics and CERN also let them have fun at the same time so the education process is a lot more effective. The knowledge of Particle Physics is incomprehensible for most people such as children, teenagers, and people in general who are not being specifically a particle physicist. Therefore, there is a need to promote and spread the knowledge on particle physics throughout the world, and CERN as the world leading institution in particle physics research plays an essential role. Particle physics is not a simple matter that is easily understood by most people, thus the challenge is to make an educat...

  4. The HEP Game : Simulator Game of Particle Detector & HEP Laboratory Facilities REPORT - Nathaniel Chandra Harjanto - Indonesia- CERN Summer Studentship 2013

    CERN Document Server

    Harjanto, Nathaniel Chandra

    2013-01-01

    Since the discovery of Higgs boson on 4 July 2012, CERN has increased its Outreach aspect to allow more people to gain knowledge about particle physics and the researches related to it especially in CERN. As part of CERN’s Outreach effort to spread the knowledge throughout the world, we work on a collaboration project between ATLAS and LHCb experiments to make a multi-platform game to educate players about particle physics and CERN also let them have fun at the same time so the education process is a lot more effective. The knowledge of Particle Physics is incomprehensible for most people such as children, teenagers, and people in general who are not being specifically a particle physicist. Therefore, there is a need to promote and spread the knowledge on particle physics throughout the world, and CERN as the world leading institution in particle physics research plays an essential role. Particle physics is not a simple matter that is easily understood by most people, thus the challenge is to make an educat...

  5. The HEP Game : Simulator Game of Particle Detector & HEP Laboratory Facilities POSTER - Nathaniel Chandra Harjanto - Indonesia- CERN Summer Studentship 2013

    CERN Document Server

    Harjanto, Nathaniel Chandra

    2013-01-01

    Since the discovery of Higgs boson on 4 July 2012, CERN has increased its Outreach aspect to allow more people to gain knowledge about particle physics and the researches related to it especially in CERN. As part of CERN’s Outreach effort to spread the knowledge throughout the world, we work on a collaboration project between ATLAS and LHCb experiments to make a multi-platform game to educate players about particle physics and CERN also let them have fun at the same time so the education process is a lot more effective. The knowledge of Particle Physics is incomprehensible for most people such as children, teenagers, and people in general who are not being specifically a particle physicist. Therefore, there is a need to promote and spread the knowledge on particle physics throughout the world, and CERN as the world leading institution in particle physics research plays an essential role. Particle physics is not a simple matter that is easily understood by most people, thus the challenge is to make an educat...

  6. Instument Intercomparison in the High-energy Mixed Field at the CERN-EU Reference Field (CERF) Facility

    Czech Academy of Sciences Publication Activity Database

    Caresana, M.; Helmecke, M.; Kubančák, Ján; Manessi, G. P.; Ott, K.; Scherpelz, R.; Silari, M.

    2014-01-01

    Roč. 161, 1-4 (2014), s. 67-72. ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : aircrew dosimetry * CERF * CERN Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.913, year: 2014

  7. Star spotting at CERN

    CERN Multimedia

    2008-01-01

    This June, two American celebrities (and physics enthusiasts!) came to CERN. Brian Cox gave Mike Einziger (right), lead guitarist with the rock band Incubus, the star treatment in the ATLAS cavern. Jesse Dylan embraces the spirit of ATLAS! Mike Einziger, lead guitarist with the rock band Incubus, visited CERN on Friday 13 June between concerts in Finland and England. Einziger, a lifelong science enthusiast descended into the ATLAS and CMS caverns and visited the SM18 test magnet facility during his brief tour of CERN. Einziger learned about the LHC through watching online lectures from University of Manchester and ATLAS physicist Brian Cox, and was thrilled to have the chance to see the detectors in person. The musician has created an orchestral piece, inspired in part by the work being done at CERN for the LHC, which will have its debut in Los Angeles on 23 August. Just over a week earlier, Jesse Dylan, Hollywood film director a...

  8. Ex / Noise / CERN / Deerhoof

    CERN Multimedia

    CERN, SM18,

    2015-01-01

    Indie rockers Deerhoof battled with the noise of CERN’s magnet test facilities on 30 August 2015. The band visited CERN at the invitation of ATLAS physicist James Beacham, whose pilot project Ex/Noise/CERN collides experimental music artists with experimental particle physics. Credits: -Producer- CERN Video Productions James Beacham François Briard -Director- Noemi Caraban -Camera- Yann Krajewski Piotr Traczyk Noemi Caraban -Crane operator- Antonio Henrique Jorge-Costa -Live recording at CERN- Mixing at Rec studio/Geneva By Serge Morattel -Infography- Daniel Dominguez Noemi Caraban -Deerhoof- John Dieterich Satomi Matsuzaki Ed Rodriguez Greg Saunier w/Deron Pulley SPECIAL THANKS TO: Michal Strychalski Marta Bajko Maryline Charrondiere Luca Bottura Christian Giloux Rodrigue Faes Mariane Catallon Georgina Hobgen Hailey Reissman Marine Bass

  9. CERN 1981-8

    International Nuclear Information System (INIS)

    At the CERN Council Meeting in December, the Director General traditionally gives an end-of-year review. This time the presentation took on added significance as it marked the end of the eight-year mandate of Herwig Schopper, who handed over on 1 January to Carlo Rubbia. Looking back over those eight years, Schopper pointed out several major trends. The dramatic growth in CERN 'users' (the scientists coming to the Laboratory to do their research) has led to CERN's research programme becoming really worldwide. The attrition of having to operate an expanding Laboratory under a constant budget has produced in its wake a healthy increase in the efficiency of CERN's big machines and experimental facilities

  10. CERN Choir

    CERN Multimedia

    Staff Association

    2015-01-01

      Do you like singing? The CERN Choir is looking for basses and tenors Join us! Programme Spring Session 2015: Donizetti: Misere & Missa di Gloria e Credo Bellini: Salve Regina Bruckner: Requiem in D minor Next concert: Sunday 31 May 2015 at 17:00 Musicales de Comesières (GE) Rehearsals at CERN Main Auditorium, building 500 On Wednesdays from 20.00 to 22:00 Membership fee: January to June 150 CHF September to December: 100CHF Contact: Baudouin.bleus@cern.ch Facebook/Choeur-du-CERN

  11. Addendum to Technical Proposal: A Facility to Search for Hidden Particles (SHiP) at the CERN SPS

    CERN Document Server

    Collaboration, SHiP

    2015-01-01

    With the Technical Proposal submitted to the SPSC committee in April 2015, the SHiP collaboration declared its interest in proceeding towards a Comprehensive Design Study phase with the aim of preparing for the Technical Design Reports pending an approval by the CERN committees. Following the recommendation by the SPSC, it has been decided to complement the TP with this addendum that provides an update of the key aspects for the review of the SHiP project.

  12. CERN openlab summer student programme

    CERN Multimedia

    2013-01-01

    CERN openlab is currently taking applications for its summer student programme. The closing date for applications is 31 March 2013.   The openlab summer student programme is open for applications from bachelor, master and PhD students in computer science and physics. Successful applicants will spend 9 weeks at CERN, during the period from June to September 2013, working with some of the latest hardware and software technologies. The programme is more than just a summer at CERN: it can lead to follow-on projects at the home institute and may even inspire students to become entrepreneurs in cutting-edge computing technologies. A series of lectures will be given by experts in various domains of CERN-related high-throughput computing. Study tours of external companies and universities as well as of CERN facilities are also part of the programme. Please visit the CERN openlab website for more information.

  13. CERN openlab Summer Student Programme

    CERN Multimedia

    2012-01-01

    CERN openlab is currently taking applications for its summer student programme. The closing date for applications is 30 March 2012.   The openlab Summer Student Programme is open for applications from bachelor, master and PhD students in computer science and physics. Successful applicants will spend 8 weeks at CERN, during the period June to September 2012, to work with some of the latest hardware and software technologies. The programme is more than just a summer at CERN: it can lead to follow-on projects at the home institute and may even inspire the students to become entrepreneurs in cutting-edge computing technologies. A series of lectures will be given by experts in various domains of CERN related high-throughput computing. Study tours to external companies and universities as well as to CERN facilities are also part of the programme. Please visit www.cern.ch/openlab-students for more information.

  14. Courrier CERN

    CERN Multimedia

    2015-01-01

    Example of the cover page of the French version of the CERN Courier; Courrier CERN from January 1962. The journal was published both in English and French up to volume 45, no. 5, June 2005. Since then there is a single-language edition where articles are published either in French or English with an abstract in the other language.

  15. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  16. The CERN's year

    International Nuclear Information System (INIS)

    CERN, the European organization for nuclear research, has just celebrated its fifty years of existence. Its first goal was to counterbalance the migration of physics scientists towards the USA by the creation of a physics laboratory gathering scientists from the different European countries. Today, the CERN's mission has changed and has overcome all the expectations of its founders. In 2008, it will become, with the LHC (Large Hadron Collider), the biggest particle accelerator in the world. The CERN employs about 3000 physicists, engineers, technicians and workers. There is also 6500 people from 80 different countries who use the CERN's facilities during the year. The CERN is controlled by 20 European member states and 6 observer countries, and 20 non-member countries participate to the programs in progress. The CERN's power comes from its international and cosmopolitan spirit. The whole most famous physicists of the world can work together for the progress of science and for a better understanding of matter, of its interactions and of our universe. Two Nobel prices of physics come from the CERN: C. Rubbia and S. Van der Meer in 1983 for the discovery of W+, W- and Z0 bosons, and G. Charpak for the development of particle detectors. One can foresee that the LHC will allow new scientific achievements, like for instance, during experiments for the quest of the famous Higgs boson. It is important also to mention that the CERN has been at the origin of several technological innovations in all technical and engineering domains in the framework of its fundamental physics researches. (J.S.)

  17. CERN & Society

    CERN Multimedia

    2016-01-01

    Non Member State Summer Students 2015 are interviewed about their decision to study STEM subjects, to apply for CERN NMSSS programme, their experience onsite @CERN and takeaways, their future goals and aspirations, offering also advice to fellow students.The Non Member State Summer Student Programme stands for a unique opportunity for students from all over the world to spend their summer at CERN in Geneva, getting involved in some of the world’s biggest experiments. For 8 weeks, summer students gather on-site at CERN and join in the day-to-day work of research. The Programme targets advanced undergraduate and beginning graduate students of physics, computing and engineering, particularly from developing countries. Participating students receive scientific training, attend lectures and work on laboratory-based projects alongside with CERN experts and fellow students.

  18. Safety alarms at CERN

    CERN Document Server

    Ninin, P; Henny, L

    1998-01-01

    In order to operate the CERN accelerators complex safely, the acquisition, transport and management of safety alarms is of crucial importance. The French regulatory authority [Direction de Sûreté des Installations Nucléaires de Base (INB)] defines them as Level 3 alarms; they represent as such a danger for the life and require an immediate intervention of the Fire Brigade. Safety alarms are generated by fire and flammable gas detection systems, electrical emergency stops, and other safety related systems. Level 3 alarms are transmitted for reliability reasons to their operation centre: the CERN Safety Control Room (SCR) using two different media: the hard-wired network and a computer based system. The hard-wired networks are connected to local panels summarizing in 34 security areas the overall CERN geography. The computer based system offers data management facilities such as alarm acquisition, distribution, archiving and information correlation. The Level 3 alarms system is in constant evolution in order...

  19. CERN welcomes European science

    CERN Multimedia

    2002-01-01

    On 3 and 4 October CERN will host a special workshop for Marie Curie fellows. This programme is a key plank in the EU's strategy for creating a European research area.     With thousands of scientists from all over the continent working together, CERN is already an exemplary European science showcase. On 3 and 4 October, the Laboratory will contribute further to unifying all European science by hosting a special workshop for EU-funded Marie Curie fellows. This scheme gives young researchers from around the continent the mobility to go to wherever Europe's best facilities in their chosen field happen to be. The event that will take place at CERN, entitled 'Special workshop of Marie Curie Fellows on research and training in physics and technology', organised together with the European Commission, is a continuation of a series of workshops with the aim, among others, of promoting young researchers, supporting their training and mobility, and facilitating the interdisciplinary dissemination of knowledge. Dur...

  20. Kandinsky College Visits CERN

    CERN Multimedia

    CERN Video productions; Angelos Alexopoulos

    2012-01-01

    This video documents the visit of nine senior high school students of the Kandinsky College in Nijmegen (Netherelands) to CERN. The students visited many of CERN's experimental facilities, took part in a Cloud Chamber workshop, attended talks and roundtable discussions of SpacePart12 and worked on the evaluation of the Microcosm exhibition as part of a school inquiry-based research project. The students and their teacher, Paul de Haas (a participant of the High School Teachers 2012 Programme at CERN) were connected with Prof. Christine Kourkoumelis and George Vasileiadis at the University of Athens and learned hands-on how to analyse real physics events, including Higgs-like ones, from the ATLAS experiment at the LHC using the HYPATIA Applet.

  1. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  2. Pb injector at CERN

    International Nuclear Information System (INIS)

    For the CERN Lead Ion Accelerating Facility (achieved within a collaboration of several outside laboratories and with financial help of some member states) a new dedicated Linac has been built. This Linac has been installed in 1994 and served during two extended physics runs. This paper reviews the main characteristics of this machine and describes the first operational experience. Emphasis is put on new features of this accelerator, its associated equipment and on the peculiarities of heavy ions. (author)

  3. CERN choir

    CERN Multimedia

    2004-01-01

    Don't forget a special performance of Joseph Haydn's Creation, an oratorio in three parts, given by the CERN choir and the Annecy choir Pro Musica, this Sunday at 8.30 p.m. at the Grand Casino. Tickets (38 CHF) are available at Fnac Rive and Balexert.

  4. Robot adventures at CERN

    CERN Multimedia

    2015-01-01

    Imagine if the CERN robots had an end-of-year party... From retrieving data tapes to handling material safely, the robots at CERN fulfill numerous tasks. Find out more: http://cern.ch/go/VjX7 Produced by: CERN Video Productions Director: Christoph M. Madsen Copyright © 2015 CERN. Terms of use: http://copyright.web.cern.ch/

  5. Commissaire Moulin visits CERN

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    The French actor and film-maker Yves Rénier was shown around the Laboratory on Friday 6 June by friends at CERN.   Yves Rénier at LEIR. (Photo: Ludwig Pregernig) A keen diver and star of the long-running French television police drama Commissaire Moulin, Yves Rénier took advantage of a stopover in Geneva on his way to the Red Sea to meet up with his friends from the CERN Diving Club, who were only too pleased to take him on a tour of the Laboratory. In the morning, Yves Rénier visited the CERN Control Centre (CCC), Linac2 and LEIR. After lunch at the brasserie in Restaurant No. 2, the actor continued his tour with the CERN Computer Centre, the SM18 superconducting magnet test facility, and lastly the ATLAS experiment. “Thank you so much for showing me around and introducing me to a world I knew so little about,” confided Yves Rénier. “It’s fascinating to see so many scientists of different cultures,...

  6. CERN CAR CLUB

    CERN Multimedia

    Automobile club

    2009-01-01

    You are cordially invited to the next General Assembly of the CERN Car Club Tuesday 12 January 2010 at 5:45pm Bldg. 593 / room 11 As the end of 2009 is approaching, it is time to think about renewing your subscription. Therefore next time you are on the CERN-Meyrin site or at the Post Office counter don’t forget to fill in the payment slip to continue to be a part of our large family. The fee remains unchanged: 50 CHF. For those of you who are regular users of our equipment and who know of all the advantages that the club is in a position to offer, it seems pointless to give details, we are sure that many of you have made use of them and are satisfied. We remind you everyone working on CERN site is entitled to become a member of our club, this includes industrial support personnel and staff of companies which have a contract with CERN. If you are not yet a member, come and visit us! We will be happy to welcome you and show you the facilities, or you can visit our web site. The use of the club&...

  7. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Udrea, S; Hoffmann, D H H; Fortov, V E; Deutsch, C

    2009-01-01

    A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code (Fasso et al....

  8. A novel diamond-based beam position monitoring system for the High Radiation to Materials facility at CERN SPS

    CERN Document Server

    AUTHOR|(CDS)2092886; Höglund, Carina

    The High Radiation to Materials facility employs a high intensity pulsed beam imposing several challenges on the beam position monitors. Diamond has been shown to be a resilient material with its radiation hardness and mechanical strength, while it is also simple due to its wide bandgap removing the need for doping. A new type of diamond based beam position monitor has been constructed, which includes a hole in the center of the diamond where the majority of the beam is intended to pass through. This increases the longevity of the detectors as well as allowing them to be used for high intensity beams. The purpose of this thesis is to evaluate the performance of the detectors in the High Radiation to Materials facility for various beam parameters, involving differences in position, size, bunch intensity and bunch number. A prestudy consisting of calibration of the detectors using single incident particles is also presented. The detectors are shown to work as intended after a recalibration of the algorithm, alb...

  9. CERN and the JRC discuss new collaboration opportunities

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    At a recent meeting organised by the Knowledge Transfer group, the Director for Science Policy and Stakeholder Relations of the European Commission Joint Research Centre (JRC) together with a delegation from five JRC institutes came to CERN to identify topics of common interest where concrete collaborations between the two organisations could start.   Although CERN and the JRC have been collaborating over the last two decades on neutron-related research through the n-TOF collaboration and CERN is a member of the JRC’s TTO CIRCLE (see box), the bilateral meeting organised at the end of January was the first of its kind.  “Within the TTO CIRCLE we had met in many other circumstances. However, since the JRC is the only EC Directorate-General performing research and CERN is Europe’s largest scientific laboratory, it seemed natural to explore better the specific areas where there is a common interest in sharing knowledge and possibly trigger new developments,&...

  10. Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

    Science.gov (United States)

    Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-08-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical

  11. CERN GSM monitoring system

    CERN Multimedia

    Ghabrous Larrea, C

    2009-01-01

    As a result of the tremendous development of GSM services over the last years, the number of related services used by organizations has drastically increased. Therefore, monitoring GSM services is becoming a business critical issue in order to be able to react appropriately in case of incident. In order to provide with GSM coverage all the CERN underground facilities, more than 50 km of leaky feeder cable have been deployed. This infrastructure is also used to propagate VHF radio signals for the CERN’s fire brigade. Even though CERN’s mobile operator monitors the network, it cannot guarantee the availability of GSM services, and for sure not VHF services, where signals are carried by the leaky feeder cable. So, a global monitoring system has become critical to CERN. In addition, monitoring this infrastructure will allow to characterize its behaviour over time, especially with LHC operation. Given that commercial solutions were not yet mature, CERN developed a system based on GSM probes and an application...

  12. CERN on the net

    CERN Document Server

    2008-01-01

    As all eyes turn to the LHC in the run-up to the big switch-on, online media are providing a keyhole into the deepest corners of CERN. From YouTube to blogs, communicating ideas has never before had the capacity to reach so many people. A wide range of websites comment on CERN.Blogs, YouTube, social networking, podcasting, Twitter, SecondLife, Flickr…. it’s easy to get lost in the ever expanding world of Web 2.0. But it’s also hard to ignore the fact that these web facilities are becoming a central part of everyday life, whether it’s for finding information, sharing interests with friends, keeping up to date with news, or simply for entertainment. CERN’s profile on these sites is also increasing, but as with everything on the Internet there is a huge range in the quality of information available, stretching from officially endorsed sites all the way to the plain ridiculous! This is our guide to some of the best CERN conte...

  13. CERN, accelerator of motivation

    CERN Multimedia

    François Becler

    2014-01-01

    Have your dreams ever come true? My dream did, when I was lucky enough to be allowed into the world’s largest particle physics laboratory and spend five whole days there.   François, in front of LEP's DELPHI detector, displayed in the LHCb cavern. François was given the opportunity to visit the experiment during his placement at CERN. I’m a pupil in my last year at the Collège Jean-Jacques Rousseau in Saint-Julien-en-Genevois and was on a work experience placement at CERN from 16 to 20 December last year. I’m so happy I was chosen because working alongside physicists and engineers of all nationalities was like a dream come true. The first thing that impressed me was the size of the site, its infrastructures and facilities but also the fact that I was working in a prestigious, world-renowned organisation. I spent lots of time looking at the map and trying to find my way around... CERN's such a massive place ! Th...

  14. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (mailto:caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web at: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 7372...

  15. CERN moves to http://home.cern

    CERN Multimedia

    2015-01-01

    A new top-level domain for CERN will be inaugurated next week, with the migration of the core website to http://home.cern.   The new home.cern webpage. The .cern top-level domain is intended for the exclusive use of CERN and its affiliates, and will soon be open for applications from within the community. Clear governance mechanisms for registration and management of .cern domains have been put in place. Applications for domains may be submitted by current members of the CERN personnel, and must be sponsored by a CERN entity such as a department, experiment, project or CERN-recognised experiment. For more information please refer to the registration policy. The acquisition of the .cern top-level domain was negotiated via ICANN’s new gTLD programme by a board comprising members of the CERN Legal Service, Communications group and IT department. .cern is one of over 1,300 new top-level domains that will launch over the coming months and years. The .cern domain nam...

  16. The CERN GSM monitoring system

    International Nuclear Information System (INIS)

    This paper presents the way CERN has approached the problem of monitoring its own GSM infrastructure, especially in the Large Hadron Collider (LHC) accelerator tunnel and other underground facilities, where a leaky feeder cable carries mobile phone signals, and where this technology is the only means for inter-personnel communications.

  17. GEANT4 simulation of the neutron background of the C$_6$D$_6$ set-up for capture studies at n_TOF

    CERN Document Server

    Žugec, P.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D.G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martìnez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2014-01-01

    The neutron sensitivity of the C$_6$D$_6$ detector setup used at n_TOF for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a $^\\mathrm{nat}$C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured $^\\mathrm{nat}$C yield has been discovered, which prevents the use of $^\\mathrm{nat}$C data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron backg...

  18. High School Teachers at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    Now in its 15th consecutive year, CERN's High School Teachers (HST) Programme continues to bring secondary school physics teachers from member and non-member states to CERN to update their knowledge of particle physics and inspire the next generation of scientists. During this 3-week residential course, participants attend lectures and workshops, visit experimental facilities and create new teaching resources in a truly collaborative and international atmosphere. This video documents the experiences of some of the 42 participants of the HST 2012 Programme, which has been marked by the July 4th Seminar on Higgs.

  19. An annual performance appraisal for CERN

    CERN Multimedia

    2012-01-01

    The March Council session is the occasion for CERN’s annual performance appraisal, but instead of the MARS form familiar to CERN staff, the lab’s working document is an Annual Progress Report, linked to the Medium-Term Plan, matching achievements to objectives. This year, I think it’s fair to say, we were firmly able to tick the ‘achieved’ box.   Top of the list of objectives was the LHC, which exceeded expectations in 2011 by delivering over five times the anticipated luminosity for protons while improving the lead-ion integrated luminosity by an order of magnitude compared to 2010.  As a result, the experiments published over 190 papers and made a staggering 1900 conference presentations. Underpinning this was the Worldwide LHC Computing Grid, which routinely performs so well that we hardly notice it's there. Non-LHC physics also had its day in the sun in 2011, with experiments at the PS, SPS, AD, n_TOF and ISOLDE, as well ...

  20. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN

    International Nuclear Information System (INIS)

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the

  1. Analysis of 440 GeV proton beam–matter interaction experiments at the High Radiation Materials test facility at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, F. [CERN-AB, 1211 Geneva 23, Switzerland and Goethe University, Frankfurt (Germany); Schmidt, R.; Wollmann, D. [CERN-AB, 1211 Geneva 23 (Switzerland); Raginel, V. [CERN-AB, 1211 Geneva 23, Switzerland and TU Vienna, Vienna (Austria); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A. R. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2015-08-07

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the

  2. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web here. List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 73722.

  3. Prime-Minister of Malta visits CERN

    CERN Multimedia

    2008-01-01

    The Prime-Minister of Malta, Dr Lawrence Gonzi, visited CERN and met Director-General, Robert Aymar, on 10 January. The Prime-Minister of Malta, Dr Lawrence Gonzi, and CERN Director-General, Robert Aymar, signed a cooperation agreement. Dr Gonzi was given guided tours of the CMS experiment at Point 5 in Cessy and of the LHC magnet test facility, in which his country was involved. One of the high points of the day was the signing of a cooperation agreement between CERN and the Government of the Republic of Malta, aimed at the development of scientific and technical collaboration. "I’m really enthusiastic about this agreement, which constitutes a first step towards real collaboration between the Maltese government and CERN," said Nicholas Sammut, a Maltese engineer at CERN who was present throughout the visit (on the right). See also the video.

  4. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  5. France at CERN

    CERN Multimedia

    GS Department

    2010-01-01

    Industrial Exhibition Administration Building Bldg 61 Tuesday 8 June: 9 a.m. – 5.30 p.m. Wednesday 9 June: 9 a.m. – 4 p.m. “FRANCE AT CERN” – INDUSTRIAL EXHIBITION Thirty-six French companies are presenting their latest technological advances during the industrial exhibition "France at CERN", featuring products and technologies specifically related to the activities of the CERN facility. Presenting their know-how in electric vehicles, PSA - PEUGEOT/CITROEN are sponsoring the event. Seminars will be hold in the Main Building’s conference rooms: R&D innovation strategy in Pôle Nucléaire Bourgogne (08/06/2010 – 13h) MU by Peugeot (08/06/2010 – 14h) Citroën (08/06/2010 – 15h) « Elément 14 » : a unique design engineer community for sharing Electronic Engineering Solutions (09/06/2010 – 11h) Individual B2B meetin...

  6. CERN Croquet Club

    CERN Document Server

    Staff Association

    2015-01-01

    CERN Croquet Club plays from April to October on two grass courts, on a par with golf greens, on the Prévessin site, where we have a clubhouse with bar and barbecue facilities. Lawn bowls is also played there. Croquet involves using a long mallet to hit one’s balls through a series of narrow hoops. Accuracy is needed, as well as a grasp of tactics. Games are singles or doubles. We play both Association croquet, the original complex game which requires a fairly long apprenticeship, and Golf croquet, a version which moves along more quickly and is easy to learn. Coaching is provided. Membership is open to anyone, whether CERN employees or not. We organise several internal club competitions, including a monthly mini-league, and members also play in Swiss Championships.  The Swiss team plays a number of international matches each year, at home or away, against England, Scotland, Wales, Italy, Belgium, Austria and Germany. Swiss champions play in the European and World Golf croq...

  7. Measurement of linear energy transfer distribution at CERN-EU high- energy reference field facility with real-time radiation monitoring device III and its comparison with dosimetric telescope

    CERN Document Server

    Doke, T; Hara, K; Hayashi, T; Kikuchi, J; Suzuki, S; Terasawa, K

    2004-01-01

    The distributions of linear energy transfer for LET (LET/sub water/) in front of the 80-cm-thick concrete side shield at the CERN-EU high- energy reference field (CERF) facility were measured with a Si detector telescope named real-time radiation monitoring device-III (RRMD-III) covered with and without a 1 cm-thick acrylic plate. In these measurements, a difference of about 20% in the absorbed dose between the two LET/sub water/ distributions was observed as a result of protons, deuterons and tritons recoiled by neutrons. The LET/sub water/ distribution obtained using RRMD-III without the 1-cm-thick acrylic plate is compared with lineal energy distributions obtained using the dosimetric telescope (DOSTEL) detector under the same conditions. These dose equivalents are also compared with that obtained using HANDI TEPC which is used as the standard at the CERF facility. (26 refs).

  8. Eiroforum Meets at CERN

    CERN Multimedia

    2001-01-01

    From left to right : Dr. J. Pamela, European Fusion Development Agreement (EFDA ), Associate Leader for JET (JET-EFDA), Dr. C. Carlile, Director-General Institut Laue-Langevin (ILL) Dr. A. Mitsos, Director-General of Research, European Commission , Prof. L. Maiani, Director-General (CERN), Dr. C. Cesarsky, Director-General European Southern Observatory (ESO), Prof. F. Kafatos, Director-General European Molecular Biology Laboratory (EMBL), Prof. W.G. Stirling, Director-General European Snchrotron Radiation Facility (ESRF), Dr.J.P. Poncelet, Director of Strategy and External Relations European Space Agency (ESA). Since the early 1950s, a number of powerful research laboratories which are used by an extensive network of scientists have been developed and deployed within Europe by European Intergovernmental Research Organisations (EIRO).This year, seven of these organisations have set up a collaboration group (EIROFORUM) with their top executives (Directors General or equivalent) as members. The most recent me...

  9. Digitisation of the CERN Audio Archives

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Since the creation of CERN in 1954 until mid 1980s, the audiovisual service has recorded hundreds of hours of moments of life at CERN on audio tapes. These moments range from inaugurations of new facilities to VIP speeches and general interest cultural seminars The preservation process started in June 2005 On these pictures, we see Waltraud Hug working on an open-reel tape.

  10. Hangout with CERN: Welcome to CERN (S01E01)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this first Hangout with CERN "Welcome to CERN" ATLAS physicist Steven Goldfarb, CERN theorist Alvaro De Rujula and Mick Storr from the CERN education group introduce CERN and answer some of the questions received via #askCERN on Twitter and Google+. Recorded live on 1st November 2012.

  11. Virgin Galactic explores CERN

    CERN Multimedia

    2016-01-01

    Virgin Galactic visited CERN with a group of future astronauts and Sir Richard Branson. During their visit the group was shown around various experiments, including the Globe, SM18, AMS and the CERN Control Centre.

  12. Doing business with CERN

    CERN Multimedia

    2015-01-01

    The Procurement Service, in collaboration with the Communications group’s Design team, has recently launched a new information campaign targeted at companies wishing to supply their products and services to CERN. This campaign comprises:   A brochure, available in hard and soft copy:  http://procurement.web.cern.ch/brochures/doing-business-with-cern.   A 6-minute video overview: https://procurement-dev.web.cern.ch/doing-business-with-cern. This campaign is intended for Member State firms with whom CERN is yet to do business. The key objectives are: To emphasise that CERN can be considered a major customer across a wide range of activities;   To present CERN’s procurement procedures in a dynamic and digestible way;   To highlight the information available on CERN’s procurement website: http://procurement.web.cern.ch. Furthermore, a new section called “Having a contract with CERN” is also now ava...

  13. CERN Shop Christmas Sale

    CERN Multimedia

    Visits & Exhibition Service/ETT-VE

    2001-01-01

    11-13.12.2001 Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 11 to Thursday 13 December from 10.30 to 16.00. CERN Calendar 10.- CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt (M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 25.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- CERN watch 25.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'How the web was born' (English) 25.- The Search for Infinity (French, Italian, English, German) 40.-   If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs.

  14. The CERN Library

    CERN Multimedia

    Hester, Alec G

    1968-01-01

    Any advanced research centre needs a good Library. It can be regarded as a piece of equipment as vital as any machine. At the present time, the CERN Library is undergoing a number of modifications to adjust it to the changing scale of CERN's activities and to the ever increasing flood of information. This article, by A.G. Hester, former Editor of CERN COURIER who now works in the Scientific Information Service, describes the purposes, methods and future of the CERN Library.

  15. Greece at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Greece, one of CERN*'s founding Member States, inaugurated its first Industrial Exhibition at the Meyrin site on Tuesday, 14 October. After a meeting with CERN's Director General, Professor Christopher Llewellyn Smith, Professor Emmanuel Frangoulis, the General Secretary of the Greek Ministry of Industry, accompanied by Prof Emmanuel Floratos, Greek delegate to CERN council visited the DELPHI experiment on the LEP collider, guided by Andromachi Tsirou, a Greek physicist.

  16. France at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Rolf Heuer, CERN Director General, visits the exhibition "La France au CERN". The exhibition France at CERN, organized by UBIFRANCE in collaboration with CERN's GS/SEM (Site Engineering and Management) service, took place from Monday 7 to Wednesday 9 June in the Main Building. The 36 French firms taking part came to present their products and technologies related to the Organization's activities. The next exhibition will be "Netherlands at CERN" in November.

  17. CERN Photowalk 2015

    CERN Multimedia

    2015-01-01

    CERN is organising a Photowalk on Friday 25 September 2015. At this event a few selected photographers will get the chance to come to CERN, the European Organization for Nuclear Research, for an exclusive behind-the-scenes tour of the laboratory. For more information: http://photowalk2015.web.cern.ch/

  18. In the CERN Library

    CERN Multimedia

    1963-01-01

    Seen in this picture is Noria Christophoridou, librarian of the Greek Atomic Energy Commission, who has been sent by her government to CERN for a year to widen her experience of library and documentation services. In the photograph she is providing information to Kurt Gottfried, a CERN visiting scientist from Harvard University, who is spending a year with CERN's Theory Division

  19. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  20. CERN Cricket Club

    CERN Multimedia

    CERN Cricket Club

    2010-01-01

    CERN Cricket Club Match Reports The cricket season is well under way, despite the weather, and several matches have been played. The match reporters have, however, found it too difficult to limit their reports to ¼ of a page, hence the reports have not appeared in the bulletin. All reports can be found at http://cern.ch/Club-Cricket/reports/reports.html The list of forthcoming matches can be consulted at http://cern.ch/Club-Cricket/fixtures.html Further information about the CERN Cricket Club can be found at http://cern.ch/Club-Cricket/

  1. Britain at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    On 8 October, H.E. Mr David Beattie, British Ambassador to Switzerland, Mr John R. Nichols, H.M. Consul-General in Geneva and, Prof. Christopher Llewellyn Smith, CERN*'s Director General, formally opened the industrial exhibition of thirty-three British hi-tech companies at CERN, which takes place from 8 to 11 October, 1996. The exhibition offers British companies the opportunity to display their products in fields that are of immediate importance to the scientists, engineers and technicians working at CERN, and also to scientists from non-Member States who take part in research projects at CERN.

  2. CERN honours Georges Charpak

    CERN Multimedia

    2009-01-01

    CERN pays tribute to the work of Georges Charpak at a colloquium in honour of his 85th birthday. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-Multirate-200-to-753-kbps-480x360.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-posterframe-480x360-at-10-percent.jpg', '1167500', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video conference of Georges Charpak.   On 9 March CERN’s Main Auditorium was the venue for a fascinating and moving celebration marking the 85th birthday of Georges Charpak, who was awarded the Nobel Prize for Physics in 1992 for his inven...

  3. CERN Holiday Gift Guide

    CERN Multimedia

    2013-01-01

    Do you have last-minute gifts to get? Stuck for ideas? The CERN Shop and the ATLAS and CMS secretariats have some wonderfully unique gifts and stocking-fillers for sale this year - perfect for the physics fanatics in your life. Let's take a look...   1. CERN Notebook, 10 CHF - 2. CERN Pop-up book, 30 CHF - 3. USB Stick 8GB, 25 CHF - 4. CERN Tumbler, 12 CHF 5. ATLAS 3D Viewer, 5 CHF - 6. ATLAS Puzzle, 15 CHF - 7. CMS Umbrella, 25 CHF   These gifts are all available at the CERN Shop, with the exception of the ATLAS 3D Viewer and the CMS umbrella, which are only available from the respective secretariats. Don’t forget! If you’re from CERN, you still have time to take advantage of a 10% off discount at the CERN shop. Offer ends 20 December.

  4. Helping CERN give back to society

    CERN Multimedia

    2014-01-01

    The CERN & Society mission: ‘To spread the CERN spirit of scientific curiosity for the inspiration and benefit of society.’   Digital library schools in Africa, Arts@CERN, a beam line for schools competition and perhaps soon a dedicated biomedical research facility: CERN infrastructure and expertise have a great influence on society, and we have the potential to do much more. For that, however, we need help, and that’s why we have launched the CERN & Society initiative, which this week sees the publication of a new website for those who want to understand more about how our research touches everyday life, as well as for those who wish to help CERN in this new endeavour. Fundamental research fulfils a very human need. The quest to understand the universe we live in is as old as humanity itself, and CERN is in the vanguard of that effort today. For our scientists and engineers, pushing technology to the limit is part of their day job, and in doing so they ...

  5. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN; Grossforschung in neuen Dimensionen. Denker unserer Zeit ueber die aktuelle Elementarteilchenphysik am CERN

    Energy Technology Data Exchange (ETDEWEB)

    Kommer, Christoph (ed.) [Heidelberg Univ. (Germany); DKFZ, Heidelberg (Germany); Satz, Helmut [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Blanchard, Philippe [Bielefeld Univ. (Germany). Abt. Theoretische Physik

    2016-07-01

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  6. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN

    International Nuclear Information System (INIS)

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  7. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  8. 17 September 2013 - Estonian Minister of Education and Research J. Aaviksoo signing the guest book with CERN Director-General R- Heuer; visiting the TOTEM facility with TOTEM Collaboration Spokesperson S. Giani; in the LHC tunnel at Point 5 with International Relations Adviser T. Kurtyka and visiting the CMS cavern with CMS Collaboration Spokesperson J. Incandela. International Relations Adviser R. Voss present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 September 2013 - Estonian Minister of Education and Research J. Aaviksoo signing the guest book with CERN Director-General R- Heuer; visiting the TOTEM facility with TOTEM Collaboration Spokesperson S. Giani; in the LHC tunnel at Point 5 with International Relations Adviser T. Kurtyka and visiting the CMS cavern with CMS Collaboration Spokesperson J. Incandela. International Relations Adviser R. Voss present.

  9. CERN and the environment

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    New webpages answer common questions about CERN and the environment.   One of the new public webpages dedicated to CERN and the environment. Do your neighbours ever ask you about CERN’s environmental impact? And about radiation in particular? If so, the answers to those questions can now be found online on a new set of public webpages dedicated to CERN and the environment. These pages, put together by the Occupational Health, Safety and Environmental Protection (HSE) unit and the groups responsible for CERN's site maintenance, contain a wealth of information on topics linked to the environment, such as biodiversity at CERN, waste management, ionising radiation, and water and electricity consumption. “CERN forms part of the local landscape, with its numerous sites and scientific activities. It’s understandable that people living nearby have questions about the impact of these activities and it’s important that we respond with complete transp...

  10. German visits to CERN

    CERN Multimedia

    2007-01-01

    State secretary to Germany's Federal Ministry of Education and Research, Frieder Meyer-Krahmer, with CERN's Director-General Robert Aymar.On 21 February, Professor Frieder Meyer-Krahmer, State Secretary to Germany's Federal Ministry of Education and Research, came to CERN. He visited the ALICE and ATLAS experiments and the computing centre before meeting the CERN's Director-General, some German physicists and members of the top management. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Peter Frankenberg, and CERN's Director-General, Robert Aymar, signing an agreement on education. In the background: Sigurd Lettow, CERN's Director of Finance and Human Resources, and Karl-Heinz Meisel, Rector of the Fachhochschule Karlsruhe. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Prof. Peter Frankenberg, visited CERN on 23 February. He was accompanied by the Rector of the Fachhochschule Karlsruhe, Prof. Karl-Heinz Meisel, and b...

  11. Germany at CERN

    CERN Multimedia

    2005-01-01

    From left to right: Maximilian Metzger, CERN's Secretary-General, Hermann Schunck, Director at the German Federal Ministry of Education and Research, and Robert Aymar, CERN's Director-General, talking to Wolfgang Holler from Butting, one of the companies at the "Germany at CERN" exhibition. Far right : Susanne-Corinna Langer-Greipl from BMBF, delegate to the CERN Finance Committee. For three days, CERN's Main Building was transformed into a showcase for German industry. Twenty-nine companies from sectors related to particle physics (electrical engineering, vacuum and low temperature technology, radiation protection, etc.) were here for the ninth "Germany at CERN" exhibition, organised by the German Federal Ministry of Education and Research (BMBF), which gave them the opportunity to meet scientists and administrators from the Laboratory. On 1 March the exhibition was visited by a German delegation headed by Dr Hermann Schunck, Director at BMBF.

  12. Young Artists@ CERN

    CERN Document Server

    2004-01-01

    In view of 50th anniversary of CERN, about 20 young artists will be visiting CERN from 26 to 31 January to learn about the laboratory's research and the mysterious world of particle physics. The impressions they take home will be the main inspiration for the artwork they will then produce for an exhibition to be inaugurated in October 2004 as part of CERN's 50th anniversary celebration. We are looking for scientists who are interested in the Art-Science synergy and who can volunteer to discuss their work at CERN to these young artists during this week (25-31/01). Please contact renilde.vanden.broeck@cern.ch if you are interested. The project is called Young Artists@ CERN and for more information look at this website: http://www.hep.ucl.ac.uk/~andy/CERNart/

  13. CERN Cricket club

    CERN Multimedia

    CERN Cricket club

    2015-01-01

    The CERN Cricket Club 2015 season begins soon, the first net practice is scheduled (weather permitting) for Thursday April 16th, at 18:00! The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/ or turn up for net practice, which takes place each Thursday evening from April 16th (apart from CERN official holidays) until the end of September (starting at 18:00 to around 19:30) at the CERN Prévessin site: http://club-cricket.web.cern.ch/Club-Cricket/CERN-Ground.html The first match will be at home on Sunday, April 19th against Rhone CC from Lyon.

  14. CERN Relay Race

    CERN Multimedia

    CERN Running Club

    2010-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 20 May, starting at 12.15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the route, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay

  15. The CERN PC farm

    CERN Multimedia

    Serge Bellegarde

    2005-01-01

    Housed in the CERN Computer Centre, these banks of computers process and store data produced on the CERN systems. When the LHC starts operation in 2008, it will produce enough data every year to fill a stack of CDs 20 km tall. To handle this huge amount of data, CERN has also developed the Grid, allowing the processing power to be shared between computer centres around the world.

  16. Sharing resources@CERN

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Photo 01: L. to r. Eduardo Aldaz, from the PS division, Corrado Pettenati, Head Librarian, and Isabel Bejar, from the ST division, read their divisional copies of the same book.

  17. Radiation protection at CERN

    OpenAIRE

    Forkel-Wirth, Doris; Roesler, Stefan; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  18. CERN - better than science fiction!

    CERN Multimedia

    2007-01-01

    From left to right: Allan Cameron (Production Designer), Sam Breckham (Location Manager), James Gillies (Head of Communication at CERN), Jacques Fichet (from the CERN audiovisual service), Rolf Landua (former spokesman of the ATHENA antihydrogen experiment at CERN and Head of CERN's Education Group), Ron Howard, and Renilde Vanden Broeck (CERN press officer).

  19. Integrity at CERN

    CERN Document Server

    Department, HR

    2015-01-01

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  20. Britain at CERN

    CERN Multimedia

    2000-01-01

    H. E. Mr Christopher Hulse, Ambassador of United Kingdom in Switzerland, CERN Director General Luciano Maiani, Sir David Wright, Chief Executive of British Trade International and Roger Cashmore, CERN Director of research visit the Britain at CERN exhibition. From 14 to 17 November 30 British companies exhibited leading edge technologies at CERN. This is Britain's 18th exhibition at CERN since 1968. Out of the 30 companies, which attended the Britain at CERN exhibition in 1998, 25 have received an order or a contract relating to CERN during the last two years. The exhibition was inaugurated on Tuesday by Sir David Wright, Chief Executive of British Trade International. He was accompanied by H.E. Mr Christopher Hulse CMG, OBE, Her Majesty's Ambassador to Switzerland, and Mr. David Roberts, Deputy Head of Mission and Director of Trade Promotion at the British Embassy in Bern. CERN Director-General, Professor Luciano Maiani, underlined the major contribution of British physicists to CERN, pointing out the fact ...

  1. Dear CERN Computing Community,

    CERN Multimedia

    2003-01-01

    This is to remind you that LXPLUS6 cluster will be switched off on: Friday May 30th 2003 12:00 CET Please start using lxplus.cern.ch now to avoid unnecessary problems at the last minute. Note especially, that telnet and ftp to lxplus.cern.ch are not provided and will not work, instead secure protocols such as ssh and sftp should be used. Also LINUX6 resources in LXBATCH will no longer be available from the same date - Friday May 30th 2003 8:00 CET. See: http://cern.ch/plus/issues.html for other know issues. Vladimir Bahyl CERN/IT/FIO/FS

  2. Dear CERN Computing Community,

    CERN Multimedia

    2003-01-01

    This is to remind you that LXPLUS6 cluster will be switched off on: Friday May 30th 2003 12:00 CETPlease start using lxplus.cern.ch now to avoid unnecessary problems at the last minute. Note especially, that telnet and ftp to lxplus.cern.ch are not provided and will not work, instead secure protocols such as ssh and sftp should be used. Also LINUX6 resources in LXBATCH will no longer be available from the same date - Friday May 30th 2003 8:00 CET. See: http://cern.ch/plus/issues.html for other know issues. Vladimir Bahyl CERN/IT/FIO/FS

  3. Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam

    CERN Document Server

    Tahir, N A; Schmidt, R; Shutov, A; Piriz, A R

    2013-01-01

    In this paper we present numerical simulations of heating of a solid copper cylinder by the 440 GeV proton beam delivered by the Super Proton Synchrotron (SPS) at CERN. The beam is made of 288 proton bunches while each bunch comprises of 1.15$1011 so that the total number of protons in the beam is about 1.3$1013. The bunch length is 0.5 ns while two neighboring bunches are separated by 25 ns so that the beam duration is 7.2 ms. Particle intensity distribution in the transverse direction is a Gaussian and the beam can be focused to a spot size with s 1⁄4 0.1 mme1.0 mm. In this paper we present results using two values of s, namely 0.2 mm and 0.5 mm, respectively. The target length is 1.5 m with a radius 1⁄4 5 cm and is facially irradiated by the beam. The energy deposition code FLUKA and the two-dimensional hydrodynamic code BIG2 are employed using a suitable iteration time to simulate the hydrodynamic and the thermodynamic response of the target. The primary purpose of this work was to design fixed target...

  4. CERN takes off at Lift11

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN was especially featured at the Lift11 conference, held in Geneva early this month. Tara Shears delivered a keynote speech at the event, while Paul Oortman Gerlings (DGS-SEE) and Erik van der Bij (BE-CO) – winners of the Bulletin’s Lift11 competition – organised the CERN workshop.   Paul Oortman Gerlings takes questions at CERN's Lift11 workshop. Lift11 was an opportunity for CERN to reach today’s innovators and developers. “The event was filled with people eager to learn new ideas, who were not afraid to ask questions,” says Tara Shears, physicist from the LHCb Collaboration who presented an update on the status of the LHC. “People were amazed by what goes on inside CERN, by our science, our facilities – even by the way we carry out our day-to-day work. It is a branch of fundamental research that really seems to inspire everyone.” A small Lift11 group had the chance to take a tour of CERN, ...

  5. Experiments at CERN in 1997

    International Nuclear Information System (INIS)

    This book summarises the current experimental programme at CERN. The experiments listed are taking place at one of the following machines: the Large Electron Positron Collider (LEP), the Super Proton Synchroton (SPS), the 28 GeV Proton Synchrotron (PS), including the Antiproton Decelerator (AD) for slow antiprotons and the ISOLDE facility for short-lived ions. The three experiments now approved for installation at the Large Hadron Collider (LHC) and the R and D projects aimed at the development of new detector technologies and data acquisition systems for the LHC experiments are also listed. (orig./WL)

  6. Romanian Visit to CERN

    CERN Multimedia

    2001-01-01

    Romanian Minister for Foreign Affairs, Mr Mircea Dan Geoana, visited CERN on 30 March to discuss collaboration between his country and the Laboratory. Above, Mr Dan Geoana signs the visitors' book in the presence of CERN Director General Luciano Maiani and Mrs Anda Flip, Ambassador and permanent representative of Romania at the United Nations.

  7. CERN's Early History Revisited

    CERN Multimedia

    Schopper, Herwig Franz; Krige, Gerhard John

    2005-01-01

    As a member of the group of historians charged to write the history of the founding of CERN, John Krige particularly underlines the important role I.I. Rabi played. The first author, former Director General of CERN add a few comments. S.A. Khan gives precisions about the role played by E. Amaldi and P. Auger; then J. Krige replies

  8. ESO: The CERN Years

    CERN Multimedia

    Schaeffer, A

    2012-01-01

    In 1970, CERN and ESO signed a collaboration agreement for the construction of the Observatory’s first telescope. That same year, ESO’s Telescope Division and Sky Atlas laboratory settled on the CERN site in Meyrin. Let’s turn back to the beginnings of this lasting and fruitful alliance.

  9. Punctualizaciones del CERN

    CERN Multimedia

    2002-01-01

    "Viene de la pagina anterior. Puntualizaciones del CERN. La valoracion que me merece la aprobacion en el Consejo de Ministros el 24 de mayo de un acuerdo de colaboracion entre el MCYT y el CERN para el proyecto de neutrinos al Gran Sasso es positiva" (1 page).

  10. Integration of CERN staff

    CERN Multimedia

    1965-01-01

    An example of the integration of CERN staff in the neighbouring communes is provided by the hamlet of Bugnon at St-Genis-Pouilly (Ain), FRance. The CERN installation on the Swiss site are visible on the left in the background. Behind them the Saleve mountain in Haute-Savoie.

  11. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  12. CERN and the LHC

    CERN Multimedia

    Cramer, J G

    1992-01-01

    CERN, a high-energy physics laboratory in Europe, is planning to build a more powerful particle accelerator, the Large Hadronic Collider. The US spreads its accelerators around the country while most of Europe's research is conducted at and around CERN.

  13. CERN openlab Open Day

    CERN Multimedia

    Purcell, Andrew Robert

    2015-01-01

    The CERN openlab Open Day took place on 10 June, 2015. This was the first in a series of annual events at which research and industrial teams from CERN openlab can present their projects, share achievements, and collect feedback from their user communities.

  14. UK Mission to CERN

    CERN Multimedia

    2004-01-01

    At the end of June, nine experts from UK industry visited CERN to study techniques for developing distributed computing systems and to look at some specific applications. In a packed three-day programme, almost 40 CERN experts presented a comprehensive survey of achievements.

  15. CERN helps Grid cmputing into the mainstream

    CERN Multimedia

    Moran, Nuala

    2006-01-01

    CERN, the European Laboratory for Particle Physics, has launched the seocnd phase of Openlab, its partnership with IT companies for the development of advanced computing facilities. The industrial partners in this phase, Hewlett Packard, Intel and Oracle, will help build on the experience from the last three years when Openlab worked on cluster and Grid computing (1 page)

  16. Colliders for CERN after LEP 200

    International Nuclear Information System (INIS)

    For the long range future of CERN, the long range planning commission has explored various options, taking into account the actual development of physics and existing facilities. The solutions envisaged are Large Hadron Collider and e+e- collider (CLIC) in the 1-10 TEV range

  17. France at CERN

    CERN Multimedia

    2001-01-01

    From 19 to 22 June, for the 8th edition of France at CERN, 31 French companies presented their latest technology to the Laboratory. Demonstrating the latest in French technology during France at CERN. The France at CERN exhibition was inaugurated by Mr. Bernard Frois, Director of the Department Energy, Transport, Environment and Natural Resources at the Technology Directorate of the Ministry of Research. 'France is happy to be a Member of CERN, which is a successful example of the construction of scientific Europe,' he declared during the inauguration, 'this exhibition is an excellent opportunity to put fundamental research and advanced technology in contact.' Mr. Philippe Petit, French Ambassador to Switzerland, and Mr. Alexandre Defay, technical adviser of the Minister of Research, were also present to represent France and its industry. Representing CERN at the 19 June opening of the exhibition was Claude Detraz, who said, 'I hope that this exhibition will make it possible to weave stronger links between ...

  18. CERN in the park

    CERN Multimedia

    2002-01-01

    CERN will be the centre of debate at a 'Café scientifique' on Monday 29 April. The aim of the Cafés scientifiques, which are organised by the association of Bancs Publics, is to kindle discussion between ordinary people and specialists in a scientific field. This Monday, Maurice Bourquin, President of the CERN Council, Hans Hoffmann, Director of Technology Transfer and Scientific Computing at CERN, Gilbert Guignard, a physicist at CERN, and Ruhal Floris, who teaches mathematical didactics at the University of Geneva, will explain the usefulness and contributions to science of the world's biggest laboratory for particle physics. What is CERN for? Monday 29 April at 18.30 Musée d'histoire des sciences, Geneva (in the park Perle du Lac) Entry free Wine and buffet after the discussion

  19. CERN Mobility Survey

    CERN Multimedia

    GS Department

    2011-01-01

    The Institute of Shipping and Transport of the University of the Aegean and the National Technical University of Athens are partners with CERN in a study of mobility patterns between and within the CERN sites and to that effect have realized a mobility survey dedicated to the CERN community.         The study aims to understand: How you presently get around the CERN sites; What problems you encounter regarding mobility; What your needs are; What improvements you’d like to see; What measures you would like to see implemented most. The replies we receive will enable us to define a general policy promoting the diversity of mobility at CERN and to establish and quantify the strategic actions to be implemented for both the short and medium term. The objectives of the transport mobility plans are to: Facilitate mobility within and between the CERN sites by identifying adequate solutions in response to individual ...

  20. Lectures for CERN pensioners

    CERN Multimedia

    GS Department

    2009-01-01

    The CERN Medical Service and the Pensioners Association are pleased to invite CERN pensioners to a series of lectures given by professors and specialists from the Teaching Hospitals and the Faculty of Medicine of the University of Geneva on the following topic: PROMOTION OF OPTIMUM BRAIN AGEING The lectures will take place in the Main CERN Auditorium (Building 60) from 2.30 p.m. to 4.30 p.m. on the following dates: Thursday 15 January 2009: Diagnosing and treating Alzheimer’s disease Pr Gabriel GOLD Wednesday 25 February 2009: What is the brain reserve? Speaker’s name to be announced at a later date. The lectures will be given in French, with transparencies in English, and will be followed by a wide-ranging debate with the participants. CERN Medical Service - Pensioners Association - CERN-ESO (GAC-EPA)

  1. The CERN omega spectrometer. 25 years of physics. Proceedings

    International Nuclear Information System (INIS)

    The OMEGA spectrometer facility was closed down at the end of 1996. This was a necessary sacrifice in order to free resources for the construction of the Large Hadron Collider, which is now so closely associated with CERN's future. On December 10th, a symposium was organized at CERN to review physics at OMEGA. This report brings together the talks which were presented on that occasion. It starts with an introduction and a list of all the experiments at the facility. (orig.)

  2. CERN: Digitally open, too

    CERN Multimedia

    Computer Security Team

    2013-01-01

    The Open Days are here!! From tomorrow onwards, we will be welcoming thousands of people to CERN. No barriers, no boundaries!   For decades, we have welcomed researchers and visitors from around the world to work at CERN, discuss physics research and attend our training sessions, lectures and conferences. This is how fundamental research should be conducted!!! But have you ever noticed how you are welcome at CERN in the digital world, too? Once you are affiliated and are registered with CERN, you receive a CERN computing account and e-mail address.  You can register your laptops, PCs and smartphones to use our (wireless) network, you can easily create your personal webpage, and profit from a vast disk space for file storage (AFS and DFS). CERN is indeed an Open Campus and not only during the Open Days. CERN is an Open Campus in the digital world. This digital Open Campus culture is exactly the reason why “computer security” has been dele...

  3. CERN in 2030

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    A competition will soon be launched to select the architect, urban planner or landscape designer to undertake the first phase of redevelopment of the parking area by the flagpoles, between Entrances A and B. This will be the first stage in a wider development project aimed at sprucing up the CERN site and enhancing its image. Work to create a pleasant and harmonious area at the CERN entrance will start in 2013 while preparatory work for other developments inside the CERN site has already begun…   CERN as it is today.  By 2030, CERN will be a greener place, much like a university campus. The arrival of the tramway on 30 April will be an opportunity to forge ahead with the urban plan aimed at rejuvenating the CERN site and redefining how it is organised. "Nearly sixty years after CERN's first buildings went up, this plan will help transform the site and give it a welcoming, friendly face, a bit like a university campus," explains Thierry Chanard, urban plannin...

  4. The 1956 CERN Symposium

    CERN Document Server

    Jarlskog, Cecilia

    2014-01-01

    CERN, currently the largest organization in the world for particle physics, was founded in 1954. Originally located in Meyrin, at the outskirts of the city of Geneva in Switzerland, it has with time extended into neighboring France. The Theoretical Study Division of CERN, however, was created already in 1952, i.e., before the official inauguration of CERN. It was situated in Copenhagen. Christian Møller [1] was appointed (part-time) as the Director and there were two full time senior staff members, Gunnar Källén and Ben R. Mottelson. While constructing buildings and accelerators were in progress, an international conference was organized by CERN in the city of Geneva. This “CERN Symposium on High Energy Accelerators and Pion Physics”, 11–23 June 1956, attracted about 250 participants from outside CERN, among them at least 18 Nobel Laureates or future Laureates. Unfortunately, the participants from CERN are not listed in the Proceedings [2]. The conference focused on measuring devices such as bubbl...

  5. CERN honours its guides

    CERN Multimedia

    2004-01-01

    At the end of January, CERN's guides were rewarded for their devotion to the Laboratory. They have a passion for their work, know CERN inside-out and for 40 years have shown people of all ages and nationalities, from all walks of life, around the Laboratory. Who are they? Why, the CERN guides, of course. On 27 January, ten of CERN's 180 guides received special honours for their impressive number of guided tours in 2003. Presenting the awards in the Microcosm hall, CERN's Director-General Robert Aymar congratulated the winners on the key role they play with respect to the general public. "CERN would be nothing without you who show them its activities," he stressed. CERN's Director-General Robert Aymar congratulates Alberto Ribon for his tally of over 40 visits in the course of 2003.One of the prizes was the book «The Particle Odyssey». Here the book's co-author Christine Sutton dedicates it for Sijin Qian. Tzanko Spassoff (PH) and retired staff members Klaus Batzner and Antonio Francano wo...

  6. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  7. La Hollande au CERN

    CERN Document Server

    CERN Press Office. Geneva

    1995-01-01

    On 17 October the third industrial exhibition, "Holland at CERN" was officially opened by Dr R.J. van Duinen, President of the Dutch Organisation for Scientific Research (NWO). In his opening speech he encouraged scientific organisations such as CERN to take full advantage of industry's ability to design and invent new processes and equipment stressing that the purpose of the "Holland at CERN" exhibition was not simply to sell equipment, but to establish an efficient cross-fertilisation between fundamental science and industry.

  8. The CERN Neutrino beam to Gran Sasso (NGS)

    CERN Document Server

    Bailey, R; Ball, A E; Bonnal, P; Buhler-Broglin, Manfred; Détraz, C; Elsener, Konrad; Ereditato, A; Faugeras, Paul E; Ferrari, A; Fortuna, G; Grant, A L; Guglielmi, A M; Hilaire, A; Hübner, Kurt; Jonker, M; Kissler, Karl Heinz; López-Hernandez, L A; Maugain, J M; Migliozzi, P; Palladino, Vittorio; Pietropaolo, F; Revol, Jean Pierre Charles; Sala, P R; Sanelli, C; Stevenson, Graham Roger; Vassilopoulos, N; Vincke, H H; Weisse, E; Wilhemsson, M

    1999-01-01

    The conceptual technical design of the NGS (CERN neutrino beam to Gran Sasso) facility has been presented in the report CERN 98-02 / INFN-AE/98-05. Additional information, in particular an update on various neutrino beam options for the NGS facility, has been provided in a memorandum to the CERN-SPSC Committee (CERN-SPSC/98-35). In the present report, further improvements on the NGS design and performance, in particular new scenarios for SPS proton cycles for NGS operation and a new version of the NGS "high energy" neutrino beam for nt appearance experiments, are described. This new NGS reference beam is estimated to provide three times more nt events per year than the beam presented in the 1998 report. The radiological aspects of the NGS facility have been re-examined with the new beam design. An updated version of the construction schedule is also presented.

  9. Britain exhibition at CERN

    CERN Multimedia

    Bertin; CERN PhotoLab

    1969-01-01

    The United Kingdom inaugurated the Industrial Exhibitions in 1968, and it wasn't till 1971 that other countries staged exhibitions at CERN. This photo was taken in 1969, at the second British exhibition, where 16 companies were present.

  10. Indian President visits CERN

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 1 October, her Excellency Mrs Pratibha Devisingh Patil, President of India, picked CERN as the first stop on her official state visit to Switzerland. Accompanied by a host of Indian journalists, a security team, and a group of presidential delegates, the president left quite an impression when she visited CERN’s Point 2!   Upon arrival, Pratibha Patil was greeted by CERN Director General Rolf Heuer, as well as senior Indian scientists working at CERN, and various department directors. After a quick overview of the Organization, Rolf Heuer and the President addressed India’s future collaboration with CERN. India is currently an Observer State of the Organization, and is considering becoming an Associate Member State. A short stop in LHC operations gave Steve Myers and the Accelerator team the opportunity to take the President on a tour through the LHC tunnel. From there, ALICE’s Tapan Nayak and Spokesperson Paolo Giubellino took Pratibha Patil to the experiment&am...

  11. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  12. CERN stationery rejuvenated

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    With the introduction of CERN’s new graphic charter, our complete range of official communications stationery has been redesigned. Discover the newly harmonised and standardised range of CERN stationery.   As the Director-General announced in Bulletin 41-42/2012, a new graphic charter is now in force at CERN. The graphics team has taken this opportunity to redesign all the official CERN stationery, such as business cards, correspondence cards, letterheads, envelopes and file holders, all of which will now boast the same, unified format. In keeping with CERN’s new graphic charter, even the business cards have had a makeover: of a better quality than their predecessors, they now elegantly display the CERN colours (namely the familiar Pantone 286 blue). These new cards, which all follow a standardised format, help to project a standardised corporate image of the Organization. Order them online now! As the Director-General highlighted, “it's increasingly imp...

  13. CERN meets Facebook

    CERN Multimedia

    2012-01-01

    Social networking sites like LinkedIn, MySpace, Google+ and Facebook are on the rise. In particular, the life of youngsters revolves more and more around these sites as they facilitate communication, networking and the exchange of niceties. Who does not today already have an account registered with one of them? A Facebook profile can contain photos, listings of hobbies, job information, preferences…   The on-going effort to externalise some of CERN's computing resources continues, and in order to promote a unified interface for personal information, CERN has decided to establish a partnership with Facebook starting on 1stApril. "CERN is a public and trustworthy international organisation, and as such, our staff and users have nothing to hide from the general public," said Alexi Spiner (IT), project leader responsible for this migration: * The computer profiles of all CERN users will be integrated into the Facebook portal; * In addition, we will also ...

  14. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  15. CERN Science and Technology

    OpenAIRE

    Di Meglio, Alberto

    2015-01-01

    A high-level overview of the relationship between science and technology at CERN and the impact of technology on research with a focus on ICT technologies. Presented as a 12-minute "power-talk" at CIOCity 2015, Brussels

  16. PACMAN at CERN

    CERN Multimedia

    2015-01-01

    PACMAN Particle Accelerator Components Metrology and Alignment to the Nanometre scale. PACMAN is an Innovative Doctoral Program Network, offering training to 10 Early Stage Researchers hosted by CERN thanks to The European Commission FP7 Marie Curie Actions.

  17. YOUR LIFE@CERN

    CERN Multimedia

    Guinot, Genevieve

    2016-01-01

    Balancing work and home life, getting support for your family and thriving in an inclusive and respectful workplace: find out more about the support structures in place to enhance your working life@CERN!

  18. CERN at ESOF 2016

    CERN Multimedia

    James Gillies

    2016-01-01

    CERN had a major presence at the ESOF2016 conference this week, largely in collaboration with our EIROforum partners. A keynote session featuring the CERN Director-General, Fabiola Gianotti, EMBL Director-General, Iain Mattaj, and ESO Director for Science, Rob Ivison, and chaired by BBC science correspondent Pallab Ghosh debated the value of European collaboration in science.   The focal point of EIROforum’s presence was a stand highlighting the societal benefit of EIROforum science. (Image: Matt Wilkinson Photography/ ESOF 2016) A double session covered the science of the EIROs, with ATLAS physicist Claire Lee representing CERN, and there was a session exploring the ways that the EIROforum organisations create business value locally, with the leader of the Knowledge Transfer group, Giovanni Anelli, representing CERN. The focal point of EIROforum’s presence was a stand highlighting the societal benefit of EIROforum science. Side events linked to the stand discussed subjects su...

  19. La nascita del CERN

    CERN Multimedia

    Fidecaro, Giuseppe

    2004-01-01

    CERN was born on 30th September 1954, after the ratification of the Convention by the Member States. After the war, there was a need for international collaboration to rebuild the half-destroyed Europe (2 pages)

  20. Iran approaches CERN

    CERN Multimedia

    2002-01-01

    Members of Parliament from the Islamic Republic of Iran visit SM18. From left to right : Ali Mojtahed-Shabestari, Deputy Ambassador of the Islamic Republic of Iran in Geneva, Diether Blechschmidt, from CERN, Abdol-Rahim Baharvand and Hossain Amiri, from the Iranian Parliament, Norbert Siegel, from CERN, Hossain Afarideh, Rasool Seddighi and Ahmad Shirzad from the Iranian Parliament. Five members of the Parliament of the Islamic Republic of Iran visited CERN for three days at the beginning of May. All of them have PhD's in Physics, as well as holding their job in politics. They are involved in legislation for science, research and education funding in Iran. Apart from their interest in CERN in general, they were especially attracted to the CMS detector, since an Iranian contribution to the LHC is now starting through a collaboration with the Institute for Studies in Theoretical Physics and Mathematics in Tehran.

  1. CERN recognises LHC suppliers

    CERN Multimedia

    2002-01-01

    CERN has just presented the first awards recognising LHC suppliers. The Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang are the recipients of the first 'Golden Hadrons'.

  2. CERN scientists predict supernova

    CERN Multimedia

    2003-01-01

    "A team of theoretical physicists working at CERN and the Technion Institute of Technology in Israel has developed a theory to account for the mysterious gamma ray bursts that come from the depths of the Universe" (1/2 page).

  3. CERN confirms LHC schedule

    CERN Multimedia

    2003-01-01

    The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.

  4. Safety at CERN

    CERN Multimedia

    2009-01-01

    Safety is an integral part of our working lives, and should be in our minds whatever job we do at CERN. Ultimately, safety is the responsibility of the Director General – your safety is my concern. That’s why I have this week appointed a new Safety Policy Committee (SAPOCO) that reflects the new Organizational structure of CERN. CERN’s Staff Rules and Regulations clearly lay out in chapter 3 the scope of safety at CERN as well as my responsibilities and yours in safety matters. At CERN, safety is considered in the broadest sense, encompassing occupational Health and Safety, environmental protection, and the safety of equipment and installations. It is my responsibility to put appropriate measures in place to ensure that these conditions are met. And it is the responsibility of us all to ensure that we are fully conversant with safety provisions applicable in our areas of work and that we comply with them. The appointment of a n...

  5. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  6. CERN expositions permanentes

    CERN Document Server

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  7. Future Perspectives at CERN

    OpenAIRE

    Ellis, John

    2002-01-01

    Current and future experiments at CERN are reviewed,with emphasis on those relevant to astrophysics and cosmology. These include experiments related to nuclear astrophysics, matter-antimatter asymmetry, dark matter, axions, gravitational waves, cosmic rays, neutrino oscillations, inflation, neutron stars and the quark-gluon plasma. The centrepiece of CERN's future programme is the LHC, but some ideas for perspectives after the LHC are also presented.

  8. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  9. Cern Women's Club

    CERN Multimedia

    Cern Women's Club

    2014-01-01

      CERN WOMEN’S CLUB   Coffee Morning Tuesday 10th  June 2014, 12:30   Annual Club Lunch at the restaurant “Le Coq Rouge” in St-Genis-Pouilly Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://web.cern.ch/Club-WomensClub/

  10. Cern women's club

    CERN Document Server

    Club des cernoises

    2014-01-01

    CERN WOMEN’S CLUB Coffee Morning Tuesday 13th  May 2014, 9:30 Bldg 504,  (Restaurant No 2 – DSR) 1st Floor, Club Room 3   Annual General Meeting Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://cern.ch/Club-WomensClub/

  11. CERN, Accelerating Science

    CERN Multimedia

    De Melis, Cinzia

    2015-01-01

    What is the Universe made of? Where did it come from, where is it going and why does it behave the way it does? These are some of the questions that CERN set out to address when a small number of pioneering scientists created Europe’s first scientific international organization. Founded in 1954, in the aftermath of the Second World War, CERN is not only a first-class centre for fundamental research but also a pioneering adventure in international collaboration.

  12. CERN permanent exhibitions

    CERN Multimedia

    2016-01-01

    Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. And if you have more time on site, follow the LHC circuit at ground level to understand in situ this giant machine. Enter our exhibitions. Welcome!

  13. CERN: RICH dividends

    International Nuclear Information System (INIS)

    Back in 1985, when the hunt was on at CERN's proton-antiproton collider for as many W and Z particles as possible, an Athens/CERN/Uppsala/Wuppertal group had an unique chance to install a ring-imaging Cherenkov counter (RICH) in one of the twelve end-cap sectors of the big UA2 experiment and squeeze in a short run

  14. CERN Library | Agnes Chavez @ CERN | 3 May

    CERN Multimedia

    CERN Library

    2016-01-01

    Agnes Chavez is an artist and educator participating in a two-week research stay through the ATLAS Experiment at CERN.   Tuesday 3 May at 4 p.m. CERN Library (52 1-052) Artist/educator, Agnes Chavez will share video outcomes from Projecting Particles, an Art + Science + Education collaboration with ATLAS. The Sci-Art project combines the International Masterclass with Projection Art in a series of teen-led youth workshops and projection events. In this presentation Chavez will share her vision and describe the research and development behind the project, now in its third year.  For the Projecting pARTicles series of art installations she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspired by emerging particle physics theories. Chavez’s art experiments with data visualization, sound and projections to create participatory environments. She collaborates with programmers t...

  15. CREATIVE COLLISIONS: ARTS @CERN

    CERN Document Server

    CERN. Geneva

    2012-01-01

    In 2000, CERN hosted Signatures of the Invisible – one of the landmark initiatives in arts and science. In 2012, CERN is now initiating its own science/arts programme Collide@CERN in different arts disciplines. The first of these is in digital arts, and the international competition to find the winning artist is called the Prix Ars Electronica Collide@CERN. It was announced September 2011 at CERN’s first collaboration with an international arts festival – Ars Electronica in Linz. The competition attracted over 395 entries from 40 countries around the world. The winning artist, Julius Von Bismarck, will begin his two month residency here at CERN next month. Ariane Koek who leads on this initiative, discusses the residency programme, as well as the background about Art@CERN. History has shown that particle physics and the arts are great inspiration partners. The publication of the paper by Max Planck which gave birth to quantum mechanics as well as those by Einstein, heavily influenced some of the grea...

  16. Sharing resources@CERN

    CERN Multimedia

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Until now many people were unaware that copies of the same book (or standard, or journal) are often held not only by the library but by different divisions. (Here Eduardo Aldaz, from the PS division, and Isabel Bejar, from the ST division, read their divisional copies of the same book.) The idea behind the library's new sharing resources@CERN' initiative is not at all to collect the books in individual collections at the CERN library, but simply to register them in the Library database. Those not belonging to the library will in principle be unavailable for loan, but should be able to be consulted by anybody at CERN who is interested. "When you need a book urgently and it is not available in the library,' said PS Division engineer Eduardo Aldaz Carroll, it is a sham...

  17. CERN openlab Open Day

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is the unique public-private partnership between CERN and leading companies in the field of information and communication technology. The programme is now entering an exciting new phase and is expanding to include other public research organisations for the first time. A special event will be held at CERN to mark this occasion.   CERN openlab was created in 2001 and is now entering its fifth three-year phase (2015-2017). Its mission is to accelerate the development of cutting-edge solutions to be used by the scientific community to control the operations of complex machines and to analyse the vast amounts of data produced by physics experiments. During Run 2 of the LHC, it is expected that the CERN Data Centre will store more than 30 petabytes of data per year from the LHC experiments, which is equivalent to about 1.2 million Blu-ray discs, or 250 years of HD video. Testing in this demanding environment provides the companies collaborating in CERN openlab with valuable feedback o...

  18. CERN Relay Race

    CERN Multimedia

    Running Club

    2010-01-01

    This year’s CERN Relay Race will take place around the Meyrin site on Thursday 20th May at 12h00. This annual event is for teams of 6 runners covering distances of 1000m, 800m, 800m, 500m, 500m and 300m respectively. Teams may be entered in the Seniors, Veterans, Ladies, Mixed or Open categories. The registration fee is 10 CHF per runner, and each runner receives a souvenir prize. As usual, there will be a programme of entertainments from 12h in the arrival area, in front of the Restaurant no. 1. Drinks, food, CERN club information and music will be available for the pleasure of both runners and spectators. The race starts at 12h15, with results and prize giving at 13:15.   For details of the race, and of how to sign up a team, please visit: https://espace.cern.ch/Running-Club/CERN-Relay The event is organised by the CERN Running Club with the support of the CERN Staff Association.  

  19. CERN Pensioners Association

    CERN Multimedia

    The GAC Committee

    2004-01-01

    Open Day To all CERN retired staff As part of the celebrations organised for the 50th anniversary of CERN, an Open Day will be held on Saturday 16 October 2004. Anyone willing to act as a guide, either to help and inform visitors at the reception points or to guide groups of visitors, sharing your knowledge with them, is invited to fill in the attached form. A preparatory meeting will be arranged for those who left CERN some time ago and whose knowledge of the site may no longer be quite up-to-date. The Open Day organisers need your help, which will be very much appreciated. We hope that many pensioners will participate. People with internet access may enrol directly without coming to CERN, http://www.cern.ch/CERN50/openday The GAC Committee OPEN DAY : CALL FOR VOLUNTEERS 16th October 2004 So now you are excited about the Open Day, how can you participate? As you can imagine, for such a large number of activities, we need many volunteers. Please return the following form to Elena Battis...

  20. CERN In Focus

    CERN Multimedia

    CERN audiovisual service

    2008-01-01

    First edition 2008 of Cern in Focus. On behalf of the audiovisual team, a selection of the latest videos filmed at CERN. Every six weeks, we will bring you the latest in CERN's activities, from LHC start up to the Computing Grid, featuring the experiments and many other goings-on at CERN. The agenda of this first edition of CERN in Focus features the visit of the prime minister of Malta, Lawrence Gonzi... CMS and the final descent of the YE-1 end cap... The departure of UA1 magnets to Japan... The start up of sectors 4 and 5... And finally, in our sports round up... We'll talk about football. New in brief this month... The final bolt is in place : On 7th November, in the bowels of the LHC tunnel, CERN's Director General Robert Aymar tightened a gold-plated bolt for the last arc interconnection of sector 1-2. This symbolic gesture marks the completion of all the arc interconnections of the LHC. Last welding work: it was never going to be an easy task. On this day last year just one sector had been completed,...

  1. An object-oriented approach to cryogenic control systems for the CERN test facilities: a case study based on the UNICOS framework.

    CERN Document Server

    Dudek, Michał

    2010-01-01

    This paper consists of two parts, the first of which is more general and presents the reason of particle collision research, the LHC accelerator and its main detectors (Chapter 1). It also provides information about the test stations in SM18, the cryogenic architecture of the hall and the significant properties of the liquid helium, which make him perfect coolant for the superconducting devices (Chapter 2). The second part of this thesis presents the revamping of the SM18 test facility. It describes the previous functional view and changes that were done. The new layout of the Radio Frequency Cavities rack and communication is also presented (Chapter 3). Chapter 4 gives the information about the software frameworks, code generation for the PLC and the synoptic production.

  2. Spotlight on CERN : Recruitment and professions at CERN

    CERN Multimedia

    CERN video productions

    2010-01-01

    Spotlight on CERN No. 3 Recruitment and professions at CERN Welcome to the Globe of Science and Innovation for this third edition of "Spotlight on CERN". When one thinks about professions at CERN, what springs to mind? Physicists? Engineers? In fact, the smooth operation of the Organisation relies on a diversity of professions and this in itself, poses a real challenge in terms of recruitment in CERN member states. Today, to tell us more about this challenge and about CERN professions in general, we welcome James Purvis, Head of the HR Recruitment, Programmes and Monitoring group, and Lore Taillieu, leader of the group's Recruitment section.

  3. Horst Wenninger, serving CERN for 35 years

    CERN Multimedia

    2003-01-01

    The name Horst Wenninger has been closely connected to current and future developments at CERN. On 30 September, he retired from CERN after 35 years. In the 1960s, while working as an assistant at the Institute for High Energy Physics of the University of Heidelberg, Horst Wenninger was already participating in bubble chamber experiments at CERN. From 1968 onwards, when he joint the BEBC project, he worked at CERN as member of the BEBC construction and operations team for almost 20 years, starting off as a young physicist, occupying key roles as BEBC coordinator, becoming the BEBC group leader during the time of its full exploitation, and seeing the termination of the project in 1984. (You can still see the BEBC tank and piston on the lawn in front of Microcosm.) In 1984 the Director General Herwig Schopper appointed him Leader of the Experimental Physics Facilities (EF) Division. This division continued to provide support for large experimental facilities, e.g. the OMEGA spectrometer, and experiments such ...

  4. A new concept for the water supply at CERN

    CERN Document Server

    Inigo-Golfin, J

    1998-01-01

    The present state of the station Le Vengeron (the main pumping station supplying CERN with drinking water), and also to comply with the new Swiss standards impose a thorough consolidation and upgrade of this station which is shared with the Services Industriels de Genève (SIG). The total cost of the works (around 62 MCHF) would be shared proportionally to the nominal flow-rate demand which, at present, is of 2/3 for CERN and 1/3 for SIG. An alternative to the above is a complete review of CERN's water consumption, reducing our needs by half, thus allowing savings in both investment and operation. This reduction in investment cost would be diverted towards much needed consolidation works for the existing facilities within CERN. This paper also reviews the planning and possible ways for the execution of the works and the future responsibilities of operation of the water distribution systems (drinking and machine) inside CERN's sites.

  5. CERN Relay Race

    CERN Document Server

    2009-01-01

    The CERN relay race, now in its 39th year, is already a well-known tradition, but this year the organizers say the event will have even more of a festival feeling. Just off the starting line of the CERN relay race.For the past few years, spectators and runners at the CERN relay race have been able to enjoy a beer while listening to music from the CERN music and jazz clubs. But this year the organizers are aiming for "even more of a festival atmosphere". As David Nisbet, President of the CERN running club and organizer of the relay race, says: "Work is not just about getting your head down and doing the theory, it’s also about enjoying the company of your colleagues." This year, on top of music from the Santa Luis Band and the Canettes Blues Band, there will be demonstrations from the Aikido and softball clubs, a stretching session by the Fitness club, as well as various stalls and of course, the well-earned beer from AGLUP, the B...

  6. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  7. Spaceflight participant visits CERN!

    CERN Multimedia

    Kathryn Coldham

    2016-01-01

    On 15 July, CERN welcomed spaceflight participant Anousheh Ansari.   Anousheh Ansari’s grin stretches from ear to ear, during an intriguing conversation with Nobel laureate Samuel C.C. Ting at AMS POCC. (Image: Maximilien Brice/CERN) Iranian-American Anousheh Ansari was the first-ever female spaceflight participant, spending eight days on the International Space Station (ISS) in 2006. She now has a new addition to her list of extraordinary sights ­– the home of the world’s largest particle accelerator: CERN.   On 15 July, Anousheh Ansari came to CERN and, unsurprisingly, visited the control room of the experiment attached to the ISS: the AMS. At the AMS Payload Operations Control Centre (AMS POCC) on CERN’s Prévessin site, she met the Nobel laureate Samuel Ting, spokesperson of the AMS experiment. Ansari and her accompanying guests were thrilled to expand their knowledge about CERN, its research and its...

  8. CERN CAR STICKERS

    CERN Multimedia

    Service Accueil et Controle d'Accès; ST Division

    1999-01-01

    In accordance with Operational Circular n¡ 2, paragraph 21, CERN car stickers are to be renewed. The new stickers are now available and will be valid for a year.Youare therefore requested:either to obtain them from the distribution points for new stickers (see below); or to send us the application form below, duly completed, via the internal mail; or to complete the application form directly via the Web at the address: http://cern.ch/registration-stickers. Each vehicle has to carry a sticker and needs a separate application form.Vehicles bearing CERN diplomatic plates (CD07, 431K and CD series) do not need a sticker for access to the CERN areas.Thank you.List of distribution points:Registration Service (bldg 55 1st floor), open from 07h30 to 16h30. Building 33 (entrance hall), open from 08h00 to 18h00. Building 120 (ground floor), outside working hours.Name Surname CERN identification number Vehicle registration plates Country issuing the plates Vehicle ma...

  9. Radiography at CERN

    CERN Multimedia

    HSE Unit

    2014-01-01

    What is industrial radiography? It is a non-destructive method with a wide variety of applications, such as inspecting the quality of a weld. It uses high-energy radioactive sources or an X-ray generator.   Is this inspection technique used at CERN? Yes, it is widely used at CERN by the EN-MME Group, which outsources the work to one or more companies, depending on the workload. Is it possible to carry out radiography anywhere at CERN? Yes, it is possible to carry out radiography in any building/accelerator/experiment area at CERN (including in areas which are not normally subject to radiological hazards). When is radiography carried out? It normally takes place outside of working hours (7 p.m. to 6 a.m.). How will I know if radiography is taking place in my building? If this activity is planned in a CERN building, notices will be affixed to all of its main entrance doors at least 24 hours in advance. What are the risks? There is a risk of exposure to very high levels of radiation, dep...

  10. Apprenticeship at CERN

    CERN Multimedia

    Staff Association

    2016-01-01

    In 1961, based on the finding that the evolution of the labour market created a growing need for qualified staff, a first agreement between the Republic and Canton of Geneva and CERN was signed. One of the objectives of this agreement was the vocational training of young electronics and physics laboratory technicians. CERN, an important stakeholder in the local economy, highlighted with this agreement its willingness to participate in the local social and economic development. The first apprentice arrived at CERN in 1965. In 1971, the apprenticeship centre was created; it now hosts over twenty apprentices in total and welcomes about six new apprentices each year. These apprenticeships are for young people aged between 15 and 21 years, coming from one of the CERN Member States, and having completed their mandatory education, e.g. 11th grade in Switzerland or 3ème in France. The training is divided between working time at CERN and one or two days per week at school (CFPT in Geneva for electronics or ...

  11. CERN television news

    CERN Document Server

    2002-01-01

    CERN events brought right to your desktop by the new video bulletin.   CERN now has its very own news broadcast , or rather 'webcast', with a host of special reports and even a star presenter. From today onwards, just go to the Bulletin's web page, click on the 'video news' link and sit back and enjoy the latest news about CERN, presented in images by Wendy Korda. The ten-minute newscast in both French and English, the Organization's two official languages, presents interviews, pictures of experiments and computer-generated graphics, bringing you right up to date with some of the Laboratory's latest stories. The show concludes with a selection of the best snapshots taken by the CERN Photo Lab. So every one or two months CERN's Audio-Video Service (ETT/DH) will be putting together a video news report that you can watch on your own desktop computer. Daniel Boileau, Patrick Gilbert de Vautibault and Jacques Fichet, the Service's three technicians, came up with the idea of producing this regular feat...

  12. EU Commissioner visits CERN

    CERN Multimedia

    2005-01-01

    European Commissioner Viviane Reding in front of one of the computers showing how the Grid works and, from left to right, Robert Aymar, CERN's Director-General, Wolfgang von Rüden, Head of the Information Technology Department, and Bob Jones, the newly appointed director of the EGEE project since 1st November. Viviane Reding, European Commissioner for Information Society and Media, visited CERN on 28 October. Accompanied throughout by CERN's Director-General, Robert Aymar, and the Head of the Information Technology Department, Wolfgang von Rüden, the Commissioner visited the ATLAS cavern before going on to the Information Technology Department, where she was given a complete overview of CERN's activities in the strategic field of Grid computing. Viviane Reding's visit coincided with the end of the EGEE (Enabling Grids for E-sciencE) conference, which took place in Pisa in Italy. Co-ordinated by CERN and funded by the European Commission, the EGEE project aims to set up a worldwide grid infrastructure for sc...

  13. Lectures for CERN pensioners

    CERN Multimedia

    SC Unit

    2008-01-01

    The CERN Medical Service and the Pensioners Association are pleased to invite CERN pensioners to a series of lectures given by professors and specialists from the Teaching Hospitals and the Faculty of Medicine of the University of Geneva on the following topic: PROMOTION OF OPTIMUM BRAIN AGEING The lectures will take place in the Main CERN Auditorium (Building 60) from 2.30 p.m. to 4.30 p.m. on the following dates: Wednesday 12 November 2008: Assessing the extent of brain ageing Dr Dina ZEKRY Friday 12 December 2008: Can memory decline be prevented? Pr Jean-Pierre MICHEL Thursday 15 January 2009: Diagnosing and treating Alzheimer’s disease Pr Gabriel GOLD Wednesday 25 February 2009: What is the brain reserve? Speaker’s name to be announced at a later date The lectures will be given in French, with transparencies in English, and will be followed by a wide-ranging debate with the participants. CERN Medical Service - Pensioners Association - CERN-ESO (GAC-EPA)

  14. CERN Phonebook evolution

    CERN Multimedia

    Sébastien Dellabella

    2012-01-01

    Consolidating phonebooks at CERN We have had many phonebooks in the past, Xwho (now decommissioned), the NICE phonebook on Windows PCs, and more recently the web site people.cern.ch. However, diversity doesn’t always equate to improved efficiency or quality. So in order to reduce the maintenance effort and to improve the user experience, we have consolidated these various phonebooks into a single web application: phonebook.cern.ch Motivations for change The NICE Phonebook was introduced in the year 2000 when Windows 95 was the major desktop platform. Since then, a lot has changed not only in technology and the desktop landscape but also in the variety of devices used to access the data (notably smartphones and tablets). Updating the NICE phonebook is slow. Once the master database is modified it can take up to two days for the data to propagate to the application. Thus, we are now planning the retirement of the NICE phonebook application. The new Phonebook.cern.ch The new phonebook.cern.ch...

  15. Dalai Lama at CERN

    International Nuclear Information System (INIS)

    On 30 August CERN turned aside from its usual day-to-day preoccupations when Director-General Herwig Schopper played host to the Dalai Lama of Tibet and his entourage during the holy man's 1983 visit to Europe. In welcoming his visitor, Professor Schopper stressed the role of particle physics in helping to understand man's place in the cosmos, and how the Dalai Lama's interest would further the interrelation of science, philosophy and religion. The Dalai Lama visited the UA 1 experiment (rolled back into its 'garage' during the present fixed target operations at CERN) and the large installations for the neutrino experiments in the West Area of the SPS machine. There was an intriguing exchange of views with CERN theorists, who described how science has continually modified our view of the world around us

  16. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  17. CERN UN Roundtable

    CERN Document Server

    CERN. Geneva; Del Rosso, Antonella; Gillies, James

    2014-01-01

    In the spirit of strengthening links and sharing best practices among the two Organizations, UNOG and CERN will be jointly organizing a round table discussion on the issue of “The challenge of communicating science and technology to the world: issues and solutions”. It is hoped that the discussions can highlight the experience of various organizations and institutions in their efforts to communicate and inform in several languages on topics – science and technology – that are often perceived as distant and arduous by the layman. ==>> Please note that registrations are now closed. It is not necessary to register for this event if you plan to watch it live on http://webcast.cern.ch. Send your questions to the speakers by email to: question@cern.ch

  18. CERN's new safety policy

    CERN Multimedia

    2014-01-01

    The documents below, published on 29 September 2014 on the HSE website, together replace the document SAPOCO 42 as well as Safety Codes A1, A5, A9, A10, which are no longer in force. As from the publication date of these documents any reference made to the document SAPOCO 42 or to Safety Codes A1, A5, A9 and A10 in contractual documents or CERN rules and regulations shall be deemed to constitute a reference to the corresponding provisions of the documents listed below.   "The CERN Safety Policy" "Safety Regulation SR-SO - Responsibilities and organisational structure in matters of Safety at CERN" "General Safety Instruction GSI-SO-1 - Departmental Safety Officer (DSO)" "General Safety Instruction GSI-SO-2 - Territorial Safety Officer (TSO)" "General Safety Instruction GSI-SO-3 - Safety Linkperson (SLP)" "General Safety Instruction GSI-SO-4 - Large Experiment Group Leader In Matters of Safety (LEXGLI...

  19. Cern Cricket Club

    CERN Multimedia

    Cern Cricket Club

    2014-01-01

      Cern Cricket Club The CERN Cricket Club 2014 season has started earlier than usual, with a game scheduled for the first time ever on Easter Sunday.  Due to repair work for the damage done to the ground because of the “Bosons&More” party at the end of September, all games until June have had to be scheduled away. Net practice, which normally takes place on the ground from mid-April, will not start until mid-June. The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/    

  20. CERN Relay Race

    CERN Multimedia

    2005-01-01

    The CERN Relay Race will take place around the Meyrin site on Wednesday 18 May between 12.15 and 12.35. This year, weather permitting, there will be some new attractions in the start/finish area on the field behind the Main Building. You will be able to: listen to music played by the CERN Jazz Club; buy drinks at the bar organised by the CERN Running Club; buy lunch served directly on the terrace by the restaurant Novae. ATTENTION: concerning traffic, the recommendations are the same as always: If possible, please avoid driving on the site during this 20 minute period. If you do meet runners in your car, please STOP until they all have passed. Thank you for your understanding.

  1. Beta Beams Implementation at CERN

    CERN Document Server

    Hansen, Christian

    2011-01-01

    Beta Beam,the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring, called Decay Ring (DR), is the base of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the Decay Ring's ion intensity and of it's duty factor (the filled ratio of the ring). Therefore efficient ion production, stripping, bunching, acceleration and storing are crucial sub-projects under study and development within the Beta Beam collaboration. Specifically the feasibility of these tasks as parts of a Beta Beam implementation at CERN will be discussed in this report. The positive impact of the large {\\theta}13 indications from T2K on the Beta Beam performance will also be discussed.

  2. mini-b-roll : CERN

    CERN Multimedia

    CERN Audiovisual Service

    2008-01-01

    A global endeavour CERN is run by 20 European Member States, but many non-European countries are also involved in different ways. Scientists come from around the world to use CERN’s facilities. The current Member States are: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom. Member States have special duties and privileges. They make a contribution to the capital and operating costs of CERN’s programmes, and are represented in the Council, responsible for all important decisions about the Organization and its activities. Some states (or international organizations) for which membership is either not possible or not yet feasible are Observers. ‘Observer’ status allows non-Member States to attend Council meetings and to receive Council documents, without taking part in the decision-making procedures of the Organization. Scientists from...

  3. CERN Relay Race

    CERN Document Server

    2008-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 5 June starting at 12:15 p.m. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on how to register your team for the relay race are given on the Staff Association Bulletin web site. You can access the online registration form at: http://cern.ch/club-running-relay/form.html

  4. The significance of Cern

    CERN Multimedia

    Weisskopf,V

    Le Prof. V.Weisskopf, DG du Cern de 1961 à 1965, est né à Vienne, a fait ses études à Göttingen et a une carrière académique particulièrement riche. Il a travaillé à Berlin, Copenhague et Berlin et est parti aux Etats Unis pour participer au projet Manhattan et était Prof. au MTT jusqu'à 1960. Revenu en Europe, il a été DG du Cern et lui a donné l'impulsion que l'on sait.

  5. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2009-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual session of this course will take place on 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  6. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    Are you running Vista on your new PC – or are you planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  7. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at mailto:Technical.Training@cern.ch

  8. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    Are you running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training course on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced in the use of Windows XP. The next bilingual sessions of this course will take place on 12 December 2008 and 30 January 2009. Register using our catalogue: http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch

  9. CERN Technical Training : Vista !

    CERN Multimedia

    HR Department

    2008-01-01

    You are running Vista on your new PC – or are planning to install it? The Technical Training service is organizing a half-day training on the new features of the VISTA operating system. This course introduces the new interfaces and presents the new functionalities for people who are experienced using Windows XP. The next bilingual sessions of this course will take place on December 12, 2008 and January 30, 2009. Register using our catalogue : http://cta.cern.ch/cta2/f?p=110:9 or contact us with your questions/comments at Technical.Training@cern.ch

  10. Poland at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    On 17 October 2000, the second Polish industrial and technological exhibition opens at CERN*. The first one was held five years ago and nine of the companies that were present then have come back again this year. Six of those companies were awarded contracts with CERN in 1995. Three Polish officials were present at the Opening Ceremony today: Mrs Malgorzata Kozlowska, Under-secretary of State in the State Committee for Scientific Research, Mr Henryk Ogryczak, Under-secretary of State in Ministry of Economy and Prof. Jerzy Niewodniczanski, President of National Atomic Energy Agency.

  11. CERN launches new cancer therapy initiative

    CERN Multimedia

    2002-01-01

    "The first meeting of a new European network for research in cancer therapy was held at CERN, in February 2002. ENLIGHT, the European Network for Research in Light Ion Therapy aims to coordinate the development of a variety of projects at European facilities for "light ion therapy" - a form of radiation therapy that uses beams of the nuclei of lightweight atoms" (1/2 page).

  12. CERN and 60 years of science for peace

    CERN Document Server

    Heuer, Rolf-Dieter

    2015-01-01

    This paper presents CERN as it celebrates its 60th Anniversary since its founding. The presentation first discusses the mission of CERN and its role as an inter-governmental Organization. The paper also reviews aspects of the particle physics research programme, looking at both current and future accelerator-based facilities at the high-energy and intensity frontiers. Finally, the paper considers issues beyond fundamental research, such as capacity-building and the interface between Art and Science.

  13. CERN and 60 years of science for peace

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, Rolf-Dieter, E-mail: Rolf.Heuer@cern.ch [CERN, CH-1211 Geneva (Swaziland)

    2015-02-24

    This paper presents CERN as it celebrates its 60{sup th} Anniversary since its founding. The presentation first discusses the mission of CERN and its role as an inter-governmental Organization. The paper also reviews aspects of the particle physics research programme, looking at both current and future accelerator-based facilities at the high-energy and intensity frontiers. Finally, the paper considers issues beyond fundamental research, such as capacity-building and the interface between Art and Science.

  14. Canadian ATLAS data center to support CERN's LHC

    CERN Multimedia

    2006-01-01

    "The biggest science experiment in history is currently underway at the world-famous CERN labs in Switzerland, and Canada is poised to play a critical role in its success. Thanks to a $10.5 million investment announced by the Canada Foundation for Innovation (CFI), an ultra-sophisticated computing facility -- the ATLAS Data Center -- will be created to support the ATLAS project at CERN's Large Hadron Collider (LHC)." (1 page)

  15. CERN firemen share their expertise

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Firemen from local fire brigades have been coming to CERN to learn modern fire-fighting techniques. This apparatus allows the simulation of the spectacular backdraft phenomenon, so firemen training at CERN learn to understand it.

  16. CHINA Continuing cooperation with CERN

    International Nuclear Information System (INIS)

    During a visit to China in July, CERN Director General Carlo Rubbia signed an agreement with the Chinese Academy of Sciences which provides a reciprocal framework for CERN and China to continue and develop their scientific and technical cooperation

  17. CERN Diversity Newsletter - March 2016

    CERN Document Server

    Kaltenhauser, Kristin; CERN. Geneva. HR Department

    2016-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  18. CERN Diversity Newsletter - November 2015

    CERN Document Server

    Kaltenhauser, Kristin; CERN. Geneva. HR Department

    2015-01-01

    Quarterly CERN Diversity Newsletter, informing on recent and ongoing diversity activities, and interesting reads, videos and other links related to diversity. Subscribe here: https://diversity.web.cern.ch/2015/07/subscribe-diversity-newsletter

  19. Une flamme pour le CERN

    CERN Multimedia

    2004-01-01

    For the 50th anniversary of CERN, letters posted from Saint Genis will bear a postmark to celebrate CERN's anniversary. Envelopes are also available from the Saint-Genis-Pouilly (France) post office (3 paragraphs)

  20. CERN and the Wigner Research Centre for Physics inaugurate CERN data centre’s extension in Budapest, Hungary

    CERN Multimedia

    Wigner Research Centre for Physics, Hungary

    2013-01-01

    On 13 June 2013 CERN and the Wigner Research Centre for Physics inaugurated the Hungarian data centre in Budapest, marking the completion of the facility hosting the extension for CERN computing resources. About 500 servers, 20,000 computing cores, and 5.5 Petabytes of storage are already operational at the site. The dedicated and redundant 100 Gbit/s circuits connecting the two sites are functional since February 2013 and are among the first transnational links at this distance. The capacity at Wigner will be remotely managed from CERN, substantially extending the capabilities of the Worldwide LHC Computing Grid (WLCG) Tier-0 activities and bolstering CERN’s infrastructure business continuity.

  1. WILL I AM visits CERN

    CERN Multimedia

    Noemi Caraban

    2013-01-01

    Will.i.am visited CERN in December 2013, fulfilling a wish he made in a video-link appearance at TEDxCERN earlier that year http://tedxcern.web.cern.ch/video/choral-performance-reach-stars-william. During his visit, he was shown the Antimatter Decelerator, the underground ATLAS experiment cavern and the CERN Control Centre. He also took the opportunity to promote CERN’s beam line for schools competition.

  2. New website dealing with CERN-EU relations

    CERN Multimedia

    2005-01-01

    A new website dealing with CERN-EU relations (cern.ch/EU) is being brought into production. Thanks are due to several people for their contributions, and especially to the primary authors - Piotr Kurpiel, a Technical Student, and Miguel Marquina / IT. This site is designed to help people looking for information concerning interactions between Europe and particle physics in general, and the CERN programme in particular. FACILITIES AVAILABLE TO THE PUBLIC For members of the public, links are provided to several websites of general interest and there is also a search facility to help navigation among the main sources of information on EU programmes. FACILITIES ONLY AVAILABLE TO CERN USERS Entry to the CERN area of the site requires authentication via your NICE login name and password. In this area: You can look at information about present or past EU co-funded projects at CERN. For projects with their own websites you can click through to the site to obtain more detailed information. You can subscribe to ...

  3. CERN Video News on line

    CERN Document Server

    2003-01-01

    The latest CERN video news is on line. In this issue : an interview with the Director General and reports on the new home for the DELPHI barrel and the CERN firemen's spectacular training programme. There's also a vintage video news clip from 1954. See: www.cern.ch/video or Bulletin web page

  4. Women at CERN

    CERN Multimedia

    2004-01-01

    To mark International Women's Day on 8 March, the Weekly Bulletin has looked at the careers of six female physicists, engineers and administrators working at CERN. A frequent question on the lips of newcomers to CERN as they take a quick look around them is 'But where are the women?' However, while it's true that the Laboratory has never had a huge number of female personnel, a closer look reveals that there are in fact quite a few around. To mark International Women's Day, the Bulletin has interviewed six women working at CERN to find out how they see the Organization, what they do and what they think about their daily working lives. Creating a link 'Maybe because I grew up during World War II, my parents always taught me to respect people of other nationalities, religions, colour, etc., so one thing I have always appreciated about CERN is that it promotes this tolerance and understanding by giving us the great privilege of working side by side with colleagues from many cultures and walks of life.' Pegg...

  5. La Nascita del CERN

    CERN Multimedia

    Fidecaro, Giuseppe

    2004-01-01

    CERN is born on 30 Sep 1954, just after the signature in Paris of a Convention for the creation of an European Center for Nuclear Research. It was a need to recreate a multilateral collaboration to start again scientific Research after the War (2 pages)

  6. Satellite photo of CERN

    CERN Multimedia

    1991-01-01

    This photo from the Landsat5 orbital telescope shows the locations of CERN's Meyrin and Prevessin sites near Geneva on the Swiss-France border. The tunnels housing the LHC and SPS accelerators are also illustrated. Photo credit: US Geological Survey/photo by Jane Doe.

  7. Disney World sur CERN

    CERN Multimedia

    Bieri, P

    1998-01-01

    "'Cela ressemble à un film de James Bond.' Des milliers de curieux se sont rendus, hier, dans le temple genevois de la science ouvert au public. Opération de charme réussie pour le CERN, qu i s'est ainsi refait une image" (1 page)

  8. CERN's future secured

    CERN Multimedia

    2003-01-01

    The CERN Council held its 123rd session on 13 December under the chairmanship of Professor Maurice Bourquin. The election of the next Director General, the Baseline Plan for 2003-2010 and a new status for non-European states were among the items agreed. In addition, the European Investment Bank has agreed a loan of 300 million EUR to complete the LHC.

  9. CERN: LHC magnets

    International Nuclear Information System (INIS)

    With test magnets for CERN's LHC proton-proton collider regularly attaining field strengths which show that 10 Tesla is not forbidden territory, attention turns to why and where quenches happen. If 'training' can be reduced, superconducting magnets become easier to commission

  10. CERN fellows and visitors

    CERN Multimedia

    Penney, R. W.

    1963-01-01

    This article describes the Fellowship and Visitor Programme as it is at present, detailing the various headings under which the visitors come and indicating the methods by which they are chosen. The way in which their work is integrated into the general scientific activity of CERN is discussed briefly.

  11. CERN: 50 and counting

    International Nuclear Information System (INIS)

    Fifty years is a long time in particle physics - and not just because most subatomic particles only exist for tiny fractions of a second. In 1954, the year that CERN was established, the leading high-energy laboratories in the US, and indeed the world, were at Berkeley in California and Brookhaven in New York. Today these two labs - with nine Nobel prizes for discoveries in particle physics between them - have been replaced by Stanford (established in 1962) and Fermilab (1967) as the focal points of high-energy physics in the US. CERN did not reach its current position of strength overnight. In the early years it struggled as US labs dominated the field and beat Europe's new lab to the big discoveries. The tide turned with the detection of weak neutral currents in 1973, and the discovery of the W and Z bosons 10 years later showed that CERN was capable of making truly massive discoveries. Today, completing the Large Hadron Collider (LHC) and its four detectors on schedule and within budget, and then ensuring that they run reliably from 2007 onwards, are CERN's top priorities. (U.K.)

  12. CERN apprenticeship scheme honoured

    CERN Multimedia

    2008-01-01

    Prestigious awards for two apprentices who did their practical training at CERN. Sylvain Heinzen, apprentice physics lab technician at CERN, receiving his award from Pierre-François UNGER, State Councillor responsible for the Federal Department of the Economy and Health. The other award-winner, Cédric Gerber, is on the right of the photo.Among Geneva’s top apprentices who were honoured by the Fondation sociale de l’Union industrielle genevoise (UIG) on 28 October this year, were two CERN apprentices. Electronics technician Cédric Gerber and physics lab technician Sylvain Heinzen both did their four-year sandwich course at CERN, obtaining their professional qualification, the Certificat fédéral de capacité (CFC), in June. On top of that, Cédric Gerber, who had been a particularly outstanding apprentice, received two further distinctions at the CFC awards ceremony - the State Council prize for achieving one of the top-ten o...

  13. Give blood at CERN

    CERN Multimedia

    SC Unit

    2008-01-01

    ACCIDENTS and ILLNESSES don’t take a break! DO SOMETHING AMAZING - GIVE BLOOD! IT’S IN ALL OUR INTERESTS. 30 July 2008 from 9.30 a.m. to 4 p.m. CERN RESTAURANT NOVAE First floor - Salle des Pas Perdus After you have given blood, you are invited to partake of refreshments kindly offered by NOVAE.

  14. A heatwave at CERN

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    It's getting hot in Buildings 201 and 860, over-heating even... But no reason to panic! We're talking about the superheated water boilers of CERN's two heating plants, which heat all the buildings on the Meyrin and Prévessin sites.   View of the three boilers and the control centre of the Meyrin heating plant. CERN's two heating plants each comprise three gas* boilers, with generators of 15 MW in the case of Meyrin and 5 MW in the case of Prévessin. Both inject pressurised water, superheated to 125 degrees, into several kilometres of pipes, 22 km on the Meyrin site and 5 km in Prévessin. "A single boiler is sufficient most of the time but a second kicks in automatically during very cold weather, and a third is there on stand-by," explains Christophe Martel, head of the GS Department section responsible for CERN's heating and air-conditioning systems. All of CERN's buildings have a sub-station that receives the superheated water from the boilers an...

  15. DESY greets CERN

    CERN Multimedia

    Helmut Dosch, Chairman of the DESY Board of Directors, continues the series of occasional exchanges between CERN and other laboratories world-wide. As part of this exchange, CERN Director-General Rolf Heuer wrote a message in DESY inForm. Helmut Dosch took over from Albrecht Wagner in March 2009. You may think that the connections between CERN and DESY are obvious – particle physics labs with record-breaking accelerators and users from all around the world trying to solve mankind’s great mysteries. We even exchanged a few Directors. But did you know that there are similarities that are much closer to home – for example that both labs have names for their staff in the host language that are untranslatable into English? You are CERNoises and CERNois, we are DESYanerinnen and DESYaner. And in the end it’s the people it all comes down to. We at DESY admire the resourcefulness, enthusiasm, dedication and perseverance with which you at CERN have designed, built, started ...

  16. Muse at CERN

    CERN Multimedia

    CERN Bulletin

    2016-01-01

    On 19 July, the world-famous, English rock band, Muse, visited CERN before taking centre-stage at Nyon’s Paléo Festival. They toured some of CERN’s installations, including the Synchrocyclotron and the Microcosm exhibition, and also looked in on CMS and the Antimatter Factory.    

  17. Bhutan at CERN

    CERN Multimedia

    2002-01-01

    On Tuesday 12 March, CERN received an extraordinary visitor, a very great representative of a very tiny country. His Royal Highness, Dasho Jigme Khesar Namgyal Wangchuk, Crown Prince of Bhutan, visited the assembly site of CMS. For those whose geographical knowledge is weak, Bhutan is a tiny bhuddist kingdom, nestled in the Himalayas and surrounded by two giants, India and China.

  18. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  19. CERN celebrates another milestone

    CERN Multimedia

    2007-01-01

    "CERN (the European Organization for Nuclear Research) recently celebrated the lowering of the gigantic toroid magnet end-cap, using an EOT crane, onto the cavern floor. After a two-hour operation, the installation teams from ATLAS, PH-ATI and TS could finally breath a sigh of relief." (1/2 page)

  20. Improved safety at CERN

    CERN Document Server

    2006-01-01

    As announced in Weekly Bulletin No. 43/2006, a new approach to the implementation of Safety at CERN has been decided, which required taking some managerial decisions. The guidelines of the new approach are described in the document 'New approach to Safety implementation at CERN', which also summarizes the main managerial decisions I have taken to strengthen compliance with the CERN Safety policy and Rules. To this end I have also reviewed the mandates of the Safety Commission and the Safety Policy Committee (SAPOCO). Some details of the document 'Safety Policy at CERN' (also known as SAPOCO42) have been modified accordingly; its essential principles, unchanged, remain the basis for the safety policy of the Organisation. I would also like to inform you that I have appointed Dr M. Bona as the new Head of the Safety Commission until 31.12.2008, and that I will proceed soon to the appointment of the members of the new Safety Policy Committee. All members of the personnel are deemed to have taken note of the d...

  1. CERN in the blogosphere

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN communicates with the outside world in many different ways – websites, publications, through the media and via twitter to name but a few. As of January, CERN has a new way of engaging with the world: a CERN institutional blog.   CERN’s blog was launched on 10 January on the Quantum Diaries platform, adding a new strand to a well-established site. Quantum Diaries was launched in 2005 as an initiative for the World Year of Physics promoted by the InterAction collaboration, a group that brings together the communication offices of some of the world’s major particle physics labs and organisations. The launch of institutional blogs from Brookhaven, CERN, Fermilab and TRIUMF has added an extra dimension to Quantum Diaries. Visits to the site jumped to 3000 per day with the addition of the institutional blogs, and that number is already growing. CERN’s first post explains one of the reasons we’re doing this. With the incredible thirst for informati...

  2. CERN in detail

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Before, you had to go on the TPG website to find a tram-route, use Google Maps to see an aerial photo of CERN, and look for CERN buildings on map.web.cern.ch. Now, that's ancient history, with a new Geographical Information System (GIS) Portal set up by the Design Office and Patrimony Service (GS/SEM/DOP).  It's a one-stop-shop for all this information and much more.   A screenshot of the GIS Portal. Over the past few days, you might have noticed the new interface called MAPSearch that pops up when you make a building search using the Building and Roads field on the CERN homepage. This is a simplified version of the new GIS web Portal, a project on which the GS Department's Design Office and Patrimony Service has been working since January 2010. "In today's informatics age, we need to respond ever more quickly to increasing numbers of specific user requests," explains Project Leader Youri Robert. This is more than just a new release of an old tool, it's a completely n...

  3. The CERN Accelerator School

    CERN Document Server

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  4. Neutrinos at CERN

    International Nuclear Information System (INIS)

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  5. Cern Golf Club

    CERN Multimedia

    Cern Golf Club

    2014-01-01

      The Cern Golf Club   Members are here with invited to the: Annual General Meeting which takes place Wednesday evening the 5th February 2014 at 18h00 in the Conference room in bldg 13-2-005. A committee member will be at CERN gate B, 17h50 and accompany “external” CGC members to the conference room. Agenda: 1. President’s report 2. Treasurer’s report 3. Election of the Committee for 2014 4. Election of  Auditors 5. Draft schedule for 2014 CGC-competitions and other events 6. “Corpo” report    7. Proposals and any other business Please forward any proposals (to any of the committee members) you have, including candidature for the 2014 committee minimum three days in advance before the meeting.      Cern Golf Club   Les membres de club de golf de CERN sont invités à l’Assemblée Géné...

  6. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2013-01-01

    Christmas SaleTuesday 26th November 2013, from 9:00 to 11:00 Main Building 60 Ground Floor Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch.

  7. CERN-Russian meeting

    CERN Multimedia

    1974-01-01

    (front) V.P Dzhelepov (Dubna) (2nd row) A. Serov (State Committee), I.G. Morozov (Vice-Minister for Atomic Energy), V.S. Kaftanov (ITEP) (back) A. Derevschikov, R. Anthoine, V. Savrin, S. Nurushev, E. Gabathuler, M. Steuer (see CERN Courier of August 1974)

  8. CERN's Guardian Angels

    CERN Multimedia

    2002-01-01

    Any trouble at CERN? The Technical Control Room operates the entire technical infrastructure of CERN every day, all year long. They deal with problems that go from simple water leaks to devastating power cuts.   The Technical Control Room with Kenneth Olesen and Mark Harvey, minutes before their starting time. This big room is probably the liveliest at CERN, since there's always someone there, everyday, all year long. Laurent Randot and Eric Lienard working in the Technical Control Room at CERN in building 212. They've started at 7 a.m. and today has been a relatively quiet day. There have been some microcuts in the electric net because of the wind. But these have been repaired rather quickly... The relief: It's 2.30 p.m. Time for Laurent Randot and Eric Lienard to show their colleagues Mark Harvey and Kenneth Olesen what has been going on during the morning. They are the next TCR team of the day. Mark Harvey and Kenneth Olesen start their working day. They will work until 11p.m., when another team wil...

  9. CERN CROQUET CLUB

    CERN Multimedia

    Cern Croquet Club

    2015-01-01

    CERN CROQUET CLUB   Prévessin site Introduction to croquet, and barbecue, at the club from 18.00 on Thursday 30th April. Please Email norferga@orange.fr by 28th April if you are coming.  Please wear flat-soled shoes. Looking forward to seeing. Norman Eatough, President

  10. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  11. Tragic loss at CERN

    CERN Multimedia

    CERN Ski Club

    2015-01-01

    Tragic loss at CERN The CERN community is mourning the tragic loss of two members of the CERN Ski Club. On Sunday, April 12, an avalanche buried four out of five skiers, taking part in a ski touring in the region of the Becs de Bosson in Valais (CH). The fifth skier, who had not been buried in the snow,  courageously managed to save two of the skiers, but Hervé Milcent, 49 years, federal ski instructor, and Mattieu Cattin, 33 years, were buried under two to three meters of snow, far down the avalanche slope, and did not survive, despite the fast arrival of the mountain rescue. In its 40 years of existence, the CERN Ski Club, one of the biggest in the Geneva area, has never been confronted with such a tragedy. The passing of Hervé and Matthieu has deeply shocked and saddened all volunteers of the Club as well as the entire alpine community. The ski touring section of the club would like to honour its friend Hervé, who joined the club in 1998. In 2003 he became res...

  12. CERN SHOP CHRISTMAS SALE

    CERN Multimedia

    Visits & Exhibition Service

    2000-01-01

    Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 12 to Thursday 14 December from 10.00 to 16.00.   Sweat-shirt col zippé, grey, blue, black (M, L, XL) 30.- Sweat-shirt col polo, grey, collar blue (M, L, XL) 30.- T-shirt, black, (M, L, XL) 15.- WWW T-shirt, white, bordeau (M, L, XL) 15.- CERN silk tie (3 colours) 33.- Fancy silk tie (blue, bordeau 25.- Silk scarf (blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- New model of CERN watch 25.- New CERN baseball cap 10.- Antimatter (English/anglais) 30.- The Search for Infinity (French, Italian, English,) 35.- Auf der Suche nach dem Unendlichen 45.- If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs (Shop will be closed at 12.00 on 22.12.).

  13. CERN Women's club

    CERN Multimedia

    CERN Women's club

    2010-01-01

    The Welcome Center The Welcome Center website for CERN newcomers – and everyone else at CERN – has celebrated its first anniversary in operation. It began as a project to organize all the various information available at CERN into an easy to use site, with advice to help you make the most of your time here. It continues to be updated as new information becomes available. Lori Hakulinen and her helpers offer to meet with anyone who has questions. They can advise you on weekend activities, local restaurants and where to buy hard to find items or some of your favorite things from home, in addition to all of the practicalities you need to know, such as how to find housing or have a telephone installed, where to take language classes and much, much more. It’s all listed at: http://cern.ch/club-cwc-newcomers In general, meetings take place the first and third Thursdays in the month at Restaurant No. 1 in the Children’s Dining Room. (Please consult the Homepage for schedu...

  14. CERN Cricket Club

    CERN Multimedia

    Staff Association

    2014-01-01

    CERN CRICKET CLUB   The CERN Cricket Club 2014 season has been a good one so far with the team qualifying for the Swiss Cup semi-finals, with home advantage on the Prevessin ground on Sunday, August 24th. Their opponents will only be known the day before when the final game in the Eastern Division is played.  The CERN ground hasn’t quite recovered from the Bosons&More party last year, the wet weather making it impossible to roll the ground, but the new, wider strip is a big improvement. Net practice eventually started in late July, which is probably why the results at the beginning of the season weren’t so good. As match reports are too long to be included in the weekly bulletin, the full reports and the schedule can be found under “Matches (Fixtures, results, reports)” on the Cricket Club web site at http://cern.ch/Club-Cricket/    Anyone interested in playing cricket is welcome to join us at net practice, which takes pla...

  15. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  16. CERN Housing Service: Hostel

    CERN Multimedia

    CERN Housing Service

    2004-01-01

    Arrangements for the end of the year closure Hostel on the CERN site During the closure of CERN for Christmas and the New Year, the hostel will be closed from midday on Friday 17 December 2004 until Monday 3 January 2005 at 8:00. All accounts must be settled and room keys returned to the Reception before 10:00 on Friday 17 December 2004. Hostel in St. Genis-Pouilly The wing reserved for CERN will be closed from midday on Friday 17 December 2004 until Monday 3 January 2005 at 8:00. Anyone with no alternative but to stay in the Hostel during this period can be accommodated in another part of the building. The people concerned must make the appropriate reservations in person at the Reception of the St.-Genis Hostel, as far in advance as possible and in any case no later than Friday 10 December 2004. The total length of stay during the two weeks in question must be paid for in advance, no later than Friday10 December 2004. All reservations remaining unpaid after this date will be cancelled. Reception: CERN ...

  17. Journalists, you are welcome at CERN!

    CERN Document Server

    Francesco Poppi

    2010-01-01

    The easiest way for journalists from all over the world to really grasp what happens here at CERN is to come and have a guided tour of the facilities and get the information directly from selected scientists. Renilde Vanden Broeck, senior CERN Press Officer, is there to organize the visit and take the best care of them.   Renilde Vanden Broeck during the fact-finding visit by Ron Howard and his team before filming "Angel and Demons" in 2007. Visit requests from the media come in through different channels, mostly by e-mail or phone, and after that the CERN Press Office talks to the journalists directly to make sure that the visit matches their requirements as closely as possible. "The various kinds of media - the written press, radio, agencies, photographers and TV - all have different needs, and each visit is individually tailored", says Renilde. For several years now, there has been a lot of interest from the media in covering CERN, the LHC and its experiment...

  18. India reinforces its cooperation with CERN

    CERN Multimedia

    2005-01-01

    Left to right: Anil Kakodkar, Robert Aymar, President Kalam and Philippe Lebrun during their vist to SM18. On 25 May, the President of India, Dr. A.P.J. Abdul Kalam, found the time in his busy schedule between two state visits (to Russia and the Swiss Federation) to visit CERN. The President, a physicist himself and a self-confessed supporter of CERN, wanted to see with his own eyes the progress made in the word's largest particle physics laboratory. He was accompanied by the Chairman of India's Atomic Energy Commission, Dr. Anil Kakodkar, and a team of journalists. Welcomed by CERN's Director General, Robert Aymar, the President of India visited the LHC tunnel, the ATLAS experimental cavern and the test facility for the LHC magnets. There the President had the chance to meet Indian scientists working at CERN. The visitors then moved to the main building, where a Statement of Intent was signed by Dr. Anil Kakodkar and Dr. Robert Aymar. The purpose of the statement is "to encourage extending the existing sci...

  19. CERN HEALTH INSURANCE SCHEME (CHIS)

    CERN Document Server

    HR Department

    2002-01-01

    List of benefits for 2002 The CHIS list of benefits for 2002 is now available from the HR Division Website (under 'general information'). We wish to draw your attention to the fact that the copies of this list available at the CERN UNIQA Office are intended ONLY for CERN pensioners. CERN staff members are therefore kindly requested to print this list themselves from the Web. English version HERE We would like to take this opportunity to remind staff members that they should obtain medical expenses claim forms from their divisional secretariat and NOT from the CERN UNIQA Office, which has a limited supply intended for CERN pensioners ONLY. Human Resources Division Tel: 73635

  20. CERN & Society launches donation portal

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    The CERN & Society programme brings together projects in the areas of education and outreach, innovation and knowledge exchange, and culture and arts, that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. Today, CERN & Society is launching its "giving" website – a portal to allow donors to contribute to various projects and forge new relationships with CERN.   "The CERN & Society initiative in its embryonic form began almost three years ago, with the feeling that the laboratory could play a bigger role for the benefit of society," says Matteo Castoldi, Head of the CERN Development Office, who, with his team, is seeking supporters and ambassadors for the CERN & Society initiative. "The concept is not completely new – in some sense it is embedded in CERN’s DNA, as the laboratory helps society by creating knowledge and new technologies – but we would like to d...

  1. NEWS: A trip to CERN

    Science.gov (United States)

    Ellison, A. D.

    2000-07-01

    the canteen. Over lunch we mixed with physicists of many different nationalities and backgrounds. Figure 1 Figure 1. In the afternoon we visited Microcosm, the CERN visitors centre, and the LEP control room and also the SPS. Here the students learned new applications for much of the physics of standing waves and resonance that they had been taught in the classroom. Later that night, we visited a bowling alley where momentum and collision theory were put into practice. The following morning we returned to CERN and visited the large magnet testing facility. Here again physics was brought to life. We saw superconducting magnets being assembled and tested and the students gained a real appreciation of the problems and principles involved. The afternoon was rounded off by a visit to a science museum in Geneva - well worth a visit, as some of us still use some of the apparatus on display. Friday was our last full day so we visited Chamonix in the northern Alps. In the morning, we ascended the Aiguille de Midi - by cable car. Twenty minutes and 3842 m later we emerged into 50 km h-1 winds and -10 °C temperature, not counting the -10 °C wind chill factor. A crisp packet provided an unusual demonstration of the effects of air pressure (figure 2). Figure 2 Figure 2. The views from the summit were very spectacular though a few people experienced mild altitude sickness. That afternoon the party went to the Mer de Glace. Being inside a 3 million year-old structure moving down a mountain at 3 cm per day was an interesting experience, as was a tot of whisky with 3 million year-old water. Once again the local scenery was very photogenic and the click and whirr of cameras was a constant background noise. Saturday morning saw an early start for the long drive home. Most students - and some staff - took the opportunity to catch up on their sleep. Thanks are due to many people without whom the trip would never have taken place. Anne Craige, Stuart Williams

  2. A new video studio for CERN

    CERN Document Server

    Anaïs Vernede

    2011-01-01

    On Monday, 14 February 2011 CERN's new video studio was inaugurated with a recording of "Spotlight on CERN", featuring an interview with the DG, Rolf Heuer.   CERN's new video studio. Almost all international organisations have a studio for their audiovisual communications, and now it's CERN’s turn to acquire such a facility. “In the past, we've made videos using the Globe audiovisual facilities and sometimes using the small photographic studio, which is equipped with simple temporary sets that aren’t really suitable for video,” explains Jacques Fichet, head of CERN‘s audiovisual service. Once the decision had been taken to create the new 100 square-metre video studio, the work took only five months to complete. The studio, located in Building 510, is equipped with a cyclorama (a continuous smooth white wall used as a background) measuring 3 m in height and 16 m in length, as well as a teleprompter, a rail-mounted camera dolly fo...

  3. People and things. CERN Courier, Dec 1991, v. 31(10)

    International Nuclear Information System (INIS)

    The article reports on achievements of various people, staff changes and position opportunities within the CERN organization and contains news updates on upcoming or past events: ; The pulsed muon facility at the UK Rutherford Appleton Laboratory's ISIS neutron source is to be substantially upgraded under the European Commission's Large Installations Plan. ; On 1 November at CERN, a cooperation agreement was signed which provides a framework for Australia and CERN to develop reciprocal scientific and technical cooperation

  4. Large Hadron Collider at CERN expected to go live summer of 2008

    CERN Multimedia

    2008-01-01

    ScienceDaily (Jan. 2, 2008) CERN is reporting progress towards the goal of starting physics research at the Large Hadron Collider (LHC) in summer 2008. The LHC is CERNs new flagship research facility, bringing together some 9000 researchers from around the world. Approved by the CERN Council in 1996, it will begin operation in 2008 and has an expected operational lifetime of around 20 years.

  5. France at CERN

    CERN Multimedia

    2005-01-01

    From 04 to 06 october 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:00 - 17:30   Thirty-two companies will present their latest technology at the "France at CERN" exhibition. French industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: mechanical engineering, electrical engineering, electronics, data processing, various supplies, civil engineering and buildings, and vacuum and low temperature technology. The exhibition is organised by UBIFRANCE, the French Committee for Trade Events Abroad.  You will find below : the list of exhibitors.   A detailed programme will be available in due course at : your Departmental secretariat, the reception information desk, Building 33, the exhibition itself.   A detailed list of the firms involved is already available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm     LIST OF EXHIBITORS AIR LIQUIDE DTA ALSTOM...

  6. France at CERN

    CERN Multimedia

    2005-01-01

    From 04 to 06 october 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:00 - 17:30   Thirty-two companies will present their latest technology at the "France at CERN" exhibition. French industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: mechanical engineering, electrical engineering, electronics, data processing, various supplies, civil engineering and buildings, and vacuum and low temperature technology. The exhibition is organised by UBIFRANCE, the French Committee for Trade Events Abroad.  You will find below : the list of exhibitors.   A detailed programme will be available in due course at : your Departmental secretariat, the reception information desk, Building 33, the exhibition itself.   A detailed list of the firms involved is already available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm     LIST OF EXHIBITORS AIR LIQUIDE DTA ALSTO...

  7. CERN School of Computing

    CERN Multimedia

    2007-01-01

    The 2007 CERN School of Computing, organised by CERN in collaboration with the University of Split (FESB) will be held from 20 to 31 August 2007 in Dubrovnik, Croatia. It is aimed at postgraduate students and research workers with a few years' experience in scientific physics, computing or related fields. Special themes this year are: GRID Technologies: The Grid track delivers unique theoretical and hands-on education on some of the most advanced GRID topics; Software Technologies: The Software track addresses some of the most relevant modern techniques and tools for large scale distributed software development and handling as well as for computer security; Physics Computing: The Physics Computing track focuses on informatics topics specific to the HEP community. After setting-the-scene lectures, it addresses data acquisition and ROOT. Grants from the European Union Framework Programme 6 (FP6) are available to participants to cover part or all of the cost of the School. More information can be found at...

  8. ERC rewards CERN researchers

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    The European Research Council (ERC) has awarded starting grants to Magdalena Kowalska, a member of the ISOLDE physics team, and Claude Duhr, CERN Theory Division. The funding will enable them to build their own research teams at CERN, engaging postdocs and PhD students.   Magdalena Kowalska and Claude Duhr. The ERC fosters scientific excellence in Europe through competitive funding. Its grants are awarded to projects headed by researchers – both beginning-of-career and established – via an open, peer-reviewed competition. In December 2014, Magdalena Kowalska and Claude Duhr were awarded grants to pursue research in ultra-sensitive nuclear magnetic resonance (NMR) in liquids and mathematical structures in scattering amplitudes, respectively. “Our research project aims to apply an ultra-sensitive NMR technique using radioisotopes to liquids in order to study the interaction of metal ions with biological molecules such as proteins, DNA or RNA,” says Mag...

  9. ITALY AT CERN

    CERN Multimedia

    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows : - the list of exhibitors. A detailed programme will be available in due course at : - your Divisional secretariat, - the exhibition, - on the SPL homepage http://spl-div.web.cern.ch/spl-div/member_states/exhibitions_visits.htm LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Andalo' Gianni Srl15 Finsys...

  10. ITALY AT CERN

    CERN Multimedia

    2003-01-01

    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.30 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows: - the list of exhibitors. A detailed programme will be available in due course: - from your Divisional secretariat, - at the exhibition, - on the SPL homepage http://spl-div.web.cern.ch/spl-div/member_states/exhibitions_visits.htm LISTE DES EXPOSANTS / LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Anda...

  11. Italy at CERN

    CERN Multimedia

    Caroline Laignel

    2005-01-01

    15 - 17 November 2005 Main Building Bldg 60 - ground and 1st floor 09:00 - 17:30 Twenty-six companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: electrical engineering, electronics, logistics, mechanical engineering, vacuum and low-temperature technology.   The exhibition is being organised by the INFN in Padua. The exhibitors are listed below.   A detailed programme will be available in due course : from your Departmental secretariat, at the exhibition, on the FI homepage http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS  Ansaldo Superconduttori Spa CAEN Spa CECOM Snc Consorzio Canavese Export CPE Italia Spa Criotec Impianti Srl CTE Sistemi Srl Carpenteria S. Antonio Spa E.E.I. Equipaggiamenti Elettronici Industriali Elettronica Conduttori Srl Goma Elettronica Spa ICAR Spa Intercond Spa Keno...

  12. CERN Courier goes digital

    CERN Multimedia

    Christine Sutton, CERN Courier editor

    2013-01-01

    The January/February 2013 issue of the CERN Courier offers a new way to access the content – the first digital edition of the magazine.   The CERN Courier dates back to August 1959, when the first issue appeared, consisting of 8 black-and-white pages. Since then it has seen many changes in design and layout, leading to the current full-colour editions of more than 50 pages on average. It went on the web for the first time in October 1998, when IOP Publishing took over the production work. Now, we have taken another step forward with a digital edition that provides yet another means to access the content beyond the web and print editions, which continue as before. To download the digital edition, click here. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up.

  13. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor No need to book HEALTHY HEART? Evaluation of personal cardiac risks through the monitoring of: Blood pressure Cholesterol and sugar levels Body Mass Index ... and more Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12am - Building 65 Please book (limited to 15 people/day) FIRST AID COURSES What to do in a Cardiac Emergency (3 h. duration) Places are limited and on reservation only (15 people/day). To book, e-mail the Medical Services on: service.medical@cern.ch

  14. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor HEALTHY HEART? ♥ Evaluation of personal cardiac risks through the monitoring of: • Blood pressure • Cholesterol and sugar levels • Body Mass Index ... and more ♥ Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12am Building 65 FIRST AID COURSES ♥ What to do in a Cardiac Emergency (3 h duration) Places are limited and on reservation only (15 people / day) To book, E-mail the Medical Services on: service.medical@cern.ch

  15. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor no need to book HEALTHY HEART? • Evaluation of personal cardiac risks through the monitoring of: Blood pressure Cholesterol and sugar levels Body Mass Index ... and more • Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12 am - Building 65 Please book (limited to 15 people/day) FIRST AID COURSES • What to do in a Cardiac Emergency (3 h. duration) Places are limited and on reservation only (15 people/day). To book, e-mail the Medical Services on: service.medical@cern.ch

  16. Germany at CERN

    CERN Multimedia

    C. Laignel / FI-DI

    2005-01-01

    From 1 to 3 march 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:30 - 17:30 Twenty eight companies will present their latest technology at the "Germany at CERN" exhibition. German industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: mechanical engineering, particle detectors, electrical engineering, electronics, data processing, radiation protection and vacuum and low temperature techonology. The exhibition is organised by the Federal Minister of Education and Research (BMBF), Bonn. There follows: the list of exhibitors A detailed programme will be available in due course at : your Departemental secretariat, the reception information desk, Building 33, the exhibition. A detailed list of firms is available under the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS ACCEL Instruments GmbH APRA-NORM Elektromechanik GmbH BABCOCK NOELL Nucle...

  17. Germany AT CERN

    CERN Multimedia

    C. Laignel / FI-DI

    2005-01-01

    From 1 to 3 march 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:30 - 17:30 Twenty nine companies will present their latest technology at the "Germany at CERN" exhibition. German industry will exhibit products and technologies related to the field of particle physics. The main sectors represented will be: mechanical engineering, particle detectors, electrical engineering, electronics, data processing, radiation protection and vacuum and low temperature techonology. The exhibition is organised by the Federal Minister of Education and Research (BMBF), Bonn. The exhibitors are listed below. A detailed programme will be available in due course: from your Departemental secretariat, from the reception information desk, Building 33, at the exhibition itself. A detailed list of the participating firms is already available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS ACCEL Instruments GmbH APRA-NORM Elekt...

  18. Germany AT CERN

    CERN Multimedia

    2005-01-01

    From 1 to 2 March 2005 Administration Building Bldg 60/61 - ground and 1st floor 09:30 - 17:30 Twenty nine companies will present their latest technology at the "Germany at CERN" exhibition. German industry will exhibit products and technologies related to the field of particle physics. The main sectors represented will be: mechanical engineering, particle detectors, electrical engineering, electronics, data processing, radiation protection and vacuum and low temperature techonology. The exhibition is organised by the Federal Ministry of Education and Research (BMBF), Bonn. The exhibitors are listed below. A detailed programme will be available in due course: from your Departemental secretariat, from the reception information desk, Building 33, at the exhibition itself. A detailed list of the participating firms is already available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS ACCEL Instruments GmbH APRA-NORM Elekt...

  19. Monitoring Evolution at CERN

    CERN Document Server

    Andrade, P; Murphy, S; Pigueiras, L; Santos, M

    2015-01-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous ...

  20. Belgian Firms Visit CERN

    CERN Multimedia

    2001-01-01

    Fifteen Belgian firms visited CERN last 2 and 3 April to present their know-how. Industrial sectors ranging from precision machining to electrical engineering and electronics were represented. And for the first time, companies from the Flemish and Brussels regions of the country joined their Walloon compatriots, who have come to CERN before. The visit was organised by Mr J.-M. Warêgne, economic and commercial attaché at the Belgian permanent mission for the French-speaking region, Mr J. Van de Vondel, his opposite number for the Flemish region, and Mrs E. Solowianiuk, economic and commercial counsellor at the Belgian permanent mission for the Brussels-Capital region.

  1. Ombud's Corner: Respect @ CERN

    CERN Document Server

    Sudeshna Datta-Cockerill

    2014-01-01

    Since 2010 CERN has been a member of the Geneva-based association "Le respect, ça change la vie". Four years later and in conjunction with CERN’s celebration of its 60 years of ‘science for peace’, it is time to launch a new respectful workplace awareness campaign under the auspices of the Ombud.   Mutual respect is a basic pillar of peace. At CERN, we pride ourselves on our history, which started when a handful of Europe’s visionary scientists saw the opportunity that an international laboratory for fundamental research would present in bringing nations together. That idea has worked very well and, today, our success can be measured not only in terms of unprecedented scientific achievements but also in terms of training and education, and exemplary collaboration across borders, cultures and an extensive range of differences. In order for history to continue along these positive lines, and coming back to the awareness campai...

  2. Great Britain at CERN

    CERN Multimedia

    2006-01-01

    From 14 to 16 November 2006 Administration Building, Bldg. 60/61 - ground and 1st floor 09.30 - 17.30 Fifteen companies will present their latest technologies at the 'Great Britain at CERN' exhibition. British industry will exhibit products and technologies related to the field of particle physics. The main fields represented will be computing technologies, electrical engineering, electronics, mechanical engineering, vacuum & low temperature technologies and particle detectors. The exhibition is organised by BEAMA Exhibitions (the British Electrotechnical and Allied Manufacturers Association). Below you will find: a list of the exhibitors. A detailed programme will be available in due course: from your Departmental secretariat, from the Reception information desk, Building 33, at the exhibition itself. A detailed list of the companies is available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS 3D Metrics Almat...

  3. Great Britain at CERN

    CERN Multimedia

    2006-01-01

    From 14 to 16 November 2006 Administration Building, Bldg. 60/61 - ground and 1st floor 09.30 - 17.30 Fifteen companies will present their latest technologies at the 'Great Britain at CERN' exhibition. British industry will exhibit products and technologies related to the field of particle physics. The main fields represented will be computing technologies, electrical engineering, electronics, mechanical engineering, vacuum & low temperature technologies and particle detectors. The exhibition is organised by BEAMA Exhibitions (the British Electrotechnical and Allied Manufacturers Association). Below you will find: a list of the exhibitors. A detailed programme will be available in due course: from your Departmental secretariat, from the Reception information desk, Building 33, at the exhibition itself. A detailed list of the companies is available at the following FI link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS 3D Metrics Alma...

  4. CERN: Towards LEP 200

    International Nuclear Information System (INIS)

    In March a cryomodule with four superconducting radiofrequency accelerating cavities operated for the first time in CERN's new LEP electron-positron collider, the result of many years of careful research and development work and an important step on the road to boost LEP energies from their initial level around 50 GeV per beam to above the 82 GeV threshold for production of W pairs

  5. CERN Relay Race 2009

    CERN Document Server

    2009-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 14th May starting at 12:15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. More details on how to register your team for the relay race

  6. CERN access cards

    CERN Multimedia

    HR Department

    2007-01-01

    Holders of CERN access cards are reminded that the card is an official document. It is important to carry it with you at all times when you are on the site. This applies also to those on standby duty who are called out for emergency interventions. As announced in Weekly Bulletin 13/2006, any loss or theft of access cards must be declared to the competent external authorities.

  7. Discovery Mondays - CERN Microcosm

    CERN Multimedia

    Antonio Marin

    2003-01-01

    Le public est venu nombreux au sixième Lundi Découverte du 6.10.2003 pour voir et manipuler les outils des géomètres du CERN, o le groupe de métrologie de positionnement et de topométrie leur a concocté des animations d'une redoutable précision.

  8. CERN Women's Club

    CERN Multimedia

    Club des cernoises

    2011-01-01

    Coffee Morning Tuesday 11th October, 9:00 – 11:00 Bldg 504 (Restaurant No 2) 1st Floor, Club Room 3 Presentation of the charity to benefit from the Christmas Sale TERRE DES HOMMES New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  9. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  10. Les outils du CERN

    CERN Document Server

    1999-01-01

    C'est le plus grand centre mondial de recherche en physique des particules. Les outils du Laboratoire, accélérateurs et détecteurs de particules, figurent parmi les instruments scientifiques les plus complexes au monde. Des prix Nobels ont d'ailleurs été attribués aux physiciens du CERN pour leurs développements.

  11. CERN Electronics Pool presentations

    CERN Multimedia

    2011-01-01

    The CERN Electronics Pool has organised a series of presentations in collaboration with oscilloscope manufacturers. The last one will take place according to the schedule below.   Time will be available at the end of the presentation to discuss your personal needs. The Agilent presentation had to be postponed and will be organised later. -     Lecroy: Thursday, 24 November 2011, in 530-R-030, 14:00 to 16:30.

  12. CERN Women's Club

    CERN Multimedia

    Club des Cernoises

    2013-01-01

    Coffee Morning Tuesday 11th  June 2013, 12:30 Annual Club Lunch at the restaurant “Bois Joly” in Crozet Those interested in helping should come along. New arrivals and all members are cordially invited.You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  13. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2013-01-01

    Coffee MorningTuesday 12th November 2013, from 9:00 to 11:00 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Organisation of Christmas Sale Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch.

  14. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2013-01-01

    Coffee MorningTuesday 9th April 2013, 9:00 – 14:00 Bldg 504 (Restaurant No 2 – DSR) Ground Floor Spring Jumble Sale Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  15. Cern Women's club

    CERN Multimedia

    Club des Cernoises

    2013-01-01

    Coffee Morning Tuesday 5th  February 2013, 9:00 – 11:00 Bldg 504 (Restaurant No 2 – DSR) 1st  Floor, Club Room 3 Presentation of cheque to Nous Aussi Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/    

  16. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2013-01-01

    Coffee MorningTuesday 12th March 2013, 9:00 – 11:00 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Eastern Tradition Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  17. Cern Women's Club

    CERN Document Server

    Club des cernoises

    2013-01-01

    Coffee MorningTuesday 14th January 2014, from 9 : 00 to 11: 00 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Epiphany (French tradition - "Tirer les rois")   Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch.

  18. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2012-01-01

    Coffee MorningTuesday 15th January 2013, 9:00 – 11:00 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Epiphany (French tradition – “Tirer les rois”) Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  19. Cern Women's Club

    CERN Multimedia

    Club des cernoises

    2013-01-01

    Coffee MorningTuesday 14th May 2013, 9:30 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Annual General Meeting Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch

  20. CERN Women's Club

    CERN Multimedia

    CERN Women's Club

    2012-01-01

    Coffee Morning Tuesday 15th  May 2012, 9:00 Building 504,  (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Annual General Meeting Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  1. CERN Women's Club

    CERN Multimedia

    CERN Women's Club

    2012-01-01

    offee Morning Tuesday 12th  June 2012, 12:30 Annual Club Lunch at "The Physalis" in Prévessin Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  2. CERN Women's Club

    CERN Multimedia

    CERN Women's Club

    2013-01-01

    Coffee Morning Tuesday 10th September 2013, 9:00 Bldg 504, (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Registration Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  3. Cern Women's Club

    CERN Multimedia

    Club des Cernoises

    2011-01-01

    Coffee Morning Tuesday 8th November 2011, 9:00 - 11:00 Bldg 504 (Restaurant No 2 - DSR) 1st Floor, Club Room 3 Organization of our Christmas Sale In favour of “Terre des Hommes” Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  4. CERN Women's Club

    CERN Multimedia

    CERN Women's Club

    2011-01-01

    Coffee Morning Tuesday 10th January 2012, 9:00 – 11:00 Bldg 504 (Restaurant No 2 – DSR) 1st Floor, Club Room 3 Epiphany (French tradition – “Tirer les rois”) Those interested in helping should come along. New arrivals and all members are cordially invited. You can enrol for membership, renew membership, find out about and sign up for our activities. Visit our website: http://club-womensclub.web.cern.ch/Club-WomensClub/

  5. CERN: an aerial view

    CERN Multimedia

    2004-01-01

    On 30th January, when CERN still resembled a winter wonderland, a helicopter with a photographer on board took off on an aerial tour. One sunny morning at the end of January, when the area was waking up to an overnight snowfall, a helicopter took off from the Meyrin site with a CERN photographer on board. CERN has been the subject of aerial photographs ever since its creation. Although its appearance has changed over the years, the Laboratory has aged well. The aerial photographs taken during its fifty-year history bear witness to its expansion, showing how a handful of buildings and a first accelerator have blossomed into an entire machine complex. Let's take to the skies and have a look at some of the photos taken on this crisp January morning: a sight for sore eyes! In the foreground, Building 40 on the Meyrin site is recognisable from its magnet shape.On the right of the Route de Meyrin (crossing the photo diagonally), next to Point 1, the work on the Globe of Innovation, which got underway at the beg...

  6. CERN Housing Service : HOSTELS

    CERN Multimedia

    2005-01-01

    ARRANGEMENTS FOR THE END-OF-YEAR CLOSURE Hostels on the CERN site During the CERN shutdown over Christmas and the New Year, the hostels will be closed from midday on Wednesday, 21 December 2005 until 7.30 a.m. on Thursday, 5 January 2006. All accounts must be settled and room keys returned to the Reception before 10.00 a.m. on Wednesday, 21 December 2005. Hostel in St. Genis-Pouilly The wing reserved for CERN will be closed from midday on Wednesday, 21 December 2005 until 8.00 a.m. on Thursday, 5 January 2006. Anyone with no alternative but to stay in the hostel during this period can be accommodated in another part of the building, subject to availability. Those concerned must make the appropriate reservations in person at the Reception of the St. Genis Hostel as early as possible and in any case no later than Wednesday, 14 December 2005. The total stay during the two weeks in question must be paid for in advance, no later than Wednesday, 14 December 2005. After this date, any reservations that have ...

  7. Upcycling CERN Exhibitions

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    Summer is coming - and with it, a new Microcosm exhibition showcasing CERN (see here). But while the new exhibit is preparing to enchant visitors, many have been asking about the site's former content. Will it simply be out with the old and in with the new? Not as such!   The plasma ball from Microcosm is now on display at the LHCb site. As Microcosm's new content is moving in, its old content is moving up. From LHCb to IdeaSquare, former Microcosm displays and objects are being installed across the CERN site. "Microcosm featured many elements that were well suited to life outside of the exhibition," says Emma Sanders, Microcosm project leader in the EDU group. "We didn't want this popular content to go to waste, and so set out to find them new homes across CERN." The LHCb experiment has received a number of Microcosm favourites, including the Rutherford experiment, the cosmic ray display and the Thomson experiment. "We&...

  8. CERN printing infrastructure

    International Nuclear Information System (INIS)

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all (∼1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration

  9. CERN honours Carlo Rubbia

    CERN Multimedia

    2009-01-01

    Carlo Rubbia turned 75 on March 31, and CERN held a symposium to mark his birthday and pay tribute to his impressive contribution to both CERN and science. Carlo Rubbia, 4th from right, together with the speakers at the symposium.On 7 April CERN hosted a celebration marking Carlo Rubbia’s 75th birthday and 25 years since he was awarded the Nobel Prize for Physics. "Today we will celebrate 100 years of Carlo Rubbia" joked CERN’s Director-General, Rolf Heuer in his opening speech, "75 years of his age and 25 years of the Nobel Prize." Rubbia received the Nobel Prize along with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. During the symposium, which was held in the Main Auditorium, several eminent speakers gave lectures on areas of science to which Carlo Rubbia made decisive contributions. Among those who spoke were Michel Spiro, Director of the French National Insti...

  10. Spanish Visit to CERN

    CERN Multimedia

    2002-01-01

    Last week CERN was visited by the Spanish Minister of Science and Technology, Josep Piqué i Camps. While here, he was able to visit the ATLAS assembly hall where many items of equipment are being built in collaboration with Spanish academic institutions or firms. These include the vacuum vessels for the ATLAS barrel toroid magnets supplied by the Spanish firm Felguera Construcciones Mechanics. Similarly, the Universidad Autónoma de Madrid is participating in the manufacture of the electromagnetic calorimeter endcaps, while the Barcelona Institute for High Energy Physics and the Valencia IFIC (Instituto de Física Corpuscular) are highly involved in the production of barrel modules for the tile calorimeter. The delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish ...

  11. Serbian President visits CERN

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On Tuesday 10 January, Serbian President Boris Tadić visited the Laboratory to sign the Agreement of granting the status of Associate Membership as the pre-stage to full Membership of CERN.    Before the signing ceremony, the President, welcomed by Director-General Rolf Heuer at CERN’s Point 5, took the opportunity to visit CERN. After a general introduction, the President took advantage of the shutdown to visit the LHC’s underground caverns. Leading the President through their respective experiments were spokespersons Fabiola Gianotti (ATLAS) and Joe Incandela (CMS).  After a morning of tours, President Tadić and Rolf Heuer signed the Agreement. Serbia’s status as an Associate Member as pre-stage to full Membership is expected to come into force following ratification by the Serbian Parliament. After a maximum period of five years, the CERN Council will decide on the admission of Serbia to full Membership. This new agreement continues Serbia&a...

  12. On location at CERN

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    CERN continues to be a very popular candidate for film locations at the moment. Not only has it inspired a German author and a film-maker interested in the more exotic interpretations of the science being worked on at the Organization, but even the recent puppet animation film by the legendary Muppets featured some CERN scenes.   Dr Bunsen Honeydew (far left) and his friends at ATLAS. Beaker, Bunsen's assistant, has just been sucked up the vacuum tube top left... Image courtesy Walt Disney Studios. In “The Muppet Movie”, released in November 2011 in North America and world-wide in January and February this year, Kermit is reuniting his friends who have ended up in some far-flung places since they last worked together 10 years ago. CERN caught the imagination of the film-makers as the perfect place for the Muppet scientists, Dr. Honeydew Bunsen and his hapless assistant Beaker. After a brief scene filmed in front of a backdrop of the ATLAS detector, the rest of the ...

  13. CERN's first female firefighter

    CERN Multimedia

    Alizée Dauvergne

    2010-01-01

    Until recently, the women's changing room in the Fire Station, built in 2005, has always been empty. With the arrival of Séverine Peverelly, CERN's first female firefighter, it now has a purpose. Séverine Peverelly took up her post as a firefighter in April. Séverine, who comes from Gap in France, took up her post as a firefighter in the CERN fire brigade at the beginning of April. "We were looking for a new member," explains David Peyron, Head of the Fire and Rescue Service. It didn't matter if it was a man or a woman; we needed a firefighter with the right skills, and Séverine just happened to have them." With ten years experience working in French fire services, Séverine was looking for a new challenge. "What attracted me to CERN was the international dimension, because that creates additional challenges," she explains. And these can be considerable! For one thing, every country has its own way of worki...

  14. Control week at CERN

    CERN Multimedia

    2008-01-01

    From 19 to 23 May, the IT-CO Group will be organising the first "Poster forum" at CERN on the theme of process control. Process control lies at the heart of numerous conferences across the world in which CERN takes an active part. Many posters have been produced, and these deserve to be presented to everybody in order to give value to, share and derive maximum benefit from the software, tools and methods developed and used at CERN in this field. This initiative will also allow each group, section and member of the personnel to present their work to others at the Laboratory. The forum will take place from 19 to 23 May in the main hall of Building 500, leading to Restaurant No. 1, on the Meyrin site. To stimulate discussions and exchanges, the authors will be in attendance by their posters on Thursday 22 May between 12 noon and 2.00 p.m. Interested? If you wish to take part and present your work, please contact mathias.philippe.dutou...

  15. New psychologist at CERN

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    A new psychologist, Sigrid Malandain, started work at CERN on 1 November. The psychologist’s office, formerly part of the Social Affairs Service in Human Resources, has now moved to the Medical Service (office 57-1-024). It is open every Tuesday and Thursday.   The new psychologist, Sigrid Malandain. Working in an organisation like CERN has numerous advantages. However, as in any professional setting, the work can sometimes bring stress, anxiety, overwork and so on. For this reason, a few years ago CERN brought in a psychologist for the staff. “As a psychologist, my role isn’t just to deal with known problems, but also to make assessments and, if possible, prevent difficult situations arising. Sometimes people realise that something is wrong, but they can’t say why. In such cases, I may be able to use a discussion to assess the nature of the problem and determine if further sessions are needed. If that is the case, I can either conduct the session...

  16. Denis Guedj at CERN

    CERN Multimedia

    2009-01-01

    Denis Guedj (right), pictured with Etiennette Auffray Hillemanns of the CMS collaboration and Hartmut Hillemanns of the DG-KTT group.French author Denis Guedj, who is also a mathematician and Professor of History of Science at Paris VIII University, visited CERN on 7 and 8 October. During a presentation in the CERN Library he discussed his 15 published books and likened the process of novel writing to working on a scientific experiment: it begins with a limited amount of data, and then questions arise, problems are solved and further research reveals truths. Denis Guedj works hard to ensure that his novels contain ‘true fiction’. His most recent visit to CERN will help him to write a new book set at the LHC in which he will combine his scientific interest in what happens when a proton and proton collide with a human story about what happens to a male and female physicist who meet in the LHC tunnel. "Visiting the CMS cavern was...

  17. CERN Housing Service: Hostel

    CERN Multimedia

    2004-01-01

    Arrangements for the end of the year closure Hostel on the CERN site During the closure of CERN for Christmas and the New Year, the hostel will be closed from mid-day on Friday, December 17, 2004 until Monday, January 3, 2005 at 8h00. All accounts must be settled and room keys returned to the Reception before 10h00 on Friday, December 17, 2004. Hostel in St. Genis-Pouilly The wing reserved for CERN will be closed from mid-day on Friday, December 17, 2004 until Monday, January 3, 2005 at 8h00. Anyone with no alternative but to stay in the Hostel during this period can be accommodated in another part of the building. The people concerned must make the appropriate reservations in person at the Reception of the St. Genis Hostel, as far in advance as possible and in any case no later than Friday, December 10, 2004. The total length of stay during the two weeks in question must be paid for in advance, no later than Friday, December 10, 2004. All reservations remaining unpaid after this date will be cancell...

  18. CERN HOUSING SERVICE: HOSTEL

    CERN Multimedia

    2003-01-01

    1. Arrangements for the end of the year closure 1.1 Hostel on the CERN site During the closure of CERN for Christmas and the New Year, the hostel will be closed from mid-day on Friday, December 19, 2003 until Monday, January 5, 2004 at 8h00. All accounts must be settled and room keys returned to the Reception before 10h00 on Friday, December 19, 2003. 1.2 Hostel in St. Genis-Pouilly The wing reserved for CERN will be closed from mid-day on Friday, December 19, 2003 until Monday, January 5, 2004 at 8h00. Anyone with no alternative but to stay in the Hostel during this period can be accommodated in another part of the building. The people concerned must make the appropriate reservations in person at the Reception of the St. Genis Hostel, as far in advance as possible and in any case no later than Friday, December 12, 2003. The total length of stay during the two weeks in question must be paid for in advance, no later than Friday, December 12, 2003. All reservations remaining unpaid after this date will be canc...

  19. CERN HOUSING SERVICE: HOSTEL

    CERN Multimedia

    2002-01-01

    1. Arrangements for the end of the year closure 1.1 Hostel on the CERN site During the closure of CERN for Christmas and the New Year, the hostel will be closed from midday on Friday 20 December 2002 until Monday 6 January 2003 at 8h00. All accounts must be settled and room keys returned to the Reception before 10h00 on Friday 20 December 2002. 1.2 Hostel in St. Genis-Pouilly The wing reserved for CERN will be closed from midday on Friday 20 December 2002 until Monday 6 January 2003 at 8h00. Anyone with no alternative but to stay in the Hostel during this period can be accommodated in another part of the building. The people concerned must make the appropriate reservations in person at the Reception of the St. Genis Hostel, as far in advance as possible and in any case no later than Friday 13 December 2002. The total length of stay during the two weeks in question must be paid for in advance, no later than Friday 13 December 2002. All reservations remaining unpaid after this date will be cancelled. 2. Reminde...

  20. Computer Security: “Hello World” - Welcome to CERN

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    Welcome to the open, liberal and free academic computing environment at CERN. Thanks to your new (or long-established!) affiliation with CERN, you are eligible for a CERN computing account, which enables you to register your devices: computers, laptops, smartphones, tablets, etc. It provides you with plenty of disk space and an e-mail address. It allows you to create websites, virtual machines and databases on demand.   You can now access most of the computing services provided by the GS and IT departments: Indico, for organising meetings and conferences; EDMS, for the approval of your engineering specifications; TWiki, for collaboration with others; and the WLCG computing grid. “Open, liberal, and free”, however, does not mean that you can do whatever you like. While we try to make your access to CERN's computing facilities as convenient and easy as possible, there are a few limits and boundaries to respect. These boundaries protect both the Organization'...

  1. The role of DEM at CERN

    CERN Document Server

    Van der Bij, E

    2005-01-01

    The DEM group in the Technical Support department provides services for the fabrication of special printed circuits that are invaluable for the whole particle physics community. The capability is based around a core technology that is developed by using skills to etch and process materials that are not commonly used in industry, combined with production methods used in PCB manufacturing. The role of the prototyping facilities is to assist engineers and physicists and to offer them easy access to competencies often not available from industry. At the same time, with the expertise and production capacity available, it makes that CERN is always geared up to handle emergency situations. The design office and the assembly workshop that are also part of DEM have similar roles that lower the cost and improve the quality and maintainability of electronics developed at CERN.

  2. HOM Couplers for CERN SPL Cavities

    CERN Document Server

    Papke, Kai; Van Rienen, U

    2013-01-01

    Higher-Order-Modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the SPL, which is studied at CERN as the driver for future neutrino facilities. In order to limit beam-induced HOM effects, CERN considers the use of HOM couplers on the cut-off tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to modes of a specific frequency range. In this paper the design process is presented and a comparison is made between various design options for the medium and high-beta SPL cavities, both operating at 704.4 MHz. The RF characteristics and thermal behaviour of the various designs are discussed.

  3. Progress report on CERN activities (June 1981)

    International Nuclear Information System (INIS)

    Selected topics illustrate results obtained at CERN, mostly during the first half of 1981. The report deals first with the development of facilities for antiproton accumulation and acceleration, and for colliding beams of antiprotons and protons. Other developments of accelerators and of particle detectors are also presented. An outline is then given of the current understanding of the constituents of matter and of the forces acting between them. This framework is used for the presentation of CERN's experimental results. The topics covered include tests of the quark-parton model, properties of the new particles containing charm or beauty quarks, studies of the structure of the nucleon, tests of quantum chromodynamics (QCD), and investigations of the weak interaction. (orig.)

  4. CERN Library | Agnes Chavez @ CERN | 17 March

    CERN Multimedia

    2015-01-01

    Agnes Chavez will present her work on Tuesday, 17 March 2015 at 4 p.m. in the Library (Builidng. 52-1-052) Coffee will be served from 3.30 p.m.   Agnes Chavez is an artist and educator participating in a two-week research stay organised by the ATLAS Experiment at CERN. Chavez is using the stay to develop her art and education project, Projecting pARTicles, which will be exploring particle physics through projection art. Chavez experiments with data visualization, sound and projection art to create participatory environments. She collaborates with programmers to create algorithmic drawings projected on to buildings, walls and spaces. This work explores our relationship with nature and technology, and how these and other sensory experiences determine how we perceive and interpret the world around us. For the Projecting pARTicles series she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspire...

  5. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become

  6. CERN openlab enters fifth phase

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is a unique public-private partnership between CERN and leading ICT companies. At the start of this year, openlab officially entered its fifth phase, which will run until the end of 2017. For the first time in its history, it has extended beyond the CERN community to include other major European and international research laboratories.   Founded in 2001 to develop the innovative ICT systems needed to cope with the unprecedented computing challenges of the LHC, CERN openlab unites science and industry at the cutting edge of research and innovation. In a white paper published last year, CERN openlab set out the main ICT challenges it will tackle during its fifth phase, namely data acquisition, computing platforms, data storage architectures, computer management and provisioning, networks and connectivity, and data analytics. As it enters its fifth phase, CERN openlab is expanding to include other research laboratories. "Today, research centres in other disciplines are also st...

  7. Italy's Prime Minister visits CERN

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    On Tuesday, 7 July 2015, the Prime Minister of the Italian Republic, Matteo Renzi, visited CERN. He was accompanied by a delegation that included Italy's Minister for Education, University and Research, Stefania Giannini.   From left to right: Fernando Ferroni, President of the Istituto Nazionale di Fisica Nucleare (INFN); Sergio Bertolucci, CERN Director for Research and Scientific Computing; Stefania Giannini, Italy's Minister of Education, University and Research; Matteo Renzi, Prime Minister of the Italian Republic; Fabiola Gianotti, CERN Director-General Designate; Rolf Heuer, CERN Director-General.   The Prime Minister was welcomed by members of the CERN Management together with former CERN Director-General and Senator for Life of the Italian Republic, Carlo Rubbia. After a brief general introduction to CERN’s activities by Rolf Heuer, the Italian delegation visited LHC Point 1. After a tour of the ATLAS control room, they donned helmets to visit th...

  8. Scientific Information Service at CERN

    CERN Document Server

    Pereira, Margarida

    2016-01-01

    Dissemination of information is an essential part of CERN's mission. It brings people together from all around the world and trains the scientists of tomorrow. CERN scientific output is documented and made available for the scientific community and the general public through the CERN Document Server, INSPIRE-HEP and Wikipedia. This report presents the work done in the Scientific Information Service during the summer student program.

  9. Dear CERN and ESO Colleagues and Retirees

    CERN Multimedia

    Pension Fund

    2010-01-01

    Following approval by the CERN Pension Fund Governing Board, the CERN Pension Fund team is pleased to announce the new website address of your Pension Fund: http://pensionfund.cern.ch I take this opportunity to thank all the technical teams at CERN for the quality and rapidity of their support. Kind regards, Théodore Economou CEO, CERN Pension Fund

  10. CERN Permanent exhibitions short version

    CERN Multimedia

    2016-01-01

    Visits Explore by yourself the issues CERN's physicists are trying to solve: given that the entire universe is made of particles, where do they come from? Why do they behave in the way they do? Discover the massive apparatus used by physicists at CERN, like the LHC, and see how each part works. CERN invites the public to discover the mysteries of the Universe and the work of the world's biggest physics laboratory through free of charge guided tours and permanent exhibitions. As a group, with friends, individually, on foot, on your bike, come and discover CERN or explore it virtually. Welcome!

  11. News from the CERN Printshop

    CERN Multimedia

    IT Department

    2010-01-01

    Please note there are a limited number of the 2011 CERN wall calendars now available from the Printshop, located in Building 510-R-007. These have been printed on card in A3 and A4. If you need more than a few copies, there are two solutions: download the file and print your own on paper; send us an e-mail to place an order. Please visit the new Printshop website for more information: http://cern.ch/printshop. Printshop reception opening hours: 10h00-12h00 and 13h00-15h00. Many thanks. CERN Printshop Tel: 72426 E-mail: Printshop@cern.ch

  12. 2014 CERN Accelerator Schools

    CERN Multimedia

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  13. CERN Relay Race

    CERN Document Server

    2011-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 19 May starting at 12-15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details of the course and of how to register your team for the relay race can be found here. Some advice for all runners from the Medical Service can also be found here.   

  14. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss - do you? The Medical Service invites everyone working on CERN premises to participate in the National Hearing Day on: Thursday 10th March From 9am to 4pm The Infirmary, Blg. 57, Gr.Fl. We will be offering hearing tests (audiogram); information, advice on hearing loss, tinnitus and more. Deafness does not just affect the elderly: in Europe, 50% the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing loss. But prevention is possible and effective: for example, Hearing protection devices could reduce tinnitus cases by 80%.

  15. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss ? do you? The Medical Service invites everyone working on the CERN site to participate in the NATIONAL HEARING DAY on: Thursday 10th March 2005 From 9am to 4pm The Infirmary, Blg. 57, Ground Floor We will be offering hearing tests (audiograms), as well as information and advice on hearing loss, tinnitus, etc. Deafness does not just affect the elderly: in Europe, 50% of the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing problems but prevention is possible. For example, hearing protection devices can prevent 80% of tinnitus cases.

  16. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss - do you? The Medical Service invites everyone working on the CERN site to participate in the NATIONAL HEARING DAY on: Thursday 10th March 2005 From 9am to 4pm The Infirmary, Blg. 57, Ground Floor We will be offering hearing tests (audiograms), as well as information and advice on hearing loss, tinnitus, etc. Deafness does not just affect the elderly: in Europe, 50% of the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing problems but PREVENTION IS POSSIBLE. For example, hearing protection devices can prevent 80% of tinnitus cases.

  17. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss - do you? The Medical Service invites everyone working on CERN premises to participate in the National Hearing Day on: Thursday 10th March From 9am to 4pm The Infirmary, Blg. 57, Gr.Fl. We will be offering hearing tests (audiogram); information, advice on hearing loss, tinnitus and more. Deafness does not just affect the elderly: in Europe, 50% the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing loss. But PREVENTION IS POSSIBLE AND EFFECTIVE: for example, Hearing protection devices could reduce tinnitus cases by 80%.

  18. CERN safety week

    CERN Multimedia

    DG Unit

    2009-01-01

    Following an increase in the number of accidents in 2008, the Safety Commission is organising a CERN safety week from 8 to 12 June for riders of bicycles, scooters and motorbikes. We invite you to take part in the programme, which will be held in the Main Building (Bldg. 500) and will consist of an exhibition, organised events and hands-on activities, including demonstrations of emergency braking, a driving simulator, simulation of what it feels like to drive under the influence of alcohol, demonstrations by the Fire Brigade, video projections, etc. There will also be a number of prizes to be won. Please sign up via your DSO.

  19. Michael Frayn visits CERN

    CERN Multimedia

    2007-01-01

    Award-winning playwright and novelist Michael Frayn gave a guest lecture in the main auditorium at CERN on Friday 15 March about his new book The Human Touch: Our Part in the Creation of the Universe. The lecture focused on cosmology and philosophy and the limitations that language places on our ability to understand the creation of a universe in which we seem to play such a small part. In addition to his novels and plays, which include Copenhagen, a play about the 1941 meeting between German physicist Werner Heisenberg and Danish physicist Niels Bohr, Frayn has translated several works from Russian, including plays by Chekhov and Tolstoy.

  20. Spotlight on CERN

    CERN Multimedia

    CERN video productions

    2009-01-01

    Welcome to the Globe of Science and Innovation for the first "Spotlight on CERN" just a few weeks before the restart of the LHC machine. Today our guest is Mike Lamont, who is in charge of the Operations Group for the accelerator beams. This weekend, protons were injected into the LHC for the first time since September 2008. But before we talk about that, let's go back a few weeks and look at the previous stage, which involved testing the transfer lines of the injection tunnels TI2/TI8. Our video team was there to film this operation.