WorldWideScience

Sample records for cern lhc signatures

  1. Supersymmetry, naturalness, and signatures at the CERN LHC

    International Nuclear Information System (INIS)

    Kitano, Ryuichiro; Nomura, Yasunori

    2006-01-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low-energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tanβ, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC--the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry-breaking, which are relevant in a model without fine-tuning

  2. CERN confirms LHC schedule

    CERN Document Server

    2003-01-01

    The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.

  3. CERN recognises LHC suppliers

    CERN Multimedia

    2002-01-01

    CERN has just presented the first awards recognising LHC suppliers. The Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang are the recipients of the first 'Golden Hadrons'.

  4. CERN: LHC magnets

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With test magnets for CERN's LHC proton-proton collider regularly attaining field strengths which show that 10 Tesla is not forbidden territory, attention turns to why and where quenches happen. If 'training' can be reduced, superconducting magnets become easier to commission

  5. CERN: LHC magnets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-08-15

    With test magnets for CERN's LHC proton-proton collider regularly attaining field strengths which show that 10 Tesla is not forbidden territory, attention turns to why and where quenches happen. If 'training' can be reduced, superconducting magnets become easier to commission.

  6. CERN: LHC progress

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The push for CERN's next major project, the LHC proton collider to be built in the 27-kilometre LEP tunnel, is advancing on a wide front. For the machine itself, there has been considerable progress in the detailed design. While the main thrust is for proton-proton collisions, heavy ions are also on the LHC collision menu. On the experimental side, proposals are coming into sharper focus. For the machine, the main aim is for the highest possible proton collision energies and collision rates in the confines of the existing LEP tunnel, and the original base design looked to achieve these goals in three collision regions. Early discussions on the experimental programme quickly established that the most probable configuration would have two collision regions rather than three. This, combined with hints that the electronics of several detectors would have to handle several bunch crossings at a time, raised the question whether the originally specified bunch spacing of 15 ns was still optimal

  7. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  8. CERN and the LHC

    CERN Multimedia

    Cramer, J G

    1992-01-01

    CERN, a high-energy physics laboratory in Europe, is planning to build a more powerful particle accelerator, the Large Hadronic Collider. The US spreads its accelerators around the country while most of Europe's research is conducted at and around CERN.

  9. The LHC road at CERN

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To explore the 1 TeV energy scale where fundamental particle interactions should encounter new conditions, two major routes were proposed - a high magnetic field proton collider in the LEP tunnel, dubbed LHC for Large Hadron Collider, and the CERN Linear Collider (CLIC) to supply beams of electrons and positrons. Exploratory studies have shown that while CLIC remains a valid long-term goal, LHC appears as the most cost-effective way for CERN to enter the 1 TeV arena. High-field superconducting magnet prototype work demonstrates that a 'two-in-one' design supplying the 10 tesla fields needed to handle LHC's 8 TeV proton beams (collision energy 16 TeV) is a practical proposition. (orig./HSI).

  10. Black hole chromosphere at the CERN LHC

    International Nuclear Information System (INIS)

    Anchordoqui, Luis; Goldberg, Haim

    2003-01-01

    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the CERN LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the 'chromosphere', and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC

  11. Powering CERN and the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN's electricity network is denser than that of the Canton of Geneva, is powered by two different national grids and has to provide users with an availability rate as close to 100% as possible. To ensure the smooth running of the machines throughout the period of LHC physics operation, the teams from the EN Department are implementing a continuous programme of consolidation and modernisation on all the Laboratory's sites, but the biggest projects will have to wait until the long technical shutdown scheduled for 2013.   An electrical installation at CERN. CERN's annual electricity consumption is around one terawatt hour (TWh), which roughly corresponds to a fifth of the consumption of the Canton of Geneva. However, during periods when all the machines are operating at the same time, our demand can reach the equivalent of a third of Geneva's total consumption. While the grid of the Geneva public utility company SIG (Services Industriels de Genève) covers distances of around 50 km, the ...

  12. Japanese contributions to CERN-LHC

    International Nuclear Information System (INIS)

    Kondo, Takahiko; Shintomi, Takakazu; Kimura, Yoshitaka

    2001-01-01

    The Large Hadron Collider (LHC) is now under construction at CERN, Geveva, to study frontier researches of particle physics. The LHC is the biggest superconducting accelerator using the most advanced cryogenics and applied superconductivities. The accelerator and large scale detectors for particle physics experiments are being constructed by collaboration with European countries and also by participation with non-CERN countries worldwide. In 1995, the Japanese government decided to take on a share in the LHC project with funding and technological contributions. KEK contributes to the development of low beta insertion superconducting quadrupole magnets and of components of the ATLAS detector by collaboration with university groups. Some Japanese companies have received contracts for technically key elements such as superconducting cable, cold compressor, nonmagnetic steel, polyimide film, and so on. An outline of the LHC project and Japanese contributions are described. (author)

  13. CERN - the W and the LHC

    CERN Document Server

    Rodgers, P

    2003-01-01

    Construction of the Large Hadron Collider (LHC) and its detectors at the CERN laboratory in Geneva is a challenge of Himalayan proportions. The LHC will collide protons at energies of 14 TeV (14 million million electrons volts) and two detectors - ATLAS and CMS - will survey the debris of these collisions for signs of the Higgs boson, supersymmetric particles, large extra dimensions and other evidence of new physics beyond the Standard Model. (U.K.)

  14. The ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Aamodt, K.; de Haas, A.P.; Grebenyuk, O.|info:eu-repo/dai/nl/304848883; Ivan, C.G.|info:eu-repo/dai/nl/304847747; Kamermans, R.|info:eu-repo/dai/nl/073698733; Mischke, A.|info:eu-repo/dai/nl/325781435; Nooren, G.J.L.|info:eu-repo/dai/nl/07051349X; Oskamp, C.J.; Peitzmann, T.|info:eu-repo/dai/nl/304833959; Simili, E.; van den Brink, A.; van Eijndhoven, N.J.A.M.|info:eu-repo/dai/nl/072823674; Yuting, B.

    2008-01-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy

  15. The LHC Physics Centre at CERN

    CERN Document Server

    CERN Bulletin

    2010-01-01

    As the LHC goes on line for its first exploration of the new high-energy frontier, CERN is also getting ready to enhance the support it provides for the analysis and interpretation of the emerging data.    The LHC Physics Centre at CERN (LPCC) has started up over the past couple of months, beginning with a series of initiatives ranging from Workshops to lectures for students. More details about the LPCC will be featured in a forthcoming Bulletin article. In the meantime, you can consult the LPCC web page, now available at http://cern.ch/lpcc. This offers the high energy physics community a portal to the LPCC's activities, as well as to useful resources, tools and information about the LHC physics programme, the progress of accelerator operations, relevant workshops and events around the world, and much more. The LPCC will shortly begin issuing a weekly bulletin of its own, distributed by e-mail. Members of the CERN physics community and subscribers to the CERN Bulletin will receive the ...

  16. CERN LHC Technical Infrastructure Monitoring (TIM)

    CERN Document Server

    Epting, U; Martini, R; Sollander, P; Bartolomé, R; Vercoutter, B; Morodo-Testa, M C

    1999-01-01

    The CERN Large Hadron Collider (LHC) will start to deliver particles to its experiments in the year 2005. However, all the primary services such as electricity, cooling, ventilation, safety systems and others such as vacuum and cryogenics will be commissioned gradually between 2001 and 2005. This technical infrastructure will be controlled using industrial control systems, which have either already been purchased from specialized companies or are currently being put together for tender. This paper discusses the overall architecture and interfaces that will be used by the CERN Technical Control Room (TCR) to monitor the technical services at CERN and those of the LHC and its experiments. The issue of coherently integrating existing and future control systems over a period of five years with constantly evolving technology is addressed. The paper also summarizes the functionality of all the tools needed by the control room such as alarm reporting, data logging systems, man machine interfaces and the console mana...

  17. 31 Jannuary 2012 - Pakistan COMSATS Executive Director I. E. Qureshi visiting the LHC tunnel at Point 2 with ALICE Collaboration Spokesperson P. Giubellino and International Relations Adviser R. Voss; Exchange of gifts and signature of the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    31 Jannuary 2012 - Pakistan COMSATS Executive Director I. E. Qureshi visiting the LHC tunnel at Point 2 with ALICE Collaboration Spokesperson P. Giubellino and International Relations Adviser R. Voss; Exchange of gifts and signature of the guest book with CERN Director-General R. Heuer.

  18. CERN Open Days The LHC demystified!

    CERN Multimedia

    2008-01-01

    Lots of surprises are being planned for the CERN Open Days scheduled for 5 and 6 April (see 21 January edition of the Bulletin). Fred’s itinerary on 6 April 20089.00 a.m\tDeparture from SM12 at CERN (the pit down which all the LHC magnets were lowered into the tunnel)9.15 a.m. Saint-Genis theatre10.00 a.m.\tRoussillon communal hall in Crozet 10.50 a.m. La Chenaille communal hall in Echenevex 11.40 a.m. CMS Building SX5 at Cessy 2.30 p.m. La Forge communal hall in Versonnex 3.30 p.m. Le Levant communal hall in Ferney Voltaire4.40 Forum in Meyrin 5.30 p.m. Main Auditorium at CERN For instance, Fred, who fronts the French television programme "C’est pas sorcier" on France 3 will be taking part in the Open Day for the general public on Sunday, 6 April. He will be on board a CERN lorry carrying a 35 tonne 15 m long dipole magnet and will make halts at eight Swiss and French communes around the LHC Ring to meet the local inhabitants (see...

  19. CERN moves into the LHC era

    CERN Multimedia

    2001-01-01

    Dr Hans Eschelbacher (on the left), President of the CERN Council for the last three years, hands over to his successor Maurice Bourquin.  The CERN Council, where the representatives of the 20 Member States of the Organization decide on scientific programmes and financial resources, held its 116th session on 15 December under the chairmanship of Dr. Hans C. Eschelbacher (DE). 'Le Roi est mort. Vive le Roi !' The Large Electron Positron Collider (LEP) era has ended and CERN's future is the Large Hadron Collider (LHC), stated Director General, Prof. Luciano Maiani. He opened his report to Council with a 'homage to LEP', which reached the end of its career during 2000 and is now being dismantled to make way for CERN's next major machine, the LHC collider, in the same 27-kilometre tunnel. The strong indications of a Higgs boson at 115 GeV found during the year were the culmination of LEP's long and distinguished physics career, during which the machine opened up new regimes of precision physics, involvi...

  20. CERN prepares for the LHC and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Peter

    2000-05-01

    The phrase ''needle in a haystack'' - the challenge of finding something small but important in the midst of a much, much larger object - is often used to describe CERN. It could be applied to searching for someone's office in one of the 373 buildings that occupy the laboratory's site at Meyrin, just outside Geneva on the Swiss rench border, but the real needle in the haystack at CERN is the Higgs boson. The Higgs is the particle that is responsible for other fundamental particles such as quarks and Z-bosons having mass. It is also the main reason that CERN is building a machine called the Large Hadron Collider (LHC) at a cost of SwFr 2bn. Particles predicted by supersymmetry the theory that every particle has a supersymmetric partner with the same mass and charge but different ''spin'' are the other top priority. There is a chance, albeit it a small one, that particle physicists might find the Higgs boson at CERN's large electron positron (LEP) collider before it is shut down to make way for the LHC. It all depends on how high the beam energy at LEP which currently stands at 103 GeV (103 X 109 electron volts) can be raised. ''1 GeV can matter at this stage'', says Luciano Maiani, the lab's director general. ''Exploring up to a mass of 114 GeV is optimistic but not impossible. Unless we see the Higgs, the current plan is for LEP to be dismantled after it stops running at the end of September. Installation of the LHC in the LEP tunnel will then start in October.'' The LHC will collide protons at a centre-of-mass energy of 14 TeV (14 000 GeV), and two massive general-purpose detectors ATLAS and CMS will search for evidence of the Higgs and supersymmetry. A third experiment called LHC-b will probe the difference between matter and antimatter, while the ALICE experiment will study the extreme state of matter known as the quark gluon plasma. Meanwhile, two massive teams

  1. The LHC Physics Centre at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Although raw physics data is produced at CERN, thanks to the GRID its analysis is performed in various institutes worldwide. In addition, workshops, conferences and meetings take place all over the world. The physicist community is decentralized, and CERN must continue to provide intellectual leadership. The LHC Physics Centre is the tool that will make this possible.   Until the early days of LEP, a large part of the scientific activity related to CERN’s experiments was strongly centered at the Laboratory. Few places had the infrastructure to host activities such as the working groups preparing the Yellow Reports, and the limited access to information in the pre-web era made CERN the natural place to learn what was happening in the field. “I remember the days when we, the theorists, would come to CERN just to read the most recent preprints, which were reaching CERN's Library before we could get them in our institutes”, says Michelangelo Mangano, a member of the Theo...

  2. CERN data services for LHC computing

    Science.gov (United States)

    Espinal, X.; Bocchi, E.; Chan, B.; Fiorot, A.; Iven, J.; Lo Presti, G.; Lopez, J.; Gonzalez, H.; Lamanna, M.; Mascetti, L.; Moscicki, J.; Pace, A.; Peters, A.; Ponce, S.; Rousseau, H.; van der Ster, D.

    2017-10-01

    Dependability, resilience, adaptability and efficiency. Growing requirements require tailoring storage services and novel solutions. Unprecedented volumes of data coming from the broad number of experiments at CERN need to be quickly available in a highly scalable way for large-scale processing and data distribution while in parallel they are routed to tape for long-term archival. These activities are critical for the success of HEP experiments. Nowadays we operate at high incoming throughput (14GB/s during 2015 LHC Pb-Pb run and 11PB in July 2016) and with concurrent complex production work-loads. In parallel our systems provide the platform for the continuous user and experiment driven work-loads for large-scale data analysis, including end-user access and sharing. The storage services at CERN cover the needs of our community: EOS and CASTOR as a large-scale storage; CERNBox for end-user access and sharing; Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy distributed-file-system services. In this paper we will summarise the experience in supporting LHC experiments and the transition of our infrastructure from static monolithic systems to flexible components providing a more coherent environment with pluggable protocols, tuneable QoS, sharing capabilities and fine grained ACLs management while continuing to guarantee dependable and robust services.

  3. Electron cloud in the CERN accelerators (PS, SPS, LHC)

    International Nuclear Information System (INIS)

    Iadarola, G; Rumolo, G

    2013-01-01

    Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and beam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, typical electron cloud phenomena have appeared also in this machine, when running with trains of closely packed bunches (i.e. with spacings below 150ns). Beside the above mentioned indicators, other typical signatures were seen in this machine (due to its operation mode and/or more refined detection possibilities), like heat load in the cold dipoles, bunch dependent emittance growth and degraded lifetime in store and bunch-by-bunch stable phase shift to compensate for the energy loss due to the electron cloud. An overview of the electron cloud status in the different CERN machines (PS, SPS, LHC) will be presented in this paper, with a special emphasis on the dangers for future operation with more intense beams and the necessary countermeasures to mitigate or suppress the effect. (author)

  4. CERN prepares for the LHC and beyond

    International Nuclear Information System (INIS)

    Rodgers, Peter

    2000-01-01

    The phrase ''needle in a haystack'' - the challenge of finding something small but important in the midst of a much, much larger object - is often used to describe CERN. It could be applied to searching for someone's office in one of the 373 buildings that occupy the laboratory's site at Meyrin, just outside Geneva on the Swiss rench border, but the real needle in the haystack at CERN is the Higgs boson. The Higgs is the particle that is responsible for other fundamental particles such as quarks and Z-bosons having mass. It is also the main reason that CERN is building a machine called the Large Hadron Collider (LHC) at a cost of SwFr 2bn. Particles predicted by supersymmetry the theory that every particle has a supersymmetric partner with the same mass and charge but different ''spin'' are the other top priority. There is a chance, albeit it a small one, that particle physicists might find the Higgs boson at CERN's large electron positron (LEP) collider before it is shut down to make way for the LHC. It all depends on how high the beam energy at LEP which currently stands at 103 GeV (103 X 109 electron volts) can be raised. ''1 GeV can matter at this stage'', says Luciano Maiani, the lab's director general. ''Exploring up to a mass of 114 GeV is optimistic but not impossible. Unless we see the Higgs, the current plan is for LEP to be dismantled after it stops running at the end of September. Installation of the LHC in the LEP tunnel will then start in October.'' The LHC will collide protons at a centre-of-mass energy of 14 TeV (14 000 GeV), and two massive general-purpose detectors ATLAS and CMS will search for evidence of the Higgs and supersymmetry. A third experiment called LHC-b will probe the difference between matter and antimatter, while the ALICE experiment will study the extreme state of matter known as the quark gluon plasma. Meanwhile, two massive teams of physicists are preparing the two detectors for the LHC. Both ATLAS and CMS have the same basic

  5. The ALICE experiment at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Aamodt, K [Department of Physics, University of Oslo, Oslo (Norway); Abrahantes Quintana, A [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Madrid/Havana, Spain (Cuba); Achenbach, R [Kirchhoff-Institut fuer Physik, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Acounis, S [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS/IN2P3, Nantes (France); Adamova, D [Academy of Sciences of the Czech Republic, Nuclear Physics Institute, Rez/Prague (Czech Republic); Adler, C [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Heidelberg, Germany BMBF (Germany); Aggarwal, M [Physics Department, Panjab University, Chandigarh (India); Agnese, F [IPHC, Universite Louis Pasteur, CNRS/IN2P3, Strasbourg (France); Rinella, G Aglieri [CERN, European Organization for Nuclear Reasearch, Geneva (Switzerland); Ahammed, Z [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad, A; Ahmad, N; Ahmad, S [Department of Physics Aligarh Muslim University, Aligarh (India); Akindinov, A [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Akishin, P [JINR, Joint Institute for Nuclear Research, Dubna, (Russian Federation); Aleksandrov, D [Russian Research Center Kurchatov Institute, Moscow (Russian Federation); Alessandro, B; Alfarone, G [Sezione INFN, Torino (Italy); Alfaro, R [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Alici, A [Dipartimento di Fisica dell' Universita and Sezione INFN, Bologna (Italy)], E-mail: Hans-Ake.Gustafsson@hep.lu.se (and others)

    2008-08-15

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 x 16 x 26 m{sup 3} with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010

  6. Beam-machine Interaction at the CERN LHC

    CERN Document Server

    Boccone, V; Brugger, M; Calviani, M; Cerutti, F; Esposito, L S; Ferrari, A; Lechner, A; Mereghetti, A; Nowak, E; Shetty, N V; Skordis, E; Versaci, R; Vlachoudis, V

    2014-01-01

    The radiation field generated by a high energy and intensity accelerator is of concern in terms of element functionality threat, component damage, electronics reliability, and material activation, but also provides signatures that allow actual operating conditions to be monitored. The shower initiated by an energetic hadron involves many different physical processes, down to slow neutron interactions and fragment de-excitation, which need to be accurately described for design purposes and to interpret operation events. The experience with the transport and interaction Monte Carlo code FLUKA at the Large Hadron Collider (LHC), operating at CERN with 4 TeV proton beams (and equivalent magnetic rigidity Pb beams) and approaching nominal luminosity and energy, is presented. Design, operation and upgrade challenges are reviewed in the context of beam-machine interaction account and relevant benchmarking examples based on radiation monitor measurements are shown.

  7. CERN confident of LHC start-up in 2007

    CERN Document Server

    2007-01-01

    "Delegates attending the 140th meeting of CERN Council heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collier (LHC), in 2007." (1 page)

  8. CERN-LHC accelerator superconducting magnet. Development and international cooperation

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Nakamoto, Tatsushi; Sasaki, Ken-ichi

    2009-01-01

    CERN-LHC accelerator superconducting magnets and a cooperative work for interaction region quadrupole magnets are introduced. The accelerator commissioning and the incident happened during the commissioning in 2008 is also briefly discussed. (author)

  9. CERN confirms goal of 2007 start-up for LHC

    CERN Document Server

    2005-01-01

    Speaking at the 131st session of CERN Council on 17 December 2004, the Director-General, Robert Aymar, confirmed that the top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007.

  10. Al CERN prima fase sistema gestione dati LHC

    CERN Multimedia

    2003-01-01

    "Al via la prima fase per la realizzazione del sistema Lhc computing Grid (LCG), progettato per elaborare le quantita' di dati senza precedenti che, a partire dal 2007, saranno prodotte dagli esperimenti eseguiti con il nuovo grande acceleratore Large Hadron Collider (LHC), presso il Cern di Ginevra" 1 page

  11. CERN reacts to increased costs to completion of the LHC

    CERN Multimedia

    2002-01-01

    Aspects of LHC construction. The CERN Council, where the representatives of the 20 Member States of the Organization decide on scientific programmes and financial resources, held its 120th session on 14 December under the chairmanship of Prof. Maurice Bourquin (CH). CERN adjusts to the LHC Director-General, Luciano Maiani, stressed that CERN was now fully engaged in the LHC and outlined the first moves to react to the increased cost to completion of the LHC. The new accelerator is an extremely complex, high-tech project which CERN is building under very severe conditions. However, the technical challenges are solved and industrial production of accelerator elements, and installation are starting. Professor Maiani said that 2001 had been a very hard but decisive year for CERN. An important milestone had been passed during this meeting with the approval of the LHC dipole magnets contract, the last major contract for the accelerator. The new costs to completion of the LHC project are now clear. A first propos...

  12. Mark the date! LHC inauguration and LHC-Fest CERN, Tuesday 21 October 2008

    CERN Document Server

    2008-01-01

    "For a long time we will remember the year 2008, an important year for CERN. as it marks the achievement of the LHC, a great tool for future discoveries, and the completion of exceptional works that demanded the commitment and motivation of many… a remarkable motivation," declared Director-General Robert Aymar during a recent interview. To celebrate this historical milestone in this very important "Big Science" project, CERN has organised two events on October 21: the LHC official inauguration and the LHC-fest. The LHC official inauguration will take place from 14h00 to 18h00, at Point 18 of the Laboratory, in the presence of the highest representatives from the member states of CERN and representatives from the other communities and authorities of the countries participating in the LHC adventure. 300 members from the international press are also expected, giving a total of 1500 guests. The ceremony will be broadcast live in the Lab...

  13. Canadian ATLAS data center to support CERN's LHC

    CERN Multimedia

    2006-01-01

    "The biggest science experiment in history is currently underway at the world-famous CERN labs in Switzerland, and Canada is poised to play a critical role in its success. Thanks to a $10.5 million investment announced by the Canada Foundation for Innovation (CFI), an ultra-sophisticated computing facility -- the ATLAS Data Center -- will be created to support the ATLAS project at CERN's Large Hadron Collider (LHC)." (1 page)

  14. CERN Council pauses for effect (LHC approval a step nearer)

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aweek of intense diplomatic activity which had high level telephones ringing across Europe culminated in an imaginative and unexpected move on 24 June, when delegates adjourned the 100th session of CERN's governing body, Council, to be reconvened at a later date. On the Council table was the vote for CERN's next major machine, now universally agreed as the world focus of particle physics research for the start of the 21st century, the LHC proton-proton collider, to be built in CERN's 27-kilometre LEP tunnel, and the largest and most complex scientific joint effort ever undertaken in Europe

  15. CERN boss quashes LHC delay rumours

    CERN Multimedia

    2007-01-01

    "Robert Aymar, the director general of CERN, has dispelled rumours that a series of buckled electrical connectors at the Large Hadron Collider will delay the accelerator's official start-up date of May 2008. Writing in this week's CERN Bulletin, Aymar says that the problem concerns only a small percentage of the connectors and that it is "business as usual" for bringing the new accelerator online." (1,5 page)

  16. CERN's LHC is awarded the 2012 EPS Edison Volta Prize

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The European Physical Society (EPS), the Centro di Cultura Scientifica “Alessandro Volta” and Edison S.p.A. have awarded the 2012 EPS Edison Volta Prize for outstanding contributions to physics to three CERN physicists.   The award was given to: • Rolf-Dieter Heuer, CERN Director-General, • Sergio Bertolucci, CERN Director for Research and Computing, • Stephen Myers, CERN Director for Accelerators and Technology, for having led - building on decades of dedicated work by their predecessors - the culminating efforts in the direction, research and operation of the CERN Large Hadron Collider (LHC), which resulted in many significant advances in high energy particle physics, in particular, the first evidence of a Higgs-like boson in July 2012. To learn more, check out e-EPS News.

  17. CERN confident of LHC start-up in 2007

    CERN Document Server

    Vanden Broeck, Renilde

    2007-01-01

    "Delegates attending the 140th meeting of CERN Council today heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collier (LHC) in 2007. (1/2 page)

  18. CERN confident of LHC start-up in 2007

    CERN Multimedia

    2006-01-01

    "Delegates attending the 140th meeting of CERN Council today heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collider (LHC) in 2007." (1/2 page)

  19. CERN concludes year of strong progress towards the LHC

    CERN Multimedia

    2006-01-01

    Speaking at the 135th session of the CERN Council, the Director General, Robert Aymar, hailed a year of impressive progress towards the LHC project. 'In one year, we have made great progress,' he said. 'The challenge is not over, of course, but we have great confidence of maintaining the schedule for start-up in 2007.'

  20. CernVM - a virtual software appliance for LHC applications

    International Nuclear Information System (INIS)

    Buncic, P; Sanchez, C Aguado; Blomer, J; Franco, L; Mato, P; Harutyunian, A; Yao, Y

    2010-01-01

    CernVM is a Virtual Software Appliance capable of running physics applications from the LHC experiments at CERN. It aims to provide a complete and portable environment for developing and running LHC data analysis on any end-user computer (laptop, desktop) as well as on the Grid, independently of Operating System platforms (Linux, Windows, MacOS). The experiment application software and its specific dependencies are built independently from CernVM and delivered to the appliance just in time by means of a CernVM File System (CVMFS) specifically designed for efficient software distribution. The procedures for building, installing and validating software releases remains under the control and responsibility of each user community. We provide a mechanism to publish pre-built and configured experiment software releases to a central distribution point from where it finds its way to the running CernVM instances via the hierarchy of proxy servers or content delivery networks. In this paper, we present current state of CernVM project and compare performance of CVMFS to performance of traditional network file system like AFS and discuss possible scenarios that could further improve its performance and scalability.

  1. CERN database services for the LHC computing grid

    Energy Technology Data Exchange (ETDEWEB)

    Girone, M [CERN IT Department, CH-1211 Geneva 23 (Switzerland)], E-mail: maria.girone@cern.ch

    2008-07-15

    Physics meta-data stored in relational databases play a crucial role in the Large Hadron Collider (LHC) experiments and also in the operation of the Worldwide LHC Computing Grid (WLCG) services. A large proportion of non-event data such as detector conditions, calibration, geometry and production bookkeeping relies heavily on databases. Also, the core Grid services that catalogue and distribute LHC data cannot operate without a reliable database infrastructure at CERN and elsewhere. The Physics Services and Support group at CERN provides database services for the physics community. With an installed base of several TB-sized database clusters, the service is designed to accommodate growth for data processing generated by the LHC experiments and LCG services. During the last year, the physics database services went through a major preparation phase for LHC start-up and are now fully based on Oracle clusters on Intel/Linux. Over 100 database server nodes are deployed today in some 15 clusters serving almost 2 million database sessions per week. This paper will detail the architecture currently deployed in production and the results achieved in the areas of high availability, consolidation and scalability. Service evolution plans for the LHC start-up will also be discussed.

  2. CERN database services for the LHC computing grid

    International Nuclear Information System (INIS)

    Girone, M

    2008-01-01

    Physics meta-data stored in relational databases play a crucial role in the Large Hadron Collider (LHC) experiments and also in the operation of the Worldwide LHC Computing Grid (WLCG) services. A large proportion of non-event data such as detector conditions, calibration, geometry and production bookkeeping relies heavily on databases. Also, the core Grid services that catalogue and distribute LHC data cannot operate without a reliable database infrastructure at CERN and elsewhere. The Physics Services and Support group at CERN provides database services for the physics community. With an installed base of several TB-sized database clusters, the service is designed to accommodate growth for data processing generated by the LHC experiments and LCG services. During the last year, the physics database services went through a major preparation phase for LHC start-up and are now fully based on Oracle clusters on Intel/Linux. Over 100 database server nodes are deployed today in some 15 clusters serving almost 2 million database sessions per week. This paper will detail the architecture currently deployed in production and the results achieved in the areas of high availability, consolidation and scalability. Service evolution plans for the LHC start-up will also be discussed

  3. LHC Injectors Upgrade (LIU) Project at CERN

    CERN Document Server

    Shaposhnikova, Elena; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon; Meddahi, Malika; Mikulec, Bettina; Rumolo, Giovanni; Scrivens, Richard; Vretenar, Maurizio

    2016-01-01

    A massive improvement program of the LHC injector chain is presently being conducted under the LIU project. For the proton chain, this includes the replacement of Linac2 with Linac4 as well as all necessary upgrades to the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS), aimed at producing beams with the challenging High Luminosity LHC (HL-LHC) parameters. Regarding the heavy ions, plans to improve the performance of Linac3 and the Low Energy Ion Ring (LEIR) are also pursued under the general LIU program. The full LHC injection chain returned to operation after Long Shutdown 1, with extended beam studies taking place in Run 2. A general project Cost and Schedule Review also took place in March 2015, and several dedicated LIU project reviews were held to address issues awaiting pending decisions. In view of these developments, 2014 and 2015 have been key years to define a number of important aspects of the final LIU path. This paper will describe the reviewed LI...

  4. Signature of a Collaboration agreement between Unitar & CERN.

    CERN Multimedia

    Pierre Gildemyn

    2012-01-01

    Signature of agreement with Mr Carlos Lopes (UNITAR) and Prof Rolf Heuer (CERN). From left to right : Einar Bjorgo, Francesco Pisano, Calors Lopes, Rolf Heuer, Maurizio Bona, Frédéric Hemmer, Olivier Van Damme

  5. Vacuum vessels for the LHC magnets arrive at CERN

    CERN Multimedia

    2001-01-01

    The first batch of pre-series vacuum vessels for the LHC dipole magnets has just been delivered to CERN. The vessels are components of the cryostats and will provide the thermal insulation for the superconducting magnets. The first batch of vacuum vessels for the LHC dipole magnets with the team taking part at CERN in ordering and installing them. Left to right : Claude Hauviller, Monique Dupont, Lloyd Williams, Franck Gavin, Alain Jacob, Christophe Vuitton, Davide Bozzini, Laure Sandri, Mikael Sjoholm and André de Saever. In 2006 all that will be seen of the LHC superconducting dipoles in the LHC tunnel will be a line of over 1230 blue cylindrical vacuum vessels. Ten vessels, each weighing 4 tonnes, are already at CERN. On 6 July the first batch of pre-series vessels reached the Lab-oratory from the firm SIMIC Spa whose works are near Savona in north-western Italy. Despite appearances, these 15-metre long, 1-metre diameter blue tubes are much more sophisticated than sections of a run-of-the-mill...

  6. Signature of Spanish Traineeship Collaboration Agreement between CERN and CIEMAT

    CERN Multimedia

    Redondo Esteban, Isabel

    2015-01-01

    Signature of the collaboration agreement for the training of young Spanish engineers and applied physicists in key CERN technologies. CIEMAT represented by D. Cayetano Lopez Martinez, Director-General. CERN represented by Dr. Jose Miguel Jimenez, Head of Technology Department. In presence of Ms Maria Luisa Poncela Garcia, Secretary-General for Science, Technology and Innovation. Ministry of Economy and Competitiveness.

  7. Profile of a nonstandard Higgs boson at the CERN LHC

    International Nuclear Information System (INIS)

    Kominis, D.; Koulovassilopoulos, V.

    1995-01-01

    In a wide class of extensions of the standard model there is a scalar resonance with the quantum numbers of the usual Higgs boson but with different couplings to fermions and gauge bosons. Using an effective Lagrangian description, we examine the phenomenology of such a generic nonstandard Higgs boson at the CERN LHC. In particular, we determine the circumstances under which such a particle can be observed in its ZZ decay mode and distinguished from the Higgs boson of the standard model. We briefly comment on the energy scale effectively probed at the LHC, if the nonstandard nature of an observed Higgs particle can be asserted

  8. CERN LHC signals from warped extra dimensions

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph

    2008-01-01

    We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for M KKG -1 of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic 'top-jets'. We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z ' ), due to their 'light-fermion-phobic' nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons

  9. From the LHC to future colliders. CERN Theory Institute summary report

    International Nuclear Information System (INIS)

    Roeck, A. de; Ellis, J.; Wells, J.; Gripaios, B.; Dittmar, M.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Schumacher, M.; Duehrssen, M.; Weiglein, G.; Moortgat-Pick, G.; Morton-Thurtle, V.; Rolbiecki, K.; Smillie, J.; Tattersall, J.; Azuelos, G.; Dawson, S.; Assamagan, K.; Gopalakrishna, S.; Han, T.; Hewett, J.; Rizzo, T.; Lancaster, M.; Ozcan, E.; Mariotti, C.; Moortgat, F.; Polesello, G.; Riemann, S.; Bechtle, P.; Carena, M.; Juste, A.; Chachamis, G.; Chen, K.F.; Hou, W.S.; Curtis, S. de; Desch, K.; Wienemann, P.; Dreiner, H.; Foster, B.; Frandsen, M.T.; Giammanco, A.; Godbole, R.; Govoni, P.; Gunion, J.; Hollik, W.; Isidori, G.; Kalinowski, J.; Krawczyk, M.; Korytov, A.; Kou, E.; Kraml, S.; Martin, A.; Milstead, D.; Moenig, K.; Mele, B.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Sannino, F.; Schram, M.; Sultansoy, S.; Uwer, P.; Webber, B.

    2010-01-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb -1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb -1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions. (orig.)

  10. CERN recognizes LHC suppliers with Golden Hadron awards

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The recipients of CERN's first 'Golden Hadron' awards for outstanding supplier performance are the Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang. LHC project leader Lyn Evans (centre) with Santo Comel of Cockerill-Sambre (left) and Lynn Davis of Wah-Chang. The third recipient, Alexander Skrinsky of the Budker Institute, was unable to attend the ceremony and will collect the Institute's award in September.

  11. CERN Technical Training Programme: Learning for the LHC!

    CERN Multimedia

    2003-01-01

    In collaboration with AS and AC divisions, the Technical Training Programme is launching EVM Hands-on Tutorials specifically designed for those people involved in the current EVM for LHC exercise. The goal of the EVM Hands-on Training Sessions is to provide insight in Earned Value Management as implemented at CERN. Following this course will enable you to understand the EVM methodology, the tools used at CERN, the procedures used for the data-collection and data-reporting and assist you in analysing cost & schedule variances. The course is an intensive 2-hour 'hands-on' training session. If you are interested in this course, please discuss with your supervisor or your DTO. More information and online registration by EDH are available from the Technical Training web pages: http://www.cern.ch/TechnicalTraining/

  12. CERN Technical Training Programme: Learning for the LHC !

    CERN Multimedia

    2003-01-01

    In collaboration with AS and AC divisions, the Technical Training Programme is launching EVM Hands-on Tutorials specifically designed for those people involved in the current EVM for LHC exercise. The goal of the EVM Hands-on Training Sessions is to provide insight in Earned Value Management as implemented at CERN. Following this course will enable you to understand the EVM methodology, the tools used at CERN, the procedures used for the data-collection and data-reporting and assist you in analysing cost & schedule variances. The course is an intensive 2-hour 'hands-on' training session. If you are interested in this course, please discuss with your supervisor or your DTO. More information and online registration by EDH are available from the Technical Training web pages: http://www.cern.ch/TechnicalTraining/

  13. CERN at Arles: LHC featured in prestigious photography festival

    CERN Multimedia

    Jordan Juras

    2011-01-01

    Six photographs of the LHC experiment are being featured in this year’s Rencontres d’Arles photography festival. Simon Norfolk’s series, The LHC: the spirit of enquiry, was chosen as part of an exhibition celebrating 30 years of photography at the New York Times Magazine.   Simon Norfolk’s series "The LHC: the spirit of enquiry" on display at the Rencontres d'Arles festival. The photographs were originally taken in October 2006, when Norfolk was sent on an assignment to a ‘little known’ laboratory in Switzerland. “When I came to CERN, nobody I knew had ever heard of the place,” explains Norfolk. “Everybody I spoke to when I came back said, ‘You’ve been where? You’ve done what?’” Kathy Ryan, New York Times Magazine photo editor, sent Norfolk to ‘capture something new’. He describes Ryan’s assignments...

  14. CERN Open Days 2013, Point 4: LHC Radio Frequency

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: At Point 4 visitors will descend into the LHC tunnel to see the "engine" of the collider: the accelerating cavities where the circulating particles get a small kick of energy as they pass by 11,000 times each second. During your visit underground, you will see the superconducting magnets as well as instruments for observing the beams. You will also walk through the huge cavern containing the Radio Frequency power plants which provide the particle beams with energy. On surface no restricted access  Above ground, you will see the cryogenics installations which keep the accelerator at a just few degrees above absolute zero. Lots of fascinating information and exhibits about CERN's accelerators and experiments will be on display, with CERN engineers and physicists on hand all day to answer your questions.

  15. CERN Technical Training Programme: Learning for the LHC !

    CERN Multimedia

    2003-01-01

    CLEAN-2002: Working in a Cleanroom CLEAN-2002 is a free of charge, half-day seminar in the context of Technical Training for the LHC. The course is designed for personnel working or managing activities in an assembly cleanroom, for example physicists, engineers and technicians working at or visiting the laboratory. CLEAN-2002 is aimed at raising awareness about good working practices in a cleanroom, and at providing practical examples, analysis tools, and documentation. Specific problems put forward beforehand by attendees will also be addressed. If you are interested in CLEAN-2002, please discuss with your supervisor or your DTO. More information and online registration by EDH are available from the Technical Training pages: http://www.cern.ch/TechnicalTraining/ The next session, in English, will be on Friday, 11 April 2003 (afternoon). Organiser: Davide Vitè / HR-TD / 75141 Davide.Vite@cern.ch

  16. CERN Technical Training Programme: Learning for the LHC!

    CERN Multimedia

    CLEAN-2002: Working in a Cleanroom CLEAN-2002 is a free of charge, half-day seminar in the context of Technical Training for the LHC. The course is designed for personnel working or managing activities in an assembly cleanroom, for example physicists, engineers and technicians working at or visiting the laboratory. CLEAN-2002 is aimed at raising awareness about good working practices in a cleanroom, and at providing practical examples, analysis tools, and documentation. Specific problems put forward beforehand by attendees will also be addressed. If you are interested in CLEAN-2002, please discuss with your supervisor or your DTO. More information and online registration by EDH are available from the Technical Training pages: http://www.cern.ch/TechnicalTraining/ The next session in French will be on Thursday, 4 September 2003 (afternoon), and in English on Thursday, 23 October 2003 (afternoon). Organiser: Davide Vitè / HR-TD / 75141 Davide.Vite@cern.ch

  17. Signature of two CERN/ISTC contracts

    CERN Document Server

    Patrice Loïez

    2000-01-01

    Photo 08; l. to r. Mr L. Maiani, Director General of CERN, Mr A. Gérard, Director of the International Science and Technology Centre (ISTC), Moscow, Mr B. Dolgoshein, Vice Rector of MEPhi (Moscow Engineering and Physics Institute), B.Onykiy, Rector of MEPhi,Moscow Photo 02; Mr L. Maiani and Mr A. Gérard

  18. Disk storage at CERN: Handling LHC data and beyond

    International Nuclear Information System (INIS)

    Espinal, X; Adde, G; Chan, B; Iven, J; Presti, G Lo; Lamanna, M; Mascetti, L; Pace, A; Peters, A; Ponce, S; Sindrilaru, E

    2014-01-01

    The CERN-IT Data Storage and Services (DSS) group stores and provides access to data coming from the LHC and other physics experiments. We implement specialised storage services to provide tools for optimal data management, based on the evolution of data volumes, the available technologies and the observed experiment and users' usage patterns. Our current solutions are CASTOR, for highly-reliable tape-backed storage for heavy-duty Tier-0 workflows, and EOS, for disk-only storage for full-scale analysis activities. CASTOR is evolving towards a simplified disk layer in front of the tape robotics, focusing on recording the primary data from the detectors. EOS is now a well-established storage service used intensively by the four big LHC experiments. Its conceptual design based on multi-replica and in-memory namespace, makes it the perfect system for data intensive workflows. The LHC-Long Shutdown 1 (LSI) presents a window of opportunity to shape up both of our storage services and validate against the ongoing analysis activity in order to successfully face the new LHC data taking period in 2015. In this paper, the current state and foreseen evolutions of CASTOR and EOS will be presented together with a study about the reliability of our systems.

  19. Review of the ATLAS experiment at the LHC (CERN)

    International Nuclear Information System (INIS)

    Taylor, G.

    1998-01-01

    Full text: This talk gives in overview of the physics program for the next generation high energy physics experiments at CERN's Large Hadron Collider (LHC). Emphasis will be on the ATLAS experiment and in particular on the Australian participation in that experiment. Australian physicists from Melbourne, Sydney and Wollongong are playing a significant role in the development, production, installation and operation of the ambitious Semiconductor Tracker (SCT) in the ATLAS' Inner Detector. The SCT, particularly important for the detection and measurement of high energy electrons, will be essential in the search for the Higgs Boson through electron decay channels (amongst other reactions). The design calls for a total detector surface area an order of magnitude larger than in current silicon detectors, in a harsh radiation environment. Prodigious data rates and high speed electronics add to the complications of this detector. The talk will review progress and describe the schedule for the completion of the SCT and ATLAS

  20. Radiation protection at the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Potter, K.M.; Hoefert, M.; Stevenson, G.R.

    1996-01-01

    After a brief description of the Large Hadron Collider (LHC), which will produce 7 TeV on 7 TeV proton collisions, some of the radiological questions it raises will be discussed. The machine will be built in the 27 km circumference ring-tunnel of an existing collider at CERN. It aims to achieve collision rates of 10 9 per second in two of its high-energy particle detectors. This requires two high-intensity beams of more than 10 14 protons each. Shielding, access control and activation in addition to the high power in the proton-proton collisions must be taken into account. The detectors and local electronics of the particle physics experiments, which will surround these collisions, will have to be radiation resistant. Some of the environmental issues raised by the project will be discussed. (author)

  1. CERN

    CERN Multimedia

    2007-01-01

    "Geat ready for the mother of all particle accelerator: the Large Hadron Collider (LHC), nearing completion at CERN, the International particle physics lab headquartered in Geneva, Switzerland." (1 paragraph)

  2. 21 October 2008 - LHC Inauguration - European Commissioner for Science and Research J. Potocnik welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow.

    CERN Document Server

    CERN Photo Service

    2008-01-01

    21 October 2008 - LHC Inauguration - European Commissioner for Science and Research J. Potocnik welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow.

  3. 21 October 2008 - LHC Inauguration - Canadian Ambassador to Switzerland R. Collette welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow.

    CERN Multimedia

    CERN Photo Service

    2008-01-01

    21 October 2008 - LHC Inauguration - Canadian Ambassador to Switzerland R. Collette welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow.

  4. 21 October 2008 - LHC Inauguration - IHEP Beijing representative Prof. Chen, People's Republic of China, welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow.

    CERN Multimedia

    CERN Photo Service

    2008-01-01

    21 October 2008 - LHC Inauguration - IHEP Beijing representative Prof. Chen, People's Republic of China, welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow.

  5. submitter LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    CERN Document Server

    Barranco, Javier; Cameron, David; Crouch, Matthew; De Maria, Riccardo; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Van der Veken, Frederik; Zacharov, Igor

    2017-01-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted i...

  6. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    Science.gov (United States)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  7. Lecture series LHC: An exciting physics future for CERN

    CERN Multimedia

    2001-01-01

    All of us at CERN are working towards the same goal, a better understanding of the structure of matter, the forces which control it and thus a clearer picture of the behaviour of the entire Universe. Therefore I believe it is very important that everyone has a clear picture of the fascinating programme of physics that we can look forward to with the LHC and I have asked Professor Egil Lillestøl to give a short series of talks on this theme. Professor Lillestøl has long experience in simplifying the most complex concepts in physics and I know his talks will be both instructive and entertaining. The lectures will be targetted at people who have a scientific, engineering or technical background but are not specialists in the field of particle physics. Anyone who is curious about CERN physics and its future will find something of interest. The first lecture will be given on 31st January at 16.00 in the Main Auditorium. I encourage you all to attend. See also the lecture abstract and sche...

  8. The CERN Detector Safety System for LHC Experiments

    CERN Document Server

    Lüders, S; Morpurgo, G; Schmeling, S M

    2003-01-01

    The Detector Safety System (DSS), developed at CERN in common for the four LHC experiments under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the equipment protection for these experiments. Therefore, the DSS requires a high degree of both availability and reliability. It is composed of a Front-end and a Back-end part. The Front-end is based on a redundant Siemens PLC, to which the safety-critical part of the DSS task is delegated. The PLC Front-end is capable of running autonomously and of automati-cally taking predefined protective actions whenever re-quired. It is supervised and configured by the CERN-cho-sen PVSS SCADA system via a Siemens OPC server. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabili-ties. Configuration of the code running in the PLCs is completely data driven via the contents of a ?Configura-tion Database?. Thus, the DSS can easily adapt to the different and constantly evolving require...

  9. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  10. The CERN Detector Safety System for the LHC Experiments

    CERN Document Server

    Lüders, S; Morpurgo, G; Schmeling, S

    2003-01-01

    The Detector Safety System (DSS), currently being developed at CERN under the auspices of the Joint Controls Project (JCOP), will be responsible for assuring the protection of equipment for the four LHC experiments. Thus, the DSS will require a high degree of both availability and reliability. After evaluation of various possible solutions, a prototype is being built based on a redundant Siemens PLC front-end, to which the safety-critical part of the DSS task is delegated. This is then supervised by a PVSS SCADA system via an OPC server. The PLC front-end is capable of running autonomously and of automatically taking predefined protective actions whenever required. The supervisory layer provides the operator with a status display and with limited online reconfiguration capabilities. Configuration of the code running in the PLCs will be completely data driven via the contents of a "Configuration Database". Thus, the DSS can easily adapt to the different and constantly evolving requirements of the LHC experimen...

  11. Signatures of High-Scale Supersymmetry at the LHC

    CERN Multimedia

    CERN. Geneva; Spiropulu, Maria; Treille, D

    2004-01-01

    I will discuss the experimental signatures at the LHC of a novel paradigm-shift away from naturalness, suggested by the cosmological constant problem and the multitude of vacua in string theory. In the new paradigm supersymmetry can be broken near the unification scale, and the only light superparticles are the gauginos and higgsinos, which account for the successful unification of gauge couplings. This framework removes all the phenomenological difficulties of standard SUSY. The mass of the Higgs is in the range 120-160 GeV. Measuring the couplings of the Higgs to the gauginos and higgsinos precicely tests for high-scale SUSY. The gluino is strikingly long lived, and a measurement of its lifetime can determine the SUSY breaking scale. Signatures at the LHC detectors include out-of-time energy depositions, displaced vertices, and intermittent tracks.

  12. Supersymmetry, Naturalness, and Signatures at the LHC

    CERN Document Server

    Kitano, R; Kitano, Ryuichiro; Nomura, Yasunori

    2006-01-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tan\\beta, and a small \\mu parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC -- the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are...

  13. Lead Ions and Coulomb's Law at the LHC (CERN)

    Science.gov (United States)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-01-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…

  14. Controls for the CERN large hadron collider (LHC)

    International Nuclear Information System (INIS)

    Kissler, K.H.; Perriollat, F.; Rabany, M.; Shering, G.

    1992-01-01

    CERN's planned large superconducting collider project presents several new challenges to the Control System. These are discussed along with current thinking as to how they can be met. The high field superconducting magnets are subject to 'persistent currents' which will require real time measurements and control using a mathematical model on a 2-10 second time interval. This may be realized using direct links, multiplexed using TDM, between the field equipment and central servers. Quench control and avoidance will make new demands on speed of response, reliability and surveillance. The integration of large quantities of industrially controlled equipment will be important. Much of the controls will be in common with LEP so a seamless integration of LHC and LEP controls will be sought. A very large amount of new high-tech equipment will have to be tested, assembled and installed in the LEP tunnel in a short time. The manpower and cost constrains will be much tighter than previously. New approaches will have to be found to solve many of these problems, with the additional constraint of integrating them into an existing frame work. (author)

  15. Nanosecond Level UTC Timing Generation and Stamping in CERN's LHC

    CERN Document Server

    Alvarez, P; Lewis, J; Serrano, J

    2003-01-01

    The General Machine Timing (GMT) at CERN uses an RS-485 multi-drop network through which messages are broadcast by a Central Timing Generator (CTG) module at a rate of 500 kb/s and decoded by many receiver modules in different form factors. For long distance transmission, optical fibers are used. As a result of cabling and capacitive loading of the receivers' inputs, the timing message signal presents an average jitter of 14 ns at any receiver input. For the LHC era, the 500 kb/s rate will be maintained to ensure compatibility with old receivers. However, a special kind of Phase Locked Loop (PLL), involving digital control in a Field Programmable Gate Array (FPGA) and a DAC to control a Voltage Controlled Crystal Oscillator (VCXO), has been developed to generate a 40 MHz square wave at the receiving side which is locked on average to the timing message signal but presents a jitter of less than 1 ns. This 40 MHz signal is locked to UTC because the encoder in the CTG card uses a 40 MHz clock coming from a GPS r...

  16. Supersymmetry, Naturalness, and Signatures at the LHC

    International Nuclear Information System (INIS)

    Kitano, Ryuichiro; Nomura, Yasunori

    2006-01-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large Α term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low energy spectra that do not lead to severe .ne-tuning. Characteristic features of these spectra are: a large Α term for the top squarks, small top squark masses, moderately large tan β, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC--the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry breaking, which are relevant in a model without fine-tuning

  17. Restart of the LHC. CERN and the accelerators. The world machine illustratively explained; Neustart des LHC. CERN und die Beschleuniger. Die Weltmaschine anschaulich erklaert

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, Michael

    2016-07-01

    The following topics are dealt with: The development of the European research center for particle physics CERN, the standard model of elementary-particle physics, the detection of the W and Z bosons with the SPS collider, the principles of particle accelerators, the way to the LHC. (HSI)

  18. Supersymmetry production from a TeV scale black hole at CERN LHC

    International Nuclear Information System (INIS)

    Chamblin, Andrew; Cooper, Fred; Nayak, Gouranga C.

    2004-01-01

    If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the CERN LHC. Similarly, if the scale of supersymmetry (SUSY) breaking is sufficiently low, then we might expect to see light supersymmetric particles in the next generation of colliders. If the mass of the supersymmetric particle is of order a TeV and is comparable to the temperature of a typical TeV scale black hole, then such sparticles will be copiously produced via Hawking radiation: The black hole will act as a resonance for sparticles, among other things. In this paper we compare various signatures for SUSY production at LHC, and we contrast the situation where the sparticles are produced directly via parton fusion processes with the situation where they are produced indirectly through black hole resonances. We found that black hole resonances provide a larger source for heavy mass SUSY (squark and gluino) production than the direct perturbative QCD-SUSY production via parton fusion processes depending on the values of the Planck mass and black hole mass. Hence black hole production at LHC may indirectly act as a dominant channel for SUSY production. We also found that the differential cross section dσ/dp t for SUSY production increases as a function of the p t (up to p t equal to about 1 TeV or more) of the SUSY particles (squarks and gluinos), which is in sharp contrast with the pQCD predictions where the differential cross section dσ/dp t decreases as p t increases for high p t about 1 TeV or higher. This is a feature for any particle emission from a TeV scale black hole as long as the temperature of the black hole is very high (∼TeV). Hence the measurement of increase of dσ/dp t with p t for p t up to about 1 TeV or higher for final state particles might be a useful signature for black hole production at LHC

  19. CERN receives its first US-built component for the LHC

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    In a milestone for global science collaboration, CERN has taken delivery of the first US-built contribution to the LHC. The 25-tonne interaction-region dipole magnet, which will guide the LHC's two counter-rotating beams of protons into collision, was built at the US Brookhaven National Laboratory. It is the first of 20 that the laboratory will ultimately provide and took nine months for more than 100 scientists, engineers and technicians to construct. Brookhaven's Superconducting Magnet Division is now building the remaining 19 magnets, which will be shipped to CERN later this year. They are provided for the LHC under the terms of a 1998 agreement between CERN and the US Department of Energy and National Science Foundation.

  20. Flavorful Z{sup '} signatures at LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.-L. [Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China); Okada, Nobuchika [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Theory Group, KEK, Tsukuba 305-0801 (Japan)], E-mail: okadan@post.kek.jp

    2008-10-30

    There are lots of new physics models which predict an extra neutral gauge boson, referred as Z{sup '}-boson. In a certain class of these new physics models, the Z{sup '}-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z{sup '}-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z{sup '}-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z{sup '}-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z{sup '}-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z{sup '}-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z{sup '}-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.

  1. Llewellyn Smith, Director-General designate of CERN, discusses LHC

    CERN Multimedia

    Sweet, William N

    1992-01-01

    Christopher Llewellyn Smith was nominated by the Committee of Council to be Director General of CERN. He aims to pave the way for the Large Hadron Collider and utilize to the full the Large Electron-Positron machine.

  2. Big Bang test delayed at CERN's LHC until 2008

    CERN Multimedia

    Atkins, William

    2007-01-01

    "Scientists at the proton-proton Large Hadron Collider (LHC) particle accelerator and collider will postpone a test that could help solve the mystery of what happened a few nanoseconds after the Big Bang." (1 page)

  3. CERN Technical Training 2008: Learning for the LHC!

    CERN Multimedia

    2008-01-01

    FLUKA Workshop 2008: 23-27 June 2008 http://www.cern.ch/Fluka2008 FLUKA is a fully integrated particle physics Monte-Carlo simulation package. It has many applications in high energy experimental physics and engineering, shielding, detector and telescope design, cosmic ray studies, dosimetry, medical physics and radio-biology. More information, as well as related publications can be found on the FLUKA official website (www.fluka.org). This year, the CERN FLUKA Team, in collaboration with INFN and SC/RP, is organizing a FLUKA beginner’s course, held at CERN for the first time. Previous one-week courses were given in Frascati (Italy), twice in Houston (Texas, US), Pavia (Italy), as well as in Legnaro (Italy). At CERN, continuous lectures are provided in the framework of locally scheduled ‘FLUKA User Meetings’ (http://www.cern.ch/info-fluka-discussion). This new dedicated one-week CERN training course will be an opportunity for new users to learn the basics about FLUKA, as well as offer the possibility to...

  4. Single top quark production at the CERN LHC as a probe of R parity violation

    CERN Document Server

    Chiappetta, P; Nagy, E; Negroni, S; Polesello, G; Virey, J M

    2000-01-01

    We investigate the potential of the CERN LHC to probe the R parity violating couplings involving the third generation by considering single top quark production. This study is based on particle level event generation for both signal and background, interfaced to a simplified simulation of the ATLAS detector. (17 refs).

  5. A 40 MHz Bunch by Bunch Intensity Measurement for the CERN SPS and LHC

    CERN Document Server

    Jakob, H; Jones, R; Jensen, L

    2003-01-01

    A new acquisition system has been developed to allow the measurement of the individual intensity of each bunch in a 40MHz bunch train. Such a system will be used for the measurement of LHC type beams after extraction from the CERN-PS right through to the dump lines of the CERN-LHC. The method is based on integrating the analogue signal supplied by a Fast Beam Current Transformer at a frequency of 40MHz. This has been made possible with the use of a fast integration ASIC developed by the University of Clermont-Ferrand, France, for the LHC-b pre-shower detector. The output of the integrator is digitised using a 12-bit ADC and fed into a Digital Acquisition Board (DAB) that was originally developed by TRIUMF, Canada, for use in the LHC orbit system. A full system set-up was commissioned during 2002 in the CERN-SPS, and following its success will now be extended in 2003 to cover the PS to SPS transfer lines and the new TT40 LHC extraction channel.

  6. Phenomenological signatures of additional scalar bosons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Buddenbrock, Stefan von; Kar, Deepak; Mellado, Bruce; Reed, Robert G.; Ruan, Xifeng [University of the Witwatersrand, School of Physics, Johannesburg, Wits (South Africa); Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-Based Particle Physics, Jhunsi, Allahabad (India); Cornell, Alan S.; Kumar, Mukesh [University of the Witwatersrand, National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, Johannesburg, Wits (South Africa); Mandal, Tanumoy [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden)

    2016-10-15

    We investigate the search prospects for new scalars beyond the standard model at the large hadron collider (LHC). In these studies two real scalars S and χ have been introduced in a two Higgs-doublet model (2HDM), where S is a portal to dark matter (DM) through its interaction with χ, a DM candidate and a possible source of missing transverse energy (E{sub T}{sup miss}). Previous studies focussed on a heavy scalar H decay mode H → hχχ, which was studied using an effective theory in order to explain a distortion in the Higgs boson (h) transverse momentum spectrum (von Buddenbrock et al. in arXiv:1506.00612 [hep-ph], 2015). In this work, the effective decay is understood more deeply by including a mediator S, and the focus is changed to H → hS, SS with S → χχ. Phenomenological signatures of all the new scalars in the proposed 2HDM are discussed in the energy regime of the LHC, and their mass bounds have been set accordingly. Additionally, we have performed several analyses with final states including leptons and E{sub T}{sup miss}, with H → 4W, t(t)H → 6 W and A → ZH channels, in order to understand the impact these scalars have on current searches. (orig.)

  7. Supersymmetry, naturalness, and signatures at the CERN LHC

    Science.gov (United States)

    Kitano, Ryuichiro; Nomura, Yasunori

    2006-05-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low-energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tan⁡β, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC—the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry-breaking, which are relevant in a model without fine-tuning.

  8. Contextualized Magnetism in Secondary School: Learning from the LHC (CERN)

    Science.gov (United States)

    Cid, Ramon

    2005-01-01

    Physics teachers in secondary schools usually mention the world's largest particle physics laboratory--CERN (European Organization for Nuclear Research)--only because of the enormous size of the accelerators and detectors used there, the number of scientists involved in their activities and also the necessary international scientific…

  9. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, P. Y.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling

  10. Highlights from the ATLAS experiment at CERN LHC

    CERN Document Server

    Tsukerman, Ilya; The ATLAS collaboration

    2018-01-01

    Highlights from the ATLAS Experiment at the LHC are presented. Results shown are mostly based on the analysis of 2015-2016 year dataset which corresponds to the luminosity 36 inverse fb. Mainly recent measurements of Higgs boson production and decay are discussed while only summary of summaries is given for the SM processes, top production, SUSY and Exotics.

  11. CERN and LHC - their place in global science

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The Large Hadron Collider (LHC) is the largest scientific instrument in the world. It brings into collision intense beams of protons and ions to explore the structure of matter and investigate the forces of nature at an unprecedented energy scale, thus serving a community of some 7,000 particle physicists from all over the world.

  12. Cern

    CERN Multimedia

    2009-01-01

    "La réparation de l'accélérateur géant de particules LHC, qui devrait redémarrer mi-novembre aprés une panne de plus d'un an, a coûté 23 millions d'euros, selon un haut responsable du Centre européen de recherche nucléaire (CERN), cité vendredi par les médias espagnols" (1 paragraph)

  13. Lead ions and Coulomb’s Law at the LHC (CERN)

    Science.gov (United States)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  14. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  15. Decentralized Data Storage and Processing in the Context of the LHC Experiments at CERN

    CERN Document Server

    Blomer, Jakob; Fuhrmann, Thomas

    The computing facilities used to process data for the experiments at the Large Hadron Collider (LHC) at CERN are scattered around the world. The embarrassingly parallel workload allows for use of various computing resources, such as computer centers comprising the Worldwide LHC Computing Grid, commercial and institutional cloud resources, as well as individual home PCs in “volunteer clouds”. Unlike data, the experiment software and its operating system dependencies cannot be easily split into small chunks. Deployment of experiment software on distributed grid sites is challenging since it consists of millions of small files and changes frequently. This thesis develops a systematic approach to distribute a homogeneous runtime environment to a heterogeneous and geographically distributed computing infrastructure. A uniform bootstrap environment is provided by a minimal virtual machine tailored to LHC applications. Based on a study of the characteristics of LHC experiment software, the thesis argues for the ...

  16. Some remarks concerning the Cost/Benefit Analysis applied to LHC at CERN

    CERN Document Server

    Schopper, Herwig

    2016-01-01

    The cost/benefit analysis originally developed for infrastructures in the economic sector has recently been extended by Florio et al to infrastructures of basic research. As a case study the large accelerator LHC at CERN and its experiments have been selected since as a paradigmatic example of frontier research they offer an excellent case to test the CBA model. It will be shown that in spite of this improved method the LHC poses serious difficulties for such an analysis. Some principle difficulties are due to the special character of scientific projects. Their main result is the production of new basic scientific knowledge whose net social value cannot be easily expressed in monetary terms. Other problems are related to the very strong integration of LHC into the general activities of CERN providing however, interesting observations concerning a new management style for global projects. Finally the mission of CERN (including LHC) is unique since it was founded with two tasks - promote science and bring natio...

  17. Arc detector system for extraction switches in LHC CERN

    CERN Document Server

    Dahlerup-Petersen, K; Kuper, E; Ovchar, V; Zverev, S

    2006-01-01

    The opening switches, which will be used in case of quenches or other failures in CERN’s future LHC collider to extract the large amounts of energy stored in the magnetic field of the superconducting chains of main dipoles (8 chains with 1350 MJ each) and main quadrupoles (16 chains with about 24 MJ each) consist of an array of series/parallel connected, electro-mechanical D.C. breakers, specifically designed for this particular application. During the opening process the magnet excitation current is transferred from the cluster of breakers to extraction resistors for rapid de-excitation of the magnet chain. An arc detector has been developed in order to facilitate the determination of the need for maintenance interventions on the switches. The paper describes the arc detector and highlight results from operation of the detector with a LHC pilot extraction...

  18. Performance of the ALICE Experiment at the CERN LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Jimenez, Ramon; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

  19. Exclusive ϒ photoproduction in hadronic collisions at CERN LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, V.P., E-mail: barros@ufpel.edu.br [High and Medium Energy Group, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Moreira, B.D.; Navarra, F.S. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP (Brazil)

    2015-03-06

    The exclusive ϒ photoproduction in proton–proton and proton–nucleus collisions at LHC energies is investigated using the color dipole formalism and considering different models for the ϒ wave function and forward dipole–target scattering amplitude. Our goal is to update the color dipole predictions and estimate the theoretical uncertainty present in these predictions. We present predictions for the kinematical ranges probed by the ALICE, CMS and LHCb Collaborations.

  20. CERN Technical Training 2004: Learning for the LHC!

    CERN Multimedia

    Monique Duval

    2004-01-01

    If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Divisional Secretariat or from your DTO (Divisional Training Officer). Applications will be accepted in the order of their receipt. Programmation Unity-Pro pour utilisateurs de Schneider PL7-Pro Annonce de nouveau cours pour l'environnement d'automatisme Schneider. Un nouveau cours sur les environnements d'automatisme Premium et Quantum de Schneider est maintenant offert dans le cadre de l'Enseignement technique du CERN, afin de découvrir le nouvel outil de programmation Unity. Cette formation, mise en place par le GUAPI (Groupe des utilisateurs d'automates programmable industriels du CERN), sera essentiellement technique et pratique, destinée aux automaticiens concepteurs, metteurs en œu...

  1. CERN Expenditure Tracking: an improved financial tool for the LHC era

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    In order to face the challenges of the LHC era, and following the recommendations of the External Review Committee, CERN Expenditure Tracking (CET) will soon replace the Budget Holders' Toolkit (BHT) application as a versatile and user-friendly way to view CERN financial data. It will offer significantly more functionality than BHT. Pictured here is the team in Administrative Services division responsible for developing CET. From left to right: (standing) Per Gunnar Jonsson, James Purvis, Mikael Angberg; (seated) Martyn Rankin, David McGlashan.

  2. Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing

    CERN Document Server

    Herr, Werner; McIntosh, E; Schmidt, F

    2006-01-01

    We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 60000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.

  3. The role of CERN in the large construction contracts for LHC civil works

    CERN Document Server

    D'Aça-Castel-Branco, P

    1998-01-01

    The contracts for the civil engineering construction of the LHC are based upon the standard FIDIC (Fédération Internationale des Ingénieurs Conseils) document entitled "Conditions of Contract for Works of Civil Engineering Construction". FIDIC is a reputable supra-national and world-wide Federation of Consulting Engineers focused on the definition and regulation of the role of many parties involved with the International Construction Industry. An overview of FIDIC's and other Organizations', such as the World Bank, standard documents is presented. The difference between standard Contract documents and standard Bidding documents is pointed out. In view of CERN's status as an intergovernmental Organization, the original FIDIC standard documents needed to be adapted. The modifications are identified and explained. A concise definition of the role of each party concerned by the LHC construction Contracts, i.e. the Contractor, the Engineer and the Client (CERN), is made. Finally, a brief cost-benefit analysis o...

  4. CERN Technical Training 2003: Learning for the LHC!

    CERN Multimedia

    2003-01-01

    AXEL-2003 - Introduction to Particle Accelerators AXEL-2003 is a course given at CERN within the framework of the Technical Training Programme. The course will present an introduction to particle accelerators. Known in the past as the PS Complex Operation Course (or the "PS Shutdown Course"), and organised by the ex-PS division until last year, it is now organised as a joint venture between the AB division and Technical Training, and open to a wider CERN community. The AXEL-2003 course series is designed for technicians who are operating an accelerator, or whose work is closely linked to accelerators, but it is open to all people (technicians, engineers, physicists) interested in this field. The course does not require any prior knowledge on accelerators. However, some basic knowledge on trigonometry, matrices and differential equations, and some basic notions of magnetism would be an advantage. The course and the course supports will be in English, with questions and answers also in French. Lectures wil...

  5. CERN Technical Training 2003: Learning for the LHC!

    CERN Multimedia

    2003-01-01

    AXEL-2003  -  Introduction to Particle Accelerators   AXEL-2003 is a course given at CERN within the framework of the Technical Training Programme. The course will present an introduction to particle accelerators. Known in the past as the PS Complex Operation Course (or the "PS Shutdown Course"), and organised by the ex-PS division until last year, it is now organised as a joint venture between the AB division and Technical Training, and open to a wider CERN community. The AXEL-2003 course series is designed for technicians who are operating an accelerator, or whose work is closely linked to accelerators, but it is open to all people (technicians, engineers, physicists) interested in this field. The course does not require any prior knowledge on accelerators. However, some basic knowledge on trigonometry, matrices and differential equations, and some basic notions of magnetism would be an advantage. The course and the course supports will be in English, with questions and answers also in French. Lectur...

  6. CERN Technical Training 2004: Learning for the LHC!

    CERN Multimedia

    Monique Duval

    2004-01-01

    Programmation Unity-Pro pour utilisateurs de Schneider PL7-Pro Annonce de nouveau cours pour l'environnement d'automatisme Schneider. Un nouveau cours sur les environnements d'automatisme Premium et Quantum de Schneider est maintenant offert dans le cadre de l'Enseignement technique du CERN, afin de découvrir le nouvel outil de programmation Unity. Cette formation, mise en place par le GUAPI (Groupe des utilisateurs d'automates programmable industriels du CERN), sera essentiellement technique et pratique, destinée aux automaticiens concepteurs, metteurs en œuvre, installateurs, intégrateurs et techniciens de bureau d'études. Ce cours est ouvert aux personnes étant déjà capables de développer une application PL7-Pro sur TSX Premium, ou ayant suivi le stage AP571. Objectifs : Maîtriser rapidement les différences fonctionnelles d'Unity-Pro par rapport à PL7-Pro; programmer en PLC...

  7. Operation of the GTS-LHC Source for the Hadron Injector at CERN

    CERN Document Server

    Dumas, L; Hitz, D; Küchler, D; Mastrostefano, C; O'Neill, M; Scrivens, R

    2007-01-01

    The GTS-LHC ion source, designed and build by CEA Grenoble, was installed and commissioned at CERN in 2005. Since than the source has delivered oxygen and lead ion beams (O4+ and Pb27+ from the source, Pb54+ from the linac) for the commissioning of the Low Energy Ion Ring (LEIR). Results of this operation and attempts to improve the source performance and reliability, and the linac performance will be presented in this paper.

  8. Operation of the GTS-LHC source for the hadron injector at CERN

    International Nuclear Information System (INIS)

    Dumas, L.; Hill, C.; Hitz, D.; Kuchler, D.; Mastrostefano, C.; O'Neil, M.; Scrivens, R.

    2007-01-01

    The GTS-LHC ion source, designed and build by CEA Grenoble, was installed and commissioned at CERN in 2005. Since than the source has delivered oxygen and lead ion beams (O4+ and Pb27+ from the source, Pb54+ from the linac) for the commissioning of the Low Energy Ion Ring (LEIR). Results of this operation and attempts to improve the source performance and reliability, and the linac performance will be presented in this paper. (authors)

  9. Operation of the GTS-LHC source for the hadron injector at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, L.; Hill, C.; Hitz, D.; Kuchler, D.; Mastrostefano, C.; O' Neil, M.; Scrivens, R. [CERN, AB ABP HSL, CH-1211 Geneva 23, (Switzerland); CEA, DRFMC SBT, F-38054 Grenoble, (France)

    2007-07-01

    The GTS-LHC ion source, designed and build by CEA Grenoble, was installed and commissioned at CERN in 2005. Since than the source has delivered oxygen and lead ion beams (O4+ and Pb27+ from the source, Pb54+ from the linac) for the commissioning of the Low Energy Ion Ring (LEIR). Results of this operation and attempts to improve the source performance and reliability, and the linac performance will be presented in this paper. (authors)

  10. CERN TECHNICAL TRAINING 2002: LEARNING FOR THE LHC!

    CERN Multimedia

    Davide Vitè

    2002-01-01

    - FEED-2002 - Analogue and Digital Techniques in Closed Loop Regulation Applications   FEED-2002 is a two-term course, given by CERN engineers in a new format within the framework of the Technical Training Programme. The course will review the techniques dealing with closed loop systems, focussing on time-invariant linear systems. FEED-2002 is composed of two terms, and of an open Introductory Lecture. Attendance to the Introductory Lecture is a prerequisite to the participation to both terms. All sessions will take place on Tuesdays afternoons in the Training Centre Auditorium, from 14h30 to 17h00. The course will be in English, with questions and answers also in French.   Introductory Lecture: AD/DA Conversion Techniques - An Overview Technical Training Seminar, 17 September 2002 (free attendance, no registration required) Lecturer: John Pett, SL-PO Programme: The modern Analogue to Digital (AD) and Digital to Analogue (DA) conversion methods. Digital representations of time-varyi...

  11. CERN TECHNICAL TRAINING 2002: LEARNING FOR THE LHC !

    CERN Multimedia

    Davide Vitè

    2002-01-01

    - FEED-2002 - Analogue and Digital Techniques in Closed Loop Regulation Applications   FEED-2002 is a two-term course, given by CERN engineers in a new format within the framework of the Technical Training Programme. The course will review the techniques dealing with closed loop systems, focussing on time-invariant linear systems. FEED-2002 is composed of two terms, and of an open Introductory Lecture. Attendance to the Introductory Lecture is a prerequisite to the participation to both terms. All sessions will take place on Tuesdays afternoons in the Training Centre Auditorium, from 14h30 to 17h00. The course will be in English, with questions and answers also in French.   Introductory Lecture: AD/DA Conversion Techniques - An Overview Technical Training Seminar, 17 September 2002 (free attendance, no registration required) Lecturer: John Pett, SL-PO Programme: The modern Analogue to Digital (AD) and Digital to Analogue (DA) conversion methods. Digital representations of time-varying, rea...

  12. Project of the ATLAS experiment by LHC of CERN

    International Nuclear Information System (INIS)

    Andrieux, M.L.; Belhorma, B.; Collot, J.; Saintignon, P. de; Dzahini, D.; Ferrari, A.; Hostachy, J.Y.; Martin, Ph.; Rey-Campagnolle, M.; Belymam, A.; Wielers, B.

    1997-01-01

    The group is involved in the construction of the liquid argon calorimeter of the ATLAS detector. Following an intense R and D phase, the final detailed design at the ATLAS calorimeter was finalized, written and approved by the LHC committee. ATLAS is now in a pre-construction phase which implies that the group activities are mainly devoted to the installation of the assembly line of the electromagnetic pre-sampler sectors. Our R and D activities on the calorimeter electronics were pursued along two lines: the optimization of the filtering amplifiers and a participation to the development of optical links for data transmission. Liquid argon pollution tests under radiation were also achieved at SARA. They proved the radiation hardness of the liquid argon calorimeter. We recently showed that the search for heavy right-handed neutrinos up to m N < 3 TeV is possible with the ATLAS detector. (authors)

  13. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Science.gov (United States)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  14. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Directory of Open Access Journals (Sweden)

    M. Borg

    2018-03-01

    Full Text Available The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  15. Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN

    CERN Document Server

    Zamantzas, C; Effinger, E; Emery, J; Jackson, S

    2014-01-01

    The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.

  16. CERN: LEP to higher energy/LHC magnet string test

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    At 19.45 on 31 October, CERN's LEP electron-positron collider, equipped with superconducting radiofrequency accelerating cavities, registered its first events at a record collision energy of 130 GeV. During November, LEP went on to operate in the 130-140 GeV collision energy range. Fabrication and installation of the superconducting radiofrequency accelerating cavities needed to boost the energy of LEP's electron and positron beams have speeded up as confidence and expertise have increased. 16 additional cavities were installed in a brief technical stop during October. For the substantially upgraded machine to supply 65 GeV beams immediately and at luminosities comparable to those routinely attained before shows that the complicated technology needed for the superconducting cavities and mastering the machine itself are well under control - yet another remarkable achievement in CERN's tradition of remarkable achievements. Before the end-1995 run, LEP had been operating around the Z resonance at 91 GeV ever since its commissioning in 1989. LEP precision data on the Z, the electrically neutral carrier of the weak nuclear force, is now complete, and attention shifts toward the next major objective, accumulating data on the W, the Z's electrically charged counterpart. Unlike the Z, produced singly in electron-positron annihilations, the electrically charged Ws have to be produced in pairs. During the coming long shutdown, more superconducting modules will be installed to prepare for recommencement of operations in June, this time at collision energies of 161 GeV, allowing a first step across a longawaited 2W threshold. Later in the year more cavities will be ready to boost collision energies to 176 GeV. However in the meantime the LEP experiments, no longer blinded by the Z resonance, will be keeping a sharp eye open for new physics, and in particular for signs of as yet unseen supersymmetric particles. Theorists have long been convinced that our

  17. 20 Novemnber 2013 - Ambassador of the Kingdom of the Netherlands to Switzerland B. Twaalfhoven in the LHC tunnel with CERN scientists G. De Rijk and H. Ten Kate; signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    20 Novemnber 2013 - Ambassador of the Kingdom of the Netherlands to Switzerland B. Twaalfhoven in the LHC tunnel with CERN scientists G. De Rijk and H. Ten Kate; signing the guest book with CERN Director-General R. Heuer.

  18. 21 October 2008 - LHC Inauguration - Swedish Minister for Higher Education and Research L. Leijonborg welcomed by CERN Director-General R. Aymar and CERN Chief Scientific Officer J. Engelen and signing the electronic guest book with T. Pettersson.

    CERN Multimedia

    CERN Photo Service

    2008-01-01

    21 October 2008 - LHC Inauguration - Swedish Minister for Higher Education and Research L. Leijonborg welcomed by CERN Director-General R. Aymar and CERN Chief Scientific Officer J. Engelen and signing the electronic guest book with T. Pettersson.

  19. 21 October 2008 - LHC Inauguration - Czech Deputy Minister of Education, Youth and Sports, responsible for Science and Universities V. Ruzicka welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow and signing the electronic guest book with CERN user R. Leitner.

    CERN Document Server

    CERN Photo Service

    2008-01-01

    21 October 2008 - LHC Inauguration - Czech Deputy Minister of Education, Youth and Sports, responsible for Science and Universities V. Ruzicka welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow and signing the electronic guest book with CERN user R. Leitner.

  20. CERN: A hinge between LEP and the LHC

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Later this year, if all goes well, the beam energy of CERN's LEP electron-positron collider should be increased to around 70 GeV per beam (collision energy 140 GeV), giving a foretaste of things to come. Since 1989, the 27-kilometre ring has been operating around 45 GeV per beam to feed its four physics experiments with a steady diet of Z particles, the electrically neutral carriers of the weak nuclear force. This has given precision results on vital parameters of the Standard Model. Meanwhile work has been steadily pushing ahead to upgrade LEP to LEP2, installing superconducting radiofrequency cavities (January 1994, page 6) and ancillary cryogenics equipment to boost the machine's energy and reach new areas of physics interest. The initial goal is to produce pairs of W particles, the electrically charged counterparts of the Z. As far as the machine is concerned, at these higher energies, the 'beambeam' interaction between the contra-rotating electrons and positrons is reduced, so more particles can be pumped into the ring. To achieve this, LEP has switched to the new 'bunch train' scheme (see page 14) each train containing several 'carriages' (bunches) of particles. To attain its physics objectives, LEP2's target is 500 inverse picobarns of integrated luminosity over the next few years. This is a challenge as LEP's integrated luminosity to date (since the machine was commissioned in 1989) is some 160 inverse picobarns, itself viewed as no mean achievement. To reach higher energies, the accelerating power at LEP is being increased with installation of superconducting radiofrequency cavities. After initial trials with solid niobium, LEP2 relies on the more reliable performance provided by copper, with its better heat conduction properties, coated with a superconducting film of niobium. Even so heroic preprocessing is required to ensure optimal performance. After initial trials revealed welding weaknesses, the

  1. Identifying Supersymmetry at the CERN LHC and Indirect Dark Matter Detection Experiments

    CERN Document Server

    Grajek, Phillip

    Supersymmetry (SUSY) remains the most well-motivated scenario for new physics beyond the Standard Model. There is strong reason to expect that if nature is supersymmetric it will be observed at the LHC. Consequently, searches for SUSY are among the primary tasks of the LHC program. However, much of this work focuses on scenarios such as mSUGRA, which include many simplifying assumptions. It is necessary, therefore, to consider the broader SUSY parameter space, and explore the implications of various other model choices on the spectrum of possible experimental signatures. This thesis addresses this phenomenologically challenging problem. We present several studies that examine the relationship between various SUSY scenarios and experimental phenomena, and introduce new techniques to extract meaningful information about fundamental parameters. First, we discuss identification of multiple top quark production from gluino decay at the LHC. We find that 4-top production can be discovered in excess of Standard Mode...

  2. Rapport final de la Collaboration CERN-CNRS pour la construction du LHC Accord Technique d'Exécution No 2 Cryostats et assemblage des sections droites courtes (SSS) du LHC

    CERN Document Server

    Bergot, JB; Poncet, A; Rohmig, P; Roy, E; Vincent, D

    2006-01-01

    Depuis 1995 et suite à la signature du protocole de Collaboration, le CERN, le CEA et le CNRS ont étroitement collaboré dans le cadre de la contribution exceptionnelle de la France à la construction du LHC. Pour le CNRS, l'Institut de Physique Nucléaire d'Orsay a pris en charge deux Accords Techniques d'Exécution. Le premier concerne la conception et l'assemblage des Sections Droites Courtes de la machine, et le deuxième, l'étalonnage des thermomètres cryogéniques du LHC. Dans le cadre de l'Accord Technique d'Exécution N°2, le Bureau d'Etudes de la Division Accélérateur de l'IPNO et le groupe AT-CRI du CERN ont travaillé de concert pour mener à bien la conception des SSS (Short Straight Section) et de tous les équipements nécessaires à l'assemblage. Ce rapport a donc pour objectif de dresser, en termes d'historique, d'organisation, de résultats quantitatifs et qualitatifs et de moyens mis en ?uvre, un tableau aussi complet que possible du déroulement de cette Collaboration entre le CERN e...

  3. Control of the Dipole Cold Mass Geometry at CERN to Optimize LHC Performance

    CERN Document Server

    Wildner, E; La China, M; Tommasini, D

    2006-01-01

    The detailed shape of the 15 m long superconducting LHC dipole cold mass is of high importance as it determines three key parameters: the beam aperture, nominally of the order of 10 beam standard deviations; the connectivity of the beam- and technical lines between magnets; the transverse position of non-linear correctors mounted on the dipole ends. An offset of the latter produces unwanted beam dynamics perturbations. The tolerances are in the order of mm over the length of the magnet. The natural flexibility of the dipole and its mechanical structure allow deformations during handling and transportation which exceed the tolerances. This paper presents the observed deformations of the geometry during handling and various operations at CERN, deformations which are interpreted thanks to a simple mechanical model. These observations have led to a strategy of dipole geometry control at CERN, based on adjustment of the position of its central support (the dipole is supported at three positions, horizontally and v...

  4. Assembly and Quality Control of the LHC Cryostats at CERN Motivations, Means, Results and Lessons Learnt

    CERN Document Server

    Poncet, A; Parma, V; Strubin, P; Tock, JP; Tommasini, D

    2007-01-01

    In 2001, the project management decided to perform at CERN the final assembly of the LHC superconducting magnets with cryostat parts and cold masses produced by European Industry in large series. This industrial-like production has required a very significant investment in tooling, production facilities, engineering and quality control efforts, in contractual partnership with a consortium of firms. This unusual endeavour of a limited lifetime represented more than 850,000 working hours spanning over five years, the work being done on a result-oriented basis by the contractor. This paper presents the reasons for having conducted this project at CERN, summarizes the work breakdown structure, the production means and methods, the infrastructure specially developed, the tooling, logistics and quality control aspects of the work performed and the results achieved, in analytical form. Finally, the lessons learnt are outlined.

  5. Air liquide 1.8 K refrigeration units for CERN LHC project

    International Nuclear Information System (INIS)

    Hilbert, Benoit; Gistau-Baguer, Guy M.; Caillaud, Aurelie

    2002-01-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K, these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given

  6. Air liquide 1.8 K refrigeration units for CERN LHC project

    Science.gov (United States)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  7. Air-Liquide 1.8 K refrigeration units for CERN LHC project

    CERN Document Server

    Hilbert, B; Caillaud, A

    2002-01-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K, these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN- preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given. (5 refs).

  8. Latin American collaboration to the CERN-LHC accelerator assembly and its projects

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2016-10-15

    Summary of Latin American (LA) scientists main contributions to the construction of a heavy ion detector assembly currently operating at the Large Hadron Collider (LHC) at CERN, Geneva,Switzerland is given with description of the provided support for posterior data analysis. This joint effort highlights the much needed recognition of LA as a technologically emerging region. It has also shown a net benefit in development of science for our region. Details are given on the LHC-Alice experiment where several LA countries have contributed with innovative technological solutions. These include the ability to build part of the numerous detectors, including the central barrel as well as acquired knowledge on aspects concerning high energy dosimetry and radiation damage. (Author)

  9. Design and fabrication of the prototype superconducting quadrupole for the CERN LHC project

    International Nuclear Information System (INIS)

    Baze, J.M.; Cacaut, D.; Jacquemin, J.P.; Lyraud, C.; Michez, C.; Pabot, Y.; Perot, J.; Rifflet, J.M.; Toussaint, J.C.; Vedrine, P.

    1992-01-01

    Within the framework of the LHC R and D program, CERN and CEA/Saclay have established a collaboration to carry out, amongst others, the design, building and testing of a superconducting LHC prototype quadrupole at the Saclay laboratory. The cold mass of this quadrupole is presently under construction at Saclay. The quadrupole design features a twin aperture configuration, a gradient design features a twin aperture configuration, a gradient of 250T/m, a length of 3m and a free coil aperture of 56mm. European industries participate in this project by delivering components and fabrication the tooling according to specifications prepared by Saclay. This paper gives details of the magnet design and construction. Coil winding will start in summer 1991 and the first prototype should be assembled and ready for testing by mid 1992

  10. He leaks in the CERN LHC beam vacuum chambers operating at cryogenic temperatures

    CERN Document Server

    Baglin, V

    2007-01-01

    The 27 km long large hadron collider (LHC), currently under construction at CERN, will collide protons beam at 14 TeV in the centre of mass. In the 8 arcs, the superconducting dipoles and quadrupoles of the FODO cells operate with superfluid He at 1.9 K. In the 8 long straight sections, the cold bores of the superconducting magnets are held at 1.9 or 4.5 K. Thus, in the LHC, 75% of the beam tube vacuum chamber is cooled with He. In many areas of the machine, He leaks could appear in the beam tube. At cryogenic temperature, the gas condenses onto the cold bores or beam screens, and interacts with the circulating beam. He leaks creates a He front propagating along the vacuum chambers, which might cause magnet quench. We discuss the consequences of He leaks, the possible means of detections, the strategies to localise them and the methods to measure their size.

  11. Design, Manufacturing and Integration of LHC Cryostat Components an Example of Collaboration between CERN and Industry

    CERN Document Server

    Slits, Ivo; Canetti, Marco; Colombet, Thierry; Gangini, Fabrizio; Parma, Vittorio; Tock, Jean-Philippe

    2006-01-01

    The components for the LHC cryostats and interconnections are supplied by European industry. The manufacturing, assembly and testing of these components in accordance with CERN technical specifications require a close collaboration and dedicated approach from the suppliers. This paper presents the different phases of design, manufacturing, testing and integration of four LHC cryostat components supplied by RIAL Vacuum (Parma, Italy), including 112 Insulation Vacuum Barriers (IVB), 482 Cold-mass Extension Tubes (CET), 121 cryostat vacuum vessel Jumper Elbows (JE) and 10800 Interconnection Sleeves (IS). The Quality Assurance Plan, which the four projects have in common, is outlined. The components are all leak-tight thin stainless steel assemblies (<10-8 mbar l/s), most of them operating at cryogenic temperature (2 K), however each having specific requirements. The particularities of each component are presented with respect to manufacturing, assembly and testing. These components are being integrated ...

  12. Neustart des LHC CERN und die Beschleuniger : die Weltmaschine anschaulich erklärt

    CERN Document Server

    Hauschild, Michael

    2016-01-01

    Michael Hauschild führt den Leser dieses essentials zurück zu den Anfängen des CERN, des Europäischen Forschungszentrums für Teilchenphysik bei Genf; einem der faszinierendsten Forschungszentren überhaupt, zu seiner Geschichte, zu seinen Menschen und seinen Beschleunigern. Der Autor erläutert die Funktionsweise von Teilchenbeschleunigern und wie ausgehend von den ersten Ideen schließlich der Large Hadron Collider LHC gebaut wurde, der größte Teilchenbeschleuniger der Welt und die heutige Weltmaschine. Nach einer Pause von mehr als zwei Jahren wurde der LHC im Frühjahr 2015 wieder in Betrieb genommen, um mit höherer Energie als je zuvor die Geheimnisse der Natur zu enträtseln.

  13. The "Common Solutions" Strategy of the Experiment Support group at CERN for the LHC Experiments

    CERN Document Server

    Girone, M; Barreiro Megino, F H; Campana, S; Cinquilli, M; Di Girolamo, A; Dimou, M; Giordano, D; Karavakis, E; Kenyon, M J; Kokozkiewicz, L; Lanciotti, E; Litmaath, M; Magini, N; Negri, G; Roiser, S; Saiz, P; Saiz Santos, M D; Schovancova, J; Sciabà, A; Spiga, D; Trentadue, R; Tuckett, D; Valassi, A; Van der Ster, D C; Shiers, J D

    2012-01-01

    After two years of LHC data taking, processing and analysis and with numerous changes in computing technology, a number of aspects of the experiments' computing, as well as WLCG deployment and operations, need to evolve. As part of the activities of the Experiment Support group in CERN's IT department, and reinforced by effort from the EGI-InSPIRE project, we present work aimed at common solutions across all LHC experiments. Such solutions allow us not only to optimize development manpower but also offer lower long-term maintenance and support costs. The main areas cover Distributed Data Management, Data Analysis, Monitoring and the LCG Persistency Framework. Specific tools have been developed including the HammerCloud framework, automated services for data placement, data cleaning and data integrity (such as the data popularity service for CMS, the common Victor cleaning agent for ATLAS and CMS and tools for catalogue/storage consistency), the Dashboard Monitoring framework (job monitoring, data management m...

  14. Latin American collaboration to the CERN-LHC accelerator assembly and its projects

    International Nuclear Information System (INIS)

    Sajo B, L.

    2016-10-01

    Summary of Latin American (LA) scientists main contributions to the construction of a heavy ion detector assembly currently operating at the Large Hadron Collider (LHC) at CERN, Geneva,Switzerland is given with description of the provided support for posterior data analysis. This joint effort highlights the much needed recognition of LA as a technologically emerging region. It has also shown a net benefit in development of science for our region. Details are given on the LHC-Alice experiment where several LA countries have contributed with innovative technological solutions. These include the ability to build part of the numerous detectors, including the central barrel as well as acquired knowledge on aspects concerning high energy dosimetry and radiation damage. (Author)

  15. Probing the Odderon in coherent hadron–hadron interactions at CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, V.P., E-mail: barros@ufpel.edu.br [High and Medium Energy Group, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil)

    2013-03-15

    One of the open questions of the strong interaction theory is the existence of the Odderon, which is an unambiguous prediction of Quantum Chromodynamics, but still not confirmed in the experiment. In this paper we propose the study of the diffractive η{sub c} photoproduction in coherent interactions as a new alternative to probe the Odderon in pp and PbPb collisions at CERN LHC. As the Pomeron exchange cannot contribute to this process, its observation would indicate the existence of the Odderon. We predict total cross sections of order of pb(μb) for pp (PbPb) collisions and large values for the event rates/year, which makes, in principle, the experimental analysis of this process feasible at LHC.

  16. Mobile CT-System for In-situ Inspection in the LHC at CERN

    CERN Document Server

    Sauerwein, Christoph; Tiseanu, Ion; Williams, Lloyd R; Caspers, Fritz

    2010-01-01

    At the European Organisation for Nuclear Research ( CERN) the worlds largest particle accelerator ring, the Large Hadron collider (LHC), is being put into operation. It has been found useful to have a tool for diagnosis of the st ate of components in the interconnection regions of the LHC. This tool, for non-destructive testing (NDT) must w ork without opening the interconnection elements, without breaking the inte grity of the vacuum, and without the need to warm up the sector which would be costly an d time consuming. In addition the NDT tool has to be transportable in order to positi on it anywhere around the 27 km long LHC ring. The approach is an X-Ray inspection with the aim of an unambiguous representation of all structural elements in the interconnection regi ons of the LHC ring. The minimum criterion is to achieve an inspection result which allows verification of the correct position and integrity of all important components. 3D X-Ray computed tomography (3D CT) would be the i deal solution for such ...

  17. Strategies for reducing the environmental impact of gaseous detector operation at the CERN LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Capeans, M.; Guida, R.; Mandelli, B., E-mail: beatrice.mandelli@cern.ch

    2017-02-11

    A wide range of gas mixtures is used for the operation of different gaseous detectors at the Large Hadron Collider (LHC) experiments. Nowadays some of these gases, as C{sub 2}H{sub 2}F{sub 4}, CF{sub 4} and SF{sub 6}, are indicated as greenhouse gases (GHG) and dominate the overall GHG emission from particle detectors at the LHC experiments. The release of GHG is an important subject for the design of future particle detectors as well as for the operation of the current experiments. Different strategies have been adopted at CERN for reducing the GHG emissions. The standard approach is the recirculation of the gas mixture with complex gas systems where system stability and the possible accumulation of impurities need to be attentively evaluated for the good operation and safety of the detectors. A second approach is based on the recuperation of the gas mixture exiting the detectors and the separation of its gas components for re-use. At long-term, the use of less invasive gases is being investigated, especially for the Resistive Plate Chamber (RPC) systems. Operation of RPC with environmentally friendly gas mixtures is demonstrated for streamer mode while avalanche mode operation needs more complex gas mixtures. - Highlights: • Greenhouse gases (GHG) emission in the LHC experiments and detectors. • Strategies to reduce the GHG emissions: gas recirculation and recuperation systems. • GHG emission: achievements from LHC Run1 to Run2. • Resistive Plate Chambers operation with new environmentally friendly gases.

  18. Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN

    CERN Multimedia

    Hoch, Michael

    2011-01-01

    Signature of the Joint Declaration by the Minor Academy of Science of Ukraine and CERN concerning participation by Ukrainian teachers and students in educational programmes at CERN The signatories: Dr Rolf Landua Education Group Leader Professor Stanislav Dovgyi President of the Minor Academy of Science of Ukraine On the photos: Mick Storr, Marina Savino, Rolf Landua, Stanislav Dovgyi, Tetiana Hryn'Ova

  19. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program

    CERN Document Server

    Guida, Roberto

    2016-01-01

    The high-luminosity LHC (HL-LHC) upgrade is setting a new challenge for particle detector technologies. The increase in luminosity will produce a higher particle background with respect to present conditions. To study performance and stability of detectors at LHC and future HL-LHC upgrades, a new dedicated facility has been built at CERN: the new Gamma Irradiation Facility (GIF++). The GIF++ is a unique place where high energy charged particle beams (mainly muons) are combined with gammas from a 14 TBq 137Cesium source which simulates the background radiation expected at the LHC experiments. Several centralized services and infrastructures are made available to the LHC detector community to facilitate the different R&D; programs.

  20. Experimental and numerical studies on the proposed application of hollow electron beam collimation for the LHC at CERN

    CERN Document Server

    Moens, Vince; Redaelli, Stefano; Rivkin, Leonid

    This thesis work was carried out in the framework of U.S. LHC Accelerator Research Program (USLARP), a collaboration between the European Organization for Nuclear Research (CERN) and the U.S. Department of Energy. The first half of the work was completed at Fermilab (USA), the location of the Tevatron, a proton-antiproton collider and the second largest particle collider in the world. The second half was completed at CERN (Switzerland), the location of the largest proton collider in the world (Large Hadron Collider (LHC)).\

  1. Decentralized data storage and processing in the context of the LHC experiments at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Blomer, Jakob Johannes

    2012-06-01

    The computing facilities used to process data for the experiments at the Large Hadron Collider (LHC) at CERN are scattered around the world. The embarrassingly parallel workload allows for use of various computing resources, such as computer centers comprising the Worldwide LHC Computing Grid, commercial and institutional cloud resources, as well as individual home PCs in ''volunteer clouds''. Unlike data, the experiment software and its operating system dependencies cannot be easily split into small chunks. Deployment of experiment software on distributed grid sites is challenging since it consists of millions of small files and changes frequently. This thesis develops a systematic approach to distribute a homogeneous runtime environment to a heterogeneous and geographically distributed computing infrastructure. A uniform bootstrap environment is provided by a minimal virtual machine tailored to LHC applications. Based on a study of the characteristics of LHC experiment software, the thesis argues for the use of content-addressable storage and decentralized caching in order to distribute the experiment software. In order to utilize the technology at the required scale, new methods of pre-processing data into content-addressable storage are developed. A co-operative, decentralized memory cache is designed that is optimized for the high peer churn expected in future virtualized computing clusters. This is achieved using a combination of consistent hashing with global knowledge about the worker nodes' state. The methods have been implemented in the form of a file system for software and Conditions Data delivery. The file system has been widely adopted by the LHC community and the benefits of the presented methods have been demonstrated in practice.

  2. Decentralized data storage and processing in the context of the LHC experiments at CERN

    International Nuclear Information System (INIS)

    Blomer, Jakob Johannes

    2012-01-01

    The computing facilities used to process data for the experiments at the Large Hadron Collider (LHC) at CERN are scattered around the world. The embarrassingly parallel workload allows for use of various computing resources, such as computer centers comprising the Worldwide LHC Computing Grid, commercial and institutional cloud resources, as well as individual home PCs in ''volunteer clouds''. Unlike data, the experiment software and its operating system dependencies cannot be easily split into small chunks. Deployment of experiment software on distributed grid sites is challenging since it consists of millions of small files and changes frequently. This thesis develops a systematic approach to distribute a homogeneous runtime environment to a heterogeneous and geographically distributed computing infrastructure. A uniform bootstrap environment is provided by a minimal virtual machine tailored to LHC applications. Based on a study of the characteristics of LHC experiment software, the thesis argues for the use of content-addressable storage and decentralized caching in order to distribute the experiment software. In order to utilize the technology at the required scale, new methods of pre-processing data into content-addressable storage are developed. A co-operative, decentralized memory cache is designed that is optimized for the high peer churn expected in future virtualized computing clusters. This is achieved using a combination of consistent hashing with global knowledge about the worker nodes' state. The methods have been implemented in the form of a file system for software and Conditions Data delivery. The file system has been widely adopted by the LHC community and the benefits of the presented methods have been demonstrated in practice.

  3. Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models

    International Nuclear Information System (INIS)

    Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2002-01-01

    In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m 1/2 is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M c beyond the GUT scale, and that additional renormalization group running takes place between M c and M GUT as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m 1/2 =1000 (1160) GeV can be probed with 10 (100) fb -1 of integrated luminosity, corresponding to a reach in terms of m g-tilde of 2150 (2500) GeV. The gMSB model and MSUGRA can likely only be differentiated at a linear e + e - collider with sufficient energy to produce sleptons and charginos

  4. Study of longitudinal multibunch instabilities for LHC-type beams at the CERN Proton Synchrotron

    CERN Document Server

    Ventura, Letizia; Migliorati, Mauro; Palumbo, Luigi

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Injector upgrade program (LIU). Longitudinal coupled-bunch (CB) oscillations are an important limitation for the high-brightness beam accelerated in the CERN Proton Synchrotron. Up to present intensities they are suppressed by a dedicated feedback system limited to the first two dominant oscillation modes. In view of the proposed installation of a new wide-band FB system in the framework of the LIU program, measurements have been performed on the old system with the aim of dimensioning the new one. A new simulation program, called LCBC ( Longitudinal Coupled Bunch Simulation), has been used to study the behaviour of the CB FB. By means of this code I have started an extensive simulation campaign to benchmark the code with the theory of coupled bunch and to confirm that the 10 MHz cavity system is the main cause of the coupled bunch instabilities in the CERN PS.

  5. Impact of filling scheme on beam induced RF heating in CERN LHC and HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2241936; De Vito, Luca; Salvant, Benoit

    At CERN, after the first maintenance cycle (Long Shutdown 1, LS1) of the Large Hadron Collider (LHC), several sectors of the accelerator present a beam-induced heating much larger than expectations. This work compares data measured by cryogenic instrumentation with the expected heat load for various filling schemes and shows that impedance is not reasonably the major cause of the additional heat load. With this aim, the scaling of the power loss is analyzed carefully. In particular the scaling of the computed power loss from beam coupling impedance with the number of bunches is well understood only for a very broad band Impedance and for a very narrow band Impedance in ideal filling schemes that assume that the machine is full of equispaced bunches. This thesis analyzes also this dependence with number of bunches of the impedance of a resonator for a wide range of quality factors and more realistic filling schemes. The commonly assumed scaling with the square of number of bunches for narrow band resonator...

  6. Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

    CERN Document Server

    Carena, M S; Wagner, C E M

    2000-01-01

    We study the discovery potential of the CERN LHC, Fermilab Tevatron and CERN LEP colliders in the search for the neutral CP-even Higgs boson of the MSSM which couples to the weak gauge bosons with a strength close to the standard model one and, hence, plays a relevant role in the mechanism of electroweak symmetry breaking. We place special emphasis on the radiative effects which influence the discovery reach of these colliders. We concentrate on the Vbb channel, with V=Z or W, and on the channels with diphoton final states, which are the dominant ones for the search for a light standard model Higgs boson at LEP or Tevatron and LHC, respectively. By analyzing the parameters of the MSSM for which the searches become difficult at one or more of these three colliders, we demonstrate their complementarity in the search for a light Higgs boson which plays a relevant role in the mechanism of electroweak symmetry breaking. (32 refs).

  7. Transmission Line Analysis of the Superconducting Quadrupole Chains of the LHC Collider at CERN

    CERN Document Server

    Dahlerup-Petersen, K

    2003-01-01

    Key information for determination of fundamental design features of magnet powering and protection circuits can be retrieved from the results of transmission line calculations of the superconducting magnet chains in a particle accelerator. Modelling and simulation of the behaviour of long magnet strings provide important data for the expected electrical behaviour and performances under all operating conditions. The presented results of a transmission line study concerns the sixteen superconducting main quadrupole chains QF/QD of CERN's future LHC collider. The paper details the elaboration of the synthesized electrical model of the individual quadrupoles and the associated lumped transmission line. It presents results on the current ripple for a given converter voltage output characteristics, the magnet excitation, leakage and earth currents during the ramping procedure, the impedance resonance spectrum and the need for individual magnet damping and the propagation, reflection, superposition and damping of th...

  8. CERN Vacuum-System Activities during the Long Shutdown 1: The LHC Beam Vacuum

    CERN Document Server

    Baglin, V; Chiggiato, P; Jimenez, JM; Lanza, G

    2014-01-01

    After the Long Shutdown 1 (LS1) and the consolidation of the magnet bus bars, the CERN Large Hadron Collider (LHC) will operate with nominal beam parameters. Larger beam energy, beam intensities and luminosity are expected. Despite the very good performance of the beam vacuum system during the 2010-12 physics run (Run 1), some particular areas require attention for repair, consolidation and upgrade. Among the main activities, a large campaign aiming at the repair of the RF bridges of some vacuum modules is conducted. Moreover, consolidation of the cryogenic beam vacuum systems with burst disk for safety reasons is implemented. In addition, NEG cartridges, NEG coated inserts and new instruments for the vacuum system upgrade are installed. Besides these activities, repair, consolidation and upgrades of other beam equipment such as collimators, kickers and beam instrumentations are carried out. In this paper, the motivation and the description for such activities, together with the expected beam vacuum performa...

  9. CERN Technical Training 2002: Learning for the LHC! CLEAN-2002: WORKING IN A CLEAN ROOM

    CERN Multimedia

    Davide Vitè

    2002-01-01

    CLEAN-2002 is a new, free of charge, half-day seminar in the context of Technical Training for the LHC. The course is designed for personnel working or managing activities in an assembly cleanroom, for example physicists, engineers and technicians working at or visiting the laboratory. CLEAN-2002 is aimed at raising awareness about good working practices in a cleanroom, and at providing practical examples, analysis tools, and documentation. Specific problems put forward beforehand by attendees will also be addressed. If you are interested in CLEAN-2002, please discuss with your supervisor or your DTO. More information and online registration by EDH are available from the Technical Training pages. The next session, in English, will be on 10 October (afternoon). Other sessions, in French and English, will be offered following demand: the first session in French will be organised in November. Organiser: Davide Vitè / HR-TD / 75141 Davide.Vite@cern.ch

  10. CERN Technical Training Programme: Learning for the LHC ! CLEAN-2002: Working in a Cleanroom

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Exceptional session in Italian on June 13, 2002 (am). CLEAN-2002 is a new, free of charge, half-day seminar in the context of Technical Training for the LHC. The course is designed for personnel working or managing activities in an assembly cleanroom, for example physicists, engineers and technicians working at or visiting the laboratory. CLEAN-2002 is aimed at raising awareness about good working practices in a cleanroom, and at providing practical examples, analysis tools, and documentation. Specific problems put forward beforehand by attendees will also be addressed. More information and registration through EDH is available here. The next session will be held in Italian, on 13 June (morning), following a specific request. Other sessions, in French and English, will be offered following demand: the first session in French will be organised in July 2002. Organiser: Davide Vitè / HR-TD / 75141 Davide.Vite@cern.ch

  11. LHC physics

    National Research Council Canada - National Science Library

    Binoth, T

    2012-01-01

    "Exploring the phenomenology of the Large Hadron Collider (LHC) at CERN, LHC Physics focuses on the first years of data collected at the LHC as well as the experimental and theoretical tools involved...

  12. Radiation protection considerations in the design of the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Hoefert, M.; Huhtinen, M.; Moritz, L.E.; Nakashima, H.; Potter, K.M.; Rollet, S.; Stevenson, G.R.; Zazula, J.M.

    1996-01-01

    This paper describes the radiological concerns which are being taken into account in the design of the LHC (CERN's future Large Hadron Collider). The machine will be built in the 27 km circumference ring tunnel of the existing LEP collider at CERN. The high intensity of the circulating beams (each containing more than 10 14 protons at 7 TeV) determines the thickness specification of the shielding of the main-ring tunnel, the precautions to be taken in the design of the beam dumps and their associated caverns and the radioactivity induced by the loss of protons in the main ring by inelastic beam-gas interactions. The high luminosity of the collider is designed to provide inelastic collision rates of 10 9 per second in each of the two principal detector installations, ATLAS and CMS. These collisions determine the shielding of the experimental areas, the radioactivity induced in both the detectors and in the machine components on either side of the experimental installations and, to some extent, the radioactivity induced in the beam-cleaning (scraper) systems. Some of the environmental issues raised by the project will be discussed. (author)

  13. Integrating LWDAQ into the Detector Control Systems of the LHC Experiments at CERN

    CERN Multimedia

    Holme, Oliver; Golonka, Piotr

    2009-01-01

    The LWDAQ (Long-Wire Data Acquisition) software and hardware from Brandeis University, Mass., USA provides access to a powerful suite of measurement instruments. Two high precision monitors used to measure the relative alignment between a source and a sensor are included. The BCAM (Brandeis CCD Angle Monitor) cameras take images of point light sources and the Rasnik (Red Alignment System of NIKhef) cameras take images of the NIKHEF developed Rasnik mask. Both systems are used in the LHC experiments at CERN. Brandeis University provides a tool called Acquisifier to script the data acquisition process and to analyse the images to determine the alignment data. In order to incorporate the resulting data from the alignment system into the Detector Control System (DCS) of the LHC experiments a new software component of the Joint COntrols Project (JCOP) Framework was developed. It provides a TCP/IP interface between LWDAQ and the SCADA tool PVSS so that the results of the data acquisition process can easily be retur...

  14. CERN Physics Screen Saver: Help LHC tracking studies on your PC

    CERN Multimedia

    2004-01-01

    Many PC users are familiar with screensavers such as SETI@home and FightAIDS@home. These screensavers take advantage of times when your PC is idle to do useful computing on a particular scientific problem. SETI@home, which analyses radio-astronomy data for signs of extraterrestrial intelligence, has been downloaded by over 5 million people. Similar programs are now sold commercially, and installed in major corporations to provide extra computing power at low cost. CERN 's IT Department is interested in evaluating this sort of technology for the future. Most of the scientific computing challenges that the LHC experiments are facing will require access to large amounts of storage, and cannot be run on individual PCs. However, there are exceptions. A program called SixTrack, which simulates particles traveling around the LHC to study the stability of their orbits, can fit on a single PC and requires relatively little input or output. SixTrack, which was developed by Frank Schmidt of the AB Department, produces r...

  15. Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    Signature of the CERN GoldenBook at CERN by Peters Higgs British theoretical physicist - He worked on proposals to unify the weak and the electromagnetic forces into a single electroweak theory, The Boson of Higgs.

  16. CERN openlab: Engaging industry for innovation in the LHC Run 3-4 R&D programme

    Science.gov (United States)

    Girone, M.; Purcell, A.; Di Meglio, A.; Rademakers, F.; Gunne, K.; Pachou, M.; Pavlou, S.

    2017-10-01

    LHC Run3 and Run4 represent an unprecedented challenge for HEP computing in terms of both data volume and complexity. New approaches are needed for how data is collected and filtered, processed, moved, stored and analysed if these challenges are to be met with a realistic budget. To develop innovative techniques we are fostering relationships with industry leaders. CERN openlab is a unique resource for public-private partnership between CERN and leading Information Communication and Technology (ICT) companies. Its mission is to accelerate the development of cutting-edge solutions to be used by the worldwide HEP community. In 2015, CERN openlab started its phase V with a strong focus on tackling the upcoming LHC challenges. Several R&D programs are ongoing in the areas of data acquisition, networks and connectivity, data storage architectures, computing provisioning, computing platforms and code optimisation and data analytics. This paper gives an overview of the various innovative technologies that are currently being explored by CERN openlab V and discusses the long-term strategies that are pursued by the LHC communities with the help of industry in closing the technological gap in processing and storage needs expected in Run3 and Run4.

  17. Extra Higgs boson and Z ' as portals to signatures of heavy neutrinos at the LHC

    Science.gov (United States)

    Accomando, Elena; Rose, Luigi Delle; Moretti, Stefano; Olaiya, Emmanuel; Shepherd-Themistocleous, Claire H.

    2018-02-01

    In this paper, we discuss the potential of observing heavy neutrino ( ν h ) signatures of a U(1) B- L enlarged Standard Model (SM) encompassing three heavy Majorana neutrinos alongside the known light neutrino states at the Large Hadron Collider (LHC). We exploit the theoretical decay via a heavy (non-SM-like) Higgs boson and Z ' production followed by ν h → l ± W ∓(∗) and ν h → ν l Z (∗) decays, ultimately yielding a 3 l + 2 j + E T miss signature and, depending upon how boosted the final state objects are, we define different possible selections aimed at improving the signal to background ratio in LHC Run 2 data for a wide range of heavy neutrino masses.

  18. Low Scale Supersymmetry Breaking and its LHC Signatures

    CERN Document Server

    Dudas, Emilian; Tziveloglou, Pantelis

    2013-01-01

    We study the most general extension of the MSSM Lagrangian that includes scenarios in which supersymmetry is spontaneously broken at a low scale f. The spurion that parametrizes supersymmetry breaking in the MSSM is promoted to a dynamical superfield involving the goldstino, with (and without) its scalar superpartner, the sgoldstino. The low energy effective Lagrangian is written as an expansion in terms of m_{SUSY}/sqrt{f}, where m_{SUSY} is the induced supersymmetry breaking scale, and contains, in addition to the usual MSSM Lagrangian with the soft terms, couplings involving the component fields of the goldstino superfield and the MSSM fields. This Lagrangian can provide significant corrections to the usual couplings in the Standard Model and the MSSM. We study how these new corrections affect the Higgs couplings to gauge bosons and fermions, and how LHC bounds can be used in order to constrain f. We also discuss that, from the effective field theory point of view, the couplings of the goldstino interactio...

  19. Lecture | CERN prepares its long-term future: a 100-km circular collider to follow the LHC? | CERN Globe | 11 March

    CERN Multimedia

    2015-01-01

    Particle physics is a long-term field of research: the LHC was originally conceived in the 1980s, but did not start running until 25 years later. An accelerator unlike any other, it is now just at the start of a programme that is set to run for another 20 years.   Frédérick Bordry. While the LHC programme is already well defined for the next two decades, it is now time to look even further ahead, and so CERN is initiating an exploratory study for a future long-term project centred on a next-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 13 TeV in 2015, such an accelerator would allow particle physicists to push the boundaries of knowledge even further. The Future Circular Collider (FCC) programme will focus especially on studies for a hadron collider, like the LHC, capable of reaching unprecedented energies in the region of 100 TeV. Opening with an introduction to the LHC and...

  20. Muon Identification with the Event Filter of the ATLAS Experiment at CERN LHC's

    CERN Document Server

    Dos Anjos, A; Baines, J T M; Bee, C P; Biglietti, M; Bogaerts, J A C; Bosman, M; Carlino, G; Caron, B; Casado, M P; Cataldi, G; Cavalli, D; Comune, G; Conde, P; Conventi, F; Crone, G; Damazio, D; De Santo, A; Díaz-Gómez, M; Di Mattia, A; Ellis, Nick; Emeliyanov, D; Epp, B; Falciano, S; Garitaonandia, H; George, S; Ghete, V; Goncalo, R; Gorini, E; Haller, J; Kabana, S; Khomich, A; Kilvington, G; Kirk, J; Konstantinidis, N P; Kootz, A; Lankford, A J; Lowe, A; Luminari, L; Maeno, T; Masik, J; Meessen, C; Mello, A G; Moore, R; Morettini, P; Negri, A; Nikitin, N; Nisati, A; Osuna, C; Padilla, C; Panikashvili, N; Parodi, F; Pasqualucci, E; Pérez-Réale, V; Pinfold, J L; Pinto, P; Primavera, M; Qian, Z; Resconi, S; Rosati, S; Sánchez, C; Santamarina-Rios, C; Scannicchio, D A; Schiavi, C; Segura, E; De Seixas, J M; Sivoklokov, S Yu; Sobreira, A; Soluk, R A; Spagnolo, S; Stefanidis, E; Sushkov, S; Sutton, M; Tapprogge, S; Tarem, S; Thomas, E; Touchard, F; Usai, G; Venda-Pinto, B; Ventura, A; Vercesi, V; Wengler, T; Werner, P; Wheeler, S J; Wickens, F J; Wiedenmann, W; Wielers, M; Zobernig, G; 14th IEEE - NPSS Real Time Conference 2005 Nuclear Plasma Sciences Society

    2005-01-01

    The Large Hadron Collider at CERN offers unprecedented challenges to the design and construction of detectors and trigger/data acquisition systems. For ATLAS, a three level trigger system has been developed to extract interesting physics signatures with a 10^6 rate reduction. To accomplish this, components of physics analysis traditionally deferred to offline physics analysis must be embedded within the online trigger system. For the Muon trigger, the specific off-line algorithms MOORE (Muon Object Oriented REconstruction) and MuId (Muon Identification) have been adopted so far for the on-line use, imposing an operation in a Bayesian-like environment where only specific hypotheses must be validated. After a short review of the ATLAS trigger, the paper shows the general strategy of the Muon Identification and Selection accessing the full event data, or being seeded from results derived at a previous stage of the trigger chain.

  1. 28 May 2010 - Japanese Ambassador H. Ueda visiting the LHC superconducting magnet test hall with CERN Technology Deputy Department Head L. Rossi.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1005088 02 Japanese Ambassador H. Ueda (right) visiting the LHC superconducting magnet test hall with Technology Deputy Department Head L. Rossi(left). H. Ueda is accompanied by KEK and ATLAS Collaboration T. Kondo (centre).

  2. Le CERN réagit à l'augmentation du coût du LHC à son achèvement

    CERN Multimedia

    CERN Press Office. Geneva

    2001-01-01

    Director-General, Luciano Maiani, stressed that CERN was now fully engaged in the LHC and outlined the first moves to react to the increased cost to completion of the LHC. The new accelerator is an extremely complex, high-tech project which CERN is building under very severe conditions. However, the technical challenges are solved and industrial production of accelerator elements, and installation are starting.

  3. Characterization and performance optimization of radiation monitoring sensors for high energy physics experiments at the CERN LHC and Super-LHC

    CERN Document Server

    Mekki, Julien

    2009-01-01

    In order to study the matter originating from the universe, a new particle accelerator named the Large Hadron Collider (LHC) has been built at CERN. The radiation environment generated by the hadrons collisions in the high energy physics experiments of the LHC will be complex and locally very intense. For monitoring this complex radiation field, dosimeters have been installed in the LHC experiments. In previous study, RadFET dosimeters and PIN diodes have been characterized for their use in the particle accelerator. However, even if the RadFETs sensors have been already extensively characterized, their radiation response can be affected by their package. Depending on the material and the geometry, the package can induce errors in the dose measurement. In this thesis, a complete study has been carried out in order to evaluate its influence. Concerning the PIN diodes, the readout protocol used for the LHC is no longer valuable for the Super-LHC. Therefore, a complete study on their radiation response has been p...

  4. High energy nucleus-nucleus collisions at CERN: Signatures, physical observables and experimental results

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-02-01

    Experimental results on high energy nucleus-nucleus collisions have become available with the recent experiments at CERN utilizing 200 GeV/n oxygen and sulfur beams. Physics motivations for these experiments are presented: a description of predicted signatures for possible formation of a quark-gluon plasma and physical observables that are expected to provide important information for understanding the dynamics of these collisions. A presentation will be made of some of the first experimental results to emerge from this new field. 28 refs., 9 figs

  5. Proposal for the award of a contract for the assembly on the CERN site of interconnections for the LHC machine

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the assembly on the CERN site of interconnections for the LHC machine. Following a market survey carried out among 70 firms in fourteen Member States, a call for tenders (IT-3099/AT/LHC) was sent on 14 April 2003 to one firm and four consortia in five Member States. By the closing date, CERN had received three tenders from three consortia in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium INEO (FR), ENDEL (FR) and GTI (NL), the lowest bidder, for the assembly on the CERN site of interconnections for the LHC machine for a total amount of 6 792 836 euros (10 475 917 Swiss francs), subject to revision for inflation after 1 January 2006. The rate of exchange used is that stipulated in the tender. The consortium has indicated the following distribution by country of the contract value covered by this adjudication proposal: NL - 51%; FR - 49%.

  6. Summary of the half-day internal review of LHC performance limitations (linked to transverse collective effects) during run II (CERN, 29/11/2016)

    CERN Document Server

    Metral, Elias; Biancacci, Nicolo; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Persson, Tobias Hakan Bjorn; Romano, Annalisa; Schenk, Michael; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    In this note the half-day internal review of LHC performance limitations (linked to transverse collective effects) during run II (2015-2016), which took place at CERN on 29/11/2016 (https://indico.cern.ch/event/589625/), is summarised and the next steps are discussed.

  7. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2014-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  8. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Science.gov (United States)

    Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.

    2014-02-01

    The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  9. $W$ boson production in ultrarelativistic heavy-ion collisions at the CERN LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356981

    Ultrarelativistic heavy-ion collisions at the CERN Large Hadron Collider (LHC) are capable of producing a medium of deconfined quarks and gluons. This phase of nuclear matter is called a Quark-Gluon Plasma (QGP) and is believed to have been present during the first microseconds following the Big Bang. $\\Wboson$ bosons are a unique probe in a QGP since they do not carry color charge and thus do not interact with a strongly-coupled medium. Furthermore, the kinematics of $\\Wboson$ bosons are sensitive to the Bjorken momentum fraction $x$ of partons within nucleons, and therefore $\\Wboson$ bosons may also be used to constrain parton distribution functions and to detect the presence of nuclear effects. This thesis presents the measurement of $\\Wboson$ boson production in the dense nuclear environment created in $\\PbPb$ collisions at a per nucleon pair center-of-mass energy $\\sqrt{s_{\\mathrm{NN}}}=2.76\\TeV$. The data for this measurement were collected with the ATLAS detector in 2011 and correspond to a...

  10. Application of Gas Chromatographic analysis to RPC detectors in the ATLAS experiment at CERN-LHC

    CERN Document Server

    De Asmundis, R

    2007-01-01

    Starting from 2007 a large number (1200) Resistive Plate Chambers (RPC) detectors will be used as muon trigger detectors in the ATLAS Experiment at CERN-LHC accelerator. RPC are gaseous detector in which the quality and the stability of the gas mixture as well as the design of the gas supplying system, play a fundamental role in their functioning. RPC are foreseen to work more than ten years in the high radiation environment of ATLAS and the gas mixture acts really as a "lifeguard" for the detectors. For this reason a great attention has been devoted to the gas studies in order to optimize RPC performance, robustness and reliability in a high radiation environment. In this paper we describe the work done to decide how to supply and control in an optimal way the gas to the detectors, in order to ensure their best performance for a long time. The activity, based on Gas Chromatographic (GC) analysis, has been carried on a sample of final RPC working in radiation conditions much more intense than those foreseen f...

  11. Mobile CT system for in-situ inspection of the LHC at CERN

    International Nuclear Information System (INIS)

    Sauerwein, Christoph; Haemmerle, Volker; Tiseanu, Ion; Williams, Lloyd R.; Caspers, Fritz

    2010-01-01

    The world's biggest particle accelerator, the Large Hadron Collider (LHC) was recently commissioned at CERN. It was found that a condition monitoring system for its connecting elements would be useful. A monitoring system of this kind must be able to function without opening connecting elements, without breaking the vacuum, and without heating up the inspection sector as this would be too costly and time-consuming. Further, the system should be mobile in order to be applicable in all positions of the 27 km long accelerator. A radiographic system will be used, with the intention to get an identifiable image of all structures in the connecting elements of the accelerator. The minimum requirement is an image that enables an assessment of the structural integrity and correct position of all important components. 3D CT is the ideal solution, but owing to the limited space it is impossible to move an X-ray tube and detector completely around the connecting elements. A mobile 3D CT unit was therefore developed which enables maximum scanning variety within the given limits and provides 3D images based on a strongly limited range of scanning angles. The system is described in the paper, along with the results achieved so far and with an outlook onto further applications. (orig.)

  12. A Multivariate Approach to Dilepton Analyses in the Upgraded ALICE Detector at CERN-LHC

    CERN Document Server

    AUTHOR|(CDS)2242451; Weber, Michael

    ALICE, the dedicated heavy-ion experiment at CERN-LHC, will undergo a major upgrade in 2019/20. This work aims to assess the feasibility of conventional and multivariate analysis techniques for low-mass dielectron measurements in Pb-Pb collisions in a scenario involving the upgraded ALICE detector with a low magnetic field ($B=0.2~\\text{T}$). These electron-positron pairs are promising probes for the hot and dense medium, which is created in collisions of ultra-relativistic heavy nuclei, as they traverse the medium without significant final-state modifications. Due to their small signal-to-background ratio, high-purity dielectron samples are required. They can be provided by conventional analysis methods, which are based on sequential cuts, however at the price of low signal efficiency. This work shows that existing methods can be improved by employing multivariate approaches to reject different background sources of the dielectron invariant mass spectrum. The major background components are dielectrons from ...

  13. 21 October 2008 - LHC Inauguration - Spanish State Secretary for Research C. Martinez welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow and signing the electronic guest book with theoretical physicist A. de Rújula.

    CERN Multimedia

    LHC 2008

    2008-01-01

    21 October 2008 - LHC Inauguration - Spanish State Secretary for Research C. Martinez welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow and signing the electronic guest book with theoretical physicist A. de Rújula.

  14. 21 October 2008 - LHC Inauguration -Extraordinary and plenipotentiary Ambassador pf the Kingdom of the Netherlands to the UN B. J. Van Eenennaam welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow and signing the electronic guest book with ATLAS engineer H. ten Kate.

    CERN Multimedia

    CERN Photo Service

    2008-01-01

    21 October 2008 - LHC Inauguration -Extraordinary and plenipotentiary Ambassador pf the Kingdom of the Netherlands to the UN B. J. Van Eenennaam welcomed by CERN Director-General R. Aymar, CERN Chief Scientific Officer J. Engelen and CERN Financial Officer S. Lettow and signing the electronic guest book with ATLAS engineer H. ten Kate.

  15. 16 July 2013 - Israel Ministry of Education Director-General D. Stauber in the LHC tunnel at Point 1 with L. Tavian, visiting the ATLAS experimental cavern with Senior Physicist G. Mikenberg; Israeli Delegate to CERN Council E. Rabinovici and CERN Adviser for Israel E. Tsesmelis present; signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    16 July 2013 - Israel Ministry of Education Director-General D. Stauber in the LHC tunnel at Point 1 with L. Tavian, visiting the ATLAS experimental cavern with Senior Physicist G. Mikenberg; Israeli Delegate to CERN Council E. Rabinovici and CERN Adviser for Israel E. Tsesmelis present; signing the guest book with CERN Director-General R. Heuer.

  16. 3rd May 2009 - Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, visiting ATLAS experimental area, LHC tunnel and CERN Control Centre with CERN Director-General R. Heuer, Collaboration Spokesperson F. Gianotti and Beams Department Head P. Collier.

    CERN Document Server

    Maximilien Brice

    2009-01-01

    090506101-08: signature of the guest book and exchange of gifts; 090506109 + 46-64: Japanese Ambassador to the United Nations Office S. Kitajima, Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer, Non Member-State relations Adviser J. Ellis and ATLAS Collaboration Spokesperson F. Gianotti visiting the LHC tunnel at Point 1; 090506110-11 + 28-45: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda and his delegation visiting ATLAS experimental area with CERN Japanese users and Management; 090506112 + 86-94: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer and Japanese users in front of an LHC superconducting magnet; sLHC Project Leader also present. 090506113-19: Arrival of Japanese Min...

  17. Low scale supersymmetry at the LHC with jet and missing energy signature

    International Nuclear Information System (INIS)

    Demidov, S.V.; Sobolev, I.V.

    2017-03-01

    If supersymmetry is broken at TeV scale, particles from sector responsible for supersymmetry breaking - goldstino and sgoldstinos - can reveal themselves already at the LHC experiments. We discuss bounds on supersymmetry breaking scale from the LHC searches for events with a jet plus missing momentum signature focusing on the case of TeV scale sgoldstinos. We show that contribution of light sgoldstinos to the cross section of of gravitino pair production with a jet can be sizable and the bounds on the gravitino mass can be stronger by up to a factor of 2 as compared to those obtained in the heavy sgoldstino limit. We compare these bounds on parameters of the model to those obtained with the results of ATLAS and CMS searches for dijet resonances.

  18. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  19. Signature for a partership between CERN and Israel - His Excellency Mr Itzhak Levanon, Ambassador, Permanent Representative of Israel to the Unite Nations Office and specialized institutions in Geneva and Mr Robert Aymar, CERN Director General

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 29 November 2004, the Israeli ambassador to the United Nations Office at Geneva, Itzhak Levanon, and CERN's director-general, Robert Aymar, signed a new protocol to the Co-operation Agreement between the government of Israel and CERN. This protocol covers a substantial increase in the Israeli contribution to CERN's Large Hadron Collider (LHC) Project. Israeli scientists have been participating in CERN's scientific activities since 1960, and in 1992 Israel became the first non-member state to make regular financial contributions to CERN's budget.

  20. 11 March 2009 - Italian Minister of Education, University and Research M. Gelmini, visiting ATLAS and CMS underground experimental areas and LHC tunnel with Director for Research and Scientific Computing S. Bertolucci. Signature of the guest book with CERN Director-General R. Heuer and S. Bertolucci at CMS Point 5.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Members of the Ministerial delegation: Cons. Amb. Sebastiano FULCI, Consigliere Diplomatico Dott.ssa Elisa GREGORINI, Segretario Particolare del Ministro Dott. Massimo ZENNARO, Responsabile rapporti con la stampa Prof. Roberto PETRONZIO, Presidente dell’INFN (Istituto Nazionale di Fisica Nucleare) Dott. Luciano CRISCUOLI, Direttore Generale della Ricerca, MIUR Dott. Andrea MARINONI, Consulente scientifico del Ministro CERN delegation present throughout the programme: Prof. Sergio Bertolucci, Director for Research and Scientific Computing Prof. Fabiola Gianotti, ATLAS Collaboration Spokesperson Prof. Paolo Giubellino, ALICE Deputy Spokesperson, Universita & INFN, Torino Prof. Guido Tonelli, CMS Collaboration Deputy Spokesperson, INFN Pisa Dr Monica Pepe-Altarelli, LHCb Collaboration CERN Team Leader Guests in the ATLAS exhibition area: Dr Marcello Givoletti\tPresident of CAEN Dr Davide Malacalza\tPresident of ASG Ansaldo Superconductors and users: Prof. Clara Matteuzzi, LHCb Collaboration, Universita' d...

  1. Revisiting the real graviton effects at CERN LHC within the quantum gravity theory with large extra dimensions

    International Nuclear Information System (INIS)

    Wu Xinggang; Fang Zhenyun

    2008-01-01

    CERN LHC provides a good experimental platform to perturbatively probe the fundamental gravity scale up to several TeV, with the precise value depending on the number of extra dimensions. The leading experimental signal of the graviton at the LHC is from the process pp→jet+Ee T , where Ee T stands for the transverse missing energy. A detailed discussion on the hadronic production of the real graviton through hard subprocesses: qq→G+g, g+q→G+q, and g+g→G+g have been studied within the quantum gravity theory with large extra dimensions. The main theoretical uncertainties together with the dominant standard model background to these processes, e.g. qq→Z 0 +g and g+q→Z 0 +q with Z 0 further decaying into neutrinos, have also been discussed. It is found that only in a certain jet energy region and with a certain number of extra dimensions can the quantum gravity signal be distinguished from the background, which inversely lead to the effective scale M D to be probed up to (8.8±0.9) TeV for two extra dimensions and (5.9±0.5) TeV for four extra dimensions with sufficient integrated luminosity, e.g. 100 fb -1 , at CERN LHC.

  2. Inverse type II seesaw mechanism and its signature at the LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F.F.; Pires, C.A. de S, E-mail: cpires@fisica.ufpb.br; Rodrigues da Silva, P.S.

    2017-06-10

    The advent of the LHC, and the proposal of building future colliders as the ILC, both programmed to explore new physics at the TeV scale, justify the recent interest in collider phenomenology of seesaw mechanisms whose signatures lie on TeV scale or less. The most popular TeV scale seesaw mechanisms are the inverse seesaw ones. There are three types of inverse seesaw mechanisms, but only that one implemented in an arrangement involving six non-standard heavy neutrinos has received attention. In this paper we develop an inverse seesaw mechanism based on Higgs triplet model and simulate its collider phenomenology by producing doubly charged Higgses at the LHC and ILC and analyzing their subsequent decays in pair of leptons. We find that although the new scalars decouple from the standard ones, signals of these scalars may be detected in the current run of the LHC or in the future ILC. Our simulations probe the model in the region of parameter space that generates the correct neutrino masses and mixing for both normal and inverted hierarchy cases.

  3. Leak-tightness assessment of demountable joints for the super fluid helium system of the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Brunet, J.C.; Poncet, A.; Trilhe, P.

    1994-01-01

    The future high energy accelerator LHC presently considered at CERN, will make heavy use of demountable cryogenic joints operating at superfluid helium temperatures (1.8 K). These joints will be required for connecting the cryomagnets to their feeding lines, helium safety valves to cold masses, both on their measuring benches and eventually in their final installation set-up. The very large size of the future machine and, consequently, the large number of cryogenic joints imply that their reliability in leak tightness be very high, in particular after extreme loading conditions such as the high helium pressures resulting from superconducting magnet quenches. For these reasons, a test set-up has been especially built at CERN to reproduce these conditions, and to assess the leak tightness reliability of commercially available joints. A description of the facility is presented, together with the first test results

  4. Magnetic Measurements on the First CERN-Built Models of the Insertion Quadrupole MQXF for HL-LHC

    CERN Document Server

    Fiscarelli, L; Dunkel, O; Ferracin, P; Izquierdo Bermudez, S; Russenschuck, S; Todesco, E; Ambrosio, G

    2018-01-01

    The high-luminosity upgrade of the large hadron collider (HL-LHC) requires new high-field and large-aperture quadrupole magnets for the low-beta inner triplets (MQXF). CERN and LARP are currently collaborating to develop a 150-mm-aperture quadrupole based on Nb$_3$Sn superconducting cables for the coils, and an aluminum shell with the bladder-key technology for the support structure. This paper presents the test setup for magnetic measurements, both at ambient and cryogenic temperatures, and the instrumentation being used for the first two short-models of MQXF built and tested at CERN. Finally, the measurement results, in terms of field quality, effects of persistent currents, and iron saturation are reported and discussed.

  5. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  6. An example of utilization of the superconductivity for the generation of high magnetic fields: the LHC at CERN

    International Nuclear Information System (INIS)

    Savary, F.; Vlogaert, J.

    2006-01-01

    The Large Hadron Collider, LHC, under construction at CERN (European Organization for Nuclear Research) in Geneva makes use of the low temperature superconductivity of the Nb-Ti alloy to generate high magnetic fields in order to guide and to focus high energy proton beams in a double ring of 27-km circumference; aiming at studying the matter in the sub-nuclear field. In this paper, we will present the main parameters of the collider and the constraints which led to the choice of the low temperature superconductor technology for two of the main components of the LHC: the bending magnet and the focussing quadrupole. Then, the conceptual principles and the main parameters of the bending magnets will be described. To conclude, the results obtained at half of the fabrication of the 1232 superconducting magnets necessary to guide the protons in the accelerator ring will be shown. (authors)

  7. Assessment of the tests results of the two CERN-INFN 10 m long superconducting dipole prototypes for the LHC

    International Nuclear Information System (INIS)

    Bona, M.; Perin, R.; Acerbi, E.; Rossi, L.

    1996-01-01

    In the first phase of the R and D program for LHC dipoles, seven 10-m-long, 50-mm-aperture prototypes have been manufactured by European Industries. The first two prototypes, fabricated under a CERN-INFN Collaboration, were successfully tested in 1994. This paper provides a first assessment of the main test results of these two magnets, in particular for what concerns kinematics and evolution of the stress distribution in the magnet during cooldown, energization and warmup. The influence of some adopted technological solutions is also discussed. Based on test results, some design corrections are proposed for adoption in the design of the future 15-m-long LHC dipole prototype

  8. The Real-Time Data Analysis and Decision System for Particle Flux Detection in the LHC Accelerator at CERN.

    CERN Document Server

    Zamantzas, C; Dehning, B

    2006-01-01

    The superconducting Large Hadron Collider (LHC) under construction at the European Organisation for Nuclear Research (CERN) is an accelerator unprecedented in terms of beam energy, particle production rate and also in the potential of self-destruction. Its operation requires a large variety of instrumentation, not only for the control of the beams, but also for the protection of the complex hardware systems. The Beam Loss Monitoring (BLM) system has to prevent the superconducting magnets from becoming normal conducting and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. For its operation, the system requires 3600 detectors to be placed at various locations around the 27 km ring. The measurement system is sub-divided to the tunnel electronics, which are responsible for acquiring, digitising and transmitting the data, and the surface electronics, which receive the data via 2 km optical data links, process, analyze, store and issue warning...

  9. The Assembly of the LHC Short Straight Sections at CERN Work Organization, Quality Assurance and Lessons Learned

    CERN Document Server

    Bourcey, N; López, R; Poncet, A; Parma, V

    2007-01-01

    After 4 years of activity, the assembly of approximately 500 Short Straight Sections (SSS) for the LHC has come to an end at the beginning of 2007. This activity, which was initially foreseen in European industry, was in-sourced at CERN because of the insolvency of the prime contractor. While the quadrupole cold masses were produced in industry, the assembly within their cryostats was transferred to CERN and executed by an external company under a result-oriented contract. CERN procured cryostat components, set up a dedicated 2000 m2 assembly hall with all the specific assembly equipment and tooling and defined the assembly and testing procedures. The contractor took up responsibility for the delivery, on time, of assemblies according to the required quality. A dedicated CERN production and quality assurance team was constituted. A specific quality assurance plan was set up involving 2 additional contractors responsible for weld inspections on a total of about 20'000 assembly welds and the execution of about ...

  10. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  11. Hunting for neutral, long-lived exotica at the LHC using a missing transverse energy signature

    International Nuclear Information System (INIS)

    Belyaev, Alexander; Moretti, Stefano; Nickel, Kilian; Thomas, Marc C.; Tomalin, Ian

    2016-01-01

    Searches at the Large Hadron Collider (LHC) for neutral, long-lived particles have historically relied on the detection of displaced particles produced by their decay within the detector volume. In this paper we study the potential of the complementary signature comprising of the missing transverse energy (E T miss ) signal, traditionally used to look for dark matter, e.g., the lightest supersymmetric particle (LSP), to extend the LHC coverage to models with long-lived (LL) particles when they decay outside the detector. Using CMS and ATLAS analyses at the 8 TeV LHC, we set an upper limit at the 95% confidence level (CL) on the production cross sections for two specific scenarios: (i) a model with a heavy non-standard model Higgs boson decaying to a LL scalar and (ii) an R-parity violating (RPV) SUSY model with a LL neutralino. We show that this method can significantly extend the LHC sensitivity to neutral, LL particles with arbitrary large lifetimes and that the limits obtained from a E T miss signal are comparable to those from displaced particle searches for decay distances above a few meters. Results obtained in this study do not depend on the specific decay channel of the LL particle and therefore are model-independent in this sense. We provide limits for the whole two-dimensional plane in terms of the mass of the LL particle and the mass of the mediator up to masses of 2 TeV including particular benchmarks studied in the original experimental papers. We have made these limits available in the form of a grid which can be used for the interpretation of various other new physics models.

  12. Environmental monitoring at CERN: present status and future plans for the Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.; Vojtyla, P.; Wittekind, D.

    1998-01-01

    The present radiological impact of CERN on the environment is negligible. It is assessed that this will also be the case after the Large Hadron Collider starts operation in 2005. Nevertheless, the environmental monitoring programme at CERN will be further extended, so as to demonstrate that the Organization fully complies with standards and limits for environmental impact of nuclear installations as laid down by authorities in the CERN host countries. (P.A.)

  13. Measurement and interpretation of transverse beam instabilities in the CERN large hadron collider (LHC) and extrapolations to HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo

    2016-01-01

    Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...

  14. Compliance of the CERN electronics used by the LHC Cryogenic System with the Electromagnetic Compatibility (EMC) Norm IEC 61000 4-4

    CERN Document Server

    Casas, J

    2011-01-01

    Within the ITER-CERN collaboration agreement, task “PROCUREMENT OF CRYOGENIC THERMOMETERS TO MONITOR ITER MAGNETS AND FEEDER TEMPERATURES”, CERN is recommending the use by ITER of LHC like electronics for the temperature channels. ITER require that any electronic equipment shall be qualified according to the standard IEC 61000 4-4 that refers to the Electromagnetic compatibility (EMC), Part 4: Testing and measurement techniques, Section 4: Electrical fast transient/burst immunity test (EFT/B). This document describes the qualification procedure and the results for the LHC like temperature measurement chains according to the procedures described in the standard.

  15. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  16. Collider signatures of a light NMSSM pseudoscalar in neutralino decays in the light of LHC results

    CERN Document Server

    Cerdeno, David G; Park, Chan Beom; Peiro, Miguel

    2014-01-01

    We investigate signatures induced by a very light pseudoscalar Higgs in neutralino decays in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and determine their observability at the LHC. We concentrate on scenarios which feature two light scalar Higgs bosons (one of them is SM-like with a mass of 125 GeV and a singlet-like lighter one) with a very light (singlet-like) pseudoscalar Higgs in the mass range 2m_tau X_1 a1, which leads to topologies involving multi-leptons and missing transverse energy. We determine a set of selection cuts that can effectively isolate the signal from backgrounds of the Standard Model or the Minimal Supersymmetric Standard Model. We also exemplify the procedure with a set of benchmark points, for which we compute the expected number of events and signal strength for LHC with 8 TeV center of mass energy. We show that this signal can already be probed for some points in the NMSSM parameter space.

  17. Study of Υ family resonances in ultrarelativistic heavy ions collisions within the frame of the Alice experiment at CERN-LHC

    International Nuclear Information System (INIS)

    Dumonteil, E.

    2004-09-01

    Quantum Chromodynamics foresees, at high temperature and/or high energy density, a phase transition between hadronic matter and a phase where quarks and gluons are no more confined in the nucleons: the Quark Gluon Plasma (QGP). During the past fifteen years, a large experimental program has taken place at CERN and at BNL, to identify the QGP. ALICE is the LHC experiment dedicated to the study of the plasma via ultrarelativistic heavy ion collisions at 2.75 TeV/nucleon per beam. The measure of Upsilon's resonances suppression, a powerful signature of a deconfined medium, with the ALICE dimuon spectrometer, is the main topic of this thesis. The first part of the work aims at studying the multi-wires pad chambers of the dimuon arm, used to track the muons from resonances decays. The second part presents an in-beam alignment algorithm able to calculate the positions of the different chambers with a very good accuracy. Finally, the last part proposes a study to lead with the ALICE muon spectrometer, involving the measure of Upsilon and Upsilon's production ratio as a function of the transverse momentum. It has been showed that this study should allow to evidence the QGP and to extract some of its properties. (author)

  18. Experimental and Numerical Studies on the Proposed Application of Hollow Electron Beam Collimation for the LHC at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Moens, Vince [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-01-01

    This thesis work was carried out in the framework of the U.S. LHC Accelerator Research Program (USLARP), a collaboration between the European Organization for Nuclear Research (CERN) and the U.S. Department of Energy. The first half of the work was completed at Fermilab (USA), the location of the Tevatron, a proton-antiproton collider and the second largest particle collider in the world. The second half was completed at CERN (Switzerland), the location of the largest proton collider in the world (Large Hadron Collider (LHC)). This thesis characterizes a Hollow Electron Beam (HEB) for possible usage at the LHC to enhance its collimation through Hollow Electron Beam Lenses (HEBLs). Collimation is a long established principle in high energy particle accelerators. Hollow Electron Beam Collimation (HEBC) aims to enhance current collimation systems by controlling diffusion of primary halo particles into the limiting aperture. It works on the principle of a transverse radial electric field that kicks the primary halo particles outwards upon each pass in a multi-pass system. The transverse field is produced by a HEB that is coaxially aligned with the accelerator beam, producing a negligible electric field in the center and a strong transverse electric field at amplitudes higher than the inner radius of the electron beam. Ideally, halo particles are affected without perturbation of the beam core. One of the main advantages of this system is to decrease the dependence on instantaneous loss spikes and beam jitter. A solid experimental basis of HEBC was accumulated at the Tevatron. The application of this technique at the LHC is now under investigation. The aim of this thesis is to present a preliminary report to support a future optimal conceptual design report. It characterizes the available hardware in order to facilitate the design of a Hollow Electron Gun (HEG) for the LHC, characterizes the effect on beam diffusion by determining the transverse electric fields of the

  19. From the CERN web: New Year ceremony, new LHC Programme Coordinator, scientific prize and more

    CERN Multimedia

    2016-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...     CERN DG meets locals and internationals in New Year ceremony 15 January – by James Gillies  In one of her first official duties as CERN Director General, Fabiola Gianotti met representatives of CERN’s local communities and international Geneva in Microcosm on Thursday evening to wish them a Happy New Year 2016, and to express thanks for their support. Photo (left to right): Charlotte Lindberg Warakaulle, Director for International Relations, Martin Steinacher, Director for Finance and Human Resources, Fabiola Gianotti, CERN Director-General, Eckhard Elsen, Director for Research and Computing and Frédérick Bordry, Director for Accelerators and Technology. Continue to read…    Jamie Bo...

  20. CERN Technical Training 2008: Learning for the LHC! FLUKA Workshop 2008: 23-27 June 2008

    CERN Multimedia

    2008-01-01

    http://www.cern.ch/Fluka2008 FLUKA is a fully integrated particle physics Monte-Carlo simulation package. It has many applications in high energy experimental physics and engineering, shielding, detector and telescope design, cosmic ray studies, dosimetry, medical physics and radio-biology. More information, as well as related publications, can be found on the official FLUKA website (http://www.fluka.org). This year, the CERN FLUKA Team, in collaboration with INFN and SC/RP, is organizing a FLUKA beginners course, held at CERN for the first time. Previous one-week courses were given in Frascati (Italy), twice in Houston (Texas, US), Pavia (Italy), as well as in Legnaro (Italy). At CERN, continuous lectures are provided in the framework of locally scheduled ‘FLUKA User Meetings’ (http://www.cern.ch/info-fluka-discussion). This new dedicated one-week CERN training course will be an opportunity for new users to learn the basics of FLUKA, as well as offering the possibility to broaden their knowledge about t...

  1. CERN Technical Training 2008: Learning for the LHC! FLUKA Workshop 2008: 23-27 June 2008

    CERN Multimedia

    2008-01-01

    http://www.cern.ch/Fluka2008 FLUKA is a fully integrated particle physics Monte-Carlo simulation package. It has many applications in high energy experimental physics and engineering, shielding, detector and telescope design, cosmic ray studies, dosimetry, medical physics and radio-biology. More information, as well as related publications, can be found on the official FLUKA website (http://www.fluka.org). This year, the CERN FLUKA Team, in collaboration with INFN and SC/RP, is organizing a FLUKA beginner’s course, held at CERN for the first time. Previous one-week courses were given in Frascati (Italy), twice in Houston (Texas, US), Pavia (Italy), as well as in Legnaro (Italy). At CERN, continuous lectures are provided in the framework of locally scheduled ‘FLUKA User Meetings’ (http://www.cern.ch/info-fluka-discussion). This new dedicated one-week CERN training course will be an opportunity for new users to learn the basics of FLUKA, as well as offering the possibility to broaden their knowledge abou...

  2. 11 June 2013- Autrian Federal President Dr Heinz Fischer and Federal Minister Prof. Dr Karlheinz Töchterle visit CMS cavern and LHC tunnel at Point 5 and the ASACUSA and AEGIS experiments on the AD. Signature of the guest book in the Globe of Science and Innovation after a round table with 10 young austrian scientists. Family photograph in front of an LHC magnet.

    CERN Multimedia

    TEAM VMO

    2013-01-01

    Welcome line: on French territory by the Representative of the French Republic S. Donnot, Sous-Préfet de Gex; CERN Director-General R. Heuer; Director for Research and Scientific Computing S. Bertolucci; Director for Accelerators and Technology S. Myers; Director for Administration and general Infrastructure S. Lettow; Head of Technology Department F. Bordry; CERN Austrian Circle Spokesperson F. Eder and CERN Protocol S. Molinari. First Lady and Federal Minister Töchterle follow. CERN-HI-1306154 19-32: in CMS conference room, building 3562: general presentation of the Laboratory by the DG; CERN-HI-1306154 33-43: visiting the LHC tunnel at Point 5 with Head of Technology Department F. Bordry CERN-HI-1306154 44-64: in the CMS cavern with Collaboration Spokesperson J. Incandela and CMS and Austrian Academy of Sciences C. Wulz; CERN-HI-1306154 65-90: ASACUSA with E. Widmann and AEGIS with M. Doser. CERN-HI-1306154 91-115: round table, signatures and exchange of gifts in the Globe of Science and Innovation; fa...

  3. For CERN's Golden Jubilee, the Canton of Geneva, supported by the Pays de Gex local authorities, lit up eight points around the LHC ring.

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    On the date of CERN's fiftieth anniversary, 29 September 2004, the Organization's Host State authorities gave the Laboratory a gift of light. As night fell, twenty-four powerful floodlights blazed into the night sky from the eight access points to the future LHC. (View from Mourex, France)

  4. CERN

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Over the years the efforts at CERN to stimulate exchange of technological information with industry have steadily gained momentum. A 'Meeting on technology arising from high energy physics' was held in April 1974. Over 300 participants from industry, other research centres and universities heard three days of review talks on advanced technology and were able to see over 250 exhibits of equipment and the techniques emerging from the European particle physics programme

  5. The Interconnections of the LHC Cryomagnets at CERN Strategy Applied and First Results of the Industrialization Process

    CERN Document Server

    Tock, J P; Fessia, P; Jacquemod, A; Musso, A; Poncet, A

    2008-01-01

    The final interconnections of the LHC superconducting magnets in the underground tunnel are performed by a contractor on a result-oriented basis. A consortium of firms was awarded the contract after competitive tendering based on a technical and commercial specification. The implementation of the specific technologies and tooling developed and qualified by CERN has required an important effort to transfer the know-how and implement the follow-up of the contractor. This paper summarizes the start-up phase and the difficulties encountered. The organization and management tools put in place during the ramping-up phase are presented. In addition to contractual adaptations of the workforce, several configuration changes to the workflows were necessary to reach production rates compatible with the overall schedule and with the different constraints: availability of magnets, co-activities with magnets transport and alignment, handling of non-conformities, etc. Also the QA procedures underwent many changes to reach t...

  6. Knowledge creation and management in the five LHC experiments at CERN implications for technology innovation and transfer

    CERN Document Server

    Bressan, Beatrice Alessandra; Lavonen, J; Nordberg, M; Saarikko, H; Streit-Bianchi, M

    2008-01-01

    The present study analyses knowledge creation, acquisition and transfer in the five LHC physics experiments at CERN: ALICE, ATLAS, CMS, LHCb, and TOTEM. A questionnaire was provided during collaboration meetings and a total of 291 replies were obtained and analysed. The results of this research study provide evidence that the social process of participation in meetings, acquisition of skills in different areas, and the development of interests by interaction with colleagues are key elements of the learning process. Furthermore, the results indicate that knowledge acquisition in a multicultural environment plays a mediating role in the interaction between social capital constructs (social interaction, relationship quality, and network ties) and competitive advantage outcomes (invention development and technological distinctiveness). Social interaction, relationship quality, and network ties are connected to greater knowledge acquisition, and also contribute to innovation and transfer of the knowledge to indust...

  7. An FPGA Based Multiprocessing CPU for Beam Synchronous Timing in CERN's SPS and LHC

    CERN Document Server

    Ballester, F J; Gras, J J; Lewis, J; Savioz, J J; Serrano, J

    2003-01-01

    The Beam Synchronous Timing system (BST) will be used around the LHC and its injector, the SPS, to broadcast timing meassages and synchronize actions with the beam in different receivers. To achieve beam synchronization, the BST Master card encodes messages using the bunch clock, with a nominal value of 40.079 MHz for the LHC. These messages are produced by a set of tasks every revolution period, which is every 89 us for the LHC and every 23 us for the SPS, therefore imposing a hard real-time constraint on the system. To achieve determinism, the BST Master uses a dedicated CPU inside its main Field Programmable Gate Array (FPGA) featuring zero-delay hardware task switching and a reduced instruction set. This paper describes the BST Master card, stressing the main FPGA design, as well as the associated software, including the LynxOS driver and the tailor-made assembler.

  8. The first cable for the HL-LHC produced at CERN

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables, made from state-of-the-art Nb3Sn conductor, for the LHC High Luminosity Upgrade. Key elements of the machine are of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The video shows the production of a long length Rutherford cable, made from 40 Nb3Sn strands, that will be use in a 11 T LHC High Luminosity dipole magnet. The wiring machine is the only one left in Europe able to do such a job.

  9. Remotely Operated Train for Inspection and Measurement in CERN's LHC Tunnel

    CERN Document Server

    Kershaw, K; Bestmann, P; Feniet, T; Forkel-Wirth, D; Grenard, J L; Rousset, N

    2010-01-01

    Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation and cryogenic hazards. For this reason a remotely operated modular inspection train, (TIM) running on the LHC tunnel’s overhead monorail has been developed. In order to be compatible with the LHC personnel access system, a small section train that can pass through small openings at the top of sector doors has now been produced. The basic train can be used for remote visual inspection; additional modules give the capability of carrying out remote measurement of radiation levels, environmental conditions around the tunnel, and even remote measurement of the precise position of machine elements such as collimators. The paper outlines the design, development and operation of the equipment including preparation of the infrastructure. Key features of the trains are described along with future developments and intervention scenarios.

  10. The first cable for the HL-LHC produced at CERN

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables, made from state-of-the-art Nb$_{3}$Sn conductor, for the LHC High Luminosity Upgrade. Key elements of the machine are of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The video shows the production of a long length Rutherford cable, made from 40 Nb$_{3}$Sn strands, that will be use in a 11 T LHC High Luminosity dipole magnet. The wiring machine is the only one left in Europe able to do such a job.

  11. CERN Technical Training 2002: Learning for the LHC! Electromagnetic Compatibility (EMC): Introduction

    CERN Multimedia

    Davide Vitè

    2002-01-01

    A new session of the course Electromagnetic Compatibility (EMC): Introduction will be held on May 22 (am), in the framework of the CERN Technical Training Programme. This session, bilingual English-French, is free of charge, and will be given by F. Szoncso of TIS-GS division. The course is designed for physicists, engineers and technicians facing electromagnetic interference problems, and will describe the underlying phenomena and mechanisms of electromagnetic interference and their remedies. More information and online registration by EDH are available from the Technical Training "Electronics Design" pages, under the chapter "Miscellaneous". Please contact Technical.Training@cern.ch should you need any other information.

  12. Lessons Learnt and Mitigation Measures for the CERN LHC Equipment with RF fingers

    CERN Document Server

    Métral, E; Assmann, R W; Baglin, V; Barnes, M J; Berrig, O E; Bertarelli, A; Bregliozzi, G; Calatroni, S; Carra, F; Caspers, F; Day, H A; Ferro-Luzzi, M; Gallilee, M A; Garion, C; Garlasche, M; Grudiev, A; Jimenez, J M; Jones, R; Kononenko, O; Losito, R; Nougaret, J L; Parma, V; Redaelli, S; Salvant, B; Strubin, P; Veness, R; Vollinger, C; Weterings, W

    2013-01-01

    Beam-induced RF heating has been observed in several LHC components when the bunch/beam intensity was increased and/or the bunch length reduced. In particular eight bellows, out of the ten double-bellow modules present in the machine in 2011, were found with the spring, which should keep the RF fingers in good electrical contact with the central insert, broken. Following these observations, the designs of all the components of the LHC equipped with RF fingers have been reviewed. The lessons learnt and mitigation measures are presented in this paper.

  13. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  14. 2nd HERA/LHC workshop at CERN (1/4)

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    There wil be plenary sessions in the Main auditorium and parallel sessions in B40 The (developing) full agenda can be found on http://indico.cern.ch/conferenceDisplay.py?confId=1862 The web page of the workshop can be found on http://www.desy.de/~heralhc/ Organiser(s): Albert De Roeck and Hannes Jung

  15. Technological stakes of LHC, the large superconducting collider in project at CERN

    International Nuclear Information System (INIS)

    Lebrun, P.

    1991-01-01

    The LHC large superconducting particle collider project is presented, with particular emphasis on its major technological requirements and returns, mostly in the domains of high-field electromagnets, superfluid helium cryogenics, and integration of such advanced techniques in a large machine. The corresponding cooperation and technological transfer to European laboratories and industries are briefly discussed [fr

  16. Development of an experimental 10 T Nb3Sn dipole magnet for the CERN LHC

    NARCIS (Netherlands)

    ten Kate, H.H.J.; den Ouden, A.; ter Avest, D.; Wessel, S.; Dubbeldam, R.; van Emden, W.; Daum, C.; Bona, M.; Perin, R.

    1991-01-01

    An experimental 1-m long twill aperture dipole magnet developed using a high-current Nb3Sn conductor in order to attain a magnetic field well beyond 10 T at 4.2 K is described. The emphasis in this Nb3Sn project is on the highest possible field within the known Large Hadron Collider (LHC)

  17. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Science.gov (United States)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  18. The fourth CERN Golden Hadron awards saw seven of the LHC's best suppliers receive recognition

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    'The Golden Hadron awards are a symbol of our appreciation of not only the quality and timely delivery of components but also the collaborative and flexible way the firms have contributed to this very difficult project,' said Lyn Evans, head of the LHC project.

  19. Le LHC du CERN ne démarrera qu'en 2008

    CERN Multimedia

    2007-01-01

    During a speech at the 142nd Council Session, Robert Aymar, Director General of the Organisation, announced that the great hadron collider (LHC) will start in May 2008, for first study work in physics, in unexplored fields of high energies. (1,5 page)

  20. A full acceptance experiment at the CERN large hadron collider (LHC)

    International Nuclear Information System (INIS)

    Eggert, K.; Morsch, A.; Taylor, C.

    1996-01-01

    The physics of full acceptance detector at the LHC is reviewed. A possible experimental layout situated in IP4 is presented. The interface between the experiment and the machine lattice is described with particular attention given to the measurement of elastic and diffractive protons. (author)

  1. CERN Technical Training 2002: Learning for the LHC ! HeREF-2002 : Helium Refrigeration Techniques

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2002 is a new course, in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2002 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2002 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (5 mornings and 2 afternoons), 21-25 October 2002. Estimated cost: 300.- CHF Language: Bilingual English-French. The course support will be in English, the...

  2. CERN Technical Training 2002: Learning for the LHC! HEREF-2002 : HELIUM REFRIGERATION TECHNIQUES

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2002 is a new course, in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2002 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2002 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (5 mornings and 2 afternoons), 21-25 October, 2002. Estimated cost: 300.- CHF Language: Bilingual English-French. The course support will be in English, the ...

  3. Development of Aluminium Vacuum Chambers for the LHC Experiments at CERN

    CERN Document Server

    Gallilee, M; Costa-Pinto, P; Lepeule, P; Perez-Espinos, J; Marques Antunes Ferreira, L; Prever-Loiri, L; Sapountzis, A

    2014-01-01

    Beam losses may cause activation of vacuum chamber walls, in particular those of the Large Hadron Collider (LHC) experiments. For the High Luminosity (HL-LHC), the activation of such vacuum chambers will increase. It is therefore necessary to use a vacuum chamber material which interacts less with the circulating beam. While beryllium is reserved for the collision point, a good compromise between cost, availability and transparency is obtained with aluminium alloys; such materials are a preferred choice with respect to austenitic stainless steel. Manufacturing a thin-wall aluminium vacuum chamber presents several challenges as the material grade needs to be machinable, weldable, leak-tight for small thicknesses, and able to withstand heating to 250°C for extended periods of time. This paper presents some of the technical challenges during the manufacture of these vacuum chambers and the methods for overcoming production difficulties, including surface treatments and Non-Evaporable Getter (NEG) thin-film coat...

  4. Simulation of multibunch motion with the Headtail code and application to the CERN SPS and LHC

    CERN Document Server

    Mounet, N; Rumolo, G

    2011-01-01

    Multibunch instabilities due to beam-coupling impedance can be a critical limitation for synchrotrons operating with many bunches. It is particularly true for the LHC under nominal conditions, where according to theoretical predictions the 2808 bunches rely entirely on the performance of the transverse feedback system to remain stable. To study these instabilities, the HEADTAIL code has been extended to simulate the motion of many bunches under the action of wake fields. All the features already present in the single-bunch version of the code, such as synchrotron motion, chromaticity, amplitude detuning due to octupoles and the ability to load any kind of wake fields through tables, have remained available. This new code has been then parallelized in order to track thousands of bunches in a reasonable amount of time. The code was benchmarked against theory and exhibited a good agreement. We also show results for bunch trains in the LHC and compare them with beam-based measurements.

  5. Mobile CT-System for In-situ Inspection in the LHC at CERN

    CERN Document Server

    Sauerwein, C; Caspers, F; Dalin, J M; Haemmerle, V; Tiseanu, I; Tock, J P

    2010-01-01

    For the inspection of certain critical elements of the LHC machine a mobile computed tomography system has been developed and built. This instrument has to satisfy stringent space, volume and weight requirements in order to be transportable and usable to any interconnection location in the LHC tunnel. Particular regions of interest in the interconnection zones between adjacent magnets are the plug in modules (PIM), the soldered splices in the superconducting bus-bars and the interior of the quench diode container. This system permits detailed inspection of these regions without needing to break the insulation vacuum. Limited access for the x-ray tube and the detector required the development of a special type of partial tomography, together with suitable reconstruction techniques for 3 D volume generation from radiographic projections. The layout of the complete machine, the limited angle tomography, as well as a number of radiographic and tomographic inspection results is presented.

  6. TMCI thresholds for LHC single bunches in the CERN SPS and comparison with simulations

    CERN Document Server

    Bartosik, H; Papaphilippou, Y; Rumolo, G; Salvant, B; Zannini, C

    2014-01-01

    At the beginning of 2013 an extensive measurement campaign was carried out at the SPS in order to determine the Transverse Mode Coupling Instability thresholds of LHC-type bunches in a wide range of intensities and longitudinal emittances. The measurements were performed in two different configurations of machine optics (nominal and low gamma transition) with the goal to characterize the differences in behavior and performance. The purpose of this paper is to describe in detail the measurement procedure and results, as well as the comparison of the experimental data with HEADTAIL simulations based on the latest SPS impedance model. Beside the impedances of the resistive wall, the beam position monitors (BPMs), the RF cavities, and the flanges, an advanced model of the impedance of the kicker magnets is included, which are found to play a major role in the definition of the stability region of the LHC-type bunches in the two optics configurations studied.

  7. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    International Nuclear Information System (INIS)

    Dufay-Chanat, L; Bremer, J; Casas-Cubillos, J; Koettig, T; Vauthier, N; Van Weelderen, R; Winkler, T; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point.This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests. (paper)

  8. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    Science.gov (United States)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  9. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  10. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    CERN Document Server

    Dufay-Chanat, L; Casas-Cubillos, J; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M; Koettig, T; Vauthier, N; van Weelderen, R; Winkler, T

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium wer...

  11. Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays

    International Nuclear Information System (INIS)

    Olzem, J.

    2007-01-01

    This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large

  12. Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Olzem, J.

    2007-02-27

    This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large

  13. 22 February 2011 - German Ambassador to Switzerland A. Berg signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    22 February 2011 - German Ambassador to Switzerland A. Berg signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  14. 7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

  15. 4 April 2013 - Spanish State Secretary of Science, Development and Innovation C. Vela Olmo in the LHC tunnel with Technology Department Head F. Bordry and signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    4 April 2013 - Spanish State Secretary of Science, Development and Innovation C. Vela Olmo in the LHC tunnel with Technology Department Head F. Bordry and signing the guest book with CERN Director-General R. Heuer.

  16. 14 December 2011 - Czech Republic Delegation to CERN Council and Finance Committees visiting ATLAS experimental area, LHC tunnel and ATLAS visitor centre with Former Collaboration Spokesperson P. Jenni, accompanied by Physicist R. Leitner and Swiss student A. Lister.

    CERN Multimedia

    Estelle Spirig

    2011-01-01

    14 December 2011 - Czech Republic Delegation to CERN Council and Finance Committees visiting ATLAS experimental area, LHC tunnel and ATLAS visitor centre with Former Collaboration Spokesperson P. Jenni, accompanied by Physicist R. Leitner and Swiss student A. Lister.

  17. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    Science.gov (United States)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  18. CERN Technical Training 2003: Learning for the LHC! : AXEL-2003  -  Introduction to Particle Accelerators

    CERN Multimedia

    2003-01-01

    AXEL-2003 is a course given at CERN within the framework of the Technical Training Programme. The course will present an introduction to particle accelerators. Known in the past as the PS Complex Operation Course (or the "PS Shutdown Course"), and organised by the ex-PS division until last year, it is now organised as a joint venture between the AB division and Technical Training, and open to a wider CERN community. The AXEL-2003 course series is designed for technicians who are operating an accelerator, or whose work is closely linked to accelerators, but it is open to all people (technicians, engineers, physicists) interested in this field. The course does not require any prior knowledge on accelerators. However, some basic knowledge on trigonometry, matrices and differential equations, and some basic notions of magnetism would be an advantage. The course and the course supports will be in English, with questions and answers also in French. Lectures will be recorded and available online via the Web Lectu...

  19. CERN Technical Training 2002: Learning for the LHC! Introduction à la CAO CADENCE - French version only

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Dans le cadre du suivi du programme ELEC-2002 : Electronics in HEP, une nouvelle session du cours Introduction à la CAO CADENCE. De la saisie de schéma Concept-HDL au PCB est programmée pour le 4 et 5 juin prochains. Le cours, en français, est gratuit et sera animé par Serge Brobecker de la division IT/PS/EAS. Objectif de cette formation est de donner une vue générale du système CAO CADENCE utilisé au CERN, et d'en connaître l'environnement et les possibilités, en acquérant des notions suffisantes pour utiliser la saisie de schéma. Le cours est ciblé pour une audience d'ingénieurs et techniciens désirant utiliser les outils CAO disponibles au CERN, afin de concevoir des circuits logiques et des circuits programmables digitaux. Plus d'information, et possibilité d'inscription par EDH sont accessibles depuis les pages «...

  20. The “Common Solutions” Strategy of the Experiment Support group at CERN for the LHC Experiments

    International Nuclear Information System (INIS)

    Girone, M; Andreeva, J; Barreiro Megino, F H; Campana, S; Cinquilli, M; Di Girolamo, A; Dimou, M; Giordano, D; Karavakis, E; Kenyon, M J; Kokozkiewicz, L; Lanciotti, E; Litmaath, M; Magini, N; Negri, G; Roiser, S; Saiz, P; Saiz Santos, M D; Schovancova, J; Sciabà, A

    2012-01-01

    After two years of LHC data taking, processing and analysis and with numerous changes in computing technology, a number of aspects of the experiments’ computing, as well as WLCG deployment and operations, need to evolve. As part of the activities of the Experiment Support group in CERN's IT department, and reinforced by effort from the EGI-InSPIRE project, we present work aimed at common solutions across all LHC experiments. Such solutions allow us not only to optimize development manpower but also offer lower long-term maintenance and support costs. The main areas cover Distributed Data Management, Data Analysis, Monitoring and the LCG Persistency Framework. Specific tools have been developed including the HammerCloud framework, automated services for data placement, data cleaning and data integrity (such as the data popularity service for CMS, the common Victor cleaning agent for ATLAS and CMS and tools for catalogue/storage consistency), the Dashboard Monitoring framework (job monitoring, data management monitoring, File Transfer monitoring) and the Site Status Board. This talk focuses primarily on the strategic aspects of providing such common solutions and how this relates to the overall goals of long-term sustainability and the relationship to the various WLCG Technical Evolution Groups. The success of the service components has given us confidence in the process, and has developed the trust of the stakeholders. We are now attempting to expand the development of common solutions into the more critical workflows. The first is a feasibility study of common analysis workflow execution elements between ATLAS and CMS. We look forward to additional common development in the future.

  1. The “Common Solutions” Strategy of the Experiment Support group at CERN for the LHC Experiments

    Science.gov (United States)

    Girone, M.; Andreeva, J.; Barreiro Megino, F. H.; Campana, S.; Cinquilli, M.; Di Girolamo, A.; Dimou, M.; Giordano, D.; Karavakis, E.; Kenyon, M. J.; Kokozkiewicz, L.; Lanciotti, E.; Litmaath, M.; Magini, N.; Negri, G.; Roiser, S.; Saiz, P.; Saiz Santos, M. D.; Schovancova, J.; Sciabà, A.; Spiga, D.; Trentadue, R.; Tuckett, D.; Valassi, A.; Van der Ster, D. C.; Shiers, J. D.

    2012-12-01

    After two years of LHC data taking, processing and analysis and with numerous changes in computing technology, a number of aspects of the experiments’ computing, as well as WLCG deployment and operations, need to evolve. As part of the activities of the Experiment Support group in CERN's IT department, and reinforced by effort from the EGI-InSPIRE project, we present work aimed at common solutions across all LHC experiments. Such solutions allow us not only to optimize development manpower but also offer lower long-term maintenance and support costs. The main areas cover Distributed Data Management, Data Analysis, Monitoring and the LCG Persistency Framework. Specific tools have been developed including the HammerCloud framework, automated services for data placement, data cleaning and data integrity (such as the data popularity service for CMS, the common Victor cleaning agent for ATLAS and CMS and tools for catalogue/storage consistency), the Dashboard Monitoring framework (job monitoring, data management monitoring, File Transfer monitoring) and the Site Status Board. This talk focuses primarily on the strategic aspects of providing such common solutions and how this relates to the overall goals of long-term sustainability and the relationship to the various WLCG Technical Evolution Groups. The success of the service components has given us confidence in the process, and has developed the trust of the stakeholders. We are now attempting to expand the development of common solutions into the more critical workflows. The first is a feasibility study of common analysis workflow execution elements between ATLAS and CMS. We look forward to additional common development in the future.

  2. Proposal for the award of a contract for the design, supply, installation, commissioning and testing at CERN of eight helium dryer units for the LHC

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the design, supply, installation, commissioning and testing at CERN of eight helium dryer units for the LHC. Following a market survey carried out among 42 firms in ten Member States, a call for tenders (IT-2722/LHC/LHC) was sent on 10 August 2000 to seven firms and three consortia, consisting of two firms each, in seven Member States. By the closing date, CERN had received five tenders from three firms and two consortia in five Member States. The Finance Committee is invited to agree to the negotiation of a contract with the firm COSMI (IT), the lowest bidder fulfilling the technical requirements, for the design, supply, installation, commissioning and testing at CERN of eight helium dryer units for a total amount of 3 514 779 euros, (5 307 329 Swiss francs), not subject to revision, with options for additional equipment for heating the adsorber bed and additional heat exchanger/condenser equipment, for an additional amount of 80 081 euros (120 923 Swiss fra...

  3. CERN Technical Training 2003: Learning for the LHC ! DISP-2003 - Digital Signal Processing

    CERN Multimedia

    2003-01-01

    DISP-2003 - Digital Signal Processing DISP-2003 is a two-term course given by CERN and University of Lausanne (UNIL) experts within the framework of the Technical Training Programme. The course will review the current techniques dealing with Digital Signal Processing, and it is intended for an audience who work or will work on digital signal processing aspects, and who need an introductory or refresher/update course. The course will be in English, with question and answers also in French. Spring 2 Term: DISP-2003: Advanced Digital Signal Processing 30 April 2003 - 21 May 2003, 4 lectures, Wednesdays afternoon (attendance cost: 40.- CHF, registration required) Lecturers: Léonard Studer, UNIL; Laurent Deniau, AT-MTM; Elena Wildner, AT-MAS Programme: Intelligent signal processing (ISP). Non-linear time series analysis. Image processing. Wavelets. (Basic concepts and definitions have been introduced during the previous Spring 1 Term: DISP-2003: Introduction to Digital Signal Processing). DISP-2003 is open...

  4. CERN Technical Training 2003: Learning for the LHC! DISP-2003 - Digital Signal Processing

    CERN Multimedia

    2003-01-01

    DISP-2003 is a two-term course given by CERN and University of Lausanne (UNIL) experts within the framework of the Technical Training Programme. The course will review the current techniques dealing with Digital Signal Processing, and it is intended for an audience who work or will work on digital signal processing aspects, and who need an introductory or refresher/update course. The course will be in English, with question and answers also in French. Spring 2 Term: DISP-2003: Advanced Digital Signal Processing 30 April 2003 - 21 May 2003, 4 lectures, Wednesdays afternoon. Attendance cost: 40.- CHF, registration required. Lecturers: Léonard Studer, UNIL; Laurent Deniau, AT-MTM; Elena Wildner, AT-MAS. Programme: Intelligent signal processing (ISP). Non-linear time series analysis. Image processing. Wavelets. Basic concepts and definitions have been introduced during the previous Spring 1 Term: DISP-2003: Introduction to Digital Signal Processing. DISP-2003 is open to all people interested, but registrat...

  5. Quench protection diodes for the large hadron collider LHC at CERN

    International Nuclear Information System (INIS)

    Hagedorn, D.; Naegele, W.

    1992-01-01

    For the quench protection of the main ring dipole and quadrupole magnets for the proposed Large Hadron Collider at CERN two lines of approach have been pursued for the realization of a suitable high current by-pass element and liquid helium temperature. Two commercially available diodes of the HERA type connected in parallel can easily meet the requirements if a sufficient good current sharing is imposed by current balancing elements. Design criteria for these current balancing elements are derived from individual diode characteristics. Single diode elements of thin base region, newly developed in industry, have been successfully tested. The results are promising and, if the diodes can be made with reproducible characteristics, they will provide the preferred solution especially in view of radiation hardness

  6. CERN Technical Training 2003: Learning for the LHC ! DISP-2003  -  Digital Signal Processing

    CERN Multimedia

    2003-01-01

    DISP-2003 is a two-term course given by CERN and University of Lausanne (UNIL) experts within the framework of the Technical Training Programme. The course will review the current techniques dealing with Digital Signal Processing. The DISP-2003 lecture series is composed of two Terms, and it is intended for an audience who work or will work on digital signal processing aspects, and who need an introductory or refresher/update course. The course will be in English, with questions and answers also in French. Spring 1 Term: DISP-2003: Introduction to Digital Signal Processing 20 February 2003 - 3 April 2003, 7 lectures, Thursdays (attendance cost: 70.- CHF, registration required) Lecturers: Maria Elena Angoletta, AB-BDI; Guy Baribaud, AB-BDI; Philippe Baudrenghien, AB-RF; Laurent Deniau, AT-MTM Programme: 'Classical' digital signal processing. Fourier analysis. The Laplace transform. The z-transform. Digital filters. Statistics for Signal Processing. Signal Estimation and Spectral Analysis. Spring 2 T...

  7. Experimental Results Obtained with Air Liquide Cold Compression System CERN LHC and SNS Projects

    CERN Document Server

    Delcayre, F; Hamber, F; Hilbert, B; Monneret, E; Toia, J L

    2006-01-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high‐capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC wil...

  8. Overview on heavy flavour measurements in lead-lead collisions at the CERN-LHC

    CERN Document Server

    Mischke, Andre

    2013-01-01

    High energy collisions of heavy atomic nuclei allow to create and carefully study a high-density, colour-deconfined state of strongly-interacting matter. According to calculations from lattice Quantum-Chromodynamics, under the conditions of high energy density and temperature reached in such collisions, the phase transition to a quark-gluon plasma (QGP) is expected to occur, where the colour confinement of quarks and gluons into hadrons should vanish and chiral symmetry should be restored. Heavy-flavour particles, containing charm and beauty, are unique probes of the conditions of the medium formed in nucleus-nucleus collisions at high energy. In this report recent measurements on open and hidden heavy-flavour production in lead-lead collisions at CERN's Large Hadron Collider are presented and discussed.

  9. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    International Nuclear Information System (INIS)

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-01-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10 -8 . We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix

  10. The Assembly of the LHC Short Straight Sections (SSS) at CERN Project Status and Lessons Learned

    CERN Document Server

    Parma, Vittorio; Dos Santos de Campos, Paulo M; Feitor, Rogerio C; Gandel, Makcim; López, R; Schmidlkofer, Martin; Slits, Ivo

    2005-01-01

    The series production of the LHC SSS has started in the beginning of 2004 and is foreseen to last until end 2006. The production consists in the assembly of 474 cold masses housing superconducting quadrupoles and corrector magnets within their cryostats. 87 cold mass variants, resulting from various combinations of main quadrupole and corrector magnets, have to be assembled in 55 cryostat types, depending on the specific cryogenic and electrical powering schemes required by the collider topology. The assembly activity features the execution of more than 5 km of leak-tight welding of stainless steel and aluminium cryogenic lines, designed for 20-bar pressure, according to high qualification standards and undergoing severe QA inspections. Some 2500 leak detection tests, using He mass spectrometry, are required to check the tightness of the cryogenic circuits. Extensive electrical control work, to check the integrity of the magnet instrumentation and electrical circuits throughout the assembly of the SSS, is als...

  11. Trigger system study of the dimuon spectrometer in the ALICE experiment at CERN-LHC

    International Nuclear Information System (INIS)

    Roig, O.

    1999-12-01

    This work is a contribution to the study of nucleus-nucleus collisions at the LHC with ALICE. The aim of this experiment is to search for a new phase of matter, the quark-gluon plasma (QGP). The dimuon forward spectrometer should measure one of the most promising probes of the QGP, the production of heavy quark vector mesons (J/ψ, γ, γ', γ'') through their muonic decays. The dimuon trigger selects the interesting events performing a cut on the transverse momentum of the tracks. The trigger decision is taken by a dedicated electronics using RPC (''Resistive Plate Chambers'') detector information. We have made our own R and D program on the RPC detector with various beam tests. We show the performances obtained during these tests of a low resistivity RPC operating in streamer mode. The ALICE requirements concerning the rate capability, the cluster size and the time resolution are fulfilled. We have optimised the trigger with simulations which include a complete description of the read-out planes and the trigger logic (algorithm). In particular, a technique of clustering is proposed and validated. A method called ''Ds reduction'' is introduced in order to limit the effects of combinatorial background on the trigger rates. The efficiencies and the trigger rates are calculated for Pb-Pb, Ca-Ca, p-p collisions at the LHC. Other more sophisticated cuts, on the invariant mass for example, using again the RPC information have been simulated but have not shown significant improvements of the trigger rates. (author)

  12. Effects of the R-parity violation in the minimal supersymmetric standard model on dilepton pair production at the CERN LHC

    CERN Document Server

    Jun, Y; Lang-Hui, W; Ren Zhao You; Jun, Yin; Wen-Gan, Ma; Lang-Hui, Wan; Ren-You, Zhang

    2002-01-01

    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the parent process $pp \\to e^+ e^- + X$ at the CERN Large Hadron Collider (LHC). The numerical comparisons between the contributions of the R-parity violating effects to the parent process via the Drell-Yan subprocess and the gluon-gluon fusion are made. We find that the R-violating effects on $e^+ e^-$ pair production at the LHC could be significant. The results show that the cross section of the $ e^+ e^-$ pair productions via gluon-gluon collision at the LHC can be of the order of $10^2$ fb, and this subprocess maybe competitive with the production mechanism via the Drell-Yan subprocess. We give also quantitatively the analysis of the effects from both the mass of sneutrino and coupling strength of the R-parity violating interactions.

  13. Electron-cloud simulation studies for the CERN-PS in the framework of the LHC Injectors Upgrade project

    CERN Document Server

    Rioja Fuentelsaz, Sergio

    The present study aims to provide a consistent picture of the electron cloud effect in the CERN Proton Synchrotron (PS) and to investigate possible future limitations due to the requirements foreseen by the LHC Injectors Upgrade (LIU) project. It consists of a complete simulation survey of the electron cloud build-up in the different beam pipe sections of the ring depending on several controllable beam parameters and vacuum chamber surface properties, covering present and future operation parameters. As the combined function magnets of the accelerator constitute almost the $80\\%$ in length of the ring, the implementation of a new feature for the simulation of any external magnetic field on the PyECLOUD code, made it possible to perform this study. All the results of the simulations are given as a function of the vacuum chamber surface properties in order to deduce them, both locally and globally, when compared with experimental data. In a first step, we characterize locally the maximum possible number of ...

  14. An OpenMP Parallelisation of Real-time Processing of CERN LHC Beam Position Monitor Data

    CERN Document Server

    Renshall, H

    2012-01-01

    SUSSIX is a FORTRAN program for the post processing of turn-by-turn Beam Position Monitor (BPM) data, which computes the frequency, amplitude, and phase of tunes and resonant lines to a high degree of precision. For analysis of LHC BPM data a specific version run through a C steering code has been implemented in the CERN Control Centre to run on a server under the Linux operating system but became a real time computational bottleneck preventing truly online study of the BPM data. Timing studies showed that the independent processing of each BPMs data was a candidate for parallelization and the Open Multiprocessing (OpenMP) package with its simple insertion of compiler directives was tried. It proved to be easy to learn and use, problem free and efficient in this case reaching a factor of ten reductions in real-time over twelve cores on a dedicated server. This paper reviews the problem, shows the critical code fragments with their OpenMP directives and the results obtained.

  15. The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)

    CERN Document Server

    Cameron, W; Kurtyka, T; Parma, Vittorio; Renaglia, T; Rifflet, J M; Rohmig, P; Skoczen, Blazej; Tortschanoff, Theodor; Trilhe, P; Védrine, P; Vincent, D

    1998-01-01

    The lattice of the CERN Large Hadron Collider (LHC) contains 364 Short Straight Section (SSS) units, one in every 53 m long half-cell. An SSS consists of three major assemblies: the standard cryostat section, the cryogenic service module, and the jumper connection. The standard cryostat section of an SSS contains the twin aperture high-gradient superconducting quadrupole and two pairs of superconducting corrector magnets, operating in pressurized helium II at 1.9 K. Components for isolating cryostat insulation vacuum, and the cryogenic supply lines, have to be foreseen. Special emphasis is given to the design changes of the SSS following adoption of an external cryogenic supply line (QRL). A jumper connection connects the SSS to the QRL, linking all the cryogenic tubes necessary for the local full-cell cooling loop [at every second SSS]. The jumper is connected to one end of the standard cryostat section via the cryogenic service module, which also houses beam diagnostics, current feedthroughs, and instrument...

  16. Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects

    Science.gov (United States)

    Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.

    2006-04-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.

  17. Search for supersymmetry using multileptonic signatures in proton-proton collisions with the CMS detector at the LHC

    International Nuclear Information System (INIS)

    Troendle, Daniel Cedric

    2012-01-01

    A search for multileptonic signatures with three or more isolated leptons in pp collisions at √(s)=7 TeV is presented in this Thesis. The data, recorded with the CMS experiment at the LHC in 2011, corresponds to an integrated luminosity of 4.7 fb -1 . The observed multilepton events are categorized into exclusive search channels based on the identity and kinematics of the objects and the events. The search results are interpreted in the context of R-parity conserving supersymmetric models.

  18. Black hole bound on the number of species and quantum gravity at CERN LHC

    International Nuclear Information System (INIS)

    Dvali, Gia; Redi, Michele

    2008-01-01

    In theories with a large number N of particle species, black hole physics imposes an upper bound on the mass of the species equal to M Planck /√(N). This bound suggests a novel solution to the hierarchy problem in which there are N≅10 32 gravitationally coupled species, for example 10 32 copies of the standard model. The black hole bound forces them to be at the weak scale, hence providing a stable hierarchy. We present various arguments, that in such theories the effective gravitational cutoff is reduced to Λ G ≅M Planck /√(N) and a new description is needed around this scale. In particular, black holes smaller than Λ G -1 are already no longer semiclassical. The nature of the completion is model dependent. One natural possibility is that Λ G is the quantum gravity scale. We provide evidence that within this type of scenarios, contrary to the standard intuition, micro-black-holes have a (slowly fading) memory of the species of origin. Consequently, the black holes produced at LHC will predominantly decay into the standard model particles, and negligibly into the other species

  19. Study of top-quark polarization in single-top-quark production at the CERN LHC

    CERN Document Server

    Espriu, Doménec

    2002-01-01

    This paper complements the study of single top production at the LHC aiming to estimate the sensitivity of different observables to the magnitude of the effective couplings. In a previous paper the dominant $W$-gluon fusion mechanism was considered, while here we extend the analysis to the subdominant (10% with our set of experimental cuts) s-channel process. In order to distinguish left from right effective couplings it is required to consider polarized cross-sections and/or include $m_b$ effects. The spin of the top is accessible only indirectly by measuring the angular distribution of its decay products. We show that the presence of effective right-handed couplings implies necessarily that the top is not in a pure spin state. We discuss to what extent quantum interference terms can be neglected in the measurement and therefore simply multiply production and decay probabilities clasically. The coarsening involved in the measurement process makes this possible. We determine for each process the optimal spin ...

  20. A Muon Identification and Combined Reconstruction Procedure for the ATLAS Detector at the LHC at CERN

    CERN Document Server

    Lagouri, T; Assamagan, Ketevi A; Biglietti, M; Carlino, G; Cataldi, G; Conventi, F; Farilla, A; Fisyak, Yu; Goldfarb, S; Gorini, E; Mair, K; Merola, L; Nairz, A; Poppleton, A; Primavera, M; Rosati, S; Shank, S; Spagnolo, S; Spogli, S; Stavropoulos, G D; Verducci, M; Wenaus, T; IEEE-NSS-MIC-2003

    2004-01-01

    Muon identification and high momentum measurement accuracy is crucial to fully exploit the physics potential that will be accessible with ATLAS experiment at the LHC. The muon energy of physics interest ranges in a large interval from few GeV, where the b-physics studies dominate the physics program, up to the highest values that could indicate the presence of new physics. The muon detection system of the ATLAS detector is characterized by two high precision tracking systems, namely the Inner Detector and the Muon Spectrometer plus a thick calorimeter that ensures a safe hadron absorption filtering with high purity muons with energy above 3 GeV. In order to combine the muon tracks reconstructed in the Inner Detector and the Muon Spectrometer the Muon Identification (MUID) Object-Oriented software package has been developed. The purpose of the MUID procedure is to associate tracks found in the Muon Spectrometer with the corresponding Inner Detector track and calorimeter information in order to identify muons a...

  1. Diffraction as a CP and lineshape analyzer for MSSM Higgs bosons at the CERN LHC

    International Nuclear Information System (INIS)

    Ellis, John; Lee, Jae Sik; Pilaftsis, Apostolos

    2005-01-01

    We study the production and decay of a coupled system of mixed neutral minimal supersymmetric extension of the Standard Model (MSSM) Higgs bosons in exclusive double-diffractive processes at the LHC, including nonvanishing CP phases in the soft supersymmetry-breaking gaugino masses and third-generation trilinear squark couplings. The three neutral Higgs bosons are naturally nearly degenerate, for large values of tanβ, when the charged Higgs boson weighs around 150 GeV. Large mixing between all three neutral Higgs bosons is possible when CP is violated, a threeway mixing scenario which we also term trimixing. A resolution in the Higgs mass of ∼1 GeV, which may be achievable using the missing-mass method, would allow one to distinguish nearly degenerate Higgs bosons by studying the production lineshape. Measurements of the polarizations of the tau leptons coming from the Higgs-boson decays could offer a direct and observable signal of CP violation in the Higgs sector

  2. Displacement measurements in the cryogenically cooled dipoles of the new CERN-LHC particle accelerator

    CERN Document Server

    Inaudi, D; Scandale, Walter; Pérez, J G; Billan, J; Redaelli, S

    2001-01-01

    The LHC will use the most advanced superconducting magnet and accelerator technologies ever employed. One of the main challenges in this new machine resides in the design and production of the superconducting dipoles used to steer the particles around the 27 km underground tunnel. These so-called cryodipoles are composed of an external vacuum tube and an insert, appropriately named the cold mass, that contains the particle tubes, the superconducting coil and will be cooled using superfluid helium to 1.9 K. The particle beam must be placed inside the magnetic field with a submillimeter accuracy; this requires in turn that the relative displacements between the vacuum tube and the cold-mass must be monitored with accuracy. Due to the extreme condition environmental conditions (the displacement measurement must be made in vacuum and between two points with a temperature difference of more than 200 degrees C) no adequate existing monitoring system was found for this application. It was therefore decided to develo...

  3. Signature of the "INB" Convention between the French Government and CERN

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    Photo 06:(l. to r.) Mr Michel Giacobbi, Counsel French Permanent Mission, H.E. Mr Philippe Petit, Ambassador for France to the United Nations, the Director General Prof. Luciano Maiani, and Mr Jean-Marie Dufour, Legal Counsel of CERN; Photo 12: H.E. Mr Philippe Petit and the Director General Prof. Luciano Maiani

  4. LHC milestone

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    At the December meeting of CERN's Council, the Organization's Governing Body, the delegates from the 16 Member States unanimously agreed that the LHC proton-proton collider proposed for the 27-kilometre LEP tunnel is the 'right machine for the advance of the subject and of the future of CERN'

  5. LHC Create

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    LHC Create is an upcoming 2-day workshop held at IdeaSquare in November. Participants from CERN and IPAC school of design will compete to design an exhibit that explains why CERN does what it does. The winner will have their exhibit fully realised and made available to experiments, institutes, and tourism agencies around the world.

  6. LHC report

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    This week's Report, by Gianluigi Arduini,  will be included in the LHC Physics Day, dedicated to the reviews of the LHC physics results presented at ICHEP 2010. Seehttp://indico.cern.ch/conferenceDisplay.py?confId=102669 

  7. CERN looks to the long-term future: might a 100km circular collider follow the LHC around mid-century?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Particle physics is a long-term field of research: the LHC was originally conceived in the 1980s, but did not start running until 25 years later. An accelerator unlike any other, it is now just at the start of a programme that is set to run for another 20 years. While the LHC programme is already well defined for the next two decades, it is now time to look even further ahead, and so CERN is initiating an exploratory study for a future long-term project centred on a next-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 13 TeV in 2015, such an accelerator would allow particle physicists to push the boundaries of knowledge even further. The Future Circular Collider (FCC) programme will focus on studies for a hadron collider, like the LHC, capable of reaching unprecedented energies in the region of 100 TeV. It will also study electron-positron and electron-proton options. Opening with an introduction to the LHC and its...

  8. 20 December 2013 - R. M. Cordeiro Dunlop Ambassador Permanent Representative of Brazil to the United Nations Office and other international organisations in Geneva visiting the LHC tunnel at Point 5 with CMS Collaboration, CERN Team Leader A. Petrilli and signing the Guest Book with CERN Director-General. Accompanied by J. Salicio and R. Voss throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    20 December 2013 - R. M. Cordeiro Dunlop Ambassador Permanent Representative of Brazil to the United Nations Office and other international organisations in Geneva visiting the LHC tunnel at Point 5 with CMS Collaboration, CERN Team Leader A. Petrilli and signing the Guest Book with CERN Director-General. Accompanied by J. Salicio and R. Voss throughout.

  9. 26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

  10. 27 February 2012 - Director of the Health Directorate at the Research DG European Commission R. Draghia-Akli in the ATLAS visitor centre with ATLAS Former Collaboration Spokesperson P. Jenni and Head of CERN EU Projects Office S. Stavrev; in the LHC superconducting magnet test hall with E. Todesco; and signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Michel Blanc

    2012-01-01

    27 February 2012 - Director of the Health Directorate at the Research DG European Commission R. Draghia-Akli in the ATLAS visitor centre with ATLAS Former Collaboration Spokesperson P. Jenni and Head of CERN EU Projects Office S. Stavrev; in the LHC superconducting magnet test hall with E. Todesco; and signing the guest book with CERN Director-General R. Heuer.

  11. 18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  12. LHC dipoles flood into CERN : the dipole nr 154 crowns the efforts of the LHC teams for increasing the fabrication rate of the magnets.

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    On 3 December the "tableau" on the 4th floor in building 30 indicated 1078 dipoles to completion - or in other words, 154 dipoles had by this day been delivered to CERN, enough to complete the first octant of the machine. CERN has also now received enough superconducting cable - the "heart" of the magnets - for 600 dipoles, nearly half the total number of 1232.

  13. 28th January 2011-Vice-President Max Planck Society-Prof. Martin Stratmann-Germany-visiting the ATLAS experimental area and the LHC Tunnel at CERN

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    Photo 1:ATLAS visitor Center with P. Jenni, ATLAS Collaboration former spokesperson Photo 2-10:visiting the ATLAS cavern Photo 10:D. Hoppe,P. Jenni,M. Stratmann,S. Bethke,S. Braun,D. Klammer Photo 11-15:visiting the LHC tunnel Photo 16-18:Signature of the Guest Book with S. Lettow,Director for Administration and General Infrastructure

  14. Design, construction and start up by Air Liquide of two 18 kW at 45 K helium refrigerators for the new CERN accelerator (LHC)

    CERN Document Server

    Dauguet, P; Delcayre, F; Ghisolfi, A; Gistau-Baguer, Guy M; Guerin, C A; Hilbert, B; Marot, G; Monneret, E

    2004-01-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  15. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. Following the Run 1 period, LHC also successfully delivered Pb–Pb collisions at the collision energy sNN= 5.02 TeV at the end of 2015. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. This review presents selected experimental results from heavy-ion collisions delivered during the first three years of the LHC operation focusing on the bulk matter properties and the dynamical evolution of the created system. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large hadron collider, Heavy-ion collisions, High energy physics

  16. CERN Technical Training 2002: Learning for the LHC! INTRODUCTION TO PVSS: FREE SESSION ON 11.11.2002 (AFTERNOON)

    CERN Multimedia

    Davide Vitè

    2002-01-01

    A free-of-charge Introduction to PVSS session will be offered at CERN on November 11, 2002 (afternoon). This course is designed for people interested in SCADA-systems, and will provide an overview of PVSS features and possibilities. The programme will include a presentation of what can be done with the SCADA-system PVSS and of how PVSS is being used at CERN. A session of the complete Basic PVSS course would follow on 12-14 November (cost: 600.- CHF). More information, full programme and online registration by EDH are available from the CERN 2002 Technical Training pages or by contacting Technical.Training@cern.ch

  17. Search for SUSY using the missing ET signature with the ATLAS and CMS experiments at the LHC

    International Nuclear Information System (INIS)

    Janus, M.

    2014-01-01

    In this paper, a selection of current searches for supersymmetric particles in proton-proton collisions at the Large Hadron Collider (LHC) at √(s)= 7 TeV with the ATLAS and CMS detectors is presented. All these searches apply a requirement on large missing transverse energy, which is a signature of many SUSY scenarios. Many different final states sensitive to gluino and first and second generation squark production are discussed, including purely hadronic final states as well as with leptons or photons. As no excesses beyond Standard Model predictions have been found, further searches are anticipated, especially in final states that are sensitive to the production of super-partners of the third generation fermions or of the electroweak bosons. (author)

  18. Aspects of the same-sign diboson signature from wino pair production with light higgsinos at the high luminosity LHC

    Science.gov (United States)

    Baer, Howard; Barger, Vernon; Gainer, James S.; Savoy, Michael; Sengupta, Dibyashree; Tata, Xerxes

    2018-02-01

    Naturalness arguments applied to simple supersymmetric (SUSY) theories require a set of light higgsinos with mass ˜|μ | not too far from mh. These models have an inverted electroweakino spectrum with |μ |≪M2 which leads to a rather clean, hadronically quiet, same-sign diboson (SSdB) signature at hadron colliders arising from neutral-plus-charged wino pair production. We improve and expand our earlier studies of this signature for discovering SUSY in natural SUSY models by (i) including backgrounds which were not previously considered and which turn out to be significant, (ii) devising more efficient cuts to successfully contend with these larger backgrounds and determining the discovery reach and exclusion ranges for winos with these cuts, emphasizing projections for the updated integrated luminosity target for HL-LHC of 3 ab-1 , and (iii) emphasizing the utility of this channel for natural models without gaugino mass unification. We display the kinematic characteristics of the relatively jet-free same sign dilepton + ET events (from leptonic decays of both W s ) and find that these are only weakly sensitive to the parent wino mass. We also examine the charge asymmetry in these events and show that its measurement can be used to check the consistency of the wino origin of the signal. Finally, we show that—because the wino branching fractions in natural SUSY are essentially independent of details of the underlying model—a determination of the rate for clean, same-sign dilepton events yields a better than 10% determination of the wino mass over the entire mass range where experiments at the HL-LHC can discover the wino signal.

  19. Outsourced design services lessons learned from LHC civil engineering

    CERN Document Server

    Watson, T

    2003-01-01

    In April 1996 CERN awarded three contracts for the provision of civil engineering design and site supervision services associated with the LHC Project. These three contracts with an average value at signature of 12MCHF were placed using the “two envelope” award system. Eight firms from six member states were integrated into three Joint Ventures. For Projects prior to the LHC, CERN would have carried out the design and supervision using in-house staff. The change to out-sourced services represented a major step for CERN. After seven years, the contracts are now coming to their conclusion. This paper aims to discuss the reasons why these contracts were originally implemented, the lessons than have been learnt over the last seven years and conclusions on how CERN could approach the need for civil engineering design services in the future.

  20. Signature of two contracts for the supply of corrector magnets and the hand-over of a Letter of Intent (LoI) referring to the award of a contract for the supply of superconducting quadrupole magnets for the LHC program to company TESLA Engineering Ltd. (UK)

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    CERN: Dr. K.H. Kissler, Div. Leader SPL, Th. Lagrange, Head of the Purchasing Service, I. Lobmaier, Purchasing Service, A. Ijspeert, LHC Div. TESLA Engineering Ltd (UK): Dr M. Begg, Managing director British delegation at CERN: Dr. Morrell

  1. Searches for Gauge-Mediated Supersymmetry Breaking Signatures with the ATLAS Detector at the LHC

    CERN Document Server

    Mann, Alexander; The ATLAS collaboration

    2018-01-01

    Gauge mediated breaking of supersymmetry predicts that the lightest supersymmetric particle is the gravitino. A variety of experimental signatures is predicted, depending on the nature and the lifetime of the next to lightest supersymmetric particle. The talk presents recent results from ATLAS searches for supersymmetry with photons, Z or Higgs bosons in the final state, which target GMSB / GGM models.

  2. Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

  3. Signature of the CERN – EGO (European Gravitational Observatory) Agreement concerning Collaboration in Scientific, Technological, Educational and other Domains of Mutual Interest, by R. Heuer, Director-General and Prof. F. Ferrini.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Signature of the CERN – EGO (European Gravitational Observatory) Agreement concerning Collaboration in Scientific, Technological, Educational and other Domains of Mutual Interest, by R. Heuer, Director-General and Prof. F. Ferrini.

  4. 25 September 2012 - Signature of an Agreement between the Islamic Republic of Pakistan, represented by the Pakistan Atomic Energy Commission Chairman A. Parvez and CERN, represented by its Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    25 September 2012 - Signature of an Agreement between the Islamic Republic of Pakistan, represented by the Pakistan Atomic Energy Commission Chairman A. Parvez and CERN, represented by its Director-General R. Heuer.

  5. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and the LHC Accelerators

    CERN Document Server

    Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H

    2012-01-01

    While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.

  6. LHC magnets

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Preparations for the LHC proton collider to be built in CERN's LEP tunnel continue to make good progress. In particular development work for the high field superconducting magnets to guide the almost 8 TeVproton beams through the 'tight' curve of the 27-kilometre ring are proceeding well, while the magnet designs and lattice configuration are evolving in the light of ongoing experience. At the Evian LHC Experiments meeting, this progress was covered by Giorgio Brianti

  7. CERN's Large Hadron Collider project

    Science.gov (United States)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  8. CERN's Large Hadron Collider project

    International Nuclear Information System (INIS)

    Fearnley, Tom A.

    1997-01-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B

  9. CERN-HI-1202040 tirage 29 (front row) Russian Federation Secretary of the Security Council N. Patrushev with Adviser T. Kurtyka and Permanent Mission to the UN Adviser A. Petrov in the LHC tunnel at Point 1.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    On 14 February Nikolai Patrushev, secretary of the Security Council for the Russian Federation, was welcomed to CERN. He visited the ATLAS underground experimental area, the LHC tunnel and ATLAS Visitor Centre before viewing the Universe of Particles exhibition at the Globe of Science and Innovation.

  10. Towards LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    As plans for the LHC proton collider to be built in CERN's 27-kilometre LEP tunnel take shape, interest widens to bring in the experiments exploiting the big machine. The first public presentations of 'expressions of interest' for LHC experiments featured from 5-8 March at Evian-les-Bains on the shore of Lake Geneva, some 50 kilometres from CERN, at the special Towards the LHC Experimental Programme' meeting

  11. 30 CERN

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    September marked the 30th Anniversary of the coming into force of the Convention establishing the European Organization for Nuclear Research (CERN). A formal ceremony, attended by the King of Spain, was the highlight of the celebrations. Throughout the month, an exhibition of many of the important documents from CERN's early history (including the original Convention, kindly loaned by UNESCO, with the signatures of representatives of the twelve founding States) was presented at CERN. A concert by the Geneva Orchestre de la Suisse Romande was given in CERN's honour. An Open Day at the Laboratory drew thousands of visitors. A full day's 'history seminar' enabled a team presently working on CERN history to consult with many of the pioneers

  12. 30 CERN

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-11-15

    September marked the 30th Anniversary of the coming into force of the Convention establishing the European Organization for Nuclear Research (CERN). A formal ceremony, attended by the King of Spain, was the highlight of the celebrations. Throughout the month, an exhibition of many of the important documents from CERN's early history (including the original Convention, kindly loaned by UNESCO, with the signatures of representatives of the twelve founding States) was presented at CERN. A concert by the Geneva Orchestre de la Suisse Romande was given in CERN's honour. An Open Day at the Laboratory drew thousands of visitors. A full day's 'history seminar' enabled a team presently working on CERN history to consult with many of the pioneers.

  13. 1 November 2012 - Signature of the Co-operation Agreement between the Administrative Department of Science, Technology and Innovation (COLCIENCIAS) of Colombia and the European Organization for Nuclear Research (CERN) concerning Scientific and Technical Co-operation in High-Energy Physics and related technologies by CERN Director-General R. Heuer, witnessed by Ambassador of Colombia to Switzerland C. Turbay Quintero.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    1 November 2012 - Signature of the Co-operation Agreement between the Administrative Department of Science, Technology and Innovation (COLCIENCIAS) of Colombia and the European Organization for Nuclear Research (CERN) concerning Scientific and Technical Co-operation in High-Energy Physics and related technologies by CERN Director-General R. Heuer, witnessed by Ambassador of Colombia to Switzerland C. Turbay Quintero.

  14. A new flavour imprint of SU(5-like grand unification and its LHC signatures

    Directory of Open Access Journals (Sweden)

    S. Fichet

    2015-03-01

    Full Text Available We point out that the hypothesis of an SU(5-like supersymmetric Grand Unified Theory (GUT implies a generic relation within the flavour structure of up-type squarks. Contrary to other well-known SU(5 relations between the down-quark and charged lepton sectors, this relation remains exact in the presence of any corrections and extra operators. Moreover it remains valid to a good precision at the electroweak scale, and opens thus new possibilities for testing SU(5-like GUTs. We derive the low-energy effective theory of observable light up-type squarks, that also constitutes a useful tool for squark phenomenology. We use this effective theory to determine how to test SU(5 relations at the LHC. Focusing on scenarios with light stops, compatible with Natural SUSY, it appears that simple tests involving ratios of event rates are sufficient to test the hypothesis of an SU(5-like GUT theory. The techniques of charm-tagging and top-polarimetry are a crucial ingredient of these tests.

  15. Study of {upsilon} family resonances in ultrarelativistic heavy ions collisions within the frame of the Alice experiment at CERN-LHC; Etude des resonances de la famille du {upsilon} dans les collisions d'ions lourds ultra-relativistes a 2.75 TeV/ nucleon et par faisceau sur l'experience Alice du LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dumonteil, E

    2004-09-01

    Quantum Chromodynamics foresees, at high temperature and/or high energy density, a phase transition between hadronic matter and a phase where quarks and gluons are no more confined in the nucleons: the Quark Gluon Plasma (QGP). During the past fifteen years, a large experimental program has taken place at CERN and at BNL, to identify the QGP. ALICE is the LHC experiment dedicated to the study of the plasma via ultrarelativistic heavy ion collisions at 2.75 TeV/nucleon per beam. The measure of Upsilon's resonances suppression, a powerful signature of a deconfined medium, with the ALICE dimuon spectrometer, is the main topic of this thesis. The first part of the work aims at studying the multi-wires pad chambers of the dimuon arm, used to track the muons from resonances decays. The second part presents an in-beam alignment algorithm able to calculate the positions of the different chambers with a very good accuracy. Finally, the last part proposes a study to lead with the ALICE muon spectrometer, involving the measure of Upsilon and Upsilon's production ratio as a function of the transverse momentum. It has been showed that this study should allow to evidence the QGP and to extract some of its properties. (author)

  16. Methods and results of modeling and transmission-line calculations of the superconducting dipole chains of CERN's LHC collider

    CERN Document Server

    Bourgeois, F

    2001-01-01

    Electrical modeling and simulation of the LHC magnet strings are being used to determine the key parameters that are needed for the design of the powering and energy extraction equipment. Poles and zeros of the Laplace expression approximating the Bode plot of the measured coil impedance are used to synthesize an R/L/C model of the magnet. Subsequently, this model is used to simulate the behavior of the LHC main dipole magnet string. Lumped transmission line behavior, impedance, resonance, propagation of the power supply ripple, ramping errors, energy extraction transients and their damping are presented in this paper. (3 refs).

  17. Special Colloquium for the CERN-Fermilab Hadron Collider Physics Summer School: Main Dilemmas in Particle Physics for the LHC

    CERN Document Server

    CERN. Geneva

    2007-01-01

    A review of the status of the most crucial issues in particle physics at the start of the LHC is presented. The main questions are related to electroweak symmetry breaking and the mystery of new physics at the TeV scale, that is reasonably expected to be nearby and yet must be very peculiar because it was not seen at LEP and in flavour physics experiments. The main current ideas on models will be discussed and their implications for LHC searches, dark matter etc.

  18. ATLAS. LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In Greek mythology, Atlas was a Titan who had to hold up the heavens with his hands as a punishment for having taken part in a revolt against the Olympians. For LHC, the ATLAS detector will also have an onerous physics burden to bear, but this is seen as a golden opportunity rather than a punishment. The major physics goal of CERN's LHC proton-proton collider is the quest for the long-awaited£higgs' mechanism which drives the spontaneous symmetry breaking of the electroweak Standard Model picture. The large ATLAS collaboration proposes a large general-purpose detector to exploit the full discovery potential of LHC's proton collisions. LHC will provide proton-proton collision luminosities at the aweinspiring level of 1034 cm2 s~1, with initial running in at 1033. The ATLAS philosophy is to handle as many signatures as possible at all luminosity levels, with the initial running providing more complex possibilities. The ATLAS concept was first presented as a Letter of Intent to the LHC Committee in November 1992. Following initial presentations at the Evian meeting (Towards the LHC Experimental Programme') in March of that year, two ideas for generalpurpose detectors, the ASCOT and EAGLE schemes, merged, with Friedrich Dydak (MPI Munich) and Peter Jenni (CERN) as ATLAS cospokesmen. Since the initial Letter of Intent presentation, the ATLAS design has been optimized and developed, guided by physics performance studies and the LHC-oriented detector R&D programme (April/May, page 3). The overall detector concept is characterized by an inner superconducting solenoid (for inner tracking) and large superconducting air-core toroids outside the calorimetry. This solution avoids constraining the calorimetry while providing a high resolution, large acceptance and robust detector. The outer magnet will extend over a length of 26 metres, with an outer diameter of almost 20 metres. The total weight of the detector is 7,000 tonnes. Fitted with its end

  19. 3 October 2013 - Ukrainian Vice Prime Minister Ukraine K. I. Gryschenko welcomed by CERN Director-General R. Heuer who introduces Head of International Relations R. Voss; Head of Technology Department F. Bordry; Deputy Head of International Relations E. Tsesmelis; Deputy Legal Counsel M. Wilbers; Adviser for Ukraine T. Kurtyka; Signing of the Agreement between Ukraine and CERN concerning the granting of the status of Associate Member at CERN; in the LHC tunnel at Point 5 and visiting CMS experimental area with CERN Team Leader A. Petrilli.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    3 October 2013 - Ukrainian Vice Prime Minister Ukraine K. I. Gryschenko welcomed by CERN Director-General R. Heuer who introduces Head of International Relations R. Voss; Head of Technology Department F. Bordry; Deputy Head of International Relations E. Tsesmelis; Deputy Legal Counsel M. Wilbers; Adviser for Ukraine T. Kurtyka; Signing of the Agreement between Ukraine and CERN concerning the granting of the status of Associate Member at CERN; in the LHC tunnel at Point 5 and visiting CMS experimental area with CERN Team Leader A. Petrilli.

  20. Signature d'un projet de protocole d'accord entre le CERN et l'Iran

    CERN Multimedia

    CERN Press Office. Geneva

    2001-01-01

    Iranian Minister for Science, Research and Technology, Dr Mostafa Moin, and CERN Director-General, Professor Luciano Maiani, today signed a draft Memorandum of Understanding concerning the participation of Iranian universities in the Laboratory's scientific programme. Under this agreement, one Iranian researcher and three students will come to CERN to participate in the CMS experiment, with Iranian industry contributing to the experiment's construction. The Memorandum also paves the way for possible further Iranian involvement with experiments at CERN.

  1. Lecture at the Globe | "From the Higgs boson to the search for new physics: the prospects for the LHC programme at CERN"

    CERN Multimedia

    2013-01-01

    Christmas lecture (in French, with simultaneous interpreting into English): "From the Higgs boson to the search for new physics: the prospects for the LHC programme at CERN", by Philippe Bloch.   Globe of Science and Innovation Route de Meyrin, 1211 Genève Monday 16 December 2013 at 8:30 p.m. The discovery of the Higgs boson, which was the subject of this year's Nobel prize for physics, has brought us the missing piece of the Standard Model of particle physics. However, many observations (such as the predominance of matter over antimatter in the Universe, the existence of dark matter observed by cosmologists and even the fact that the Higgs boson has a relatively small mass) underline that our knowledge of the structure of matter and its interactions is incomplete.   A wide-ranging programme of research spanning several decades to come thus awaits us at the LHC. Philippe Bloch will begin his lecture by giving us the latest news on the Higg...

  2. submitter Search for Dark Matter in the Upgraded High Luminosity LHC at CERN: Sensitivity of ATLAS phase II upgrade to dark matter production

    CERN Document Server

    Hallsjö, Sven-Patrik; Johansson, Magnus

    The LHC at CERN is now undergoing a set of upgrades to increase the center of mass energy for the colliding particles to be able to explore new physical processes. The focus of this thesis lies on the so called phase II upgrade which will preliminarily be completed in 2023. After the upgrade the LHC will be able to accelerate proton beams to such a velocity thateach proton has a center of mass energy of 14 TeV. One disadvantage of the upgrade is that it will be harder for the atlas detector to isolate unique particle collisions since more and more collisions will occur simultaneously, so called pile-up. For 14 TeV there does not exist a full simulation of the atlas detector. This thesis instead uses data from Monte Carlo simulations for the particle collisions and then uses so called smearing functions to emulate the detector responses. This thesis focuses on how a mono-jet analysis looking for different wimp models of dark matter will be affected by this increase in pile-up rate. The signal models which are ...

  3. Beam-Loss Induced Pressure Rise of LHC Collimator Materials Irradiated with 158 GeV/u $In^{49+}$ Ions at the CERN SPS

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, Helmut H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 1044 to 107 molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measure-ment of heavy-ion induced molecular desorption in the GeV/u energy range is important for LHC ion operation. In 2003, a desorption experiment was installed at the SPS to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN stainless steel, were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental set-up, the results of the pressure rise measurements are presented, and the deri...

  4. Probing two-photon decay widths of mesons at energies available at the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Bertulani, C. A.

    2009-01-01

    Meson production cross sections in ultraperipheral relativistic heavy ion collisions at the CERN Large Hadron Collider are revisited. The relevance of meson models and of exotic QCD states is discussed. This study includes states that have not been considered before in the literature.

  5. Contribution to the gamma calibration by the radiative decay Z → μμγ, in the CMS experiment at LHC (CERN)

    International Nuclear Information System (INIS)

    Baty, C.

    2009-11-01

    The LHC has started to take data since november 2009. This opened a new era of discovery in particle physics. The CMS detector is one of the main experiment at the LHC (CERN). One goal of this experiment is the Higgs's boson discovery, that can be related to the electroweak symmetry breaking. After a contextual position of the LHC and CMS within the nowadays' particle physics, I will explain the whole chain allowing to go from the physical event to the final analysis, in order to extract the reconstructed particles and the information allowing us, at the end, to discover new particles like the Higgs's boson. The first part of this work was about the measurement and the study of the acquisition electronics gains-ratios. This work aimed at having a precise measurement of the photons energy on the whole available energy band (35 MeV -> 1.7 TeV). In particular, this work deals with the validation of the different calibration methods for the VFE acquisition cards within the detector. A second part of my work was about the way that we have to generate the physics events avoiding double-counting between photons coming from matrix-element generators and those coming from parton-shower algorithms. An anti-double-counting veto has been created. Finally the last part of the work was about the way the radiative decay of the Z 0 neutral electroweak gauge boson allow, by the selection of certified photons, the extraction of the photons energy scale inside the electromagnetic calorimeter of CMS. (author)

  6. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  7. CernVM Co-Pilot: a Framework for Orchestrating Virtual Machines Running Applications of LHC Experiments on the Cloud

    International Nuclear Information System (INIS)

    Harutyunyan, A; Sánchez, C Aguado; Blomer, J; Buncic, P

    2011-01-01

    CernVM Co-Pilot is a framework for the delivery and execution of the workload on remote computing resources. It consists of components which are developed to ease the integration of geographically distributed resources (such as commercial or academic computing clouds, or the machines of users participating in volunteer computing projects) into existing computing grid infrastructures. The Co-Pilot framework can also be used to build an ad-hoc computing infrastructure on top of distributed resources. In this paper we present the architecture of the Co-Pilot framework, describe how it is used to execute the jobs of the ALICE and ATLAS experiments, as well as to run the Monte-Carlo simulation application of CERN Theoretical Physics Group.

  8. Academic Training: The LHC machine /experiment interface

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 18, 19, 20, 21 & 22 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 The LHC machine /experiment interface S. TAPPROGGE, Univ. of Mainz, D, R. ASSMANN, CERN-AB E. TSESMELIS and D. MACINA, CERN-TS This series of lectures will cover some of the major issues at the boundary between the LHC machine and the experiments: 1) The physics motivation and expectations of the experiments regarding the machine operation. This will include an overview of the LHC physics programme (in pp and PbPb collisions), of the experimental signatures (from high pT objects to leading nucleons) and of the expected trigger rates as well as the data sets needed for specific measurements. Furthermore, issues related to various modes of operation of the machine (e.g. bunch spacings of 25 ns. vs. 75 ns.) and special requirements of the detectors for their commissioning will be described. 2) The LHC machine aspects: introduction of the main LHC parameters and discu...

  9. Academic Training: The LHC machine /experiment interface

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 18, 19, 20, 21 & 22 April from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 The LHC machine /experiment interface S. TAPPROGGE, Univ. of Mainz, D, R. ASSMANN, CERN-AB E. TSESMELIS and D. MACINA, CERN-TS This series of lectures will cover some of the major issues at the boundary between the LHC machine and the experiments: 1) The physics motivation and expectations of the experiments regarding the machine operation. This will include an overview of the LHC physics programme (in pp and PbPb collisions), of the experimental signatures (from high pT objects to leading nucleons) and of the expected trigger rates as well as the data sets needed for specific measurements. Furthermore, issues related to various modes of operation of the machine (e.g. bunch spacings of 25 ns. vs. 75 ns.) and special requirements of the detectors for their commissioning will be described. 2) The LHC machine aspects: introduction of the main LHC parameters and disc...

  10. From the Higgs boson to the search for new physics: the prospects for the LHC programme at CERN

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The discovery of the Higgs boson, which was the subject of this year's Nobel prize for physics, has brought us the missing piece of the Standard Model of Particle Physics.  However, many observations (such as the predominance of matter over antimatter in the Universe, the existence of dark matter observed by the cosmologists and even the fact that the Higgs boson has a relatively small mass) underline that our knowledge of the structure of matter and its interactions is incomplete.   A wide-ranging programme of research spanning several decades to come thus awaits us at the LHC.  Philippe Bloch will begin his lecture by giving us the latest news on the Higgs boson, and will then go on to explain how developments at the LHC and its experiments, which will resume in 2015, will explore these fund...

  11. The “Common Solutions" Strategy of the Experiment Support group at CERN for the LHC Experiments

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    After two years of LHC data taking, processing and analysis and with numerous changes in computing technology, a number of aspects of the experiments’ computing as well as WLCG deployment and operations need to evolve. As part of the activities of the Experiment Support group in CERN’s IT department, and reinforced by effort from the EGI-InSPIRE project, we present work aimed at common solutions across all LHC experiments. Such solutions allow us not only to optimize development manpower but also offer lower long-term maintenance and support costs. The main areas cover Distributed Data Management, Data Analysis, Monitoring and the LCG Persistency Framework. Specific tools have been developed including the HammerCloud framework, automated services for data placement, data cleaning and data integrity (such as the data popularity service for CMS, the common Victor cleaning agent for ATLAS and CMS and tools for catalogue/storage consistency), the Dashboard Monitoring framework (job monitoring, data management...

  12. CERN scientists take part in the Tevatron Run II performance review committee

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Tevatron Run II is under way at Fermilab, exploring the high-energy frontier with upgraded detectors that will address some of the biggest questions in particle physics.Until CERN's LHC switches on, the Tevatron proton-antiproton collider is the world's only source of top quarks. It is the only place where we can search for supersymmetry, for the Higgs boson, and for signatures of additional dimensions of space-time. The US Department of Energy (DOE) recently convened a high-level international review committee to examine Fermilab experts' first-phase plans for the accelerator complex. Pictured here with a dipole magnet in CERN's LHC magnet test facility are the four CERN scientists who took part in the DOE's Tevatron review. Left to right: Francesco Ruggiero, Massimo Placidi, Flemming Pedersen, and Karlheinz Schindl. Further information: CERN Courier 43 (1)

  13. 1st March 2013 - The Secretary-General of the United Nations Ban Ki-moon welcomed at LHC Point 1 by CERN Director-General R. Heuer (see captions below).

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    The SG is introduced to Director for Research and Computing S. Bertolucci, Director for Administration and General Infrastructure S. Lettow, Head of International Relations F. Pauss, Technology Department Head F. Bordry, Information Technology Department Head F. Hemmer, Relations with International Organisations M. Bona. ATLAS experimental cavern visit with Spokesperson D. Charlton; UNOSAT at CERN building visit with IT Department Head F. Hemmer and UNOSAT E. Bjorgo and F. Pisano. (H. E. Mr Ban visited underground areas at the LHC and UNOSAT, the UN technology-intensive programme hosted by CERN to deliver imagery analysis and satellite solutions to relief and development organizations)

  14. CERN Video News

    CERN Document Server

    2003-01-01

    From Monday you can see on the web the new edition of CERN's Video News. Thanks to a collaboration between the audiovisual teams at CERN and Fermilab, you can see a report made by the American laboratory. The clip concerns the LHC magnets that are being constructed at Fermilab. Also in the programme: the spectacular rotation of one of the ATLAS coils, the arrival at CERN of the first American magnet made at Brookhaven, the story of the discovery 20 years ago of the W and Z bosons at CERN. http://www.cern.ch/video or Bulletin web page.

  15. The CERN PC farm

    CERN Multimedia

    Serge Bellegarde

    2005-01-01

    Housed in the CERN Computer Centre, these banks of computers process and store data produced on the CERN systems. When the LHC starts operation in 2008, it will produce enough data every year to fill a stack of CDs 20 km tall. To handle this huge amount of data, CERN has also developed the Grid, allowing the processing power to be shared between computer centres around the world.

  16. Trigger system study of the dimuon spectrometer in the ALICE experiment at CERN-LHC; Etude du systeme de declenchement du spectrometre dimuons de l'experience alice au Cern-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O

    1999-12-01

    This work is a contribution to the study of nucleus-nucleus collisions at the LHC with ALICE. The aim of this experiment is to search for a new phase of matter, the quark-gluon plasma (QGP). The dimuon forward spectrometer should measure one of the most promising probes of the QGP, the production of heavy quark vector mesons (J/{psi}, {gamma}, {gamma}', {gamma}'') through their muonic decays. The dimuon trigger selects the interesting events performing a cut on the transverse momentum of the tracks. The trigger decision is taken by a dedicated electronics using RPC (''Resistive Plate Chambers'') detector information. We have made our own R and D program on the RPC detector with various beam tests. We show the performances obtained during these tests of a low resistivity RPC operating in streamer mode. The ALICE requirements concerning the rate capability, the cluster size and the time resolution are fulfilled. We have optimised the trigger with simulations which include a complete description of the read-out planes and the trigger logic (algorithm). In particular, a technique of clustering is proposed and validated. A method called ''Ds reduction'' is introduced in order to limit the effects of combinatorial background on the trigger rates. The efficiencies and the trigger rates are calculated for Pb-Pb, Ca-Ca, p-p collisions at the LHC. Other more sophisticated cuts, on the invariant mass for example, using again the RPC information have been simulated but have not shown significant improvements of the trigger rates. (author)

  17. CERN Technical Training 2003: Learning for the LHC ! MAGNE-03 : MAGNETISME POUR L'ELECTROTECHNIQUE - French version only

    CERN Multimedia

    Monique Duval

    2003-01-01

    Phénomènes magnétiques, matériaux et applications MAGNE-03 est un cours dans le cadre du programme de l'Enseignement technique 2003 qui s'adresse aux personnes souhaitant découvrir, améliorer ou remettre à niveau leurs connaissances en magnétisme. Le cours est donné au CERN par la société CEDRAT Technologies basée à Meylan (France). La participation est ouverte à l'ensemble du personnel technique et scientifique nécessitant une formation en magnétisme dans le cadre de leurs activités professionnelles, courantes ou futures. En ayant organisé des sessions au CERN, une importante économie par participant est réalisée par rapport aux frais nécessaires pour suivre la même formation sur leur site en Isère. MAGNE-03 s'intéresse, entre autres, au développement de la compr&am...

  18. Neutral $Z$ boson pair production due to radion resonance in the Randall-Sundrum model: prospects at the CERN LHC

    CERN Document Server

    Das-Prasanta, Kumar

    2005-01-01

    The Neutral $Z$ boson pair production due to radion resonance at the Large Hadron Collider is an interesting process to explore the notion of warped geometry (Randall-Sundrum model). Because of the enhanced coupling of radion with a pair of gluons due to trace enomaly and top(quark)-loop, the radion can provide larger event rate possibility as compared to any New Physics effect. Using the proper radion-top-antitop (with the quarks being off-shell) coupling, we obtain the correct radion production rate at LHC and explore several features of a heavier radion decaying into a pair of real Z bosons which subsequently decays into charged 4 l (l=e, \\mu) leptons (the gold-plated mode). Using the signal and background event rate, we obtain bounds on radion mass $m_\\phi$ and radion vev $\\vphi$ at the $5\\sigma$, $10\\sigma$ discovery level.

  19. Distributed computing and farm management with application to the search for heavy gauge bosons using the ATLAS experiment at the LHC (CERN)

    CERN Document Server

    Lopez-Perez, Juan Antonio; Salt, Jose; Ros, Eduardo

    2008-01-01

    The Standard Model of particle physics describes the strong, weak, and electromagnetic forces between the fundamental particles of ordinary matter. However, it presents several problems and some questions remain unanswered so it cannot be considered a complete theory of fundamental interactions. Many extensions have been proposed in order to address these problems. Some important recent extensions are the Extra Dimensions theories. In the context of some models with Extra Dimensions of size about $1 TeV^{-}1$, in particular in the ADD model with only fermions confined to a D-brane, heavy Kaluza-Klein excitations are expected, with the same properties as SM gauge bosons but more massive. In this work, three hadronic decay modes of some of such massive gauge bosons, Z* and W*, are investigated using the ATLAS experiment at the Large Hadron Collider (LHC), presently under construction at CERN. These hadronic modes are more difficult to detect than the leptonic ones, but they should allow a measurement of the cou...

  20. Updated Reach of the CERN LHC and Constraints from Relic Density, $b \\to s\\gamma$ and $a_{\\mu}$ in the mSUGRA Model

    CERN Document Server

    Baer, Howard W; Belyaev, A; Krupovnickas, T; Tata, Xerxes; Baer, Howard; Balazs, Csaba; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes

    2003-01-01

    We present an updated assessment of the reach of the CERN LHC pp collider for supersymmetric matter in the context of the minimal supergravity (mSUGRA) model. In addition to previously examined channels, we also include signals with an isolated photon or with a leptonically decaying Z boson. For an integrated luminosity of 100 fb-1, values of m_{1/2}\\sim 1400 GeV can be probed for small m_0, corresponding to a gluino mass of m_{\\tg}\\sim 3 TeV. For large m_0, in the hyperbolic branch/focus point region, m_{1/2}\\sim 700 GeV can be probed, corresponding to m_{\\tg}\\sim 1800 GeV. We also map out parameter space regions preferred by the measured values of the dark matter relic density, the b\\to s\\gamma decay rate, and the muon anomalous magnetic moment a_\\mu, and discuss how SUSY might reveal itself in these regions.

  1. Radiation Damage of the CERN CMS HCAL Scintillator/WLS fiber readout during Run1 and Run2 of the LHC

    CERN Document Server

    de Barbaro, Pawel Jan

    2017-01-01

    We present the results of a study of radiation damage of the CERN CMS HCAL Scintillator/WLS Fiber readout. Data were obtained using the Laser calibration system of the CMS hadron endcap detector during the operation of the LHC in 2010-2017. Scintillators used in the CMS hadron endcap calorimeter (HE) were irradiated at dose rates in the range of 0.1 rad/h to 0.1 krad/h. Results indicate that the radiation damage has a strong dose rate dependence. Using data collected in 2017, we have measured the response loss in a single HE section instrumented with Silicon photomultipliers (SiPMs). The results show a much smaller signal loss for the channels read out by SiPMs compared to signal loss for the channels read out by hybrid photodetectors (HPDs). The results imply that a large fraction of the response loss in the CMS HE detector observed in 2010-2017 comes from deterioration of the HPD photodetectors and not from radiation damage of scintillators.

  2. Cryogénie hélium et efficacité énergétique: L'expérience du LHC au CERN

    CERN Document Server

    Claudet, S; Tavian, L

    2012-01-01

    Résumé La supraconductivité et la cryogénie hélium associée sont devenues des technologies clés des grands équipements de recherche en physique, et en particulier des accélérateurs de particules. Le coût thermodynamique du fonctionnement à basse température impose à leurs systèmes cryogéniques une haute efficacité énergétique dans la gestion des charges thermiques, la distribution des fluides et la production de froid, obtenue par une approche intégrée couvrant toutes les phases du projet, de la conception préliminaire jusqu'à l'exploitation. L'expérience du LHC au CERN vient illustrer le propos, tandis que quelques pistes de développements futurs sont évoquées. Abstract Superconductivity and associated helium cryogenics have become key technologies for large research infrastructures in physics, and particularly particle accelerators. The thermodynamic penalty for operating at low temperature requires their cryogenic systems to be highly energy efficient in managing heat loads, dis...

  3. Observing H→W(*)W(*)→e±μ±peT in weak boson fusion with dual forward jet tagging at the CERN LHC

    International Nuclear Information System (INIS)

    Rainwater, D.; Zeppenfeld, D.

    1999-01-01

    Weak boson fusion promises to be a copious source of intermediate mass standard model Higgs bosons at the CERN LHC. The additional very energetic forward jets in these events provide for powerful background suppression tools. We analyze the H→W (*) W (*) →e ± μ ± pe T decay mode for a Higgs boson mass in the 130-200 GeV range. A parton level analysis of the dominant backgrounds (production of W pairs, tt(bar sign) and Z→ττ in association with jets) demonstrates that this channel allows the observation of H→W (*) W (*) in a virtually background-free environment, yielding a significant Higgs boson signal with an integrated luminosity of 5 fb -1 or less. Weak boson fusion achieves a much better signal to background ratio than inclusive H→e ± μ ± pe T and is therefore the most promising search channel in the 130-200 GeV mass range. (c) 1999 The American Physical Society

  4. Photoproduction of ρ0 and Two–photon Production of Lepton Pairs in Ultra–peripheral Pb–Pb Collisions at the CERN LHC

    CERN Document Server

    Kyrre, Skjerdal

    This thesis is based on the analysis of ultra–peripheral collisions collected by the ALICE Collaboration at the CERN LHC. ALICE is a general purpose detector designed to study heavy-ion collisions at ultra–relativistic energies with the purpose of investigating the properties of strongly interacting matter, similar to the matter that existed shortly after the Big Bang. In this analysis the charged particle tracking system of the central barrel in ALICE is used. The tracking system consists of an Inner Tracking System, with six layers of silicon detectors, and a large Time Projection Chamber. Trigger information is provided by the following detectors: The Silicon-Pixel Detector (SPD), a part of the Inner Tracking System; the Time–Of–Flight (TOF), located outside the TPC; the V0 detectors, plastic scintillators located outside of the central barrel, covering roughly two units of pseudorapidity on either side of mid-rapidity. Ultra–peripheral collisions are collisions between hadrons, they can be pro...

  5. From the LHC to Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    De Roeck, A.; Ellis, J.; /CERN; Grojean, C.; Heinemeyer, S.; /Cantabria Inst. of Phys.; Jakobs, K.; /Freiburg U.; Weiglein, G.; /Durham U., IPPP; Azuelos, G.; /TRIUMF; Dawson, S.; /Brookhaven; Gripaios, B.; /CERN; Han, T.; /Wisconsin U., Madison; Hewett, J.; /SLAC; Lancaster, M.; /University Coll. London; Mariotti, C.; /INFN, Turin; Moortgat, F.; /Zurich, ETH; Moortgat-Pick, G.; /Durham U., IPPP; Polesello, G.; /INFN, Pavia; Riemann, S.; /DESY; Assamagan, K.; /Brookhaven; Bechtle, P.; /DESY; Carena, M.; /Fermilab; Chachamis, G.; /PSI, Villigen /Taiwan, Natl. Taiwan U. /INFN, Florence /Bonn U. /CERN /Bonn U. /Freiburg U. /Oxford U. /Louvain U., CP3 /Bangalore, Indian Inst. Sci. /INFN, Milan Bicocca /Munich, Max Planck Inst. /Taiwan, Natl. Taiwan U. /Frascati /Fermilab /Warsaw U. /Florida U. /Orsay, LAL /LPSC, Grenoble /Warsaw U. /Yale U. /Stockholm U., Math. Dept. /Durham U., IPPP /DESY /Rome U. /University Coll. London /UC, San Diego /Heidelberg U. /Florida State U. /SLAC /Durham U., IPPP /Southern Denmark U., CP3-Origins /McGill U. /Durham U., IPPP; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  6. LHC preparations change gear

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    After the formal approval by CERN Council in December (January, page 1) of the LHC protonproton collider for CERN's 27- kilometre LEP tunnel, preparations for the new machine change gear. Lyndon Evans becomes LHC Project Leader, and CERN's internal structure will soon be reorganized to take account of the project becoming a definite commitment. On the experimental side, the full Technical Proposals for the big general purpose ATLAS and CMS detectors were aired at a major meeting of the LHC Committee at CERN in January. These Technical Proposals are impressive documents each of some several hundred pages. (Summaries of the detector designs will appear in forthcoming issues of the CERN Courier.) The ALICE heavy ion experiment is not far behind, and plans for other LHC experiments are being developed. Playing an important role in this groundwork has been the Detector Research and Development Committee (DRDC), founded in 1990 to foster detector development for the LHC experimental programme and structured along the lines of a traditional CERN Experiments Committee. Established under the Director Generalship of Carlo Rubbia and initially steered by Research Director Walter Hoogland, the DRDC has done sterling work in blazing a trail for LHC experiments. Acknowledging that the challenge of LHC experimentation needs technological breakthroughs as well as specific detector subsystems, DRDC proposals have covered a wide front, covering readout electronics and computing as well as detector technology. Its first Chairman was Enzo larocci, succeeded in 1993 by Michal Turala. DRDC's role was to evaluate proposals, and make recommendations to CERN's Research Board for approval and resource allocation, not an easy task when the LHC project itself had yet to be formally approved. Over the years, a comprehensive portfolio of detector development has been built up, much of which has either led to specific LHC detector subsystems for traditional detector tasks

  7. CERN les personnels en ébullition

    CERN Multimedia

    Lanief, V

    2002-01-01

    Financial difficulties caused by the overspend for the LHC project are forcing radical economies at CERN. Around 400 employees demonstrated at CERN yesterday in protest at proposed cuts in staff contracts (1 page).

  8. CERN Technical Training Programme: Learning for the LHC ! Cotations selon les normes GPS de l'ISO - French version only

    CERN Document Server

    Davide Vitè

    2002-01-01

    Suite à la proposition du Groupe de travail « Mechanical Design » du Technical Training, et dans le cadre des activités de construction du LHC, nous allons offrir prochainement une séance en français du cours Cotations selon les normes GPS de l'ISO les 29 et 30 avril prochains. Le coût du cours est pour l'instant fixé à 400.- CHF, mais il pourrait être réduit suivant le nombre de participants. Les objectifs de cette formation sont la maîtrise du tolérancement géométrique ISO décrit dans les normes GPS (Spécifications Géométriques des Produits), et une correcte démarche, par la suite, pour la cotation des produits. Le cours est ciblé pour une audience de projeteurs et dessinateurs devant concevoir, dimensionner et tolérancer des pièces mécaniques, et pour ...

  9. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  10. Search for long-lived supersymmetry particles by signature of a high track-multiplicity displaced vertex using the LHC-ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00360876

    Long-lived supersymmetry (SUSY) particles decaying within the tracking volume of the LHC-ATLAS Experiment can be reconstructed as a displaced vertex (DV). The search strategy involves attempting to reassemble the decay point of the long-lived particles (LLPs) by fitting vertices from the trajectories arising from the charged decay products. A search, looking for a signature of a massive high track-multiplicity DV has been conducted using data collected during 2012 by the LHC-ATLAS Experiment at $\\sqrt{s}~=~8$ TeV, equaling to an integrated luminosity of 20.3 fb$^{-1}$. A signature of a massive displaced vertex is especially powerful due to the lack of any heavy long-lived standard model particles. Thereby, giving an analysis that is nearly background free. This dissertation describes the new, much more generic, "$DV+\\text{jets}$" channel. In this channel events with high momentum jets and at least one displaced vertex are considered. Eliminating the requirement of an associated $\\mu$ generated, to date of w...

  11. 12 May 2014 - Turkey Minister for Energy and Natural Resources T. Yildiz visitng the laboratory on the occasion of the Signature of the Agreement between CERN and the Republic of Turkey concerning the granting of the status of Associate Member at CERN witnessed by the members of the Turkish community.

    CERN Multimedia

    Gadmer, Jean-Claude

    2014-01-01

    Mr Taner Yildiz Minister for Energy and Natural Resources Republic of Turkey: Signature of the agreement by Ambassador to the UNOG M. F. ÇARIKÇI; signature of the guest book by Minister T. Yildiz. Welcome by CERN Director-General R. Heuer; In the welcome line: Directors S. Bertolucci, F. Bordry and S. Lettow; Department Heads: F. Hemmer, T. Lagrange, L. Mapelli, L. Miralles; Head of International Relations R. Voss and Deputy Head of International Relations E. Tsesmelis. In the CMs experimental area with CERN Team Leader A. Petrilli, in SM18 with Technology Department L. Bottura.

  12. Signature d'un accord de coopération entre l'Equateur et le CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1999-01-01

    A new Scientific and Technological Co-operation Agreement was formally signed on June 15th 1999 in Geneva by H.E. Ambassador Luis Gallegos Chiriboga of the Permanent Mission of Ecuador in Geneva and Prof. Luciano Maiani, Director General of CERN. Prof. Maiani said, "This agreement marks an important step forward in the development of our Laboratory's relationship with physicists in Latin America. We are delighted to formalize our contacts with the scientific community in Ecuador."

  13. 9 February 2012 - Permanent Representative of the Kingdom of Spain to the United Nations Office at Geneva and other International Organisations, Ambassador A. Santos Maraver signing the guest book with CERN Director-General; in the CERN Control Centre with N. Catalan; visiting the LHC tunnel at Point 5 and CMS underground experimental area with Collaboration Spokesperson J. Incandela; throughout accompanied by Adviser J. Salicio Diez and Former Physics Deputy Department Head L. Alvarez Gaumé.

    CERN Multimedia

    Visual Media Office

    2012-01-01

    9 February 2012 - Permanent Representative of the Kingdom of Spain to the United Nations Office at Geneva and other International Organisations, Ambassador A. Santos Maraver signing the guest book with CERN Director-General; in the CERN Control Centre with N. Catalan; visiting the LHC tunnel at Point 5 and CMS underground experimental area with Collaboration Spokesperson J. Incandela; throughout accompanied by Adviser J. Salicio Diez and Former Physics Deputy Department Head L. Alvarez Gaumé.

  14. Computer graphic of LHC in the tunnel

    CERN Multimedia

    1996-01-01

    A computer-generated image of the LHC particle accelerator at CERN in the tunnel originally built for the LEP accelerator that was closed in 2000. The cross-section of an LHC superconducting dipole magnet is also seen.

  15. 6 February 2012 - Supreme Audit Institutions from Norway, Poland, Spain and Switzerland visiting the LHC tunnel at Point 5, CMS underground experimental area, CERN Control Centre and LHC superconducting magnet test hall. Delegations are throughout accompanied by Swiss P. Jenni, Polish T. Kurtyka, Spanish J. Salicio, Norwegian S. Stapnes and International Relations Adviser R. Voss. (Riksrevisjonen, Oslo; Tribunal de Cuentas , Madrid; the Court of Audit of Switzerland and Najwyzsza Izba Kontroli, Varsaw)

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    6 February 2012 - Supreme Audit Institutions from Norway, Poland, Spain and Switzerland visiting the LHC tunnel at Point 5, CMS underground experimental area, CERN Control Centre and LHC superconducting magnet test hall. Delegations are throughout accompanied by Swiss P. Jenni, Polish T. Kurtyka, Spanish J. Salicio, Norwegian S. Stapnes and International Relations Adviser R. Voss. (Riksrevisjonen, Oslo; Tribunal de Cuentas , Madrid; the Court of Audit of Switzerland and Najwyzsza Izba Kontroli, Varsaw)

  16. Star spotting at CERN

    CERN Multimedia

    2008-01-01

    This June, two American celebrities (and physics enthusiasts!) came to CERN. Brian Cox gave Mike Einziger (right), lead guitarist with the rock band Incubus, the star treatment in the ATLAS cavern. Jesse Dylan embraces the spirit of ATLAS! Mike Einziger, lead guitarist with the rock band Incubus, visited CERN on Friday 13 June between concerts in Finland and England. Einziger, a lifelong science enthusiast descended into the ATLAS and CMS caverns and visited the SM18 test magnet facility during his brief tour of CERN. Einziger learned about the LHC through watching online lectures from University of Manchester and ATLAS physicist Brian Cox, and was thrilled to have the chance to see the detectors in person. The musician has created an orchestral piece, inspired in part by the work being done at CERN for the LHC, which will have its debut in Los Angeles on 23 August. Just over a week earlier, Jesse Dylan, Hollywood film director a...

  17. Indian President visits CERN

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 1 October, her Excellency Mrs Pratibha Devisingh Patil, President of India, picked CERN as the first stop on her official state visit to Switzerland. Accompanied by a host of Indian journalists, a security team, and a group of presidential delegates, the president left quite an impression when she visited CERN’s Point 2!   Upon arrival, Pratibha Patil was greeted by CERN Director General Rolf Heuer, as well as senior Indian scientists working at CERN, and various department directors. After a quick overview of the Organization, Rolf Heuer and the President addressed India’s future collaboration with CERN. India is currently an Observer State of the Organization, and is considering becoming an Associate Member State. A short stop in LHC operations gave Steve Myers and the Accelerator team the opportunity to take the President on a tour through the LHC tunnel. From there, ALICE’s Tapan Nayak and Spokesperson Paolo Giubellino took Pratibha Patil to the experiment&am...

  18. Protocol to the 1994 Co-operation Agreement between The Government of the Islamic Republic of Pakistan and CERN concerning a Special Contribution by Pakistan towards the Construction of the LHC

    CERN Document Server

    2003-01-01

    CERN signed a Co-operation Agreement with the Government of Pakistan in 1994, which was followed in 1997 by a Protocol signed with the Pakistan Atomic Energy Commission (PAEC) concerning CMS magnet supports. CERN and PAEC then signed in 1998 a Memorandum of Understanding for collaboration in the construction of the CMS detector. The participation by Pakistani scientists and engineers in the CERN programme is channelled through the National Centre of Physics (NCP) established at the Quaid-i-Azzam University in Islamabad, under the terms of a 1999 Protocol to the 1994 Co-operation Agreement. The engineering and detector construction work performed under these Agreements has been of high quality, and the Pakistani participation is valued highly by the CMS collaboration. In continuation of this co-operation, Pakistan, represented by PAEC as funding agency, has now proposed to make in-kind contributions to the LHC Project of a value of up to ten million US dollars. Under the proposed scheme, CERN shall pay 50% of ...

  19. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  20. Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin–Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-07-16

    A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb^-1 of proton-proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.

  1. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  2. Update of CERN exchange network

    CERN Multimedia

    2003-01-01

    An update of the CERN exchange network will be done next April. Disturbances or even interruptions of telephony services may occur from 4th to 24th April during evenings from 18:30 to 00:00 but will not exceed more than 4 consecutive hours (see tentative planning below). CERN divisions are invited to avoid any change requests (set-ups, move or removals) of telephones and fax machines from 4th to 25th April. Everything will be done to minimize potential inconveniences which may occur during this update. There will be no loss of telephone functionalities. CERN GSM portable phones won't be affected by this change. Should you need more details, please send us your questions by email to Standard.Telephone@cern.ch. DateChange typeAffected areas April 11 Update of switch in LHC 4 LHC 4 Point April 14 Update of switch in LHC 5 LHC 5 Point April 15 Update of switches in LHC 3 and LHC 2 Points LHC 3 and LHC 2 April 22 Update of switch N4 Meyrin Ouest April 23 Update of switch  N6 Prévessin Site Ap...

  3. A Princess at CERN

    CERN Multimedia

    2009-01-01

    On 16 March HRH Princess Maha Chakri Sirindhorn of Thailand visited CERN for the third time. After meeting the Director-General, she toured the CMS experimental area and LHC tunnel with Coordinator for external relations Felicitas Pauss and CMS Spokesperson Jim Virdee. During her visit she took a particular interest in CERN’s education programme. From left to right, Emmanuel Tsesmelis, from the CERN Directorate’s office, Jim Virdee, CMS Spokesperson, the Princess of Thailand and Felicitas Pauss, CERN Coordinator for external relations.

  4. LHC Report

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    During last week the commissioning effort has been devoted to beam development work, required to accelerate beams with nominal bunch intensity to 3.5 TeV. Significant progress has been done with the commissioning of the systems required to control the beam size and bunch length during the ramp and accelerate the beam with reproducible characteristics. The setting-up of the collimation system for the operation with higher intensity is presently ongoing with the aim of delivering physics with nominal bunch intensity towards the end of next week. For more information about the LHC and a video of the presentation recently done by LHC operators, please visit: http://lpcc.web.cern.ch/LPCC/ http://indico.cern.ch/categoryDisplay.py?categId=2687

  5. Minimum Bias Measurements with the ATLAS Detector at the CERN Large Hadron Collider

    CERN Document Server

    Leyton, M

    2009-01-01

    The Large Hadron Collider (LHC) at CERN will collide bunches of protons (p) at a center-of-mass energy of sqrt(s) = 14 TeV and a rate of 40 MHz. The unprecedented collision energy and interaction rate at the LHC will allow us to explore the TeV mass scale and take a major step forward in our understanding of the fundamental nature of matter. The initial physics run of the LHC is expected to start in November 2009 and continue until the end of 2010, with collisions at sqrt(s) = 900 GeV, 7 TeV and 10 TeV. ATLAS (A Toroidal LHC ApparatuS) is a 4pi general-purpose detector designed for studying LHC collisions at the particle level. The design and layout of ATLAS are intended to cover the wide spectrum of physics signatures that are possible at the TeV mass scale. Construction and installation of the ATLAS detector at CERN are now complete. This dissertation focuses on measuring the properties of inelastic pp interactions at the LHC with the ATLAS detector. A method for measuring the central pseudorapidity den...

  6. CERN Academic Training Programme 2011

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES 1, 2 and 3 February 2011 11:00-12:00 - Bldg. 222-R-001 - Filtration Plant LHC 2010: Summary of the Odyssey So Far and Near-Term Prospects by Paris Sphicas (CERN) In 2010, the LHC delivered proton-proton collisions at an energy of 7 TeV, significantly higher than what was previously attained. This has allowed the experiments to complete the commissioning of the detectors and to perform early measurements of key standard model processes. The inclusive production of particles, jets and photons, the observation of onia and heavy-flavored meson decays, the measurement of the W and Z cross sections, and the observation of top-quark production and decay constitute a full set of measurements which form the base from which searches for physics beyond the standard model can be launched. The results from a number of searches for supersymmetry and some exotic signatures are now appearing. The lectures will review this impressive list of physics achievements from 2010 and consider briefly what 2011 m...

  7. CERN has a new Management team

    CERN Multimedia

    2004-01-01

    Dr Robert Aymar succeeded Professor Luciano Maiani as CERN's Director-General on 1 January 2004. At its 126th Session, chaired by Professor Maurice Bourquin, the CERN Council elected Professor Enzo Iarocci as the new President of Council. In his last presentation to the Council, Professor Maiani reported on CERN's activities during the year and on progress with the LHC Project.

  8. Some LHC milestones...

    CERN Multimedia

    2008-01-01

    October 1995 The LHC technical design report is published. This document details the operation and the architecture of the future accelerator. November 2000 The first of the 1232 main dipole magnets for the LHC are delivered. May 2005 The first interconnection between two magnets of the accelerator is made. To carry out the 1700 interconnections of the LHC, 123 000 operations are necessary. February 2006 The new CERN Control Centre, which combines all the control rooms for the accelerators, the cryogenics and the technical infrastructure, starts operation. The LHC will be controlled from here. October 2006 Construction of the largest refrigerator in the world is complete. The 27 km cryogenic distribution line inside the LHC tunnel will circulate helium in liquid and gas phases to provide cryogenic conditions for the superconducting magnets of the accelerator. November 2006 Magnet production for the LHC is complete. The last of t...

  9. Superplasticiteit bij Cern

    NARCIS (Netherlands)

    Snippe, Q.H.C.; Snippe, Corijn

    2008-01-01

    Op CERN, het Europees onderzoekscentrum voor subatomaire fysica in Genève, wordt dit jaar een nieuwe deeltjesversneller, de Large Hadron Collider (LHC), in werking gesteld die nieuwe inzichten moet bieden over hoe de kleinste deeltjes der materie zich gedragen. Om hierachter te komen, is op plaatsen

  10. Satellite photo of CERN

    CERN Multimedia

    1991-01-01

    This photo from the Landsat5 orbital telescope shows the locations of CERN's Meyrin and Prevessin sites near Geneva on the Swiss-France border. The tunnels housing the LHC and SPS accelerators are also illustrated. Photo credit: US Geological Survey/photo by Jane Doe.

  11. CERN's future secured

    CERN Multimedia

    2003-01-01

    The CERN Council held its 123rd session on 13 December under the chairmanship of Professor Maurice Bourquin. The election of the next Director General, the Baseline Plan for 2003-2010 and a new status for non-European states were among the items agreed. In addition, the European Investment Bank has agreed a loan of 300 million EUR to complete the LHC.

  12. Protocol to the 1994 Co-operation Agreement between The Government of the Islamic Republic of Pakistan and CERN concerning a Special Contribution by Pakistan towards the Construction of the LHC

    CERN Document Server

    2003-01-01

    CERN signed a Co-operation Agreement with the Government of Pakistan in 1994, which was followed in 1997 by a Protocol signed with the Pakistan Atomic Energy Commission (PAEC) concerning CMS magnet supports. CERN and PAEC then signed in 1998 a Memorandum of Understanding for collaboration in the construction of the CMS detector. The participation by Pakistani scientists and engineers in the CERN programme is channelled through the National Centre of Physics (NCP) established at the Quaid-i-Azzam University in Islamabad, under the terms of a 1999 Protocol to the 1994 Co-operation Agreement. The engineering and detector construction work performed under these Agreements has been of high quality, and the Pakistani participation is valued highly by the CMS collaboration. In continuation of this co-operation, Pakistan, represented by PAEC as funding agency, has now proposed to make in-kind contributions to the LHC Project, such as mechanical components and assembly work, with a value of up to ten million US dollar...

  13. CERN Academic Training Programme 2008/2009

    CERN Multimedia

    HR Department

    2009-01-01

    LECTURE SERIES 26-27-28 January 2009 11:00-12:00, Main Auditorium, Bldg 500-1-001 Electroweak symmetry breaking: to Higgs or not to Higgs Christophe Grojean / CERN-PH-TH How do elementary particles acquire their mass? What makes the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lecture is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector. 2-5 February 2009 11:00-12:00, Main Auditorium, Bldg 500-1-001 Statistical Techniques for Particle Physics Kyle Cranmer / CERN-PH This series will con...

  14. HALO | Arts at CERN

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2018-01-01

    In 2015, the artists participated in a research residency at CERN and began to work with data captured by ATLAS, one of the four detectors at the Large Hadron Collider (LHC) that sits in a cavern 100 metres below ground near the main site of CERN, in Meyrin (Switzerland). For Art Basel, they created HALO, an installation that surrounds visitors with data collected by the ATLAS experiment at the LHC. HALO consists of a 10 m wide cylinder defined by vertical piano wires, within which a 4-m tall screen displays particle collisions. The data also triggers hammers that strike the vertical wires and set up vibrations to create a truly multisensory experience. More info: https://arts.cern/event/unveiling-halo-art-basel

  15. LHC Magnet test failure

    CERN Multimedia

    2007-01-01

    "On Tueday, March 22, a Fermilab-built quadrupole magnet, one of an "inner triplet" of three focusing magnets, failed a high-pressure test at Point 5 in the tunnel of the LHC accelerator at CERN. Since Tuesday, teams at CERN and Fermilab have worked closely together to address the problem and have identified the cause of the failure. Now they are at work on a solution.:" (1 page)

  16. submitter LHC experiments

    CERN Document Server

    Tanaka, Shuji

    2001-01-01

    Large Hadron Collider (LHC) is under construction at the CERN Laboratory in Switzerland. Four experiments (ATLAS, CMS, LHCb, ALICE) will try to study the new physics by LHC from 2006. Its goal to explore the fundamental nature of matter and the basic forces. The PDF file of the transparency is located on http://www-atlas.kek.jp/sub/documents/lepsymp-stanaka.pdf.

  17. 30th August 2010 - Permanent Representative of the People's Republic of China to the United Nations Office at Geneva, Ambassador Y. He visiting the CMS underground experimental area and LHC tunnel with CERN Director-General R. Heuer and Collaboration Spokesperson G. Tonelli.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1008197 01: in the LHC tunnel at Point 5: CMS Collaboaration Spokesperson G. Tonelli, Mrs L. Jianping (Ambassador's spouse), Mrs B. Heuer, Permanent Representative of the People's Republic of China to the United Nations Office at Geneva, Ambassador Y. He, CERN Director-General R. Heuer and Adviser R. Voss; CERN-HI-1008197 57: in front of the CMS experiment at LHC point 5: CMS technical Coordinator A. Ball, Mrs L. Jianping (Ambassador's spouse), Permanent Representative of the People's Republic of China to the United Nations Office at Geneva, Ambassador Y. He; Mrs B. Heuer, CERN Director-General R. Heuer, CMS Collaboaration Spokesperson G. Tonelli and Adviser R. Voss. CERN-HI-1008197 02 - 14: Welcome in front of building 3562 at CMS. Head of International relations F: Pauss gives the introduction talk to the delegation. CERN-HI-1008197 15 - 25: visiting CMS control room at Point 5 with Collaboration Spokesperson G. Tonelli; CERN-HI-1008197 26 - 29: visiting the service cavern in the CMS underground ar...

  18. CERN openlab Open Day

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is the unique public-private partnership between CERN and leading companies in the field of information and communication technology. The programme is now entering an exciting new phase and is expanding to include other public research organisations for the first time. A special event will be held at CERN to mark this occasion.   CERN openlab was created in 2001 and is now entering its fifth three-year phase (2015-2017). Its mission is to accelerate the development of cutting-edge solutions to be used by the scientific community to control the operations of complex machines and to analyse the vast amounts of data produced by physics experiments. During Run 2 of the LHC, it is expected that the CERN Data Centre will store more than 30 petabytes of data per year from the LHC experiments, which is equivalent to about 1.2 million Blu-ray discs, or 250 years of HD video. Testing in this demanding environment provides the companies collaborating in CERN openlab with valuable feedback o...

  19. 17 October 2013 - C. Ashton High Representative of the European Union for Foreign Affairs and Security Policy, Vice-President of the European Commission visiting the ATLAS cavern with ATLAS Collaboration Spokesperson D. Charlton; visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and signing the Guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    17 October 2013 - C. Ashton High Representative of the European Union for Foreign Affairs and Security Policy, Vice-President of the European Commission visiting the ATLAS cavern with ATLAS Collaboration Spokesperson D. Charlton; visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and signing the Guest book with CERN Director-General R. Heuer.

  20. 23rd June 2010 - University of Bristol Head of the Aerospace Engineering Department and Professor of Aerospace Dynamics N. Lieven visiting CERN control centre with Beams Department Head P. Collier, visiting the LHC superconducting magnet test hall with R. Veness and CMS control centre with Collaboration Spokesperson G. Tonelli and CMS User J. Goldstein.

    CERN Multimedia

    Jean-Claude Gadmer

    2010-01-01

    23rd June 2010 - University of Bristol Head of the Aerospace Engineering Department and Professor of Aerospace Dynamics N. Lieven visiting CERN control centre with Beams Department Head P. Collier, visiting the LHC superconducting magnet test hall with R. Veness and CMS control centre with Collaboration Spokesperson G. Tonelli and CMS User J. Goldstein.

  1. 14 November 2013 - Director of Indian Institute of Technology Indore P. Mathur with members of the Indian community working at CERN; visiting the LHC tunnel at Point 2, the ALICE experimental area and SM18 with ALICE Collaboration Spokesperson, Istituto Nazionale Fisica Nucleare P. Giubellino and Technology Department, Accelerator Beam Transfer Group Leader V. Mertens

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    14 November 2013 - Director of Indian Institute of Technology Indore P. Mathur with members of the Indian community working at CERN; visiting the LHC tunnel at Point 2, the ALICE experimental area and SM18 with ALICE Collaboration Spokesperson, Istituto Nazionale Fisica Nucleare P. Giubellino and Technology Department, Accelerator Beam Transfer Group Leader V. Mertens

  2. 20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

    CERN Document Server

    Maximilien brice

    2010-01-01

    20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

  3. 21 May 2013 - Slovakian State Secretary, Ministry of Health V. Čislák signing the Guest Book with CERN Director-General R. Heuer; in the LHC tunnel at Point 2 with V. Senaj (Technology Department); in the ALICE experimental cavern with P. Chochula (Physics Department). M. Cirilli (Knowledge Transfer Group) present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    21 May 2013 - Slovakian State Secretary, Ministry of Health V. Čislák signing the Guest Book with CERN Director-General R. Heuer; in the LHC tunnel at Point 2 with V. Senaj (Technology Department); in the ALICE experimental cavern with P. Chochula (Physics Department). M. Cirilli (Knowledge Transfer Group) present.

  4. 8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

  5. 2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

  6. 31 August 2008 - Secretary General of the United Nations Ban Ki-moon visiting CMS experimental underground area and LHC tunnel with CERN Director-General R. Aymar and Collaboration Spokesperson T. Virdee. Director-General of the United Nations Office at Geneva S. Ordzhonikidze also present.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    Also present on the photographs: Guests: Representative of the French Republic O. Laurens-Bernard, Sous Préfet de Gex Deputy Permanent representative C. Guilhou, Permanent Mission of France to the UN CERN: CMS Collaboration Technical Coordinator A. Ball Chief Scientific Officer, Deputy Director-General J. Engelen Group Leader in matter of Safety C. Schaefer LHC engineer in charge L. Ponce

  7. 13 February 2012 - World Economic Forum Founder and Executive Chairman K. Schwab and Chairperson and Co-Founder Schwab Foundation for Social Entrepreneurship H. Schwab (Mrs)in the ATLAS experimental area at LHC Point 1 with Collaboration Former Spokesperson P. Jenni; signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    13 February 2012 - World Economic Forum Founder and Executive Chairman K. Schwab and Chairperson and Co-Founder Schwab Foundation for Social Entrepreneurship H. Schwab (Mrs)in the ATLAS experimental area at LHC Point 1 with Collaboration Former Spokesperson P. Jenni; signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

  8. 12 December 2013 - Sir Konstantin Novoselov, Nobel Prize in Physics 2010, signing the guest book with International Relations Adviser E. Tsesmelis; visiting the ATLAS experimental cavern with Spokesperson D. Charlton; in the LHC tunnel with Technology Department Head F. Bordry. I. Antoniadis, CERN Theory Group Leader, accompanies throughout.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    12 December 2013 - Sir Konstantin Novoselov, Nobel Prize in Physics 2010, signing the guest book with International Relations Adviser E. Tsesmelis; visiting the ATLAS experimental cavern with Spokesperson D. Charlton; in the LHC tunnel with Technology Department Head F. Bordry. I. Antoniadis, CERN Theory Group Leader, accompanies throughout.

  9. 1 April 2014 - President of the Parliament of the Principality of Liechtenstein A. Frick and his delegation visiting the LHC tunnel at Point 1 with Technology Department Head J.M. Jiménez and signing the Guest book with CERN Director-General R. Heuer. Deputy Head of International Relations E. Tsesmelis present throughout.

    CERN Multimedia

    Pantelia, Anna

    2014-01-01

    1 April 2014 - President of the Parliament of the Principality of Liechtenstein A. Frick and his delegation visiting the LHC tunnel at Point 1 with Technology Department Head J.M. Jiménez and signing the Guest book with CERN Director-General R. Heuer. Deputy Head of International Relations E. Tsesmelis present throughout.

  10. Mr Lars Leijonborg, Minister for Higher Education and Research of Sweden visiting the cavern ATLAS, the control room of ATLAS and the machine LHC at Point 1 with Collaboration Spokesperson P. Jenni and Dr. Jos Engelen, Chief Scientific Officer of CERN.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    Mr Lars Leijonborg, Minister for Higher Education and Research of Sweden visiting the cavern ATLAS, the control room of ATLAS and the machine LHC at Point 1 with Collaboration Spokesperson P. Jenni and Dr. Jos Engelen, Chief Scientific Officer of CERN.

  11. 17 September 2013 - Estonian Minister of Education and Research J. Aaviksoo signing the guest book with CERN Director-General R- Heuer; visiting the TOTEM facility with TOTEM Collaboration Spokesperson S. Giani; in the LHC tunnel at Point 5 with International Relations Adviser T. Kurtyka and visiting the CMS cavern with CMS Collaboration Spokesperson J. Incandela. International Relations Adviser R. Voss present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 September 2013 - Estonian Minister of Education and Research J. Aaviksoo signing the guest book with CERN Director-General R- Heuer; visiting the TOTEM facility with TOTEM Collaboration Spokesperson S. Giani; in the LHC tunnel at Point 5 with International Relations Adviser T. Kurtyka and visiting the CMS cavern with CMS Collaboration Spokesperson J. Incandela. International Relations Adviser R. Voss present.

  12. 16 Augur 2013 -Bulgarian Minister of Education and Sciences A. Klisarova visiting the LHC tunnel with S. Russenschuck and CMS experimental cavern with Deputy Spokesperson T. Camporesi and V. Genchev ; signing the guest book with CERN Director-General R. Heuer. Accompanied throughout by P. Hristov, L. Litov, R. Voss and Z. Zaharieva.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    16 Augur 2013 -Bulgarian Minister of Education and Sciences A. Klisarova visiting the LHC tunnel with S. Russenschuck and CMS experimental cavern with Deputy Spokesperson T. Camporesi and V. Genchev ; signing the guest book with CERN Director-General R. Heuer. Accompanied throughout by P. Hristov, L. Litov, R. Voss and Z. Zaharieva.

  13. 16 December 2013 - P. Lavie President of the Technion Institute of Technology in Israel visiting the ATLAS cavern with ATLAS Deputy Spokesperson T. Wengler; visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and signing the Guest Book with CERN Director-General R. Heuer. G. Mikenberg, E. Rabinovici, Y. Rozen and S. Tarem present throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    16 December 2013 - P. Lavie President of the Technion Institute of Technology in Israel visiting the ATLAS cavern with ATLAS Deputy Spokesperson T. Wengler; visiting the LHC tunnel at Point 1 with Technology Department Head F. Bordry and signing the Guest Book with CERN Director-General R. Heuer. G. Mikenberg, E. Rabinovici, Y. Rozen and S. Tarem present throughout.

  14. 27 February 2012 - First Lady of Mexico, M. Zavala Gómez del Campo, welcomed by Adviser J. Salicio Diez withe ALICE Management and Mexican Users at LHC Point 2 and signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    27 February 2012 - First Lady of Mexico, M. Zavala Gómez del Campo, welcomed by Adviser J. Salicio Diez withe ALICE Management and Mexican Users at LHC Point 2 and signing the guest book with CERN Director-General R. Heuer.

  15. 17 January 2014 - Y. Sakurada Japanese Senior Vice Minister of Education, Culture, Sports, Science and Technology signing the Guest book with CERN Director-General R. Heuer and visiting the LHC tunnel at Point 1 with Technology Department Head J.M. Jiménez. Head of International Relations R. Voss present throughout.

    CERN Multimedia

    Pantelia, Anna

    2014-01-01

    17 January 2014 - Y. Sakurada Japanese Senior Vice Minister of Education, Culture, Sports, Science and Technology signing the Guest book with CERN Director-General R. Heuer and visiting the LHC tunnel at Point 1 with Technology Department Head J.M. Jiménez. Head of International Relations R. Voss present throughout.

  16. 3rd December 2010 - President Swiss Federal Institute of Technology Zürich (ETHZ)President R. Eichler signing the Guest Book with CERN Head of International Relations and ETHZ F. Pauss and visiting CMS service cavern at LHC Point 5.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    3rd December 2010 - President Swiss Federal Institute of Technology Zürich (ETHZ)President R. Eichler signing the Guest Book with CERN Head of International Relations and ETHZ F. Pauss and visiting CMS service cavern at LHC Point 5.

  17. 30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

  18. 5 June 2013 - Sri Lankan Senior Minister of Scientific Affairs T. Vitharana signing the guest book with Director-General R. Heuer, in the LHC tunnel at Point 5 with International Relations Adviser R. Voss and in the CMS cavern with CERN Team leader A. Petrilli.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    5 June 2013 - Sri Lankan Senior Minister of Scientific Affairs T. Vitharana signing the guest book with Director-General R. Heuer, in the LHC tunnel at Point 5 with International Relations Adviser R. Voss and in the CMS cavern with CERN Team leader A. Petrilli.

  19. Le budget total du CERN restera plus ou moins constant

    CERN Document Server

    Van der Boon, J E

    2002-01-01

    The Director of Administration at CERN has written to the paper following an article titled "Licenciements chez les sous-traitants du CERN" : dismissals amongst CERN sub-contractors. As the CERN budget will remain constant and a greater part will be devoted to building the LHC, changes will be made to staffing balances (0.5 page)

  20. Search for rare processes with a Z+bb signature at the LHC, with the matrix element method

    CERN Document Server

    Beluffi, Camille; Lemaitre, Vincent

    This thesis presents a detailed study of the final state with the Z boson decaying into two leptons, produced in the CMS detector at the LHC. In order to tag this topology, sophisticated b jet tagging algorithms have been used, and the calibration of one of them, the Jet Probability (JP) tagger is exposed. A study of the tagger degradation at high energy has been done and led to a small gain of performance. This investigation is followed by the search for the associated production of the standard model (SM) Higgs boson with a Z boson and decaying into two b quarks (ZH channel), using the Matrix Element Method (MEM) and two b-taggers: JP and Combined Secondary Vertex (CSV). The MEM is an advanced tool that produces an event-by-event discriminating variable, called weight. To apply it, several sets of transfer function have been produced. The final results give an observed limit on the ZH production cross section with the H → bb branching ratio of 5.46xσSM when using the CSV tagger and 4.89xσSM when using t...

  1. CERN and high energy physics, the grand picture

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D and technology transfer at CERN?

  2. The whole world behind the LHC

    CERN Multimedia

    2001-01-01

    The LHC Board, which includes representatives of the non-Member State organisations directly involved in the construction of the LHC accelerator and representatives of CERN, held its fourth meeting on Monday 21 May 2001. From left to right: 1st row, A. Yamamoto (KEK, Japan), P. Pfund (FNAL, United States), L. Maiani (CERN Director-General), L. Evans (LHC Project Leader), F. Dupont (IN2P3, France), D.D. Bhawalkar (CAT, India) ; 2nd row, P. Brossier (CEA, France), N. Tyurin (IHEP, Russia), A. Skrinsky (BINP, Russia), A. Astbury (TRIUMF, Canada), P. Lebrun (LHC Division Leader, CERN); 3rd row, T. Taylor (Deputy Division Leader LHC Division, CERN), A. Shotter (TRIUMF, Canada), P. Bryant (LHC, CERN), K. Hübner (Director for Accelerators, CERN), J. van der Boon (Director of Administration, CERN). Although Canada, the United States, India, Japan and the Russian Federation are not members of CERN, they are all playing an active part in the construction of the LHC through important technical and financial co...

  3. The super-LHC

    CERN Document Server

    Mangano, Michelangelo L

    2010-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.

  4. From the LHC to Future Colliders

    DEFF Research Database (Denmark)

    De Roeck, A.; Ellis, J.; Grojean, C.

    2010-01-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300/fb of integrated luminosity, of the proposed sLHC luminosity up...

  5. The LHC babies

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    With the machine restart and first collisions at 3.5 TeV, 2009 and 2010 were two action-packed years at the LHC. The events were a real media success, but one important result that remained well hidden was the ten births in the LHC team over the same period. The mothers – engineers, cryogenics experts and administrative assistants working for the LHC – confirm that it is possible to maintain a reasonable work-life balance. Two of them tell us more…   Verena Kain (left) and Reyes Alemany (right) in the CERN Control Centre. With the LHC running around the clock, LHC operations engineers have high-pressure jobs with unsociable working hours. These past two years, which will undoubtedly go down in the annals of CERN history, the LHC team had their work cut out, but despite their high-octane professional lives, several female members of the team took up no less of a challenge in their private lives, creating a mini-baby-boom by which the LHC start-up will also be remembe...

  6. Iran approaches CERN

    CERN Multimedia

    2002-01-01

    Members of Parliament from the Islamic Republic of Iran visit SM18. From left to right : Ali Mojtahed-Shabestari, Deputy Ambassador of the Islamic Republic of Iran in Geneva, Diether Blechschmidt, from CERN, Abdol-Rahim Baharvand and Hossain Amiri, from the Iranian Parliament, Norbert Siegel, from CERN, Hossain Afarideh, Rasool Seddighi and Ahmad Shirzad from the Iranian Parliament. Five members of the Parliament of the Islamic Republic of Iran visited CERN for three days at the beginning of May. All of them have PhD's in Physics, as well as holding their job in politics. They are involved in legislation for science, research and education funding in Iran. Apart from their interest in CERN in general, they were especially attracted to the CMS detector, since an Iranian contribution to the LHC is now starting through a collaboration with the Institute for Studies in Theoretical Physics and Mathematics in Tehran.

  7. LHC goes global

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    As CERN's major project for the future, the LHC sets a new scale in world-wide scientific collaboration. As well as researchers and engineers from CERN's 19 European Member States, preparations for the LHC now include scientists from several continents. Some 50 per cent of the researchers involved in one way or another with preparations for the LHC experimental programme now come from countries which are not CERN Member States. Underlining this enlarged international involvement is the recent decision by the Japanese Ministry of Education, Science and Culture ('Monbusho') to accord CERN a generous contribution of five billion yen (about 65 million Swiss francs) to help finance the construction of the LHC. This money will be held in a special fund earmarked for construction of specific LHC components and related activities. To take account of the new situation, CERN is proposing to set up a totally new 'Associate State' status. This is foreseen as a flexible bilateral framework which will be set up on a case-by-case basis to adapt to different circumstances. This proposal was introduced to CERN Council in June, and will be further discussed later this year. These developments reflect CERN's new role as a focus of world science, constituting a first step towards a wider level of international collaboration. At the June Council session, as a first step, Japan was unanimously elected as a CERN Observer State, giving them the right to attend Council meetings. Introducing the topic at the Council session, Director General Chris Llewellyn Smith sketched the history of Japanese involvement in CERN research. This began in 1957 and has gone on to include an important experiment at the LEAR low energy antiproton ring using laser spectroscopy of antiprotonic helium atoms, the new Chorus neutrino experiment using an emulsion target, and a major contribution to the Opal experiment at the LEP electronpositron collider. In welcoming the development, many Council delegates looked

  8. LHC goes global

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    As CERN's major project for the future, the LHC sets a new scale in world-wide scientific collaboration. As well as researchers and engineers from CERN's 19 European Member States, preparations for the LHC now include scientists from several continents. Some 50 per cent of the researchers involved in one way or another with preparations for the LHC experimental programme now come from countries which are not CERN Member States. Underlining this enlarged international involvement is the recent decision by the Japanese Ministry of Education, Science and Culture ('Monbusho') to accord CERN a generous contribution of five billion yen (about 65 million Swiss francs) to help finance the construction of the LHC. This money will be held in a special fund earmarked for construction of specific LHC components and related activities. To take account of the new situation, CERN is proposing to set up a totally new 'Associate State' status. This is foreseen as a flexible bilateral framework which will be set up on a case-by-case basis to adapt to different circumstances. This proposal was introduced to CERN Council in June, and will be further discussed later this year. These developments reflect CERN's new role as a focus of world science, constituting a first step towards a wider level of international collaboration. At the June Council session, as a first step, Japan was unanimously elected as a CERN Observer State, giving them the right to attend Council meetings. Introducing the topic at the Council session, Director General Chris Llewellyn Smith sketched the history of Japanese involvement in CERN research. This began in 1957 and has gone on to include an important experiment at the LEAR low energy antiproton ring using laser spectroscopy of antiprotonic helium atoms, the new Chorus neutrino experiment using an emulsion target, and a major contribution to the Opal experiment at the LEP electronpositron collider. In welcoming the

  9. 1st October 2011 - President of India P. Devisingh Patil at LHC Point 2, welcomed by CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    The Indian president, Pratibha Devising Patil, visited CERN on 1 October 2011. During her tour she saw, top right, the ALICE experiment (with from left to right Paolo Giubellino, ALICE spokesperson, Chitra Narayanan, Indian Ambassador to Switzerland, Rolf Heuer, CERN’s director-general, Christy Fernandez, secretary to the president, Rajeev Shukla, Indian minister of state for parliamentary affairs, Tapan Nayak, ALICE and VECC, and Felicitas Pauss, CERN’s head of international relations); top left, went underground with Vinod Chohan, from the Accelerator Beam Lines & Areas group, far left, and (back to camera) Steve Myers, director of accelerators and technology at CERN; bottom left, greeted Indian physicists at CERN; finally posing with Indian members of the ALICE and CMS collaborations and Indian officials.

  10. The LHC is safe

    CERN Document Server

    CERN. Geneva; Alvarez-Gaumé, Luís

    2008-01-01

    Concerns have been expressed from time to time about the safety of new high-energy colliders, and the LHC has been no exception. The LHC Safety Assessment Group (LSAG)(*) was asked last year by the CERN management to review previous LHC safety analyses in light of additional experimental results and theoretical understanding. LSAG confirms, updates and extends previous conclusions that there is no basis for any conceivable threat from the LHC. Indeed, recent theoretical and experimental developments reinforce this conclusion. In this Colloquium, the basic arguments presented by LSAG will be reviewed. Cosmic rays of much higher effective centre-of-mass energies have been bombarding the Earth and other astronomical objects for billions of years, and their continued existence shows that the Earth faces no dangers from exotic objects such as hypothetical microscopic black holes that might be produced by the LHC - as discussed in a detailed paper by Giddings and Mangano(**). Measurements of strange particle produc...

  11. CERN Library | Tord Ekelöf presents the proceedings of the Nobel Symposium on the Higgs Boson Discovery and Other Recent LHC Results | 12 June

    CERN Multimedia

    2014-01-01

    Thursday, 12 June 2014 at 16:00 in the Library (52-1-052).   The “Nobel Symposium on LHC results” took place at Krusenberg mansion, Uppsala, Sweden on 13-17 May 2013. The aim of the Symposium was to give an overview of the latest experimental and theoretical results pertaining to the LHC programme but also to give an occasion to ponder over the implications of these results in the broader context of the past, present and future evolution of the field of Particle Physics. “Nobel Symposium 154: The Higgs Boson Discovery and Other Recent LHC Results”, ed. by Tord Ekelöf, Physica Scripta T154, IOP, 2013, ISBN 9789789789781. * Coffee will be served from 15:30 * E-proceedings available here.

  12. The CERN's year

    International Nuclear Information System (INIS)

    Chadli, M.; Coppier, H.; Pezzeti, M.

    2007-01-01

    CERN, the European organization for nuclear research, has just celebrated its fifty years of existence. Its first goal was to counterbalance the migration of physics scientists towards the USA by the creation of a physics laboratory gathering scientists from the different European countries. Today, the CERN's mission has changed and has overcome all the expectations of its founders. In 2008, it will become, with the LHC (Large Hadron Collider), the biggest particle accelerator in the world. The CERN employs about 3000 physicists, engineers, technicians and workers. There is also 6500 people from 80 different countries who use the CERN's facilities during the year. The CERN is controlled by 20 European member states and 6 observer countries, and 20 non-member countries participate to the programs in progress. The CERN's power comes from its international and cosmopolitan spirit. The whole most famous physicists of the world can work together for the progress of science and for a better understanding of matter, of its interactions and of our universe. Two Nobel prices of physics come from the CERN: C. Rubbia and S. Van der Meer in 1983 for the discovery of W + , W - and Z 0 bosons, and G. Charpak for the development of particle detectors. One can foresee that the LHC will allow new scientific achievements, like for instance, during experiments for the quest of the famous Higgs boson. It is important also to mention that the CERN has been at the origin of several technological innovations in all technical and engineering domains in the framework of its fundamental physics researches. (J.S.)

  13. To the LHC and beyond

    CERN Document Server

    Rodgers, Peter

    2004-01-01

    CERN was conceived in 1949 as a new European laboratory to halt the exodus of physics talent from Europe to North America. In 1954, the new lab formally came into existence upon ratification of the resolution by the first 12 European member states. To further strengthen its position as the top particle-physics laboratory in the world, the CERN council agreed a new seven-point strategy. Completing the Large Hadron Collider (LHC) on schedule in 2007 is the top priority, followed by consolidating the lab's infrastructure to guarantee reliable operation of the LHC; examining the lab's experimental program apart from the LHC; coordinating research in Europe; building a new injector for the LHC in 2006; increasing R&D on the Compact Linear Collider (CLIC); and working on a long-term strategy for the lab. CERN expects to complete half of these at the end of 2008. (Edited abstract).

  14. CERN Technical Training 2003: Learning for the LHC! MAGNE-03 : Magnétisme pour l'Electrotechnique Phénomènes magnétiques, matériaux et applications - French version only

    CERN Multimedia

    2003-01-01

    MAGNE-03 est un nouveau cours dans le cadre du programme de l'Enseignement Technique 2003, qui s'adresse aux personnes souhaitant découvrir, améliorer ou remettre à niveau leurs connaissances en magnétisme. Recommandé par l'ancienne division LHC, le cours est donné au CERN par la société CEDRAT Technologies basée à Meylan (France, 38). La participation est ouverte à l'ensemble du personnel technique et scientifique nécessitant une formation en magnétisme dans le cadre de leurs activités professionnelles, courantes ou futures. En ayant organisé des sessions au CERN, une économie d'environ 800.- CHF par participant est réalisée par rapport aux frais nécessaires pour suivre la même formation sur leur site en Isère. MAGNE-03 s'intéresse, entre autres, au développement de la compréhension des phénomènes magnétiques et le "sens physique" appliqués à des produits industriels. Programme : Notions de base en électromagnétisme. Les aspects électrique et mécanique du magnétisme. Les ...

  15. CERN Technical Training 2003: Learning for the LHC! MAGNE-03 : Magnétisme pour l'Electrotechnique
    Phénomènes magnétiques, matériaux et applications. - French version only

    CERN Multimedia

    2003-01-01

    MAGNE-03 est un nouveau cours dans le cadre du programme de l'Enseignement Technique 2003, qui s'adresse aux personnes souhaitant découvrir, améliorer ou remettre à niveau leurs connaissances en magnétisme. Recommandé par l'ancienne division LHC, le cours est donné au CERN par la société CEDRAT Technologies basée à Meylan (France, 38). La participation est ouverte à l'ensemble du personnel technique et scientifique nécessitant une formation en magnétisme dans le cadre de leurs activités professionnelles, courantes ou futures. En ayant organisé des sessions au CERN, une économie d'environ 800.- CHF par participant est réalisée par rapport aux frais nécessaires pour suivre la même formation sur leur site en Isère. MAGNE-03 s'intéresse, entre autres, au développement de la compréhension des phénomènes magnétiques et le "sens physique" appliqués à des produits industriels. Programme : Notions de base en électromagnétisme. Les aspects électrique et mécanique du magnétisme. Les ...

  16. Sprint final pour l'accélérateur Le LHC du CERN va entrer en service au mois de juin

    CERN Multimedia

    Du Brulle, Christian

    2008-01-01

    "Our new tool should be ready to function this summer", is delighted Jos Engelen, the scientific director of the international scientific organization. In more than hundred metres deep, under the French-Swiss border, the circular tunnel 27 kilometres in diameter of the LHC is almost equipped.

  17. Three European ministers visit CERN

    CERN Multimedia

    2007-01-01

    There have been three ministerial visits to CERN this month. Gediminas Kirkilas, Prime Minister of Lithuania, and Robert Aymar, CERN’s Director-General.On 2 July, the Prime Minister of Lithuania, Gediminas Kirkilas, was welcomed by CERN’s Director-General, Robert Aymar, before being taken on a visit of the ATLAS cavern at Point 2 and the LHC tunnel. Michal Sewerynski, Poland’s Minister for Science and Higher Education, and Robert Aymar, CERN’s Director-General.Ten days later, Poland’s Minister for Science and Higher Education, Michal Sewerynski, visited the CMS cavern and assembly hall and the LHC tunnel. He was also given a tour of the LHC Computer Centre and the CERN Control Centre. His visit was rounded off with a presentation of Polish companies involved in CERN’s activities, followed by a meeting with Polish personnel working at CERN. J�...

  18. Italy's Prime Minister visits CERN

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    On Tuesday, 7 July 2015, the Prime Minister of the Italian Republic, Matteo Renzi, visited CERN. He was accompanied by a delegation that included Italy's Minister for Education, University and Research, Stefania Giannini.   From left to right: Fernando Ferroni, President of the Istituto Nazionale di Fisica Nucleare (INFN); Sergio Bertolucci, CERN Director for Research and Scientific Computing; Stefania Giannini, Italy's Minister of Education, University and Research; Matteo Renzi, Prime Minister of the Italian Republic; Fabiola Gianotti, CERN Director-General Designate; Rolf Heuer, CERN Director-General.   The Prime Minister was welcomed by members of the CERN Management together with former CERN Director-General and Senator for Life of the Italian Republic, Carlo Rubbia. After a brief general introduction to CERN’s activities by Rolf Heuer, the Italian delegation visited LHC Point 1. After a tour of the ATLAS control room, they donned helmets to visit th...

  19. CERN openlab enters fifth phase

    CERN Multimedia

    Andrew Purcell

    2015-01-01

    CERN openlab is a unique public-private partnership between CERN and leading ICT companies. At the start of this year, openlab officially entered its fifth phase, which will run until the end of 2017. For the first time in its history, it has extended beyond the CERN community to include other major European and international research laboratories.   Founded in 2001 to develop the innovative ICT systems needed to cope with the unprecedented computing challenges of the LHC, CERN openlab unites science and industry at the cutting edge of research and innovation. In a white paper published last year, CERN openlab set out the main ICT challenges it will tackle during its fifth phase, namely data acquisition, computing platforms, data storage architectures, computer management and provisioning, networks and connectivity, and data analytics. As it enters its fifth phase, CERN openlab is expanding to include other research laboratories. "Today, research centres in other disciplines are also st...

  20. Cost overruns will hit research at CERN

    CERN Multimedia

    Weiss, G

    2002-01-01

    To try and offset cost overruns on the LHC, CERN managers have drafted a preliminary plan that would delay start-up of the accelerator until 2007 and drastically reduces spending on longterm research programmes (1 page).

  1. CERN: New cooperation agreement with China

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    As preparations gather momentum for its LHC proton collider to be built in the 27-kilometre LEP tunnel, CERN is encouraging increased international involvement in the project, both for the machine itself and for the experiments which will use it

  2. Russia-CERN: the solid collaboration continues

    CERN Multimedia

    2002-01-01

    CERN and Russia have recently signed an extension to the 1996 protocol defining the Russian contribution to LHC construction. Russian scientists are taking part in the construction of the accelerator and are also extensively involved in building the detectors.

  3. Poland reinforces its links with CERN

    CERN Multimedia

    2003-01-01

    A collaboration agreement has just been signed with the Cracow Institute of Nuclear Physics under which a team of Polish physicists, engineers and technicians will come to CERN to assist with the inspection of LHC assembly work.

  4. An Algerian Minister visits CERN

    CERN Multimedia

    2006-01-01

    The Algerian Minister of Higher Education and Scientific Research, Rachid Haraoubia, visited CERN on 14 November. His party included the Rector of the University of Blida and the Director of the Algerian Ecole Nationale Polytechnique. Welcomed by CERN's Director-General, Robert Aymar, and Secretary-General, Maximilien Metzger, he signed the VIP Visitors' Book before going on to visit the ATLAS experiment and the LHC tunnel. He then had the opportunity to meet Algerian scientists working at CERN. Some fifteen Algerian physicists attached to European and US institutes are participating in the LHC experiments, in particular ATLAS. A formal collaboration agreement between Algeria and CERN is expected to be drawn up in the near future.

  5. Swedish Government Minister at CERN

    CERN Document Server

    2008-01-01

    The Swedish Minister for Higher Education and Research recently visited CERN. The Swedish Minister was greeted by Swedish scientists working at CERN. Signing of the Swedish Computing Memorandum of Understanding. Pär Omling, Director-General of the Swedish Research Council (left), and Jos Engelen, CERN’s Chief Scientific Officer. Lars Leijonborg, the Swedish Minister for Higher Education and Research, was welcomed to CERN by Director-General Robert Aymar on 10 March. After an introduction to the Laboratory’s activities, the Minister was given guided tours of the control room, the ATLAS surface hall and experiment cavern and the adjoining LHC tunnel. Mr Leijonborg was then greeted by Swedish scientists and given an overview of the Swedish research programme at CERN. Five Swedish university groups are taking part in LHC research. Swedish universities are notably involved in the manufacture of parts for the sub-detectors of AT...

  6. Procedures used during the verification of shielding and access-ways at CERN's Large Hadron Collider (LHC) using the FLUKA code

    International Nuclear Information System (INIS)

    Ferrari, A.; Huhtinen, M.; Rollet, S.; Stevenson, G.R.

    1997-01-01

    Several examples will be given which illustrate the special features of the Monte-Carlo cascade simulation program FLUKA, used in the verification studies of shielding for the LHC. These include the use of different estimators for dose equivalent, region importance weighting with particle splitting, Russian Roulette and weight windows both at region boundaries and m secondary production at inelastic reactions and decay-length biasing in order to favour secondary particle production. (author)

  7. La Nascita del CERN

    CERN Multimedia

    Fidecaro, Giuseppe

    2004-01-01

    CERN is born on 30 Sep 1954, just after the signature in Paris of a Convention for the creation of an European Center for Nuclear Research. It was a need to recreate a multilateral collaboration to start again scientific Research after the War (2 pages)

  8. A Croatian delegation visits CERN

    CERN Multimedia

    2001-01-01

    Professor Hrvoje Kraljeviç signing the Golden book with Professor Roger Cashmore. A Croatian delegation composed of the Minister of Science and Technology, Professor Hrvoje Kraljeviç, his deputy for international collaboration Prof. Davor Butkovic have visited CERN on the 12 and 13th of February and held talks with the CERN authorities, ALICE and CMS spokespersons on the possibilities to increase the participation of Croatia to the LHC related activities.

  9. ITER leader to head CERN

    CERN Document Server

    Feder, Toni

    2003-01-01

    After successfully chairing an external review committee for CERN last year, Robert Aymar will leave ITER to become director general of the European particle physics laboratory rom 2004. Before ITER he also successfully managed the startup or Tore Supra. He will attempt to ensure that the LHC begins operating in 2007 - two years late - and is paid for by 2010 and will also start the planning for life after the LHC (1 page)

  10. CERN panel calls for cuts and shake-ups

    CERN Multimedia

    Weiss, G

    2002-01-01

    An external review committee has proposed that CERN slash other research projects in order to finish the LHC. The report of the ERC praised the design of the LHC and the technical competence of CERN staff. However it criticized the lab for "serious weaknesses" in cost control, contract management and financial reporting (1 page).

  11. LHC crab-cavity aspects and strategy

    International Nuclear Information System (INIS)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-01-01

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  12. LHC: seven golden suppliers

    CERN Multimedia

    2005-01-01

    The fourth CERN Golden Hadron awards saw seven of the LHC's best suppliers receive recognition for the high quality of their work, compliance with delivery deadlines, flexibility and adaptability to the demanding working conditions of the project. The representatives of the seven companies which received awards during the Golden Hadron ceremony, standing with Lyn Evans, LHC Project Leader. 'The Golden Hadron awards are a symbol of our appreciation of not only the quality and timely delivery of components but also the collaborative and flexible way the firms have contributed to this very difficult project,' said Lyn Evans, head of the LHC project. The awards went to Kemppi-Kempower (Finland), Metso Powdermet (Finland), Transtechnik (Germany), Babcock Noell Nuclear (Germany), Iniziative Industriali (Italy), ZTS VVU Kosice (Slovakia), and Jehier (France). Babock Noell Nuclear (BNN) successfully produced one-third (416 cold dipole masses) of the LHC's superconducting dipole magnets, one of the most critical an...

  13. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  14. Signature of an agreement between CERN and the National Technical University of Athens (NTUA) to increase the participation of Greek students in CERN's Doctoral, Technical and Summer Student programmes.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Left to right: Professor Claude Detraz (Director for fixed target and future programmes); Dr. Magda Lola (deputy leader of the Recruitment andd FAS Programmes group of Human Resources division), responsible for the negotiations from the CERN side; and Professor Evangelos Gazis (NTUA), representing the Rector of NTUA, Professor Themistoklis Xanthopoulos.

  15. 1st February 2011-CERN Cultural Board for Engaging with the Arts, visiting CMS experimental area and LHC Tunnel at Point 5

    CERN Multimedia

    Michael Hoch

    2011-01-01

    Photo 1-4: Visit to CMS Control Room with G. Tonelli,CMS Collaboration Spokesperson Photo 5-9,16-20:CMS experimental area Photo 10-15:LHC Tunnel at Point 5 Photo 21:F. Madlener,Director of IRCAM Paris+S. Dorny,Director-General Lyon Opera House+C. Bollman,Art by Genève+M. Doser,AEgIS Collaboration Spokesperson,Former Physics Department Deputy Head+A. Koek,International Arts Development+G. Tonelli+M. Monje Cano,Arts Development Assistant (part-time work experience)+B. Ruf,Director of Kunsthalle Zürich

  16. LHC Accelerator Fault Tracker - First Experience

    CERN Document Server

    Apollonio, Andrea; Roderick, Chris; Schmidt, Ruediger; Todd, Benjamin; Wollmann, Daniel

    2016-01-01

    Availability is one of the key performance indicators of LHC operation, being directly correlated with integrated luminosity production. An effective tool for availability tracking is a necessity to ensure a coherent capture of fault information and relevant dependencies on operational modes and beam parameters. At the beginning of LHC Run 2 in 2015, the Accelerator Fault Tracking (AFT) tool was deployed at CERN to track faults or events affecting LHC operation. Information derived from the AFT is crucial for the identification of areas to improve LHC availability, and hence LHC physics production. For the 2015 run, the AFT has been used by members of the CERN Availability Working Group, LHC Machine coordinators and equipment owners to identify the main contributors to downtime and to understand the evolution of LHC availability throughout the year. In this paper the 2015 experience with the AFT for availability tracking is summarised and an overview of the first results as well as an outlook to future develo...

  17. Keeping HL-LHC accountable

    CERN Multimedia

    2015-01-01

    This week saw the cost and schedule of the High Luminosity LHC (HL-LHC) and LHC Injectors Upgrade (LIU) projects come under close scrutiny from the external review committee set up for the purpose.    HL-LHC, whose implementation requires an upgrade to the CERN injector complex, responds directly to one of the key recommendations of the updated European Strategy for Particle Physics, which urges CERN to prepare for a ‘major luminosity upgrade’, a recommendation that is also perfectly in line with the P5 report on the US strategy for the field. Responding to this recommendation, CERN set up the HL-LHC project in 2013, partially supported by FP7 funding through the HiLumi LHC Design Study (2011-2015), and coordinated with the American LARP project, which oversees the US contribution to the upgrade. A key element of HL-LHC planning is a mechanism for receiving independent expert advice on all aspects of the project.  To this end, several technical reviews h...

  18. Robert Aymar, Director-General of CERN

    CERN Document Server

    Patrice Loïez

    2003-01-01

    Robert Aymar, photographed in 2003 before taking his position as Director-General at CERN, succeeding Luciano Maiani in 2004. At this time, Aymar was director of the International Thermonuclear Experimental Reactor (ITER) although he had already been involved with developments at CERN, chairing the External Review Committee, set up in 2001 in response to the increased cost of the LHC.

  19. Learning with the ATLAS Experiment at CERN

    Science.gov (United States)

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  20. CERN opens finances up for review

    CERN Multimedia

    2001-01-01

    CERN will appoint an external review board to assess future financing needs through to 2012 for both the LHC and the lab as a whole. The action has been prompted by the funding crisis resulting from the cost overruns of the LHC project (1/2 page).

  1. 24 February 2012 - Portuguese Minister for Education and Science N. Crato visiting the LHC superconducting magnet test hall with technology Department Head F. Bordry and signing the guest book with CERN Director-General R. Heuer. The Minister is accompanied by Secretary of State for Science L. Parreira and LIP Director J.M. Gago. A. Henriques(ATLAS), C. Lourenço (CMS) and Adviser R. Voss accompany the delegation throughout.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    On 24 February Nuno Crato, the Portuguese minister for education and science, left, toured the LHC superconducting-magnet test hall accompanied by Frédérick Bordry, CERN’s technology department head. He also took the opportunity to visit the underground experimental areas of ATLAS and CMS, and heard about the LHC Computing Grid Project before meeting Portuguese scientists working at CERN.

  2. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Guthoff, Moritz; Dabrowski, Anne; De Boer, Wim; Stickland, David; Lange, Wolfgang; Lohmann, Wolfgang

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector ef fi ciency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, becaus...

  3. LHC@home gets new home

    CERN Multimedia

    Oates, John

    2007-01-01

    "The distributed computing project LHC@home is moving to London from Cern in Switzerland. Researchers at Qeen Mary University have been trialling the system since June, but are now ready for the offical launch" (1 page)

  4. Optical fibres bringing the LHC into focus

    CERN Multimedia

    2003-01-01

    New components are being added to CERN's optical fibre network, which will transport the torrents of data produced by the LHC. 1500 kilometres of cables will be installed in the tunnels and at ground level.

  5. Magnet production for the LHC is complete!

    CERN Multimedia

    2006-01-01

    On 27 November, the LHC teams celebrated the end of production of the machine's main magnets. Some 1232 main dipole and 392 main quadrupole magnets have been manufactured in an unprecedented collaboration effort between CERN and European industry.

  6. The Alice experiment for the study of ultra relativistic heavy ion collisions; Experience ALICE pour l'etude des collisions d'ions lourds ultra-relativistes au CERN-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, B

    2003-12-01

    Alice is the detector dedicated to the study of heavy ions at the LHC (large hadron collider). It will allow scientists to investigate all the signatures of quark-gluon plasma (QGP). The spectrometer of the dimuon arm of Alice has been designed to study the production of high mass resonances through their dimuon decay. The first chapter is dedicated to some aspects of the physics of ultra-relativistic heavy ion: confinement and de-confinement of quarks, the absence of heavy resonances as a signature for the presence of QGP. The second chapter presents Alice and its ancillary detectors. The third chapter deals with the trigger system of the dimuon spectrometer, a detailed algorithm of this system is given. A method for the optimization of the trigger response is presented in the fourth chapter. The fifth chapter describes the testing of a prototype of the trigger system, this testing with muons has shown that the efficiency of the track reconstruction of the trigger system and the efficiency of the resistive plate chamber reach 98%.In the sixth chapter the author comments the simulations of the production of heavy resonances from Pb-Pb collisions as a function of centrality. (A.C.)

  7. Security in the CernVM File System and the Frontier Distributed Database Caching System

    International Nuclear Information System (INIS)

    Dykstra, D; Blomer, J

    2014-01-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  8. Security in the CernVM File System and the Frontier Distributed Database Caching System

    Science.gov (United States)

    Dykstra, D.; Blomer, J.

    2014-06-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  9. Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at √s = 8 TeV

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2015-01-01

    Roč. 2015, č. 7 (2015), 032 ISSN 1029-8479 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : ATLAS * CERN LHC Coll * channel cross section * upper limit * new physics * search for * acceptance * signature * experimental results * 8000 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.023, year: 2015

  10. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  11. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  12. CERN and Israel

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Israel (along with the US, Japan, Canada, the Russian Federation and India) is one of the CERN non- Member State nations targeted for substantial future participation in CERN's experimental programme, in particular for the LHC proton collider to be built in the 27-kilometre LEP tunnel and which was formally approved by CERN Council in December (January/February, page 1). In keeping with their illustrious scientific traditions, Israeli experimental physicists have collaborated in experiments at many of the world's major high energy Laboratories - Brookhaven, Fermilab and SLAC in the US, and in Europe, DESY, Hamburg, as well as CERN. However CERN, as the geographically closest major Laboratory (as well as the largest), plays a special role for Israeli scientists. At CERN, the advent of preparations in the early 1980s for the experimental programme at the LEP electron-positron collider was the signal for Israeli researchers to mount a concerted effort and contribute to one of the experiments - Opal - at a level comparable to that of major nations. This allowed Israeli teams to participate fully in the planning and construction phase of this branch of Big Science. Underlining this commitment, and to coordinate the various national agencies involved in this aspect of Big Science, in 1983 the Israel Commission for High Energy Physics (ICHEP) was formed. It is currently chaired by David Horn of Tel Aviv. The initial ICHEP/CERN contract established the official CERN/lsrael link under which, in the short-term, teams from three major research centres - the Weizmann Institute, Tel- Aviv University, and Haifa's Technion - contributed to Opal, as the flagship experiment, while providing a framework for longer-term collaboration. (At CERN, Israeli physicists also participate in the NA45 heavy ion experiment and the NA47 Spin Muon Collaboration - SMC.) Opal groups some 320 scientists from 32 research centres in eight countries, and includes a 21-strong Israeli

  13. Nouvel oeil sur le monde au CERN Les physiciens du CERN attendent un signe "divin"

    CERN Multimedia

    Frei, Pierre-Yves

    2004-01-01

    On 29th September, CERN will be celebrating its 50th anniversary. As candles, huge projectors will illuminate the sky. For the gift, physicists will have to wait three years: the inaguuration of the new particules accelerator, the LHC

  14. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz, E-mail: moritz.guthoff@cern.ch [CERN, 1211 Genève 23 (Switzerland); Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Afanaciev, Konstantin [DESY, Platanenallee 6, 15738 Zeuthen (Germany); NC PHEP BSU, Minsk (Belarus); Dabrowski, Anne [CERN, 1211 Genève 23 (Switzerland); Boer, Wim de [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Lange, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Lohmann, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universität, Postfach 101344, 03013 Cottbus (Germany); Stickland, David [Princeton University, Princeton, NJ 08544-0708 (United States)

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  15. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    International Nuclear Information System (INIS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; Boer, Wim de; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  16. Le Japon contribue au grand collisionneur de hadrons du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    Japan's Ministry of Education, Science and Culture (Monbusho), announced on May 10 that it would help to finance the construction of CERN*'s next particle accelerator, the Large Hadron Collider (LHC). This announcement follows the visit of a CERN delegation, led by Director-General Prof. Christopher Llewellyn Smith to Japan in March 1995.

  17. LHC technical data goes mobile

    CERN Multimedia

    Jordan Juras

    2010-01-01

    The Computerized Maintenance Management System (CMMS), which has been in use at CERN for many years, has recently been enhanced with an innovative new feature for managing and exploiting existing information regarding the LHC: a system to read the barcodes on the LHC components and easily obtain data and information on the many thousands of items of equipment that make up the accelerator. The feature will eventually be made available for any other scientific instrumentation located at CERN.   Example of a magnet's barcode Systems like CERN's CMMS, which is based on an Enterprise Asset Management (EAM) system from Infor, are today standard practice in organizations managing large volumes of information about their facilities. However, the way in which CERN has adapted its system is rather unique: the CMMS not only manages the manufacturing, installation, maintenance and disposal of the components of CERN’s infrastructure but now has the potential to provide equipment information interact...

  18. Construction and Quality Assurance of Large Area Resistive Strip Micromegas for the Upgrade of the ATLAS Muon Spectrometer at LHC/CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00389527; The ATLAS collaboration

    2017-01-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. To cope with increasing background rates, associated with the steadily increasing luminosity of LHC to 10 times design luminosity, the present detector technology in the current innermost stations of the muon endcap system of the ATLAS experiment (the Small Wheel), will be replaced in 2019 by resistive strip Micromegas and small strip TGC detectors. Both technologies will provide tracking and trigger information. In the ``New Small Wheel'' the Micromegas will be arranged in eight detection layers built of trapezoidally shaped quadruplets of four different sizes covering in total about 1200\\,m$^2$ of detection plane. In order to achieve 15\\,\\% transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction of each active plane, with an alignment of the readout strips at the level of 30\\,\\textmu m along the precision coordinate and 80\\,\\textmu m perpendicular...

  19. The CERN GSM monitoring system

    International Nuclear Information System (INIS)

    Ghabrous, Carlos

    2010-01-01

    This paper presents the way CERN has approached the problem of monitoring its own GSM infrastructure, especially in the Large Hadron Collider (LHC) accelerator tunnel and other underground facilities, where a leaky feeder cable carries mobile phone signals, and where this technology is the only means for inter-personnel communications.

  20. Cern collisions light up Copenhagen

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "Anyone passing by the Niels Bohr Institute in Copenhagen, Denmark, might be startled by some strange moving lights on the facade of the institute's main building. In fact, the dancing beams show, almost in real time, collisions form the Atlas experiment at Cern's Large Hadron Collider (LHC)" (1 paragraph)

  1. CERN Open Days CMS Posters

    CERN Multimedia

    Davis, Siona Ruth

    2016-01-01

    Themes: 1) You are here (location P5, Cessy) 2) CERN 3) LHC 4) CMS Detector 5) Magnet 6) Subdetectors (Tracker, ECAL, HCAL, Muons) 7) Trigger and Data Acquisition 8) Collaboration 9) Site Geography 10) Construction 11) Lowering and Installation 12) Physics

  2. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Science.gov (United States)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  3. Study of ZZ diboson final states in the leptons-neutrinos decay channel with the CMS experiment at the LHC at CERN

    International Nuclear Information System (INIS)

    Marionneau, M.

    2011-09-01

    This thesis presents a study of ZZ final states performed with data recorded with the CMS detector at LHC. This study exploits the first data delivered by the LHC and recorded by CMS in 2010 and 2011. The ZZ production cross section is measured and limits are set on neutral electroweak triple gauge couplings. The measurement of the production cross-section of ZZ has given: σ(pp → ZZ) equals (11.24 ± 3.18 (stat) ± 1.98 (syst) ± 0.67 (lumi)) pb for an energy of 7 TeV (in the center of mass frame). This value is consistent with Standard Model's theoretical predictions. Limiting values for the anomalous coupling constants f 4 Z and f 5 Z have been deduced for a confidence ratio of 95%: -0.080 4 Z 5 Z < 0.077. The existence of such couplings would be an indication of new physics beyond the Standard Model. Moreover, the ZZ process in the Standard Model is a background for Higgs searches and have to be well known. Some preliminary studies are performed on the CMS electromagnetic calorimeter. These studies are related to the selective readout system and to the laser monitoring system of the electromagnetic calorimeter. The measurement and the behaviour of the transverse missing energy are also studied in events containing one electroweak boson decaying into electron(s). This study shows that pileup has an important effect on missing transverse energy measurements. Some corrections have to be taken into account to deal with these effects. Conclusions from these analyses contribute to the good understanding of results obtained in the ZZ final states study

  4. CERN comes under fresh financial pressure

    CERN Multimedia

    Dickson, D

    1996-01-01

    Germany's decision to effect a 10% cut in its annual subscription to the Large Hadron Collider (LHC) in 1997 has added to the financial problems of the European Laboratory for Particle Physics (CERN), Geneva, Switzerland. Reduced European contributions will have a crucial impact on the planned construction and completion of LHC. Proposals for non-European membership to reduce the financial burden on CERN members is doubtful in the current political context. The German move hints at a reappraisal of the funding projections for LHC.

  5. Electronics for LHC experiments

    International Nuclear Information System (INIS)

    Bourgeois, Francois

    1995-01-01

    Full text: A major effort is being mounted to prepare the way handling the high interaction rates expected from CERN's new LHC proton-proton collider (see, for example, November, page 6). September saw the First Workshop on Electronics for LHC Experiments, organized by Lisbon's Particle Physics Instrumentation Laboratory (LIP) on behalf of CERN's LHC Electronics Review Board (LERB - March, page 2). Its purpose was not only for the LERB to have a thorough review of ongoing activities, but also to promote cross fertilization in the engineering community involved in electronics design for LHC experiments. The Workshop gathered 187 physicists and engineers from 20 countries including USA and Japan. The meeting comprised six sessions and 82 talks, with special focus on radiation-hard microelectronic processes, electronics for tracking, calorimetry and muon detectors, optoelectronics, trigger and data acquisition systems. Each topic was introduced by an invited speaker who reviewed the requirements set by the particular detector technology at LHC. At the end of each session, panel discussions were chaired by each invited speaker. Representatives from four major integrated circuit manufacturers covered advanced radiation hard processes. Two talks highlighted the importance of obsolescence and quality systems in the long-lived and demanding environment of LHC. The Workshop identified areas and encouraged efforts for rationalization and common developments within and between the different detector groups. As a result, it will also help ensure the reliability and the long term maintainability of installed equipment. The proceedings of the Workshop are available from LIP Lisbon*. The LERB Workshop on Electronics for LHC Experiments will become a regular event, with the second taking place in Hungary, by Lake Balaton, from 23-27 September 1996. The Hungarian institutes KFKIRMKI have taken up the challenge of being as successful as LIP Lisbon in the organization

  6. LHC magnet string in 1994

    CERN Multimedia

    1994-01-01

    On 6-7 December 1994, a string of powerful superconducting magnets for CERN's next particle accelerator, the Large Hadron Collider (LHC), ran successfully at 8.36 tesla for 24 hours. This magnetic field is 100 000 times that of the Earth and is required to keep beams of protons travelling on the correct circular path over 27 km at 7 TeV in the new LHC accelerator.

  7. LHC: from hot to cold

    CERN Multimedia

    2006-01-01

    The first cryogenic feedbox designed to supply electricity to the superconducting magnets of one arc has just been installed at Point 8 of the LHC. This latest milestone is the reward for the joint efforts of the AT and TS Departments at CERN, the IHEP Institute in Moscow and CERN’s industrial partners who collaborated in its manufacture, and is a precursor to the forthcoming cool down of the first 3.3 km sector of the LHC.

  8. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  9. Massivement en grève le CERN frole le big bang le débrayage des fonctionnaires et sous-traitants cristallise la crise

    CERN Multimedia

    Stampfli, B

    2002-01-01

    Around 1000 staff in total, demonstrated at CERN today, to protest against radical measures proposed by CERN management. CERN needs to find around 850 million CHF to supplement the budget of the LHC project.

  10. A day in the CERN Control Centre

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    The CERN Control Centre (CCC) is the nerve centre of the CERN beam systems. From this room, the experts prepare, monitor, adjust, and control the particle beams that circulate throughout the accelerator complex while ensuring that the services and the technical infrastructure work flawlessly. Buttons, screens, telephones, lights (but no sound): in the CCC, everything is ready to make it possible for the LHC to reach the unprecedented energies expected at Run 2.   Seen from above, the CERN Control Centre resembles the shape of a quadrupole magnet. The consoles are distributed in four circles, called “islands”, dedicated to the LHC, the SPS, the PS Complex and the Technical Infrastructure (TI) respectively. Spread between TI and LHC are the Cryogenics consoles. Being in the same room allows the 24h-manned islands to be constantly in touch with one another, thus ensuring the best performance of the machines. At the LHC island, operators are currently busy training the magnet...

  11. CREATIVE COLLISIONS: ARTS @CERN

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In 2000, CERN hosted Signatures of the Invisible – one of the landmark initiatives in arts and science. In 2012, CERN is now initiating its own science/arts programme Collide@CERN in different arts disciplines. The first of these is in digital arts, and the international competition to find the winning artist is called the Prix Ars Electronica Collide@CERN. It was announced September 2011 at CERN’s first collaboration with an international arts festival – Ars Electronica in Linz. The competition attracted over 395 entries from 40 countries around the world. The winning artist, Julius Von Bismarck, will begin his two month residency here at CERN next month. Ariane Koek who leads on this initiative, discusses the residency programme, as well as the background about Art@CERN. History has shown that particle physics and the arts are great inspiration partners. The publication of the paper by Max Planck which gave birth to quantum mechanics as well as those by Einstein, heavily influenced some of the grea...

  12. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  13. Swiss State Secretary visits CERN

    CERN Multimedia

    2008-01-01

    The new Swiss State Secretary for Education and Research recently visited CERN. Peter Jenni, the spokesperson for ATLAS, gave Mauro Dell’Ambrogio, the new Swiss State Secretary for Education and Research, a tour of ATLAS and the LHC tunnel.On 2 April, the newly appointed Swiss State Secretary for Education and Research, Mauro Dell’Ambrogio, was welcomed to CERN by Director-General Robert Aymar. On arrival the Swiss minister was given a guided tour of ATLAS and the adjoining LHC tunnel by Peter Jenni, the ATLAS spokesperson. Dr Dell’Ambrogio was then greeted by Swiss scientists and attended presentations by young post doc physicists about Swiss contributions to CMS and LHCb, in particular their work concerning hardware contribution and data analysis. There are 120 physicists from Swiss universities working on CERN’s experiments, and many more Swiss people working at CERN in other departments due to Switzerland’s special position as a host state. Also before ...

  14. The LHC at level best

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    On 10 March, a team of CERN surveyors descended into the LHC tunnel. Their aim: to take measurements of the height of the LHC magnets to see how geological shifts might be affecting the machine and to take reference positions of the machine before the interconnects are opened.    CERN surveyors take levelling measurements of the LHC magnets during LS1. The LHC tunnel is renowned for its geological stability: set between layers of sandstone and molasse, it has allowed the alignment of the world’s largest accelerators to be within sub-millimetre precision. But even the most stable of tunnels can be affected by geological events. To ensure the precise alignment of the LHC, the CERN survey team performs regular measurements of the vertical position of the magnets (a process known as “levelling”). Over the past month, the team has been taking measurements of the LHC before the temperature of the magnets reaches 100 K, beyond which there may be some mechanic...

  15. Study of heavy flavours from muons measured with the ALICE detector in proton-proton and heavy-ion collisions at the CERN-LHC

    International Nuclear Information System (INIS)

    Zhang, X.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is the experiment dedicated to the study of heavy-ion collisions at the LHC. ALICE also takes part in the LHC proton- proton program which is of great interest for testing perturbative QCD calculations at unprecedented low Bjorken-x values and for providing the necessary baseline for nucleus-nucleus and proton-nucleus collisions. ALICE will also collect, in the beginning of 2013, p-Pb/Pb-p collisions in order to investigate cold nuclear matter effects. ALICE measures quarkonia and open heavy flavours with (di)-electrons, (di)-muons and through the hadronic channels. This thesis work is devoted to the study of open heavy flavours in proton-proton and Pb-Pb collisions via single muons with the ALICE forward muon spectrometer. The document is organized as follows. The first chapter consists in a general introduction on heavy-ion collisions and QCD phase transitions. Chapter 2 summarizes the motivations for the study of open heavy flavours in nucleon-nucleon, nucleon-nucleus and nucleus-nucleus collisions. Chapter 3 gives an overview of the ALICE experiment with a detailed description of the forward muon spectrometer. Chapter 4 gives a short summary of the ALICE online and offline systems. Then the analysis framework (for data and simulations) and in particular the software developed for the study of open heavy flavours is detailed. Chapter 5 summarizes the performance of the ALICE muon spectrometer for the study of the production of open heavy flavours in pp collisions via single muons and dimuons. Chapters 6 to 9 are dedicated to data analysis. Chapter 6 deals with the analysis of first pp collisions at 900 GeV. The main aim was the understanding of the response of the apparatus. Chapter 7 presents the measurement of the production of heavy flavour decay muons in pp collisions at √(s) = 7 TeV. The analysis strategy is described: event and track selection, background subtraction (mainly the contribution of muons from primary

  16. Muon production from heavy-flavour hadron decays in p-Pb and pp collisions with ALICE at the CERN-LHC

    International Nuclear Information System (INIS)

    Shuang, Li

    2015-01-01

    The LHC heavy-ion physics program aims at investigating the properties of strongly-interacting matter in extreme conditions of temperature and energy density where the Quark-Gluon Plasma (QGP) is formed. In high-energy heavy-ion collisions, heavy quarks (charm and beauty) are regarded as efficient probes of the properties of the QGP. The heavy-ion physics program requires also the study of proton-proton (pp) and proton-nucleus (p-Pb) collisions. The study of p-Pb collisions is used to investigate cold nuclear matter effects and to validate and quantify hot nuclear matter effects which are observed in nucleus-nucleus (Pb-Pb) collisions. This thesis work is devoted to the study of open heavy-flavour production at forward and backward rapidity via single muons in p-Pb collisions at √(s_N_N) = 5.02 TeV with the ALICE experiment at the LHC. The pp reference using available measurements at 2.76 and 7 TeV and a pQCD-driven method for the scaling to 5.02 TeV is estimated. The measurements of the nuclear modification factor (R_p_P_b) at forward and backward rapidity and forward-to-backward ratio in p-Pb collisions, indicate that cold nuclear matter effects are small over the whole transverse momentum (p_T) region at forward rapidity (R_p_P_b compatible with unity within uncertainties). In the backward rapidity, the nuclear modification factor deviates from unity in the intermediate p_T region (2 < pT < 4 GeV/c). These results confirm that the strong suppression measured at high p_T in central Pb-Pb collisions is due to final-state effects induced by the hot and dense nuclear medium. The results of the nuclear modification factor and forward-to-backward ratio as a function of centrality in p-Pb collisions are discussed. Even in central collisions, the nuclear modification factor is compatible with unity at high p_T. (author)

  17. A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuppambatti, J. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Ban, J. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Andeen, T., E-mail: tandeen@utexas.edu [Columbia University, Nevis Laboratories, Irvington, NY (United States); Brown, R.; Carbone, R. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Kinget, P. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Brooijmans, G.; Sippach, W. [Columbia University, Nevis Laboratories, Irvington, NY (United States)

    2017-05-21

    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements.

  18. Light-neutral meson production in pp collisions at $\\sqrt{s}=13$ TeV at forward rapidity in ALICE at the CERN LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00509910; Uras, Antonio

    The ordinary matter surrounding us is made of hadrons which in turn are composed of quarks and gluons. These latter are elementary constituents which cannot be observed in a free state. However it is at present recognized that this matter confined within hadrons can undergo, under extreme conditions of high temperature and/or high net baryonic density, a transition to a state of deconfined quarks and gluons which is called quark gluon plasma. The conditions required to form this quark gluon plasma can be experimentally achieved using a machine capable of colliding nuclei at very high energies: this is particularly the case at CERN where is located the world's largest and most powerful particle accelerator, the Large Hadron Collider, which collided Pb ions at a center-of-mass energy of 2.76 to 5.02 TeV per nucleon pair and protons of 0.9 to 13 TeV. Pb-Pb collisions at such relativistic energies definitely allow for the suitable density conditions to form the quark gluon plasma phase. This thesis work cont...

  19. Prospects on electroweak physics from the LHC

    International Nuclear Information System (INIS)

    Vikas, Pratibha

    2001-01-01

    The abundant production of gauge bosons, gauge boson pairs and top quarks at the LHC will offer the opportunity for comprehensive and challenging tests of theoretical predictions in the electroweak sector. Some issues which influence these measurements followed by prospects on some possible measurements by the ATLAS and CMS experiments at the Large Hadron Collider (LHC), at CERN are discussed. (author)

  20. D* Mesons in Jets Analysis in proton-proton collisions at √s 10 TeV using the ALICE detector at CERN-LHC

    International Nuclear Information System (INIS)

    Grelli, A.; Mische, A.

    2009-01-01

    Charm and bottom quarks have been proposed as probes to study partonic matter produced in high-energy heavy-ion collisions. The detailed understanding of the production mechanisms in such collisions is of considerable interest. Measurements of the D * yield in jets probe the production processes in which the observed D * mesons are formed primarily from gluon splitting into c-c(bar) or b-b(bar) pairs. The charm content in jets is calculable in perturbative QCD, and the leading non-perturbative correction is expected to be significant at LHC energies. In this contribution we present latest results on performance studies of the reconstruction of charged D * mesons in jets in proton-proton collisions at √s = 10 TeV using the ALICE central detector. D *+ mesons are reconstructed through the decay sequence D *+ → D 0 + π + and D 0 → K - + π + (and its charge conjugate channel). The results are compared for different jet transverse momenta, and topological cut effects are discussed. (authors)

  1. Modelling and transmission-line calculations of the final superconducting dipole and quadrupole chains of CERN's LHC collider methods and results

    CERN Document Server

    Dahlerup-Petersen, K

    2001-01-01

    Summary form only given, as follows. A long chain of superconducting magnets represents a complex load impedance for the powering and turns into a complex generator during the energy extraction. Detailed information about the circuit is needed for the calculation of a number of parameters and features, which are of vital importance for the choice of powering and extraction equipment and for the prediction of the circuit performance under normal and fault conditions. Constitution of the complex magnet chain impedance is based on a synthesized, electrical model of the basic magnetic elements. This is derived from amplitude and phase measurements of coil and ground impedances from d.c. to 50 kHz and the identification of poles and zeros of the impedance and transfer functions. An electrically compatible RLC model of each magnet type was then synthesized by means of a combination of conventional algorithms. Such models have been elaborated for the final, 15-m long LHC dipole (both apertures in series) as well as ...

  2. LHC on the bus

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    On 15 December, an airport bus will be transformed in the image of CERN. The bus will be seen by the thousands of travellers arriving in Geneva, informing them of the possibility to visit CERN.   Sketch of the bus. The good relationship between Geneva International Airport and CERN started several years ago. In 2004 the airport put advertising space in the arrivals area at CERN's disposal free of charge. Now, starting on 15 December, a 40-foot long bus will display a giant sticker advertisement depicting CERN as it takes passengers over the airport tarmac to their planes. This is no ordinary sticker, and it was no mean task to attach it to the bus. The task of producing and attaching it was entrusted to Geneva-based specialists Mathys SA. With the ski season opening on 15 December, there will be many travellers arriving at the airport, and the bus will be ready to receive them. When one thinks of CERN, the subjects that naturally come to mind are the LHC, the mysteries of the Universe...

  3. Spanish Visit to CERN

    CERN Multimedia

    2002-01-01

    Last week CERN was visited by the Spanish Minister of Science and Technology, Josep Piqué i Camps. While here, he was able to visit the ATLAS assembly hall where many items of equipment are being built in collaboration with Spanish academic institutions or firms. These include the vacuum vessels for the ATLAS barrel toroid magnets supplied by the Spanish firm Felguera Construcciones Mechanics. Similarly, the Universidad Autónoma de Madrid is participating in the manufacture of the electromagnetic calorimeter endcaps, while the Barcelona Institute for High Energy Physics and the Valencia IFIC (Instituto de Física Corpuscular) are highly involved in the production of barrel modules for the tile calorimeter. The delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish ...

  4. Denis Guedj at CERN

    CERN Multimedia

    2009-01-01

    Denis Guedj (right), pictured with Etiennette Auffray Hillemanns of the CMS collaboration and Hartmut Hillemanns of the DG-KTT group.French author Denis Guedj, who is also a mathematician and Professor of History of Science at Paris VIII University, visited CERN on 7 and 8 October. During a presentation in the CERN Library he discussed his 15 published books and likened the process of novel writing to working on a scientific experiment: it begins with a limited amount of data, and then questions arise, problems are solved and further research reveals truths. Denis Guedj works hard to ensure that his novels contain ‘true fiction’. His most recent visit to CERN will help him to write a new book set at the LHC in which he will combine his scientific interest in what happens when a proton and proton collide with a human story about what happens to a male and female physicist who meet in the LHC tunnel. "Visiting the CMS cavern was...

  5. 8 June 2010 - South Dakota Governor M. Rounds signing the guest book with External Relations Office Adviser R. Voss, visiting the LHC superconducting Magnet test hall with Technology Department L. Bottura, in the CERN Control Centre with Beams Department Head P. Collier, ATLAS visitor Centre with Deputy Collaboration Spokesperson A. Lankford and visiting CMS Control Centre with Deputy Collaboration Spokesperson J. Incandela. LHC Communications and FNAL member K. Yurkewicz accompanies throughout (see complete delegation list below).

    CERN Multimedia

    Teams (M. Brice/J.C. Gadmer)

    2010-01-01

    CERN-HI-1006100 24: from left to right: Permanent Mission Representative A. Shybut; External Relations Office Adviser R. Voss; LHC Communications and FNAL K. Yurkewicz, Washington CSG Director for internationl programmes S. Sutcliffe-Stephenson; Technology Department Representative L. Bottura; South Dakota State Patrol D. Svendsen; CSG Executive Director and Former State Senator from Kansas D. Atkins;Office of the First Lady L. Svendsen; Office of the Governor K. Mueller; First Lady J. Rounds; South Dakota Governor M. Rounds; Washington State Senator T. Eide;Judge M. Eide; Assemblyman J. Oceguera and G. Oceguera (with son Jackson Oceguera, 5 months).

  6. CERN through the lens of Peter Ginter

    CERN Multimedia

    2008-01-01

    This summer, passers-by along the Quai Wilson on the banks of Lake Geneva will be able to enjoy an unusual exhibition of photographs devoted to CERN and the LHC. Fifty images from the work of Peter Ginter, organized into themes, give strollers on the Quai Wilson a glimpse of the unique human and scientific adventure at CERN. An exhibition panel, showing a scientist against the background of ALICE’s huge red electromagnet.CERN will reach an important milestone in 2008 with the start-up of the LHC, opening a new window on our Universe for physicists around the world. To celebrate this event with the people who live around Lake Geneva and visitors to the area, CERN and the city of Geneva are jointly putting on the photography exhibition "CERN through the lens of Peter Ginter", which opens on 29 May. A group of some fifty images taken by the German photo...

  7. Commissioning of the LHC

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The LHC construction is now approaching the end and it is now time to prepare for commissioning with beam. The behavior of a proton storage ring is much different to that of LEP, which profited from strong radiation damping to keep the beam stable. Our last experience with a hadron collider at CERN goes back more than 15 years when the proton-antiproton collider last operated. Ppbar taught us a lot about the machine physics of bunched beam proton storage rings and was essential input for the design of the LHC. After a short presentation of where we stand today with machine installation and hardware commissioning, I will discuss the main machine physics issues that will have to be dealt with in the LHC.

  8. Robert Aymar seals the last interconnect in the LHC

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The LHC completes the circle. On 7 November, in a brief ceremony in the LHC tunnel, CERN Director General Robert Aymar (Photo 1) sealed the last interconnect between the main magnets of the Large Hadron Collider (LHC). Jean-Philippe Tock, leader of the Interconnections team, tightens the last bolt (Photos 4-8).

  9. 27 August 2013 - Signature of an Agreement between KTO Karatay University in Turkey represented by the Dean of Engineering Professor Ali Okatan, CERN represented by Director for Research and Computing Dr Sergio Bertolucci and ALICE Collaboration represented by ALICE Collaboration Spokesperson Dr Paolo Giubellino.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    27 August 2013 - Signature of an Agreement between KTO Karatay University in Turkey represented by the Dean of Engineering Professor Ali Okatan, CERN represented by Director for Research and Computing Dr Sergio Bertolucci and ALICE Collaboration represented by ALICE Collaboration Spokesperson Dr Paolo Giubellino.

  10. 15 January 2010 - Vice-Chancellor & Chief Executive C. Snowden, University of Surrey, United Kingdom and Mrs Snowden visiting ALICE exhibition and experimental undeground area with Collabortion Spokesperson J. Schukraft and Beams Department Head P. Collier; Signature of the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    15 January 2010 - Vice-Chancellor & Chief Executive C. Snowden, University of Surrey, United Kingdom and Mrs Snowden visiting ALICE exhibition and experimental undeground area with Collabortion Spokesperson J. Schukraft and Beams Department Head P. Collier; Signature of the guest book with CERN Director-General R. Heuer.

  11. 17th September 2010 - Signature of a joint declaration by CERN represented by Director-General R. Heuer and the Brazilian Centre for Physics Research (CBPF) represented by R. Shellard, witnessed by the Ambassador to the United Nations Office M. N. Farani Azevêdo, signing the guest book.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    17th September 2010 - Signature of a joint declaration by CERN represented by Director-General R. Heuer and the Brazilian Centre for Physics Research (CBPF) represented by R. Shellard, witnessed by the Ambassador to the United Nations Office M. N. Farani Azevêdo, signing the guest book.

  12. Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

    CERN Document Server

    Claudia Marcelloni

    2008-01-01

    Signature of the Agreement between the University of Liverpool, acting on behalf of the Cockcroft Institute, represented by Inaugural Director of Cockcroft Institute S. Chattopadhyay and the European Organization for Nuclear Research represented by Director-General R. Aymar,concerning collaboration between the Cockcroft Institute and CERN in Accelerator Physics and Technologies.

  13. Signatures of the Invisible at the Centre d'Art Contemporain, Geneva, 7 February - 12 May 2002. The multimedia artist Sylvie Blocher chats with Jean-Pierre Merlo (left) and Philippe Charpentier, two of the physicists from CERN she interviewed for her video.

    CERN Document Server

    Patrice Loïez

    2002-01-01

    Signatures of the Invisible at the Centre d'Art Contemporain, Geneva, 7 February - 12 May 2002. The multimedia artist Sylvie Blocher chats with Jean-Pierre Merlo (left) and Philippe Charpentier, two of the physicists from CERN she interviewed for her video.

  14. Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

  15. 10 March 2008 - Swedish Minister for Higher Education and Research L. Leijonborg signing the guest book with CERN Chef Scientific Officer J. Engelen, followed by the signature of the Swedish Computing Memorandum of Understanding by the Director General of the Swedish Research Council P. Ömling.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    10 March 2008 - Swedish Minister for Higher Education and Research L. Leijonborg signing the guest book with CERN Chef Scientific Officer J. Engelen, followed by the signature of the Swedish Computing Memorandum of Understanding by the Director General of the Swedish Research Council P. Ömling.

  16. 28 March 2014 - Italian Minister of Education, University and Research S. Giannini welcomed by CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci in the ATLAS experimental cavern with Former Collaboration Spokesperson F. Gianotti. Signature of the guest book with Belgian State Secretary for the Scientific Policy P. Courard.

    CERN Multimedia

    Gadmer, Jean-Claude

    2014-01-01

    28 March 2014 - Italian Minister of Education, University and Research S. Giannini welcomed by CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci in the ATLAS experimental cavern with Former Collaboration Spokesperson F. Gianotti. Signature of the guest book with Belgian State Secretary for the Scientific Policy P. Courard.

  17. Studying gaugino mass unification at the LHC

    International Nuclear Information System (INIS)

    Altunkaynak, Baris; Holmes, Michael; Nelson, Brent D.; Grajek, Phillip; Kane, Gordon

    2009-01-01

    We begin a systematic study of how gaugino mass unification can be probed at the CERN Large Hadron Collider (LHC) in a quasi-model independent manner. As a first step in that direction we focus our attention on the theoretically well-motivated mirage pattern of gaugino masses, a one-parameter family of models of which universal (high scale) gaugino masses are a limiting case. We improve on previous methods to define an analytic expression for the metric on signature space and use it to study one-parameter deviations from universality in the gaugino sector, randomizing over other soft supersymmetry-breaking parameters. We put forward three ensembles of observables targeted at the physics of the gaugino sector, allowing for a determination of this non-universality parameter without reconstructing individual mass eigenvalues or the soft supersymmetry-breaking gaugino masses themselves. In this controlled environment we find that approximately 80% of the supersymmetric parameter space would give rise to a model for which our method will detect non-universality in the gaugino mass sector at the 10% level with O(10 fb -1 ) of integrated luminosity. We discuss strategies for improving the method and for adding more realism in dealing with the actual experimental circumstances of the LHC.

  18. LHC INAUGURATION, LHC Fest highlights: exhibition time!

    CERN Multimedia

    2008-01-01

    David Gross, one of the twenty-one Nobel Laureates who have participated in the project.Tuesday 21 October 2008 Accelerating Nobels Colliding Charm, Atomic Cuisine, The Good Anomaly, A Quark Somewhere on the White Paper, Wire Proliferation, A Tale of Two Liquids … these are just some of the titles given to artworks by Physics Nobel Laureates who agreed to make drawings of their prize-winning discoveries (more or less reluctantly) during a special photo session. Science photographer Volker Steger made portraits of Physics Nobel Laureates and before the photo sessions he asked them to make a drawing of their most important discovery. The result is "Accelerating Nobels", an exhibition that combines unusual portraits of and original drawings by twenty-one Nobel laureates in physics whose work is closely related to CERN and the LHC. This exhibition will be one of the highlights of the LHC celebrations on 21 October in the SM18 hall b...

  19. Construction and quality assurance of large area resistive strip Micromegas for the upgrade of the ATLAS Muon Spectrometer at LHC/CERN

    Science.gov (United States)

    Lösel, P.

    2017-06-01

    Large area Micromegas detectors will be employed for the first time in high-energy physics experiments. To cope with increasing background rates, associated with the steadily increasing luminosity of LHC to 10 times design luminosity, the present detector technology in the current innermost stations of the muon endcap system of the ATLAS experiment (the Small Wheel), will be replaced in 2019/2020 by resistive strip Micromegas and small strip TGC detectors. Both technologies will provide tracking and trigger information. In the "New Small Wheel" the Micromegas will be arranged in eight detection layers built of trapezoidally shaped quadruplets of four different sizes covering in total about 1200 m2 of detection plane. In order to achieve 15 % transverse momentum resolution for 1 TeV muons, a challenging mechanical precision is required in the construction of each active plane, with an alignment of the readout strips at the level of 30 μm RMS along the precision coordinate and 80 μm RMS perpendicular to the plane. Each individual Micromegas plane must achieve a spatial resolution better than 100 μm at background rates up to 15 kHz/cm2 while being operated in an inhomogeneous magnetic field (B <= 0.3 T). The required mechanical precision for the production of the components and their assembly, on such large area detectors, is a key point and must be controlled during construction and integration. Particularly the alignment of the readout strips within a quadruplet appears to be demanding. The readout strips are etched on PCB boards using photolithographic processes. Depending on the type of the module, 3 or 5 PCB boards need to be joined and precisely aligned to form a full readout plane. The precision in the alignment is reached either by use of precision mechanical holes or by optical masks, both referenced to the strip patterns. Assembly procedures have been developed to build the single panels with the required mechanical precision and to assemble them in a

  20. Switzerland advances payments to CERN

    CERN Multimedia

    2002-01-01

    In the picture, Charles Kleiber (third from left) visits the TI8 tunnel with (left to right) Jean-Luc Baldy, Head of the LHC civil engineering group, Luciano Maiani, CERN Director-General, Jean-Pierre Ruder, Swiss Delegate to CERN Council, Guy Hentsch, Personal adviser to the Director-General, Michel Buchs and Frédéric Chavan, representatives of the firm Prader Losinger. The State Secretary for Science and Research in Switzerland, Charles Kleiber, signed an agreement with CERN last week for an advancement of contributions from his country. The Confédération Helvétique will make an advanced payment of 90 million CHF. There will be no interest involved in this payment and the amount of money will be deducted from Switzerland's ordinary contributions to CERN in later years.

  1. CERN communication in the spotlight

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A rich harvest of important prizes has recently been awarded to CERN communication efforts. The list includes: the European Excellence Award 2010, the physics.org “people’s choice” award for the best children's website, and two prizes in the UK Recruitment Advertising Awards for 2011. Given the high expectations surrounding CERN's future physics results, there is little doubt that the old refrain “the best is yet to come” also applies to communication at CERN.   Marie Anne Bugnon and Antonella del Rosso, from the Communication Group, accept the 2010 European Excellence Award for LHC First Physics. In recent years, efforts to communicate as much and as well as possible have been stepped up at CERN – across all communities – and the fruits have come little by little. First of all, awards represent the recognition of the public, which, on different levels, has shown that it appreciates CERN’s efforts to...

  2. TEDx Organisers meet at CERN

    CERN Multimedia

    Abha Eli Phoboo

    2013-01-01

    CERN hosted the second TEDx European Organisers meeting last week with around 80 organisers attending from all over Europe. They were given an introduction to CERN and a tour of the LHC experiments.   The participants of the TEDx European Organisers meeting held at CERN last week. Among the attendees was Bruno Giussani, European director of TED, who delivered the welcome address. The TEDx European organisers shared their experiences in workshops and brainstormed about how to work on different aspects of organising a TEDx event, and about improving the relationship between TEDx and TED. “The goal of this meeting was for veteran TEDx organisers to help younger ones, help each other, bring the community together and have better quality events,” said Claudia Marcelloni, head of TEDxCERN. TEDx is an independently organised TED (Technology, Entertainment, Design) talk event, which has grown exponentially all over the world. There are hundreds of TEDx events every day and it n...

  3. What's new@CERN, episode 2

    CERN Multimedia

    CERN Video productions

    2011-01-01

    On Monday 7 November at 4pm in English and 4.20pm in French, watch "What's new@CERN" on webcast.cern.ch. In this second episode: LHC performance, a journey to the particle source and this past month's news.   var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-0753-kbps-640x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-Multirate-200-to-753-kbps-640x360-25-fps.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-posterframe-640x360-at-30-percent.jpg', '1394250', true, 'Video/Public/Movies/2011/CERN-MOVIE-2011-164/CERN-MOVIE-2011-164-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4');

  4. Snapshots of CERN

    CERN Multimedia

    Rebecca Leam

    Art was the language of communication between science and the thousands of visitors attending CERN’s two photographic exhibitions in Italy and Spain in October. The artistic images of CERN’s Nobel Prize winners, Large Hadron Collider (LHC) machinery and detectors raised people's curiosity and helped to promote the understanding of particle physics.   The exhibition “Accelerating Nobels” at Genoa’s 7th Science Festival. The exhibition “Accelerating Nobels” attracted over 600’000 visitors during Genoa’s 7th annual Science Festival. It showed science photographer Volker Steger’s 21 portraits of physics Nobels holding their own impromptu drawings of their best discovery. “The theme of the festival was ‘The Future’. The exhibition illustrated the long history of particle physics discoveries at CERN which all lead to what the LHC is going to find, including probably more ...

  5. CERN students display their work

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The first poster session by students working on the LHC experiments, organised by the LPCC, was a great success. Showcasing the talents of over a hundred young physicists from all over the world, it was an opportunity for everyone at CERN to check out the wide range of research work being done by the new generation of physicists at CERN.   At 5.30 p.m. on Wednesday 23 March, the first poster session by CERN students took place in Restaurant No.1, where no fewer than 87 posters went on public display. The students were split into 8 groups according to their research field* and all were on hand to answer the questions of an inquisitive audience. TH Department's Michelangelo Mangano, who is head of the LHC Physics Centre at CERN (LPCC) and is responsible for the initiative, confirms that nothing was left to chance, even the choice of date: "We wanted to make the most of the general enthusiasm around the winter conferences and the meeting of the LHC Experiments Committee to present the stud...

  6. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  7. LHC Interaction Region Upgrade Phase I

    CERN Document Server

    Ostojic, R

    2009-01-01

    The LHC is starting operation with beam in 2008. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently, maximizing its physics reach, and to achieve the nominal performance in the shortest term. Since several years the community has been discussing the directions for upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex. A well substantiated and coherent scenario for the first phase of the upgrade, which is foreseen in 2013, is now approved by CERN Council. In this paper, we present the goals and the proposed conceptual solution for the Phase-I upgrade of the LHC interaction regions. This phase relies on the mature Nb-Ti superconducting magnet technology, with the target of increasing the luminosity by a factor of 2-3 with respect to the nominal luminosity of 1034 cm-2s-1, while maximising the use of the existing infrastructure.

  8. Academic Training: Technological challenges for LHC experiments, the CMS example

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 28 February, 1, 2, 3 & 4 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Technological challenges for LHC experiments, the CMS example by P. SPHICAS/CERN-PH, G. DISSERTORI/ETH, Zürich, Ch. M. MANNELLI/CERN-PH, G. HALL/Imperial College, London. GB, P. FABBRICATORE/INFN, Genova, I Monday 28 February Design principles and performances of CMS P. Sphicas/CERN-PH Tuesday 1st March Crystal calorimetry in LHC environment G. Dissertori/ETH Zürich, CH Wednesday 2 March Silicon tracking in LHC environment M. Mannelli/CERN-PH Thursday 3 March Radhard fast electronics for LHC experiments G. Hall/Imperial College London, GB Friday 4 March Design principles of thin high field superconducting solenoids P. Fabbricatore/INFN Genova, I ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  9. CERN Choir

    CERN Multimedia

    Staff Association

    2015-01-01

      Do you like singing? The CERN Choir is looking for basses and tenors Join us! Programme Spring Session 2015: Donizetti: Misere & Missa di Gloria e Credo Bellini: Salve Regina Bruckner: Requiem in D minor Next concert: Sunday 31 May 2015 at 17:00 Musicales de Comesières (GE) Rehearsals at CERN Main Auditorium, building 500 On Wednesdays from 20.00 to 22:00 Membership fee: January to June 150 CHF September to December: 100CHF Contact: Baudouin.bleus@cern.ch Facebook/Choeur-du-CERN

  10. President of Chile at CERN

    CERN Multimedia

    2007-01-01

    The President of Chile, Michelle Bachelet, in the ATLAS cavern with, from left to right, Peter Jenni, ATLAS Spokesman, Vivian Heyl, CONICYT President, and Robert Aymar, CERN Director-General. Robert Aymar, CERN Director-General, and Vivian Heyl, CONICYT President, signing a cooperation agreement between CERN and Chile’s Comisión Nacional de Investigación Científica y Tecnológica (CONICYT).The President of Chile, Michelle Bachelet, paid a visit to CERN during her three-day tour of Switzerland. The charismatic Michelle Bachelet and her large delegation were greeted by the CERN Director-General and then taken to see the ATLAS experiment and the LHC. She also took time to meet the Chilean community working at CERN, comprising several physicists in the Theory Group and the ATLAS experiment. The meeting was followed by the signing of a cooperation agreement between CERN and Chile’s Comisión Nacional de Investigación Científi...

  11. Experiments at CERN in 1997

    International Nuclear Information System (INIS)

    1997-11-01

    This book summarises the current experimental programme at CERN. The experiments listed are taking place at one of the following machines: the Large Electron Positron Collider (LEP), the Super Proton Synchroton (SPS), the 28 GeV Proton Synchrotron (PS), including the Antiproton Decelerator (AD) for slow antiprotons and the ISOLDE facility for short-lived ions. The three experiments now approved for installation at the Large Hadron Collider (LHC) and the R and D projects aimed at the development of new detector technologies and data acquisition systems for the LHC experiments are also listed. (orig./WL)

  12. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  13. Looking back over the LHC Project

    CERN Multimedia

    2007-01-01

    Have you always wanted to delve into the history of the phenomenal LHC Project? Well, now you can. A chronological history of the LHC Project is now available on the web. It traces the Project's key milestones, from its first approval in 1994 to the most recent spectacular transport operations for detector components. The photographs used to illustrate these events are linked to the CDS database, allowing visitors who wish to do so the opportunity to download them or to search for photographs associated with subjects that are of interest to them. To explore the history of the LHC Project, go to the CERN Public Welcome page and click on 'LHC Milestones' or simply go directly to the following link: http://cern.ch/LHC-Milestones/

  14. JACoW Online analysis for anticipated failure diagnostics of the CERN cryogenic systems

    CERN Document Server

    Gayet, Philippe; Bradu, Benjamin; Cirillo, Roberta

    2018-01-01

    The cryogenic system is one of the most critical component of the CERN Large Hadron Collider (LHC) and its associated experiments ATLAS and CMS. In the past years, the cryogenic team has improved the maintenance plan and the operation procedures and achieved a very high reliability. However, as the recovery time after failure remains the major issue for the cryogenic availability new developments must take place. A new online diagnostic tool is developed to identify and anticipate failures of cryogenics field equipment, based on the acquired knowledge on dynamic simulation for the cryogenic equipment and on previous data analytic studies. After having identified the most critical components, we will develop their associated models together with the signature of their failure modes. The proposed tools will detect deviation between the actual systems and their model or identify preliminary failure signatures. This information will allow the operation team to take early mitigating actions before the failure occu...

  15. LHC Olympics flex physicists' brains

    CERN Multimedia

    2006-01-01

    Physicists from around the world met at CERN to strengthen their data-deciphering skills at the second LHC Olympics workshop. Physicists gather for the second LHC Olympics workshop. Coinciding with the kick-off of the winter Olympics in Turin, more than 70 physicists gathered at CERN from across the globe for the second LHC Olympics workshop on 9-10 February. Their challenge, however, involved brains rather than brawn. As the switch-on date for the LHC draws near, scientists excited by the project want to test and improve their ability to decipher the unprecedented amount of data that the world's biggest and most powerful particle accelerator is expected to generate. The LHC Olympics is a coordinated effort to do just that, minus the gold, silver and bronze of the athletics competition. 'In some ways, the LHC is not a precision instrument. It gives you the information that something is there but it's hard to untangle and interpret what it is,' said University of Michigan physicist Gordy Kane, who organiz...

  16. An ATLAS Virtual Visit connects physicists at the Town Square of Cracow and physicists of the LHC Experiment in the ATLAS control room; special participation of CERN's General Director, Rolf Heuer and the Director for Research and Scientific Computing, Sergio Bertolucci.

    CERN Multimedia

    2012-01-01

    he 12 Festival of Science "Theory-knowledge-experience...". Fest will be located on the traditional Main Square, which is visited by thousands of citizens and tourists. The Institute of Nuclear Physics as usual participates in this annual event. Our visitors will learn the secrets of the CERN experiments on the Large Hadron Collider - ATLAS, LHCb, ALICE, CMS, find out more about the Higgs particles, antimatter quark-gluon plasma (beeing guided by our scientists and PhD students). One of the attractions will be ATLAS Control Room Virtual Visit. Visiting people will have an opportunity to see how ATLAS is controlled and operated to collect its exciting data and ask questions to scientists and engineers involved in LHC program at CERN. Institute of Nuclear Physics has prepared also several interactive demonstrations of Atomic Force Microscopy, Magnetic Resonance, Hadron Therapy and Crystal Physics.

  17. Courrier CERN

    CERN Multimedia

    2015-01-01

    Example of the cover page of the French version of the CERN Courier; Courrier CERN from January 1962. The journal was published both in English and French up to volume 45, no. 5, June 2005. Since then there is a single-language edition where articles are published either in French or English with an abstract in the other language.

  18. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  19. CERN told to start technical thinking for next collider

    CERN Multimedia

    1998-01-01

    CERN has been told to begin technical design work for the successor to the LHC. A report commissioned last year, suggests that future design work should focus on developping cost-effective high-field magnets (1 page).

  20. CERN honours Carlo Rubbia

    CERN Multimedia

    2009-01-01

    On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency and Professor at the IUSS School for Advanced Studies in Pavia will speak about his work with Carlo Rubbia. Finally, Hans Joachim Sch...