WorldWideScience

Sample records for cern large hadron

  1. Large hadron collider project in CERN

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) is the latest scientific project in the world of particle physics launched by European Organization for Nuclear Research (CERN) nearby Geneva. The construction of the main components of this complex synchrotron ring where two proton beams will be accelerated up to energies of 7.7 TeV and then brought into collision, is well underway and the first installation of these components is expected to take place by the end of 2000. As a successor of the existing LEP machine and taking over a significant part of its infrastructure, when completed and commissioned in 2005, the LHG complex represent the most sophisticated and the largest project ever undertaken in the world of science. This machine has an ambitious task to offer the most contemporary and highest quality programmes in particle physics for scientists from all over the world. Its design and construction make use of the latest achievements in modern technologies, material sciences, engineering, computers, electronics and employing world wide experts and specialists of various profiles. At the same time, the LHC project ought to enable CERN and European scientists to maintain the world leading role in the field of particle physics in the next century. (author)

  2. The ATLAS experiment at the CERN large hadron collider

    OpenAIRE

    Çetin, Serkant Ali; ATLAS Collaboration

    2008-01-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  3. A Large Hadron Electron Collider at CERN

    CERN Document Server

    Abelleira Fernandez, J L; Adzic, P; Akay, A N; Aksakal, H; Albacete, J L; Allanach, B; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Bracinik, J; Brandt, G; Braun, H; Brodsky, S; Bruning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Caldwell, A; Cetinkaya, V; Chekelian, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; Roeck, A.De; d'Enterria, D; DiNezza, P; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Glazov, A; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jensen, E; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klees, R; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kraemer, M; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Milhano, J G; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinolfi, L; Rizvi, E; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schaefer, M; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; South, D; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Kate, H.Ten; Terron, J; Thiesen, H; Thompson, L; Thompson, P; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Ullrich, T; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F; CERN. Geneva. LHeC Department

    2012-01-01

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  4. CERN completes magnet set for Large Hadron Collider

    CERN Multimedia

    2006-01-01

    "CERN, the European Oganization for Nuclear Research, took delivery of the last superconducting main magnet for the Large Hadron Collider (LHC) on Monday, completint the full set of 1624 main magnets required to build the world's largest and most powerful particle accelerator."

  5. CERN to start Large Hadron Collider november 2007

    CERN Multimedia

    2006-01-01

    "The Large Hadron Collider (LHC) is expected to provide its first collisions in November 2007, CERN has announced. A two-month run at 0.9 TeV is planned for 2007 to test the accelerating and detecting equipment, and a full power run at 14 TeV is expected in the spring of 2008."

  6. CERN Library | Mario Campanelli presents "Inside CERN's Large Hadron Collider" | 16 March

    CERN Multimedia

    CERN Library

    2016-01-01

    "Inside CERN's Large Hadron Collider" by Mario Campanelli. Presentation on Wednesday, 16 March at 4 p.m. in the Library (bldg 52-1-052) The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson.  Inside CERN's Large Hadron Collider  Mario Campanelli World Scientific Publishing, 2015  ISBN 9789814656641​

  7. Hangout With CERN: The Large Hadron Collider (S01E02)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this second Hangout with CERN "The Large Hadron Collider" ATLAS physicist Steven Goldfarb is joined by Giulia Papotti and Laurette Ponce from the CERN Control Centre, Despina Hatzifotiadou and Ken Read from the ALICE experiment, Achintya Rao and Roberto Rossin from the CMS experiment and Patrick Koppenburg from the LHCb experiment, as well as Jaana Nystrom from Finland and Liz Krane from the USA. This hangout answers questions about the Large Hadron Collider (LHC) received via #askCERN on Twitter and Google+ and via YouTube and Facebook comments. Recorded live on 8th November 2012.

  8. The LHCf detector at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O; Bonechi, L; D' Alessandro, R [Universita degli Studi di Firenze and INFN Sezione di Firenze, Firenze (Italy); Bongi, M; Grandi, M; Papini, P [INFN Sezione di Firenze, Firenze (Italy); Castellini, G [IFAC CNR and INFN Sezione di Firenze, Firenze (Italy); Faus, D A [IFIC, Centro Mixto CSIC-UVEG, Valencia (Spain); Fukui, K; Itow, Y; Mase, T; Masuda, K; Matsubara, Y; Menjo, H [Solar-Terrestrial Environment laboratory, Nagoya University, Nagoya (Japan); Haguenauer, M [Ecole-Polytechnique, Paris (France); Kasahara, K; Mizuishi, M [Research Institute for Science and Engineering, Waseda University, Tokyo (Japan); Macina, D; Perrot, A L [CERN, Geneva (Switzerland); Muraki, Y [Konan University, Kobe (Japan)], E-mail: Daniela.Macina@cern.ch (and others)

    2008-08-15

    LHCf is an experiment dedicated to the measurement of neutral particles emitted in the very forward region of LHC collisions. The physics goal is to provide data for calibrating the hadron interaction models that are used in the study of Extremely High-Energy Cosmic-Rays. This is possible since the laboratory equivalent collision energy of LHC is 10{sup 17} eV. Two LHCf detectors, consisting of imaging calorimeters made of tungsten plates, plastic scintillator and position sensitive sensors, are installed at zero degree collision angle {+-}140 m from an interaction point (IP). Although the lateral dimensions of these calorimeters are very compact, ranging from 20 mm x 20 mm to 40 mm x 40 mm, the energy resolution is expected to be better than 6% and the position resolution better than 0.2 mm for {gamma}-rays with energy from 100 GeV to 7 TeV. This has been confirmed by test beam results at the CERN SPS. These calorimeters can measure particles emitted in the pseudo rapidity range {eta} > 8.4. Detectors, data acquisition and electronics are optimized to operate during the early phase of the LHC commissioning with luminosity below 10{sup 30} cm{sup -2} s{sup -1}. LHCf is expected to obtain data to compare with the major hadron interaction models within a week or so of operation at luminosity {approx} 10{sup 29} cm{sup -2} s{sup -1}. After {approx} 10 days of operation at luminosity {approx} 10{sup 29} cm{sup -2} s{sup -1}, the light output of the plastic scintillators is expected to degrade by {approx} 10% due to radiation damage. This degradation will be monitored and corrected for using calibration pulses from a laser.

  9. A Large Hadron Electron Collider at CERN, Physics, Machine, Detector

    CERN Document Server

    Adolphson, C

    2011-01-01

    The physics programme and the design are described of a new electron-hadron collider, the LHeC, in which electrons of $60$ to possibly $140$\\,GeV collide with LHC protons of $7000$\\,GeV. With an $ep$ design luminosity of about $10^{33}$\\,cm$^{-2}$s$^{-1}$, the Large Hadron Electron Collider exceeds the integrated luminosity collected at HERA by two orders of magnitude and the kinematic range by a factor of twenty in the four-momentum squared, $Q^2$, and in the inverse Bjorken $x$. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering (DIS) measurements. These are projected to solve a variety of fundamental questions in strong and electroweak interactions. The LHeC thus becomes the world's cleanest high resolution microscope, designed to continue the path of deep inelastic lepton-hadron scattering into unknown areas of physics and kinematics. The physics ...

  10. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  11. W production at large transverse momentum at the CERN Large Hadron Collider.

    Science.gov (United States)

    Gonsalves, Richard J; Kidonakis, Nikolaos; Sabio Vera, Agustín

    2005-11-25

    We study the production of W bosons at large transverse momentum in pp collisions at the CERN Large Hadron Collider. We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable result.

  12. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    Science.gov (United States)

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  13. The future of the Large Hadron Collider and CERN.

    Science.gov (United States)

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  14. CERN celebrating the Lowering of the final detector element for large Hadron Collider

    CERN Multimedia

    2008-01-01

    In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.

  15. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    Science.gov (United States)

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  16. The Atlas detector: a general purpose experiment at the large hadron collider at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Schwindling, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee

    1996-07-01

    The ATLAS collaboration has designed a general purpose detector to be operated at the Large Hadron Collider (LHC) at CERN. The design of the detector took into account the requirements from the physics and the constraints form the collider, but also the cost and technological aspects. It is supported by a large amount of detailed simulations and test activities. The following sections describe the various sub-detectors, starting from the inner tracker detectors which surround the interaction point, going through the electromagnetic (EM) and hadronic (HAD) calorimeters, and ending up with the external muon spectrometer and a few characteristics of the trigger system. (author)

  17. Design and Installation Challenges of the Neutral Beam Absorbers for the Large Hadron Collider at CERN

    OpenAIRE

    Fernández Vélez, Óscar

    2005-01-01

    El CERN (Consejo Europeo de Investigación Nuclear) está construyendo su nuevo acelerador de partículas en la frontera franco-suiza. Actualmente en la fase de instalación, El Large Hadron Collider (LHC), con 26,7 kilómetros de longitud a 100 metros bajo tierra, será el mayor y más potente acelerador de partículas jamás construido. A su llegada al CERN, cada uno de casi 2000 imanes superconductores que formarán parte del acelerador debe ser verificado, ensamblado y transportado hasta ...

  18. Pair production of neutral Higgs bosons at the CERN Large Hadron Collider

    CERN Document Server

    Barrientos-Bendezu, A A

    2001-01-01

    We study the hadroproduction of two neutral Higgs bosons in the minimal supersymmetric extension of the standard model, which provides a handle on the trilinear Higgs couplings. We include the contributions from quark-antiquark annihilation at the tree level and those from gluon-gluon fusion, which proceeds via quark and squark loops. We list compact results for the tree-level partonic cross sections and the squark loop amplitudes, and we confirm previous results for the quark loop amplitudes. We quantitatively analyze the hadronic cross sections at the CERN Large Hadron Collider assuming a favorable supergravity-inspired scenario.

  19. Associated production of Z and neutral Higgs bosons at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Palisoc, Caesar P. [Univ. of the Philippines, Diliman, Quezon City (Philippines). National Inst. of Physics

    2011-12-15

    We study the hadroproduction of a CP-even or CP-odd neutral Higgs boson in association with a Z boson in the minimal supersymmetric extension of the standard model (MSSM) We include the contributions from quark-antiquark annihilation at the tree level and those from gluon-gluon fusion, which proceeds via quark and squark loops, and list compact analytic results. We quantitatively analyze the hadronic cross sections at the CERN Large Hadron Collider assuming a favorable supergravity-inspired MSSM scenario. (orig.)

  20. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    Science.gov (United States)

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-01

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  1. University of Tennessee deploys force10 C-series to analyze data from CERN's Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1 page)

  2. Role-Based Access Control for the Large Hadron Collider at CERN

    CERN Document Server

    Yastrebov, I

    2010-01-01

    Large Hadron Collider (LHC) is the largest scientific instrument ever created. It was built with the intention of testing the most extreme conditions of the matter. Taking into account the significant dangers of LHC operations, European Organization for Nuclear Research (CERN) has developed multi-pronged approach for machine safety, including access control system. This system is based on role-based access control (RBAC) concept. It was designed to protect from accidental and unauthorized access to the LHC and injector equipment. This paper introduces the new model of the role-based access control developed at CERN and gives detailed mathematical description of it. We propose a new technique called dynamic authorization that allows deploying RBAC gradually in the large systems. Moreover, we show how the protection for the very large distributed equipment control system may be implemented in efficient way. This paper also describes motivation of the project, requirements and overview of the main components: au...

  3. Inside CERN's Large Hadron Collider from the proton to the Higgs boson

    CERN Document Server

    Campanelli, Mario

    2016-01-01

    The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

  4. Complementarity of the CERN Large Hadron Collider and the $e^+e^-$ International Linear Collider

    CERN Document Server

    Choi, S Y

    2008-01-01

    The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective $e^+e^-$ International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.

  5. Lower limit on dark matter production at the CERN Large Hadron Collider.

    Science.gov (United States)

    Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro

    2006-04-21

    We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.

  6. Beyond the Large Hadron Collider: a first look at cryogenics for CERN future circular colliders

    CERN Document Server

    Lebrun, Ph

    2015-01-01

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities req...

  7. The Large Hadron Collider (LHC). The worlds largest vacuum system is working at CERN; El Large Hadron Collider (LHC). El sistema de vacio mas grande del mundo esta operando en el CERN

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez y Carvajal, J. M.

    2010-07-01

    When the September 10, 2008, was put into service at CERN, the Large Hadron Collider, the LHC (Large Hadron Collider) particle accelerator Giant left the imagination of particle physicists High Energy, began the most ambitious experiment in the field of Particle Physics High Energy. It expected to lead to the discovery of the predicted Higgs boson or could reveal new physics beyond the Standard Model. (author)

  8. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    Science.gov (United States)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  9. Black holes in many dimensions at the CERN large Hadron collider testing critical string theory

    CERN Document Server

    Hewett, J L; Rizzo, T G; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.

    2005-01-01

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With ~20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, n. In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if n is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  10. Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.

    Science.gov (United States)

    Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G

    2005-12-31

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  11. Landscape of supersymmetric particle mass hierarchies and their signature space at the CERN Large Hadron Collider.

    Science.gov (United States)

    Feldman, Daniel; Liu, Zuowei; Nath, Pran

    2007-12-21

    The minimal supersymmetric standard model with soft breaking has a large landscape of supersymmetric particle mass hierarchies. This number is reduced significantly in well-motivated scenarios such as minimal supergravity and alternatives. We carry out an analysis of the landscape for the first four lightest particles and identify at least 16 mass patterns, and provide benchmarks for each. We study the signature space for the patterns at the CERN Large Hadron Collider by analyzing the lepton+ (jet> or =2) + missing P{T} signals with 0, 1, 2, and 3 leptons. Correlations in missing P{T} are also analyzed. It is found that even with 10 fb{-1} of data a significant discrimination among patterns emerges.

  12. Lightening-like interactions in nuclear collisions at CERN large hadron collider

    CERN Document Server

    Abdel-Waged, Khaled

    2015-01-01

    A simple basic model for describing proton-nucleus (pA) and nucleus-nucleus (AA) collisions has been the intra-nuclear cascade model, where the interactions are simulated by a sequence of binary nucleon-nucleon (NN) collisions. This model helped to establish many scientific concepts and also creates the foundation for more modern simulation codes, especially at low and intermediate energies. In this paper, we present a new Monte Carlo model for pA and AA collisions at high CERN Large Hadron collider energies. The model implements HIJING code with a collective cascade recipe, that induces striking light-like effect in a large nucleus. A single collision (lightening) event is shown to be a complex process:A primary interacting nucleon passes its energy to the surrounding nucleons in a large nucleus. This new simulation code is shown to be good to reproduce the Large Hadron collider (LHC) data, especially the charged particle pseudorapidity density in p+Pb and Pb+Pb collisions at LHC energies.

  13. Parton distribution functions probed in ultraperipheral collisions at the CERN Large Hadron Collider

    CERN Document Server

    Thomas, J; Brady, N; Clark, D B; Godat, E; Olness, F

    2016-01-01

    Vector meson production in ultra-peripheral pA and AA collisions at the CERN Large Hadron Collider (LHC) are very sensitive to Parton Distribution Functions (PDF) as well as to their leading-order, next-to-leading-order, and medium corrections. This process is a complimentary tool to explore the effects of different PDFs in particle production in proton-nucleus and nucleus-nucleus central collisions. Existing and forthcoming data available, e.g., from ALICE and CMS, may be used in conjunction with our theoretical predictions to constrain the PDFs. We make predictions for rapidity distributions and for cross sections of J/$\\psi$ , $\\psi(2S)$ and $\\Upsilon$ production at $\\sqrt{s_{NN}}=2.76$ TeV and $\\sqrt{s_{NN}}=5$ TeV. We use the second energy as representative for the Run 2 of PbPb collisions at the LHC.

  14. The Radiological Situation in the Beam-Cleaning Sections of the CERN Large Hadron Collider (LHC)

    CERN Document Server

    Brugger, Markus; Stevenson, Graham

    2003-01-01

    This thesis contributes to radiological assessments of the design and operation of the Large Hadron Collider currently under construction at CERN. In particular, the scope of this thesis is to examine the beam cleaning insertions - two of the main loss regions of the LHC where beam particles which would otherwise cause unwanted losses at different places of the machine are purposely intercepted. Two critical issues with regard to the protection of personnel and environment are studied: remanent dose rates due to induced radioactivity and airborne radioactivity. Although a detailed estimate of remanent dose rates is important for an optimization of later maintenance interventions only very limited information on remanent dose rates to be expected around the collimators was available so far. This thesis is an attempt to extend the knowledge considerably, especially by applying a new calculational method. Since this new approach is used for the first time in the design of the LHC a careful benchmarking with expe...

  15. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    Science.gov (United States)

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  16. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

    2014-01-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  17. Cryogenic Studies for the Proposed CERN Large Hadron Electron Collider (LHeC)

    CERN Document Server

    Haug, F

    2011-01-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energy-recovery type machine with two 1 km long straight acceleration sections. The 944 hi...

  18. Fault Tracking of the Superconducting Magnet System at the CERN Large Hadron Collider

    CERN Document Server

    Griesemer, Tobias

    2016-03-25

    The Large Hadron Collider (LHC) at CERN is one of the most complex machines ever built. It is used to explore the mysteries of the universe by reproducing conditions of the big bang. High energy particles are collide in particle detectors and as a result of the collision process secondary particles are created. New particles could be discovered during this process. The operation of such a machine is not straightforward and is subject to many different types of failures. A model of LHC operation needs to be defined in order to understand the impact of the various failures on availability. As an example a typical operational cycle is described: the beams are first injected, then accelerated, and finally brought into collisions. Under nominal conditions, beams should be in collision (so-called ‘stable beams’ period) for about 10 hours and then extracted onto a beam dump block. In case of a failure, the Machine Protection Systems ensure safe extraction of the beams. From the experience in LHC Run 1 (2009 - 20...

  19. The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider

    CERN Document Server

    Battistin, M; Bitadze, A; Bonneau, P; Botelho-Direito, J; Boyd, G; Corbaz, F; Crespo-Lopez, O; Da Riva, E; Degeorge, C; Deterre, C; DiGirolamo, B; Doubek, M; Favre, G; Godlewski, J; Hallewell, G; Katunin, S; Lefils, D; Lombard, D; McMahon, S; Nagai, K; Robinson, D; Rossi, C; Rozanov, A; Vacek, V; Zwalinski, L

    2015-01-01

    The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed th...

  20. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    Science.gov (United States)

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  1. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  2. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  3. CERN Library | Pauline Gagnon presents the book "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN" | 15 September

    CERN Multimedia

    CERN Library

    2016-01-01

    "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN ", by Pauline Gagnon. Thursday 15 September 2016, 16:00 - 17:30 in the CERN Library (Bldg 52 1-052) *Coffee will be served at 15:30* CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers...

  4. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82+208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  5. Development of a beam condition monitor for use in experiments at the CERN Large Hadron Collider using synthetic diamond

    CERN Document Server

    Fernández-Hernando, L; Ilgner, C; MacPherson, A; Oh, A; Pernegger, H; Pritchard, T; Stone, R; Worm, S

    2004-01-01

    The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams, each with a store energy about 350MJ; enough to melt 550kg of copper. If there is failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor last increments of particle flux near the interaction point and if necessary, to generate an abort signal to the LHC accelerator control, to dump the beams. Due to its radiation hardness and minimal services requirements, synthetic CVD diamond is being considered as BCM sensor option. (12 refs).

  6. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the Large Hadron Collider at CERN

    CERN Document Server

    Della Corte, A; Hagedorn, Dietrich; Turtu, S; Basile, G L; Catitti, A; Chiarelli, S; Di Ferdinando, E; Taddia, G; Talli, M; Verdini, L; Viola, R

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported. (3 refs).

  7. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Science.gov (United States)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  8. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  9. Development of large-capacity refrigeration at 1.8 K for the Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P; Claudet, G

    1996-01-01

    CERN, the European Laboratory for Particle Physics, is working towards the construction of the Large Hadron Collider (LHC), a high-energy, high-luminosity particle accelerator and collider [1] of 26.7 km circumference, due to start producing frontier physics, by bringing into collision intense proton and ion beams with centre-of-mass energies in the TeV-per-constituent range, at the beginning of the next century. The key technology for achieving this ambitious scientific goal at economically acceptable cost is the use of high-field superconducting magnets using Nb-Ti conductor operating in superfluid helium [2]. To maintain the some 25 km of bending and focusing magnets at their operating temperature of 1.9 K, the LHC cryogenic system will have to produce an unprecedented total refrigeration capacity of about 20 kW at 1.8 K, in eight cryogenic plants distributed around the machine circumference [3]. This has requested the undertaking of an industrial development programme, in the form of a collaboration betwe...

  10. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  11. The large hadron computer

    CERN Multimedia

    Hirstius, Andreas

    2008-01-01

    Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)

  12. The Large Hadron Collider

    CERN Multimedia

    Wright, Alison

    2007-01-01

    "We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)

  13. Proton enhancement at large pT at the CERN large hadron collider without structure in associated-particle distribution.

    Science.gov (United States)

    Hwa, Rudolph C; Yang, C B

    2006-07-28

    The production of pions and protons in the pT range between 10 and 20 GeV/c for Pb+Pb collisions at CERN LHC is studied in the recombination model. It is shown that the dominant mechanism for hadronization is the recombination of shower partons from neighboring jets when the jet density is high. Protons are more copiously produced than pions in that pT range because the coalescing partons can have lower momentum fractions, but no thermal partons are involved. The proton-to-pion ratio can be as high as 20. When such high pT hadrons are used as trigger particles, there will not be any associated particles that are not in the background.

  14. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2073687; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density $\\rho_{\\mu} > 5.9~$m$^{-2}$. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplic...

  15. Probing small parton densities in ultraperipheral A A and pA collisions at the CERN large Hadron Collider.

    Science.gov (United States)

    Strikman, Mark; Vogt, Ramona; White, Sebastian

    2006-03-01

    We calculate photoproduction rates for several hard processes in ultraperipheral proton-lead and lead-lead collisions at the CERN Large Hadron Collider (LHC) with square root of sNN = 8.8 and 5.5 TeV, respectively, which could be triggered in the large LHC detectors. We use ATLAS as an example. The lead ion is treated as a source of (coherently produced) photons with energies and intensities greater than those of equivalent ep collisions at the DESY collider HERA. We find very large rates for both inclusive and diffractive production that will extend the HERA x range by nearly an order of magnitude for similar virtualities. We demonstrate that it is possible to reach the kinematic regime where nonlinear effects are larger than at HERA.

  16. Le Japon contribue au grand collisionneur de hadrons du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    Japan's Ministry of Education, Science and Culture (Monbusho), announced on May 10 that it would help to finance the construction of CERN*'s next particle accelerator, the Large Hadron Collider (LHC). This announcement follows the visit of a CERN delegation, led by Director-General Prof. Christopher Llewellyn Smith to Japan in March 1995.

  17. Prompt D*+ production in proton-proton and lead-lead collisions, measured with the ALICE experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    de Rooij, R. S.

    2013-01-01

    In this thesis the results are presented of the first measurements of the D*+ meson nuclear modification factor RAA in heavy ion collisions at the Large Hadron Collider (LHC) using the ALICE (A Large Ion Collider Experiment) detector at CERN. These open charmed mesons are a useful tool to investigat

  18. Constraining the Higgs couplings to up and down quarks using production kinematics at the CERN Large Hadron Collider

    CERN Document Server

    Bonner, Gage

    2016-01-01

    We study the prospects for constraining the Higgs boson's couplings to up and down quarks using kinematic distributions in Higgs production at the CERN Large Hadron Collider. We find that the Higgs $p_T$ distribution can be used to constrain these couplings with precision competitive to other proposed techniques. With 3000 fb$^{-1}$ of data at 13 TeV in the four-lepton decay channel, we find $-0.73 \\lesssim \\bar{\\kappa}_u \\lesssim 0.33$ and $-0.88 \\lesssim \\bar{\\kappa}_d \\lesssim 0.32$, where $\\bar{\\kappa}_q = (m_q/m_b) \\kappa_q$ is a scaling factor that modifies the $q$ quark Yukawa coupling relative to the Standard Model bottom quark Yukawa coupling. The sensitivity may be improved by including additional Higgs decay channels.

  19. Study of some optical glues for the Compact Muon Solenoid at the Large Hadron Collider of CERN

    CERN Document Server

    Montecchi, Marco

    2001-01-01

    Two Avalanche Photodiodes will measure the light produced in each of the 61,200 PbWO4 crystals composing the barrel part of the electromagnetic calorimeter of the Compact Muon Solenoid (CMS) at the Large Hadron Collider of CERN. To improve the collection of the photons, these detectors will be glued to the crystal. To be used in CMS, the optical glue must fulfil several requirements. The paper describes those requirements and reports the results of the investigation of several commercial optical glues. In particular, refractive index, absorption length, radiation hardness and forecast ageing after 15 years are reported. The most promising glue for CMS was more deeply investigated, in particular its chemical composition, chemical compatibility with the other parts of the calorimeter and curing time in realistic conditions.

  20. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  1. Simulation study of electron cloud induced instabilities and emittance growth for the CERN Large Hadron Collider proton beam

    CERN Document Server

    Benedetto, Elena; Schulte, Daniel; Rumolo, Giovanni

    2005-01-01

    The electron cloud may cause transverse single-bunch instabilities of proton beams such as those in the Large Hadron Collider (LHC) and the CERN Super Proton Synchrotron (SPS). We simulate these instabilities and the consequent emittance growth with the code HEADTAIL, which models the turn-by-turn interaction between the cloud and the beam. Recently some new features were added to the code, in particular, electric conducting boundary conditions at the chamber wall, transverse feedback, and variable beta functions. The sensitivity to several numerical parameters has been studied by varying the number of interaction points between the bunch and the cloud, the phase advance between them, and the number of macroparticles used to represent the protons and the electrons. We present simulation results for both LHC at injection and SPS with LHC-type beam, for different electron-cloud density levels, chromaticities, and bunch intensities. Two regimes with qualitatively different emittance growth are observed: above th...

  2. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    CERN Document Server

    Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

  3. Who cares about particle physics? making sense of the Higgs boson, the Large Hadron Collider and CERN

    CERN Document Server

    AUTHOR|(CDS)2051327

    2016-01-01

    CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers work together to push scientific knowledge forward. Here is a book written for every person who wishes to learn a little more about particle physics, without requiring prior scientific knowledge. It starts from the basics to build a solid understanding of current res...

  4. Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Szczurek, Antoni

    2016-04-01

    We calculate cross sections for diphoton production in (semi)exclusive PbPb collisions, relevant for the CERN Large Hadron Collider (LHC). The calculation is based on the equivalent photon approximation in the impact parameter space. The cross sections for the elementary γ γ →γ γ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get measurable cross sections in PbPb collisions. This opens a possibility to study the γ γ →γ γ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS, or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the cross section for elastic γ γ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than Wγ γ≈15 -20 GeV.

  5. Novel Concepts for Optimization of the CERN Large Hadron Collider Injection Lines.

    CERN Document Server

    Fuchsberger, Kajetan; Wenninger, J

    2011-01-01

    The Large Hadron Collider (LHC) is presently the particle accelerator with the highest center of mass energy in the world and is for that reason the most promising instrument for particle physics discoveries in the near future. The transfer lines TI2 and TI8 which transfer the beam from the last pre-accelerator, the Super Proton Synchrotron (SPS), to the LHC are with a total length of about 6 km the longest ones in the world, which makes it necessary to do optics matching with high precision. Tests between 2004 and 2008 revealed several, previousely unpredicted, effects in these lines: An assymetry in betatron phase between the two transverse planes, a dispersion mismatch at the injection point from the transfer lines to the LHC and unexpectedly strong transverse coupling at the same location. In this thesis, we introduce the methods and tools that we developed to investigate these discrepancies. We describe the analysis of the available data, measurements of the transfer line optics and the calculation of op...

  6. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  7. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  8. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bregliozzi, G; Burkhardt, H; Cerutti, F; Ferrari, A; Huhtinen, M; Lechner, A; Levinsen, Y; Mereghetti, A; Mokhov, N V; Tropin, I S; Vlachoudis, V

    2013-01-01

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, a...

  9. Physics of Z0/γ*-tagged jets at energies available at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Electroweak bosons produced in conjunction with jets in high-energy collider experiments is one of the principal final-state channels that can be used to test the accuracy of perturbative quantum chromodynamics calculations and to assess the potential to uncover new physics through comparison between data and theory. In this article we present results for the Z0/γ*+jet production cross sections at the CERN Large Hadron Collider (LHC) at leading and next-to-leading orders. In proton-proton reactions we elucidate up to O(GFαs2) the constraints that jet tagging via the Z0/γ* decay dileptons provides on the momentum distribution of jets. In nucleus-nucleus reactions we demonstrate that tagged jets can probe important aspects of the dynamics of quark and gluon propagation in hot and dense nuclear matter and characterize the properties of the medium-induced parton showers in ways not possible with more inclusive measurements. Finally, we present specific predictions for the anticipated suppression of the Z0/γ*+jet production cross section in the quark-gluon plasma that is expected to be created in central lead-lead collisions at the LHC relative to the naive superposition of independent nucleon-nucleon scatterings.

  10. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  11. Spectra of identified hadrons in Pb-Pb collisions at 2.76 TeV at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    The transverse-momentum distributions of identified hadrons produced in Pb-Pb collisions at the Large Hadron Collider (LHC) are studied in the low and intermediate range for pTT∼3 GeV/c. A substantial portion of the jet energy is found to be lost to the dense medium before the partons emerge at the surface to undergo hadronization by recombination.

  12. Evidence of subnucleonic degrees of freedom in J /ψ photoproduction in ultraperipheral collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Andrade-II, E.; González, I.; Deppman, A.; Bertulani, C. A.

    2015-12-01

    We present calculations for the incoherent photoproduction of J /ψ vector mesons in ultraperipheral heavy ion collisions (UPCs) in terms of hadronic interactions. This study was carried out using the recently developed Monte Carlo model CRISP extended to include UPCs at energies available at the CERN Large Hadron Collider. A careful study of rescattering and destruction of the J /ψ particles is presented for Pb + Pb collisions at √{sN N}=2.76 TeV. We have also compared our method to Au + Au collisions at √{sN N}=200 GeV measured at the BNL Relativistic Heavy Ion Collider.

  13. Uniform description of bulk observables in the hydrokinetic model of A+A collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    Science.gov (United States)

    Karpenko, Iu. A.; Sinyukov, Yu. M.; Werner, K.

    2013-02-01

    A simultaneous description of hadronic yields; pion, kaon, and proton spectra; elliptic flows; and femtoscopy scales in the hydrokinetic model of A+A collisions is presented at different centralities for the top BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) 2.76-TeV energies. The initial conditions are based on the Monte Carlo Glauber simulations. When going from RHIC to LHC energy in the model, the only parameters changed are the normalization of the initial entropy defined by the number of all charged particles in most central collisions, contribution to entropy from binary collisions, and barionic chemical potential. The hydrokinetic model is used in its hybrid version, which provides the correct match (at the isochronic hypersurface) of the decaying hadron matter evolution with hadronic ultrarelativistic quantum molecular dynamics cascade. The results are compared with the standard hybrid models where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out or on the isochronic hypersurface. The modification of the particle-number ratios at LHC caused, in particular, by the particle annihilations at the afterburn stage is also analyzed.

  14. Preparing for the Large Hadron Collider

    CERN Document Server

    Appleton, Owen

    2007-01-01

    "Processing data for the Large Hadron Collider, the next-generation particle accelerator under construction at CERN, Switzerland, is one of the driving forces for development of Grid technology." (1 page)

  15. Coherent photoproduction of vector mesons in ultraperipheral heavy ion collisions: Update for run 2 at the CERN Large Hadron Collider

    Science.gov (United States)

    Guzey, V.; Kryshen, E.; Zhalov, M.

    2016-05-01

    We make predictions for the cross sections of coherent photoproduction of ρ ,ϕ ,J /ψ ,ψ (2 S ) , and Υ (1 S ) mesons in Pb-Pb ultraperipheral collisions (UPCs) at √{sN N}=5.02 TeV in the kinematics of run 2 at the Large Hadron Collider extending the approaches successfully describing the available Pb-Pb UPC data at √{sN N}=2.76 TeV . Our results illustrate the important roles of hadronic fluctuations of the photon and inelastic nuclear shadowing in photoproduction of light vector mesons on nuclei and the large leading twist nuclear gluon shadowing in photoproduction of quarkonia on nuclei. We show that the ratio of ψ (2 S ) and J /ψ photoproduction cross sections in Pb-Pb UPCs is largely determined by the ratio of these cross sections on the proton. We also argue that UPCs with electromagnetic excitations of the colliding ions followed by the forward neutron emission allows one to significantly increase the range of photon energies accessed in vector meson photoproduction on nuclei.

  16. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    CERN Document Server

    Abelleira Fernandez, J L; Akay, A N; Aksakal, H; Albacete, J L; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Brandt, G; Braun, H; Brodsky, S; Brüning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Cetinkaya, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; De Roeck, A; d'Enterria, D; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinol, L; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Ten Kate, H; Terron, J; Thiesen, H; Thompson, L; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F

    2012-01-01

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ ran...

  17. Thermalization, evolution, and observables at energies available at the CERN Large Hadron Collider in an integrated hydrokinetic model of A +A collisions

    Science.gov (United States)

    Naboka, V. Yu.; Karpenko, Iu. A.; Sinyukov, Yu. M.

    2016-02-01

    A further development of the evolutionary picture of A +A collisions, which we call the integrated hydrokinetic model (iHKM), is proposed. The model comprises a generator of the initial state GLISSANDO, prethermal dynamics of A +A collisions leading to thermalization, subsequent relativistic viscous hydrodynamic expansion of quark-gluon and hadron medium (vHLLE), its particlization, and finally the hadronic cascade ultrarelativistic QMD. We calculate midrapidity charged-particle multiplicities, pion, kaon, and antiproton spectra, charged-particle elliptic flows, and pion interferometry radii for Pb + Pb collisions at the energies available at the CERN Large Hadron Collider, √{s }=2.76 TeV, at different centralities. We find that the best description of the experimental data is reached when the initial states are attributed to the very small initial time 0.1 fm/c , the prethermal stage (thermalization process) lasts at least until 1 fm/c , and the shear viscosity at the hydrodynamic stage of the matter evolution has its minimal value, η /s =1/4 π . At the same time it is observed that the various momentum anisotropies of the initial states, different initial and relaxation times, as well as even a treatment of the prethermal stage within just viscous or ideal hydrodynamic approach, lead sometimes to worse but nevertheless similar results if the normalization of maximal initial energy density in most central events is adjusted to reproduce the final hadron multiplicity in each scenario. This can explain a good enough data description in numerous variants of hybrid models without a prethermal stage when the initial energy densities are defined up to a common factor.

  18. Entropy production in chemically nonequilibrium quark-gluon plasma created in central Pb +Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Vovchenko, V.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Csernai, L. P.; Kisel, I.; Stöcker, H.

    2016-01-01

    We study the possibility that partonic matter produced at an early stage of ultrarelativistic heavy-ion collisions is out of chemical equilibrium. It is assumed that initially this matter is mostly composed of gluons, but quarks and antiquarks are produced at later times. The dynamical evolution of partonic system is described by the Bjorken-like ideal hydrodynamics with a time-dependent quark fugacity. The results of this model are compared with those obtained by assuming the complete chemical equilibrium of partons already at the initial stage. It is shown that in a chemically nonequilibrium scenario the entropy gradually increases, and about 25% of the total final entropy is generated during the hydrodynamic evolution of deconfined matter. We argue that the (anti)quark suppression included in this approach may be responsible for reduced (anti)baryon-to-meson ratios observed in heavy-ion collisions at energies available at the CERN Large Hadron Collider.

  19. Large Acceptance Hadron Detector for an Investigation of Pb- and p-induced Reactions at the CERN~SPS

    CERN Multimedia

    Slodkowski, M A; Stock, R; Boimska, B; Grebieszkow, K; Wojtaszek-szwarc, A; Seyboth, P; Mackowiak-pawlowska, M K; Varga, D; Melkumov, G

    2002-01-01

    %NA49 %title\\\\ \\\\Experiment NA49 measures charged particle and neutral strange particle production over a large part of phase space in Pb and p beam reactions. The main aim is the search for evidence transition predicted by QCD for matter of sufficient energy density. The transient existence of a deconfined phase in the early stage of the collision is expected to modify the particle spectra and composition, the correlations and the space-time evolution of the final state as compared to a scenario of confined hadronic matter. In addition to high precision inclusive measurements of these quantities, the large particle multiplicity in Pb+Pb collisions and the wide acceptance of NA49 allow for the first time to measure the event by event fluctuations of observables like mean transverse momentum or temperature, the K/$\\pi$ ratio, and the multiplicity. In order to study the effects of normal nuclear matter p+p and p+nucleus collisions are measured for comparison. The latter data will provide information on these re...

  20. Reliability of the beam loss monitors system for the large hadron collider at CERN; Fiabilite du systeme des moniteurs de pertes du faisceau pour le Large Hadron Collider au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guaglio, G

    2005-12-15

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  1. Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Vovchenko, V.; Karpenko, Iu. A.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Kämpfer, B.; Stoecker, H.

    2016-08-01

    Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of a chemically nonequilibrated system is described by ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the CERN Large Hadron Collider energy of √{sN N}=2.76 TeV. We test the sensitivity of the results to the choice of equilibration time, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the pT distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state.

  2. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  3. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  4. Z0-tagged jet event asymmetry in heavy-ion collisions at the CERN large hadron collider.

    Science.gov (United States)

    Neufeld, R B; Vitev, I

    2012-06-15

    Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse momentum asymmetry of Z0/γ*-tagged jet events in sqrt[s]=2.76  TeV reactions at the LHC. Our results combine the O(G(F)α(s)2) perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense strongly interacting matter. We find that a strong asymmetry is generated in central lead-lead reactions that has little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for its shape and magnitude.

  5. Black Holes and the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  6. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  7. Large Hadron Collider slideshow shows future of physics

    CERN Multimedia

    Kramer, S E

    2007-01-01

    "The European organization for Nuclear Research (CERN) has been building the Large Hadron Collider for many years, but it's finally taking shape and prepping to operate at full power in 2008." (1/2 page)

  8. The large hadron collider and the super proton synchrotron at CERN as tools to generate warm dense matter and non-ideal plasmas

    International Nuclear Information System (INIS)

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm-2s-1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work is that the impact of the LHC beam on solid matter will generate Warm Dense Matter (WDM) and Strongly Coupled Plasmas (SCP). The beams for the LHC are pre-accelerated in the SPS (Super Proton Synchrotron) to 450 GeV/c and transferred to LHC via two beam lines. Several SPS cycles are required to fill the LHC, in one cycle a batch with up to 288 bunches can be accelerated. From the safety point of view it is also very important to study the damage caused to the equipment in case of an accident involving an uncontrolled release of the SPS beam. For this purpose we have also carried out detailed numerical simulations of the impact of the full SPS beam on solid copper and tungsten targets. These simulations have shown that the targets are severely damaged by the beam. It is also interesting to note that also in this case, a large part of the target material is converted into WDM and SCP. This study, therefore, shows that the LHC and the SPS have the potential to be used

  9. The Large Hadron Collider

    CERN Document Server

    Evans, Lyndon

    2012-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron–positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.

  10. The AFS hadron calorimeter at the CERN ISR

    CERN Document Server

    Botner, O; Fabjan, Christian Wolfgang; Gordon, H; Jeffreys, P; Kesseler, G; Molzon, W R; Oren, Y; Rosselet, L; Schindler, R; Smith, S D; Van der Lans, J; Wang, C J; Willis, W J; Witzeling, W; Woody, C

    1981-01-01

    The hadron calorimeter for the AFS experiment at CERN consists of a fine sampling uranium/copper scintillator sandwich. It is designed for high modularity and will provide azimuthal coverage over 8 sterad. The authors describe the optical readout system, consisting of acrylic scintillator and wavelength shifter plates, and present the performance of test modules with respect to the energy resolution for electrons ( sigma =0.16/ square root E) and hadrons ( sigma =0.36/ square root E), the linearity of response and the ratio of electron to hadron response (e/ pi =1.11). (4 refs).

  11. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  12. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  13. Black holes at the Large Hadron Collider.

    Science.gov (United States)

    Dimopoulos, S; Landsberg, G

    2001-10-15

    If the scale of quantum gravity is near TeV, the CERN Large Hadron Collider will be producing one black hole (BH) about every second. The decays of the BHs into the final states with prompt, hard photons, electrons, or muons provide a clean signature with low background. The correlation between the BH mass and its temperature, deduced from the energy spectrum of the decay products, can test Hawking's evaporation law and determine the number of large new dimensions and the scale of quantum gravity. PMID:11690198

  14. Genesis of the Large Hadron Collider.

    Science.gov (United States)

    Smith, Chris Llewellyn

    2015-01-13

    This paper describes the scientific, technical and political genesis of the Large Hadron Collider (LHC). It begins with an outline of the early history of the LHC, from first thoughts and accelerator and detector developments that underwrote the project, through the first studies of the LHC and its scientific potential and the genesis of the experimental programme, to the presentation of the proposal to build the LHC to the CERN Council in December 1993. The events that led to the proposal to build the LHC in two stages, which was approved in December 1994, are then described. Next, the role of non-Member State contributions and of the agreement that CERN could take loans, which allowed single stage construction to be approved in December 1996, despite a cut in the Members' contributions, are explained. The paper concludes by identifying points of potential relevance for the approval of possible future large particle physics projects.

  15. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  16. Simulations of electron-cloud heat load for the cold arcs of the CERN Large Hadron Collider and its high-luminosity upgrade scenarios

    CERN Document Server

    Maury Cuna, H; Zimmermann, F

    2012-01-01

    The heat load generated by an electron cloud in the cold arcs of the Large Hadron Collider (LHC) is a concern for operation near and beyond nominal beam current. We report the results of simulation studies, with updated secondary- emission models, which examine the severity of the electron heat load over a range of possible operation parameters, both for the nominal LHC and for various luminosity-upgrade scenarios, such as the so-called ‘‘full crab crossing’’ and ‘‘early separation’’ schemes, the ‘‘large Piwinski angle’’ scheme, and a variant of the latter providing ‘‘compatibility’’ with the (upgraded) LHCb experiment. The variable parameters considered are the maximum secondary-emission yield, the number of particles per bunch, and the spacing between bunches. In addition, the dependence of the heat load on the longitudinal bunch profile is investigated.

  17. Jets and decays of resonances: Two mechanisms responsible for reduction of elliptic flow at the CERN Large Hadron Collider (LHC) and restoration of constituent quark scaling

    International Nuclear Information System (INIS)

    The formation and evolution of the elliptic flow pattern in Pb+Pb collisions at √(s)=5.5A TeV and in Au+Au collisions at √(s)=200A GeV are analyzed for different hadron species within the framework of the HYDJET++ Monte Carlo model. The model contains both hydrodynamic state and jets, thus allowing for a study of the interplay between the soft and hard processes. It is found that jets terminate the rise of the elliptic flow with increasing transverse momentum. Since jets are more influential at the Large Hadron Collider (LHC) than at the Relativistic Heavy Ion Collider (RHIC), the elliptic flow at LHC should be weaker than that at RHIC. The influence of resonance decays on particle elliptic flow is also investigated. These final state interactions enhance the low-pT part of the v2 of pions and light baryons and work toward the fulfillment of idealized constituent quark scaling.

  18. Departure from the hadronic scenario at CERN SPS

    International Nuclear Information System (INIS)

    A review of results from heavy ion experiments at CERN SPS is presented, with an emphasis on the data from Pb induced interactions. Special focus is put on the most significant surprises: anomalous J/Ψ suppression, change in the spectral shapes of e+e- mass distributions in the vector meson domain, and enhanced strange hadron production. Implications of these findings for understanding collision dynamics and, in particular, their role in the search for the new phase of matter, are discussed

  19. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  20. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  1. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  2. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Selyuzhenkov, I; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Mills, G B; Planeta, R J; Rubbia, A; Robert, A L; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Sgalaberna, D; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Igolkin, S; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Zambelli, L A; Sadovskiy, A; Morozov, S; Petukhov, O; Szuba, M K; Mathes, H; Herve, A E; Roehrich, D; Marino, A D; Wyszynski, O J; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Rondio, E; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Taranenko, A; Cirkovic, M; Gazdzicki, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Larsen, D T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Kobayashi, T; Blondel, A P P; Hasler, A; Damyanova, A; Stroebele, H W; Rustamov, A; Klochkov, V; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Veberic, D; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Ereditato, A; Paolone, V; Korzenev, A; Unger, M T; Wilczek, A G; Stepaniak, J M; Matulewicz, T N; Seryakov, A; Susa, T; Staszel, P P; Marcinek, A J; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  3. Timken steel technology used in CERN's hadron collider

    CERN Multimedia

    2007-01-01

    "The Timken Company's steel technology helped Superbolt, Inc. provide equipment to the European Organization for Nuclear Research (CERN) and its large particle physics laboratory located near Geneva, Switzerland." (1,5 page)

  4. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  5. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  6. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument. It is being constructed by the European Organization for Nuclear Research, one of the world's largest particle physics laboratories.

  7. The very large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  8. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  9. Large Hadron Collider au CERN: des big bangs en série sous le contrôle de WorldFIP

    CERN Multimedia

    2007-01-01

    Thanks to WorlsFIP, associated with a GPS system, CERN is able to synchronize most of the LHC equipments, to drive the magnetic field of giant experiments, to put back automatically the clock at the hour and date events with a precision better than 10 mu s. (1 page)

  10. Evidence of sub-nucleonic degrees of freedom in J/$\\psi$ photoproduction in ultraperipheral collisions at the CERN Large Hadron Collider

    CERN Document Server

    Andrade-II, E; Deppman, A; Bertulani, C A

    2015-01-01

    We present calculations for the incoherent photoproduction of J/$\\psi$ vector mesons in ultra-peripheral heavy ion collisions (UPC) in terms of hadronic interactions. This study was carried out using the recently developed Monte Carlo model CRISP extended to include UPCs at LHC energies. A careful study of re-scattering and destruction of the J/$\\psi$ particles is presented for PbPb collisions at $\\sqrt{s_{NN}} = 2.76$ TeV. We have also compared our method to AuAu collisions at $\\sqrt{s_{NN}} = 200$ GeV measured at RHIC.

  11. Triangular flow of thermal photons from an event-by-event hydrodynamic model for 2.76 A TeV Pb + Pb collisions at the CERN Large Hadron Collider

    Science.gov (United States)

    Chatterjee, Rupa; Srivastava, Dinesh K.; Renk, Thorsten

    2016-07-01

    We calculate the triangular flow parameter v3 of thermal photons from an event-by-event ideal hydrodynamic model for 0-40% central collisions of Pb nuclei at √{sN N}=2.76 TeV at the CERN Large Hadron Collider. v3 determined with respect to the participant plane (PP) is found to be nonzero and positive, and its pT dependence is qualitatively similar to the elliptic flow parameter v2(PP) of thermal photons in the range 1 ≤pT≤6 GeV/c . In the range pT≤ 3 GeV/c , v3(PP) is found to be about 50-75% of v2(PP) and for pT> 3 GeV/c the two anisotropy parameters become comparable. The value of v3 is driven by local density fluctuations both directly via the creation of triangular geometry and indirectly via additional flow. As expected, the triangular flow parameter calculated with respect to the reaction plane v3(RP) is found to be close to zero. We show that v3(PP) strongly depends on the spatial size of fluctuations, especially in the higher pT(≥3 GeV /c ) region where a larger value of σ results in a smaller v3(PP ) . In addition, v3(PP ) is found to increase with the assumed formation time of the thermalized system.

  12. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  13. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  14. Large hadron collider in the LEP tunnel. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later data alongside LEP in the LEP tunnel. Following the exploration of e+e- physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC) in the LEP tunnel, the physics case as it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig./HSI)

  15. Multipion Bose-Einstein correlations in p p ,p -Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.

    2016-05-01

    Three- and four-pion Bose-Einstein correlations are presented in p p ,p -Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in p p and p -Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three- and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.

  16. Luminosity Measurement at the Large Hadron Collider

    CERN Document Server

    Caron, B L; Pinfold, J L

    2006-01-01

    Two novel methods of measuring the luminosity delivered to the ATLAS Experiment at the CERN Large Hadron Collider experiments are presented. The production of $\\mu^{+}\\mu^{-}$ pair via two photon interactions and single $W^{\\pm}/Z^{0}$ boson production are evaluated as methods for the measurement and monitoring of the proton-proton luminosity at the LHC. The characteristics of the $\\mu^{+}\\mu^{-}$ pairs from coherent $\\gamma \\gamma$ interactions are examined for both matrix element and equivalent photon based monte carlo generators with subsequent simulation of the ATLAS detector effects. The application of specific kinematic and vertex fit requirements is shown to offer a strong method of isolating signal from background and in turn yield an accurate offline measurement of the delivered luminosity via the pure QED process. The choice of kinematic cuts is shown to reduce the overall uncertainty in the method by limiting the size of corrections to the two photon interaction cross section to the level of 1\\%. B...

  17. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  18. The ALICE experiment at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo Gameiro [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: ALICE (A Large Ion Collider Experiment) is the only experiment form the Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research) dedicated mainly to study relativistic heavy ion collisions. The experiment was optimized to measure a great variety of observables that allow us to study the properties of the Quark Gluon Plasma, a new state of nuclear matter where quarks and gluons are deconfined from hadrons. The enlightenment of such properties will provide great insight in the understanding of the strong interaction described by QCD. In this talk, I will present the ALICE experiment, the latest results obtained by the collaboration in the last 2 years and discuss the Brazilian participation in this very interesting and important international project. (author)

  19. W±πt干 Associated Production at Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANGJin-Shu; PANQun-Na

    2004-01-01

    In this paper we calculate the production of a charged top pion in association with a W boson at the CERN Large Hadron Collider (LHC) in the context of the topcolor assisted technicolor model. We find that the cross section of pp → bb- → W±πt干 is roughly corresponding to the result of the process pp → bb- → W±πt干= in the minimal supersymmetric standard model, and for reasonable ranges of the parameters, the cross section can reach a few hundred fb. The W±πt干 signal should be clearly visible at LHC unless π t± is very heavy.

  20. In the loop Large Hadron Collider project - UK engineering firms

    CERN Document Server

    Wilks, N

    2004-01-01

    This paper presents the latest measures being taken to boost the level of UK engineering firms' involvement in research at CERN (Centre for Nuclear Research), including its 27 km circular Large Hadron Collider (LHC) project. Virtually all of the components on this complex project have had to be custom-made, usually in the form of collaboration. It is part of these collaborations that some UK firms have proved they can shine. However, despite the proven capabilities, the financial return continues to be less than the government's funding. Each of the 20 CERN member states provides funds in proportion to its GDP and the UK is the second largest financial contributor. UK firms become price-competitive where a contract calls for a degree of customisation or product development, project management and tight quality control. Development of the Particle Physics Grid, for dissemination and analysis of data from the LHC, continues to provide major supply opportunities for UK manufacturers.

  1. Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider

    CERN Document Server

    De Campos, F; Hirsch, M; Magro, M B; Porod, W; Restrepo, D; Valle, J W F

    2010-01-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  2. Department of Energy assessment of the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee`s charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ``Yellow Book,`` cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members` considerable experience.

  3. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    NARCIS (Netherlands)

    J. Engelen

    2012-01-01

    n this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly c

  4. Smash! exploring the mysteries of the Universe with the Large Hadron Collider

    CERN Document Server

    Latta, Sara

    2017-01-01

    What is the universe made of? At CERN, the European Organization for Nuclear Research, scientists have searched for answers to this question using the largest machine in the world: the Large Hadron Collider. It speeds up tiny particles, then smashes them togetherand the collision gives researchers a look at the building blocks of the universe.

  5. Large Hadron particle collider may not have its run this November

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (LHC), based at CERN in Geneva, Switzerland, will not run in November this year as scheduled. The LHC was supposed to have a test run this yera, before switching on the scientific search for the Higgs boson in 2008."(1 page)

  6. 1 Go/s pour la grille de calcul du Large hadron collider

    CERN Multimedia

    Prevéraud, Jean-François

    2006-01-01

    The worldwide collaboration "Worldwide LHC computing grid (WLCG)", in which IN2P3 take part, has just announced a new record in the implementation of a computing grid for the Large Hadron Collider of CERN: a continuous flow of scientific data has been transferred on a worldwide infrastructure grid, with a flow up to sometimes 1 gigaoctet per second (1 page)

  7. Commissioning and First Operation of the Large Hadron Collider (LHC)

    CERN Document Server

    Lebrun, Ph

    2010-01-01

    After some fifteen years of construction, the Large Hadron Collider (LHC) was commissioned at CERN, the European Organization for Nuclear Research in 2008. This high-energy particle accelerator of 26.7 km circumference – the largest scientific instrument ever built – brings into collision intense beams of protons and ions to probe the structure of matter and study the forces acting on its elementary components at the TeV scale, an order of magnitude higher than the previous stateof-the-art. To guide and focus its particle beams, the LHC uses several thousands high-field superconducting magnets operating in superfluid helium at 1.9 K. The project therefore constitutes a technological feat: all its components were developed, industrialized and series produced by industrial companies according to demanding specifications. Started as a CERN undertaking – by decision of the CERN Council and its twenty European member states – the project soon became global with special contributions from Canada, India, Jap...

  8. Charmed-hadron fragmentation functions from CERN LEP1 revisted

    International Nuclear Information System (INIS)

    In Phys. Rev. D 58, 014014 (1998) and 71, 094013 (2005), we determined non-perturbative D0, D+, D*+, Ds+, and Λc+ fragmentation functions, both at leading and next-to-leading order in the MS factorization scheme, by fitting e+e- data taken by the OPAL Collaboration at CERN LEP1. The starting points for the evolution in the factorization scale μ were taken to be μ0-2mQ, where Q = c, b. For the reader's convenience, in this Addendum, we repeat this analysis for μ0=mQ, where the flavor thresholds of modern sets of parton density functions are located. (Orig.)

  9. $H^{+}H^{-}$ Pair Production at the Large Hadron Collider

    CERN Document Server

    Barrientos-Bendezu, A A

    2000-01-01

    We study the pair production of charged Higgs bosons at the CERN Large Hadron Collider in the context of the minimal supersymmetric extension of the standard model. We compare the contributions due to qq-bar annihilation at the tree level and gg fusion, which proceeds at one loop. At small or large values of tan(beta), H^+H^- production proceeds dominantly via bb-bar annihilation, due to Feynman diagrams involving neutral CP-even Higgs bosons and top quarks, which come in addition to the usually considered Drell-Yan diagrams. In the case of gg fusion, the squark loop contributions may considerably enhance the well-known quark loop contributions.

  10. Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions

    CERN Document Server

    Gilles, Abelin R

    2013-01-01

    The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.

  11. The Large Hadron Colider Pop Up Book

    CERN Multimedia

    2013-01-01

    Discover the ATLAS experiment in full 3D pop-up in this promotional video for the Large Hadron Collider pop-up book. The book contains 16 pop-ups telling the story of how the experiment works and its quest to understand what the universe is made of. It is now available in English, French and German. Paper engineer Anton Radevsky, texts Emma Sanders.

  12. Large Hadron Collider commissioning and first operation.

    Science.gov (United States)

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  13. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  14. Highlights from the COMPASS experiment at CERN -- Hadron spectroscopy and excitations

    CERN Document Server

    Nerling, Frank

    2016-01-01

    The COMPASS experiment at the CERN-SPS studies the spectrum and the structure of hadrons by scattering high energy hadrons and polarised muons off various fixed targets. Recent results for the hadron programme comprise highlights from different topics. A selective overview is given and, among others, the following results are discussed. The precise determination of the pion polarisability, a long standing puzzle that has been solved now, is presented as well as measurements of radiative widths. The observation of a new narrow axial-vector state, the $a_1(1420)$, as well as deeper insights into the exotic $1^{-+}$-wave, which is under study since decades by several experiments, are discussed and further, the search for the charmonium-like exotic $Z_c(3900)$ state in the COMPASS data is covered.

  15. 1st Large Hadron Collider Physics Conference

    CERN Document Server

    Juste, A; Martínez, M; Riu, I; Sorin, V

    2013-01-01

    The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.

  16. Sextupole correction magnets for the Large Hadron Collider

    CERN Document Server

    Meinke, R B; Senti, M; Op de Beeck, W J; De Ryck, C; MacKay, W W

    1999-01-01

    About 2500 superconducting sextupole corrector magnets (MCS) are needed for the Large Hadron Collider (LHC) at CERN to compensate persistent current sextupole fields of the main dipoles. The MCS is a cold bore magnet with iron yoke. The coils are made from a NbTi conductor, which is cooled to 1.9 K. In the original CERN design 6 individual sub-coils, made from a monolithic composite conductor, are assembled and spliced together to form the sextupole. The coils are individually wound around precision-machined central islands and stabilized with matching saddle pieces at both ends. The Advanced Magnet Lab, Inc. (AML) has produced an alternative design, which gives improved performance and reliability at reduced manufacturing cost. In the AML design, the magnet consists of three splice-free sub-coils, which are placed with an automated winding process into pockets of prefabricated G-11 support cylinders. Any assembly process of sub-coils with potential misalignment is eliminated. The AML magnet uses a Kapton-wra...

  17. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2011-05-01

    In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. I have added to the writeup, recent experimental results from the LHC which have become available since the time of the workshop.

  18. Measuring supersymmetry at the large hadron collider

    Indian Academy of Sciences (India)

    B C Allanach

    2003-02-01

    The large hadron collider (LHC) should have the ability to detect supersymmetric particles if low-energy supersymmetry solves the hierarchy problem. Studies of the LHC detection reach, and the ability to measure properties of supersymmetric particles are currently underway. We highlight some of these, such as the reach in minimal supergravity space and correlation with a fine-tuning parameter, precision measurements of edge variables, anomaly- or gauge-mediated supersymmetry breaking. Supersymmetry with baryon-number violation seems at first glance more difficult to detect, but proves to be possible by using leptons from cascade decays.

  19. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  20. Large hadron collider workshop. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    The aim of the LCH workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  1. Large hadron collider workshop. Proceedings. Vol. 3

    International Nuclear Information System (INIS)

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentaiton and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  2. Large hadron collider workshop. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol.1 of these proceedings contains the papers presented at the plenary sessions, Vol.2 the individual contributions to the physics sessions, and Vol.3 those to the instrumentation sessions. (orig.)

  3. Updated electron-cloud simulation results for the Large Hadron Collider (LHC)

    OpenAIRE

    Furman, M.A.; Pivi, M.

    2001-01-01

    This paper presents new simulation results for the power deposition from the electron cloud in the beam screen of the Large Hadron Collider (LHC). We pay particular attention to the sensitivity of the results to certain low-energy parameters of the secondary electron (SE)emission. Most of these parameters, which constitute an input to the simulation program, are extracted from recent measurements at CERN and SLAC.

  4. Monotop phenomenology at the Large Hadron Collider

    CERN Document Server

    Agram, Jean-Laurent; Buttignol, Michael; Conte, Eric; Fuks, Benjamin

    2014-01-01

    We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop production modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.

  5. Meeting of the Large Hadron Collider Committee

    CERN Multimedia

    2012-01-01

    Provisional Agenda for the 111th meeting of the Large Hadron Collider Committee to be held on Wednesday and Thursday, 26-27 September 2012. Open Session: Wednesday, 26 September at 9 a.m. in the Main Auditorium (Bldg. 500-1-001)  09.00 - 09.20    LHC Machine Status Report  09.30 - 10.00    ATLAS Status Report  10.10 - 10.40    CMS Status Report  10.50 - 11.10    COFFEE BREAK 11.10 - 11.40    LHCb Status Report 11.50 - 12.20   ALICE Status Report 12.30 - 12.50   TOTEM Status Report 13.00 - 13.20   LHCf Status Report

  6. Transverse beams stability studies at the Large Hadron Collider

    CERN Document Server

    Buffat, Xavier; Pieloni, Tatiana

    2015-01-30

    A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deterioration of the beam quality. Such effects play a major role in most existing storage rings, as they limit the maximum performance achievable. In a collider, the presence of a second beam significantly changes the dynamics, as the electromagnetic interactions of the two beams on each other are usually very strong and may, also, limit the collider performances. This thesis treats the coherent stability of the two beams in a circular collider, including the effects of the electromagnetic wake fields and of the beam-beam interactions, with particular emphasis on CERN's Large Hadron Collider. As opposed to other colliders, this machine features a large number of bunches per beam each experiencing multiple long-range and head-on beam-beam interactions. Existing models...

  7. CERN - Commission Européenne

    CERN Multimedia

    2009-01-01

    Rolf-Dieter HEUER, Director General of CERN visits Commissioner Janez POTOCNIK (BRUSSELS, 03/03/2009, Ref.62264) CERN LHC Inauguration : extracts from the CERN LHC (European Organization for Nuclear Research - Large Hadron Collider) Inauguration and statements (GENEVA, 21/10/2008, Ref.59811) Commissioner Viviane REDING's visit to CERN (GENEVA, recorded 28/10/2005, Ref.42185)

  8. The Large Hadron Collider, a personal recollection

    CERN Document Server

    Evans, L

    2014-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report {[}1], w...

  9. Tune variations in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aquilina, N. [CERN, Geneva (Switzerland); University of Malta, Msida (Malta); Giovannozzi, M.; Lamont, M. [CERN, Geneva (Switzerland); Sammut, N. [University of Malta, Msida (Malta); Steinhagen, R. [CERN, Geneva (Switzerland); Todesco, E., E-mail: ezio.todesco@cern.ch [CERN, Geneva (Switzerland); Wenninger, J. [CERN, Geneva (Switzerland)

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  10. Measurement of very large transverse momentum jet production at the CERN anti pp collider

    International Nuclear Information System (INIS)

    The production of very large transverse momentum hadron jets has been measured in the UA2 experiment at the CERN anti pp Collider for √s = 540 GeV using a highly segmented calorimeter. The range of previously available cross sections for inclusive jet production is extended to psub(T) = 150 GeV and the two-jet invariant mass distribution to msub(jj) = 280 GeV with the largely increased data sample collected during the 1983 running period. The results are compared with the predictions of QCD models. (orig.)

  11. Physics at the Large Hadron Collider

    CERN Document Server

    Mukhopadhyaya, Biswarup; Raychaudhari, Amitava

    2009-01-01

    In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expert...

  12. Anisotropic flow and flow fluctuations at the large hadron collider

    CERN Document Server

    Zhou, You

    One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.

  13. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    Tapan K Nayak

    2012-10-01

    On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided the first stable beams of heavy ions (Pb on Pb) at the centre-of-mass energy of 2.76 TeV/nucleon. The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to $L_{O} = 2 × 10^{25}$ cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time. The results of the multiplicity, flow, fluctuations and Bose–Einstein correlations indicate that the fireball formed in nuclear collisions at the LHC is hotter, lives longer, and expands to a larger size at freeze-out as compared to lower energies. We give an overview of these as well as new results on quarkonia and heavy flavour suppression, and jet energy loss.

  14. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  15. Development of superconducting links for the Large Hadron Collider machine

    CERN Document Server

    Ballarino, A

    2014-01-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB 2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  16. Cryogénie et supraconductivité pour le grand collisionneur de hadrons (LHC) du CERN

    CERN Document Server

    Lebrun, P

    2004-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be the most advanced research instrument of the world’s high-energy physics community, providing access to the structure of matter at an unprecedentedly fine scale. Reusing the 26.7 km circumference tunnel and infrastructure of the past LEP electron-positron collider, the LHC makes use of advanced technology: high-field superconducting magnets based on niobium-titanium alloy conductors operating in superfluid helium at 1.9 K will guide and bring into collision intense beams of protons and ions. After some ten years of focussed R&D, the LHC components are being series-built by specialized industry in CERN member states and procured through world-wide collaborations. After briefly recalling the physics goals, performance challenges and design choices, we present main aspects of cryogenics and superconductivity as key technologies for the LHC and report on its c...

  17. Observable Properties of Quark-Hadron Phase Transition at the Large Hadron Collider

    CERN Document Server

    Hwa, Rudolph C

    2016-01-01

    Quark-hadron phase transition is simulated by an event generator that incorporates the dynamical properties of contraction due to QCD confinement forces and randomization due to the thermal behavior of a large quark system on the edge of hadronization. Fluctuations of emitted pions in the $(\\eta,\\phi)$ space are analyzed using normalized factorial moments in a wide range of bin sizes. The scaling index $\

  18. Searches for the technicolor signatures via gg→W±π_t~(-+) at the Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-Shu; SONG Tai-Ping; WANG Shuai-Wei; LU Gong-Ru

    2011-01-01

    In this paper, we calculate the production of a charged top pion in association with a W boson via gg fusion at CERN's Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the total cross section of pp→gg→W±π_t~(-+) is several dozen femtobarns with reasonable values of the parameters, and the total cross section of pp→W±π_t~(-+) can reach a few hundred femtobarns when we consider the sum of the contributions of these two parton subprocesses, gg→W±π_t~(-+) and bb~-→W±π_t~(-+).

  19. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  20. Higgs Bosons, Electroweak Symmetry Breaking, and the Physics of the Large Hadron Collider

    OpenAIRE

    Quigg, Chris

    2007-01-01

    The Large Hadron Collider, a 7 + 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electrow...

  1. Longitudinal intensity effects in the CERN Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2081238; Rivkin, Leonid

    This PhD thesis provides an improved knowledge of the LHC longitudinal impedance model and a better understanding of the longitudinal intensity effects. These effects can limit the LHC performance and lead to a reduction of the integrated luminosity. The LHC longitudinal impedance was measured with beams. Results obtained using traditional techniques are consistent with the expectations based on the impedance model, although the measurement precision was proven insufficient for the low impedance of the LHC. Innovative methods to probe the LHC reactive impedance were successfully used. One of the methods is based on exciting the beam with a sinusoidal rf phase modulation to estimate the synchrotron frequency shift from potential-well distortion. In the second method, the impedance is estimated from the loss of Landau damping threshold, which is also found to be in good agreement with analytical estimations. Beam-based impedance measurements agree well with estimations using the LHC impedance model. Macropartic...

  2. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    CERN Document Server

    Engelen, Jos

    2012-01-01

    In this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly challenging: new detector technologies had to be developed; experimental set-ups that are larger and more complex than ever before had to be constructed; and larger collaborations than ever before had to be organized. Fundamental to the success were: the ‘reference’ provided by CERN, peer review, signed memoranda of understanding, well-organized resources review boards as an interface to the national funding agencies and collegial, but solidly organized, experimental collaborations.

  3. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  4. Predictions for the heavy-ion programme at the Large Hadron Collider

    CERN Document Server

    Armesto, N

    2010-01-01

    I review the main predictions for the heavy-ion programme at the Large Hadron Collider (LHC) at CERN, as available in early March 2009. I begin by remembering the standard claims made in view of the experimental data measured at the Super Proton Synchrotron (SPS) at CERN and at the Relativistic Heavy Ion Collider (RHIC) at the BNL. These claims will be used for later discussion of the new opportunities at the LHC. Next I review the generic, qualitative expectations for the LHC. Then I turn to quantitative predictions: First I analyze observables which characterize directly the medium produced in the collisions - bulk observables or soft probes -: multiplicities, collective flow, hadrochemistry at low transverse momentum, correlations and fluctuations. Second, I move to calibrated probes of the medium i.e. typically those whose expectation in the absence of any medium can be described in Quantum Chromodynamics (QCD) using perturbative techniques (pQCD), usually called hard probes. I discuss particle production...

  5. Higher-Twist Dynamics in Large Transverse Momentum Hadron Production

    Energy Technology Data Exchange (ETDEWEB)

    Arleo, Francois; /Annecy, LAPTH; Brodsky, Stanley J.; /SLAC; Hwang, Dae Sung; /Sejong U.; Sickles, Anne M.; /Brookhaven

    2009-12-17

    A scaling law analysis of the world data on inclusive large-p{sub {perpendicular}} hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of x{sub {perpendicular}} = 2p{sub {perpendicular}}/{radical}s. In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-p{sub {perpendicular}} hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-p{sub {perpendicular}} hadron production to enhance higher-twist processes.

  6. Signatures for black hole production from hadronic observables at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions. (author)

  7. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    OpenAIRE

    Florio, Massimo; Forte, Stefano; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement...

  8. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    OpenAIRE

    Dominguez, O; Iriso, U; Maury, H.; Rumolo, G.; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called ...

  9. Hadronic forward scattering: Predictions for the Large Hadron Collider and cosmic rays

    CERN Document Server

    Block, Martin M

    2006-01-01

    The status of hadron-hadron interactions is reviewed, with emphasis on the forward and near-forward scattering regions. From analyticity, Finite Energy Sum Rules are introduced from which new analyticity constraints are derived that exploit the many very accurate low energy experimental cross sections, i.e., they constrain the values of the asymptotic cross sections and their derivatives at low energies just above the resonance regions, allowing us new insights into duality. A new robust fitting technique is introduced in order to `clean up' large data samples that are contaminated by outliers. Using our analyticity constraints, new methods of fitting high energy hadronic data are introduced which result in much more precise estimates of the fit parameters, allowing accurate extrapolations to much higher energies. It's shown that the $\\gamma p$, $\\pi^\\pm p$ and nucleon-nucleon cross sections {\\em all} go asymptotically as $\\ln^2s$, saturating the Froissart bound, while conclusively ruling out $\\ln s$ and $s^{...

  10. The Higgs boson discovery at the Large Hadron Collider

    CERN Document Server

    Wolf, Roger

    2015-01-01

    This book provides a comprehensive overview of the field of Higgs boson physics. It offers the first in-depth review of the complete results in connection with the discovery of the Higgs boson at CERN’s Large Hadron Collider and based on the full dataset for the years 2011 to 2012. The fundamental concepts and principles of Higgs physics are introduced and the important searches prior to the advent of the Large Hadron Collider are briefly summarized. Lastly, the discovery and first mensuration of the observed particle in the course of the CMS experiment are discussed in detail and compared to the results obtained in the ATLAS experiment.

  11. Physics perspectives of the ALICE experiment at the large hadron collider

    Indian Academy of Sciences (India)

    Massimo Masera

    2003-04-01

    The large hadron collider (LHC) under construction at CERN will deliver ion beams up to centre of mass energies of the order of 5.5 TeV per nucleon, in case of lead. If compared to the available facilities for the study of nucleus–nucleus collisions (SpS and RHIC), this represents a huge step forward in terms of both volume and energy density that can be attained in nuclear interactions. ALICE (a large ion collider experiment) is the only detector specifically designed for the physics of nuclear collisions at LHC, even though it can also study high cross-section processes occurring in proton–proton collisions. The main goal of the experiment is to observe and study the phase transition from hadronic matter to deconfined partonic matter (quark gluon plasma – QGP). ALICE is conceived as a general-purpose detector and will address most of the phenomena related to the QGP formation at LHC energies: for this purpose, a large fraction of the hadrons, leptons and photons produced in each interaction will be measured and identified.

  12. Invisible Higgs decay at the Large Hadron-Electron Collider

    Science.gov (United States)

    Tang, Yi-Lei; Zhang, Chen; Zhu, Shou-hua

    2016-07-01

    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this paper, we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high-luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet, and large missing energy. With a cut-based parton-level analysis, we estimate that if the h Z Z coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1 ab-1 , the LHeC with the proposed 60 GeV electron beam (with -0.9 polarization) and 7 TeV proton beam is capable of probing Br (h →TE)=6 % at 2 σ level. Good lepton veto performance (especially hadronic τ veto) in the forward region is crucial to the suppression of the dominant W j e background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in the precision study of new resonances after their discovery in hadron-hadron collisions.

  13. Viewpoint: the End of the World at the Large Hadron Collider?

    International Nuclear Information System (INIS)

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by the LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.

  14. Particle collider magnet failure blamed on faulty engineering Experts are still weighing whether the hitch will delay the start-up of the Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "Researchers have identified the cause of a hiccup in the construction of the world's next top particle smasher, the Large Hadron Collider (LHC). During stress tests last week at the European Laboratory for Particle Physics (CERN), a support structure tore loose from the housing of a keay ultracold magnet."(1 page)

  15. Large Hadron Collider project to study the origins of matter

    CERN Multimedia

    2007-01-01

    "The Scientific Information Port (PIC), a technological centre located on the campus of the UAB, recently started work on the first stage of the European project Large Hadron Collider (LHC), the largest particle accelerator in the world, which has the aim of reproducing conditions similar to those produced during the Big Bang in order to study the origins of matter." (1/2 page)

  16. Supersymmetry status and phenomenology at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Alexander Belyaev

    2009-01-01

    Large Hadron Collider (LHC) has a great chance to finally reveal supersymmetry which remains a compelling theory for over 30 years in spite of lack of its discovery. It might be around the corner the present LHC era with sensitive dark matter search experiments and international linear collider hopefully coming up in the near future.

  17. Report on the impacts of large research infrastructures on economic innovation and on society Case studies at CERN

    CERN Document Server

    OECD, Paris

    2014-01-01

    This report is an examination of some of the economic and societal impacts of a well-known international high-energy physics infrastructure: the European Organisation for Nuclear Research, CERN, with special emphasis on its latest and most prominent scientific installation, the Large Hadron Collider (LHC). While both CERN and the LHC are, to a large extent, unique among research infrastructures, it is hoped that the case studies, analyses and conclusions in this report will make a useful contribution to the wider debate concerning the impacts of investments in large basic research facilities. Specifically, an enumeration and analysis of the pertinent issues and options should be a useful resource for persons who are contemplating the establishment of any major new international collaboration.

  18. Particle Identification with Cherenkov detectors in the 2011 CALICE Tungsten Analog Hadronic Calorimeter Test Beam at the CERN SPS

    CERN Document Server

    Dannheim, D; Klempt, W; Lucaci Timoce, A; van der Kraaij, E

    2013-01-01

    In 2011 the CALICE Tungsten Analog Hadronic Calorimeter prototype (W-AHCAL) was exposed to mixed beams of electrons, pions, kaons and protons with momenta from 10 to 300 GeV in the CERN SPS H8 beam line. The selection of pion, kaon and proton samples is based on the information obtained from two Cherenkov threshold counters. This note presents the strategy for the particle identification, as well as the calibration, operation and analysis of the Cherenkov counters. Efficiency and sample-purity estimates are given for the data selected for the W-AHCAL data analysis.

  19. Learning to See at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2010-01-01

    The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

  20. Una evaluación externa del CERN aconseja mejorar la gestión

    CERN Document Server

    2002-01-01

    An external committee of evaluation which studied the CERN situation before it undertook the construction of the Large Hadron Collider said the design of this new machine is excellent, but that CERN should improve its management

  1. Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    CERN Document Server

    Roy, Arunava

    2008-01-01

    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

  2. Four-Lepton Resonance at the Large Hadron Collider

    OpenAIRE

    Barger, Vernon; Lee, Hye-Sung

    2011-01-01

    A spin-1 weakly interacting vector boson, Z', is predicted by many new physics theories. Searches at colliders for such a Z' resonance typically focus on lepton-antilepton or top-antitop events. Here we present a novel channel with a Z' resonance that decays to 4 leptons, but not to 2 leptons, and discuss its possible discovery at the Large Hadron Collider. This baryonic gauge boson is well motivated in a supersymmetry framework.

  3. $W^{pm}H^{mp}$ Associated Production at the Large Hadron Collider

    CERN Document Server

    Barrientos-Bendezu, A A

    1999-01-01

    We study the production of a charged Higgs boson in association with a W boson at the CERN Large Hadron Collider in the context of the minimal supersymmetric extension of the standard model. This production mechanism is particularly promising if the charged Higgs boson is too heavy to be generated by top-quark decay. We compare the contributions due to b b-bar annihilation at the tree level and gg fusion, which proceeds at one loop. Apart from the total cross section, we also consider distributions in transverse momentum and rapidity. We also assess the viability of W^+- H^-+ associated production at the Fermilab Tevatron after the installation of the Main Injector and the Recycler.

  4. W±π(干)t Associated Production at Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-Shu; PAN Qun-Na

    2004-01-01

    In this paper we calculate the production of a charged top pion in association with a W boson at the CERN Large Hadron Collider (LHC) in the context of the topcolor assisted technicolor model. We find that the cross section of pp → b(-b) → W±π(干)t is roughly corresponding to the result of the process pp → b(-b) → W±H(干) in the minimal supersymmetric standard model, and for reasonable ranges of the parameters, the cross section can reach a few hundred fo. The W±π(干)t signal should be clearly visible at LHC unless π±t is very heavy.

  5. Cost-Benefit Analysis of the Large Hadron Collider to 2025 and beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2015-01-01

    Social cost-benefit analysis (CBA) of projects has been successfully applied in different fields such as transport, energy, health, education, and environment, including climate change. It is often argued that it is impossible to extend the CBA approach to the evaluation of the social impact of research infrastructures, because the final benefit to society of scientific discovery is generally unpredictable. Here, we propose a quantitative approach to this problem, we use it to design an empirically testable CBA model, and we apply it to the the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by determining their value to users (scientists, early-stage researchers, firms, visitors) and non-users (the general public). Four classes of contributions to users are identified: knowledge output, human capital development, technological spillovers, and cultural effects. Benefits for non-users can be ...

  6. Empirical Bayes unfolding of elementary particle spectra at the Large Hadron Collider

    CERN Document Server

    Kuusela, Mikael

    2014-01-01

    We consider the so-called unfolding problem in experimental high energy physics, where the goal is to estimate the true spectrum of elementary particles given observations distorted by measurement error due to the limited resolution of a particle detector. This an important statistical inverse problem arising in the analysis of data at the Large Hadron Collider at CERN. Mathematically, the problem is formalized as one of estimating the intensity function of an indirectly observed Poisson point process. Particle physicists are particularly keen on unfolding methods that feature a principled way of choosing the regularization strength and allow for the quantification of the uncertainty inherent in the solution. Though there are many approaches that have been considered by experimental physicists, it can be argued that few -- if any -- of these deal with these two key issues in a satisfactory manner. In this paper, we propose to attack the unfolding problem within the framework of empirical Bayes estimation: we ...

  7. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  8. Design, Performance and Series Production of Superconducting Trim Quadrupoles for the Large Hadron Collider

    CERN Document Server

    Karppinen, M; Castro, J-M; Gaggero, G; Giloux, C; Lopes, H; Khare, P; Loche, L; Mazet, J; Mugnai, G; Puntambekar, A; Remondino, Vittorio; Rodrigues, D; Tassisto, M; Venturini-Delsolaro, W; Wolf, R

    2006-01-01

    The Large Hadron Collider (LHC) will be equipped with several thousands of superconducting corrector magnets. Among the largest ones are the superconducting trim quadrupoles (MQTL). These twin-aperture magnets with a total mass of up to 1700 kg have a nominal gradient of 129 T/m at 1.9 K and a magnetic length of 1.3 m. Sixty MQTL are required for the LHC, 36 operating at 1.9 K in and 24 operating at 4.5 K. The paper describes the design features, and reports the measured quench performance and magnetic field quality of the production magnets. The MQTL magnet production is shared between CERN and industry. This sharing is simplified due to the modular construction, common to all twin-aperture correctors.

  9. The discovery of the Higgs boson at the Large Hadron Collider

    Science.gov (United States)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  10. Industrial Technology for Unprecented Energy and Luminosity The Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2004-01-01

    With over 3 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, power electronics, with particular emphasis on developments required to meet demanding specifications, and industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the main systems and the progress ...

  11. Cern

    CERN Multimedia

    2009-01-01

    "La réparation de l'accélérateur géant de particules LHC, qui devrait redémarrer mi-novembre aprés une panne de plus d'un an, a coûté 23 millions d'euros, selon un haut responsable du Centre européen de recherche nucléaire (CERN), cité vendredi par les médias espagnols" (1 paragraph)

  12. The standard model Higgs search at the large hadron collider

    Indian Academy of Sciences (India)

    Satyaki Bhattacharya; on behalf of the CMS and the ATLAS Collaborations

    2007-11-01

    The experiments at the large hadron collider (LHC) will probe for Higgs boson in the mass range between the lower bound on the Higgs mass set by the experiments at the large electron positron collider (LEP) and the unitarity bound (∼ 1 TeV). Strategies are being developed to look for signatures of Higgs boson and measure its properties. In this paper results from full detector simulation-based studies on Higgs discovery from both ATLAS and CMS experiments at the LHC will be presented. Results of simulation studies on Higgs coupling measurement at LHC will be discussed.

  13. CERN confirms LHC schedule

    CERN Multimedia

    2003-01-01

    The CERN Council held its 125th session under the chairmanship of Professor Maurice Bourquin. Highlights of the meeting included confirmation that the Large Hadron Collider (LHC) and its detectors are on schedule for a 2007 start-up, and that the LHC computing grid (LCG) project is about to reach a major milestone (1 page).

  14. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  15. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Ferrando, Belen Salvachua; Salvachua Ferrando, B

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  16. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  17. nPDF constraints from the Large Hadron Electron Collider

    CERN Document Server

    Helenius, Ilkka; Armesto, Nestor

    2016-01-01

    An updated analysis regarding the expected nuclear PDF constraints from the future Large Hadron Electron Collider (LHeC) experiment is presented. The new study is based on a more flexible small-$x$ parametrization which provides less biased uncertainty estimates in the region where there are currently no data constraints. The effect of the LHeC is quantified by directly including a sample of pseudodata according to the expected precision of this planned experiment. As a result, a significant reduction of the small-$x$ uncertainties in sea quarks and gluons is observed.

  18. The Very Large Hadron Collider: The farthest energy frontier

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, William A.

    2001-06-21

    The Very Large Hadron Collider (or Eloisatron) represents what may well be the final step on the energy frontier of accelerator-based high energy physics. While an extremely high luminosity proton collider at 100-200 TeV center of mass energy can probably be built in one step with LHC technology, that machine would cost more than what is presently politically acceptable. This talk summarizes the strategies of collider design including staged deployment, comparison with electron-positron colliders, opportunities for major innovation, and the technical challenges of reducing costs to manageable proportions. It also presents the priorities for relevant R and D for the next few years.

  19. Working group report: Physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    D K Ghosh; A Nyffeler; V Ravindran

    2011-05-01

    This is a summary of the activities of the Physics at the LHC working group in the XIth Workshop on High Energy Physics Phenomenology (WHEPP-XI) held at the Physical Research Laboratory, Ahmedabad, India in January 2010. We discuss the activities of each sub-working group on physics issues at colliders such as Tevatron and Large Hadron Collider (LHC). The main issues discussed involve (1) results on W mass measurement and associated QCD uncertainties, (2) an attempt to understand the asymmetry measured at Tevatron in the top quark production, and (3) phenomenology of warped space dimension model.

  20. Hadron and photon production at large transverse momentum and the dynamics of QCD jets. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1978-10-01

    The phenomenology of hadron and photon reactions at short distances is discussed in terms of perturbative quantum chromodynamics. In addition to large P/sub T/ hadron reactions, predictions are reviewed for jet production in two photon collisions, the relation of photon and gluon jet production, hadronic production and color separation, upsilon decay into hadrons and photons, leading particle distributions in low P/sub T/ hadron collisions, discriminants of quark and gluon jets, and the effects of coherence on gluon distributions in hadrons. A number of new experimental tests of QCD are discussed.

  1. Energy dependence of hadronic observables in central Pb+Pb reactions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kniege, S; Kolesnikov, V I; Kollegger, T; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Richard, A; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, C; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2005-01-01

    In this contribution the energy dependence of various hadronic observables as measured by the NA49 experiment in the beam energy range between 20 and 158 AGeV is presented. These include m/sub t/ and rapidity distributions, particle ratio fluctuations, as well as HBT radii. The data are put in the context of results from the AGS and RHIC.

  2. COST-ENLIGHT strategic workshop on hadron (particle) therapy, CERN, Geneva, 3-4 May 2007.

    Science.gov (United States)

    Taylor, R E

    2008-03-01

    This meeting was convened by COST (Co-operation in the Field of Scientific and Technical Research) and ENLIGHT (European Network for Research in Light-Ion Hadron Therapy) to review the current status of hadron therapy in Europe. The aims were to increase awareness of hadron therapy within the scientific community, to produce a document outlining the present and future prospects for this treatment modality and to bring together hadron therapy scientists and clinicians. Proton therapy offers the potential for therapeutic gain from dose distribution advantages when compared with photon therapy. Carbon ion therapy, by nature of its higher linear energy transfer (LET) and relative biological effectiveness (RBE), may further improve local control. A further potential benefit of carbon ion therapy is the ability to deliver hypofractionated radiotherapy. A further aim of this meeting was to commence preparation of a programme of work packages with a view to submitting an application for European Union funding within the FP7 programme. This comprises a series of seven work packages, which will be a focus for European collaboration.

  3. Llewellyn Smith, Director-General designate of CERN, discusses LHC

    CERN Multimedia

    Sweet, William N

    1992-01-01

    Christopher Llewellyn Smith was nominated by the Committee of Council to be Director General of CERN. He aims to pave the way for the Large Hadron Collider and utilize to the full the Large Electron-Positron machine.

  4. Advances in Cryogenics at the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1998-01-01

    After a decade of intensive R&D in the key technologies of high-field superconducting accelerator magnets and superfluid helium cryogenics, the Large Hadron Collider (LHC) has now fully entered its co nstruction phase, with the adjudication of major procurement contracts to industry. As concerns cryogenic engineering, this R&D program has resulted in significant developments in several fields, amon g which thermo-hydraulics of two-phase saturated superfluid helium, efficient cycles and machinery for large-capacity refrigeration at 1.8 K, insulation techniques for series-produced cryostats and mu lti-kilometre long distribution lines, large-current leads using high-temperature superconductors, industrial precision thermometry below 4 K, and novel control techniques applied to strongly non-line ar processes. We review the most salient advances in these domains.

  5. The higgsino-singlino world at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Ray, Tirtha Sankar [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia)

    2015-02-01

    We consider light higgsinos and singlinos in the next-to-minimal supersymmetric standard model at the large hadron collider. We assume that the singlino is the lightest supersymmetric particle and that the higgsino is the next-to-lightest supersymmetric particle with the remaining supersymmetric particles in the multi-TeV range. This scenario, which is motivated by the flavor and CP issues, provides a phenomenologically viable dark matter candidate and improved electroweak fit consistent with the measured Higgs mass. Here, the higgsinos decay into on (off)-shell gauge boson and the singlino. We consider the leptonic decay modes and the resulting signature is three isolated leptons and missing transverse energy which is known as the trilepton signal. We simulate the signal and the Standard Model backgrounds and present the exclusion region in the higgsino-singlino mass plane at the large hadron collider at √(s) = 14 TeV for an integrated luminosity of 300 fb{sup -1}. (orig.)

  6. Detector Development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  7. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN; Grossforschung in neuen Dimensionen. Denker unserer Zeit ueber die aktuelle Elementarteilchenphysik am CERN

    Energy Technology Data Exchange (ETDEWEB)

    Kommer, Christoph (ed.) [Heidelberg Univ. (Germany); DKFZ, Heidelberg (Germany); Satz, Helmut [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Blanchard, Philippe [Bielefeld Univ. (Germany). Abt. Theoretische Physik

    2016-07-01

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  8. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN

    International Nuclear Information System (INIS)

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  9. Comparison of electromagnetic and hadronic models generated using Geant 4 with antiproton dose measured in CERN

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Tavakoli

    2015-01-01

    Full Text Available After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.

  10. Comparison of electromagnetic and hadronic models generated using Geant 4 with antiproton dose measured in CERN.

    Science.gov (United States)

    Tavakoli, Mohammad Bagher; Reiazi, Reza; Mohammadi, Mohammad Mehdi; Jabbari, Keyvan

    2015-01-01

    After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP) is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.

  11. Dark Matter Searches at the Large Hadron Collider

    CERN Document Server

    Hoh, Siew Yan; Abdullah, Wan Ahmad Tajuddin Bin Wan

    2015-01-01

    Dark Matter is a hypothetical particle proposed to explain the missing matter expected from the cosmological observation. The motivation of Dark Matter is overwhelming however as it is mainly deduced from its gravitational interaction, for it does little to pinpoint what Dark Matter really is. In WIMPs Miracle, weakly interactive massive particle being the Dark Matter candidate is correctly producing the current thermal relic density at weak scale, implying the possibility of producing and detecting it in Large Hadron Collider. Assuming WIMPs being the maverick particle within collider, it is expected to be pair produced in association with a Standard Model particle. The presence of the WIMPs pair is inferred from the Missing Transverse Energy (MET) which is the vector sum of the imbalance in the transverse momentum plane recoils a Standard Model Particle. The collider is able to produce light mass Dark Matter which the traditional detection fail to detect due to the small momentum transfer involved in the in...

  12. Design parameters for the Very Large Hadron Collider

    CERN Document Server

    Mishra, C S

    1999-01-01

    The goal of the Very Large Hadron Collider (VLHC) is to extend the energy frontier beyond LHC. The proposed design center-of-mass energy for the VLHC pp collider is 100 TeV, with a luminosity of le34 cm/sup -2/ sec/sup -1/. At present accelerator designs and calculations are being carried out for two different magnet technologies, one using superferric magnets at 2 Tesla (T), the other using high-field design with B>10 T. This paper summarizes the accelerator parameters for these two designs. We discuss the design parameters that have the largest effects on the performance of the accelerator and therefore need careful optimization. (11 refs).

  13. Doubly-charged particles at the Large Hadron Collider

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; de Traubenberg, Michel Rausch

    2013-01-01

    In this work we investigate the production and signatures of doubly-charged particles at the Large Hadron Collider. We start with the Standard Model particle content and representations and add generic doubly-charged exotic particles. We classify these doubly-charged states according to their spin, considering scalar, fermionic and vectorial fields, and according to their SU(2)L representation, being chosen to be either trivial, fundamental, or adjoint. We write the most general interactions between them and the Standard Model sector and study their production modes and possible decay channels. We then probe how they can most likely be observed and how particles with different spin and SU(2)L representations could be possibly distinguished.

  14. Phenomenology of supersymmetric Z' decays at the Large Hadron Collider

    CERN Document Server

    Corcella, Gennaro

    2014-01-01

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into superymmetric particles, such as chargino, neutralino and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at sqrt{s}=14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modified to accommodate the extra Z' boson and consistent with the discovery of a Higgs-like boson with mass around 125 GeV. Results are presented for several observables and compared with those obtained for direct Z' decays into lepton pairs. For the sake of comparison, Z' production in the Sequential Standard Model and its supersymmetric decays are also investigated.

  15. The Large Hadron Collider Present Status and Prospects

    CERN Document Server

    Evans, Lyndon R

    2001-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2005, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this , protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 1034 cm-2 s-1. The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. Considerable modification of the infrastructure around the existing LEP tunnel is needed to house the LHC machine and detectors. The project is advancing according to schedule with most of the major hardware systems including cryogenics and magnets under construction. A brief status report is given and future prospects are discussed.

  16. Flavour physics and the Large Hadron Collider beauty experiment.

    Science.gov (United States)

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future. PMID:22253243

  17. Flavour physics and the Large Hadron Collider beauty experiment.

    Science.gov (United States)

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  18. Dark matter searches at the large hadron collider

    Science.gov (United States)

    Hoh, S. Y.; Komaragiri, J. R.; Wan Abdullah, W. A. T.

    2016-01-01

    Dark Matter is a hypothetical particle proposed to explain the missing matter expected from the cosmological observation. The motivation of Dark Matter is overwhelming however as it is mainly deduced from its gravitational interaction, for it does little to pinpoint what Dark Matter really is. In WIMPs Miracle, weakly interactive massive particle being the Dark Matter candidate is correctly producing the current thermal relic density at weak scale, implying the possibility of producing and detecting it in Large Hadron Collider. Assuming WIMPs being the maverick particle within collider, it is expected to be pair produced in association with a Standard Model particle. The presence of the WIMPs pair is inferred from the Missing Transverse Energy (MET) which is the vector sum of the imbalance in the transverse momentum plane recoils a Standard Model Particle. The collider is able to produce light mass Dark Matter which the traditional detection fail to detect due to the small momentum transfer involved in the interaction; on the other hand, the traditional detection is robust in detecting a higher Dark matter masses but the collider is suffered from the parton distribution function suppression. Topologically the processes are similar to the scattering processes in the direct detection thus complementary to the traditional Dark Matter detection. The collider searches are strongly motivated as the results are usually translated to the annihilation and scattering rates at more traditional Dark Matter-oriented experiments, thus a concordance approach is adapted. An overview of Dark Matter searches at the Large Hadron Collider will be covered in this paper.

  19. Effective models of new physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    With the start of the Large Hadron Collider runs, in 2010, particle physicists will be soon able to have a better understanding of the electroweak symmetry breaking. They might also answer to many experimental and theoretical open questions raised by the Standard Model. Surfing on this really favorable situation, we will first present in this thesis a highly model-independent parametrization in order to characterize the new physics effects on mechanisms of production and decay of the Higgs boson. This original tool will be easily and directly usable in data analysis of CMS and ATLAS, the huge generalist experiments of LHC. It will help indeed to exclude or validate significantly some new theories beyond the Standard Model. In another approach, based on model-building, we considered a scenario of new physics, where the Standard Model fields can propagate in a flat six-dimensional space. The new spatial extra-dimensions will be compactified on a Real Projective Plane. This orbifold is the unique six-dimensional geometry which possesses chiral fermions and a natural Dark Matter candidate. The scalar photon, which is the lightest particle of the first Kaluza-Klein tier, is stabilized by a symmetry relic of the six dimension Lorentz invariance. Using the current constraints from cosmological observations and our first analytical calculation, we derived a characteristic mass range around few hundred GeV for the Kaluza-Klein scalar photon. Therefore the new states of our Universal Extra-Dimension model are light enough to be produced through clear signatures at the Large Hadron Collider. So we used a more sophisticated analysis of particle mass spectrum and couplings, including radiative corrections at one-loop, in order to establish our first predictions and constraints on the expected LHC phenomenology. (author)

  20. Hadron distributions — Recent results from the CERN experiment NA44

    Science.gov (United States)

    Xu, Nu; Bearden, I. G.; Bøggild, H.; Boissevain, J.; Dodd, J.; Erazmus, B.; Esumi, S.; Fabjan, C. W.; Ferenc, D.; Fields, D. E.; Franz, A.; Gaardhøje, J. J.; Hansen, O.; Hardtke, D.; van Hecke, H.; Holzer, E. B.; Humanic, T.; Hummel, P.; Jacak, B. V.; Jayanti, R.; Kaneta, M.; Kopytine, M.; Leltchouk, M.; Ljubicic, T.; Lörstad, B.; Maeda, N.; Medvedev, A.; Murray, M.; Nishimura, S.; Ohnishi, H.; Paic, G.; Pandey, S. U.; Piuz, F.; Pluta, J.; Polychronakos, V.; Potekhin, M.; Poulard, G.; Sakaguchi, A.; Simon-Gillo, J.; Schmidt-Sørensen, J.; Sondheim, W.; Spegel, M.; Sugitate, T.; Sullivan, J. P.; Sumi, Y.; Willis, W. J.; Wolf, K.; Xu, N.; Zachary, D. S.; NA44 Collaboration

    1996-02-01

    Proton distributions at midrapidity have been measured for 158A·GeV Pb+Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A·GeV S+S and 158A·GeV Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter Tfo and mean collective flow velocity are extracted. Preliminary results of the particle ratios of {K -}/{K +} and {overlinep}/{p} are discussed in the context of cascade models of RQMD and VENUS.

  1. University of Tennessee deploys force10 switch for CERN work

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1/2 page)

  2. CERN confident of LHC start-up in 2007

    CERN Multimedia

    2007-01-01

    "Delegates attending the 140th meeting of CERN Council heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collier (LHC), in 2007." (1 page)

  3. CERN confirms goal of 2007 start-up for LHC

    CERN Multimedia

    2005-01-01

    Speaking at the 131st session of CERN Council on 17 December 2004, the Director-General, Robert Aymar, confirmed that the top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007.

  4. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  5. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  6. Experiences Constructing and Running Large Shared Clusters at CERN

    Institute of Scientific and Technical Information of China (English)

    VladimirBahyl; MaiteBarroso; 等

    2001-01-01

    The latest steps in the steady evolution of the CERN Computer Centre have been to reduce the multitude of clusters and architectures and to concentrate on commodity hardware.An active RISC decommissioning program has been undertaken to encourage migration to Linux,and a program of merging dedicated experiment clusters into larger shared facilities has been launched.This paper describes these programs and the experiences running the resultant multi-hundred node shared Linux clusters.

  7. CERN as a large-scale "Auberge Espagnole"

    CERN Multimedia

    2009-01-01

    The film director Cédric Klapisch recently visited CERN to scout out locations for a forthcoming film. Cédric Klapisch and Alexis Galmot visiting the LHC tunnel, guided by Laurette Ponce, from the Beams Department.Is CERN a good subject for a feature film? To judge by the media hype surrounding the film Angels and Demons, the answer must be a resounding yes. But it’s a bit more surprising to see the likes of Cédric Klapisch, who is known for directing films full of human interest rather than blockbusters, striding down accelerator and experiment tunnels. Cédric Klapisch’s films include "Le péril jeune", "Un air de famille" and "L’auberge espagnol", his biggest success, about a French student who spends a year in Spain under the Erasmus European exchange programme. Klapisch came to CERN on 23 April with his colleague Alexis Galmot to scout out possible locations for a forthcoming film. It is to be a fiction-science rather...

  8. Study of Electron Pair Production in Hadron and Nuclear Collisions at the CERN SPS

    CERN Multimedia

    Liebold, H-P; Sako, H; Belaga, V; Bielcikova, J; Stachel, J

    2002-01-01

    The NA45/CERES experiment investigates primarily the production of electron-positron pairs and of direct photons in proton-nucleus and nucleus-nucleus collisions. For electron-positron pairs the experiment studies the continuum in the mass region of about 0.05 to 2 GeV/c$^2$ and the vector mesons $\\varrho ,~ \\omega$, and, $\\phi$. Since for electromagnetic probes final state interactions are practically negligible these observables are unique for studying the evolution and dynamics of ultrarelativistic heavy-ion collisions from the hot and dense early stage where a quark-gluon plasma is expected to be formed to the final freeze-out stage when hadrons decouple.\\\\ \\\\ The experiment also studies the spectral distributions of charged particles, their distribution relative to the reaction plane, and identified high momentum pions. Another topic of investigation are QED pairs produced in peripheral nuclear collisions.\\\\ \\\\ The first phase of the experiment, NA45, has been concluded with two main results: i) There is...

  9. Phenomenology of W plus or minus H plus or minus production at the CERN Large Handron Collider

    CERN Document Server

    Moretti, S

    1999-01-01

    Barrientos Bendezu' and Kniehl [hep-ph/9807480] recently suggested that $W^\\pm H^\\mp$ associated production may be a useful channel in the search for the elusive heavy charged Higgs bosons of the 2 Higgs Doublet Model at the Large Hadron Collider. We investigate the phenomenology of this mechanism in the Minimal Supersymmetric Standard Model, with special attention paid to the most likely heavy Higgs decay, $H^\\mp\\to tb\\to b\\bar b W^\\mp$, and to the irreducible background from top pair production. We find that the semi-leptonic signature `$b\\bar b W^+W^-\\to b\\bar b jj \\ell$ + missing momentum' is dominated by top-antitop events, which overwhelm the charged Higgs signal over the heavy mass range that can be probed at the CERN collider

  10. The COMPASS Experiment at CERN

    CERN Document Server

    Abbon, P.; Alexakhin, V.Yu.; Alexandrov, Yu.; Alexeev, G.D.; Alekseev, M.G.; Amoroso, A.; Angerer, H.; Anosov, V.A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bosteels, M.; Bradamante, F.; Braem, A.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chalifour, M.; Chapiro, A.; Chiosso, M.; Ciliberti, P.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; Cristaudo, P.; Dafni, T.; d'Hose, N.; Dalla Torre, S.; d'Ambrosio, C.; Das, S.; Dasgupta, S.S.; Delagnes, E.; De Masi, R.; Deck, P.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dibiase, N.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donati, A.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Durand, D.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Franz, J.; Fratnik, F.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Gheller, J.M.; Giganon, A.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Gougnaud, F.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Guskov, A.; Haas, F.; Hagemann, R.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kiefer, J.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Kuzmin, N.A.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Levinski, V.; Levorato, S.; Lyashenko, V.I; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Menon, G.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Molinie, F.; Mota, F.; Mutter, A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Nerling, F.; Neyret, D.; Niebuhr, M.; Niinikoski, T.; Nikolaenko, V.I.; Nozdrin, A.A.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Parsamyan, B.; Panzieri, D.; Paul, S.; Pawlukiewicz, B.; Pereira, H.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piedigrossi, D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Rajotte, J.-F.; Ramos, S.; Razaq, I.; Rebourgeard, P.; Reggiani, D.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ropelewski, L.; Rousse, J.Y.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samartsev, A.G.; Samoylenko, V.D.; Sandacz, A.; Merce, M.Sans; Santos, H.; Sapozhnikov, M.G.; Sauli, F.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Schonmeier, P.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shaligin, A.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.-W.; Silva, L.; Simon, F.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sora, D.; Sosio, S.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tarte, G.; Takabayashi, N.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tokmenin, V.V.; Trippel, S.; Urban, J.; Valbuena, R.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Wollny, H.; Zanetti, A.M.; Zaremba, K.; Zavertyaev, M.; Zhao, J.; Ziegler, R.; Ziembicki, M.; Zlobin, Y.L.; Zvyagin, A.

    2007-01-01

    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.

  11. Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider

    Indian Academy of Sciences (India)

    A P Singh; P C Bhat; N V Mokhov; S Beri

    2010-05-01

    The intense radiation environment at the Large Hadron Collider, CERN at a design energy of $\\sqrt{s} = 14$ TeV and a luminosity of 1034 cm−2S−1 poses unprecedented challenges for safe operation and performance quality of the silicon tracker detectors in the CMS and ATLAS experiments. The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton–proton collisions at $\\sqrt{s} = 14$ TeV and from machine-induced background such as beam–gas interactions and beam halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detectors.

  12. Search for Microscopic Black Hole Signatures at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ka Vang [Brown Univ., Providence, RI (United States)

    2011-05-01

    A search for microscopic black hole production and decay in proton-proton collisions at a center-of-mass energy of 7 TeV has been conducted using Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider. A total integrated luminosity of 35 pb-1 data sample, taken by CMS Collaboration in year 2010, has been analyzed. A novel background estimation for multi-jet events beyond TeV scale has been developed. A good agreement with standard model backgrounds, dominated by multi-jet production, is observed for various final-state multiplicities. Using semi-classical approximation, upper limits on minimum black hole mass at 95% confidence level are set in the range of 3.5 - 4.5 TeV for values of the Planck scale up to 3 TeV. Model-independent limits are provided to further constrain microscopic black hole models with additional regions of parameter space, as well as new physics models with multiple energetic final states. These are the first limits on microscopic black hole production at a particle accelerator.

  13. Commissioning and First Operation of Superconducting Links at the Large Hadron Collider (LHC)

    CERN Document Server

    van Weelderen, R; Perin, A; Darve, C; Doohan, R S; Gilankar, S G

    2010-01-01

    The Large Hadron Collider (LHC) now under commissioning at CERN is a 26.7 km collider based on several thousand high-field superconducting magnets, the majority of which operating in superfluid helium below 2 K and some isolated magnets operating in normal helium at 4.5 K. Four superconducting links (DSLs) of about 76 m in length and one of about 517 m in length, were designed, constructed and installed over a three year period. Their purpose is to transport current over long distances whenever underground LHC space constraints prevents to put power converters, current feed boxes and magnets in each others’ proximity. The four 76 m long DSLs transport current between current feed boxes and several of the isolated magnets, whereas the 517 m long DSL transports current between two current feed boxes. The links are comprised of cryogenic, vacuum-insulated, transfer lines housing one or more superconducting cables. The operating temperatures are about 5 K for the DSL part that houses the cable and about 60 K fo...

  14. First electron-cloud studies at the Large Hadron Collider

    CERN Document Server

    Dominguez, O; Arduini, G; Metral, E; Rumolo, G; Zimmermann, F; Maury Cuna, H

    2013-01-01

    During the beam commissioning of the Large Hadron Collider (LHC) with 150, 75, 50, and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities, or emittance growth, were observed. Methods have been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise as well as heat-load observations. These methods allow us to monitor the scrubbing process, i.e., the reduction of the secondary emission yield as a function of time, in order to decide on the most appropriate strategies for machine operation. To better understand the influence of electron clouds on the beam dynamics, simulations have been carried out to examine both the coherent and the incoherent effects on the beam. In this paper we present the methodology and first results for the scrubbing monitoring process at the LHC. We also review simulated instability thresholds and tune footprints for beams of different emittance, interacting with an electr...

  15. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  16. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  17. The Hunt for New Physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.

  18. The Hunt for New Physics at the Large Hadron Collider

    CERN Document Server

    Nath, Pran; Davoudiasl, Hooman; Dutta, Bhaskar; Feldman, Daniel; Liu, Zuowei; Han, Tao; Langacker, Paul; Mohapatra, Rabi; Valle, Jose; Pilaftsis, Apostolos; Zerwas, Dirk; AbdusSalam, Shehu; Adam-Bourdarios, Claire; Aguilar-Saavedra, J A; Allanach, Benjamin; Altunkaynak, B; Anchordoqui, Luis A; Baer, Howard; Bajc, Borut; Buchmueller, O; Carena, M; Cavanaugh, R; Chang, S; Choi, Kiwoon; Csaki, C; Dawson, S; de Campos, F; De Roeck, A; Duhrssen, M; Eboli, O J.P; Ellis, J R; Flacher, H; Goldberg, H; Grimus, W; Haisch, U; Heinemeyer, S; Hirsch, M; Holmes, M; Ibrahim, Tarek; Isidori, G; Kane, Gordon; Kong, K; Lafaye, Remi; Landsberg, G; Lavoura, L; Lee, Jae Sik; Lee, Seung J; Lisanti, M; Lust, Dieter; Magro, M B; Mahbubani, R; Malinsky, M; Maltoni, Fabio; Morisi, S; Muhlleitner, M M; Mukhopadhyaya, B; Neubert, M; Olive, K A; Perez, Gilad; Perez, Pavel Fileviez; Plehn, T; Ponton, E; Porod, Werner; Quevedo, F; Rauch, M; Restrepo, D; Rizzo, T G; Romao, J C; Ronga, F J; Santiago, Jose; Schechter, J; Senjanovic, G; Shao, J; Spira, M; Stieberger, S; Sullivan, Zack; Tait, Tim M P; Tata, Xerxes; Taylor, T R; Toharia, M; Wacker, J; Wagner, C E.M; Wang, Lian-Tao; Weiglein, G; Zeppenfeld, D; Zurek, K

    2010-01-01

    The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory ...

  19. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    S Bansal; K Mazumdar; J B Singh

    2010-02-01

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible backgrounds. Realistic simulations have been used in the context of CMS experiment to devise a set of event selection criteria which eventually enhances the signal contribution compared to the background processes in characteristic distributions. In cut-based analysis, multi-jet background is found to overwhelm the signal in the finally selected sample. With an integrated luminosity of 10 fb-1, an upper limit of 36% on the branching ratio can be obtained for Higgs boson with a mass of 120 GeV/c2 for LHC energy of 14 TeV. Since the analysis essentially depends on the background estimation, detailed studies have been done to determine the background rates from real data.

  20. Hadron multiplicities in Pb+Pb collisions at the large hadron collider and pomeron loop effects

    International Nuclear Information System (INIS)

    We study the pseudo-rapidity distribution of hadron multiplicities of high energy Pb+Pb collisions by using color glass condensate dynamics at LHC/ALICE in the fixed coupling case. It is found that after including the pomeron loop effects the charged hadron multiplicities at central rapidity are about 1500 for central Pb+Pb collisions, which are significantly smaller than the saturation based calculations, ∼1700 ÷ 2500 and compatible with that based on a study of multiplicities in the fragmentation region. (authors)

  1. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects

    International Nuclear Information System (INIS)

    We study the pseudo-rapidity distribution of hadron multiplicities of high energy Pb+Pb collisions by using color glass condensate dynamics at LHC/ALICE in the fixed coupling case. It is found that after including the pomeron loop effects the charged hadron multiplicities at central rapidity are about 1500 for central Pb+Pb collisions, which are significantly smaller than the saturation based calculations, ∼ 1700 ÷ 2500 and compatible with that based on a study of multiplicities in the fragmentation region. (nuclear physics)

  2. Cern collisions light up Copenhagen

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "Anyone passing by the Niels Bohr Institute in Copenhagen, Denmark, might be startled by some strange moving lights on the facade of the institute's main building. In fact, the dancing beams show, almost in real time, collisions form the Atlas experiment at Cern's Large Hadron Collider (LHC)" (1 paragraph)

  3. Melting hadrons, boiling quarks from Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERN : with a tribute to Rolf Hagedorn

    CERN Document Server

    2015-01-01

    This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...

  4. Large Hadron Collider in crisis as magnet costs spiral upwards

    CERN Multimedia

    Adam, D

    2001-01-01

    Managers of the LHC project admitted this week that it faces cost overruns of several hundred million dollars. CERN will face years of budget cuts but this will cover only a fraction of the extra costs - the 20 member states will be asked to cover the rest (1 page).

  5. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    CERN Document Server

    Dominguez, O; Maury, H; Rumolo, G; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called scrubbing process. Finally, some other electron-cloud studies related to the LHC are mentioned, and future study plans are described. Presented at MulCoPim2011, Valencia, Spain, 21-23 September 2011.

  6. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gildemeister, Otto; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmid, Peter; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trilling, George; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga–electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  7. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; /CERN; Bocian, D.; /Fermilab /CERN; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  8. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    Science.gov (United States)

    ATLAS Collabortion; Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Balek, P.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, A. K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.

    2012-12-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  9. CERN celebrates discoveries and looks to the future

    CERN Document Server

    CERN Press Office. Geneva

    2003-01-01

    Nobel laureates will be among the distinguished guests at a symposium at CERN on 16 September. The symposium will celebrate the double anniversary of major discoveries at CERN that underlie the modern theory of particles and forces. It will also look forward to future challenges and opportunities ... with the construction of the Large Hadron Collider.

  10. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Rudolph C. Hwa

    2015-01-01

    Full Text Available The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and nonlocal. Models that are concerned with the pT spectra and azimuthal anisotropy belong to the former, that is, hadronization at a local point in (η,ϕ space, such as the recombination model. The nonlocal problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the (η,ϕ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small pT intervals to make the observation of distinctive features of clustering of soft particles, as well as voids, feasible that characterize the critical behavior at phase transition from quarks to hadrons, without any ambiguity posed by the clustering of jet particles.

  11. Quantitative Calculations for Black Hole Production at the Large Hadron Collider

    CERN Document Server

    Bock, Nicolas

    2008-01-01

    The framework of Large Extra Dimensions provides a way to explain why gravity is weaker compared to the other forces in nature. A consequence of this model is the possible production of D-dimensional Black Holes in high energy p-p collisions at the Large Hadron Collider. The present work uses the CATFISH Black Hole generator to study quantitatively how these events could be observed in the hadronic channel at mid-rapidity using a particle tracking detector.

  12. Measurement of → → inclusive process at Large Hadron Collider

    Indian Academy of Sciences (India)

    S Bansal; K Mazumdar; J B Singh

    2010-09-01

    In several scenarios of beyond Standard Model physics a new heavy resonance is invoked which may decay preferentially, to a pair of taus. Identification of the decay of Standard Model resonance to tau pairs at LHC via subsequent decays of the taus to leptons as well as hadrons is the first step towards the discovery. A method has been suggested to discriminate to tau pair to electron + muon final state against various backgrounds, for early phase of 14 TeV LHC.

  13. Signing of the agreement between CERN and the United States

    CERN Multimedia

    1997-01-01

    Siging of the agreement between CERN and the United States for a contribution of $531 million to the Large Hadron Collider (LHC) project. The Agreement was signed by Dr. Matha Krebs, Director of the Office of Energy Research, DOE, Dr Bob Eisenstein, Assistant Director of Physical and Mathematical Science, NSF, and Prof. Christopher Llewellyn Smith, Director General of CERN at the Council session in December 1997. At the same occasion, the USA was granted Observer Status at CERN.

  14. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    CERN Document Server

    Hwa, Rudolph C

    2014-01-01

    The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and non-local. Models that are concerned with the $p_T$ spectra and azimuthal anisotropy belong to the former, i.e., hadronization at a local point in $(\\eta,\\phi)$ space, such as the recombination model. The non-local problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the $(\\eta,\\phi)$ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small $p_T$ intervals to make feasible the observation of distinctive features of cl...

  15. Large hadron collider physics program: Compact muon solenoid experiment

    Indian Academy of Sciences (India)

    J B Singh

    2000-04-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in -system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark–gluon plasma.

  16. CERN boss quashes LHC delay rumours

    CERN Multimedia

    2007-01-01

    "Robert Aymar, the director general of CERN, has dispelled rumours that a series of buckled electrical connectors at the Large Hadron Collider will delay the accelerator's official start-up date of May 2008. Writing in this week's CERN Bulletin, Aymar says that the problem concerns only a small percentage of the connectors and that it is "business as usual" for bringing the new accelerator online." (1,5 page)

  17. Loans may keep CERN collider on target

    CERN Document Server

    Abbott, A

    1996-01-01

    The European Laboratory for Particle Physics (CERN) is considering taking out bank loans to fund its Large Hadron Collider project. CERN officials are evaluating this option in view of the German government's decision to substantially reduce its annual contributions to the project. They state that the bank loans may be the only way to complete the project by the year 2005, especially if other contributing nations follow Germany's lead.

  18. Le Japon devient observateur au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    A Japanese delegation, lead by Mr. Kaoru Yosano, Japan's Minister of Monbusho, (Ministry of Education, Science and Culture), was warmly applauded by the delegates of CERN's Member States when it entered the Council Chamber for the first time as an official Observer. Mr. Yosano, thanked the CERN Council for unanimously agreeing to grant Japan Official Observer Status and also accepting Japan's offer to contribute to the Large Hadron Collider (LHC) project.

  19. The Large Hadron Collider harvest of run 1

    CERN Document Server

    2015-01-01

    This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics and searches for super symmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research, typically one from each of the two multi-purpose experiments ATLAS and CMS and one from theory.

  20. Mirror mesons at the Large Hadron Collider (LHC)

    CERN Document Server

    Triantaphyllou, George

    2016-01-01

    The existence of mirror partners of Standard-Model fermions offers a viable alternative to a fundamental BEH mechanism, with the coupling corresponding to the gauged mirror generation symmetry becoming naturally strong at energies around 1 TeV. The resulting non-perturbative processes produce dynamical katoptron masses which might range from 0.1 to 1.15 TeV in a way circumventing usual problems with the S parameter. Moreover, they create mirror mesons belonging in two main groups, with masses differing from each other approximately by a factor of six and which might range approximately from 0.1 to 2.8 TeV. Since the corresponding phenomenology expected at hadron colliders is particularly rich, some interesting mirror-meson cross-sections are presented, something that might also lead to a deeper understanding of the underlying mirror fermion structure. Among other findings, results in principle compatible with indications from LHC concerning decays of new particles to two photons are analyzed.

  1. Matter-Antimatter Asymmetry in the Large Hadron Collider

    CERN Document Server

    Tawfik, A

    2010-01-01

    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various $NN$ and $AA$ collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from $\\sim 0%$ at AGS to $\\sim 100%$ at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant...

  2. High performance distributed objects in large hadron collider experiments

    International Nuclear Information System (INIS)

    This dissertation demonstrates how object-oriented technology can support the development of software that has to meet the requirements of high performance distributed data acquisition systems. The environment for this work is a system under planning for the Compact Muon Solenoid experiment at CERN that shall start its operation in the year 2005. The long operational phase of the experiment together with a tight and puzzling interaction with custom devices make the quest for an evolvable architecture that exhibits a high level of abstraction the driving issue. The question arises if an existing approach already fits our needs. The presented work casts light on these problems and as a result comprises the following novel contributions: - Application of object technology at hardware/software boundary. Software components at this level must be characterised by high efficiency and extensibility at the same time. - Identification of limitations when deploying commercial-off-the-shelf middleware for distributed object-oriented computing. - Capturing of software component properties in an efficiency model for ease of comparison and improvement. - Proof of feasibility that the encountered deficiencies in middleware can be avoided and that with the use of software components the imposed requirements can be met. - Design and implementation of an on-line software control system that allows to take into account the ever evolving requirements by avoiding hardwired policies. We conclude that state-of-the-art middleware cannot meet the required efficiency of the planned data acquisition system. Although new tool generations already provide a certain degree of configurability, the obligation to follow standards specifications does not allow the necessary optimisations. We identified the major limiting factors and argue that a custom solution following a component model with narrow interfaces can satisfy our requirements. This approach has been adopted for the current design

  3. CERN selects Fujikura's radiation resistant fibre

    CERN Multimedia

    2007-01-01

    "Fujikura today announced that its radiation resistant single mode optical fibre has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large hadron Collider (LHC) - near Genevan, Switzerland. (1/2 page)

  4. CERN set sights on an early LHC

    CERN Multimedia

    Hellemans, A

    1997-01-01

    CERN voted to advance the completion date of the Large Hadron Collider by three years, to 2005, while cutting the budget of some other projects. It is hoped that the unprecedented power of the $2-billion LHC will help prove the existence of the Higgs boson and other theoretically predicted particles.

  5. Torchwood sends inspection team to CERN

    CERN Multimedia

    Sherriff, Lucy

    2007-01-01

    "Torchwood's Captain Jack has been sighted at CERN's Large Hadron Collider. Does this mean that when it is switched on it is likely to open a rift under Cardiff from whence all manner of spooky things shall spring?" (1/2 page)

  6. The DELPHI detector at CERN's LEP collider

    CERN Multimedia

    1998-01-01

    DELPHI (DEtector with Lepton, Photon and Hadron Identification), is a detector for e+e- physics, with special emphasis on powerful particle identification , three-dimensional information, high granularity and precise vertex determination. It is installed at LEP (Large Electron and Positron collider) at CERN where it has operated since 1989.

  7. Bosons & More: Celebrating CERN / Part 2

    CERN Multimedia

    Team, CERN

    2013-01-01

    The "Bosons & More" event for CERN people this evening celebrated the success of the Open Days, and the exceptional achievements of the Large Hadron Collider (LHC). The British progressive rock band the Alan Parsons Live Project lead the celebrations until late in the night.

  8. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura recently announced that its radiation resistant single mode optical fiber has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large Hadron Collider (LHC) - near Geneva, Switzerland." (1/2 page)

  9. CERN signs agreement with New Zealand

    CERN Multimedia

    2003-01-01

    "New Zealand's particle physicists have joined the world's most ambitious scientific undertaking with the signing of a Memorandum of Understanding (MoU) between their government and CERN . This agreement formalises the participation of New Zealand scientists in the laboratory's Large Hadron Collider (LHC) project" (1 page).

  10. Milestone, Weighing 1430 Tons, Reached at CERN

    CERN Multimedia

    2008-01-01

    More on the subject of the Large Hadron Collider (see my last post, pointing to the very good Scientific American package). CERN announced today that the final piece of one of the main LHC particle detectors was at last safely lowered underground early this morning.

  11. Temperature dependent formation-time approach for $\\Upsilon$ suppression at energies available at the CERN Large Hadraon Collider

    CERN Document Server

    Ganesh, S

    2015-01-01

    We present here a comprehensive model to describe the bottomonium suppression data obtained from the CERN Large Hadron Collider (LHC) at center-of-mass energy of $\\sqrt{s_{NN}}=2.76$ TeV. We employ a quasiparticle model (QPM) equation of state for the quark-gluon plasma (QGP) expanding under Bjorken's scaling law. The current model includes the modification of the formation time based on the temperature of the QGP, color screening during bottomonium production, gluon induced dissociation and collisional damping due to the imaginary part of the potential between the $b\\bar b$ pair. We propose a method for determining the temperature-dependent formation time of bottomonia using the solution of the time-independent Schr\\"{o}dinger equation and compare it with another approach based on time-dependent Schr\\"{o}dinger wave equation simulation. We find that these two independent methods based on different axioms give similar results for the formation time. Cold nuclear matter effects and feed-down from higher resona...

  12. Transport of the Hadronic Forward (HF) calorimeter from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  13. Transport of the first half of the CMS hadronic forward calorimeter (HF) from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  14. Development of a High-Level Trigger for the Dimuon Spectrometer of the ALICE Experiment at the Large Hadron Collider

    CERN Document Server

    Becker, Bruce

    The ALICE experiment at CERN's Large Hadronic Collider will mark the beginning of a new phase in the study of ultra-relativistic heavy ion-collisions. It will be possible to explore in great detail phenomena discovered or hinted at in the course of experiments at the Relativistic Heavy Ion Collider, in particular the signals of the quark-gluon plasma. One of the most promising signals of the creation of this new state of matter is the anomalous suppression of the Υ (bb) and J/v(cc) families. One of the main decay channels of these mesons is into dimuons and ALICE has a dedicated dimuon spectrometer in order to study the spectra of these interesting particles. The signal is, however, swamped by a large background from several other muonic sources. Due to the large data rate expected for ALICE and the limited bandwidth, a highly efficient and selective trigger is required for the experiment - the dimuon high-level trigger (dHLT). This thesis concerns the context, development and implementation of the ALICE dim...

  15. Contribution supplémentaire de 5 milliards de yens du Japon au grand collisionneur de hadrons du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1998-01-01

    Japan's Ministry of Education, Science, Sports and Culture (Monbusho), has announced, subject to approval by the Diet, a further contribution of 5 billion Yen (approximately 56 million Swiss francs) for the construction of the LHC. This generous gesture reinforces the excellent relations that have been established between CERN and Japan.

  16. 1990 CERN School of Physics

    International Nuclear Information System (INIS)

    The CERN School of Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain reports of lectures on the following topics: Field theory, electroweak theory, physics beyond the Standard Model, QCD, heavy flavours and CP violation, results from LEP experiments, particle accelerator technology, tau charm factories, and the Large Hadron Collider project. (orig.)

  17. Discovering a Light Scalar or Pseudoscalar at The Large Hadron Collider

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sannino, Francesco

    2012-01-01

    The allowed standard model Higgs mass range has been reduced to a region between 114 and 130 GeV or above 500 GeV, at the 99% confidence level, since the Large Hadron Collider (LHC) program started. Furthermore some of the experiments at Tevatron and LHC observe excesses that could arise from...

  18. Improving the discovery potential of charged Higgs bosons at the Tevatron and large hadron collider

    Indian Academy of Sciences (India)

    Stefano Moretti

    2003-02-01

    We outline several improvements to the experimental analyses carried out at Tevatron (Run 2) or simulated in view of the large hadron collider (LHC) that could increase the scope of CDF/D0 and ATLAS/CMS in detecting charged Higgs bosons.

  19. Z-Z′ Mixing E˙ects at the Large Hadron Collider

    OpenAIRE

    V. V. Andreev; Pankov, A. A.

    2014-01-01

    We discuss the expected sensitivity to Z′ boson e˙ects in the W ± boson pair production process at the Large Hadron Collider (LHC). The results of a model-dependent analysis of Z′ boson e˙ects are presented as constraints on the Z-Z′ mixing angle ˚ and Z′ boson mass.

  20. The $B-L$ Supersymmetric Standard Model with Inverse Seesaw at the Large Hadron Collider

    CERN Document Server

    Khalil, S

    2015-01-01

    We review the TeV scale $B-L$ extension of the Minimal Supersymmetric Standard Model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the Large Hadron Collider (LHC).

  1. Production of extra quarks at the Large Hadron Collider beyond the Narrow Width Approximation

    CERN Document Server

    Moretti, Stefano; Panizzi, Luca; Prager, Hugo

    2016-01-01

    This paper explores the effects of both finite width and interference (with background) in the production and decay of extra heavy quarks at the Large Hadron Collider (LHC). This dynamics is normally ignored in standard experimental searches and we assess herein the regions of validity of current approaches. Further, we discuss the configurations of masses, widths and couplings where the latter breaks down.

  2. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Physics at the Large Hadron Collider

    Science.gov (United States)

    Dremin, Igor M.

    2009-06-01

    The goals of the physics to be studied at the Large Hadron Collider (LHC) are very impressive. Four major experimental installations are ready to compete in obtaining and analyzing the data from high-energy hadron collisions. The main hope is to answer the most intricate questions ever asked concerning the most fundamental problems of matter and its fundamental forces and space structure. The design of the LHC and its four detectors is briefly described. We then review the main facts revealed previously by experimentalists at other accelerators. The most pertinent topics and the stage-by-stage plans for LHC investigations are discussed. Further prospects for high-energy physics are outlined.

  3. Proceedings of the Sixth International Workshop on Multiple Partonic Interactions at the Large Hadron Collider

    CERN Document Server

    Astalos, R; Bartalini, P; Belyaev, I; Bierlich, Ch; Blok, B; Buckley, A; Ceccopieri, F A; Cherednikov, I; Christiansen, J R; Ciangottini, D; Deak, M; Ducloue, B; Field, R; Gaunt, J R; Golec-Biernat, K; Goerlich, L; Grebenyuk, A; Gueta, O; Gunnellini, P; Helenius, I; Jung, H; Kar, D; Kepka, O; Klusek-Gawenda, M; Knutsson, A; Kotko, P; Krasny, M W; Kutak, K; Lewandowska, E; Lykasov, G; Maciula, R; Moraes, A M; Martin, T; Mitsuka, G; Motyka, L; Myska, M; Otwinowski, J; Pierog, T; Pleskot, V; Rinaldi, M; Schafer, W; Siodmok, A; Sjostrand, T; Snigirev, A; Stasto, A; Staszewski, R; Stebel, T; Strikman, M; Szczurek, A; Treleani, D; Trzebinski, M; van Haevermaet, H; van Hameren, A; van Mechelen, P; Waalewijn, W; Wang, W Y

    2015-01-01

    Multiple Partonic Interactions are often crucial for interpreting results obtained at the Large Hadron Collider (LHC). The quest for a sound understanding of the dynamics behind MPI - particularly at this time when the LHC is due to start its "Run II" operations - has focused the aim of this workshop. MPI@LHC2014 concentrated mainly on the phenomenology of LHC measurements whilst keeping in perspective those results obtained at previous hadron colliders. The workshop has also debated some of the state-of-the-art theoretical considerations and the modeling of MPI in Monte Carlo event generators. The topics debated in the workshop included: Phenomenology of MPI processes and multiparton distributions; Considerations for the description of MPI in Quantum Chromodynamics (QCD); Measuring multiple partonic interactions; Experimental results on inelastic hadronic collisions: underlying event, minimum bias, forward energy flow; Monte Carlo generator development and tuning; Connections with low-x phenomena, diffractio...

  4. CERN's 50th anniversary open day attracts record number of visitors

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    Some of the biggest attractions were the huge detectors under construction for the Large Hadron Collider. Such tours helped the visitors gain a sense of the scale of CERN's work - and even those who already had some notion of CERN were awed by the gigantic detectors, caverns, and tunnels.

  5. CERN is 25 years old

    CERN Document Server

    Anthoine, R

    1979-01-01

    Reviews the history of CERN, the European Organisation for Nuclear Research, which has just celebrated its twenty-fifth anniversary. The member states, the site (Geneva) and accelerators, and the research carried out are all discussed. Amongst the apparatus and research described are the SPS (Super Proton Synchrotron), the ISOLDE linear isotope separator, BEBC (Big European Bubble Chamber), and the ISR (Intersecting Storage Rings). Discoveries made since the founding of CERN include that of neutral currents, measurement of the magnetic characteristics of the muon to a great accuracy, creation of exotic atoms, neutrino analysis of proton and neutron structure, hadron classification, future/past time asymmetry in neutral kaons, and the first measurements of the lifetimes of charmed hadrons. Future projects considered include LEP, the Large Electron Positron Ring. (0 refs).

  6. CERN recognises LHC suppliers

    CERN Multimedia

    2002-01-01

    CERN has just presented the first awards recognising LHC suppliers. The Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang are the recipients of the first 'Golden Hadrons'.

  7. Detecting H→hh in the mirror model at the CERN Large Hadron Collider

    Science.gov (United States)

    Li, Wen-Sheng; Yin, Peng-Fei; Zhu, Shou-Hua

    2007-11-01

    The Higgs sector may play an important role in detecting mirror particles, which can be the candidates of dark matter and appear as missing energy in the detectors at the LHC. In this paper we worked out the Higgs boson spectrum and the Higgs couplings for the symmetric vacuum, namely v1=v2=v, in the mirror model, and investigated the constraints from electroweak precision observables. Our study showed that electroweak precision observables have already constrained the Higgs boson sector severely. We then explored the Higgs boson phenomenology, and focused on the scenario that the heavier Higgs boson H can decay into a pair of lighter Higgs bosons h. We proposed to study the invisible decay of the Higgs boson via the pair production of them, in which one Higgs boson decays into bottom quarks and the other decays invisibly. Our detail simulation for signals and backgrounds showed that the observation of the signal can reach 5σ significance for mH=260GeV and mh=115GeV with 10fb-1 integrated luminosity at the LHC. Moreover the possible method to further suppress dominant Zbb¯ background was discussed. We also simulated the signals and backgrounds for H→hh→4b. Our results showed that it is very difficult to isolate the signals from huge QCD continuum backgrounds.

  8. Open charm production in p + p and Pb + Pb collisions at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Effects of strong longitudinal color electric fields, shadowing, and quenching on the production of prompt open charm mesons (D0, D+, D∗+, Ds+) in central Pb + Pb collisions at √(sNN) = 2.76 TeV are investigated within the framework of the HIJING/B B-bar v2.0 model. We compute the nuclear modification factor RPbPbD, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of color fields (as characterized by the string tension κ), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for beauty mesons are presented. In addition, ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) p+p collisions at 2.76 TeV are also discussed. MB p+p collisions which constitute a theoretical baseline in our calculations are studied at centre of mass energies √s = 2.76 TeV and 7 TeV. (paper)

  9. RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Baudrenghien, P.; /CERN

    2011-03-03

    The LHC RF station-beam interaction strongly influences the longitudinal beam dynamics, both single bunch and collective effects. Non-linearities and noise generated within the Radio Frequency (RF) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the RF accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the RF components and the configuration of the Low Level RF (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the RF system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations.

  10. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  11. Universal doublet-singlet Higgs couplings and phenomenology at the CERN Large Hadron Collider

    CERN Document Server

    Bhattacharyya, Gautam; Nandi, S

    2008-01-01

    We consider a minimal extension of the Standard Model where a real, gauge singlet scalar field is added to the standard spectrum. Introducing the Ansatz of universality of scalar couplings, we are led to a scenario which has a set of very distinctive and testable predictions: (i) the mixing between the SM Higgs and the new state is near maximal, (ii) the ratio of the two Higgs mass eigenstates is fixed ($\\sim \\sqrt{3}$), (iii) the decay modes of each of the two eigenstates are Standard Model like. We also study how electroweak precision tests constrain this scenario. We predict the lighter Higgs to lie in the range of 114 and 145 GeV, and hence the heavier one between 198 and 250 GeV. The predictions of the model can be tested at the upcoming LHC.

  12. Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    CERN Document Server

    Bittner, B; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.

    2016-01-01

    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide e?cient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge e?ects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial...

  13. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement chain and other organizations; (d) the general public, including onsite and website visitors and other media users. These benefits are respectively related to the knowledge output of scientists; human capital formation; technological spillovers; and direct cultural effects for the general public. Welfare effects for taxpayers can also be estimated by the contingent valuation of the willingness to pay for a pure public good for which there is no specific direct use (i.e., as non-use value). Using a Monte Carlo approach, w...

  14. TRADING STUDIES OF A VERY LARGE HADRON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    RUGGIERO,A.G.

    1996-11-04

    The authors have shown that the design of the ELOISATRON can be approached in five separate steps. In this report they deal with the two major issues of the collider: the size and the strength of the superconducting magnets. The reference design of the SSC calls for a collider circumference of 86 km. It represents the largest size that until recently was judged feasible. The reference design of the LHC requires a bending field of 9 Tesla, that industries are presently determined to demonstrate. Clearly the large size of the project presents problem with magnet tolerances, and collider operation and management. The high field of the superconducting magnets needs to be demonstrated, and the high-field option in excess of 9 Tesla requires extensive research and development. It is obvious from the start that, if the ELOISATRON has to allow large beam energies, the circumference has also to be larger than that of the SSC, probably of few hundred kilometers. On the other end, Tevatron, RHIC and SSC type of superconducting magnets have been built and demonstrated on a large scale and proven to be cost effective and reliable. Their field, nevertheless, hardly can exceed a value of 7.5 Tesla, without major modifications that need to be studied. The LHC type of magnets may be capable of 9 Tesla, but they are being investigated presently by the European industries. It is desired that if one wants to keep the size of the ring under reasonable limits, a somewhat higher bending field is required for the ELOISATRON, especially if one wants also to take advantage of the synchrotron radiation effects. A field value of 13 Tesla, twice the value of the SSC superconducting magnets, has recently been proposed, but it clearly needs a robust program of research and development. This magnet will not probably be of the RHIC/SSC type and not even of the LHC type. It will have to be designed and conceived anew. In the following they examine two possible approaches. In the first approach

  15. Rare b hadron decays at the LHC

    CERN Document Server

    Blake, T; Hiller, G

    2015-01-01

    With the completion of Run~I of the CERN Large Hadron Collider, particle physics has entered a new era. The production of unprecedented numbers of heavy-flavoured hadrons in high energy proton-proton collisions allows detailed studies of flavour-changing processes. The increasingly precise measurements allow to probe the Standard Model with a new level of accuracy. Rare $b$ hadron decays provide some of the most promising approaches for such tests, since there are several observables which can be cleanly interpreted from a theoretical viewpoint. In this article, the status and prospects in this field are reviewed, with a focus on precision measurements and null tests.

  16. Large X Hadron Physics and Correlations with Central Region Phenomena

    CERN Multimedia

    2002-01-01

    The experiment uses a forward double-septum magnetic spectrometer with acceptance of @+~150~mrad to study the production of multiparticle systems. The system of mini-drift MWPC's has a processor which enables real-time selection of different multiplicities. The 32-cell Cherenkov counters along with the T.O.F. system allow the identification and separation of @p's, K's and p's over a large momentum range. A 3~m~x~3~m shower counter is installed to measure @p|0's and @g's traversing the spectrometer. \\\\ \\\\ A magnetic spectrometer installed at 90|0 measures identified single particles (T.O.F. and aerogel Cherenkov counters) and permits the measurement of flavour correlations with the forward spectrometer. Momentum selection of the 90|0 particles is incorporated in the trigger. .in +3 The experiment is data taking and studying such topics as 1) Production of @L^c|+ @A @L@p|+@p|+@p|- @A pK|-@p|+ 2) Glueball search in diffractive production of p @A pK|0^sK@+@p, pK|0^sK|0^s, p@L@L, etc... 3) p@*, pp comparison inclu...

  17. Signing of the agreement between CERN and the United States in 1997

    CERN Multimedia

    1997-01-01

    Signing of the agreement between CERN and the United States for a contribution of $531 million to the Large Hadron Collider (LHC) project. The agreement was signed by Matha Krebs, Director of the Office of Energy Research, DOE, Bob Eisenstein, Assistant Director of Physical and Mathematical Science, NSF, and Christopher Llewellyn Smith, former Director-General of CERN at the Council session in December 1997. At the same occasion the USA was granted Observer Status at CERN.

  18. Canadian ATLAS data center to support CERN's LHC

    CERN Multimedia

    2006-01-01

    "The biggest science experiment in history is currently underway at the world-famous CERN labs in Switzerland, and Canada is poised to play a critical role in its success. Thanks to a $10.5 million investment announced by the Canada Foundation for Innovation (CFI), an ultra-sophisticated computing facility -- the ATLAS Data Center -- will be created to support the ATLAS project at CERN's Large Hadron Collider (LHC)." (1 page)

  19. Computer Security: Security operations at CERN (4/4)

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Stefan Lueders, PhD, graduated from the Swiss Federal Institute of Technology in Zurich and joined CERN in 2002. Being initially developer of a common safety system used in all four experiments at the Large Hadron Collider, he gathered expertise in cyber-security issues of control systems. Consequently in 2004, he took over responsibilities in securing CERN's accelerator and infrastructure control systems against cyber-threats. Subsequently, he joined the CERN Computer Security Incident Response Team and is today heading this team as CERN's Computer Security Officer with the mandate to coordinate all aspects of CERN's computer security --- office computing security, computer centre security, GRID computing security and control system security --- whilst taking into account CERN's operational needs. Dr. Lueders has presented on these topics at many different occasions to international bodies, governments, and companies, and published several articles. With the prevalence of modern information technologies and...

  20. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    OpenAIRE

    F. Colecchia

    2013-01-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most nota...

  1. Physics at the high-energy frontier - the Large Hadron Collider project

    CERN Document Server

    Brown, Robert; Evans, David; Gibson, Valerie; Nickerson, Richard

    2012-01-01

    The Large Hadron Collider (LHC), achieved its first particle collisions in late 2009 and is now running at 7 TeV, the highest energy ever attained in the laboratory, thereby opening the way for the search for many new phenomena. The aim of the meeting is to discuss the scientific, technical, sociological, political and financial challenges of bringing this huge international project to fruition.

  2. Phenomenology of supersymmetric Z ′ decays at the Large Hadron Collider

    OpenAIRE

    Corcella, Gennaro

    2015-01-01

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into superymmetric particles, such as chargino, neutralino and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at sqrt{s}=14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modif...

  3. Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider

    OpenAIRE

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Yaguna, Carlos E.

    2016-01-01

    We show that the proposed Large Hadron electron Collider (LHeC) will provide a great opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC -- including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determ...

  4. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  5. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R; Jowett, J; Bocian, D; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  6. Optimization of the design of DC-DC converters for improving the electromagnetic compatibility with the Front-End electronic for the super Large Hadron Collider Trackers

    CERN Document Server

    Fuentes Rojas, Cristian Alejandro; Blanchot, G

    2011-01-01

    The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.

  7. Measurement of vector meson and direct photon production at large transverse momentum at the CERN ISR

    International Nuclear Information System (INIS)

    The production at large transverse momentum of low mass electron pairs was investigated at the CERN Intersecting Storage Rings using lithium/xenon transition radiation detectors and liquid argon calorimeters. Production of the vector mesons rho0, ω0, and phi was observed with cross sections consistent with the assumptions that rho0, ω0, and π0 production are nearly equal at large p/sub t/ and that phi production is suppressed by about an order of magnitude relative to rho0 and ω0 production. The observed low mass virtual photon continuum between masses of 200 and 500 MeV was consistent with estimates of Dalitz decays plus predictions of the vector dominance model. The measured cross section for virtual photon production enabled a limit of (0.5 +- 1.0) percent to be placed on the ratio of direct real photon production to π0 production

  8. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  9. A position sensitive highly radiation hard and fast hadron calorimeter for a lead ion experiment at CERN SPS

    International Nuclear Information System (INIS)

    We present the performance of the Zero Degree Calorimeter (ZDC) built for the NA50 experiment at the CERN SPS. This detector measures the Cherenkov light produced in silica optical fibres embedded in tantalum and offers the double advantage of being highly radiation resistant (up to several Grad) and very fast (signal width of the order of 10 ns). It has an active volume of 5 x 5 x 65 cm3 with a fibre to tantalum volume ratio of 1/17; the fibres are positioned at an angle of 0 circle with respect to the beam direction and have a diameter of 365 μm. The measured energy resolution (σ/E) is 30% for protons at 205 GeV and 5% for lead ions at 160 GeV/nucleon.The detector exhibits also very good localising properties since it can detect the impact point of the lead beam on its front face with a precision better than 0.4 mm rms. (orig.)

  10. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider.

    Science.gov (United States)

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S; Jeon, Sangyong; Gale, Charles

    2016-02-19

    The collective behavior of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low p_{T} direct photon spectrum by a factor of 2-3 in 0%-1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems. PMID:26943529

  11. Investigation of induced radioactivity in the CERN Large Electron Positron collider for its decommissioning

    CERN Document Server

    Silari, Marco

    2004-01-01

    The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...

  12. Signature for a partership between CERN and Israel - His Excellency Mr Itzhak Levanon, Ambassador, Permanent Representative of Israel to the Unite Nations Office and specialized institutions in Geneva and Mr Robert Aymar, CERN Director General

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 29 November 2004, the Israeli ambassador to the United Nations Office at Geneva, Itzhak Levanon, and CERN's director-general, Robert Aymar, signed a new protocol to the Co-operation Agreement between the government of Israel and CERN. This protocol covers a substantial increase in the Israeli contribution to CERN's Large Hadron Collider (LHC) Project. Israeli scientists have been participating in CERN's scientific activities since 1960, and in 1992 Israel became the first non-member state to make regular financial contributions to CERN's budget.

  13. Collectivity of strange hadrons in small and large colliding systems with CMS

    CERN Document Server

    Stephans, George Stewart

    2016-01-01

    Observation of a long-range, near-side, two-particle correlation (known as the ``Ridge") in high-multiplicity pp and pPb collisions opened up new opportunities of exploring novel QCD dynamics in small collision systems. CMS has excellent capabilities of reconstructing weakly decay strange hadrons such as $K^0_s$, $\\Lambda$ and $\\Xi^-$. Studies of strange hadron production and correlations in small colliding systems provide crucial insights to the physical origin of novel collective phenomena. New results of pT spectra and long-range two-particle correlations for charged particles and identified strange hadrons in high-multiplicity pp and pPb collisions are presented. The data at various collision energies for pp and pPb collisions are compared to those obtained in large PbPb colliding systems. A measurement of multi-paricle cumulant in pp and pPb is also presented to explore the collective nature of the long-range correlations.

  14. Large-Scale Procurement of Radiation Resistant Single-Mode Optical Fibers for CERN

    CERN Document Server

    Guillermain, Elisa; Kuhnhenn, Jochen; Ricci, Daniel; Weinand, Udo

    2015-01-01

    2400 km of special radiation resistant optical fibres were procured by CERN (European Organization for Nuclear Research), for the installation of more than 55 km of optical fibre cables in the accelerator complex underground during the Long Shutdown 1 (LS1). In the frame of this large-scale industrial production, a thorough quality assurance plan (QAP) was put in place and followed at each step of the process. In-depth qualification of optical fibres preceded the 17-month procurement process. All supplied batches were tested for their resistance to radiation, leading to more than 65 quality control irradiation tests. During the cable assembly process and the installations works, a full traceability down to the optical fibre level was ensured. The actions put in place in the frame of the QAP led to successful installation works and to full respect of the LS1 planning.

  15. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  16. Experiments at CERN in 1997

    International Nuclear Information System (INIS)

    This book summarises the current experimental programme at CERN. The experiments listed are taking place at one of the following machines: the Large Electron Positron Collider (LEP), the Super Proton Synchroton (SPS), the 28 GeV Proton Synchrotron (PS), including the Antiproton Decelerator (AD) for slow antiprotons and the ISOLDE facility for short-lived ions. The three experiments now approved for installation at the Large Hadron Collider (LHC) and the R and D projects aimed at the development of new detector technologies and data acquisition systems for the LHC experiments are also listed. (orig./WL)

  17. CERN comes under fresh financial pressure

    CERN Multimedia

    Dickson, D

    1996-01-01

    Germany's decision to effect a 10% cut in its annual subscription to the Large Hadron Collider (LHC) in 1997 has added to the financial problems of the European Laboratory for Particle Physics (CERN), Geneva, Switzerland. Reduced European contributions will have a crucial impact on the planned construction and completion of LHC. Proposals for non-European membership to reduce the financial burden on CERN members is doubtful in the current political context. The German move hints at a reappraisal of the funding projections for LHC.

  18. Signature for heavy Majorana neutrinos in hadronic collisions

    CERN Document Server

    D'Almeida, F; Martins-Simões, J A; Do Vale, M A B

    2000-01-01

    The production and decay of new possible heavy Majorana neutrinos are analyzed in hadronic collisions. New bounds on the mixing of these particles with standard neutrinos are estimated according to a fundamental representation suggested by grand unified models. A clear signature for these Majorana neutrinos is given by same-sign dileptons plus a charged weak vector boson in the final state. We discuss the experimental possibilities for the future Large Hadron Collider (LHC) at CERN. (15 refs).

  19. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, P. Y.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling proced

  20. A Search for Vector Diquarks at the CERN LHC

    CERN Document Server

    Arik, E; Cetin, S A; Sultansoy, S F

    2002-01-01

    Resonant production of the first generation vector diquarks at the CERN Large Hadron Collider (LHC) have been investigated. It is shown that the LHC will be able to discover vector diquarks with masses up to 9 (8) TeV if coupling alpha_(D)~alpha_(s) (alpha_(em)).

  1. CERN confident of LHC start-up in 2007

    CERN Multimedia

    2006-01-01

    "Delegates attending the 140th meeting of CERN Council today heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collider (LHC) in 2007." (1/2 page)

  2. CERN confident of LHC start-up in 2007

    CERN Multimedia

    Vanden Broeck, Renilde

    2007-01-01

    "Delegates attending the 140th meeting of CERN Council today heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collier (LHC) in 2007. (1/2 page)

  3. EIB lends EUR 300 million for CERN's major collider

    CERN Document Server

    2002-01-01

    "The European Investment Bank (EIB) is lending EUR 300 million to finance the final phase of construction of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The EIB loan will also help to finance the instrumentation to record and analyse the high-energy particle collisions at the LHC" (1 page).

  4. U.S. tells CERN to wait for support

    CERN Multimedia

    Mervis, J

    1995-01-01

    The US has put off CERN's request for a $300 million contribution to help build the Large Hadron Collider. Department of Energy officials asserted that such a decision must wait until after the budget is finalized. House Science Committee Chairman Robert Walker also claimed it was too early to make a decision.

  5. Al CERN prima fase sistema gestione dati LHC

    CERN Multimedia

    2003-01-01

    "Al via la prima fase per la realizzazione del sistema Lhc computing Grid (LCG), progettato per elaborare le quantita' di dati senza precedenti che, a partire dal 2007, saranno prodotte dagli esperimenti eseguiti con il nuovo grande acceleratore Large Hadron Collider (LHC), presso il Cern di Ginevra" 1 page

  6. Electromagnetic form-factors of hadrons at large Q2 and effects of confinement

    International Nuclear Information System (INIS)

    The importance of the nonperturbative effects for the behaviour of electromagnetic form factors of hadrons at large Q2 is emphasized. In the framework of the topological expansion and the colour tube model it is demonstrated, that the dependence of form factors on Q2 is determined by the intercepts of Regge-trajectories. The perturbation theory is used in order to take into account the effects connected to the hard gluon emission. Good description of the magnetic form-factor of nucleon is obtained

  7. Boosting Higgs CP properties via VH production at the Large Hadron Collider

    Science.gov (United States)

    Godbole, Rohini; Miller, David J.; Mohan, Kirtimaan; White, Chris D.

    2014-03-01

    We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a bbbar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately.

  8. Boosting Higgs CP properties via VH Production at the Large Hadron Collider

    CERN Document Server

    Godbole, Rohini; Mohan, Kirtimaan; White, Chris D

    2013-01-01

    We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a bb pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately.

  9. Search for hadron jets and large transverse momentum electrons at the SPS anti p p collider

    International Nuclear Information System (INIS)

    The search of high transverse momentum electrons needs the use of all the different elements of the UA2 detector; therefore the description of this search is a good way to understand the features of the apparatus, and its performance in a collider environment. We present a preliminary analysis of the UA2 data collected during the last Collider run (20 nb-1 integrated luminosity) with particular emphasis on large transverse momentum hadron jets and on electrons having the configuration expected from the decay of electroweak bosons

  10. Standard Model Higgs boson searches with the ATLAS detector at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aleandro Nisati; on behalf of the ATLAS Collaboration

    2012-10-01

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at $\\sqrt{s} = 7$ TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass regions 144–232, 256–282 and 296–466 GeV.

  11. Production of two Higgses at the Large Hadron Collider in CP-violating MSSM

    OpenAIRE

    Bandyopadhyay, Priyotosh; Huitu, Katri

    2011-01-01

    Production of two Higgs bosons is studied in a CP violating supersymmetric scenario at the Large Hadron Collider with $E_{cm}=14$ TeV. There exists a region where a very light Higgs $\\lesssim 50$ GeV could not be probed by LEP experiment. This leads to so called 'LEP hole' region. Recently LHC found a Higgs boson around $\\sim 125$ GeV, which severely constrains the possibility of having lighter Higgs bosons, which cannot be detected, i.e., buried Higgs, in this model. We investigate the possi...

  12. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  13. Complementarity of Forward-Backward Asymmetry for discovery of Z' bosons at the Large Hadron Collider

    CERN Document Server

    Accomando, Elena; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2015-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only thought of as an observable which possibly allows one to profiling a Z' signal by distinguishing different models embedding such (heavy) spin-1 bosons. In this brief review, we examine the potential of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) and proof that it might be a powerful tool for this purpose. We analyse two different scenarios: Z's with a narrow and wide width, respectively. We find that, in both cases, AFB can complement the conventional searches in accessing Z' signals traditionally based on cross section measurements only.

  14. Identification and Classification of Beam Loss Patterns in the Large Hadron Collider

    CERN Document Server

    Panagiotis, Theodoropoulos; Valentino, Gianluca; Redaelli, Stefano; Herbster, Mark

    The Large Hadron Collider, is the largest particle accelerator ever built, achieving record beam energy and beam intensity. Beam losses are unavoidable and can risk the safety of accelerator’s components. Beam loss maps are used to validate the collimation system, designed to protect the accelerator against beam losses. The complexity of this system requires well defined inspection methods and well defined case studies that ensure normal operation and efficient performance evaluation. In this work, enhancements are proposed to the existing validation methods with extensions towards automating the inspection mechanisms, introducing pattern recognition and statistical learning methods.

  15. Probing new physics in diphoton production with proton tagging at the Large Hadron Collider

    CERN Document Server

    Fichet, S; Kepka, O.; Lenzi, B.; Royon, C.; Saimpert, M.

    2014-01-01

    The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to $6 \\cdot 10^{-15}$\\gev$^{-4}$ are obtained, providing a new window on extra dimensions and strongly-interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.

  16. Story of a journey: Rutherford to the Large Hadron Collider and onwards

    CERN Document Server

    Godbole, Rohini M

    2010-01-01

    In this article, I set out arguments why the Large Hadron Collider (LHC) : the machine and the experiments with it, are a watershed for particle physics. I give a historical perspective of the essential link between development of particle accelerators and that in our knowledge of the laws governing interactions among the fundamental particles, showing how this journey has reached destination LHC. I explain how the decisions for the LHC design; the energy and number of particles in the beam, were arrived at. I will end by discussing the LHC physics agenda and the time line in which the particle physicists hope to achieve it.

  17. Observable T_7 Lepton Flavor Symmetry at the Large Hadron Collider

    CERN Document Server

    Cao, Qing-Hong; Ma, Ernest; Okada, Hiroshi

    2010-01-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T_7 and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  18. Observable T7 lepton flavor symmetry at the Large Hadron Collider.

    Science.gov (United States)

    Cao, Qing-Hong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T(7) and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  19. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    Science.gov (United States)

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  20. Large Psub(T) photons and the gammaization of high energy hadron collisions

    International Nuclear Information System (INIS)

    Attention if drawn to the fact that the Drell-Yan parton model, with no added assumptions, puts a lower limit on the production of direct photons with large transverse momentum in hadron collisions. At square root of s = 53 GeV, γ/π is found to be about 0.5 per cent, but if gluons are added to the theory this ratio is increased to 1 approximately equal 10 per cent. Although the yield is substantially decreased at lower energies it should be observable (say at square root of s = 23 GeV) in anti p or meson induced interactions. The calculation hints at the possibility that photons constitute a large fraction of large psub(T) and, more speculatively, of all secondaries in very high energy hadron interactions. The results are compared with the thermodynamic model and the bremsstrahlung model, invoked to accommodate the observed direct lepton yield; they suggest that (sigma(pp → γX))/(sigma(pp → πX)) = 1 around 100 TeV. It is pointed out that this unusual possibility finds support in observed anomalies in cosmic-ray induced interactions above that energy. It would definitely have an impact on experiments at future accelerators, e.g. the search for new states via their leptonic decays (e.g. weak bosons). (author)

  1. Expansions of $\\tau$ hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    OpenAIRE

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan

    2013-01-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling $\\alpha_s$ and other QCD parameters from the hadronic decays of the $\\tau$ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mapp...

  2. CERN's LHC is awarded the 2012 EPS Edison Volta Prize

    CERN Document Server

    CERN Bulletin

    2012-01-01

    The European Physical Society (EPS), the Centro di Cultura Scientifica “Alessandro Volta” and Edison S.p.A. have awarded the 2012 EPS Edison Volta Prize for outstanding contributions to physics to three CERN physicists.   The award was given to: • Rolf-Dieter Heuer, CERN Director-General, • Sergio Bertolucci, CERN Director for Research and Computing, • Stephen Myers, CERN Director for Accelerators and Technology, for having led - building on decades of dedicated work by their predecessors - the culminating efforts in the direction, research and operation of the CERN Large Hadron Collider (LHC), which resulted in many significant advances in high energy particle physics, in particular, the first evidence of a Higgs-like boson in July 2012. To learn more, check out e-EPS News.

  3. Studies of Machine Protections for Fast Crab Cavity Failures in the High Luminosity Large Hadron Collider

    CERN Document Server

    Yee Rendon, Bruce; Lopez, Ricardo

    2014-01-01

    Crab Cavities (CCs) play a main role in the High Luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the Large Hadron Collider (LHC). Their successful installation at KEKB accelerator allowed reaching a peak luminosity of 2.1x10^34/cm^2/s. However, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns. If similar scenarios take place in the HL-LHC, considering the significant stored energy in the beam, CC failures represent a serious threat in regard to LHC machine protection. This thesis presents and discusses the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasi-stationary state (QSS) distribution, before the failure is produced, in order to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails, they are on the sa...

  4. Supersymmetry, naturalness and the "fine-tuning price" of the Very Large Hadron Collider

    CERN Document Server

    Fowlie, Andrew

    2014-01-01

    The absence of supersymmetry or other new physics at the Large Hadron Collider (LHC) has lead many to question naturalness arguments. With Bayesian statistics, we argue that natural models are most probable and that naturalness is not merely an aesthetic principle. We calculate a probabilistic measure of naturalness, the Bayesian evidence, for the Standard Model (SM) with and without quadratic divergences, confirming that the SM with quadratic divergences is improbable. We calculate the Bayesian evidence for the Constrained Minimal Supersymmetric Standard Model (CMSSM) with naturalness priors in three cases: with only the $M_Z$ measurement; with the $M_Z$ measurement and LHC measurements; and with the $M_Z$ measurement, $m_h$ measurement and a hypothetical null result from a $\\sqrt{s}=100\\,\\text{TeV}$ Very Large Hadron Collider (VLHC) with $3000/\\text{fb}$. The "fine-tuning price" of the VLHC given LHC results would be $\\sim400$, which is slightly less than that of the LHC results given the electroweak scale ...

  5. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    2009-01-01

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  6. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  7. Hadron Physics at the COMPASS Experiment

    CERN Document Server

    Krinner, Fabian

    2015-01-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large da...

  8. Exotic hadron spectroscopy at the LHCb experiment

    CERN Document Server

    Cowan, G A

    2016-01-01

    The LHCb experiment is designed to study the decays and properties of heavy flavoured hadrons produced in the forward region from proton-proton collisions at the CERN Large Hadron Collider. During Run 1, it has recorded the world's largest data sample of beauty and charm hadrons, enabling precise studies into the spectroscopy of such particles, including discoveries of new states and measurements of their masses, widths and quantum numbers. An overview of recent LHCb results in the area of exotic hadron spectroscopy is presented, focussing on the discovery of the first pentaquark states in the $\\Lambda_b^0 \\to J/\\psi p K^-$ channel and a search for them in the related $\\Lambda_b^0 \\to J/\\psi p\\pi^-$ mode. The LHCb non-confirmation of the D0 tetraquark candidate in the $B_s^0\\pi^+$ invariant mass spectrum is presented.

  9. Willingness to pay for basic research: a contingent valuation experiment on the large hadron collider

    CERN Document Server

    Catalano, Gelsomina; Giffoni, Francesco

    2016-01-01

    An increasing number of countries and institutions are investing in large-scale research infrastructures (RIs) and in basic research. Scientific discoveries, which are expected thanks to RIs, may have a non-use value, in analogy with environmental and cultural public goods. This paper provides, for the first time, an empirical estimation of the willingness to pay (WTP) for discoveries in basic research by the general public. We focus on the Large Hadron Collider (LHC), the largest particle accelerator worldwide, where in 2012 the Higgs boson was discovered. Nobody knows the practical value of such discovery, beyond knowledge per se. The findings of our study are based on a dichotomous choice contingent valuation (CV) survey carried out in line with the NOAA guidelines. The survey involved 1,022 undergraduate students enrolled in more than 30 different degrees (including the humanities) at five universities located in four countries (Italy, France, Spain, UK). We ask two main research questions: Which are the ...

  10. Search for Supersymmetry using Heavy Flavour Jets with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Tua, Alan

    The Standard Model of particle physics, despite being extremely successful, is not the ultimate description of physics. The nature of dark matter is not well described, unification of the forces is not achieved and the theory is plagued by a hierarchy problem. One of the proposed solutions to these issues is supersymmetry. This thesis describes numerous searches for supersymmetry carried out using the ATLAS detector at the Large Hadron Collider. In scenarios where R-parity is conserved, supersymmetric final states contain large amounts of missing transverse energy. Furthermore, should supersymmetry correctly describe Nature, the scalar partners of the third generation quarks might be the lightest scalar quarks. The searches reported here exploit these possibilities and make use of signatures which are rich in missing transverse energy and jets coming from heavy flavour quarks. Searches are carried out for direct pair production of third generation scalar quarks as well as gluino-mediated production of these p...

  11. CP violation studies on the B0 -> DK*0 decays and hadronic trigger performance with the LHCb detector at CERN

    CERN Document Server

    Martin Sanchez, Alexandra

    In the Standard Model of particle physics, the Cabibbo-Kobayashi-Maskawa (CKM) mechanism describes the quark mixing effect. The CKM $\\gamma$ angle is one of the parameters of the Standard Model that are known less accurately. Direct measurements give an uncertainty of around $15^{\\circ}$, large with respect to the uncertainty on the value extracted from global fits, of $3^{\\circ}$. In order to test the Standard Model consistency, the $\\gamma$ angle needs to be measured precisely. This can be done using processes at the tree-level, where only Standard Model contributions are expected, or using processes involving loop diagrams, which can be sensitive to physics beyond the Standard Model. Differences in the $\\gamma$ measurement from tree and loop diagrams would be an indication of new physics. This thesis presents the first measurement of the $CP$ observables in the $\\overline{B}^0 \\to D\\overline{K}^{*0}$ decay. Sensitivity to $\\gamma$ arises from the interference of the $b \\to u$ mediated amplitude with the $...

  12. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  13. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    CERN Multimedia

    Baron, T; Duran, G; Correia Fernandes, J; Ferreira, P; Gonzalez Lopez, J B; Jouberjean, F; Lavrut, L; Tarocco, N

    2013-01-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for video-conference or not), as well as maintenance and local support. Managing now nearly half of the 250 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper will focus on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audiovisual equipment monitoring systems, ...

  14. Monitoring Control Applications at CERN

    CERN Document Server

    Bernard, F; Milcent, H; Petrova, L B; Varela, F

    2011-01-01

    The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other subsystems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and L...

  15. Snapshots of CERN

    CERN Multimedia

    Rebecca Leam

    Art was the language of communication between science and the thousands of visitors attending CERN’s two photographic exhibitions in Italy and Spain in October. The artistic images of CERN’s Nobel Prize winners, Large Hadron Collider (LHC) machinery and detectors raised people's curiosity and helped to promote the understanding of particle physics.   The exhibition “Accelerating Nobels” at Genoa’s 7th Science Festival. The exhibition “Accelerating Nobels” attracted over 600’000 visitors during Genoa’s 7th annual Science Festival. It showed science photographer Volker Steger’s 21 portraits of physics Nobels holding their own impromptu drawings of their best discovery. “The theme of the festival was ‘The Future’. The exhibition illustrated the long history of particle physics discoveries at CERN which all lead to what the LHC is going to find, including probably more ...

  16. Simulation of electron-cloud heat load for the cold arcs of the Large Hadron Collider

    CERN Document Server

    Maury Cuna, Humberto; Rumolo, Giovanni; Zimmermann, Frank

    2013-01-01

    The heat load due to the electron cloud in the Large Hadron Collider (LHC) cold arcs is a concern for its performance near and beyond nominal beam current. We report the results of simulation studies, which examine the electron-cloud induced heat load for different values of low-energy electron reflectivity and secondary emission yield at injection energy, as well as at beam energies of 4 TeV and 7 TeV, for two different bunch spacing: 25 ns and 50 ns. Benchmarking the simulations against heat-load observations at different beam energies and bunch spacings allows an estimate of the secondary emission yield in the cold arcs of the LHC and of its evolution as a function of time.

  17. Large Hadron Collider Physics (LHCP2017) conference | 15-20 May 2017 | Shanghai

    CERN Multimedia

    2016-01-01

    The fifth Annual Large Hadron Collider Physics will be held in Shanghai and hosted by Shanghai Jiao Tong University in the period of May 15-20, 2017. The main goal of the conference is to provide intense and lively discussions between experimenters and theorists in such research areas as the Standard Model Physics and Beyond, the Higgs Boson, Supersymmetry, Heavy Quark Physics and Heavy Ion Physics as well as to share a recent progress in the high luminosity upgrades and future colliders developments.     The LHCP2017 website: http://lhcp2017.physics.sjtu.edu.cn/ Event date: 15 - 20 May 2017 Location: Shanghai, China

  18. Investigation of Injection Losses at the Large Hadron Collider with Diamond Based Particle Detectors

    CERN Document Server

    Stein, Oliver; Burkart, Florian; Dehning, Bernd; Griesmayer, Erich; Kain, Verena; Schmidt, Ruediger; Wollmann, Daniel

    2016-01-01

    During the operation of the Large Hadron Collider (LHC) in 2015, increased injection losses were observed. To minimize stress on accelerator components in the injection regions of the LHC and to guarantee an efficient operation these losses needed to be understood and possible mitigation techniques should be studied. Measurements with diamond particle detectors revealed the loss structure with ns-resolution for the first time. Based on these measurements, recaptured beam from the Super Proton Synchrotron (SPS) surrounding the nominal bunch train was identified as the major contributor to the injection loss signals. Methods to reduce the recaptured beam in the SPS were successfully tested and verified with the diamond particle detectors. In this paper the detection and classification of LHC injection losses are described. The methods to reduce these losses and verification measurements are presented and discussed.

  19. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider

    Science.gov (United States)

    Sun, Hao

    2012-04-01

    The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production. Two such channels are selected and the tree level results including leptonic final states are discussed: ZZ → l1-l1+l2-l2+ and ZZ → l-l+νν¯(l, l1,2 = e, μ). The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail. Besides the Z boson transverse momentum distributions, the azimuthal angle between the Z boson decay to fermions, ΔΦ, and their separations in the pseudo-rapidity-azimuthal angle plane, ΔR, as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.

  20. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  1. A clean signal for a top-like isosinglet fermion at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aarti Girdhar

    2013-12-01

    We predict a clean signal at the Large Hadron Collider ($\\sqrt{s} = 14$ TeV) for a scenario where there is a top-like, charge +2/3 vector-like isosinglet fermion. Such a quark, via mixing with the standard model top, can undergo decays via both flavour-changing Z-boson coupling and flavour-changing Yukawa interactions. We concentrate on the latter channel, and study the situation where, following its pair production, the heavy quark pair gives rise to two tops and two Higgs bosons. We show that when each Higgs decays in the $b\\bar{b}$ channel, there can be a rather distinct and background-free signal that can unveil the existence of the vector-like isosinglet quark of this kind.

  2. Overview of the Large Hadron Collider and of the ATLAS and CMS experiments

    Science.gov (United States)

    Nisati, Aleandro; Sharma, Vivek

    2016-10-01

    The Large Hadron Collider is the most powerful particle accelerator ever built. It has allowed the discovery of a Higgs boson with mass near 125 GeV in 2012 by the ATLAS and CMS experiments. This chapter provides first an overview of the main characteristics of this collider, as well as a short description of the two general purpose experiments, ATLAS and CMS, which discovered in 2012 a Higgs boson with mass close to 125 GeV. This is followed by a summary of the main aspects of particle identification and reconstruction by these two detectors, together with a short presentation of the main analysis tools used to extract the LHC results of the Higgs boson(s) searches and measurements.

  3. Massively Parallel Computing at the Large Hadron Collider up to the HL-LHC

    CERN Document Server

    Lujan, Paul

    2015-01-01

    As the Large Hadron Collider (LHC) continues its upward progression in energy and luminosity towards the planned High-Luminosity LHC (HL-LHC) in 2025, the challenges of the experiments in processing increasingly complex events will also continue to increase. Improvements in computing technologies and algorithms will be a key part of the advances necessary to meet this challenge. Parallel computing techniques, especially those using massively parallel computing (MPC), promise to be a significant part of this effort. In these proceedings, we discuss these algorithms in the specific context of a particularly important problem: the reconstruction of charged particle tracks in the trigger algorithms in an experiment, in which high computing performance is critical for executing the track reconstruction in the available time. We discuss some areas where parallel computing has already shown benefits to the LHC experiments, and also demonstrate how a MPC-based trigger at the CMS experiment could not only improve perf...

  4. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    Science.gov (United States)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  5. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  6. Testing the Littlest Higgs Model with T-parity at the Large Hadron Collider

    CERN Document Server

    Matsumoto, Shigeki; Tobe, Kazuhiro

    2008-01-01

    In the framework of the littlest Higgs model with T-parity (LHT), we study the production processes of T-even (T_+) and T-odd (T_-) partners of the top quark at the Large Hadron Collider (LHC). We show that the signal events can be distinguished from the standard-model backgrounds, and that information about mass and mixing parameters of the top partners can be measured with relatively good accuracies. With the measurements of these parameters, we show that a non-trivial test of the LHT can be performed. We also discuss a possibility to reconstruct the thermal relic density of the lightest T-odd particle A_H using the LHC results, and show that the scenario where A_H becomes dark matter may be checked.

  7. Probing the light radion through diphotons at the Large Hadron Collider

    CERN Document Server

    Bhattacharya, Satyaki; Huitu, Katri; Maitra, Ushoshi; Mukhopadhyaya, Biswarup; Rai, Santosh Kumar

    2014-01-01

    A radion in a scenario with a warped extra dimension can be lighter than the Higgs boson, even if the Kaluza-Klein excitation modes of the graviton turn out to be in the multi-TeV region. The discovery of such a light radion would be gateway to new physics. We show how the two-photon mode of decay can enable us to probe a radion in the mass range 60 - 110 GeV. We take into account the diphoton background, including fragmentation effects, and include cuts designed to suppress the background to the maximum possible extent. Our conclusion is that, with an integrated luminosity of 3000 $\\rm fb^{-1}$ or less, the next run of the Large Hadron Collider should be able to detect a radion in this mass range, with a significance of 5 standard deviations or more.

  8. A polarized window for left-right symmetry at the Large Hadron-Electron Collider

    CERN Document Server

    Mondal, Subhadeep

    2015-01-01

    The breaking of parity, a fundamental symmetry between left and right is best understood in the framework of left-right symmetric extension of the standard model. We show that the production of a heavy right-handed neutrino at the proposed Large Hadron-Electron Collider (LHeC) could give us the most simple and direct hint of the scale of this breaking in left-right symmetric theories. This production mode gives a lepton number violating signal with $\\Delta L=2$ which is very clean and has practically no standard model background. We highlight that the right-handed nature of $W_R$ exchange which defines the left-right symmetric theories can be confirmed by using a polarized electron beam and also enhance the production rates with relatively lower beam energy.

  9. Synchrotron Radiation and beam tube vacuum in a Very Large Hadron Collider; Stage 1 VLHC

    International Nuclear Information System (INIS)

    Synchrotron radiation induced photodesorption in particle accelerators may lead to pressure rise and to beam-gas scattering losses, finally affecting the beam lifetime. We discuss the beam tube vacuum in the low field Stage 1 Very Large Hadron Collider VLHC. Since VLHC Stage 1 has a room temperature beam tube, a non-evaporable getter (NEG St101 strip) pumping system located inside a pumping antechamber, supplemented by lumped ion pumps for pumping methane is considered. A possible beam conditioning scenario is presented for reaching design intensity. The most important results are summarized in this paper. More detailed reports of the calculations will be presented at the PAC2001 Conference, Chicago, IL to be held in June 2001, and at the Snowmass Conference, CO, to be held on July 2001

  10. The data acquisition and reduction challenge at the Large Hadron Collider.

    Science.gov (United States)

    Cittolin, Sergio

    2012-02-28

    The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.

  11. Electron Clouds in High Energy Hadron Accelerators

    OpenAIRE

    Petrov, Fedor

    2013-01-01

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use...

  12. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    SUN Hao

    2012-01-01

    The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production. Two such channels are selected and the tree level results including leptonic final states are discussed: ZZ → e1 e1+ e2- e2+ and ZZ → e- e+v(v)(e, e1,2 = e, μ). The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail. Besides the Z boson transverse momentum distributions, the azimuthal angle between the Z boson decay to fermions, △Φ, and their separations in the pseudo-rapidity-azimuthal angle plane, AR, as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.%The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production.Two such channels are selected and the tree level results including leptonic final states are discussed:Z Z → e-1e+1 e-2 e+2 and Z Z → e-e+v-(v)( e,e1,2 =e,μ).The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail.Besides the Z boson transverse momentum distributions,the azimuthal angle between the Z boson decay to fermions,△ Φ,and their separations in the pseudo-rapidity-azimuthal angle plane,△R,as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.

  13. Quantifying jet transport properties via large p{sub T} hadron production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-Quan; Zhang, Hanzhong; Zhang, Ben-Wei; Wang, Enke [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China)

    2016-01-15

    Nuclear modification factor R{sub AA} for large p{sub T} single hadron is studied in a next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the quark-gluon plasma is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter q{sub 0} and the mean free path λ{sub 0}, both at the initial time τ{sub 0}. A phenomenological study of the experimental data for R{sub AA}(p{sub T}) is performed to constrain the two parameters with simultaneous χ{sup 2}/d.o.f. fits to Relativistic Heavy Ion Collider as well as Large Hadron Collider data. We obtain for energetic quarks q{sub 0} ∼ 1.1±0.2 GeV{sup 2}/fm and λ{sub 0} ∼ 0.4±0.03 fm in central Au + Au collisions at √(S{sub NN}) = 200 GeV, while q{sub 0} ∼ 1.7±0.3 GeV{sup 2}/fm, and λ{sub 0} ∼ 0.5±0.05 fm in central Pb+Pb collisions at √(S{sub NN}) = 2.76 TeV. Numerical analysis shows that the best fit favors a multiple scattering picture for the energetic jets propagating through the bulk medium, with a moderate averaged number of gluon emissions. Based on the best constraints for λ{sub 0} and τ{sub 0}, the estimated value for the mean-squared transverse momentum broadening is moderate which implies that the hard jets go through the medium with small reflection. (orig.)

  14. Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Souza, Moacyr Henrique Gomes E; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Awad, Adel; Khalil, Shaaban; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Tonutti, Manfred; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Karafasoulis, Konstantinos; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    A search for large extra spatial dimensions via virtual-graviton exchange in the diphoton channel has been carried out with the CMS detector at the LHC. No excess of events above the standard model expectations is found using a data sample collected in proton-proton collisions at sqrt(s) = 7 TeV and corresponding to an integrated luminosity of 36 inverse picobarns. New lower limits on the effective Planck scale in the range of 1.6-2.3 TeV at the 95% confidence level are set, providing the most restrictive bounds to date on models with more than two large extra dimensions.

  15. Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia)

    2011-05-01

    A search for large extra spatial dimensions via virtual-graviton exchange in the diphoton channel has been carried out with the CMS detector at the LHC. No excess of events above the standard model expectations is found using a data sample collected in proton-proton collisions at sqrt(s) = 7 TeV and corresponding to an integrated luminosity of 36 inverse picobarns. New lower limits on the effective Planck scale in the range of 1.6-2.3 TeV at the 95% confidence level are set, providing the most restrictive bounds to date on models with more than two large extra dimensions.

  16. 6th IT First Tuesday@CERN

    CERN Multimedia

    François Grey

    2005-01-01

    Thursday 12 May, 17:30-19:30, Main Auditorium, CERN Data management in the 21st Century: the Petabyte challenge A Petabyte is a million Gigabytes, the equivalent of over 200,000 DVDs. That may seem like an enormous amount of data, but managing such quantities of data is a reality in the world of science, and is increasingly becoming an imperative in the world of business. This IT First Tuesday@CERN presents the Petabyte challenge, and some of the emerging solutions, from both scientific and commercial perspectives. For CERN's Large Hadron Collider, a Grid solution has been chosen to provide the necessary distributed storage capacity for the anticipated 15 Petabytes of data per year that this collider will produce. IBM is CERN's storage partner in the CERN openlab for DataGrid applications, and is testing the companies innovative TotalStorage SAN distributed filesystem in CERN's demanding IT environment. For Lausanne-based VisioWave, managing stored video data provides an extreme storage challenge. For D...

  17. CERN OVERVIEW animation

    CERN Multimedia

    Arzur Catel Torres

    2015-01-01

    This animation shows how the Large Hadron Collider (LHC) works. The film begins with an aerial view of CERN near Geneva, with outlines of the accelerator complex, including the underground Large Hadron Collider (LHC), 27-km in circumference. The positions of the four largest LHC experiments, ALICE, ATLAS, CMS and LHCb are revealed before we see protons travelling around the LHC ring. The proton source is a simple bottle of hydrogen gas. An electric field is used to strip hydrogen atoms of their electrons to yield protons. Linac 2, the first accelerator in the chain, accelerates the protons to the energy of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450 GeV. The protons are finally transferred to the two beam pipes of the LHC. The beam in one pipe circulates clockwise while ...

  18. Searches for the technicolor signatures via gg ) W±+πtT at the Large Hadron Collider%Searches for the technicolor signatures via gg ) W±+πtT at the Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    黄金书; 宋太平; 王帅伟; 鲁公儒

    2011-01-01

    In this paper, we calculate the production of a charged top pion in association with a W boson via gg fusion at CERN's Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the total cross section of pp → gg → W±+πt

  19. Jet Physics with A Large Ion Collider Experiment at the Large Hadron Collider

    CERN Document Server

    Klein, Jochen

    In the presence of the strongly-interacting medium created in relativistic heavy-ion collisions, highly energetic partons from hard interactions lose energy through scattering and radiating. This effect, referred to as jet quenching, is observed as a suppression of particles with large momenta transverse to the beam axis (high-$p_\\perp$). To study the impact of the medium evolution on the energy loss modelling in the Monte Carlo event generator JEWEL, we compare results obtained for different scenarios of Au-Au collisions at $\\sqrt{s_\\mathrm{NN}} = 200~\\mathrm{GeV}$. For this purpose, JEWEL was extended to use the output of relativistic hydrodynamic calculations in the OSCAR2008H format. We find the modelling of common observables, e.g. the nuclear modification factor, to be rather insensitive to the details of the medium evolution, for which the analytically accessible Bjorken expansion can thus be considered adequate. The OSCAR interface now allows further studies also at LHC energies. Jets of large transve...

  20. Studies of purification of the Resistive Plate Chamber gas mixture for the Large Hadron Collider experiments

    CERN Document Server

    Capeans, M; Guida, R; Hahn, F; Haider, S

    2009-01-01

    The Resistive Plate Chambers (RPCs) installed as part of the large muon detectors at the Large Hadron Collider (LHC) experiments use a gas mixture of 94.7% C2H2F4, 5% iC(4)H(10) and 0.3% SF6. Based on economical grounds, the design philosophy of the gas systems for the ATLAS and CMS RPC's foresees to recirculate the gas mixture in 90-95% closed loop circulation. At the LHC, RPC chambers are operated in a high radiation environment, conditions for which large amount of impurities in the return gas have been observed in earlier studies. They are potentially dangerous for the stable operation of the detectors, the materials in the detector and the gas system. While several purification stages have been foreseen in the present gas systems, chemical reactions between the absorber and the impurities are yet not well understood. Furthermore, the effects on the gas mixture of the foreseen factor 10 increase of luminosity for the LHC upgraded phase should be studied. We present the results of systematic studies of the...

  1. Measurement of nonlinear observables in the Large Hadron Collider using kicked beams

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Schmidt, F.; Persson, T. H. B.

    2014-08-01

    The nonlinear dynamics of a circular accelerator such as the Large Hadron Collider (LHC) may significantly impact its performance. As the LHC progresses to more challenging regimes of operation it is to be expected that the nonlinear single particle dynamics in the transverse planes will play an increasing role in limiting the reach of the accelerator. As such it is vital that the nonlinear sources are well understood. The nonlinear fields of a circular accelerator may be probed through measurement of the amplitude detuning: the variation of tune with single particle emittance. This quantity may be assessed experimentally by exciting the beam to large amplitudes with kicks, and obtaining the tunes and actions from turn-by-turn data at Beam Position Monitors. The large amplitude excitations inherent to such a measurement also facilitate measurement of the dynamic aperture from an analysis of beam losses following the kicks. In 2012 these measurements were performed on the LHC Beam 2 at injection energy (450 GeV) with the nominal magnetic configuration. Nonlinear coupling was also observed. A second set of measurements were performed following the application of corrections for b4 and b5 errors. Analysis of the experimental results, and a comparison to simulation are presented herein.

  2. Golden Hadron awards for the LHC's top suppliers.

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The following firms have been selected to receive a GOLDEN HADRON AWARD 2003, in recognition of their outstanding achievement: JDL TECHNOLOGIES, Belgium "in producing automatic cable inspection systems", FURUKAWA ELECTRIC COMPANY, Japan "in producing high quality superconducting cable", IHI Corporation, Japan, and LINDE KRYOTECHNIK, Switzerland "in producing novel 1.8 K refrigeration units based on advanced cold compressor technology" for the Large Hadron Collider.Photos 01, 02: Recipients of the 2003 Golden Hadron awards at the presentation ceremony on 16 May.Photo 03: LHC project leader Lyn Evans updates the award recipients on work for CERN's new accelerator.Photo 04: René Joannes of JDL Technologies (left) receives a Golden Hadron award from LHC project leader Lyn Evans.Shinichiro Meguro, managing director of Furukawa Electric Company, receives a Golden Hadron award from LHC project leader Lyn Evans.Photo 06: Kirkor Kurtcuoglu of Linde Kryotechnik (left) and Motoki Yoshinaga, associate director of IHI...

  3. Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach

    CERN Document Server

    He, Min; Rapp, Ralf

    2014-01-01

    Employing nonperturbative transport coefficients for heavy-flavor (HF) diffusion through quark-gluon plasma (QGP), hadronization and hadronic matter, we compute $D$- and $B$-meson observables in Pb+Pb ($\\sqrt{s}$=2.76\\,TeV) collisions at the LHC. Elastic heavy-quark scattering in the QGP is evaluated within a thermodynamic $T$-matrix approach, generating resonances close to the critical temperature which are utilized for recombination into $D$ and $B$ mesons, followed by hadronic diffusion using effective hadronic scattering amplitudes. The transport coefficients are implemented via Fokker-Planck Langevin dynamics within hydrodynamic simulations of the bulk medium in nuclear collisions. The hydro expansion is quantitatively constrained by transverse-momentum spectra and elliptic flow of light hadrons. Our approach thus incorporates the paradigm of a strongly coupled medium in both bulk and HF dynamics throughout the thermal evolution of the system.

  4. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    Science.gov (United States)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  5. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    International Nuclear Information System (INIS)

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  6. On the Deviation of the Standard Model Predictions in the Large Hadron Collider Experiments (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2016-01-01

    Full Text Available The newest Large Hadron Collider experiments targeting the search for New Physics manifested the possibility of new heavy particles. Such particles are not predicted in the framework of Standard Model, however their existence is lawful in the framework of another model based on J. A.Wheeler’s geometrodynamcs.

  7. GERMANY AT CERN

    CERN Multimedia

    2001-01-01

    13 - 15 November 2001 Administration Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs OPENING CEREMONY 10h00 - 13 November GERMANY AT CERN Thirty-three German companies will be demonstrating their supplies and services offered for the construction of the Large Hadron Collider (LHC) and other key CERN programmes. The Industrial exhibition will be enriched with a display of objects of contemporary German art. The official German presentation is under the patronage of the Federal Minister of Education and Research (BMBF), Bonn. There follows : the list of exhibitors, the list of lectures to be given at the exhibition. A detailed programme will be available in due course at : your Divisional Secretariat, the Reception information desk, building 33, the exhibition. LIST OF EXHIBITORS Accel Instruments GmbH Representative: 1.1 Accel Instruments GmbH/CH-8754 Netsal apra-norm Elektromechanik GmbH Representative: 2.1 apra-norm s.n.c./F-67500 Haguenau Babcock Noell Nuclear GmbH Balcke-D&u...

  8. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  9. GPU Enhancement of the Trigger to Extend Physics Reach at the Large Hadron Collider

    CERN Document Server

    Lujan, P; Hunt, A; Jindal, P; LeGresley, P

    2013-01-01

    At the Large Hadron Collider (LHC), the trigger systems for the detectors must be able to process a very large amount of data in a very limited amount of time, so that the nominal collision rate of 40 MHz can be reduced to a data rate that can be stored and processed in a reasonable amount of time. This need for high performance places very stringent requirements on the complexity of the algorithms that can be used for identifying events of interest in the trigger system, which potentially limits the ability to trigger on signatures of various new physics models. In this paper, we present an alternative tracking algorithm, based on the Hough transform, which avoids many of the problems associated with the standard combinatorial track finding currently used. The Hough transform is also well-adapted for Graphics Processing Unit (GPU)-based computing, and such GPU-based systems could be easily integrated into the existing High-Level Trigger (HLT). This algorithm offers the ability to trigger on topological signa...

  10. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    International Nuclear Information System (INIS)

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production

  11. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hanussek, Marja

    2012-05-15

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  12. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    International Nuclear Information System (INIS)

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  13. Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider

    International Nuclear Information System (INIS)

    A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented. A new class of highly pixelated, fast response, high gain, radiation detectors is being developed based on plasma panel technology. In its most basic form it is known as a plasma panel sensor or 'PPS'. By depositing a photocathode on an interior surface facing the gas, a light-sensitive PPS, known as a plasma panel photosensor or 'PPPS' can be realized with potential advantages over other high-gain, light-detection devices such as photomultiplier tubes (PMT), solid state photomultipliers (SSPM), gas electron multipliers (GEM), Geiger-mode avalanche photodiodes (APD), multichannel plate photomultipliers (MCPPMT). By coupling the PPPS to a scintillator, a plasma panel scintillating detector ('PPSD') can be constructed for a host of applications: Compton telescopes, sampling calorimeters in high energy physics, medical imaging, homeland security, etc. The many potential attributes of PPS devices are attracting significant interest from nuclear physicists for detecting highly ionizing charged particles at radioactive ion beam (RIB) accelerators, as well as from high energy physicists for the detection of minimum ionizing particles (MIP) for the next generation of high and super-high luminosity colliders such as the Super Large Hadron Collider (SLHC) at CERN and the International Linear Collider (ILC). The goal of our research is to develop plasma panel based radiation detectors for both scientific and commercial applications. We describe below the basic theory of operation, our experimental effort and simulation results, and potential market opportunities for plasma display panel (PDP) manufacturers. For example, medical imaging, medical therapeutics and homeland security

  14. The COMPASS setup for physics with hadron beams

    Science.gov (United States)

    Abbon, P.; Adolph, C.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M. L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Desforge, D.; Dinkelbach, A. M.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d`Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M. A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D. V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J.-M.; Rocco, E.; Rossiyskaya, N. S.; Rousse, J.-Y.; Ryabchikov, D. I.; Rychter, A.; Samartsev, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Terça, G.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-04-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This paper describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  15. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  16. The role of CERN in the large construction contracts for LHC civil works

    CERN Document Server

    D'Aça-Castel-Branco, P

    1998-01-01

    The contracts for the civil engineering construction of the LHC are based upon the standard FIDIC (Fédération Internationale des Ingénieurs Conseils) document entitled "Conditions of Contract for Works of Civil Engineering Construction". FIDIC is a reputable supra-national and world-wide Federation of Consulting Engineers focused on the definition and regulation of the role of many parties involved with the International Construction Industry. An overview of FIDIC's and other Organizations', such as the World Bank, standard documents is presented. The difference between standard Contract documents and standard Bidding documents is pointed out. In view of CERN's status as an intergovernmental Organization, the original FIDIC standard documents needed to be adapted. The modifications are identified and explained. A concise definition of the role of each party concerned by the LHC construction Contracts, i.e. the Contractor, the Engineer and the Client (CERN), is made. Finally, a brief cost-benefit analysis o...

  17. The Scandinavian countries and CERN's large 300 GeV accelerator

    International Nuclear Information System (INIS)

    Following introductory chapters on the theme, the source material, the history, organisation and functioning of CERN and the place of nuclear research in the scientific research political landscape of the Scandinavian countries, the preliminary basis for the new 300 GeV synchroton, that it be sited elsewhere than in Switzerland is presented. The discussion as to whether Norway should offer a site is presented, and the reasons for the governments decision to do so given. The Swedish offer is also discussed. The discussions and attitudes in Sweden, Norway and Denmark to the first project are presented in turn, and their reasons for following the British rejection are given. The revised project is also described, and the discussions on this in the three countries are treated in turn. A chapter also describes Finland's relationship to CERN. In the final chapter certain aspects in e.g. the motivation of participants in the discussions are treated. (JIW)

  18. Hadronic Imaging Calorimetry

    CERN Document Server

    Kaplan, Alexander; Schultz-Coulon, Hans-Christian; Dubbers, Dirk

    This thesis focuses on a prototype of a highly granular hadronic calorimeter at the planned International Linear Collider optimized for the Particle Flow Approach. The 5.3 nuclear interaction lengths deep sandwich calorimeter was built by the CALICE collaboration and consists of 38 active plastic scintillator layers. Steel is used as absorber material and the active layers are subdivided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers (SiPM). The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. The work described in this thesis comprises the commissioning of the detector and the data acquisition with test beam particles over several months at CERN and Fermilab. The calibration of the calorimeter and the analysis of the recorded data is presented. A method to correct for the temperature dependent response of the SiPM has been developed and implemented. Its successful application shows that it...

  19. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Majerotto, Walter; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Szoncsó, Fritz; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Chekhovsky, Vladimir; Emeliantchik, Igor; Litomin, Aliaksandr; Makarenko, Vladimir; Mossolov, Vladimir; Shumeiko, Nikolai; Solin, Alexander; Stefanovitch, Roman; Suarez Gonzalez, Juan; Fedorov, Andrey; Korzhik, Mikhail; Missevitch, Oleg; Zuyeuski, Raman; Bansal, Monika; Bansal, Sunil; Beaumont, Willem; Cornelis, Tom; De Wolf, Eddi A; Druzhkin, Dmitry; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Goorens, Robert; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Lancker, Luc; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Dewulf, Jean-Paul; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Rugovac, Shkelzen; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Wickens, John; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Iope, Rogerio Luiz; Lagana, Caio; Lietti, Sergio M; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Vutova, Mariana; Roumenin, Chavdar; Uzunova, Daniela; Zahariev, Roman; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; He, Kang-Lin; Jiang, Chun-Hua; Li, Wei-Guo; Liang, Dong; Liang, Song; Meng, Xiangwei; Sun, Gongxing; Sun, Han-Sheng; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Yang, Min; Zang, Jingjing; Zhang, Xiaomei; Zhang, Zhen; Zhang, Zhenxia; Zhao, Wei-Ren; Zhu, Zian; Asawatangtrakuldee, Chayanit; Ban, Yong; Cai, Jianxin; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Hong-Tao; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Ye, Yan-Lin; Zhang, Linlin; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Aly, Ayman; Assran, Yasser; Awad, Adel; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Hektor, Andi; Kadastik, Mario; Kannike, Kristjan; Müntel, Mait; Raidal, Martti; Rebane, Liis; Strumia, Alessandro; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Anttila, Erkki; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Katajisto, Harri Mikael; Kinnunen, Ritva; Kortelainen, Matti J; Kotamäki, Miikka; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Vanhala, Tommi Pekka; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Anfreville, Marc; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kircher, François; Lemaire, Marie-Claude; Locci, Elizabeth; Malcles, Julie; Mandjavidze, Irakli; Nayak, Aruna; Pansart, Jean-Pierre; Rander, John; Reymond, Jean-Marc; Rosowsky, André; Titov, Maksym; Verrecchia, Patrice; Badier, Jean; Baffioni, Stephanie; Beaudette, Florian; Becheva, Emilia; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Cerutti, Muriel; Chamont, David; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Geerebaert, Yannick; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Hennion, Pascale; Milleret, Gérard; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Romanteau, Thierry; Sabes, David; Salerno, Roberto; Sartirana, Andrea; Sirois, Yves; Thiebaux, Christophe; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Besson, Auguste; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Gross, Laurent; Huss, Daniel; Juillot, Pierre; Kieffer, Eric; Le Bihan, Anne-Catherine; Pansanel, Jérôme; Patois, Yannick; Van Hove, Pierre; Boutigny, Dominique; Mercier, Damien; Baulieu, Guillaume; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Combaret, Christophe; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Giraud, Noël; Gouzevitch, Maxime; Haroutunian, Roger; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Lumb, Nicholas; Mathez, Hervé; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Roinishvili, Vladimir; Rurua, Lali; Amaglobeli, Nodar; Bagaturia, Iuri; Chiladze, Badri; Kvatadze, Ramazi; Lomidze, David; Shanidze, Revaz; Tsamalaidze, Zviad; Adolphi, Roman; Autermann, Christian; Beranek, Sarah; Brauer, Richard; Braunschweig, Wolfgang; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Karpinski, Waclaw; Klein, Katja; Lübelsmeyer, Klaus; Merz, Jennifer; Ostapchuk, Andrey; Pandoulas, Demetrios; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schmitz, Detlef; Schultz von Dratzig, Arndt; Siedling, Rolf; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Wlochal, Michael; Zhukov, Valery; Ata, Metin; Biallass, Philipp; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hilgers, Guenter; Hoepfner, Kerstin; Hof, Carsten; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Philipps, Barthel; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Sowa, Michael; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Zoeller, Marc Henning; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Goettlicher, Peter; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lewendel, Birgit; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Muhl, Carsten; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Parenti, Andrea; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosemann, Christoph; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Volyanskyy, Dmytro; Walsh, Roberval; Wissing, Christoph; Youngman, Christopher; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Bauer, Julia; Berger, Joram; Blüm, Peter; Böser, Christian; Buege, Volker; Chen, Zheng-Yu; Chowdhury, Shantanu; Chwalek, Thorsten; Daeuwel, Daniel; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Dirkes, Guido; Fahrer, Manuel; Feindt, Michael; Felzmann, Ulrich; Frey, Martin; Furgeri, Alexander; Gebauer, Iris; Gessler, Andreas; Gruschke, Jasmin; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauler, Florian; Hauth, Thomas; Heier, Stefan; Heindl, Stefan Michael; Heinrich, Michael; Heiss, Andreas; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Imhof, Markus; Jung, Christopher; Junghans, Sascha; Katkov, Igor; Kerzel, Ulrich; Knoblauch, Dieter; Komaragiri, Jyothsna Rani; Kräber, Michael; Kuhr, Thomas; Liamsuwan, Thiansin; Lobelle Pardo, Patricia; Martschei, Daniel; Menchikov, Alexandre; Mol, Xavier; Mörmann, Dirk; Mueller, Steffen; Müller, Thomas; Neuberger, Dirk; Neuland, Maike Brigitte; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ortega Gomez, Tino; Ott, Jochen; Piasecki, Christian; Poschlad, Angela; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Röcker, Steffen; Roederer, Frank; Sabellek, Andreas; Saout, Christophe; Scheurer, Armin; Schieferdecker, Dennis; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Schwerdtfeger, Wolfgang; Simonis, Hans-Jürgen; Skiba, Alexander; Stober, Fred-Markus Helmut; Theel, Andreas; Thümmel, Wolf Hagen; Troendle, Daniel; Trunov, Artem; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Markus; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Zvada, Marian; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zalan, Peter; Beni, Noemi; Czellar, Sandor; Fenyvesi, Andras; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Zilizi, Gyula; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Chatterji, Sudeep; Choudhary, Brajesh C; Gupta, Pooja; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Ghodgaonkar, Manohar; Kailas, Swaminathan; Kataria, Sushil Kumar; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Ganguli, Som N; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Patil, Mandakini Ravindra; Raghavan, R; Sudhakar, Katta; Wickramage, Nadeesha; Acharya, Bannaje Sripathi; Banerjee, Sudeshna; Bheesette, Satyanarayana; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Krishnaswamy, Marthi Ramaswamy; Lakkireddi, Venkatesam Reddy; Mondal, Naba Kumar; Narasimham, Vemuri Syamala; Panyam, Nagaraj; Verma, Piyush; Ardalan, Farhad; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; De Robertis, Giuseppe; Donvito, Giacinto; Fiore, Luigi; Iaselli, Giuseppe; Loddo, Flavio; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Natali, Sergio; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Ranieri, Antonio; Romano, Francesco; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Spinoso, Vincenzo; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Noto, Francesco; Potenza, Renato; Saizu, Mirela Angela; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Genta, Chiara; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Parrini, Giuliano; Ranieri, Riccardo; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Farinon, Stefania; Greco, Michela; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; Carbone, Luca; D'Angelo, Pasqualino; De Guio, Federico; Di Matteo, Leonardo; Dini, Paolo; Farina, Fabio Mario; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Negri, Pietro; Paganoni, Marco; Pedrini, Daniele; Pullia, Antonino; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Benettoni, Massimo; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Gulmini, Michele; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Loreti, Maurizio; Margoni, Martino; Maron, Gaetano; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zumerle, Gianni; Berzano, Umberto; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Passeri, Daniele; Placidi, Pisana; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Servoli, Leonello; Spiezia, Aniello; Taroni, Silvia; Valdata, Marisa; Angelini, Franco; Arezzini, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Basti, Andrea; Bellazzini, Ronaldo; Bernardini, Jacopo; Boccali, Tommaso; Bosi, Filippo; Brez, Alessandro; Broccolo, Giuseppe; Calzolari, Federico; Carboni, Andrea; Castaldi, Rino; Cerri, Claudio; Ciampa, Alberto; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Giusti, Simone; Kraan, Aafke; Latronico, Luca; Ligabue, Franco; Linari, Stefano; Lomtadze, Teimuraz; Martini, Luca; Massa, Maurizio; Massai, Marco Maria; Mazzoni, Enrico; Messineo, Alberto; Moggi, Andrea; Palla, Fabrizio; Raffaelli, Fabrizio; Rizzi, Andrea; Sanguinetti, Giulio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Spandre, Gloria; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Baccaro, Stefania; Barone, Luciano; Bartoloni, Alessandro; Cavallari, Francesca; Dafinei, Ioan; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Talamo, Ivano Giuseppe; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Peroni, Cristiana; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Ambroglini, Filippo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Kavka, Carlos; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Ham, Seung Woo; Han, Daehee; Kang, Juheon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Kyung Sook; Kong, Dae Jung; Lee, Man Woo; Oh, Young Do; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Suh, Jun Suhk; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Jo, Youngkwon; Kang, Minho; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Roh, Youn; Sim, Kwang Souk; Choi, Minkyoo; Hahn, Garam; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Janulis, Mindaugas; Juodagalvis, Andrius; Naujikas, Rolandas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Allfrey, Philip; Krofcheck, David; Bell, Alan James; Bernardino Rodrigues, Nuno; Butler, Anthony Philip Howard; Butler, Philip H; Doesburg, Robert; Pfeiffer, Dorothea; Reucroft, Steve; Silverwood, Hamish; Williams, Jennifer C; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Goscilo, Lukasz; Górski, Maciej; Kazana, Malgorzata; Kudla, Ignacy Maciek; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Czyrkowski, Henryk; Dabrowski, Ryszard; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Oklinski, Wojciech; Pozniak, Krzysztof; Zabolotny, Wojciech; Zych, Pawel; Kasprowicz, Grzegorz; Romaniuk, Ryszard; Alemany-Fernandez, Reyes; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Ribeiro, Pedro Quinaz; Seixas, Joao; Rasteiro Da Silva, Jose; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Ershov, Yuri; Gavrilenko, Mikhail; Golunov, Alexander; Golutvin, Igor; Gorbounov, Nikolai; Gorbunov, Ilya; Gramenitski, Igor; Kalagin, Vladimir; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Kurenkov, Alexander; Lanev, Alexander; Makankin, Alexander; Malakhov, Alexander; Melnitchenko, Igor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Oleynik, Danila; Orlov, Alexandre; Palichik, Vladimir; Perelygin, Victor; Petrosyan, Artem; Savina, Maria; Semenov, Roman; Shmatov, Sergey; Shulha, Siarhei; Skachkova, Anna; Skatchkov, Nikolai; Smetannikov, Vladimir; Smirnov, Vitaly; Smolin, Dmitry; Tikhonenko, Elena; Vasilyev, Sergey; Volodko, Anton; Zarubin, Anatoli; Zhiltsov, Victor; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Anisimov, Alexander; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Gorbunov, Dmitry; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Pivovarov, Grigory; Postoev, Vladimir E; Rubakov, Valery; Shirinyants, Valery; Solovey, Anatoly; Tlisov, Danila; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kaftanov, Vitali; Kiselevich, Ivan; Kolosov, Victor; Konoplyannikov, Anatoly; Kossov, Mikhail; Kozlov, Yury; Krokhotin, Andrey; Litvintsev, Dmitri; Lychkovskaya, Natalia; Oulianov, Alexei; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stepanov, Nikita; Stolin, Viatcheslav; Vlasov, Evgueni; Zaytsev, Valentin; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Demiyanov, Andrey; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Ilyin, Viacheslav; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Kryukov, Alexander; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Proskuryakov, Alexander; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Levine, Andrey; Petrov, Vladimir; Ryabov, Alexander; Ryutin, Roman; Sobol, Andrei; Talov, Vladimir; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Smiljkovic, Nebojsa; Zupan, Marko; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Aspell, Paul; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baechler, Joachim; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bialas, Wojciech; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Campi, Domenico; Camporesi, Tiziano; Cano, Eric; Cerminara, Gianluca; Charkiewicz, Andrzej; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; Dabrowski, Anne; Daguin, Jerome; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eppard, Michael; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gastal, Martin; Georgiou, Georgios; Gerwig, Hubert; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Goudard, Raphael; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Gutleber, Johannes; Hammarstrom, Robert; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kloukinas, Kostas; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Loos, Robert; Lourenco, Carlos; Macpherson, Alick; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Marchioro, Alessandro; Marques Pinho Noite, João; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moneta, Lorenzo; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Onnela, Antti; Orsini, Luciano; Osborne, John Andrew; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petagna, Paolo; Petrilli, Achille; Petrucci, Andrea; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Postema, Hans; Quertenmont, Loic; Racz, Attila; Reece, William; Ricci, Daniel; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Ryjov, Vladimir; Sakulin, Hannes; Samyn, Dirk; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sciaba, Andrea; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Taylor, Bruce G; Teller, Olivier; Tropea, Paola; Troska, Jan; Tsesmelis, Emmanuel; Tsirou, Andromachi; Vasey, François; Veillet, Lucien; Veres, Gabor Istvan; Vichoudis, Paschalis; Vlimant, Jean-Roch; Wertelaers, Piet; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Feichtinger, Derek; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Beat; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sakhelashvili, Tariel; Bäni, Lukas; Behner, Frank; Betev, Botjo; Blau, Bertrand; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Da Silva Di Calafiori, Diogo Raphael; Dambach, Sarah; Davatz, Giovanna; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Donegà, Mauro; Dünser, Marc; Eggel, Christina; Eugster, Jürg; Faber, Gérard; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Hits, Dmitry; Hofer, Hans; Holme, Oliver; Horvath, Istvan; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Punz, Thomas; Ronga, Frederic Jean; Röser, Ulf; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Schinzel, Dietrich; Starodumov, Andrei; Stieger, Benjamin; Suter, Henry; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Trüb, Peter; Udriot, Stève; Urscheler, Christina; Viertel, Gert; von Gunten, Hans Peter; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Weng, Joanna; Zelepoukine, Serguei; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Chen, Wan-Ting; Ferro, Cristina; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Liu, Zong-Kai; Lu, Yun-Ju; Singh, Anil; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Gao, Zhengwei; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liau, Jiun-jie; Lin, Sheng-Wen; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Ueno, Koji; Velikzhanin, Yury; Wan, Xia; Wang, Chin-chi; Wang, Minzu; Wei, Jui-Te; Yeh, Ping; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Grynyov, Boris; Levchuk, Leonid; Lukyanenko, Sergiy; Soroka, Dmytro; Sorokin, Pavel; Ahmad, Mian Khawar Hasham; Branson, Andrew; McClatchey, Richard; Odeh, Mohammed; Shamdasani, Jetendr; Soomro, Kamran; Barrass, Timothy; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Lacesso, Winnie; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bateman, Eddie; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Connolly, John F; Coughlan, John A; Denton, Len G; Flower, Paul S; French, Marcus; Greenhalgh, Justin; Halsall, Robert; Harder, Kristian; Harper, Sam; Hill, John; Jackson, James; Kennedy, Bruce W; Lintern, Laurence Albert; Lodge, Anthony B; Olaiya, Emmanuel; Pearson, Matthew; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Smith, Brian; Sproston, Martin; Stephenson, Richard; Tomalin, Ian R; Torbet, Martin; Williams, Julian; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Bauer, Daniela; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Jones, John; Karapostoli, Georgia; Kenzie, Matthew; Leaver, James; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Miller, Derek George; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Noy, Matthew; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Rand, Duncan; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Timlin, Claire; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Wingham, Matthew; Zorba, Osman; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Hazen, Eric; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Varela Rodriguez, Fernando; Wu, Shouxiang; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Hooper, Ryan; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Unalan, Zeynep; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Case, Michael; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Grim, Gary; Gunion, Jack; Holbrook, Britt; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Lin, Feng-Cheng; Miceli, Tia; Murray, Patrick; Nikolic, Milan; Pellett, Dave; Ricci-Tam, Francesca; Rowe, Jeff; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Kubic, Jonathan; Otwinowski, Stanislaw; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Yang, Xiaofeng; Zheng, Yangheng; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Layter, John G; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Shen, Benjamin C; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cinquilli, Mattia; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Martin, Terrence; Mrak-Tadel, Alja; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sfiligoi, Igor; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Kyre, Susanne; Lowette, Steven; Magazzu, Guido; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; White, Dean; Adamczyk, David; Apresyan, Artur; Barczyk, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Denis, Gregory; Di Marco, Emanuele; Duarte, Javier; Galvez, Philippe; Gataullin, Marat; Kcira, Dorian; Lebeau, Michel; Legrand, Iosif; Litvine, Vladimir; Ma, Yousi; Maxa, Zdenek; Mott, Alexander; Mughal, Azher; Nae, Dan; Newman, Harvey B; Ravot, Sylvain; Rogan, Christopher; Rozsa, Sandor Gyula; Shevchenko, Sergey; Shin, Kyoungha; Spiropulu, Maria; Steenberg, Conrad; Thomas, Michael; Timciuc, Vladlen; van Lingen, Frank; Veverka, Jan; Voicu, Bucoveanu-Ramiro; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhang, Liyuan; Zhu, Kejun; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Terentyev, Nikolay; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Johnson, Douglas; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Kuznetsov, Valentin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Riley, Daniel; Ryd, Anders; Salvati, Emmanuele; Stroiney, Steven; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albert, Merina; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Badgett, William; Bailleux, David; Bakken, Jon Alan; Baldin, Boris; Banicz, Karoly; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Binkley, Morris; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Dagenhart, William; Derylo, Greg; Dumitrescu, Catalin; Dykstra, David; Eartly, David P; Elias, John E; Elvira, Victor Daniel; Eulisse, Giulio; Evans, David; Fagan, David; Fisk, Ian; Foulkes, Stephen; Freeman, Jim; Gaines, Irwin; Gao, Yanyan; Gartung, Patrick; Giacchetti, Lisa; Gottschalk, Erik; Green, Dan; Guo, Yuyi; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Holzman, Burt; Hooberman, Benjamin; Howell, Joseph; Huang, Chih-hao; Hufnagel, Dirk; Jindariani, Sergo; Johnson, Marvin; Jones, Christopher Duncan; Joshi, Umesh; Juska, Evaldas; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Larson, Krista; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lopez Perez, Juan Antonio; Los, Serguei; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; McCauley, Thomas; Mishra, Kalanand; Moccia, Stefano; Mommsen, Remigius K; Mrenna, Stephen; Murray, Steven John; Musienko, Yuri; Muzaffar, Shahzad; Newman-Holmes, Catherine; O'Dell, Vivian; Osborne, Ianna; Pivarski, James; Popescu, Sorina; Pordes, Ruth; Prokofyev, Oleg; Rapsevicius, Valdas; Ronzhin, Anatoly; Rossman, Paul; Ryu, Seangchan; Sexton-Kennedy, Elizabeth; Sharma, Seema; Shaw, Theresa; Smith, Richard P; Soha, Aron; Spalding, William J; Spiegel, Leonard; Tanenbaum, William; Taylor, Lucas; Thompson, Rich; Tiradani, Anthony; Tkaczyk, Slawek; Tran, Nhan Viet; Tuura, Lassi; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yarba, Julia; Yun, Jae Chul; Zimmerman, Thomas; Acosta, Darin; Avery, Paul; Barashko, Victor; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Dolinsky, Sergei; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Gorn, Lisa; Holmes, Daniel; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Madorsky, Alexander; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Scurlock, Bobby; Skhirtladze, Nikoloz; Snowball, Matthew; Stasko, John; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bertoldi, Maurizio; Bochenek, Joseph; Chen, Jie; Dharmaratna, Welathantri GD; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Tentindo, Silvia; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Yumiceva, Francisco; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Chung, Man-Ho; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Hollis, Richard; Iordanova, Aneta; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Ayan, Ahmet Sedat; Bilki, Burak; Clarida, Warren; Debbins, Paul; Duru, Firdevs; Ingram, F Duane; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Miller, Michael Jan; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Schmidt, Ianos; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Coppage, Don; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Bard, Robert; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Grassi, Tullio; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Toole, Terrence; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Egeland, Ricky; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Inyakin, Alexandre; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Reidy, Jim; Sanders, David A; Summers, Don; Attebury, Garhan; Avdeeva, Ekaterina; Bloom, Kenneth; Bockelman, Brian; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Lundstedt, Carl; Malik, Sudhir; Snihur, Robert; Snow, Gregory R; Swanson, David; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Moromisato, Jorge; Nash, David; Orimoto, Toyoko; Swain, John; Trocino, Daniele; Von Goeler, Eberhard; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Gobbi, Bruno; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Baumbaugh, Barry; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Heering, Arjan Hendrix; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Rush, Chuck J; Sehgal, Veejay; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Wildish, Tony; Xie, Zhen; Zenz, Seth Conrad; Zuranski, Andrzej; Acosta, Jhon Gabriel; Bonnett Del Alamo, Miguel; Brownson, Eric; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Arndt, Kirk; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; Bujak, Adam; De Mattia, Marco; Everett, Adam; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Lee, Jik; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Miyamoto, Jun; Neumeister, Norbert; Rott, Carsten; Roy, Amitava; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Lee, Sang Joon; Li, Wei; Liu, Jinghua H; Matveev, Mikhail; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Tumanov, Alexander; Yepes, Pablo; Zabel, James; Betchart, Burton; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Ginther, George; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Orbaker, Douglas; Sakumoto, Willis; Slattery, Paul; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Ragghianti, Gerald; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Appelt, Eric; Delannoy, Andrés G; Engh, Daniel; Florez, Carlos; Gabella, William; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Andelin, Daniel; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Conetti, Sergio; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Phillips II, David; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Bellinger, James Nugent; Borrello, Laura; Bradley, Daniel; Carlsmith, Duncan; Cepeda, Maria; Crotty, Ian; Dasu, Sridhara; Feyzi, Farshid; Friis, Evan; Gorski, Thomas; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lackey, Joe; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Lusin, Sergei; Magrans de Abril, Marc; Maier, Will; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Wenman, Daniel

    2012-01-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W–, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 125 giga–electron volts. Although its measured properties are, withi...

  20. Vacuum stability and residual gas density estimation for the vacuum chamber upgrade of the ATLAS interaction region of the Large Hadron Collider

    CERN Document Server

    Bregliozzi, G; Baglin, V; Jimenez, J M

    2012-01-01

    The CERN Large Hadron Collider (LHC) has 54 km of ultra-high vacuum (UHV) beam chambers out of which about 90% are at cryogenic temperature (1.9 K) and the rest at room temperature. During operation, the residual gas density in the beam pipes is dominated by beam induced effect such ion, electron and photon-stimulated gas desorption. Therefore, the computation of gas density profile is of great importance to confirm the vacuum stability, and to estimate the beam lifetime. Moreover, the gas density profiles are essential to determine the machine induced background in the experimental areas, and to define the pressure profile in the cryogenic sectors where there is no vacuum instrumentation available. In this paper, the vacuum stability is studied for a newly proposed upgrade of the vacuum chamber at the ATLAS interaction point, using the vacuum stability code called VASCO. The residual gas density profile along the ATLAS vacuum chambers and the effects of photon and electron flux hitting the vacuum chamber wal...

  1. Quench characteristics of Ag/AuBi2223 HTS-stainless steel stack used for the hybrid current leads of the large hadron collider

    CERN Document Server

    Al-Mosawi, M K; Beduz, C; Yang, Y; Ballarino, A

    2008-01-01

    The quench characteristics of Ag/Au sheathed Bi2223 tapes have been investigated in an adiabatic condition and in a configuration similar to that used in hybrid high temperature superconducting current leads, namely the 13000A leads used for the Large Hadron Collider at CERN. A specialised rig was designed and constructed to provide a carefully controlled environment. The samples were prepared from HTS tape soldered onto a stainless steel substrate with a number of temperature sensors at various positions along the length of tape. One end of the lead (cold end) was maintained at 6K using G-M cryo-cooler whereas the temperature of the other end (warm end) can be varied and maintained at temperatures up to 100K. The thermal runaway currents (quench currents) at various warm end temperatures (in the range of 40-100K) were determined. The temperature evolutions at various locations along the tape were recorded at different top end temperatures and currents. The effect of the stainless steel mechanical reinforceme...

  2. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Science.gov (United States)

    CMS Collabortion; Abbaneo, D.; Abbiendi, G.; Abbrescia, M.; Abdullin, S.; Abdulsalam, A.; Acharya, B. S.; Acosta, D.; Acosta, J. G.; Adair, A.; Adam, W.; Adam, N.; Adamczyk, D.; Adams, T.; Adams, M. R.; Adiguzel, A.; Adler, V.; Adolphi, R.; Adzic, P.; Afanasiev, S.; Agostino, L.; Agram, J.-L.; Aguilar-Benitez, M.; Aguilo, E.; Ahmad, M.; Ahmad, M. K. H.; Ahuja, S.; Akchurin, N.; Akgun, U.; Akgun, B.; Akin, I. V.; Alagoz, E.; Albajar, C.; Albayrak, E. A.; Albergo, S.; Albert, M.; Albrow, M.; Alcaraz Maestre, J.; Aldá Júnior, W. L.; Aldaya Martin, M.; Alemany-Fernandez, R.; Alexander, J.; Aliev, T.; Alimena, J.; Allfrey, P.; Almeida, N.; Alverson, G.; Alves, G. A.; Aly, A.; Amaglobeli, N.; Amapane, N.; Ambroglini, F.; Amsler, C.; Anagnostou, G.; Anastassov, A.; Andelin, D.; Anderson, J.; Anderson, M.; Andrea, J.; Andreev, Yu.; Andreev, V.; Andreev, V.; Andrews, W.; Anfreville, M.; Angelini, F.; Anghel, I. M.; Anisimov, A.; Anjos, T. S.; Ansari, M. H.; Antonelli, L.; Anttila, E.; Antunovic, Z.; Apanasevich, L.; Apollinari, G.; Appelt, E.; Apresyan, A.; Apyan, A.; Arce, P.; Arcidiacono, R.; Ardalan, F.; Arenton, M. W.; Arezzini, S.; Arfaei, H.; Argiro, S.; Arisaka, K.; Arndt, K.; Arneodo, M.; Arora, S.; Asavapibhop, B.; Asawatangtrakuldee, C.; Asghar, M. I.; Askew, A.; Aspell, P.; Assran, Y.; Ata, M.; Atac, M.; Attebury, G.; Attikis, A.; Auffray, E.; Autermann, C.; Auzinger, G.; Avdeeva, E.; Avery, P.; Avetisyan, A.; Avila, C.; Awad, A.; Ayan, A. S.; Azarkin, M.; Azhgirey, I.; Aziz, T.; Azzi, P.; Azzolini, V.; Azzurri, P.; Baarmand, M. M.; Babb, J.; Baccaro, S.; Bacchetta, N.; Bachtis, M.; Baden, A.; Badgett, W.; Badier, J.; Baechler, J.; Baffioni, S.; Bagaturia, I.; Bagliesi, G.; Bai, Y.; Bailleux, D.; Baillon, P.; Bainbridge, R.; Bakhshiansohi, H.; Bakirci, M. N.; Bakken, J. A.; Balazs, M.; Baldin, B.; Ball, A. H.; Ball, G.; Ballin, J.; Ban, Y.; Banerjee, S.; Banerjee, S.; Bäni, L.; Banicz, K.; Bansal, M.; Bansal, S.; Banzuzi, K.; Barashko, V.; Barbagli, G.; Barberis, E.; Barbone, L.; Barczyk, A.; Bard, R.; Barfuss, A. F.; Bargassa, P.; Barge, D.; Baringer, P.; Barker, A.; Barnes, V. E.; Barnett, B. A.; Barney, D.; Barone, L.; Barrass, T.; Bartalini, P.; Barth, C.; Bartoloni, A.; Basegmez, S.; Basso, L.; Basti, A.; Bateman, E.; Battilana, C.; Bauer, J.; Bauer, D.; Bauer, G.; Bauerdick, L. A. T.; Baulieu, G.; Baumbaugh, B.; Baumgartel, D.; Baur, U.; Bayshev, I.; Bazterra, V. E.; Bean, A.; Beauceron, S.; Beaudette, F.; Beaumont, W.; Beaupere, N.; Becheva, E.; Bedjidian, M.; Beernaert, K.; Behner, F.; Behr, J.; Behrenhoff, W.; Behrens, U.; Belforte, S.; Beliy, N.; Belknap, D.; Bell, A. J.; Bell, K. W.; Bellan, R.; Bellato, M.; Bellazzini, R.; Bellinger, J. N.; Belotelov, I.; Belyaev, A.; Belyaev, A.; Benaglia, A.; Bencze, G.; Bendavid, J.; Benedetti, D.; Benelli, G.; Benettoni, M.; Benhabib, L.; Beni, N.; Benitez, J. F.; Benussi, L.; Benvenuti, A. C.; Beranek, S.; Beretvas, A.; Bergauer, T.; Berger, J.; Bergholz, M.; Beri, S. B.; Bernardes, C. A.; Bernardini, J.; Bernardino Rodrigues, N.; Bernet, C.; Berry, D.; Berry, E.; Berryhill, J.; Bertl, W.; Bertoldi, M.; Berzano, U.; Besancon, M.; Besson, A.; Betchart, B.; Betev, B.; Bethani, A.; Betts, R. R.; Beuselinck, R.; Bhandari, V.; Bhardwaj, A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharya, S.; Bhattacharya, S.; Bhatti, A.; Bheesette, S.; Bialas, W.; Bialkowska, H.; Biallass, P.; Bian, J. G.; Bianchi, G.; Bianchini, L.; Bianco, S.; Biasini, M.; Biasotto, M.; Biino, C.; Bilei, G. M.; Bilin, B.; Bilki, B.; Binkley, M.; Bisello, D.; Bitioukov, S.; Blau, B.; Blekman, F.; Blobel, V.; Bloch, D.; Bloch, P.; Bloom, K.; Bluj, M.; Blüm, P.; Blumenfeld, B.; Blyweert, S.; Boccali, T.; Bocci, A.; Bochenek, J.; Bockelman, B.; Bodek, A.; Bodin, D.; Boimska, B.; Bolla, G.; Bolognesi, S.; Bolton, T.; Bonacorsi, D.; Bonato, A.; Bondu, O.; Bonnett Del Alamo, M.; Bontenackels, M.; Boos, E.; Borcherding, F.; Bornheim, A.; Borras, K.; Borrello, L.; Bortignon, P.; Bortoletto, D.; Bose, T.; Bose, S.; Böser, C.; Bosi, F.; Bostock, F.; Botta, C.; Boudoul, G.; Bouhali, O.; Boulahouache, C.; Bourilkov, D.; Boutemeur, M.; Boutigny, D.; Boutle, S.; Bradley, D.; Braibant-Giacomelli, S.; Branca, A.; Branson, A.; Branson, J. G.; Brauer, R.; Braunschweig, W.; Breedon, R.; Breto, G.; Breuker, H.; Brew, C.; Brez, A.; Brigliadori, L.; Brigljevic, V.; Brinkerhoff, A.; Brito, L.; Broccolo, G.; Brochero Cifuentes, J. A.; Brochet, S.; Brom, J.-M.; Brona, G.; Brooke, J. J.; Broutin, C.; Brown, R. M.; Brownson, E.; Brun, H.; Bruno, G.; Buchmann, M. A.; Buchmuller, O.; Bucinskaite, I.; Budd, H.; Buege, V.; Bujak, A.; Bunichev, V.; Bunin, P.; Bunkowski, K.; Bunn, J.; Buontempo, S.; Burgmeier, A.; Burkett, K.; Busson, P.; Busza, W.; Butler, A. P. H.; Butler, P. H.; Butler, J. N.; Butt, J.; Butz, E.; Bylsma, B.

    2012-12-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W-, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle.

  3. High energy proton-proton elastic scattering at the Large Hadron Collider and nucleon structure

    Science.gov (United States)

    Luddy, Richard Joseph

    To gain insight into the structure of the nucleon, we pursue the development of the phenomenological model of Islam et al. (IIFS model) for high energy elastic pp and p¯p scattering. We determine the energy dependence of the parameters of the IIFS model using the available elastic differential cross section data from SPS Collider and Tevatron and the known asymptotic behavior of sigmatot (s) and rho(s) from dispersion relation calculations and more recent analyses of Cudell et al. (COMPETE Collaboration). Next, we incorporate a high energy elastic valence quark-quark scattering amplitude into the model based on BFKL pomeron to describe small impact parameter (large | t|) pp collisions. Finally, we predict the pp elastic differential cross section at the unprecedented c.m. energy of s = 14.0 TeV at the Large Hadron Collider (LHC). This prediction assumes crucial significance---because of an approved experiment at LHC: TOTal and Elastic Measurement (TOTEM). The TOTEM group plans to measure pp elastic dsigma/dt at 14.0 TeV all the way from momentum transfer |t| = 0 to |t| ≃ 10 GeV 2. Their measurement will stringently test not only the diffraction and o-exchange descriptions of the original IIFS model, but also the additional valence quark-quark scattering contribution that we find to be dominant for large |t|. Successful quantitative verification of the predicted dsigma/dt will mean that our picture of the nucleon with an outer cloud of qq¯ condensed ground state, an inner core of topological baryonic charge, and a still smaller core of massless valence quarks provides a realistic description of nucleon structure.

  4. Quantifying jet transport properties via large $p_T$ hadron productions at NLO

    CERN Document Server

    Liu, Zhi-Quan; Zhang, Ben-Wei; Wang, Enke

    2015-01-01

    Nuclear modification factor $R_{AA}$ for large $p_T$ single hadron is studied in a next-to-leading order (NLO) perturbative QCD (pQCD) parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the QGP is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter $\\hat q_{0}$ and the mean free path $\\lambda_{0}$, both at the initial time $\\tau_0$. A phenomenological study of the experimental data for $R_{AA}(p_{T})$ is performed to constrain the two parameters with simultaneous $\\chi^2/{\\rm d.o.f}$ fits to RHIC as well as LHC data. We obtain for energetic quarks $\\hat q_{0}\\approx 1.1 \\pm 0.2$ GeV$^2$/fm and $\\lambda_{0}\\approx 0.4 \\pm 0.03$ fm in central $Au+Au$ collisions at $\\sqrt{s_{NN}}=200$ GeV, while $\\hat q_{0}\\approx 1.7 \\pm 0.3$ GeV$^2$/fm, and $\\lambda_{0}\\approx 0.5 \\pm 0.05$ fm in central $Pb+...

  5. Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider

    CERN Document Server

    Lindner, Manfred; Rodejohann, Werner; Yaguna, Carlos E

    2016-01-01

    We show that the proposed Large Hadron electron Collider (LHeC) will provide a great opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC -- including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determine the values of right-handed neutrino and gauge boson masses that could be tested at the LHeC after one, five and ten years of operation. Our results indicate that this collider might probe, via the $\\Delta L =2$ signal $e^-p\\to e^+jjj$, Majorana neutrino masses up to $1$ TeV and $W_R$ masses up to $\\sim 6.5$ TeV. Interestingly, part of this parameter space is beyond the expected reach of the LHC and of future neutrinoless double beta decay experiments.

  6. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  7. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Science.gov (United States)

    Backhaus, M.

    2016-09-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO2 based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  8. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC) . Taking advantage of Long Shutdown 1 (LS1) during 2014/2015, the Pixel Detector was brought to surface to equip it with new service panels and to repair modules. The Insertable B-Layer (IBL), a fourth layer of pixel sensors, was installed in-between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) were used and a new readout chip has been designed with CMOS 130 nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performance. An overview of the lessons learned during the IBL project is presented, focusing on the challenges and highlighting the issues met during the production, integration, installation and commissioning phases of the detector. Early performance tests using cosmic and beam data are also presented

  9. A promising large area VHE gamma ray detector with excellent hadron rejection capability

    Science.gov (United States)

    Tumer, O. Tumay; O'Neill, J. Terrence; Zych, Allen D.; White, R. Stephen

    1990-03-01

    A new large area VHE gamma ray detector for detecting atmospheric Cerenkov light from very high energy celestial gamma rays is proposed. It will be constructed by converting Solar One, a 10 MW Solar Thermal Central Receiver Pilot Plant at Barstow, California, which uses the solar tower technology with heliostats as light collectors. Solar energy research at this facility has recently been terminated. The detector will cover an area of at least 200 m diameter, which is only about 5% of the total area available at Solar One, so that a significant fraction of the Cerenkov light pool is detected. Each heliostat will focus the Cerenkov light onto a photomultiplier tube (PMT) selected to match the optical quality of the heliostat. Its active reflecting surface is 71,000 m2, which is about 375 times larger than the largest VHE gamma ray atmospheric Cerenkov detector, the twin 11 m dia. collectors at Sandia Labs, Albuquerque1. It is expected to have the lowest energy threshold (>=10 GeV) for atmospheric Cerenkov observations. This will enhance counting rates significantly and bridge the gap between HE and VHE gamma ray astronomy with some overlapping. It will also have excellent inherent hadron rejection. One hundred million dollars worth of installation is already constructed and ready to use. The rest of the detector can be built for a small fraction, <1%.

  10. Test of relativistic gravity for propulsion at the Large Hadron Collider

    CERN Document Server

    Felber, Franklin

    2009-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. The first exact time-dependent solutions of Einstein's gravitational field equation confirm that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated 'antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s^2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  11. EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider

    CERN Document Server

    Zimmermann, F; HE-LHC10; HE-LHC 10

    2011-01-01

    This report contains the proceedings of the EuCARD-AccNet-EuroLumi Workshop on a High-Energy Large Hadron Collider `HE-LHC10' which was held on Malta from 14 to 16 October 2010. This is the first workshop where the possibility of building a 33 TeV centre-of-mass energy proton--proton accelerator in the LHC tunnel is discussed. The key element of such a machine will be the 20 T magnets needed to bend the particle beams: therefore much space was given to discussions about magnet technologies for high fields. The workshop also discussed possible parameter sets, issues related to beam dynamics and synchrotron radiation handling, and the need for new injectors, possibly with 1 TeV energy. The workshop searched for synergies with other projects and studies around the world facing similar challenges or pushing related technologies, revisited past experience, and explored a possible re-use of existing superconducting magnets. Last not least, it reinforced the inter-laboratory collaborations within EuCARD, especially ...

  12. Phenomenology of supersymmetric Z' decays at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Corcella, Gennaro [INFN, Laboratori Nazionali di Frascati, Frascati, RM (Italy)

    2015-06-15

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into supersymmetric particles, such as chargino, neutralino, and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at √(s) = 14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modified to accommodate the extra Z' boson and consistent with the discovery of a Higgs-like boson with mass around 125 GeV. Results are presented for several observables and compared with those obtained for direct Z' decays into lepton pairs, as well as direct production of supersymmetric particles. For the sake of comparison, Z' phenomenology in an effective supersymmetric extension of the Sequential Standard Model is also discussed. (orig.)

  13. Searching for Supersymmetry with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    French, Sky Trillium

    2011-01-01

    On Monday 23rd November 2009, the ATLAS experiment at the Large Hadron Collider began taking data at $\\sqrt{s}=900$ GeV. On the penultimate day of March the following year, after a brief shutdown, ATLAS resumed data taking but at $\\sqrt{s}=7$ TeV. These $\\sqrt{s}=7$ TeV collisions continued until the end of October 2010. This thesis presents the very first low-$p_T$ electron candidates from the complete 9$\\mu b^{-1} \\sqrt{s}=900$ GeV dataset, and higher-$p_T$ candidates from the first 1 nb$^{-1}$ of the $\\sqrt{s}=7$ TeV dataset. These candidates are presented in the context of electron reconstruction and identification and illustrate how various properties of these electrons compare with expectations based on Monte Carlo simulations. An observation is made of the $Z$ candidates present in the first ~220 nb$^{-1}$ of $\\sqrt{s}=7$ TeV collision data, these being amongst the first $Z$ bosons ever produced by a proton-proton collider. A detailed study is then presented of the full ~35pb$^{-1}$ 2010 $\\sqrt{s}=7$ T...

  14. Busca por dimensões extras no detector CMS do large hadron collider

    CERN Document Server

    Fernandez Perez Tomei, T R

    We present the results of a search for experimental evidence of extra space dimensions in proton-proton collisions at a center-of-mass energy of 7 TeV, furnished by the Large Hadron Collider accelerator. We analyzed the data taken by the Compact Muon Solenoid experiment during 2011, which total an integrated luminosity of 4.7 fb−1. The Randall-Sundrum warped extra dimensions model was used as a standard benchmark for the experimental signatures which could be observed in the data, in the presence of extra dimensions. The studied reaction is pp → G∗→ ZZ→ qqνν, where G∗ is the first Randall-Sundrum graviton resonance. The observations agree witht he Standard Model predictions. In the absence of experimental signals of extra dimensions, we put limits on the parameters of the Randall-Sundrum model. Upper limits, with 95% confidence, for the cross-section of processes which would raise the event yield in the channel considered are in the [0.047 – 0.021] pb range, for resonance masses in the [1000...

  15. Operational Experience and Consolidations for the Current Lead Control Valves of the Large Hadron Collider

    CERN Document Server

    Perin, A; Pirotte, O; Krieger, B; Widmer, A

    2012-01-01

    The Large Hadron Collider superconducting magnets are powered by more than 1400 gas cooled current leads ranging from 120 A to 13000 A. The gas flow required by the leads is controlled by solenoid proportional valves with dimensions from DN 1.8 mm to DN 10 mm. During the first months of operation, signs of premature wear were found in the active parts of the valves. This created major problems for the functioning of the current leads threatening the availability of the LHC. Following the detection of the problems, a series of measures were implemented to keep the LHC running, to launch a development program to solve the premature wear problem and to prepare for a global consolidation of the gas flow control system. This article describes first the difficulties encountered and the measures taken to ensure a continuous operation of the LHC during the first year of operation. The development of new friction free valves is then presented along with the consolidation program and the test equipment developed to val...

  16. A central rapidity straw tracker and measurements on cryogenic components for the large hadron collider

    International Nuclear Information System (INIS)

    The thesis is divided into two parts in which two different aspects of the Large Hadron Collider (LHC) project are discussed. The first part describes the design of a transition radiation tracker (TRT) for the inner detector in ATLAS. In particular, the barrel part was studied in detail. The barrel TRT consists of 52544 1.5 m long proportional tubes (straws), parallel to the beam axis and each with a diameter of 4 mm. The detector is divided into three module layers with 32 modules in each layer. The preparatory study comprises: module size optimization, mechanical and thermal calculations, tracking performance and material budget studies. The second part deals with the cryogenic system for the LHC superconducting magnets. They will work at a temperature below 2 K and it is essential to understand the thermal behaviour of the individual cryogenic components in order to assess the insulating properties of the magnet cryostat. The work involves the design of two dedicated heat-inlet measuring benches for cryogenic components, and the results from heat-inlet measurements on two different types of cryogenic components are reported. 54 refs., 79 figs., 14 tabs

  17. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment.

    Science.gov (United States)

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs. PMID:26569259

  18. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider

    CERN Document Server

    Aquilina, N; Sammut, N; Strzeclzyk, M; Todesco, E

    2012-01-01

    It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar pheno...

  19. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    CERN Document Server

    Danisi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 μm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic im...

  20. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment.

    Science.gov (United States)

    Danisi, Alessandro; Masi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs.

  1. The High Luminosity Large Hadron Collider the new machine for illuminating the mysteries of Universe

    CERN Document Server

    Brüning, Oliver

    2015-01-01

    This book provides a broad introduction to the physics and technology of the High Luminosity Large Hadron Collider (HL-LHC). This new configuration of the LHC is one of the major accelerator projects for the next 15 years and will give new life to the LHC after its first 15-year operation. Not only will it allow more precise measurements of the Higgs boson and of any new particles that might be discovered in the next LHC run, but also extend the mass limit reach for detecting new particles. The HL-LHC is based on the innovative accelerator magnet technologies capable of generating 11–13 Tesla fields, with effectiveness enhanced by use of the new Achromatic Telescopic Squeezing scheme, and other state-of-the-art accelerator technologies, such as superconducting compact RF crab cavities, advanced collimation concepts, and novel power technology based on high temperature superconducting links. The book consists of a series of chapters touching on all issues of technology and design, and each chapter can be re...

  2. The large Hadron Collider (LHC) and the search for the divine particle; El gran acelerador de hadrones (LHC) y la busqueda de la particula divina

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, G.

    2008-07-01

    The large Hadron Collider (LHC) is a particle circular accelerator of 27 km of circumference. It will be used to study the smallest known particles. Two beams of subatomic particles called hadrons either protons or lead ion- will travel in opposite directions inside the circular accelerator gaining energy with every lap. Physicists will use the LHC to recreate the conditions just after the Big Bang, by colliding the two beams had-on at very high energy. There are many theories as to what will result from these collisions, but what's for sure is that a brave new world of physics will emerge from the new accelerator, as knowledge in particle physics goes on to describe the working of the Universe. for decades, the Standard Model of particle physics has served physicists well as a means of understanding the fundamental laws of Nature, but it does not tell the whole story. Only experimental data using the higher energies reached by the LHC can push knowledge forward, challenging those who seek confirmation of established knowledge, and those who dare to dream beyond the paradigm. The Higgs boson, that complete the standard model, is waited to be found. (Author)

  3. Development of 18 K helium refrigeration system for CERN

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The Conseil Europeen pour Ia Recherche Nucleaire (CERN) placed an order for a 1.8 K helium refrigeration system with IHI for the Large Hadron Collider project in 1999. IHI formed a consortium with Linde Kryotechnik AG (Switzerland), which has long experience with helium refrigeration systems. IHI designed and manufactured cold compressors based on leading technologies and expertise for turbo machinery. The cold compressor has the highest efficiency in the world. This paper describes the 1.8 K helium refrigeration system and performance test results at CERN. (5 refs).

  4. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    Science.gov (United States)

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  5. Les Etats-Unis d'Amérique deviennent observateur au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Council delegates applauded warmly as representatives of United States of America were welcomed to the Council session for the first time as official Observers. This new status follows the agreement between CERN and the United States for a contribution of $531 million to the Large Hadron Collider (LHC) project which was signed in Washington on 8 December (see Press Release no.7 1997).

  6. CERN to offer secure grid, published in itWorldCanada

    CERN Multimedia

    Broersma, Matthew

    2006-01-01

    CERN, the Geneva-based nuclear physics research center, has launched a collaborative effort with some of the biggest name in IT to tighten up security on its landmark Large Hadron Collider (LHC) project, as well as working on platform virtualization and the interoperability of grid software (1 page)

  7. CERN: Digital image analysis in the world's largest research center for particle physics

    CERN Multimedia

    2005-01-01

    Those interested in researching into the smallest building blocks that matter is made up of need the largest instruments. CERN, near Geneva, Switzerland is where the most powerful circular accelerator in the world is being built: the Large Hadron Collider (LHC) for proton collisions. It has a circumference of 26.7 km (4 pages)

  8. Le CERN va devoir supprimer quelques 600 postes d'ici a 2007

    CERN Document Server

    2002-01-01

    "Le Laboratoire europeen pour la physique des particules (CERN) qui procede actuellement a la construction du LHC (Large Hadron Collider) , le plus grand accelerateur de particules du monde, va devoir supprimer, comme cela avait ete evoque en juin, quelques 600 postes d'ici a 2007" (1 paragraph).

  9. Le nouvel accélérateur du CERN 1232 aimants sous la terre

    CERN Multimedia

    Du Brulle, Christian

    2005-01-01

    The LHC (Large Hadron Collider), whether the future particle accelerator of CERN, in Geneva, is now on its final assembling stage. Indeed, since Monday, the technicians and the engineers began to install under the ground the first magnets of this huge probing-matter machine in the ring of 27km under Switzerland and France

  10. Charm production in Pb+Pb collisions at the Large Hadron Collider energy

    CERN Document Server

    Song, Taesoo; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    We study charm production in Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}=$2.76 TeV in the Parton-Hadron-String-Dynamics transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the PYTHIA event generator taking into account the (anti-)shadowing incorporated in the EPS09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into $D$ mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable $R_{\\rm AA}$ and elliptic flow of $D$ mesons in comparison to the experimental data for Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm q...

  11. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  12. Signing of CERN's 300 million EUR loan from the EIB in December 2002. From left to right : Philippe Busquin, European Research Commissioner, Philippe Maystadt, EIB President and Luciano Maiani, Director General of CERN

    CERN Document Server

    2003-01-01

    The European Investment Bank (EIB) is lending EUR 300 million to finance the final phase of construction of the Large Hadron Collider (LHC) at CERN , the European Organization for Nuclear Research. The EIB loan will also help to finance the instrumentation to record and analyse the high-energy particle collisions at the LHC. A loan to enable construction of this major project was foreseen by CERN's governing Council when it approved the LHC in 1996.

  13. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  14. Start of run2 physics at the Large Hadron Collider (LHC)

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Images from the CERN Control Centre (CCC), where operators control the LHC, and from the control rooms of the ALICE, ATLAS, CMS and LHCb experiments, where operators control huge detectors that capture data from collisions between beams of protons in the LHC.

  15. Workshop | CERN openlab IT in Healthcare | 11 November

    CERN Document Server

    2014-01-01

    We would like to draw your attention to the CERN openlab IT in Healthcare Workshop (see here) that will take place at CERN on Tuesday 11 November.   CERN openlab is a unique public-private partnership between CERN and leading ICT companies. It was created in 2001 in support of the ambitious computing and data management goals set by the construction of the Large Hadron Collider (LHC) and detectors. Building on more than 10 years of ground-breaking work, CERN openlab continues to address the key topics in the CERN scientific and technical programme driven by the planned LHC upgrade activities spanning the next 20 years. The next phase of CERN openlab, Phase V, will start in January 2015 for three more years of joint technical collaborations. The scope of openlab is being expanded beyond High Energy Physics communities to understand how to address major computing and data analysis challenges in as diverse scientific disciplines as healthcare, radioastronomy, neurology or environmental research. ...

  16. Beamline for Schools 2016: How to be a CERN scientist

    CERN Multimedia

    2016-01-01

    Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline.   Students from the 2016 Beamline for Schools competition working on their experiment. (Image: Noemí Carabán Gonzalez/CERN) Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline, after winning the Beamline for Schools competition. The teams, ”Pyramid Hunters” from Poland and “Relatively Special” from the United Kingdom, spent 10 days at CERN conducting the experiments they had dreamt up in their winning proposals. The Beamline for Schools competition gives high-school students the chance to run an experiment on a fully equipped CERN beamline, in the same way researchers do at the Large Hadron Collider and other CERN facilities every day. To know more about their stay at CERN and the experiments they&r...

  17. The measurement of the gluon polarization by the production of hadron pairs with large transverse momenta in deep inelastic muon scattering on the nucleon

    International Nuclear Information System (INIS)

    The spin structure of the nucleon is investigated at the COMPASS experiment at the CERN SPS using polarized muons scattering off polarized nucleons. The contribution of the quarks to nucleon spin, as measured in the inclusive deep-inelastic scattering, is not sufficient to explain the spin of the nucleon. Thus it has to be clarified how the gluon polarization and the angular momenta of quarks and gluons contribute to the spin of the nucleon. Since the gluon polarization can only be estimated from the Q2-dependence of inclusive deep inelastic asymmetries, a direct measurement of the gluon polarization is mandatory. The COMPASS collaboration determines the gluon polarization from cross section asymmetries in photon-gluon fusion processes using open charm production or the production of hadron pairs with large transverse momenta. This thesis presents a measurement of the gluon polarization using the COMPASS data of the years 2003 and 2004. The events with large virtuality, Q2>1 GeV2/c2, and hadron pairs with large transverse momenta, p perpendicular to > 0.7 GeV/c have been used in the analysis. The photon-nucleon asymmetry was determined by using a weighted double ratio method of the selected events. The cut on p perpendicular to > 0.7 GeV/c suppresses leading order processes, so that the obtained asymmetry can be directly linked to the gluon polarization, if the analyzing power and the photon-gluon fusion fraction is known. The measured value is very small and compatible with a vanishing gluon polarization. To avoid false asymmetries, which could be caused by a change of the detector acceptances double ratios were analyzed, where the cross section cancels, and only detector asymmetries remain. It is shown that the COMPASS spectrometer was stable during the time of data taking. For the computation of the analyzing power Monte Carlo events were generated using the LEPTO and the COMGeant software packages. In this context a good MC description of the data is important

  18. Performance of the ALICE Experiment at the CERN LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Jimenez, Ramon; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

  19. Electron cloud in the CERN accelerators (PS, SPS, LHC)

    OpenAIRE

    Iadarola, G.; Rumolo, G.

    2013-01-01

    Several indicators have pointed to the presence of an Electron Cloud (EC) in some of the CERN accelerators, when operating with closely spaced bunched beams. In particular, spurious signals on the pick ups used for beam detection, pressure rise and beam instabilities were observed at the Proton Synchrotron (PS) during the last stage of preparation of the beams for the Large Hadron Collider (LHC), as well as at the Super Proton Synchrotron (SPS). Since the LHC has started operation in 2009, ty...

  20. Hadron Spectroscopy in COMPASS

    CERN Document Server

    Grube, Boris

    2012-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. In the naive Constituent Quark Model (CQM) mesons are bound states of quarks and antiquarks. QCD, however, predict the existence of hadrons beyond the CQM with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). One main goal of COMPASS is to search for these states. Particularly interesting are so called spin-exotic mesons which have J^{PC} quantum numbers forbidden for ordinary q\\bar{q} states. Its large acceptance, high resolution, and high-rate capability make the COMPASS experiment an excellent device to study the spectrum of light-quark mesons in diffractive and central production reactions up to masses of about 2.5 GeV. COMPASS is able to measure final states with charged as well as neutral particles, so that resonances can be studied ...

  1. Maintaining an effective and efficient control system for the Electromagnetic Calorimeter of the Compact Muon Solenoid experiment during Long-Term Operations of CERN�??s Large Hadron Collider

    CERN Document Server

    Holme, Oliver

    2012-01-01

    The sub-detectors of the Compact Muon Solenoid (CMS) multi-purpose particle detector at the CERN Large Hadron Collider (LHC) have been collecting physics data from particle collisions for almost three years. During this period, the CMS Electromagnetic Calorimeter (ECAL) Detector Control System (DCS) has contributed to the high level of availability of the experiment. This paper presents the current architecture of this distributed and heterogeneous control system alongside plans and developments for future improvements. To ensure that the system can efficiently operate and adapt to changes throughout the required operation lifetime of more than a decade, the potential legacy aspects of this kind of control system must be carefully managed. Such issues include evolving system requirements, turnover of staff members, potential benefits from new technologies and the need to follow release schedules of external software dependencies. The techniques and results of the work to continually maintain, improve and stre...

  2. The story of CERN : a 50 year journey to the Heart of Matter

    CERN Multimedia

    CERN/Mannmade Productions

    2004-01-01

    This film chronicles the story of CERN, the world's largest laboratory for studying the nature of matter. Using fascinating archive footage, interviews, stunning video and state-of-the-art computer generated images, it spans half a century, from the hopes and vision of CERN's founding fathers to the Laboratory's latest particule accelerator, the 27-km Large Hadron Collider. Intervention byHerwig Schopper CERN Director General 1981-88 Jack Steinberger Nobel prize for Physics 1988Robert Aymar General Director of CERNWolfgang Von Rueden Head of CERN Information TechnologyJohn Ellis Theoretical PhysicistManjit Dosanjh CERN Education and Technology TransferRolf LanduaExperimental PhysicistRichard Jacobsson Experimental PhysicistFabiola Gianotti Experimental PhysicistYves Schutz Experimental PhysicistAlavaro de Rujula Theoretical PhysicistProf. Peter Higgs Edinburgh University

  3. Facing new safety-challenges in a large particle accelerator experiment at CERN

    CERN Document Server

    Schmidt, Reiner

    1999-01-01

    An upgraded safety concept for CMS has been adapted to the size of the project and its organisational challenges under today's budgetary constraints, as well as to the increasing levels of risk. Strong magnetic fields and high radiation levels, including neutrons, pose additional hazards to materials, to operators, to maintenance and to ultimate deposit of activated materials. CMS also fits the insurer's risk-description for modern facilities, i.e. characterised by "higher energy density, more combustible materials and unattended operation". The regulatory environment, consisting essentially of CERN's autonomous regulations as well as of those of its host countries, also need to be satisfied with much attention. To face this challenge, seven distinct safety management tools have been identified, which are described in some detail, namely clear safety objectives, documented safety requirements, open items list, safety ( and design)reviews, safety risk analysis, enforcement of compliance and quality management....

  4. Overview of the Insertable B-Layer (IBL) Project of the ATLAS Experiment at the Large Hadron Collider at CERN

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment will upgrade its Pixel Detector with the installation of a new pixel layer in 2013/14. The new subdetector, named Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new smaller diameter beam-pipe at a radius of 33 mm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed and are currently under investigation and production for the IBL. Furthermore, the physics performance should be improved through the reduction of pixel size whereas targeting for a low material budget, pushing for a new mechanical support using lightweight staves and a CO2 based cooling system. An overview of the IBL project, the results of beam tests on different sensor technologies, testing of pre-series staves made before going into production in order to qualify the assembly procedure, the loaded module electrical integrity, and the read-ou...

  5. Overview of the Insertable B-Layer (IBL) Project of the ATLAS Experiment at the Large Hadron Collider at CERN

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment will upgrade its Pixel Detector with the installation of a new pixel layer in 2013/14. The new sub-detector, named Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new smaller diameter beam-pipe at a radius of 33 mm. To cope with the high radiation and hit occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed and are currently under investigation and production for the IBL. Furthermore, the physics performance should be improved through the reduction of pixel size while targeting for a low material budget, pushing for a new mechanical support using lightweight staves and a CO2 based cooling system. An overview of the IBL project, the results of beam tests on different sensor technologies, and testing of pre-series staves made before going into production in order to qualify the assembly procedure, the loaded module electrical integrity, and the read...

  6. Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Hilden, Timo Eero; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kadyshevskiy, Vladimir; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2014-01-01

    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV and Pb-Pb at $\\sqrt{s_{\\rm NN}} = 2.76$ TeV collisions are presented. They help address a question if there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a $|\\Delta \\eta|$ gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The n...

  7. Fault detection on the Large Hadron Collider at CERN: design, simulation and realization of a High Voltage Pulse Generator

    CERN Document Server

    Cavicchioli, C; Biagi, E; Bozzini, D

    2007-01-01

    This project was developed inside the Quality Assurance Plan (ELQA) of the LHC. The superconducting circuits of the collider show a great complexity concerning the control system, because of various reasons: the tunnel is placed around 50 to 175 m underground, the circuits work at temperatures of 1.9 K, all the structure should be perfectly aligned and the electronic part has considerable dimensions. To maximize the running time of the collider, it is necessary to develop methods for the diagnostic of defects and for the precise localization of the segment of the accelerator that contains the fault. From my studies it emerged that a possible way to localize electrical faults in the LHC superconducting circuits is to combine the use of time domain reflectometry methods and high voltage pulses. Therefore, I have designed and realized a high voltage pulse generator that will be an important instrument for the fault location among the accelerator.

  8. Measurement and interpretation of transverse beam instabilities in the CERN large hadron collider (LHC) and extrapolations to HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo

    2016-01-01

    Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...

  9. Proton-Λ correlation functions at energies available at the CERN Large Hadron Collider taking into account residual correlations

    Science.gov (United States)

    Shapoval, V. M.; Sinyukov, Yu. M.; Naboka, V. Yu.

    2015-10-01

    The theoretical analysis of the p ¯-Λ ⊕p -Λ ¯ correlation function in 10% most central Au+Au collisions at Relativistic Heavy Ion Collider (RHIC) energy √{sNN}=200 GeV shows that the contribution of residual correlations is a necessary factor for obtaining a satisfactory description of the experimental data. Neglecting the residual correlation effect leads to an unrealistically low source radius, about 2 times smaller than the corresponding value for p -Λ ⊕p ¯-Λ ¯ case, when one fits the experimental correlation function within Lednický-Lyuboshitz analytical model. Recently an approach that accounts effectively for residual correlations for the baryon-antibaryon correlation function was proposed, and a good RHIC data description was reached with the source radius extracted from the hydrokinetic model (HKM). The p ¯-Λ scattering length, as well as the parameters characterizing the residual correlation effect—annihilation dip amplitude and its inverse width—were extracted from the corresponding fit. In this paper we use these extracted values and simulated in HKM source functions for Pb+Pb collisions at the LHC energy √{sNN}=2.76 TeV to predict the corresponding p Λ and p Λ ¯ correlation functions.

  10. Photoproduction of Upsilon states in ultraperipheral collisions at the CERN Large Hadron Collider within the color dipole approach

    CERN Document Server

    Ducati, M B Gay; Machado, M V T; Martins, S

    2016-01-01

    The exclusive photoproduction of upsilon states $\\Upsilon(1S)$ and its radially excited states $\\Upsilon(2S,3S)$ is investigated in the context of ultra-peripheral collisions at the LHC energies. Predictions are presented for their production in proton-proton, proton-nucleus and nucleus-nucleus collision at the energies available at the LHC run 2. The rapidity and transverse momentum distributions are shown, and the robustness of the model is tested against the experimental results considering $\\psi(1S,2S)$ and $\\Upsilon(1S)$ states. The theoretical framework considered in the analysis is the light-cone color dipole formalism, which includes consistently parton saturation effects and nuclear shadowing corrections.

  11. First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Giovannozzi, M.; Persson, T. H. B.

    2015-12-01

    Nonlinear magnetic errors in low-β insertions can contribute significantly to detuning with amplitude, linear and nonlinear chromaticity, and lead to degradation of dynamic aperture and beam lifetime. As such, the correction of nonlinear errors in the experimental insertions of colliders can be of critical significance for successful operation. This is expected to be of particular relevance to the LHC's second run and its high luminosity upgrade, as well as to future colliders such as the Future Circular Collider. Current correction strategies envisioned for these colliders assume it will be possible to calculate optimized local corrections through the insertions, using a magnetic model of the errors. This paper shows however, that reliance purely upon magnetic measurements of the nonlinear errors of insertion elements is insufficient to guarantee a good correction quality in the relevant low-β* regime. It is possible to perform beam-based examination of nonlinear magnetic errors via the feed-down to readily observed beam properties upon application of closed orbit bumps, and methods based upon feed-down to tune have been utilized at RHIC, SIS18, and SPS. This paper demonstrates the extension of such methodology to include direct observation of feed-down to linear coupling in the LHC. It is further shown that such beam-based studies can be used to complement magnetic measurements performed during LHC construction, in order to validate and refine the magnetic model of the collider. Results from first attempts of the measurement and correction of nonlinear errors in the LHC experimental insertions are presented. Several discrepancies of beam-based studies with respect to the LHC magnetic model are reported.

  12. Particle multiplicities in lead-lead collisions at the CERN large hadron collider from nonlinear evolution with running coupling corrections.

    Science.gov (United States)

    Albacete, Javier L

    2007-12-31

    We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.

  13. CERN moves into the LHC era

    CERN Multimedia

    2001-01-01

    Dr Hans Eschelbacher (on the left), President of the CERN Council for the last three years, hands over to his successor Maurice Bourquin.  The CERN Council, where the representatives of the 20 Member States of the Organization decide on scientific programmes and financial resources, held its 116th session on 15 December under the chairmanship of Dr. Hans C. Eschelbacher (DE). 'Le Roi est mort. Vive le Roi !' The Large Electron Positron Collider (LEP) era has ended and CERN's future is the Large Hadron Collider (LHC), stated Director General, Prof. Luciano Maiani. He opened his report to Council with a 'homage to LEP', which reached the end of its career during 2000 and is now being dismantled to make way for CERN's next major machine, the LHC collider, in the same 27-kilometre tunnel. The strong indications of a Higgs boson at 115 GeV found during the year were the culmination of LEP's long and distinguished physics career, during which the machine opened up new regimes of precision physics, involvi...

  14. Physics motivations for future CERN accelerators

    CERN Document Server

    de Roeck, A; Gianotti, F; de Roeck, Albert; Ellis, John; Gianotti, Fabiola

    2001-01-01

    We summarize the physics motivations for future accelerators at CERN. We argue that (a) a luminosity upgrade for the LHC could provide good physics return for a relatively modest capital investment, (b) CLIC would provide excellent long-term perspectives within many speculative scenarios for physics beyond the Standard Model, (c) a Very Large Hadron Collider could provide the first opportunity to explore the energy range up to about 30 TeV, (d) a neutrino factory based on a muon storage ring would provide an exciting and complementary scientific programme and a muon collider could be an interesting later option.

  15. Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    CERN Document Server

    Antonello, A; Baibussinov, B; Bilokon, H; Boffelli, F; Bonesini, M; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieslik, K; Cline, D B; Cocco, A G; Dequal, D; Dermenev, A; Dolfini, R; De Gerone, M; Dussoni, S; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Garvey, G T; Gatti, F; Gibin, D; Gninenko, S; Guber, F; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kirsanov, M; Kisiel, J; Kochanek, I; Kurepin, A; Lagoda, J; Lucchini, G; Louis, W C; Mania, S; Mannocchi, G; Marchini, S; Matveev, V; Menegolli, A; Meng, G; Mills, G B; Montanari, C; Nicoletto, M; Otwinowski, S; Palczewki, T J; Passardi, G; Perfetto, F; Picchi, P; Pietropaolo, F; Plonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P; Scaramelli, A; Segreto, E; Stefan, D; Stepaniak, J; Sulej, R; Suvorova, O; Terrani, M; Tlisov, D; Van de Water, R G; Trinchero, G; Turcato, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H G; Yang, X; Zani, A; Zaremba, K; Benettoni, M; Bernardini, P; Bertolin, A; Brugnera, R; Calabrese, M; Cecchetti, A; Cecchini, S; Collazuol, G; Creti, P; Corso, F Dal; Del Prete, A; De Mitri, I; De Robertis, G; De Serio, M; Esposti, L Degli; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Fiore, G; Garfagnini, A; Giacomelli, G; Giacomelli, R; Guandalini, C; Guerzoni, M; Kose, U; Laurenti, G; Laveder, M; Lippi, I; Loddo, F; Longhin, A; Loverre, P; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mezzetto, M; Michinelli, R; Muciaccia, M T; Orecchini, D; Paoloni, A; Papadia, G; Pastore, A; Patrizii, L; Pozzato, M; Rosa, G; Sahnounm, Z; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Surdo, A; Tenti, M; Togo, V; Ventura, M; Zago, M

    2012-01-01

    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly comple...

  16. Two Nobel Prizes connected to CERN

    CERN Multimedia

    2003-01-01

    The 2003 Nobel Prizes in Physics and in Physiology or Medicine, announced last week, both have connections with particle physics and CERN. Alexei Abrikosov, Vitaly Ginzburg and Anthony Leggett have received the prize in physics for their "pioneering contributions to the theory of superconductors and superfluids". The most important superconducting materials technically have proved to be those known as type II superconductors, which allow superconductivity and magnetism to exist at the same time and remain superconductive in high magnetic fields. The coils for the superconducting magnets in CERN's Large Hadron Collider are made from niobium-titanium alloy - a type II superconductor. The LHC will operate thanks to magnets made of type II superconductors. Here, superconducting cables for the LHC are on display during a VIP visit.Abrikosov, who is now at the Argonne National Laboratory, was working at the Kapitsa Institute for Physical Problems in his native Moscow when he succeeded in formula...

  17. $W^+W^-$ + 3 Jet Production at the Large Hadron Collider in NLO QCD

    CERN Document Server

    Cordero, F Febres; Ita, H

    2015-01-01

    We present next-to-leading order (NLO) QCD predictions to $W^+W^-$ production in association with up to three jets at hadron colliders. We include contributions from couplings of the $W$ bosons to light quarks as well as trilinear vector couplings. These processes are used in vector-boson coupling measurements, are background to Higgs signals and are needed to constrain many new physics scenarios. For the first time NLO QCD predictions are shown for electroweak di-vector boson production with three jets at a hadron collider. We show total and differential cross sections for the LHC with proton center-of-mass energies of 8 and 13 TeV. To perform the calculation we employ on-shell and unitarity methods implemented in the BlackHat library along with the SHERPA package. We have produced event files that can be accessed for future dedicated studies.

  18. Exclusive production of hadron pairs at large momentum transfer in photon-photon interactions

    International Nuclear Information System (INIS)

    We report on the exclusive production of π, K and proton pairs from photon-photon interactions at momentum transfers vertical stroketvertical stroke >= 1 GeV2. Using the PLUTO detector at the e+e- storage ring PETRA, we have observed 15 events in an integrated luminosity of 41.7 pb-1. The data lie far below the expectations for point-like hadrons, and are in reasonable agreement with the QCD-based predictions of Brodsky and Lepage. (orig.)

  19. The Large Angle Photon Veto System for the NA62 Experiment at CERN

    CERN Document Server

    Ambrosino, F; Antonelli, A; Constantini, F; D’Agostini, G; Di Filippo, D; Fantechi, R; Gallorini, S; Giudici, S; Leonardi, E; Mannelli, I; Massarotti, P; Moulson, M; Napolitano, M; Palladino, V; Raffaelli, F; Raggi, M; Saracino, G; Serra, M; Spadaro, T; Valente, P; Venditti, S

    2012-01-01

    The NA62 experiment at CERN SPS aims at measuring-100 events of the very rare decay K+ →π +ννˉ (BR∼8.5xlO∼10). It poses stringent requirements on PID capabilities to reject the overwhelming π+π0 (63%) and Kμ2(21%) backgrounds. The photon veto system must provide a rejection factor of 10∼8 on π0 decays. As a main γ veto detector, the NA48 liquid Kripton calorimeter will be used. To have full geometrical acceptance up to 50 mr, a set of 12 veto stations should be placed along the vacuum decay tank, with an inefficiency <10∼4 in a wide energy range (200 MeV-35 GeV). Good energy resolution (∼10% at 1 GeV) for threshold definition, good time resolution (∼1 ns) to be used at the trigger level, sensitivity to MIP for calibration with muons of the beam halo are needed. A moderate segmentation in the azimuthal angle is desirable, for reducing the counting rate and providing information on the γ direction. We performed an intense R&D program on three solutions: “spaghetti” calorimeter...

  20. Members of the Forum Engelberg visit CERN

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The Forum Engelberg is an annual interdisciplinary conference held in Engelberg, Switzerland intended to act as an international platform for debate and exchange of views on key issues affecting scientific research, technology, economics and philosophy. Its President, Hubert Curien - former French Minister of Research and Space Research, and President of the CERN Council from 1994 to 1996 - is pictured here. Photo 01: Hubert Curien in front of the first half of the CMS detector's barrel hadronic calorimeter (HCAL). The barrel HCAL is a cylindrical structure which will surround the collision region and measure the energy of quarks and jets emerging at large angles relative to the beam direction. Photo 02: Hubert Curien (left) with Bernard Ecoffey, Founder of the Forum Engelberg, in front of the first half of the CMS detector's barrel hadronic calorimeter.

  1. [The CERN and the megascience].

    Science.gov (United States)

    Aguilar Peris, José

    2006-01-01

    In this work we analyse the biggest particle accelerator in the world: the LHC (Large Hadron Collider). The ring shaped tunnel is 27 km long and it is buried over 110 meters underground, straddling the border betwen France and Switzerland at the CERN laboratory near Geneva. Its mission is to recreate the conditions that existed shortly after the Big-Bang and to look for the hypothesised Higgs particle. The LHC will accelerate protons near the speed of the light and collide them head on at an energy of to 14 TeV (1 TeV = 10(12) eV). Keeping such high energy in the proton beams requires enormous magnetic fields which are generated by superconducting electromagnets chilled to less than two degrees above absolute zero. It is expected that LHC will be inaugurated in summer 2007.

  2. A study of the production of hadrons in muon-proton reactions at 280 GeV at the CERN proton synchrotron

    International Nuclear Information System (INIS)

    In the experiment NA9 of the European Muon Collaboration EMC for the first time in a muon experiment at high energies the possibility is offerred to detect all final-state hadrons and to measure their momentum. About a third of the particles can be identified beyond by means of Cherenkov and time-of-flight counters. By the measurement of the incoming and the scattered muon the kinematical variables of each event are determined. By application of a detailed simulation of the NA9 spectrometer on events from the Lund Monte-Carlo program the systematic errors and losses of the experiment were estimated, and the data were corrected on these errors and losses. In the analysis of the multiplicities of charged hadrons it was stated that known properties like KNO scaling behaviour and a logarithmic increase of the mean multiplicities with the hadronic c.m. energy W are also observed in this experiment. Furthermore by study of the correlation of the multiplicities in the forward and backward hemisphere and by means of the charge distribution as function of the rapidity it was shown that the assumption is justified at the energies of this experiment that the fragmentation processes in the forward and backward jet proceed independently. Effects were found which are to be explained in the quark-parton model: The dependence of the mean charge of the forward jet on W2 and Bjorken x can only be understood if the contribution (40%) of events by scattering on sea quarks is regarded in this experiment. An estimation of this contribution to the mean charge of the forward jet by means of the quark distribution functions led to a good agreement with the data. (orig./HSI)

  3. Design and implementation of the decision unit of the first level trigger system of the LHCb detector at the Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    The LHCb experiment is one of the four particle physic detector installed at the new Large Hadron Collider (LHC) at CERN in Geneva. In order to reduce the amount of data storage for offline analysis, an online trigger system of interesting event according to the studied physic is implemented in parallel of the Data Acquisition system. The trigger system is composed by a first level (Level-0) made by a complex electronic system and a second level made by a computing system called the High Level Trigger. The Level-0 Decision Unit is the central part of the first trigger level that takes the decision to accept or to reject the event by using a fraction of information coming from the fastest sub-triggers (432 bits at 80 MHz). It is a full custom 16 layers board using advanced FPGA (Field Programmable Gate Array) in BGA (Bill Grid Array) package. Each sub-trigger transmit their data via high speed optical links running at 1.6 Gbit/s. The processing is implemented using a 40 MHz synchronous pipelined architecture. It performs a simple physical algorithm to compute the Level-0 trigger decision in order to reduce the data flow from 40 MHz down to 1 MHz for the next trigger level. The internal design of the processing FPGA is mainly composed by a Partial Data Processing (PDP) and a Trigger Definition Unit (TDU). The aim of the PDP is to adjust the clock phase, perform the time alignment, prepare the data for the TDU and monitor the data processing. The TDU is flexible and allows to fully re-configure all the trigger conditions through the Experiment Control System without any FPGA re-programming. (author)

  4. Highlights from COMPASS in hadron spectroscopy

    CERN Document Server

    Krinner, Fabian

    2015-01-01

    Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for $98\\%$ of the mass in the visible universe. The measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons, consisting of a quark and an antiquark, and baryons, which are made out of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD predict the existence of other types of hadrons, which may be e.g. described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the COMPASS experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to ...

  5. CERN in the Media – Video Presentations

    CERN Multimedia

    Carolyn Lee

    2010-01-01

    You may have seen them around the CERN site – cameramen, reporters and presenters roaming around hallways and cafeterias, interviewing people and doing their best to tell the world about the Large Hadron Collider. In recent years CERN has dominated the media spotlight when it comes to particle physics. And particle physics has become cool and interesting among the general public. When CERN’s Press Office announces media events, such as the start-up of the LHC in September 2008, the premiere of "Angels and Demons" in February 2009, the twentieth anniversary of the World Wide Web in March 2009 and the LHC First Physics event in March 2010, hundreds of journalists throng to CERN to capture the atmosphere and interview people. These events have resulted in thousands of print articles and hundreds of TV programmes around the world. Starting on 28 May, the CERN Press Office will be organizing film/news/TV programme presentations during lunchtimes every other Friday. This i...

  6. Probing electroweak gauge boson scattering with the ATLAS detector at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Anger, Philipp

    2014-09-01

    Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3 fb{sup -1} at a center-of-mass energy of √(s)=8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying W{sup ±}W{sup ±}jj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak W{sup ±}W{sup ±}jj production with same electric charge of the W bosons, inseparably comprising W{sup ±}W{sup ±}→W{sup ±}W{sup ±} electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard

  7. Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.; /UCLA; Diana, G.; /IPhT, Saclay; Dixon, L.J.; /SLAC; Febres Cordero, F.; /Simon Bolivar U.; Hoeche, S.; /Bohr Inst.; Kosower, D.A.; /IPhT, Saclay; Ita, H.; /UCLA /Bohr Inst.; Maitre, D.; /Durham U. /CERN; Ozeren, K.; /UCLA

    2012-02-15

    We present the cross sections for production of up to four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. We use the BlackHat library in conjunction with SHERPA and a recently developed algorithm for assembling primitive amplitudes into color-dressed amplitudes. We adopt the cuts used by ATLAS in their study of multi-jet events in pp collisions at {radical}s = 7 TeV. We include estimates of nonperturbative corrections and compare to ATLAS data. We store intermediate results in a framework that allows the inexpensive computation of additional results for different choices of scale or parton distributions.

  8. Searches for and identification of effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Pankov, A. A., E-mail: pankov@ictp.it; Serenkova, I. A., E-mail: inna.serenkova@cern.ch; Tsytrinov, A. V., E-mail: tsytrin@gstu.by; Bednyakov, V. A., E-mail: Vadim.Bednyakov@cern.ch [Pavel Sukhoi Gomel State Technical University, ICTP (Abdus Salam International Centre for Theoretical Physics, Trieste, Italy) Affiliated Centre (Belarus)

    2015-06-15

    Prospects of discovering and identifying effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider (LHC) are studied. Such effects may be revealed by the characteristic behavior of the invariant-mass distributions of dileptons and diphotons, and their identification can be performed on the basis of an analysis of their angular distributions. The discovery and identification reaches are estimated for the scale parameter M{sub S} of the Kaluza-Klein gravitational towers, which can be determined in experiments devoted to measuring the dilepton and diphoton channels at the LHC.

  9. Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD

    CERN Document Server

    Bern, Z; Dixon, L J; Cordero, F Febres; Hoeche, S; Kosower, D A; Ita, H; Maitre, D; Ozeren, K

    2012-01-01

    We present the cross sections for production of up to four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. We use the BlackHat library in conjunction with SHERPA and a recently developed algorithm for assembling primitive amplitudes into color-dressed amplitudes. We adopt the cuts used by ATLAS in their study of multi-jet events in pp collisions at \\sqrt{s} = 7 TeV. We include estimates of nonperturbative corrections and compare to ATLAS data. We store intermediate results in a framework that allows the inexpensive computation of additional results for different choices of scale or parton distributions.

  10. Multiplicity distributions in the forward rapidity region in proton-proton collisions at the Large Hadron Collider

    OpenAIRE

    Ghosh, Premomoy; Muhuri, Sanjib

    2014-01-01

    Measured multiplicity distributions of primary charged particles produced in the forward rapidity region of the $proton-proton$ ($pp$) collisions at the centre-of-mass energy, $\\sqrt {s}$ = 7 TeV at the Large Hadron Collider (LHC) have been analyzed in terms of the Negative Binomial Distribution (NBD) function. Like the multiplicity distributions in the mid-rapidity region for the $pp$ collisions at $\\sqrt {s}$ = 7 TeV, the distributions for the minimum bias events in the forward region also ...

  11. CERN Open Days 2013, Point 6: Accelerator Systems

    CERN Document Server

    CERN Photolab

    2013-01-01

    Stand description: Each beam of protons that races around the Large Hadron Collider can contain as much energy as a French TGV train travelling at 150 km/hour.  When it's time to shut the machine down, the Beam Dump System ensures that this energy is safely dissipated. In the tunnel at Point 6 you will be able to see the devices which form part of this system, as well as the blue LHC dipole magnets curving away into the distance. On surface no restricted access  On the surface, you can explore a fascinating exhibition of equipment used in CERN's accelerators, with CERN engineers and physicists on hand all day to answer your questions. You will also see one of the cryogenics installations which keep the LHC at just few degrees above absolute zero and you can find out about the measures CERN has put in place to ensure safety and protect the environment.

  12. Europe CERN recherche - Pret de 300 millions d'euros de la BEI pour l'accelerateur de particules

    CERN Multimedia

    2002-01-01

    "La Banque europeenne d'investissement (BEI) va preter 300 millions d'euros pour financer la phase finale de la construction du grand accelerateur de particules LHC (Large Hadron Collider) du CERN, a indique jeudi l'organisation europeenne pour la recherche nucleaire" (1/2 page).

  13. Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India); School of Physics, University of Hyderabad, Hyderabad 500 046 (India)], E-mail: mc.kumar@saha.ac.in; Mathews, Prakash [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India)], E-mail: prakash.mathews@saha.ac.in; Ravindran, V. [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad (India)], E-mail: ravindra@mri.ernet.in; Tripathi, Anurag [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad (India)], E-mail: anurag@mri.ernet.in

    2009-02-09

    We present a full next-to-leading order (NLO) QCD corrections to diphoton production at the hadron colliders in both standard model and ADD model. The invariant mass and rapidity distributions of the diphotons are obtained using a semi-analytical two cut-off phase space slicing method which allows for a successful numerical implementation of various kinematical cuts used in the experiments. The fragmentation photons are systematically removed using smooth-cone-isolation cuts on the photons. The NLO QCD corrections not only stabilise the perturbative predictions but also enhance the production cross section significantly.

  14. Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders

    Science.gov (United States)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.; Tripathi, Anurag

    2009-02-01

    We present a full next-to-leading order (NLO) QCD corrections to diphoton production at the hadron colliders in both standard model and ADD model. The invariant mass and rapidity distributions of the diphotons are obtained using a semi-analytical two cut-off phase space slicing method which allows for a successful numerical implementation of various kinematical cuts used in the experiments. The fragmentation photons are systematically removed using smooth-cone-isolation cuts on the photons. The NLO QCD corrections not only stabilise the perturbative predictions but also enhance the production cross section significantly.

  15. Les Horribles Cernettes - "Goodbye CERN" concert

    CERN Multimedia

    Silvano de Gennaro (video)

    2012-01-01

    The Cernettes will be giving their farewell concert at the CERN Hadronic Festival, this Saturday 21 July as of 7 p.m., in Restaurant 3 (CERN Prévessin site). This final performance draws to a close the 20-year career of CERN’s legendary band.  

  16. Expansions of τ hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    Science.gov (United States)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan

    2013-08-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling αs and other QCD parameters from the hadronic decays of the τ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called “reference model,” including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

  17. Expansions of $\\tau$ hadronic spectral function moments in a non-power QCD perturbation theory with tamed large order behaviour

    CERN Document Server

    Abbas, Gauhar; Caprini, Irinel; Fischer, Jan

    2013-01-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling $\\alpha_s$ and other QCD parameters from the hadronic decays of the $\\tau$ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behaviour of these moments in the framework of a QCD non-power perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large order behaviour. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the required perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved and the renormalization-group-summed non-power perturbation theories have very good con vergence properties for a large class...

  18. GERMANY AT CERN

    CERN Multimedia

    2001-01-01

    13 - 15 November 2001 Administration Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs OPENING CEREMONY 10h00 - 13 November Thirty-three German companies will be demonstrating their supplies and services offered for the construction of the Large Hadron Collider (LHC) and other key CERN programmes. The Industrial exhibition will be enriched with a display of objects of contemporary German art. The official German presentation is under the patronage of the Federal Minister of Education and Research (BMBF), Bonn. There follows : the list of exhibitors, the list of lectures to be given at the exhibition. A detailed programme will be available in due course at : your Divisional Secretariat, the Reception information desk, building 33, the exhibition. LIST OF EXHIBITORS Accel Instruments GmbH Representative: Accel Instruments GmbH/CH-8754 Netsal apra-norm Elektromechanik GmbH Representative: apra-norm s.n.c./F-67500 Haguenau Babcock Noell Nuclear GmbH Balcke-Dürr Energietec...

  19. GERMANY AT CERN

    CERN Multimedia

    2001-01-01

    13 - 15 November 2001 Administration Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs OPENING CEREMONY 10h00 - 13 November Thirty-three German companies will be demonstrating their supplies and services offered for the construction of the Large Hadron Collider (LHC) and other key CERN programmes. The Industrial exhibition will be enriched with a display of objects of contemporary German art. The official German presentation is under the patronage of the Federal Minister of Education and Research (BMBF), Bonn. There follows : the list of exhibitors, the list of lectures to be given at the exhibition. A detailed programme will be available in due course at : your Divisional Secretariat, the Reception information desk, building 33, the exhibition. LIST OF EXHIBITORS Accel Instruments GmbH Representative: Accel Instruments GmbH/CH-8754 Netsal apra-norm Elektromechanik GmbH Representative: apra-norm s.n.c./F-67500 Haguenau Babcock Noell Nuclear GmbH Balcke-Dürr Energiet...

  20. Hierarchies of Alarms for Large Distributed Systems

    CERN Document Server

    Boccioli, M; Martos, V; Holme, O

    2014-01-01

    The control systems of most of the infrastructure at CERN make use of the SCADA package WinCC Open Architecture by ETM*, including successful projects to control large scale systems such as the Large Hadron Collider (LHC) accelerator and associated experiments.).

  1. Charm from hadron collisions

    International Nuclear Information System (INIS)

    Ever since the discovery of charmed mesons in electron-positron annihilations at SLAC and DESY, a considerable effort has gone into looking for them in other types of reactions. Both neutrino interactions and photoproduction have provided further data on the production and decay of D mesons, but little has emerged concerning purely hadronic studies.some results from a CERN/Collège de France/Heidelberg/Karlsruhe collaboration using the Split Field Magnet at the CERN Intersecting Storage Rings (ISR) now show definite signs of D meson production in proton-proton collisions

  2. Trends in Cable Magnetization and Persistent Currents during the Production of the Main Dipoles of the Large Hadron Collider

    CERN Document Server

    Bellesia, B; Granata, V; Le Naour, S; Oberli, L; Sanfilippo, S; Santoni, C; Scandale, Walter; Schwerg, N; Todesco, Ezio; Völlinger, C

    2005-01-01

    The production of more than 60% of superconducting cables for the main dipoles of the Large Hadron Collider has been completed. The results of the measurements of cable magnetization and the dependence on the manufacturers are presented. The strand magnetization produces field errors that have been measured in a large number of dipoles (approximately 100 to date) tested in cold conditions. We examine here the correlation between the available magnetic measurements and the large database of cable magnetization. The analysis is based on models documented elsewhere in the literature. Finally, a forecast of the persistent current effects to be expected in the LHC main dipoles is presented, and the more critical parameters for beam dynamics are singled out.

  3. NLO forward-backward charge asymmetries in p p (p bar p) -> l- l+ jet production at large hadron colliders

    CERN Document Server

    del Águila, F; Pittau, R; Ametller, Ll.

    2005-01-01

    We consider the next-to-leading order corrections, O(alpha_s), to forward-backward charge asymmetries for lepton-pair production in association with a large transverse momentum jet at large hadron colliders. We find that the leading order results are essentially confirmed. Although experimentally challenging and in practice with large backgrounds, these observables could provide a new determination of the weak mixing angle sin2 theta^lept_eff (M_Z^2) with a statistical precision for each lepton flavour of ~10^(-3) (7 x 10^{-3}) at LHC (Tevatron), and if b jets are identified, of the b quark Z asymmetry A^b_{FB} with a statistical precision of ~ 2x10^{-3} (4x10{-2}) at LHC (Tevatron).

  4. Hadron Dragons strike again

    CERN Document Server

    2009-01-01

    The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...

  5. Large-Area Sandwich Veto Detector with WLS Fibre Readout for Hadron Spectroscopy at COMPASS

    CERN Document Server

    Schlüter, T; Dhibar, K; Faessler, M; Geyer, R; Rajotte, J -F; Roushan, Z; Wöhrmann, H

    2011-01-01

    A sandwich detector composed of scintillator and steel-covered lead layers was introduced in the fixed-target COMPASS experiment at CERN for vetoing events not completely covered by the two-stage magnetic spectrometer. Wavelength shifting fibres glued into grooves in the scintillator tiles serve for fast read-out. Minimum ionizing particles impinging on the $2 \\textrm{m} \\times 2 \\textrm{m}$ detector outside of a central hole, sparing the spectrometer's entry, are detected with a probability of 98%. The response to charged particles and photons is modeled in detail in Monte Carlo calculations. Figures of merit of the veto trigger in $190 \\textrm{GeV}/c$ $\\pi^- + p$ (or nucleus) experiments are an enrichment of exclusive events in the recorded data by a factor of 3.5 and a false-veto probability of 1%.

  6. A Low Heat Inleak Cryogenic Station for Testing HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A; Gomes, P; Métral, L; Serio, L; Suraci, A

    1999-01-01

    The LHC will be equipped with about 8000 superconducting magnets of all types. The total current to be transported into the cryogenic enclosure amounts to some 3360 kA. In order to reduce the heat load into the liquid helium, CERN intends to use High Temperature Superconducting (HTS) material for leads having current ratings up to 13 kA. The resistive part of the leads is cooled by forced flow of gaseous helium between 20 K and 300 K. The HTS part of the lead is immersed in a 4.5 K liquid helium bath, operates in self cooling conditions and is hydraulically separated from the resistive part. A cryogenic test station has been designed and built in order to assess the thermal and electrical performances of 13 kA prototype current leads. We report on the design, commissioning and operation of the cryogenic test station and illustrate its performance by typical test results of HTS current leads.

  7. Analysing the Control Software of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    CERN Document Server

    Hwong, Yi-Ling; Willemse, Tim A C

    2011-01-01

    The control software of the CERN Compact Muon Solenoid experiment contains over 30,000 finite state machines. These state machines are organised hierarchically: commands are sent down the hierarchy and state changes are sent upwards. The sheer size of the system makes it virtually impossible to fully understand the details of its behaviour at the macro level. This is fuelled by unclarities that already exist at the micro level. We have solved the latter problem by formally describing the finite state machines in the mCRL2 process algebra. The translation has been implemented using the ASF+SDF meta-environment, and its correctness was assessed by means of simulations and visualisations of individual finite state machines and through formal verification of subsystems of the control software. Based on the formalised semantics of the finite state machines, we have developed dedicated tooling for checking properties that can be verified on finite state machines in isolation.

  8. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    García-Argos, Carlos; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  9. High energy hadron-hadron collisions. Annual progress report

    International Nuclear Information System (INIS)

    The results of a study on high energy collisions using the geometrical model are summarized. A concept of partition temperature is introduced in the geometrical model of multi-particle production processes at high energies. A hadron-hadron collision at a given incoming energy is described as an incoherent superposition of collisions with different partition temperatures. A simple compact formula for single particle momentum spectrum is obtained. The calculated angular distributions are in excellent agreement with experiments at the CERN Collider. Extrapolations to higher and lower energies are made. The same ideas for inelastic hadron-hadron collisions are also applied to e+e- collisions. A number of predictions are made, including the prediction that KNO scaling is not observed in e+e- annihilation. A unified physical picture for hadron-hadron and e+e- collisions is obtained

  10. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    Science.gov (United States)

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  11. Precise Predictions for W + 4 Jet Production at the Large Hadron Collider

    CERN Document Server

    Berger, C F; Dixon, Lance J; Cordero, F Febres; Forde, D; Gleisberg, T; Ita, H; Kosower, D A; Maitre, D

    2011-01-01

    We present the first next-to-leading order QCD results for W + 4-jet production at hadron colliders. Total cross sections, as well as distributions in the jet transverse momenta and in the total transverse energy H_T are provided for the initial LHC energy of \\sqrt{s} = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The virtual matrix elements and the most complicated real-emission matrix elements are handled by the BlackHat library, based on on-shell methods. The remaining parts of the calculation, including the integration over phase space, are performed by the SHERPA package.

  12. Precise Predictions for W 4 Jet Production at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, Lance J.; /CERN /SLAC; Cordero, F.Febres; /Simon Bolivar U.; Forde, D.; /CERN /NIKHEF, Amsterdam; Gleisberg, T.; /SLAC; Ita, H.; /UCLA; Kosower, D.A.; /Saclay, SPhT; Maitre, D.; /Durham U.

    2010-09-14

    We present the first next-to-leading order QCD results for W + 4-jet production at hadron colliders. Total cross sections, as well as distributions in the jet transverse momenta and in the total transverse energy HT, are provided for the initial LHC energy of {radical}s = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The virtual matrix elements and the most complicated real-emission matrix elements are handled by the BlackHat library, based on on-shell methods. The remaining parts of the calculation, including the integration over phase space, are performed by the SHERPA package.

  13. Pi zero hadronic production with large transverse momentum at 200 GeV/c

    International Nuclear Information System (INIS)

    This thesis presents some measurements of the cross-sections of high transverse momentum π0 meson hadronic events. 200 GeV/c π+, π-, proton, K+ and K- particles constitute the beams which interact with a 12C fixed target. A method for the discrimination of high transverse momentum π0 in the NA3 experiment detector is detailed. With pion and proton beams, we obtain spectra from the observed signal which are compatible with existing data and extend the range of π0 production measurements to 5.8 GeV/c transverse momentum. The π0 production ratio between proton and pion beams is compared with theoretical expectations. First measurements of π0 production with K+ and K- beams are performed over two transverse momentum ranges. The spectrometer of the apparatus allows some measurements on π0 related charged particles: search for charged rho and study of the mean transverse momentum of recoil fragment components

  14. Light-by-light scattering in ultraperipheral PbPb collisions at the Large Hadron Collider

    CERN Document Server

    Klusek-Gawenda, Mariola; Szczurek, Antoni

    2016-01-01

    We calculate cross sections for diphoton production in (semi)exclusive $PbPb$ collisions, relevant for the LHC. The calculation is based on equivalent photon approximation in the impact parameter space. The cross sections for elementary $\\gamma \\gamma \\to \\gamma \\gamma$ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get much higher cross sections in $PbPb$ collisions than in earlier calculation from the literature. This opens a possibility to study the $\\gamma \\gamma \\to \\gamma \\gamma$ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the...

  15. Exotic Hadron Bound State Production at Hadronic Colliders

    CERN Document Server

    Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng

    2016-01-01

    The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.

  16. Video News Release : CERN to celebrate International Women’s day - Part 2

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Geneva, 4 March 2010. On Monday 8 March, CERN* will take on a distinctly feminine look as the laboratory celebrates the role of women in physics. Often seen as a male preserve, the reality is rather different, with women playing key roles across all areas of CERN activity. “At CERN, and in particle physics the world over, talent is the only criterion that counts,” said CERN Director General Rolf Heuer. “Gender, race and religion have no part to play in finding the right person for the job.” On women’s day, CERN will be sending a clear message to any young women interested in science and engineering that this is a field for them. In the CERN Control Centre, half the Engineers-in-Charge who take responsibility for operating the Large Hadron Collider, the world’s most powerful particle accelerator are women. In the experiments, in all CERN departments and in the management, women are increasingly represented. For women’s day, CERN is encouraging its staff and users to enable as many women as possib...

  17. Video News Release : CERN to celebrate International Women’s day - Part 3

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Geneva, 4 March 2010. On Monday 8 March, CERN* will take on a distinctly feminine look as the laboratory celebrates the role of women in physics. Often seen as a male preserve, the reality is rather different, with women playing key roles across all areas of CERN activity. “At CERN, and in particle physics the world over, talent is the only criterion that counts,” said CERN Director General Rolf Heuer. “Gender, race and religion have no part to play in finding the right person for the job.” On women’s day, CERN will be sending a clear message to any young women interested in science and engineering that this is a field for them. In the CERN Control Centre, half the Engineers-in-Charge who take responsibility for operating the Large Hadron Collider, the world’s most powerful particle accelerator are women. In the experiments, in all CERN departments and in the management, women are increasingly represented. For women’s day, CERN is encouraging its staff and users to enable as many women as possib...

  18. Video News Release : CERN to celebrate International Women’s day - part 1

    CERN Multimedia

    CERN video productions

    2010-01-01

    Geneva, 4 March 2010. On Monday 8 March, CERN* will take on a distinctly feminine look as the laboratory celebrates the role of women in physics. Often seen as a male preserve, the reality is rather different, with women playing key roles across all areas of CERN activity. “At CERN, and in particle physics the world over, talent is the only criterion that counts,” said CERN Director General Rolf Heuer. “Gender, race and religion have no part to play in finding the right person for the job.” On women’s day, CERN will be sending a clear message to any young women interested in science and engineering that this is a field for them. In the CERN Control Centre, half the Engineers-in-Charge who take responsibility for operating the Large Hadron Collider, the world’s most powerful particle accelerator are women. In the experiments, in all CERN departments and in the management, women are increasingly represented. For women’s day, CERN is encouraging its staff and users to enable as many women as possib...

  19. Multiplicity distributions in the forward rapidity region in proton-proton collisions at the Large Hadron Collider

    CERN Document Server

    Ghosh, Premomoy

    2014-01-01

    Measured multiplicity distributions of primary charged particles produced in the forward rapidity region of the $proton-proton$ ($pp$) collisions at the centre-of-mass energy, $\\sqrt {s}$ = 7 TeV at the Large Hadron Collider (LHC) have been analyzed in terms of the Negative Binomial Distribution (NBD) function. Like the multiplicity distributions in the mid-rapidity region for the $pp$ collisions at $\\sqrt {s}$ = 7 TeV, the distributions for the minimum bias events in the forward region also are better described with the superposition of two-NBDs, as proposed by a two-component model of particle production from two processes, the "$soft$" and the "$hard$". However, the multiplicity distribution for the "hard-QCD" events in a large pseudorapidity window does not oblige the two-component model.

  20. La recherche fondamentale plutôt que la technologie de l'armement: Le CERN a mis la dernière main à des contrats avec le CIST

    CERN Multimedia

    CERN Press Office. Geneva

    1999-01-01

    On Monday, 22 November, major collaboration contracts were finalized between CERN and the ISTC, the International Science and Technology Centre, which has its headquarters in Moscow. These contracts, worth more than 12 million Swiss Francs, are a large step forward in the cooperation between these two institutions. The agreement, which almost doubles the financial support for the ISTC Partner Project, will result in new technical equipment for CERN's latest project, the Large Hadron Collider (LHC).