WorldWideScience

Sample records for cern large hadron

  1. Large hadron collider project in CERN

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) is the latest scientific project in the world of particle physics launched by European Organization for Nuclear Research (CERN) nearby Geneva. The construction of the main components of this complex synchrotron ring where two proton beams will be accelerated up to energies of 7.7 TeV and then brought into collision, is well underway and the first installation of these components is expected to take place by the end of 2000. As a successor of the existing LEP machine and taking over a significant part of its infrastructure, when completed and commissioned in 2005, the LHG complex represent the most sophisticated and the largest project ever undertaken in the world of science. This machine has an ambitious task to offer the most contemporary and highest quality programmes in particle physics for scientists from all over the world. Its design and construction make use of the latest achievements in modern technologies, material sciences, engineering, computers, electronics and employing world wide experts and specialists of various profiles. At the same time, the LHC project ought to enable CERN and European scientists to maintain the world leading role in the field of particle physics in the next century. (author)

  2. The ATLAS experiment at the CERN large hadron collider

    OpenAIRE

    Çetin, Serkant Ali; ATLAS Collaboration

    2008-01-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  3. The Large Hadron electron Collider at CERN

    Directory of Open Access Journals (Sweden)

    Polini Alessandro

    2014-06-01

    Full Text Available The Large Hadron electron Collider (LHeC is a proposed facility which will exploit the new world of energy and intensity offered by the LHC through collisions with a new 60 GeV electron beam. Designed for synchronous operation with the other LHC experiments, the LHeC will be a high luminosity ep and eA collider with a wide ranging physics program on high precision deep inelastic scattering and new physics. Highlights from the physics program will be illustrated along with details from the accelerator, interaction region and detector design.

  4. The Large Hadron electron Collider at CERN

    OpenAIRE

    Polini Alessandro

    2014-01-01

    The Large Hadron electron Collider (LHeC) is a proposed facility which will exploit the new world of energy and intensity offered by the LHC through collisions with a new 60 GeV electron beam. Designed for synchronous operation with the other LHC experiments, the LHeC will be a high luminosity ep and eA collider with a wide ranging physics program on high precision deep inelastic scattering and new physics. Highlights from the physics program will be illustrated along with details from the ac...

  5. A Large Hadron Electron Collider at CERN

    CERN Document Server

    Abelleira Fernandez, J L; Adzic, P; Akay, A N; Aksakal, H; Albacete, J L; Allanach, B; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Bracinik, J; Brandt, G; Braun, H; Brodsky, S; Bruning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Caldwell, A; Cetinkaya, V; Chekelian, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; Roeck, A.De; d'Enterria, D; DiNezza, P; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Glazov, A; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jensen, E; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klees, R; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kraemer, M; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Milhano, J G; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinolfi, L; Rizvi, E; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schaefer, M; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; South, D; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Kate, H.Ten; Terron, J; Thiesen, H; Thompson, L; Thompson, P; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Ullrich, T; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F; CERN. Geneva. LHeC Department

    2012-01-01

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  6. CERN completes magnet set for Large Hadron Collider

    CERN Multimedia

    2006-01-01

    "CERN, the European Oganization for Nuclear Research, took delivery of the last superconducting main magnet for the Large Hadron Collider (LHC) on Monday, completint the full set of 1624 main magnets required to build the world's largest and most powerful particle accelerator."

  7. CERN Library | Mario Campanelli presents "Inside CERN's Large Hadron Collider" | 16 March

    CERN Multimedia

    CERN Library

    2016-01-01

    "Inside CERN's Large Hadron Collider" by Mario Campanelli. Presentation on Wednesday, 16 March at 4 p.m. in the Library (bldg 52-1-052) The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson.  Inside CERN's Large Hadron Collider  Mario Campanelli World Scientific Publishing, 2015  ISBN 9789814656641​

  8. The lattice of the CERN Large Hadron Collider

    CERN Document Server

    Scandale, Walter; Koutchouk, Jean-Pierre; Luo, X; Méot, F; Ostojic, R; Risselada, Thys; Rufer, C E; Taylor, T; Trenkler, T; Weisz, S

    1996-01-01

    The lattice of the CERN Large Hadron Collider is designed with 23 regular cells per arc, each containing 6 tightly packed 14.2 m long dipoles. This allows to reach 7 TeV per beam with a dipole field of 8.4 Tesla. There are four experimental insertions, two of which are devoted to high luminosity experiments with ± 23 m of free space for the detector. The other two experimental insertions are combined with injection. The value of ß* at the interaction points is tunable from 6 m at injection to 0.5 m in collision. The energy deposition in the inner triplets is carefully reduced to sustain the nominal luminosity of 1034 cm-2s-1. Two insertions are devoted to collect the halo particles with large emittance and momentum spread surrounding the beam core: escaping rates of the protons are estimated to be less than 4·106 sec-1m-1. Finally, one insertion is used to extract the particles in the vertical direction with a minimized deflecting strength.

  9. Hangout With CERN: The Large Hadron Collider (S01E02)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this second Hangout with CERN "The Large Hadron Collider" ATLAS physicist Steven Goldfarb is joined by Giulia Papotti and Laurette Ponce from the CERN Control Centre, Despina Hatzifotiadou and Ken Read from the ALICE experiment, Achintya Rao and Roberto Rossin from the CMS experiment and Patrick Koppenburg from the LHCb experiment, as well as Jaana Nystrom from Finland and Liz Krane from the USA. This hangout answers questions about the Large Hadron Collider (LHC) received via #askCERN on Twitter and Google+ and via YouTube and Facebook comments. Recorded live on 8th November 2012.

  10. Large Hadron Collider at CERN expected to go live summer of 2008

    CERN Multimedia

    2008-01-01

    ScienceDaily (Jan. 2, 2008) CERN is reporting progress towards the goal of starting physics research at the Large Hadron Collider (LHC) in summer 2008. The LHC is CERNs new flagship research facility, bringing together some 9000 researchers from around the world. Approved by the CERN Council in 1996, it will begin operation in 2008 and has an expected operational lifetime of around 20 years.

  11. Signature of Large Extra Dimensions from Z boson pair production at the CERN Large Hadron Collider

    OpenAIRE

    Gao, Jun; Li, Chong Sheng; Gao, Xiangdong; Zhang, Jia Jun

    2009-01-01

    We study the Z boson pair production mediated by the Kaluza-Klein (KK) graviton in large extra dimensions (LED) at the CERN Large Hadron Collider (LHC). We use the partial wave unitarity to discuss the constraints on the process energy scale in order to give a self-consistent calculation. We find that the LED contributions can enhance the Z boson pair production cross sections significantly when the fundamental scale $M_S$ of the large extra dimensions is up to several TeV. We also show that ...

  12. Diffractive Physics at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Revol, Jean-Pierre [Physics Department, CERN, Geneva (Switzerland)

    2011-07-15

    After a short introduction on diffraction, I briefly review the framework used to describe non-perturbative QCD phenomena in hadron-hadron interactions. Then I explain why diffractive processes cannot be ignored at LHC and how ALICE, ATLAS, CMS, LHCb and TOTEM study diffraction, with emphasis on how inclusive particle production measurements are normalised to non-single diffractive and inelastic event classes.

  13. CERN celebrating the Lowering of the final detector element for large Hadron Collider

    CERN Multimedia

    2008-01-01

    In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.

  14. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    Science.gov (United States)

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  15. The ATLAS Experiment at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abat, E.; Abdallah, J.; Bazalová, Magdalena; Böhm, Jan; Chudoba, Jiří; Gunther, J.; Hruška, I.; Jahoda, M.; Jež, J.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kus, V.; Kvasnička, O.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Polák, Ivo; Popule, Jiří; Přibyl, Lukáš; Šícho, Petr; Staroba, Pavel; Šťastný, Jan; Taševský, Marek; Tic, Tomáš; Tomášek, Lukáš; Tomášek, Michal; Valenta, Jan; Vrba, Václav

    2008-01-01

    Roč. 3, - (2008), S08003/1-S08003/437. ISSN 1748-0221 R&D Projects: GA MŠk LA08032; GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * LHC * CERN * accelerator * proton-proton collisions * heavy-ion collisions * minimum-bias events * bunch-crossings * pile-up * superconducting magnets Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.333, year: 2008

  16. Detecting invisible Higgs bosons at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    In some extensions of the standard model the (lightest) Higgs boson can have mainly invisible decays, decaying to a pair of the lightest supersymmetric partners, or to Goldstone bosons, or to Majorons, none of which interact in the detector. Thus it is not clear how such a Higgs boson can be detected. We show that associated production of such Higgs bosons with Z's at high-luminosity hadron colliders can provide a detectable signal for the mass region of most interest, Mh≤150 GeV. If a Higgs boson is detected another way, so that Mh is known, this method may allow a measurement of the branching ratio (B) (h→invisible), and may also allow measurement of other branching ratios

  17. Design and Installation Challenges of the Neutral Beam Absorbers for the Large Hadron Collider at CERN

    OpenAIRE

    Fernández Vélez, Óscar

    2005-01-01

    El CERN (Consejo Europeo de Investigación Nuclear) está construyendo su nuevo acelerador de partículas en la frontera franco-suiza. Actualmente en la fase de instalación, El Large Hadron Collider (LHC), con 26,7 kilómetros de longitud a 100 metros bajo tierra, será el mayor y más potente acelerador de partículas jamás construido. A su llegada al CERN, cada uno de casi 2000 imanes superconductores que formarán parte del acelerador debe ser verificado, ensamblado y transportado hasta ...

  18. Associated production of Z and neutral Higgs bosons at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Palisoc, Caesar P. [Univ. of the Philippines, Diliman, Quezon City (Philippines). National Inst. of Physics

    2011-12-15

    We study the hadroproduction of a CP-even or CP-odd neutral Higgs boson in association with a Z boson in the minimal supersymmetric extension of the standard model (MSSM) We include the contributions from quark-antiquark annihilation at the tree level and those from gluon-gluon fusion, which proceeds via quark and squark loops, and list compact analytic results. We quantitatively analyze the hadronic cross sections at the CERN Large Hadron Collider assuming a favorable supergravity-inspired MSSM scenario. (orig.)

  19. University of Tennessee deploys force10 C-series to analyze data from CERN's Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1 page)

  20. EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider

    Science.gov (United States)

    Pierog, T.; Karpenko, Iu.; Katzy, J. M.; Yatsenko, E.; Werner, K.

    2015-09-01

    Epos is a Monte Carlo event generator for minimum bias hadronic interactions, used for both heavy ion interactions and cosmic ray air shower simulations. Since the last public release in 2009, the Large Hadron Collider (LHC) experiments have provided a number of very interesting data sets comprising minimum bias p -p ,p -Pb, and Pb-Pb interactions. We describe the changes required to the model to reproduce in detail the new data available from the LHC and the consequences in the interpretation of these data. In particular we discuss the effect of the collective hadronization in p -p scattering. A different parametrization of flow has been introduced in the case of a small volume with high density of thermalized matter (core) reached in p -p compared to large volume produced in heavy ion collisions. Both parametrizations depend only on the geometry and the amount of secondary particles entering in the core and not on the beam mass or energy. The transition between the two flow regimes can be tested with p -Pb data. Epos LHC is able to reproduce all minimum bias results for all particles with transverse momentum from pt=0 to a few GeV/c .

  1. Inside CERN's Large Hadron Collider from the proton to the Higgs boson

    CERN Document Server

    Campanelli, Mario

    2016-01-01

    The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

  2. Complementarity of the CERN Large Hadron Collider and the $e^+e^-$ International Linear Collider

    CERN Document Server

    Choi, S Y

    2008-01-01

    The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective $e^+e^-$ International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.

  3. Beyond the Large Hadron Collider: a first look at cryogenics for CERN future circular colliders

    CERN Document Server

    Lebrun, Ph

    2015-01-01

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities req...

  4. The Large Hadron Collider (LHC). The worlds largest vacuum system is working at CERN; El Large Hadron Collider (LHC). El sistema de vacio mas grande del mundo esta operando en el CERN

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez y Carvajal, J. M.

    2010-07-01

    When the September 10, 2008, was put into service at CERN, the Large Hadron Collider, the LHC (Large Hadron Collider) particle accelerator Giant left the imagination of particle physicists High Energy, began the most ambitious experiment in the field of Particle Physics High Energy. It expected to lead to the discovery of the predicted Higgs boson or could reveal new physics beyond the Standard Model. (author)

  5. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    Science.gov (United States)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  6. Black holes in many dimensions at the CERN large Hadron collider testing critical string theory

    CERN Document Server

    Hewett, J L; Rizzo, T G; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.

    2005-01-01

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With ~20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, n. In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if n is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  7. Lightening-like interactions in nuclear collisions at CERN large hadron collider

    CERN Document Server

    Abdel-Waged, Khaled

    2015-01-01

    A simple basic model for describing proton-nucleus (pA) and nucleus-nucleus (AA) collisions has been the intra-nuclear cascade model, where the interactions are simulated by a sequence of binary nucleon-nucleon (NN) collisions. This model helped to establish many scientific concepts and also creates the foundation for more modern simulation codes, especially at low and intermediate energies. In this paper, we present a new Monte Carlo model for pA and AA collisions at high CERN Large Hadron collider energies. The model implements HIJING code with a collective cascade recipe, that induces striking light-like effect in a large nucleus. A single collision (lightening) event is shown to be a complex process:A primary interacting nucleon passes its energy to the surrounding nucleons in a large nucleus. This new simulation code is shown to be good to reproduce the Large Hadron collider (LHC) data, especially the charged particle pseudorapidity density in p+Pb and Pb+Pb collisions at LHC energies.

  8. The Radiological Situation in the Beam-Cleaning Sections of the CERN Large Hadron Collider (LHC)

    CERN Document Server

    Brugger, Markus; Stevenson, Graham

    2003-01-01

    This thesis contributes to radiological assessments of the design and operation of the Large Hadron Collider currently under construction at CERN. In particular, the scope of this thesis is to examine the beam cleaning insertions - two of the main loss regions of the LHC where beam particles which would otherwise cause unwanted losses at different places of the machine are purposely intercepted. Two critical issues with regard to the protection of personnel and environment are studied: remanent dose rates due to induced radioactivity and airborne radioactivity. Although a detailed estimate of remanent dose rates is important for an optimization of later maintenance interventions only very limited information on remanent dose rates to be expected around the collimators was available so far. This thesis is an attempt to extend the knowledge considerably, especially by applying a new calculational method. Since this new approach is used for the first time in the design of the LHC a careful benchmarking with expe...

  9. Parton distribution functions probed in ultraperipheral collisions at the CERN Large Hadron Collider

    CERN Document Server

    Thomas, J; Brady, N; Clark, D B; Godat, E; Olness, F

    2016-01-01

    Vector meson production in ultra-peripheral pA and AA collisions at the CERN Large Hadron Collider (LHC) are very sensitive to Parton Distribution Functions (PDF) as well as to their leading-order, next-to-leading-order, and medium corrections. This process is a complimentary tool to explore the effects of different PDFs in particle production in proton-nucleus and nucleus-nucleus central collisions. Existing and forthcoming data available, e.g., from ALICE and CMS, may be used in conjunction with our theoretical predictions to constrain the PDFs. We make predictions for rapidity distributions and for cross sections of J/$\\psi$ , $\\psi(2S)$ and $\\Upsilon$ production at $\\sqrt{s_{NN}}=2.76$ TeV and $\\sqrt{s_{NN}}=5$ TeV. We use the second energy as representative for the Run 2 of PbPb collisions at the LHC.

  10. Achieving Resiliency in Production Worldwide Grid Services for the Large Hadron Collider at CERN

    CERN Document Server

    Shiers, J

    2007-01-01

    The world’s coolest machine – also the largest scientific instrument to date – will enter production in 2008. Operating at a temperature below 2oK, the Large Hadron Collider (LHC) at CERN will generate massive amounts of data – some 15PB per year – that will require significant computational and storage resources. A worldwide production Grid, the Worldwide LHC Computing Grid (WLCG) [1] has been setup, building on the infrastructures of two main Grids – the Open Science Grid (OSG) in the US [2] and the Enabling Grids for E-SciencE in Europe (EGEE) [3] and elsewhere. This is a highly complex system with many components but which must provide a robust and resilient service. This paper describes the state of the Grid in terms of resiliency and is based on a workshop on WLCG Service Reliability held at CERN in November 2007. The goals of the workshop were to discuss and agree the primary techniques for designing, building, deploying and operating robust and resilient services. Concret...

  11. Associated Higgs boson production with top quarks at the CERN Large Hadron Collider NLO QCD corrections

    CERN Document Server

    Dawson, S; Orr, L H; Reina, L; Wackeroth, D; 10.1103/PhysRevD.68.034022

    2003-01-01

    We present in detail the calculation of the O( alpha /sub s//sup 3/) inclusive total cross section for the process pp to tth, in the standard model, at the CERN Large Hadron Collider with a center-of- mass energy square root s/sub H/=14 TeV. The calculation is based on the complete set of virtual and real O( alpha /sub s/) corrections to the parton level processes qq to tth and gg to tth, as well as the tree level processes (q, q)g to tth+(q, q). The virtual corrections involve the computation of pentagon diagrams with several internal and external massive particles, first encountered in this process. The real corrections are computed using both the single and the two cutoff phase space slicing method. The next-to-leading order QCD corrections significantly reduce the renormalization and factorization scale dependence of the Born cross section and moderately increase the Born cross section for values of the renormalization and factorization scales above m/sub t/. (46 refs).

  12. Associated Higgs boson production with top quarks at the CERN Large Hadron Collider: NLO QCD corrections

    International Nuclear Information System (INIS)

    We present in detail the calculation of the O(αs3) inclusive total cross section for the process pp→tt-barh, in the standard model, at the CERN Large Hadron Collider with a center-of-mass energy √(sH)=14 TeV. The calculation is based on the complete set of virtual and real O(αs) corrections to the parton level processes qq-bar→tt-barh and gg→tt-barh, as well as the tree level processes (q,q-bar)g→tt-barh+(q,q-bar). The virtual corrections involve the computation of pentagon diagrams with several internal and external massive particles, first encountered in this process. The real corrections are computed using both the single and the two cutoff phase space slicing method. The next-to-leading order QCD corrections significantly reduce the renormalization and factorization scale dependence of the Born cross section and moderately increase the Born cross section for values of the renormalization and factorization scales above mt

  13. Cryogenic Studies for the Proposed CERN Large Hadron Electron Collider (LHeC)

    CERN Document Server

    Haug, F

    2011-01-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energy-recovery type machine with two 1 km long straight acceleration sections. The 944 hi...

  14. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

    2014-01-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  15. Fault Tracking of the Superconducting Magnet System at the CERN Large Hadron Collider

    CERN Document Server

    Griesemer, Tobias

    2016-03-25

    The Large Hadron Collider (LHC) at CERN is one of the most complex machines ever built. It is used to explore the mysteries of the universe by reproducing conditions of the big bang. High energy particles are collide in particle detectors and as a result of the collision process secondary particles are created. New particles could be discovered during this process. The operation of such a machine is not straightforward and is subject to many different types of failures. A model of LHC operation needs to be defined in order to understand the impact of the various failures on availability. As an example a typical operational cycle is described: the beams are first injected, then accelerated, and finally brought into collisions. Under nominal conditions, beams should be in collision (so-called ‘stable beams’ period) for about 10 hours and then extracted onto a beam dump block. In case of a failure, the Machine Protection Systems ensure safe extraction of the beams. From the experience in LHC Run 1 (2009 - 20...

  16. The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider

    CERN Document Server

    Battistin, M; Bitadze, A; Bonneau, P; Botelho-Direito, J; Boyd, G; Corbaz, F; Crespo-Lopez, O; Da Riva, E; Degeorge, C; Deterre, C; DiGirolamo, B; Doubek, M; Favre, G; Godlewski, J; Hallewell, G; Katunin, S; Lefils, D; Lombard, D; McMahon, S; Nagai, K; Robinson, D; Rossi, C; Rozanov, A; Vacek, V; Zwalinski, L

    2015-01-01

    The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed th...

  17. Calculations of safe collimator settings and β* at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Redaelli, S.

    2015-06-01

    The first run of the Large Hadron Collider (LHC) at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β*. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β*. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β*, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β* could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  18. CERN Library | Pauline Gagnon presents the book "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN" | 15 September

    CERN Document Server

    CERN Library

    2016-01-01

    "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN ", by Pauline Gagnon. Thursday 15 September 2016, 16:00 - 17:30 in the CERN Library (Bldg 52 1-052) *Coffee will be served at 15:30* CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers...

  19. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82+208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  20. Development of a beam condition monitor for use in experiments at the CERN Large Hadron Collider using synthetic diamond

    CERN Document Server

    Fernández-Hernando, L; Ilgner, C; MacPherson, A; Oh, A; Pernegger, H; Pritchard, T; Stone, R; Worm, S

    2004-01-01

    The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams, each with a store energy about 350MJ; enough to melt 550kg of copper. If there is failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor last increments of particle flux near the interaction point and if necessary, to generate an abort signal to the LHC accelerator control, to dump the beams. Due to its radiation hardness and minimal services requirements, synthetic CVD diamond is being considered as BCM sensor option. (12 refs).

  1. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the Large Hadron Collider at CERN

    CERN Document Server

    Della Corte, A; Hagedorn, Dietrich; Turtu, S; Basile, G L; Catitti, A; Chiarelli, S; Di Ferdinando, E; Taddia, G; Talli, M; Verdini, L; Viola, R

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported. (3 refs).

  2. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Science.gov (United States)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  3. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  4. Development of large-capacity refrigeration at 1.8 K for the Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P; Claudet, G

    1996-01-01

    CERN, the European Laboratory for Particle Physics, is working towards the construction of the Large Hadron Collider (LHC), a high-energy, high-luminosity particle accelerator and collider [1] of 26.7 km circumference, due to start producing frontier physics, by bringing into collision intense proton and ion beams with centre-of-mass energies in the TeV-per-constituent range, at the beginning of the next century. The key technology for achieving this ambitious scientific goal at economically acceptable cost is the use of high-field superconducting magnets using Nb-Ti conductor operating in superfluid helium [2]. To maintain the some 25 km of bending and focusing magnets at their operating temperature of 1.9 K, the LHC cryogenic system will have to produce an unprecedented total refrigeration capacity of about 20 kW at 1.8 K, in eight cryogenic plants distributed around the machine circumference [3]. This has requested the undertaking of an industrial development programme, in the form of a collaboration betwe...

  5. The large hadron computer

    CERN Multimedia

    Hirstius, Andreas

    2008-01-01

    Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)

  6. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  7. Crab dispersion and its impact on the CERN Large Hadron Collider collimation

    OpenAIRE

    Sun, P.; Assmann, R.; Tomàs, R.; Zimmermann, F.

    2010-01-01

    Crab cavities are proposed to be used for a luminosity upgrade of the Large Hadron Collider (LHC). Crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The crab cavity introduces another kind of dispersion to the particles which is z dependent, and thus could complicate the beam dynamics and have an impact on the LHC collimation system. As for LHC, the off-momentum ...

  8. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2073687; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density $\\rho_{\\mu} > 5.9~$m$^{-2}$. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplic...

  9. Hadron Spectroscopy with COMPASS at CERN

    CERN Document Server

    Schönning, Karin

    2012-01-01

    The aim of the COMPASS hadron programme is to study the light-quark hadron spectrum, and in particular, to search for evidence of hybrids and glueballs. COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage spectrometer with high momentum resolution, large acceptance, particle identification and calorimetry. A short pilot run in 2004 resulted in the observation of a spin-exotic state with $J^{PC} = 1^{-+}$ consistent with the debated $\\pi1(1600)$. In addition, Coulomb production at low momentum transfer data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a world leading data set was collected with hadron beam which is currently being analysed. The large statistics allows for a thorough decomposition of the data into partial waves. The COMPASS hadron data span over a broad range of channels and shed light on several different aspects of QCD.

  10. Hadron Spectroscopy with COMPASS at CERN

    CERN Document Server

    Schönning, Karin

    2012-01-01

    The aim of the COMPASS hadron programme is to study the light-quark hadron spectrum, and in particular, to search for evidence of hybrids and glueballs. COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage spectrometer with high momentum resolution, large acceptance, particle identification and calorimetry. A short pilot run in 2004 resulted in the observation of a spin-exotic state with $J^{PC} =$ 1${−+}$ consistent with the debated /4\\pi_{1}$(1600). In addition, Coulomb production at low momentum transfer data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a world leading data set was collected with hadron beam which is currently being analysed. The large statistics allows for a thorough decomposition of the data into partial waves. The COMPASS hadron data span over a broad range of channels and shed light on several different aspects of QCD.

  11. Dynamic aperture computation for the as-built CERN Large Hadron Collider and impact of main dipoles sorting

    International Nuclear Information System (INIS)

    During the design phase of the CERN Large Hadron Collider the dynamic aperture, i.e. the amplitude of the domain in phase space where the particle motion is stable, was used as one of the most important figures-of-merit to specify the field quality of the various types of superconducting magnets and to quantify the machine performance. The programme of magnetic measurements performed during the production and acceptance testing of the magnets generated a large amount of information, which was used to obtain a best estimate of the dynamic aperture of the actual machine. In this paper the results of massive numerical simulations based on the measured field quality of several optical configurations and beam energies, are presented and discussed. The effect of the sorting of the main dipoles on the final value of the dynamic aperture has also been studied and the results are reviewed in detail.

  12. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  13. Study of some optical glues for the Compact Muon Solenoid at the Large Hadron Collider of CERN

    CERN Document Server

    Montecchi, Marco

    2001-01-01

    Two Avalanche Photodiodes will measure the light produced in each of the 61,200 PbWO4 crystals composing the barrel part of the electromagnetic calorimeter of the Compact Muon Solenoid (CMS) at the Large Hadron Collider of CERN. To improve the collection of the photons, these detectors will be glued to the crystal. To be used in CMS, the optical glue must fulfil several requirements. The paper describes those requirements and reports the results of the investigation of several commercial optical glues. In particular, refractive index, absorption length, radiation hardness and forecast ageing after 15 years are reported. The most promising glue for CMS was more deeply investigated, in particular its chemical composition, chemical compatibility with the other parts of the calorimeter and curing time in realistic conditions.

  14. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  15. Constraining the Higgs couplings to up and down quarks using production kinematics at the CERN Large Hadron Collider

    CERN Document Server

    Bonner, Gage

    2016-01-01

    We study the prospects for constraining the Higgs boson's couplings to up and down quarks using kinematic distributions in Higgs production at the CERN Large Hadron Collider. We find that the Higgs $p_T$ distribution can be used to constrain these couplings with precision competitive to other proposed techniques. With 3000 fb$^{-1}$ of data at 13 TeV in the four-lepton decay channel, we find $-0.73 \\lesssim \\bar{\\kappa}_u \\lesssim 0.33$ and $-0.88 \\lesssim \\bar{\\kappa}_d \\lesssim 0.32$, where $\\bar{\\kappa}_q = (m_q/m_b) \\kappa_q$ is a scaling factor that modifies the $q$ quark Yukawa coupling relative to the Standard Model bottom quark Yukawa coupling. The sensitivity may be improved by including additional Higgs decay channels.

  16. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    CERN Document Server

    Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

  17. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit, also degrade the collimation cleaning efficiency, and so on. In this paper, we explore the principal feasibility of LHC crab cavities from a beam dynamics point of view. The implications of the crab cavities for the LHC optics, analytical and numerical luminosity studies, dynamic aperture, aperture and beta beating, emittance growth, beam-beam tune shift, long-range collisions, and synchrobetatron resonances, crab dispersion, and collimation efficiency will be discussed.

  18. Who cares about particle physics? making sense of the Higgs boson, the Large Hadron Collider and CERN

    CERN Document Server

    Gagnon, Pauline

    2016-01-01

    CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers work together to push scientific knowledge forward. Here is a book written for every person who wishes to learn a little more about particle physics, without requiring prior scientific knowledge. It starts from the basics to build a solid understanding of current res...

  19. The Quest for the Higgs Boson and the Planck Black Hole Production at the CERN Large Hadron Collider

    Science.gov (United States)

    Haramein, Nassim; Rauscher, E. A.

    2003-10-01

    When the CERN 7 TeV Large Hadron Collider (LHC) comes on line in the next few years, hypothesis is that significant experimental discoveries may verify the Higgs boson and the production of short lived Planck size mini Schwarzchild black holes, both of which are fundamental to a unified particle and cosmological standard and supersymmetry model. The Higgs mechanism relates to particle mass in the standard model and the mini black holes may relate to the cosmological mini mass problem as well as yield clues as to the structure of the vacuum. These points are of particular interest to our research [1,2], and the discovery and identification of mini black holes (mbh) is basic to our scaling law model [1]. Hawking radiation from the production of mini black holes from accelerated Hadrons are expected to be observed from x- and γ-ray lepton production from subcomponents of quarks or partons. Our model [1,2] and Hawking's picture [3] may demonstrate that mbh hold basic clues about the very nature of the fabric of spacetime itself. We examine the Kerr-Newman black hole production cross section in detail at the energies of the LHC. (1) N. Haramein, Bull. Am. Phys. Soc. AB006, 1154 (2001), (2) E.A. Rauscher, lett. Nuovo Cimento 3, 661 (1972), (3) S.W. Hawking, Phys. Rev. D53, 3099 (1996).

  20. Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Szczurek, Antoni

    2016-04-01

    We calculate cross sections for diphoton production in (semi)exclusive PbPb collisions, relevant for the CERN Large Hadron Collider (LHC). The calculation is based on the equivalent photon approximation in the impact parameter space. The cross sections for the elementary γ γ →γ γ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get measurable cross sections in PbPb collisions. This opens a possibility to study the γ γ →γ γ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS, or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the cross section for elastic γ γ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than Wγ γ≈15 -20 GeV.

  1. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  2. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  3. Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Song, Taesoo; Berrehrah, Hamza; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2016-03-01

    We study charm production in Pb +Pb collisions at √{sN N}=2.76 TeV in the parton-hadron-string-dynamics (PHSD) transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the pythia event generator, taking into account the (anti-)shadowing incorporated in the eps09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into D mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable RAA and elliptic flow of D mesons in comparison to the experimental data for Pb +Pb collisions at √{sN N}=2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm quarks in relativistic heavy-ion collisions. We find that the scattering cross sections are only moderately affected by off-shell charm degrees of freedom. However, the position of the peak of RAA for D mesons depends on the strength of the scalar partonic forces which also have an impact on the D meson elliptic flow. The comparison with experimental data on the RAA suggests that the repulsive force is weaker for off-shell charm quarks as compared to that for light quarks. Furthermore, the effects from radiative charm energy loss appear to be low compared to the collisional energy loss up to transverse momenta of ˜15 GeV/c .

  4. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  5. Monitoring of damage on water–cooled cables installed in the Large Hadron Collider (CERN) and research on possible alternatives.

    CERN Document Server

    Wollmann, Alexander; Guillaume, J C; Ricci, D

    To supply the superconducting magnets in the Large Hadron Collider at CERN, several thousand metres of water–cooled cables were installed. These cables consist of a flexible copper core surrounded by a reinforced rubber hose. Although the hose material has been selected carefully, on many cables the rubber hose has suffered from damage. After giving a general overview on common rubber materials and known reasons for their ageing, the technology of water–cooled cables and their special requirements will be introduced. Then, the aim of this thesis is to present the monitoring of the damage on the rubber hoses. This includes an introduction to the monitoring technique used, followed by an analysis and discussion of the results obtained. As a different way of investigating the damage, a pressure test for the rubber hose will be proposed and specified; and the possibility of using alternative conductors for the current supply of the LHC main magnets will be examined. Finally, a series of radiation tests on pot...

  6. Physics of Z0/γ*-tagged jets at energies available at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Electroweak bosons produced in conjunction with jets in high-energy collider experiments is one of the principal final-state channels that can be used to test the accuracy of perturbative quantum chromodynamics calculations and to assess the potential to uncover new physics through comparison between data and theory. In this article we present results for the Z0/γ*+jet production cross sections at the CERN Large Hadron Collider (LHC) at leading and next-to-leading orders. In proton-proton reactions we elucidate up to O(GFαs2) the constraints that jet tagging via the Z0/γ* decay dileptons provides on the momentum distribution of jets. In nucleus-nucleus reactions we demonstrate that tagged jets can probe important aspects of the dynamics of quark and gluon propagation in hot and dense nuclear matter and characterize the properties of the medium-induced parton showers in ways not possible with more inclusive measurements. Finally, we present specific predictions for the anticipated suppression of the Z0/γ*+jet production cross section in the quark-gluon plasma that is expected to be created in central lead-lead collisions at the LHC relative to the naive superposition of independent nucleon-nucleon scatterings.

  7. Dark energy, colored anti-de Sitter vacuum, and the CERN Large Hadron Collider phenomenology

    International Nuclear Information System (INIS)

    We study the possibility that the current accelerated expansion of the universe is driven by the vacuum energy density of a colored scalar field which is responsible for a phase transition in which the gauge SU(3)c symmetry breaks. We show that if we are stuck in a SU(3)c-preserving false vacuum, then SU(3)c symmetry breaking can be accommodated without violating any experimental QCD bounds or bounds from cosmological observations. Moreover, unless there is an unnatural fine-tuning beyond the usual cosmological constant fine-tuning, the true vacuum state of the universe is anti-de Sitter. The model can likely be tested at the LHC. A possible (though not necessary) consequence of the model is the existence of fractionally charged massive hadrons. The model can be embedded in supersymmetric theories where massive colored scalar fields appear naturally.

  8. Development of hybrid pixel detectors for proton-proton collisions in the ATLAS experiment at the Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    The ATLAS experiment at the future large hadron collider at CERN uses a silicon pixel detector as the innermost tracking device. The detector is built using ∼2000 modules which consist of a silicon sensor and 16 bump bonded VLSI electronic readout chips with ∼3000 channels per chip. The requirements for the sensor and the 1.4 x 108 preamplifier channels are discussed. The architectures of several existing readout chips are described. Detailed laboratory measurements have been performed on all chips and the results are compared to the requirements of ATLAS. The performance of a first ATLAS compatible pixel detector assembly in a test beam at CERN is presented. (orig.)

  9. Evidence of subnucleonic degrees of freedom in J /ψ photoproduction in ultraperipheral collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Andrade-II, E.; González, I.; Deppman, A.; Bertulani, C. A.

    2015-12-01

    We present calculations for the incoherent photoproduction of J /ψ vector mesons in ultraperipheral heavy ion collisions (UPCs) in terms of hadronic interactions. This study was carried out using the recently developed Monte Carlo model CRISP extended to include UPCs at energies available at the CERN Large Hadron Collider. A careful study of rescattering and destruction of the J /ψ particles is presented for Pb + Pb collisions at √{sN N}=2.76 TeV. We have also compared our method to Au + Au collisions at √{sN N}=200 GeV measured at the BNL Relativistic Heavy Ion Collider.

  10. Spectra of identified hadrons in Pb-Pb collisions at 2.76 TeV at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    The transverse-momentum distributions of identified hadrons produced in Pb-Pb collisions at the Large Hadron Collider (LHC) are studied in the low and intermediate range for pTT∼3 GeV/c. A substantial portion of the jet energy is found to be lost to the dense medium before the partons emerge at the surface to undergo hadronization by recombination.

  11. Next-to-leading order QCD effects in associated charged Higgs and W boson production in the MSSM at the CERN Large Hadron Collider

    OpenAIRE

    Gao, Jun; Li, Chong Sheng; Li, Zhao

    2007-01-01

    We present the calculations of the next-to-leading order (NLO) QCD corrections to the inclusive total cross sections for the associated production of the $W^{\\pm}H^{\\mp}$ through $b\\bar{b}$ annihilation in the Minimal Supersymmetric Standard Model at the CERN Large Hadron Collider. The NLO QCD corrections can either enhance or reduce the total cross sections, but they generally efficiently reduce the dependence of the total cross sections on the renormalization/factorization scale. The magnit...

  12. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    OpenAIRE

    Sun, Y. P.; Assmann, R.; Barranco, J.; Tomàs, R; Weiler, T.(Institut für Experimentelle Kernphysik, Karlsruhe, Germany); Zimmermann, F.; Calaga, R.; Morita, A.

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The longrange beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing acrossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a tr...

  13. Simulated production of a Higgs event in ATLAS. This track is an example of simulated data modeled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008.

    CERN Multimedia

    Pequenao, J

    2008-01-01

    Simulated production of a Higgs event in ATLAS. This track is an example of simulated data modeled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008.

  14. Preparing for the Large Hadron Collider

    CERN Document Server

    Appleton, Owen

    2007-01-01

    "Processing data for the Large Hadron Collider, the next-generation particle accelerator under construction at CERN, Switzerland, is one of the driving forces for development of Grid technology." (1 page)

  15. Same-sign top pair production in an extra-dimension model of flavor at the CERN Large Hadron Collider

    OpenAIRE

    Gao, Jun; Li, Chong Sheng; Gao, Xiangdong; Li, Zhao

    2008-01-01

    We study the same-sign top pair production mediated by the first Kluza-Klein (KK) excitation of the gluon in the Randall-Sundrum (RS) model with flavor violation at the Large Hadron Collider (LHC), in which the nonuniversal couplings between fermions and KK gauge bosons will lead to observable tree level flavor-changing neutral current (FCNC) effects. We find that the same-sign top quarks produced in our case have property of high energy and high transverse momentum, and lead to an observable...

  16. Coherent photoproduction of vector mesons in ultraperipheral heavy ion collisions: Update for run 2 at the CERN Large Hadron Collider

    Science.gov (United States)

    Guzey, V.; Kryshen, E.; Zhalov, M.

    2016-05-01

    We make predictions for the cross sections of coherent photoproduction of ρ ,ϕ ,J /ψ ,ψ (2 S ) , and Υ (1 S ) mesons in Pb-Pb ultraperipheral collisions (UPCs) at √{sN N}=5.02 TeV in the kinematics of run 2 at the Large Hadron Collider extending the approaches successfully describing the available Pb-Pb UPC data at √{sN N}=2.76 TeV . Our results illustrate the important roles of hadronic fluctuations of the photon and inelastic nuclear shadowing in photoproduction of light vector mesons on nuclei and the large leading twist nuclear gluon shadowing in photoproduction of quarkonia on nuclei. We show that the ratio of ψ (2 S ) and J /ψ photoproduction cross sections in Pb-Pb UPCs is largely determined by the ratio of these cross sections on the proton. We also argue that UPCs with electromagnetic excitations of the colliding ions followed by the forward neutron emission allows one to significantly increase the range of photon energies accessed in vector meson photoproduction on nuclei.

  17. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    CERN Document Server

    Abelleira Fernandez, J L; Akay, A N; Aksakal, H; Albacete, J L; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Brandt, G; Braun, H; Brodsky, S; Brüning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Cetinkaya, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; De Roeck, A; d'Enterria, D; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinol, L; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Ten Kate, H; Terron, J; Thiesen, H; Thompson, L; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F

    2012-01-01

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ ran...

  18. Large Acceptance Hadron Detector for an Investigation of Pb- and p-induced Reactions at the CERN~SPS

    CERN Multimedia

    Slodkowski, M A; Stock, R; Boimska, B; Grebieszkow, K; Wojtaszek-szwarc, A; Seyboth, P; Mackowiak-pawlowska, M K; Varga, D; Melkumov, G

    2002-01-01

    %NA49 %title\\\\ \\\\Experiment NA49 measures charged particle and neutral strange particle production over a large part of phase space in Pb and p beam reactions. The main aim is the search for evidence transition predicted by QCD for matter of sufficient energy density. The transient existence of a deconfined phase in the early stage of the collision is expected to modify the particle spectra and composition, the correlations and the space-time evolution of the final state as compared to a scenario of confined hadronic matter. In addition to high precision inclusive measurements of these quantities, the large particle multiplicity in Pb+Pb collisions and the wide acceptance of NA49 allow for the first time to measure the event by event fluctuations of observables like mean transverse momentum or temperature, the K/$\\pi$ ratio, and the multiplicity. In order to study the effects of normal nuclear matter p+p and p+nucleus collisions are measured for comparison. The latter data will provide information on these re...

  19. Hadron collider physics at the CERN SPS

    International Nuclear Information System (INIS)

    The results of the experiments of the CERN antiproton-proton collider, collected during the 1988 and 1989 runs, are summarized. The results of the W and Z hadronic decays are discussed. The results obtained from samples of W → e ν and Z → e+e- events for the W and Z production cross section times branching ratio and for pT are in good agreement with theoretical expectations. The measurements of W and Z mass are discussed. Lower limits of 61 GeV/c2 (UA1) and of 67 GeV/c2 (UA2) are reported for the mass of the top quark

  20. Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Vovchenko, V.; Karpenko, Iu. A.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Kämpfer, B.; Stoecker, H.

    2016-08-01

    Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of a chemically nonequilibrated system is described by ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the CERN Large Hadron Collider energy of √{sN N}=2.76 TeV. We test the sensitivity of the results to the choice of equilibration time, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the pT distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state.

  1. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  2. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  3. Hadron Fluence Measurements with LiF-TLD Sensors at the Proton Synchrotron Accelerator at CERN

    CERN Document Server

    Ilgner, Christoph; Obryk, Barbara

    2010-01-01

    In view of the implementation of beam-monitoring sensors for CERN's Large Hadron Collider (LHC), and also in order to validate Thermoluminescence Detectors as a versatile tool to measure ionizing radiation doses in mixed fields at hadron colliders such as the LHC, chemical vapor deposition diamond sensors have been evaluated and calibrated at CERN's Proton Synchrotron accelerator. Special attention was paid to understanding whether lithiumfluoride thermoluminescence detectors are suitable as measuring devices in these radiation fields.

  4. Hadron Fluence Measurements with LiF-TLD Sensors at the Proton Synchrotron Accelerator at CERN

    OpenAIRE

    Ilgner, Christoph; Budzanowski, Maciej; Obryk, Barbara

    2010-01-01

    In view of the implementation of beam-monitoring sensors for CERN's Large Hadron Collider (LHC), and also in order to validate Thermoluminescence Detectors as a versatile tool to measure ionizing radiation doses in mixed fields at hadron colliders such as the LHC, chemical vapor deposition diamond sensors have been evaluated and calibrated at CERN's Proton Synchrotron accelerator. Special attention was paid to understanding whether lithiumfluoride thermoluminescence detectors are suitable as ...

  5. Black Holes and the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  6. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  7. Large Hadron Collider slideshow shows future of physics

    CERN Multimedia

    Kramer, S E

    2007-01-01

    "The European organization for Nuclear Research (CERN) has been building the Large Hadron Collider for many years, but it's finally taking shape and prepping to operate at full power in 2008." (1/2 page)

  8. The large hadron collider and the super proton synchrotron at CERN as tools to generate warm dense matter and non-ideal plasmas

    International Nuclear Information System (INIS)

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm-2s-1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work is that the impact of the LHC beam on solid matter will generate Warm Dense Matter (WDM) and Strongly Coupled Plasmas (SCP). The beams for the LHC are pre-accelerated in the SPS (Super Proton Synchrotron) to 450 GeV/c and transferred to LHC via two beam lines. Several SPS cycles are required to fill the LHC, in one cycle a batch with up to 288 bunches can be accelerated. From the safety point of view it is also very important to study the damage caused to the equipment in case of an accident involving an uncontrolled release of the SPS beam. For this purpose we have also carried out detailed numerical simulations of the impact of the full SPS beam on solid copper and tungsten targets. These simulations have shown that the targets are severely damaged by the beam. It is also interesting to note that also in this case, a large part of the target material is converted into WDM and SCP. This study, therefore, shows that the LHC and the SPS have the potential to be used

  9. Big Science and the Large Hadron Collider

    OpenAIRE

    Giudice, Gian Francesco

    2011-01-01

    The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question here by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development o...

  10. Design Study of the Large Hadron Electron Collider and a Rapid Cycling Synchrotron as Alternative to the PS Booster Upgrade at CERN

    OpenAIRE

    Fitterer, Miriam

    2013-01-01

    To further extend the discovery potential of the Large Hadron Collider (LHC), a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors. Furthermore it has been suggested to built a new electron accelerator in order to allow for deep inelastic lepton-nucleon scattering at the LHC, referred to as Large Hadron Electron Collider (LHeC). In this thesis design options for a new LHC injector - a Rapid Cycling Synchrotron - and an electron accelerator for the LHeC are presented.

  11. The Large Hadron Collider

    CERN Document Server

    Evans, Lyndon

    2012-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron–positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.

  12. The AFS hadron calorimeter at the CERN ISR

    CERN Document Server

    Botner, O; Fabjan, Christian Wolfgang; Gordon, H; Jeffreys, P; Kesseler, G; Molzon, W R; Oren, Y; Rosselet, L; Schindler, R; Smith, S D; Van der Lans, J; Wang, C J; Willis, W J; Witzeling, W; Woody, C

    1981-01-01

    The hadron calorimeter for the AFS experiment at CERN consists of a fine sampling uranium/copper scintillator sandwich. It is designed for high modularity and will provide azimuthal coverage over 8 sterad. The authors describe the optical readout system, consisting of acrylic scintillator and wavelength shifter plates, and present the performance of test modules with respect to the energy resolution for electrons ( sigma =0.16/ square root E) and hadrons ( sigma =0.36/ square root E), the linearity of response and the ratio of electron to hadron response (e/ pi =1.11). (4 refs).

  13. Operational experience with the CERN hadron linacs

    International Nuclear Information System (INIS)

    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability. (author)

  14. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  15. Simulations of electron-cloud heat load for the cold arcs of the CERN Large Hadron Collider and its high-luminosity upgrade scenarios

    OpenAIRE

    Maury Cuna, H.; Contreras, J. G.; Zimmermann, F.

    2012-01-01

    The heat load generated by an electron cloud in the cold arcs of the Large Hadron Collider (LHC) is a concern for operation near and beyond nominal beam current. We report the results of simulation studies, with updated secondary- emission models, which examine the severity of the electron heat load over a range of possible operation parameters, both for the nominal LHC and for various luminosity-upgrade scenarios, such as the so-called ‘‘full crab crossing’’ and ‘‘early separation’’ schemes,...

  16. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  17. Black holes at the Large Hadron Collider.

    Science.gov (United States)

    Dimopoulos, S; Landsberg, G

    2001-10-15

    If the scale of quantum gravity is near TeV, the CERN Large Hadron Collider will be producing one black hole (BH) about every second. The decays of the BHs into the final states with prompt, hard photons, electrons, or muons provide a clean signature with low background. The correlation between the BH mass and its temperature, deduced from the energy spectrum of the decay products, can test Hawking's evaporation law and determine the number of large new dimensions and the scale of quantum gravity. PMID:11690198

  18. Simulations of electron-cloud heat load for the cold arcs of the CERN Large Hadron Collider and its high-luminosity upgrade scenarios

    CERN Document Server

    Maury Cuna, H; Zimmermann, F

    2012-01-01

    The heat load generated by an electron cloud in the cold arcs of the Large Hadron Collider (LHC) is a concern for operation near and beyond nominal beam current. We report the results of simulation studies, with updated secondary- emission models, which examine the severity of the electron heat load over a range of possible operation parameters, both for the nominal LHC and for various luminosity-upgrade scenarios, such as the so-called ‘‘full crab crossing’’ and ‘‘early separation’’ schemes, the ‘‘large Piwinski angle’’ scheme, and a variant of the latter providing ‘‘compatibility’’ with the (upgraded) LHCb experiment. The variable parameters considered are the maximum secondary-emission yield, the number of particles per bunch, and the spacing between bunches. In addition, the dependence of the heat load on the longitudinal bunch profile is investigated.

  19. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  20. Jets and decays of resonances: Two mechanisms responsible for reduction of elliptic flow at the CERN Large Hadron Collider (LHC) and restoration of constituent quark scaling

    International Nuclear Information System (INIS)

    The formation and evolution of the elliptic flow pattern in Pb+Pb collisions at √(s)=5.5A TeV and in Au+Au collisions at √(s)=200A GeV are analyzed for different hadron species within the framework of the HYDJET++ Monte Carlo model. The model contains both hydrodynamic state and jets, thus allowing for a study of the interplay between the soft and hard processes. It is found that jets terminate the rise of the elliptic flow with increasing transverse momentum. Since jets are more influential at the Large Hadron Collider (LHC) than at the Relativistic Heavy Ion Collider (RHIC), the elliptic flow at LHC should be weaker than that at RHIC. The influence of resonance decays on particle elliptic flow is also investigated. These final state interactions enhance the low-pT part of the v2 of pions and light baryons and work toward the fulfillment of idealized constituent quark scaling.

  1. Departure from the hadronic scenario at CERN SPS

    International Nuclear Information System (INIS)

    A review of results from heavy ion experiments at CERN SPS is presented, with an emphasis on the data from Pb induced interactions. Special focus is put on the most significant surprises: anomalous J/Φ suppression, change in the spectral shapes of e+ e- mass distributions in the vector meson domain, and enhanced strange hadron production. Implications of these findings for understanding collision dynamics and, in particular, their role in the search for the new phase of matter, are discussed. (author)

  2. Departure from the hadronic scenario at CERN SPS

    International Nuclear Information System (INIS)

    A review of results from heavy ion experiments at CERN SPS is presented, with an emphasis on the data from Pb induced interactions. Special focus is put on the most significant surprises: anomalous J/Ψ suppression, change in the spectral shapes of e+e- mass distributions in the vector meson domain, and enhanced strange hadron production. Implications of these findings for understanding collision dynamics and, in particular, their role in the search for the new phase of matter, are discussed

  3. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  4. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  5. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  6. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    International Nuclear Information System (INIS)

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  7. Timken steel technology used in CERN's hadron collider

    CERN Multimedia

    2007-01-01

    "The Timken Company's steel technology helped Superbolt, Inc. provide equipment to the European Organization for Nuclear Research (CERN) and its large particle physics laboratory located near Geneva, Switzerland." (1,5 page)

  8. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Selyuzhenkov, I; Rubbia, A; Di luise, S; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Krasnoperov, A; Feofilov, G; Vinogradov, L; Johnson, S R; Mills, G B; Planeta, R J; Robert, A L; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Sgalaberna, D; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Igolkin, S; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Zambelli, L A; Sadovskiy, A; Morozov, S; Petukhov, O; Szuba, M K; Mathes, H; Herve, A E; Roehrich, D; Marino, A D; Wyszynski, O J; Grebieszkow, K; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Taranenko, A; Cirkovic, M; Ravonel salzgeber, M; Gazdzicki, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Kobayashi, T; Blondel, A P P; Hasler, A; Damyanova, A; Stroebele, H W; Rustamov, A; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Veberic, D; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Ereditato, A; Paolone, V; Korzenev, A; Unger, M T; Wilczek, A G; Stepaniak, J M; Matulewicz, T N; Seryakov, A; Susa, T; Staszel, P P; Marcinek, A J; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  9. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  10. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  11. Large Hadron Collider au CERN: des big bangs en série sous le contrôle de WorldFIP

    CERN Multimedia

    2007-01-01

    Thanks to WorlsFIP, associated with a GPS system, CERN is able to synchronize most of the LHC equipments, to drive the magnetic field of giant experiments, to put back automatically the clock at the hour and date events with a precision better than 10 mu s. (1 page)

  12. The very large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  13. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument. It is being constructed by the European Organization for Nuclear Research, one of the world's largest particle physics laboratories.

  14. Large transverse momenta phenomena in hadron-hadron collisions

    International Nuclear Information System (INIS)

    The production of particles with large transverse momentum in high energy hadron-hadron collisions is reviewed. The emphasis is placed on the experimental results. These results are discussed in terms of present theoretical ideas on interactions between hadronic constituents, but no attempt is made to review the theoretical work in a comprehensive manner. (author)

  15. 5-8 Mar 1992: 650 physicists meet in Evian to discuss experiments on CERN's new accelerator project, the Large Hadron Collider (LHC)

    CERN Multimedia

    CERN Audioivisual Unit

    1992-01-01

    General Meeting on LHC Physics and Detectors - Towards the LHC experimental programme 5 - 8 Mar 1992 - Evian-les-Bains, France. With G. Flügge, C. H. Llewellyn Smith, M. Della Negra, P. Jenni, J. Schükraft, G. Brianti, C. Rubbia. At 30', images of a LHC special session with William Mitchell, President of Council, Ch. Llewellyn Smith, Chairman of the Scientific Policy Committee, Carlo Rubbia, CERN Director General and J.E. Augustin, Chairman of ECFA

  16. Evidence of sub-nucleonic degrees of freedom in J/$\\psi$ photoproduction in ultraperipheral collisions at the CERN Large Hadron Collider

    CERN Document Server

    Andrade-II, E; Deppman, A; Bertulani, C A

    2015-01-01

    We present calculations for the incoherent photoproduction of J/$\\psi$ vector mesons in ultra-peripheral heavy ion collisions (UPC) in terms of hadronic interactions. This study was carried out using the recently developed Monte Carlo model CRISP extended to include UPCs at LHC energies. A careful study of re-scattering and destruction of the J/$\\psi$ particles is presented for PbPb collisions at $\\sqrt{s_{NN}} = 2.76$ TeV. We have also compared our method to AuAu collisions at $\\sqrt{s_{NN}} = 200$ GeV measured at RHIC.

  17. The Large Hadron Collider, A Megascience Project

    CERN Document Server

    Lebrun, P

    2001-01-01

    The Large Hadron Collider (LHC) will be the next particle accelerator built to serve the world's high-energy physics community at CERN, the European Organisation for Nuclear Research. Reusing the 26.7-km circumference tunnel and infrastructure of the existing LEP collider, the LHC will make use of advanced technology - high-field superconducting magnets operated in superfluid helium - to push the energy frontier up by an order of magnitude, while remaining economically feasible. The LHC demonstrates on a grand scale several typical features of megascience projects, such as the need for international funding, world-wide co-operation and integration in the local environment, which we review in the following.

  18. The NA49 large acceptance hadron detector

    International Nuclear Information System (INIS)

    The NA49 detector is a wide acceptance spectrometer for the study of hadron production in p+p, p+A, and A+A collisions at the CERN SPS. The main components are 4 large-volume TPCs for tracking and particle identification via dE/dx. TOF scintillator arrays complement particle identification. Calorimeters for transverse energy determination and triggering, a detector for centrality selection in p+A collisions, and beam definition detectors complete the set-up. A description of all detector components is given with emphasis on new technical realizations. Performance and operational experience are discussed in particular with respect to the high track density environment of central Pb+Pb collisions

  19. Triangular flow of thermal photons from an event-by-event hydrodynamic model for 2.76 A TeV Pb + Pb collisions at the CERN Large Hadron Collider

    Science.gov (United States)

    Chatterjee, Rupa; Srivastava, Dinesh K.; Renk, Thorsten

    2016-07-01

    We calculate the triangular flow parameter v3 of thermal photons from an event-by-event ideal hydrodynamic model for 0-40% central collisions of Pb nuclei at √{sN N}=2.76 TeV at the CERN Large Hadron Collider. v3 determined with respect to the participant plane (PP) is found to be nonzero and positive, and its pT dependence is qualitatively similar to the elliptic flow parameter v2(PP) of thermal photons in the range 1 ≤pT≤6 GeV/c . In the range pT≤ 3 GeV/c , v3(PP) is found to be about 50-75% of v2(PP) and for pT> 3 GeV/c the two anisotropy parameters become comparable. The value of v3 is driven by local density fluctuations both directly via the creation of triangular geometry and indirectly via additional flow. As expected, the triangular flow parameter calculated with respect to the reaction plane v3(RP) is found to be close to zero. We show that v3(PP) strongly depends on the spatial size of fluctuations, especially in the higher pT(≥3 GeV /c ) region where a larger value of σ results in a smaller v3(PP ) . In addition, v3(PP ) is found to increase with the assumed formation time of the thermalized system.

  20. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  1. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  2. Multipion Bose-Einstein correlations in p p ,p -Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.

    2016-05-01

    Three- and four-pion Bose-Einstein correlations are presented in p p ,p -Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two- and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in p p and p -Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three- and four-pion Bose-Einstein correlations compared to expectations from two-pion measurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.

  3. Large hadron collider in the LEP tunnel. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later data alongside LEP in the LEP tunnel. Following the exploration of e+e- physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC) in the LEP tunnel, the physics case as it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig./HSI)

  4. Large hadron collider in the LEP tunnel. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later date alongside LEP in the LEP tunnel. Following the exploration of e+e- physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC= in the LEP tunnel, the physics case at it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig.)

  5. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2000-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

  6. Higgs Boson and the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Standard Model of particle physics has been extremely successful in explaining all the precision data collected during the past few decades. The model, however, was incomplete with one of the key particles still not experimentally observed till 2012. This particle is predicted by the theory in the context of providing mass to the fundamental constituents as well as the exchange particles W and Z bosons. In the recent past, two experiments, ATLAS and CMS operating at the Large Hadron Collider, CERN have observed the evidence of a new state. Search signal of this object has been motivated by the Higgs boson within the Standard Model. These results have been consolidated with newer data and some attempt has gone to determine some of the properties of this newly observed state. Some of the most important recent results in this context are presented in this lecture. Several groups from India have participated in the LHC program and contributed to various aspects like the machine, computing grid and the experiments. In particular, 3 institutes and 2 University groups have been a member of the CMS collaboration and took part in the discovery of the new state. The participation of the Indian groups are also highlighted. (author)

  7. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  8. An Application for Research: the Large Hadron Collider

    OpenAIRE

    Bailey, R

    2014-01-01

    The Large Hadron Collider (LHC) machine at CERN was designed and built primarily to find or exclude the existence of the Higgs boson, for which a large amount of data is needed by the LHC experiments. This requires operation at high luminosity, which in turn requires running with thousands of high-intensity proton bunches in the machine. After quantifying the data required by the experiments and elucidating the LHC parameters needed to achieve this, this paper explains how the LHC beams are f...

  9. The ALICE experiment at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo Gameiro [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: ALICE (A Large Ion Collider Experiment) is the only experiment form the Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research) dedicated mainly to study relativistic heavy ion collisions. The experiment was optimized to measure a great variety of observables that allow us to study the properties of the Quark Gluon Plasma, a new state of nuclear matter where quarks and gluons are deconfined from hadrons. The enlightenment of such properties will provide great insight in the understanding of the strong interaction described by QCD. In this talk, I will present the ALICE experiment, the latest results obtained by the collaboration in the last 2 years and discuss the Brazilian participation in this very interesting and important international project. (author)

  10. W±πt干 Associated Production at Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANGJin-Shu; PANQun-Na

    2004-01-01

    In this paper we calculate the production of a charged top pion in association with a W boson at the CERN Large Hadron Collider (LHC) in the context of the topcolor assisted technicolor model. We find that the cross section of pp → bb- → W±πt干 is roughly corresponding to the result of the process pp → bb- → W±πt干= in the minimal supersymmetric standard model, and for reasonable ranges of the parameters, the cross section can reach a few hundred fb. The W±πt干 signal should be clearly visible at LHC unless π t± is very heavy.

  11. The Online Model for the Large Hadron Collider

    OpenAIRE

    Redaelli, Stefano; Buffat, Xavier

    2010-01-01

    The control of the high intensity beams of the CERN Large Hadron Collider is particular challenging and requires a good modeling of the machine. In recent years efforts were devoted to the design of a software infrastructure aimed at mimicking the behavior of the LHC. An online model of the machine, based on the accelerator design tool MAD-X, has been developed to support the commissioning and the operation of the LHC. This model is integrated into the Java-based LHC development framework and...

  12. In the loop Large Hadron Collider project - UK engineering firms

    CERN Document Server

    Wilks, N

    2004-01-01

    This paper presents the latest measures being taken to boost the level of UK engineering firms' involvement in research at CERN (Centre for Nuclear Research), including its 27 km circular Large Hadron Collider (LHC) project. Virtually all of the components on this complex project have had to be custom-made, usually in the form of collaboration. It is part of these collaborations that some UK firms have proved they can shine. However, despite the proven capabilities, the financial return continues to be less than the government's funding. Each of the 20 CERN member states provides funds in proportion to its GDP and the UK is the second largest financial contributor. UK firms become price-competitive where a contract calls for a degree of customisation or product development, project management and tight quality control. Development of the Particle Physics Grid, for dissemination and analysis of data from the LHC, continues to provide major supply opportunities for UK manufacturers.

  13. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  14. Department of Energy assessment of the Large Hadron Collider

    International Nuclear Information System (INIS)

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee's charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ''Yellow Book,'' cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members' considerable experience

  15. 1 Go/s pour la grille de calcul du Large hadron collider

    CERN Multimedia

    Prevéraud, Jean-François

    2006-01-01

    The worldwide collaboration "Worldwide LHC computing grid (WLCG)", in which IN2P3 take part, has just announced a new record in the implementation of a computing grid for the Large Hadron Collider of CERN: a continuous flow of scientific data has been transferred on a worldwide infrastructure grid, with a flow up to sometimes 1 gigaoctet per second (1 page)

  16. On Large Hadron Collider's High-Energy Physics Research (brief review)

    International Nuclear Information System (INIS)

    In this review Large Hadron Collider (LHC) - the most advanced collider commissioned at CERN is described in brief, and present status of high-energy physics research at the LHC, including mathematics (software) Scientific Linux (SL6) based applications for the experiment are summarized. (authors)

  17. Smash! exploring the mysteries of the Universe with the Large Hadron Collider

    CERN Document Server

    Latta, Sara

    2017-01-01

    What is the universe made of? At CERN, the European Organization for Nuclear Research, scientists have searched for answers to this question using the largest machine in the world: the Large Hadron Collider. It speeds up tiny particles, then smashes them togetherand the collision gives researchers a look at the building blocks of the universe.

  18. Large Hadron particle collider may not have its run this November

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (LHC), based at CERN in Geneva, Switzerland, will not run in November this year as scheduled. The LHC was supposed to have a test run this yera, before switching on the scientific search for the Higgs boson in 2008."(1 page)

  19. Charmed-hadron fragmentation functions from CERN LEP1 revisted

    International Nuclear Information System (INIS)

    In Phys. Rev. D 58, 014014 (1998) and 71, 094013 (2005), we determined non-perturbative D0, D+, D*+, Ds+, and Λc+ fragmentation functions, both at leading and next-to-leading order in the MS factorization scheme, by fitting e+e- data taken by the OPAL Collaboration at CERN LEP1. The starting points for the evolution in the factorization scale μ were taken to be μ0-2mQ, where Q = c, b. For the reader's convenience, in this Addendum, we repeat this analysis for μ0=mQ, where the flavor thresholds of modern sets of parton density functions are located. (Orig.)

  20. Commissioning and First Operation of the Large Hadron Collider (LHC)

    CERN Document Server

    Lebrun, Ph

    2010-01-01

    After some fifteen years of construction, the Large Hadron Collider (LHC) was commissioned at CERN, the European Organization for Nuclear Research in 2008. This high-energy particle accelerator of 26.7 km circumference – the largest scientific instrument ever built – brings into collision intense beams of protons and ions to probe the structure of matter and study the forces acting on its elementary components at the TeV scale, an order of magnitude higher than the previous stateof-the-art. To guide and focus its particle beams, the LHC uses several thousands high-field superconducting magnets operating in superfluid helium at 1.9 K. The project therefore constitutes a technological feat: all its components were developed, industrialized and series produced by industrial companies according to demanding specifications. Started as a CERN undertaking – by decision of the CERN Council and its twenty European member states – the project soon became global with special contributions from Canada, India, Jap...

  1. The Large Hadron Collider in the LEP tunnel

    International Nuclear Information System (INIS)

    The status of the studies for the CERN Large Hadron Collider (LHC) is described. This collider will provide proton-proton collisions with 16 TeV centre-of-mass energy and a luminosity exceeding 1033 cm-2 s-1 per interaction point. It can be installed in the tunnel of the Large Electron-Positron Storage Ring (LEP) above the LEP elements. It will use superconducting magnets of a novel, compact design, having two horizontally separated channels for the two counter-rotating bunched proton beams, which can collide in a maximum of seven interaction points. Collisions between protons of the LHC and electrons of LEP are also possible with a centre-of-mass energy of up to 1.8 TeV and a luminosity of up to 2 x 1032 cm-2 s-1. (orig.)

  2. Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions

    CERN Document Server

    Gilles, Abelin R

    2013-01-01

    The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.

  3. Hadron distributions - recent results from the CERN experiment NA44

    Energy Technology Data Exchange (ETDEWEB)

    Xu, N.

    1996-09-01

    Proton distributions at midrapidity have been measured for 158A{circ}GeV/c Pb + Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A-GeV/c S+S and 158A{circ}GeV/c Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter T{sub fo} and mean collective flow velocity ({Beta}) are extracted. Preliminary results of the particle ratios of K{sup -}/K{sup +} and p/p are discussed in the context of cascade models of RQMD and VENUS.

  4. The Large Hadron Colider Pop Up Book

    CERN Multimedia

    2013-01-01

    Discover the ATLAS experiment in full 3D pop-up in this promotional video for the Large Hadron Collider pop-up book. The book contains 16 pop-ups telling the story of how the experiment works and its quest to understand what the universe is made of. It is now available in English, French and German. Paper engineer Anton Radevsky, texts Emma Sanders.

  5. Physics results at Large Hadron Collider

    International Nuclear Information System (INIS)

    A brief review of physics results of 2011 from experiments at the Large Hadron Collider is presented, first of all -- results of a search for the Standard Model Higgs boson. Measurements of W and Z bosons, t quark and a search for rare B-meson decays are in a good agreement with the Standard Model predictions in next-to-next-to-leading order (NNLO)

  6. Large scale calculations for hadron spectroscopy

    International Nuclear Information System (INIS)

    The talk reviews some recent Monte Carlo calculations for Quantum Chromodynamics, performed on Euclidean lattices of rather large extent. Purpose of the calculations is to provide accurate determinations of quantities, such as interquark potentials or mass eigenvalues, which are relevant for hadronic spectroscopy. Results obtained in quenched QCD on 163 x 32 lattices are illustrated, and a discussion of computational resources and techniques required for the calculations is presented. 18 refs.,3 figs., 2 tabs

  7. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  8. Highlights from the COMPASS experiment at CERN -- Hadron spectroscopy and excitations

    CERN Document Server

    Nerling, Frank

    2016-01-01

    The COMPASS experiment at the CERN-SPS studies the spectrum and the structure of hadrons by scattering high energy hadrons and polarised muons off various fixed targets. Recent results for the hadron programme comprise highlights from different topics. A selective overview is given and, among others, the following results are discussed. The precise determination of the pion polarisability, a long standing puzzle that has been solved now, is presented as well as measurements of radiative widths. The observation of a new narrow axial-vector state, the $a_1(1420)$, as well as deeper insights into the exotic $1^{-+}$-wave, which is under study since decades by several experiments, are discussed and further, the search for the charmonium-like exotic $Z_c(3900)$ state in the COMPASS data is covered.

  9. Lare Hadron Collider faces today

    CERN Multimedia

    Cartwright, Jon

    2007-01-01

    "The start-up of the Large Hadron Collider (LHC) at CERN could be delayed after three of the magnets used to focus and manipulate the accelerator's proton beams failed premilinary tests at CERN earlier this week." (1 page)

  10. Large high-vacuum systems for CERN accelerators

    CERN Document Server

    Strubin, P

    2008-01-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for th...

  11. Sextupole correction magnets for the Large Hadron Collider

    CERN Document Server

    Meinke, R B; Senti, M; Op de Beeck, W J; De Ryck, C; MacKay, W W

    1999-01-01

    About 2500 superconducting sextupole corrector magnets (MCS) are needed for the Large Hadron Collider (LHC) at CERN to compensate persistent current sextupole fields of the main dipoles. The MCS is a cold bore magnet with iron yoke. The coils are made from a NbTi conductor, which is cooled to 1.9 K. In the original CERN design 6 individual sub-coils, made from a monolithic composite conductor, are assembled and spliced together to form the sextupole. The coils are individually wound around precision-machined central islands and stabilized with matching saddle pieces at both ends. The Advanced Magnet Lab, Inc. (AML) has produced an alternative design, which gives improved performance and reliability at reduced manufacturing cost. In the AML design, the magnet consists of three splice-free sub-coils, which are placed with an automated winding process into pockets of prefabricated G-11 support cylinders. Any assembly process of sub-coils with potential misalignment is eliminated. The AML magnet uses a Kapton-wra...

  12. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  13. Measuring supersymmetry at the large hadron collider

    Indian Academy of Sciences (India)

    B C Allanach

    2003-02-01

    The large hadron collider (LHC) should have the ability to detect supersymmetric particles if low-energy supersymmetry solves the hierarchy problem. Studies of the LHC detection reach, and the ability to measure properties of supersymmetric particles are currently underway. We highlight some of these, such as the reach in minimal supergravity space and correlation with a fine-tuning parameter, precision measurements of edge variables, anomaly- or gauge-mediated supersymmetry breaking. Supersymmetry with baryon-number violation seems at first glance more difficult to detect, but proves to be possible by using leptons from cascade decays.

  14. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2011-05-01

    In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. I have added to the writeup, recent experimental results from the LHC which have become available since the time of the workshop.

  15. Large hadron collider workshop. Proceedings. Vol. 3

    International Nuclear Information System (INIS)

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentaiton and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  16. Large hadron collider workshop. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    The aim of the LCH workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  17. Large hadron collider workshop. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol.1 of these proceedings contains the papers presented at the plenary sessions, Vol.2 the individual contributions to the physics sessions, and Vol.3 those to the instrumentation sessions. (orig.)

  18. Strategy for Superconducting Magnet Development for a Future Hadron-Hadron Circular Collider at CERN

    CERN Document Server

    AUTHOR|(SzGeCERN)693930; Bajas, Hugo; Bajko, Marta; Ballarino, Amalia; Benedikt, Michael; Izquierdo Bermudez, Susana; Bordini, Bernardo; Bottura, Luca; Buzio, Marco; De Rijk, Gijs; Karppinen, Mikko; Lackner, Friedrich; Milanese, Attilio; Van Nugteren, Jeroen; Parma, Vittorio; Perez, Juan Carlos; Russenschuck, Stephan; Savary, Frederic; Todesco, Ezio; Tommasini, Davide

    2015-01-01

    Following the recommendation of the European Strategy Group for Particle Physics, a study on options for a Future Circular Collider (FCC) with centre-of-mass energy of 100 eV, a luminosity of 5-10 $\\times 10^{34}$cm$^2$s$^{-1}$ and a circumference in the range of 100 km was started. The study integrates ongoing accelerator and technology initiatives at CERN, Geneva, Switzerland and in partner institutes and universities. A key technology for the FCC are high-field superconducting accelerator magnets. The FCC arc magnets need an aperture of 50 mm, with dipole fields with a target of 16 T and quadrupole gradients with a target in excess of 400 T/m. Based on these preliminary parameters, we discuss in this paper the challenges for the main magnetic elements of such a collider, and outline a strategy for the development of the required technology.

  19. Large high-vacuum systems for CERN accelerators

    Science.gov (United States)

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  20. Updated electron-cloud simulation results for the Large Hadron Collider (LHC)

    OpenAIRE

    Furman, M.A.; Pivi, M.

    2001-01-01

    This paper presents new simulation results for the power deposition from the electron cloud in the beam screen of the Large Hadron Collider (LHC). We pay particular attention to the sensitivity of the results to certain low-energy parameters of the secondary electron (SE)emission. Most of these parameters, which constitute an input to the simulation program, are extracted from recent measurements at CERN and SLAC.

  1. Monotop phenomenology at the Large Hadron Collider

    CERN Document Server

    Agram, Jean-Laurent; Buttignol, Michael; Conte, Eric; Fuks, Benjamin

    2014-01-01

    We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop production modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.

  2. Meeting of the Large Hadron Collider Committee

    CERN Multimedia

    2012-01-01

    Provisional Agenda for the 111th meeting of the Large Hadron Collider Committee to be held on Wednesday and Thursday, 26-27 September 2012. Open Session: Wednesday, 26 September at 9 a.m. in the Main Auditorium (Bldg. 500-1-001)  09.00 - 09.20    LHC Machine Status Report  09.30 - 10.00    ATLAS Status Report  10.10 - 10.40    CMS Status Report  10.50 - 11.10    COFFEE BREAK 11.10 - 11.40    LHCb Status Report 11.50 - 12.20   ALICE Status Report 12.30 - 12.50   TOTEM Status Report 13.00 - 13.20   LHCf Status Report

  3. Transverse beams stability studies at the Large Hadron Collider

    CERN Document Server

    Buffat, Xavier; Pieloni, Tatiana

    2015-01-30

    A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deterioration of the beam quality. Such effects play a major role in most existing storage rings, as they limit the maximum performance achievable. In a collider, the presence of a second beam significantly changes the dynamics, as the electromagnetic interactions of the two beams on each other are usually very strong and may, also, limit the collider performances. This thesis treats the coherent stability of the two beams in a circular collider, including the effects of the electromagnetic wake fields and of the beam-beam interactions, with particular emphasis on CERN's Large Hadron Collider. As opposed to other colliders, this machine features a large number of bunches per beam each experiencing multiple long-range and head-on beam-beam interactions. Existing models...

  4. CERN - Commission Européenne

    CERN Multimedia

    2009-01-01

    Rolf-Dieter HEUER, Director General of CERN visits Commissioner Janez POTOCNIK (BRUSSELS, 03/03/2009, Ref.62264) CERN LHC Inauguration : extracts from the CERN LHC (European Organization for Nuclear Research - Large Hadron Collider) Inauguration and statements (GENEVA, 21/10/2008, Ref.59811) Commissioner Viviane REDING's visit to CERN (GENEVA, recorded 28/10/2005, Ref.42185)

  5. Measurement of very large transverse momentum jet production at the CERN anti pp collider

    International Nuclear Information System (INIS)

    The production of very large transverse momentum hadron jets has been measured in the UA2 experiment at the CERN anti pp Collider for √s = 540 GeV using a highly segmented calorimeter. The range of previously available cross sections for inclusive jet production is extended to psub(T) = 150 GeV and the two-jet invariant mass distribution to msub(jj) = 280 GeV with the largely increased data sample collected during the 1983 running period. The results are compared with the predictions of QCD models. (orig.)

  6. Tune variations in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aquilina, N. [CERN, Geneva (Switzerland); University of Malta, Msida (Malta); Giovannozzi, M.; Lamont, M. [CERN, Geneva (Switzerland); Sammut, N. [University of Malta, Msida (Malta); Steinhagen, R. [CERN, Geneva (Switzerland); Todesco, E., E-mail: ezio.todesco@cern.ch [CERN, Geneva (Switzerland); Wenninger, J. [CERN, Geneva (Switzerland)

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  7. Tune variations in the Large Hadron Collider

    International Nuclear Information System (INIS)

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top

  8. The Large Hadron Collider, a personal recollection

    CERN Document Server

    Evans, L

    2014-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report {[}1], w...

  9. Physics at the Large Hadron Collider

    CERN Document Server

    Mukhopadhyaya, Biswarup; Raychaudhari, Amitava

    2009-01-01

    In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expert...

  10. Cryogénie et supraconductivité pour le grand collisionneur de hadrons (LHC) du CERN

    CERN Document Server

    Lebrun, P

    2004-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be the most advanced research instrument of the world’s high-energy physics community, providing access to the structure of matter at an unprecedentedly fine scale. Reusing the 26.7 km circumference tunnel and infrastructure of the past LEP electron-positron collider, the LHC makes use of advanced technology: high-field superconducting magnets based on niobium-titanium alloy conductors operating in superfluid helium at 1.9 K will guide and bring into collision intense beams of protons and ions. After some ten years of focussed R&D, the LHC components are being series-built by specialized industry in CERN member states and procured through world-wide collaborations. After briefly recalling the physics goals, performance challenges and design choices, we present main aspects of cryogenics and superconductivity as key technologies for the LHC and report on its c...

  11. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    Tapan K Nayak

    2012-10-01

    On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided the first stable beams of heavy ions (Pb on Pb) at the centre-of-mass energy of 2.76 TeV/nucleon. The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to $L_{O} = 2 × 10^{25}$ cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time. The results of the multiplicity, flow, fluctuations and Bose–Einstein correlations indicate that the fireball formed in nuclear collisions at the LHC is hotter, lives longer, and expands to a larger size at freeze-out as compared to lower energies. We give an overview of these as well as new results on quarkonia and heavy flavour suppression, and jet energy loss.

  12. Anisotropic flow and flow fluctuations at the large hadron collider

    CERN Document Server

    Zhou, You

    One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.

  13. Development of superconducting links for the Large Hadron Collider machine

    CERN Document Server

    Ballarino, A

    2014-01-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB 2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  14. Recent results from the Large Hadron Collider

    International Nuclear Information System (INIS)

    We present an overview of the physics results obtained by experiments at the Large Hadron Collider (LHC) in 2009-2010, for an integrated luminosity of L ≈ 40 pb-1, collected mostly at a centre-of-mass energy of √s = 7 TeV. After an introduction to the physics environment at the LHC and the current performance of the accelerator and detectors, we will discuss quantum chromodynamics and B-physics analyses, W and Z production, the first results in the top sector, and searches for new physics, with particular emphasis on supersymmetry and Higgs studies. While most of the presented results are in remarkable agreement with Standard Model predictions, the excellent performance of the LHC machine and experiments, the prompt analysis of all data within just a few months after the end of data taking, and the high quality of the results obtained constitute an encouraging step towards unique measurements and exciting discoveries in the 2011-2012 period and beyond. (author)

  15. CERN and the LHC

    CERN Multimedia

    Cramer, J G

    1992-01-01

    CERN, a high-energy physics laboratory in Europe, is planning to build a more powerful particle accelerator, the Large Hadronic Collider. The US spreads its accelerators around the country while most of Europe's research is conducted at and around CERN.

  16. pp collisions with a high psub(T) charged hadron trigger at the CERN ISR

    International Nuclear Information System (INIS)

    Results are presented from an investigation of proton proton collision at a cm energy of 52.6 GeV in which a charged hadron at large transverse momentum (0.5-6 GeV/c) is emitted near 900 in the cms. Jet-like structures are observed, and their properties discussed in some detail. (Auth.)

  17. Large Hadron Collider sets proton-acceleration record

    CERN Multimedia

    2009-01-01

    "The Large Hadron Collider, the largest atom smasher in the world, broke the record for proton acceleration Monday, sending beams of the particles at 1.18 trillion electron volts, scientists said" (1 paragraph)

  18. Really large hadron collider working group summary

    International Nuclear Information System (INIS)

    A summary is presented of preliminary studies of three 100 TeV center-of-mass hadron colliders made with magnets of different field strengths, 1.8T, 9.5T and 12.6T. Descriptions of the machines, and some of the major and most challenging subsystems, are presented, along with parameter lists and the major issues for future study

  19. Observable Properties of Quark-Hadron Phase Transition at the Large Hadron Collider

    CERN Document Server

    Hwa, Rudolph C

    2016-01-01

    Quark-hadron phase transition is simulated by an event generator that incorporates the dynamical properties of contraction due to QCD confinement forces and randomization due to the thermal behavior of a large quark system on the edge of hadronization. Fluctuations of emitted pions in the $(\\eta,\\phi)$ space are analyzed using normalized factorial moments in a wide range of bin sizes. The scaling index $\

  20. Longitudinal intensity effects in the CERN Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2081238; Rivkin, Leonid

    This PhD thesis provides an improved knowledge of the LHC longitudinal impedance model and a better understanding of the longitudinal intensity effects. These effects can limit the LHC performance and lead to a reduction of the integrated luminosity. The LHC longitudinal impedance was measured with beams. Results obtained using traditional techniques are consistent with the expectations based on the impedance model, although the measurement precision was proven insufficient for the low impedance of the LHC. Innovative methods to probe the LHC reactive impedance were successfully used. One of the methods is based on exciting the beam with a sinusoidal rf phase modulation to estimate the synchrotron frequency shift from potential-well distortion. In the second method, the impedance is estimated from the loss of Landau damping threshold, which is also found to be in good agreement with analytical estimations. Beam-based impedance measurements agree well with estimations using the LHC impedance model. Macropartic...

  1. Scrutinizing the ZW+W- vertex at the Large Hadron Collider at 7 TeV

    International Nuclear Information System (INIS)

    We analyze the potential of the CERN Large Hadron Collider running at 7 TeV to search for deviations from the Standard Model predictions for the triple gauge boson coupling ZW+W- assuming an integrated luminosity of 1 fb-1. We show that the study of W+W- and W±Z productions, followed by the leptonic decay of the weak gauge bosons can improve the present sensitivity on the anomalous couplings Δg1Z, ΔκZ, λZ, g4Z, and λ-tildeZ at the 2σ level.

  2. TIG weldability of special stainless steels for the beam screen of the large hadron collider

    International Nuclear Information System (INIS)

    In the Large Hadron Collider planned at CERN, a beam screen cooled at 10 K will intercepted the synchrotron radiation and the power dissipated by the beam image currents. TIG welding comparative evaluations of the three candidate N2 enriched austenitic stainless steels for the beam screen (UNS 21904 produced by Ugine, 13 RM 19 by Sandvick and X20MDW by Aubert et Duval) are presented with interpretation and discussion of the experimental results. (A.B.). 5 refs., 5 figs., 3 tabs

  3. QCD and low-x physics at a Large Hadron electron Collider

    OpenAIRE

    Laycock, P.

    2012-01-01

    The Large Hadron electron Collider (LHeC) is a proposed facility which will exploit the new world of energy and intensity offered by the LHC for electron-proton scattering, through the addition of a new electron accelerator. This contribution, which is derived from the draft CERN-ECFA-NuPECC Conceptual Design report (due for release in 2012), addresses the expected impact of the LHeC precision and extended kinematic range for low Bjorken-x and diffractive physics, and detailed simulation stud...

  4. Higgs Bosons, Electroweak Symmetry Breaking, and the Physics of the Large Hadron Collider

    OpenAIRE

    Quigg, Chris

    2007-01-01

    The Large Hadron Collider, a 7 + 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electrow...

  5. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    CERN Document Server

    Quigg, Chris

    2015-01-01

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. A new round of experimentation is beginning, with the energy of the proton--proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. This article summarizes what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  6. Upgrade of the liquid helium storage for the Large Hadron Collider

    International Nuclear Information System (INIS)

    The cryogenic system of the Large Hadron Collider (LHC) under operation at CERN has a total helium inventory of 140 t. Up to 50 t can be stored in gas storage tanks. The remaining inventory is stored in a liquid helium storage system consisting of six 15-t liquid helium tanks sited in 4 locations. The first phase with the commissioning of the two first liquid helium tanks including their infrastructure was already presented. In a second phase, four new tanks were commissioned at the end of 2010. The paper describes the modifications relating to these four tanks and presents the measurement of their thermal performance. (author)

  7. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  8. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    CERN Document Server

    Engelen, Jos

    2012-01-01

    In this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly challenging: new detector technologies had to be developed; experimental set-ups that are larger and more complex than ever before had to be constructed; and larger collaborations than ever before had to be organized. Fundamental to the success were: the ‘reference’ provided by CERN, peer review, signed memoranda of understanding, well-organized resources review boards as an interface to the national funding agencies and collegial, but solidly organized, experimental collaborations.

  9. Jet measures and hadronic event shapes at the CERN anti pp collider

    International Nuclear Information System (INIS)

    We analyze the energy density distribution in hadronic final states as a function of their total transverse energy measured in the segmented central calorimeter of the UA2 detector. The energy dependence of collective shape variables is investigated. The data, collected at the CERN anti pp Collider at √s=630 GeV, exhibit strong variations in all these variables over the transverse energy range between 15 and 210 GeV, corresponding to substantial modifications in the structure of multihadronic final states. The evolution of the energy density distribution and of the collective shape variables shows a clear transition between two extreme dynamical regimes, respectively dominated by pT-limited phase space and by collimated two-jet configurations. A study of the relative populations of two- and three-jet systems reveals two different sources of configurations having three distinct lobes in the pattern of the energy-flow. A first component, steeply falling with energy, receives substantial contributions from soft parton collisions at lower transverse energies. Above 60 GeV a new hard component emerges, characterized by an approximately constant rate with respect to the dominant two-jet structures. (orig.)

  10. Large-psub(T) hadron correlations in quantum chromodynamics

    International Nuclear Information System (INIS)

    The quantum chromodynamics approach to large-transverse-momentum inclusive hadron production is extended to two-hadron correlations. Comparison with data on transverse momentum sharing distributions is presented and the scale violating effects of the parton fragmentation functions are discussed. Opposite-side rapidity distributions are in fair agreement with data and show a weak back-to-back effect. The importance of calculating the ''hard'' component of output momentum (acoplanarity) is underlined. (author)

  11. Signatures for black hole production from hadronic observables at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb+Pb collisions. (author)

  12. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    OpenAIRE

    Dominguez, O; Iriso, U; Maury, H.; Rumolo, G.; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called ...

  13. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    OpenAIRE

    Florio, Massimo; Forte, Stefano; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement...

  14. The Higgs boson discovery at the Large Hadron Collider

    CERN Document Server

    Wolf, Roger

    2015-01-01

    This book provides a comprehensive overview of the field of Higgs boson physics. It offers the first in-depth review of the complete results in connection with the discovery of the Higgs boson at CERN’s Large Hadron Collider and based on the full dataset for the years 2011 to 2012. The fundamental concepts and principles of Higgs physics are introduced and the important searches prior to the advent of the Large Hadron Collider are briefly summarized. Lastly, the discovery and first mensuration of the observed particle in the course of the CMS experiment are discussed in detail and compared to the results obtained in the ATLAS experiment.

  15. Physics perspectives of the ALICE experiment at the large hadron collider

    Indian Academy of Sciences (India)

    Massimo Masera

    2003-04-01

    The large hadron collider (LHC) under construction at CERN will deliver ion beams up to centre of mass energies of the order of 5.5 TeV per nucleon, in case of lead. If compared to the available facilities for the study of nucleus–nucleus collisions (SpS and RHIC), this represents a huge step forward in terms of both volume and energy density that can be attained in nuclear interactions. ALICE (a large ion collider experiment) is the only detector specifically designed for the physics of nuclear collisions at LHC, even though it can also study high cross-section processes occurring in proton–proton collisions. The main goal of the experiment is to observe and study the phase transition from hadronic matter to deconfined partonic matter (quark gluon plasma – QGP). ALICE is conceived as a general-purpose detector and will address most of the phenomena related to the QGP formation at LHC energies: for this purpose, a large fraction of the hadrons, leptons and photons produced in each interaction will be measured and identified.

  16. Hadronic forward scattering: Predictions for the Large Hadron Collider and cosmic rays

    CERN Document Server

    Block, Martin M

    2006-01-01

    The status of hadron-hadron interactions is reviewed, with emphasis on the forward and near-forward scattering regions. From analyticity, Finite Energy Sum Rules are introduced from which new analyticity constraints are derived that exploit the many very accurate low energy experimental cross sections, i.e., they constrain the values of the asymptotic cross sections and their derivatives at low energies just above the resonance regions, allowing us new insights into duality. A new robust fitting technique is introduced in order to `clean up' large data samples that are contaminated by outliers. Using our analyticity constraints, new methods of fitting high energy hadronic data are introduced which result in much more precise estimates of the fit parameters, allowing accurate extrapolations to much higher energies. It's shown that the $\\gamma p$, $\\pi^\\pm p$ and nucleon-nucleon cross sections {\\em all} go asymptotically as $\\ln^2s$, saturating the Froissart bound, while conclusively ruling out $\\ln s$ and $s^{...

  17. Report on the impacts of large research infrastructures on economic innovation and on society Case studies at CERN

    CERN Document Server

    OECD, Paris

    2014-01-01

    This report is an examination of some of the economic and societal impacts of a well-known international high-energy physics infrastructure: the European Organisation for Nuclear Research, CERN, with special emphasis on its latest and most prominent scientific installation, the Large Hadron Collider (LHC). While both CERN and the LHC are, to a large extent, unique among research infrastructures, it is hoped that the case studies, analyses and conclusions in this report will make a useful contribution to the wider debate concerning the impacts of investments in large basic research facilities. Specifically, an enumeration and analysis of the pertinent issues and options should be a useful resource for persons who are contemplating the establishment of any major new international collaboration.

  18. Invisible Higgs decay at the Large Hadron-Electron Collider

    Science.gov (United States)

    Tang, Yi-Lei; Zhang, Chen; Zhu, Shou-hua

    2016-07-01

    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this paper, we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high-luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet, and large missing energy. With a cut-based parton-level analysis, we estimate that if the h Z Z coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1 ab-1 , the LHeC with the proposed 60 GeV electron beam (with -0.9 polarization) and 7 TeV proton beam is capable of probing Br (h →TE)=6 % at 2 σ level. Good lepton veto performance (especially hadronic τ veto) in the forward region is crucial to the suppression of the dominant W j e background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in the precision study of new resonances after their discovery in hadron-hadron collisions.

  19. A search for technicolor at the large hadron collider

    Science.gov (United States)

    Love, Jeremy R.

    The Standard Model of particle physics provides an accurate description of all experimental data to date. The only unobserved piece of the Standard Model is the Higgs boson, a consequence of the spontaneous breaking of electroweak symmetry by the Higgs mechanism. An alternative to the Higgs mechanism is proposed by Technicolor theories which break electroweak symmetry dynamically through a new force. Technicolor predicts many new particles, called Technihadrons, that could be observed by experiments at hadron colliders. This thesis presents a search for two of the lightest Technihadrons, the rhoT and oT. The Low-Scale Technicolor model predicts the phenomenology of these new states. The rhoT and oT are produced through qq annihilation and couple to Standard Model fermions through the Drell-Yan process, which can result in the dimuon final state. The rhoT and oT preferentially decay to the piT and a Standard Model gauge boson if kinematically allowed. Changing the mass of the piT relative to that of the rhoT and o T affects the cross section times branching fraction to dimuons. The rhoT and oT are expected to have masses below about 1 TeV. The Large Hadron Collider (LHC) at CERN outside of Geneva, Switzerland, produces proton-proton collisions with a center of mass energy of 7 TeV. A general purpose high energy physics detector ATLAS has been used in this analysis to search for Technihadrons decaying to two muons. We use the ATLAS detector to reconstruct the tracks of muons with high transverse momentum coming from these proton-proton collisions. The dimuon invariant mass spectrum is analyzed above 130 GeV to test the consistency of the observed data with the Standard Model prediction. We observe excellent agreement between our data and the background only hypothesis, and proceed to set limits on the cross section times branching ratio of the rhoT and oT as a function of their mass using the Low-Scale Technicolor model. We combine the dielectron and dimuon channels

  20. Viewpoint: the End of the World at the Large Hadron Collider?

    International Nuclear Information System (INIS)

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by the LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.

  1. Tolerable systematic errors in Really Large Hadron Collider dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Peggs, S.; Dell, F.

    1996-12-01

    Maximum allowable systematic harmonics for arc dipoles in a Really Large Hadron Collider are derived. The possibility of half cell lengths much greater than 100 meters is justified. A convenient analytical model evaluating horizontal tune shifts is developed, and tested against a sample high field collider.

  2. Large Hadron Collider project to study the origins of matter

    CERN Multimedia

    2007-01-01

    "The Scientific Information Port (PIC), a technological centre located on the campus of the UAB, recently started work on the first stage of the European project Large Hadron Collider (LHC), the largest particle accelerator in the world, which has the aim of reproducing conditions similar to those produced during the Big Bang in order to study the origins of matter." (1/2 page)

  3. Reconstruction of hadronic cascades in large-scale neutrino telescopes

    International Nuclear Information System (INIS)

    A strategy that allows for the reconstruction of the direction and energy of hadronic cascades is presented, as well as the preliminary results from corresponding simulation studies of the ANTARES twelve string detector. The analysis techniques are of very generic nature and can thus be easily applied for large-scale neutrino telescopes, such as KM3NeT.

  4. Supersymmetry status and phenomenology at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Alexander Belyaev

    2009-01-01

    Large Hadron Collider (LHC) has a great chance to finally reveal supersymmetry which remains a compelling theory for over 30 years in spite of lack of its discovery. It might be around the corner the present LHC era with sensitive dark matter search experiments and international linear collider hopefully coming up in the near future.

  5. Lepton Flavor Violation at the Large Hadron Collider

    CERN Document Server

    Allahverdi, Rouzbeh; Kamon, Teruki; Krislock, Abram

    2012-01-01

    We investigate a potential of discovering lepton flavor violation (LFV) at the Large Hadron Collider. A sizeable LFV in low energy supersymmetry can be induced by massive right handed neutrinos, which can explain neutrino oscillations via the seesaw mechanism. We investigate a scenario where the distribution of an invariant mass of two hadronically decaying taus ($\\tauh\\tauh$) from $\\schizero{2}$ decays is the same in events with or without LFV. We first develop a transfer function using this ditau massdistribution to model the shape of the non-LFV $\\tauh\\mu$ invariant mass. We then show the feasibility of extracting the LFV $\\tauh\\mu$ signal.

  6. Plate stamping of masterplates for the Tile-Cal hadronic calorimetric for ATLAS detector at CERN

    International Nuclear Information System (INIS)

    Various methods have been explored for the fabrication of the large trapezoidal plates used in the construction of the Tile-Cal hadronic calorimeter for ATLAS. The options include die stamping, laser cutting, waterjet cutting, plasma arc cutting, and a combination of machining and laser cutting. Very early in the program, the Argonne group began investigating the possibility of die stamping the master plates. At that time it was felt that two dies would be necessary to achieve the accuracy required. Quotations were received for dies for both the master and spacer plates. Concern was expressed by many members of the collaboration that due to the very precise tolerances required, die stamping, using standard dies, would not be adequate. Fine blanking techniques were felt to be adequate, but were cost prohibitive. Two methods were finally used for the initial cutting of prototype plates, laser cutting and die stamping. Only the die stamping, will be reviewed here

  7. Una evaluación externa del CERN aconseja mejorar la gestión

    CERN Document Server

    2002-01-01

    An external committee of evaluation which studied the CERN situation before it undertook the construction of the Large Hadron Collider said the design of this new machine is excellent, but that CERN should improve its management

  8. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  9. Learning to See at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2010-01-01

    The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

  10. Forward-Central Jet Correlations at the Large Hadron Collider

    OpenAIRE

    Deak, M; Hautmann, F.(Dept. of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, United Kingdom); Jung, H; Kutak, K.

    2010-01-01

    For high-pT forward processes at the Large Hadron Collider (LHC), QCD logarithmic corrections in the hard transverse momentum and in the large rapidity interval may both be quantitatively significant. The theoretical framework to resum consistently both kinds of logarithmic corrections to higher orders in perturbation theory is based on QCD high-energy factorization. We present numerical Monte Carlo applications of this method to final-state observables associated with production of one forwa...

  11. Learning to See at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

  12. Cern

    CERN Multimedia

    2009-01-01

    "La réparation de l'accélérateur géant de particules LHC, qui devrait redémarrer mi-novembre aprés une panne de plus d'un an, a coûté 23 millions d'euros, selon un haut responsable du Centre européen de recherche nucléaire (CERN), cité vendredi par les médias espagnols" (1 paragraph)

  13. Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    CERN Document Server

    Roy, Arunava

    2008-01-01

    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

  14. Large-psub(T) hadron production and logarithmic scale breaking

    International Nuclear Information System (INIS)

    A model of quark-parton distributions is constructed on the basis of several requirements, most of which are properties of asymptotically free theories. The model leads to logarithmic behaviour of the moments of the structure functions and accounts fairly well for the recent deep inelastic lepton-nucleon data and for most of the essential large transfer momentum data on single hadron production in proton-proton collisions. (auth.)

  15. Lattice optimization for a really large hadron collider (RLHC)

    International Nuclear Information System (INIS)

    Long arc cells would lead to major cost savings in a high field high Tc hadron collider, operating in the regime of significant synchrotron radiation. Two such lattices, with half cell lengths of 110 and 260 m, are compared. Both allow flexible tuning, and have large dynamic apertures when dominated by chromatic sextupoles. Lattices with longer cells are much more sensitive to systematic magnet errors, which are expected to dominate

  16. Four-Lepton Resonance at the Large Hadron Collider

    OpenAIRE

    Barger, Vernon; Lee, Hye-Sung

    2011-01-01

    A spin-1 weakly interacting vector boson, Z', is predicted by many new physics theories. Searches at colliders for such a Z' resonance typically focus on lepton-antilepton or top-antitop events. Here we present a novel channel with a Z' resonance that decays to 4 leptons, but not to 2 leptons, and discuss its possible discovery at the Large Hadron Collider. This baryonic gauge boson is well motivated in a supersymmetry framework.

  17. Update on the Hadron calorimeter of the CMS Experiment at CERN.

    CERN Document Server

    Hagopian, Vasken

    2008-01-01

    The construction and assembly of the Hadron Calorimeter is now complete and commissioning is almost done. The hadron calorimeter inside the CMS detector is made of scintillator and copper absorber covering the |η| range of 0.0 to 3.0. The forward calorimeter, made of quartz fibers and iron absorber, covers the |η| range of 3.0 to 5.0. Recent test beam effort is aimed at understanding of the performance of the Hadron Calorimeter in conjunction with the lead tungstate crystal Electromagnetic Calorimeter. Recent test beam results using production modules help us improve resolution. Work has started on several upgrade fronts for the high luminosity LHC.

  18. Cost-Benefit Analysis of the Large Hadron Collider to 2025 and beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2015-01-01

    Social cost-benefit analysis (CBA) of projects has been successfully applied in different fields such as transport, energy, health, education, and environment, including climate change. It is often argued that it is impossible to extend the CBA approach to the evaluation of the social impact of research infrastructures, because the final benefit to society of scientific discovery is generally unpredictable. Here, we propose a quantitative approach to this problem, we use it to design an empirically testable CBA model, and we apply it to the the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by determining their value to users (scientists, early-stage researchers, firms, visitors) and non-users (the general public). Four classes of contributions to users are identified: knowledge output, human capital development, technological spillovers, and cultural effects. Benefits for non-users can be ...

  19. W±π(干)t Associated Production at Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-Shu; PAN Qun-Na

    2004-01-01

    In this paper we calculate the production of a charged top pion in association with a W boson at the CERN Large Hadron Collider (LHC) in the context of the topcolor assisted technicolor model. We find that the cross section of pp → b(-b) → W±π(干)t is roughly corresponding to the result of the process pp → b(-b) → W±H(干) in the minimal supersymmetric standard model, and for reasonable ranges of the parameters, the cross section can reach a few hundred fo. The W±π(干)t signal should be clearly visible at LHC unless π±t is very heavy.

  20. The discovery of the Higgs boson at the Large Hadron Collider

    Science.gov (United States)

    Nisati, A.; Tonelli, G.

    2015-11-01

    This paper summarises the work done by the ATLAS and CMS collaborations, and by the teams of the Large Hadron Collider at CERN, that led to the discovery of a new particle, with mass near 125GeV and properties consistent with the ones predicted for the Standard Model Higgs boson. An overview of the Standard Model, with a description of the role of the Higgs boson in the theory, and a summary of the searches for this particle prior to the LHC operations is also given. The paper presents the results obtained by ATLAS and CMS from the analysis of the full data set produced in the first physics run of LHC. After a short discussion on the implications of the discovery, the future prospects for the precision study of the new particle are lastly discussed.

  1. Empirical Bayes unfolding of elementary particle spectra at the Large Hadron Collider

    CERN Document Server

    Kuusela, Mikael

    2014-01-01

    We consider the so-called unfolding problem in experimental high energy physics, where the goal is to estimate the true spectrum of elementary particles given observations distorted by measurement error due to the limited resolution of a particle detector. This an important statistical inverse problem arising in the analysis of data at the Large Hadron Collider at CERN. Mathematically, the problem is formalized as one of estimating the intensity function of an indirectly observed Poisson point process. Particle physicists are particularly keen on unfolding methods that feature a principled way of choosing the regularization strength and allow for the quantification of the uncertainty inherent in the solution. Though there are many approaches that have been considered by experimental physicists, it can be argued that few -- if any -- of these deal with these two key issues in a satisfactory manner. In this paper, we propose to attack the unfolding problem within the framework of empirical Bayes estimation: we ...

  2. Design, Performance and Series Production of Superconducting Trim Quadrupoles for the Large Hadron Collider

    CERN Document Server

    Karppinen, M; Castro, J-M; Gaggero, G; Giloux, C; Lopes, H; Khare, P; Loche, L; Mazet, J; Mugnai, G; Puntambekar, A; Remondino, Vittorio; Rodrigues, D; Tassisto, M; Venturini-Delsolaro, W; Wolf, R

    2006-01-01

    The Large Hadron Collider (LHC) will be equipped with several thousands of superconducting corrector magnets. Among the largest ones are the superconducting trim quadrupoles (MQTL). These twin-aperture magnets with a total mass of up to 1700 kg have a nominal gradient of 129 T/m at 1.9 K and a magnetic length of 1.3 m. Sixty MQTL are required for the LHC, 36 operating at 1.9 K in and 24 operating at 4.5 K. The paper describes the design features, and reports the measured quench performance and magnetic field quality of the production magnets. The MQTL magnet production is shared between CERN and industry. This sharing is simplified due to the modular construction, common to all twin-aperture correctors.

  3. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  4. Low-Energy Hadron Production Data and Current Status of CERN Measurements

    OpenAIRE

    Barr, Giles; Engel, Ralph

    2005-01-01

    Data on low-energy hadron production in collisions of nucleons, pions and kaons with light nuclei are needed for many astrophysical and accelerator applications. Modern simulations have reached a level of accuracy that the lack of detailed understanding of hadron production processes has become one of the most important limitations to further improvements. After giving some examples of hadroproduction processes in astrophysics and neutrino experiments we briefly review existing fixed-target d...

  5. Small-x Parton Distributions of Large Hadronic Targets

    CERN Document Server

    Hebecker, A

    1998-01-01

    A simple and intuitive calculation, based on the semiclassical approximation, demonstrates how the large size of a hadronic target introduces a new perturbative scale into the process of small-x deep inelastic scattering. The above calculation, which is performed in the target rest frame, is compared to the McLerran-Venugopalan model for scattering off large nuclei, which has first highlighted this effect in the infinite momentum frame. It is shown that the two approaches, i.e., the rest frame based semiclassical calculation and the infinite momentum frame based McLerran-Venugopalan approach are quantitatively consistent.

  6. The standard model Higgs search at the large hadron collider

    Indian Academy of Sciences (India)

    Satyaki Bhattacharya; on behalf of the CMS and the ATLAS Collaborations

    2007-11-01

    The experiments at the large hadron collider (LHC) will probe for Higgs boson in the mass range between the lower bound on the Higgs mass set by the experiments at the large electron positron collider (LEP) and the unitarity bound (∼ 1 TeV). Strategies are being developed to look for signatures of Higgs boson and measure its properties. In this paper results from full detector simulation-based studies on Higgs discovery from both ATLAS and CMS experiments at the LHC will be presented. Results of simulation studies on Higgs coupling measurement at LHC will be discussed.

  7. The upgrade programme of the major experiments at the Large Hadron Collider

    International Nuclear Information System (INIS)

    After a successful data taking period at the CERN LHC by the major physics experiments (ALICE, ATLAS, CMS and LHCb) since 2009, a long-term plan is already envisaged to fully exploit the vast physics potential of the Large Hadron Collider (LHC) within the next two decades. The CERN accelerator complex will undergo a series of upgrades leading ultimately to increase both the collision energy and the luminosity, thus maximizing the amount of data delivered to all experiments. As a consequence, the experiments have also to cope with very high detector occupancies and operate in the hard radiation environment caused by a huge multiplicity of particles produced in each beam crossing. In parallel to the accelerator upgrades, the LHC experiments are planning various upgrades to their detector, trigger, and data acquisition systems. The main motivation for the upgrades is to extend and to improve their physics programme also in the increasingly challenging LHC environment. In this paper a general overview of the upgrade programme of the major experiments at LHC will be given, with some additional details concerning specifications and physics programme of new detector subsystems.

  8. Llewellyn Smith, Director-General designate of CERN, discusses LHC

    CERN Multimedia

    Sweet, William N

    1992-01-01

    Christopher Llewellyn Smith was nominated by the Committee of Council to be Director General of CERN. He aims to pave the way for the Large Hadron Collider and utilize to the full the Large Electron-Positron machine.

  9. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  10. Searches for the technicolor signatures via gg →W±πt± at the Large Hadron Collider

    International Nuclear Information System (INIS)

    In this paper, we calculate the production of a charged top pion in association with a W boson via gg fusion at CERN's Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the total cross section of pp → gg →W±πt∓ is several dozen femtobarns with reasonable values of the parameters, and the total cross section of pp → W±πt∓ can reach a few hundred femtobarns when we consider the sum of the contributions of these two parton subprocesses, gg →W±πt∓ and bb-bar → W±πt∓. (authors)

  11. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Ferrando, Belen Salvachua; Salvachua Ferrando, B

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  12. nPDF constraints from the Large Hadron Electron Collider

    CERN Document Server

    Helenius, Ilkka; Armesto, Nestor

    2016-01-01

    An updated analysis regarding the expected nuclear PDF constraints from the future Large Hadron Electron Collider (LHeC) experiment is presented. The new study is based on a more flexible small-$x$ parametrization which provides less biased uncertainty estimates in the region where there are currently no data constraints. The effect of the LHeC is quantified by directly including a sample of pseudodata according to the expected precision of this planned experiment. As a result, a significant reduction of the small-$x$ uncertainties in sea quarks and gluons is observed.

  13. Top-quark physics at the Large Hadron Collider

    CERN Document Server

    Cristinziani, Markus

    2016-01-01

    This experimental review gives an overview of top-quark measurements performed by the two general purpose-detectors ATLAS and CMS during the first few years of running of the Large Hadron Collider. In the years 2010 - 2012 each experiment collected 5/fb of pp collision data at $\\sqrt{s} = 7$ TeV and 20/fb at $\\sqrt{s} = 8$ TeV, allowing detailed studies of top-quark production and decays, and measurements of the properties of the top quark with unprecedented precision.

  14. Charged heavy vector boson production at the Large Hadron Collider

    OpenAIRE

    Oh, Dal Soo; Reno, M. H.

    1998-01-01

    We evaluate the sensitivity of the Large Hadron Collider (LHC) to charged heavy vector boson production followed by their decays to $W^\\pm Z^0$. We include the correlated decays of the gauge bosons to leptonic final states. With an integrated luminosity of $10^5$ pb$^{-1}$, charged technirhos in the minimal SU(N)$_{TC}$ model for $N\\geq 7$ yield signals with a significance larger than 5. In more general models, we explore the range of parameter space to which LHC experiments will be sensitive...

  15. Working group report: Physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    D K Ghosh; A Nyffeler; V Ravindran

    2011-05-01

    This is a summary of the activities of the Physics at the LHC working group in the XIth Workshop on High Energy Physics Phenomenology (WHEPP-XI) held at the Physical Research Laboratory, Ahmedabad, India in January 2010. We discuss the activities of each sub-working group on physics issues at colliders such as Tevatron and Large Hadron Collider (LHC). The main issues discussed involve (1) results on W mass measurement and associated QCD uncertainties, (2) an attempt to understand the asymmetry measured at Tevatron in the top quark production, and (3) phenomenology of warped space dimension model.

  16. QCD physics in Atlas at the large hadron collider

    International Nuclear Information System (INIS)

    The Large Hadron Collider (LHC) is a proton-proton collider with a 14 TeV center of mass energy. The design luminosity is 1034 cm-1s-1 with beam collisions separated by 25 ns. The initial operation for physics will take place at a luminosity of 1033cm-1s-1 and it is expected that the integrated luminosity delivered in the first year will be 10 fb-1. This integrated luminosity will result in very large event samples for most processes, for example: ∼108 leptonic W decays, 104 γ's with Et > 500GeV and 104 jets with Et > 1TeV. As a result of the high statistics event samples, the understanding of most QCD processes at 14TeV will be systematics limited after the first year of running. The Atlas detector [1] is a general purpose detector designed to be sensitive to the many physics processes which are expected at the LHC. It contains high performance tracking using silicon detectors and a transition radiation tracker in a 2 Tesla solenoidal magnetic field, a high resolution electromagnetic calorimeter based on lead-liquid argon, a hadron calorimeter based on steel-scintillator and Cu/W-liquid argon, and a large instrumented air-core toroid magnet system for muon measurement. The basic performance characteristics of these systems are given in Table 1

  17. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN; Grossforschung in neuen Dimensionen. Denker unserer Zeit ueber die aktuelle Elementarteilchenphysik am CERN

    Energy Technology Data Exchange (ETDEWEB)

    Kommer, Christoph (ed.) [Heidelberg Univ. (Germany); DKFZ, Heidelberg (Germany); Satz, Helmut [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Blanchard, Philippe [Bielefeld Univ. (Germany). Abt. Theoretische Physik

    2016-07-01

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  18. Site Layout of the proposed new Hadrons' Injector Chain at CERN

    CERN Document Server

    Baldy, J L; Evans, L; Garoby, R; Gerigk, F; Lindroos, M; López-Hernandez, L A; Maury, S; Poehler, M; Silari, M; Vretenar, M

    2008-01-01

    The replacement of almost all the LHC injector complex on the Meyrin-site of CERN (Linac2, PSB and PS) is planned within the next 10 years. The layout foreseen for the new accelerators is described in this paper, together with its compatibility with the existing experimental physics facilities. These machines can, after upgrade, supply with high beam power future physics facilities for radioactive ions and/or neutrinos. Their possible layout is also sketched in this document.

  19. Big research in new dimensions. Thinkers of our time about the actual elementary-particle physics at CERN

    International Nuclear Information System (INIS)

    The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)

  20. Advances in Cryogenics at the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1998-01-01

    After a decade of intensive R&D in the key technologies of high-field superconducting accelerator magnets and superfluid helium cryogenics, the Large Hadron Collider (LHC) has now fully entered its co nstruction phase, with the adjudication of major procurement contracts to industry. As concerns cryogenic engineering, this R&D program has resulted in significant developments in several fields, amon g which thermo-hydraulics of two-phase saturated superfluid helium, efficient cycles and machinery for large-capacity refrigeration at 1.8 K, insulation techniques for series-produced cryostats and mu lti-kilometre long distribution lines, large-current leads using high-temperature superconductors, industrial precision thermometry below 4 K, and novel control techniques applied to strongly non-line ar processes. We review the most salient advances in these domains.

  1. Forward-central jet correlations at the Large Hadron Collider

    International Nuclear Information System (INIS)

    For high-pT forward processes at the Large Hadron Collider (LHC), QCD logarithmic corrections in the hard transverse momentum and in the large rapidity interval may both be quantitatively significant. The theoretical framework to resum consistently both kinds of logarithmic corrections to higher orders in perturbation theory is based on QCD high-energy factorization. We present numerical Monte Carlo applications of this method to final-state observables associated with production of one forward and one central jet. By computing jet correlations in rapidity and azimuth, we analyze the role of corrections to the parton-showering chain from large-angle gluon radiation, and discuss this in relationship with Monte Carlo results modeling interactions due to multiple parton chains. (orig.)

  2. Forward-central jet correlations at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Deak, M. [Univ. Autonoma de Madrid, Cantoblanco (Spain). Inst. de Fisica Teorica UAM/CSIC; Hautmann, F. [Oxford Univ. (United Kingdom). Theoretical Physics Dept.; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysics; Kutak, K. [Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysics

    2010-12-15

    For high-p{sub T} forward processes at the Large Hadron Collider (LHC), QCD logarithmic corrections in the hard transverse momentum and in the large rapidity interval may both be quantitatively significant. The theoretical framework to resum consistently both kinds of logarithmic corrections to higher orders in perturbation theory is based on QCD high-energy factorization. We present numerical Monte Carlo applications of this method to final-state observables associated with production of one forward and one central jet. By computing jet correlations in rapidity and azimuth, we analyze the role of corrections to the parton-showering chain from large-angle gluon radiation, and discuss this in relationship with Monte Carlo results modeling interactions due to multiple parton chains. (orig.)

  3. The higgsino-singlino world at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Ray, Tirtha Sankar [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia)

    2015-02-01

    We consider light higgsinos and singlinos in the next-to-minimal supersymmetric standard model at the large hadron collider. We assume that the singlino is the lightest supersymmetric particle and that the higgsino is the next-to-lightest supersymmetric particle with the remaining supersymmetric particles in the multi-TeV range. This scenario, which is motivated by the flavor and CP issues, provides a phenomenologically viable dark matter candidate and improved electroweak fit consistent with the measured Higgs mass. Here, the higgsinos decay into on (off)-shell gauge boson and the singlino. We consider the leptonic decay modes and the resulting signature is three isolated leptons and missing transverse energy which is known as the trilepton signal. We simulate the signal and the Standard Model backgrounds and present the exclusion region in the higgsino-singlino mass plane at the large hadron collider at √(s) = 14 TeV for an integrated luminosity of 300 fb{sup -1}. (orig.)

  4. Detector Development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  5. The higgsino-singlino world at the large hadron collider

    International Nuclear Information System (INIS)

    We consider light higgsinos and singlinos in the next-to-minimal supersymmetric standard model at the large hadron collider. We assume that the singlino is the lightest supersymmetric particle and that the higgsino is the next-to-lightest supersymmetric particle with the remaining supersymmetric particles in the multi-TeV range. This scenario, which is motivated by the flavor and CP issues, provides a phenomenologically viable dark matter candidate and improved electroweak fit consistent with the measured Higgs mass. Here, the higgsinos decay into on (off)-shell gauge boson and the singlino. We consider the leptonic decay modes and the resulting signature is three isolated leptons and missing transverse energy which is known as the trilepton signal. We simulate the signal and the Standard Model backgrounds and present the exclusion region in the higgsino-singlino mass plane at the large hadron collider at √(s) = 14 TeV for an integrated luminosity of 300 fb-1. (orig.)

  6. Comparison of electromagnetic and hadronic models generated using Geant 4 with antiproton dose measured in CERN

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Tavakoli

    2015-01-01

    Full Text Available After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.

  7. Dark Matter Searches at the Large Hadron Collider

    CERN Document Server

    Hoh, Siew Yan; Abdullah, Wan Ahmad Tajuddin Bin Wan

    2015-01-01

    Dark Matter is a hypothetical particle proposed to explain the missing matter expected from the cosmological observation. The motivation of Dark Matter is overwhelming however as it is mainly deduced from its gravitational interaction, for it does little to pinpoint what Dark Matter really is. In WIMPs Miracle, weakly interactive massive particle being the Dark Matter candidate is correctly producing the current thermal relic density at weak scale, implying the possibility of producing and detecting it in Large Hadron Collider. Assuming WIMPs being the maverick particle within collider, it is expected to be pair produced in association with a Standard Model particle. The presence of the WIMPs pair is inferred from the Missing Transverse Energy (MET) which is the vector sum of the imbalance in the transverse momentum plane recoils a Standard Model Particle. The collider is able to produce light mass Dark Matter which the traditional detection fail to detect due to the small momentum transfer involved in the in...

  8. The Large Hadron Collider Present Status and Prospects

    CERN Document Server

    Evans, Lyndon R

    2001-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2005, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this , protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 1034 cm-2 s-1. The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. Considerable modification of the infrastructure around the existing LEP tunnel is needed to house the LHC machine and detectors. The project is advancing according to schedule with most of the major hardware systems including cryogenics and magnets under construction. A brief status report is given and future prospects are discussed.

  9. Flavour physics and the Large Hadron Collider beauty experiment.

    Science.gov (United States)

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future. PMID:22253243

  10. Doubly-charged particles at the Large Hadron Collider

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; de Traubenberg, Michel Rausch

    2013-01-01

    In this work we investigate the production and signatures of doubly-charged particles at the Large Hadron Collider. We start with the Standard Model particle content and representations and add generic doubly-charged exotic particles. We classify these doubly-charged states according to their spin, considering scalar, fermionic and vectorial fields, and according to their SU(2)L representation, being chosen to be either trivial, fundamental, or adjoint. We write the most general interactions between them and the Standard Model sector and study their production modes and possible decay channels. We then probe how they can most likely be observed and how particles with different spin and SU(2)L representations could be possibly distinguished.

  11. Phenomenology of supersymmetric Z' decays at the Large Hadron Collider

    CERN Document Server

    Corcella, Gennaro

    2014-01-01

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into superymmetric particles, such as chargino, neutralino and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at sqrt{s}=14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modified to accommodate the extra Z' boson and consistent with the discovery of a Higgs-like boson with mass around 125 GeV. Results are presented for several observables and compared with those obtained for direct Z' decays into lepton pairs. For the sake of comparison, Z' production in the Sequential Standard Model and its supersymmetric decays are also investigated.

  12. Hadron distributions — Recent results from the CERN experiment NA44

    Science.gov (United States)

    Xu, Nu; Bearden, I. G.; Bøggild, H.; Boissevain, J.; Dodd, J.; Erazmus, B.; Esumi, S.; Fabjan, C. W.; Ferenc, D.; Fields, D. E.; Franz, A.; Gaardhøje, J. J.; Hansen, O.; Hardtke, D.; van Hecke, H.; Holzer, E. B.; Humanic, T.; Hummel, P.; Jacak, B. V.; Jayanti, R.; Kaneta, M.; Kopytine, M.; Leltchouk, M.; Ljubicic, T.; Lörstad, B.; Maeda, N.; Medvedev, A.; Murray, M.; Nishimura, S.; Ohnishi, H.; Paic, G.; Pandey, S. U.; Piuz, F.; Pluta, J.; Polychronakos, V.; Potekhin, M.; Poulard, G.; Sakaguchi, A.; Simon-Gillo, J.; Schmidt-Sørensen, J.; Sondheim, W.; Spegel, M.; Sugitate, T.; Sullivan, J. P.; Sumi, Y.; Willis, W. J.; Wolf, K.; Xu, N.; Zachary, D. S.; NA44 Collaboration

    1996-02-01

    Proton distributions at midrapidity have been measured for 158A·GeV Pb+Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A·GeV S+S and 158A·GeV Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter Tfo and mean collective flow velocity are extracted. Preliminary results of the particle ratios of {K -}/{K +} and {overlinep}/{p} are discussed in the context of cascade models of RQMD and VENUS.

  13. Dark matter searches at the large hadron collider

    Science.gov (United States)

    Hoh, S. Y.; Komaragiri, J. R.; Wan Abdullah, W. A. T.

    2016-01-01

    Dark Matter is a hypothetical particle proposed to explain the missing matter expected from the cosmological observation. The motivation of Dark Matter is overwhelming however as it is mainly deduced from its gravitational interaction, for it does little to pinpoint what Dark Matter really is. In WIMPs Miracle, weakly interactive massive particle being the Dark Matter candidate is correctly producing the current thermal relic density at weak scale, implying the possibility of producing and detecting it in Large Hadron Collider. Assuming WIMPs being the maverick particle within collider, it is expected to be pair produced in association with a Standard Model particle. The presence of the WIMPs pair is inferred from the Missing Transverse Energy (MET) which is the vector sum of the imbalance in the transverse momentum plane recoils a Standard Model Particle. The collider is able to produce light mass Dark Matter which the traditional detection fail to detect due to the small momentum transfer involved in the interaction; on the other hand, the traditional detection is robust in detecting a higher Dark matter masses but the collider is suffered from the parton distribution function suppression. Topologically the processes are similar to the scattering processes in the direct detection thus complementary to the traditional Dark Matter detection. The collider searches are strongly motivated as the results are usually translated to the annihilation and scattering rates at more traditional Dark Matter-oriented experiments, thus a concordance approach is adapted. An overview of Dark Matter searches at the Large Hadron Collider will be covered in this paper.

  14. Effective models of new physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    With the start of the Large Hadron Collider runs, in 2010, particle physicists will be soon able to have a better understanding of the electroweak symmetry breaking. They might also answer to many experimental and theoretical open questions raised by the Standard Model. Surfing on this really favorable situation, we will first present in this thesis a highly model-independent parametrization in order to characterize the new physics effects on mechanisms of production and decay of the Higgs boson. This original tool will be easily and directly usable in data analysis of CMS and ATLAS, the huge generalist experiments of LHC. It will help indeed to exclude or validate significantly some new theories beyond the Standard Model. In another approach, based on model-building, we considered a scenario of new physics, where the Standard Model fields can propagate in a flat six-dimensional space. The new spatial extra-dimensions will be compactified on a Real Projective Plane. This orbifold is the unique six-dimensional geometry which possesses chiral fermions and a natural Dark Matter candidate. The scalar photon, which is the lightest particle of the first Kaluza-Klein tier, is stabilized by a symmetry relic of the six dimension Lorentz invariance. Using the current constraints from cosmological observations and our first analytical calculation, we derived a characteristic mass range around few hundred GeV for the Kaluza-Klein scalar photon. Therefore the new states of our Universal Extra-Dimension model are light enough to be produced through clear signatures at the Large Hadron Collider. So we used a more sophisticated analysis of particle mass spectrum and couplings, including radiative corrections at one-loop, in order to establish our first predictions and constraints on the expected LHC phenomenology. (author)

  15. Experiences constructing and running large shared clusters at CERN

    International Nuclear Information System (INIS)

    The latest steps in the steady evolution of the CERN Computer Centre have been to reduce the multitude of clusters and architectures and to concentrate on commodity hardware. An active RISC decommissioning program has been undertaken to encourage migration to Linux, and a program of merging dedicated experiment clusters into larger shared facilities has been launched. The authors describe these programs and the experiences running the resultant multi-hundred node shared Linux clusters

  16. Experiences Constructing and Running Large Shared Clusters at CERN

    Institute of Scientific and Technical Information of China (English)

    VladimirBahyl; MaiteBarroso; 等

    2001-01-01

    The latest steps in the steady evolution of the CERN Computer Centre have been to reduce the multitude of clusters and architectures and to concentrate on commodity hardware.An active RISC decommissioning program has been undertaken to encourage migration to Linux,and a program of merging dedicated experiment clusters into larger shared facilities has been launched.This paper describes these programs and the experiences running the resultant multi-hundred node shared Linux clusters.

  17. CERN as a large-scale "Auberge Espagnole"

    CERN Multimedia

    2009-01-01

    The film director Cédric Klapisch recently visited CERN to scout out locations for a forthcoming film. Cédric Klapisch and Alexis Galmot visiting the LHC tunnel, guided by Laurette Ponce, from the Beams Department.Is CERN a good subject for a feature film? To judge by the media hype surrounding the film Angels and Demons, the answer must be a resounding yes. But it’s a bit more surprising to see the likes of Cédric Klapisch, who is known for directing films full of human interest rather than blockbusters, striding down accelerator and experiment tunnels. Cédric Klapisch’s films include "Le péril jeune", "Un air de famille" and "L’auberge espagnol", his biggest success, about a French student who spends a year in Spain under the Erasmus European exchange programme. Klapisch came to CERN on 23 April with his colleague Alexis Galmot to scout out possible locations for a forthcoming film. It is to be a fiction-science rather...

  18. CERN confirms goal of 2007 start-up for LHC

    CERN Multimedia

    2005-01-01

    Speaking at the 131st session of CERN Council on 17 December 2004, the Director-General, Robert Aymar, confirmed that the top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007.

  19. CERN confident of LHC start-up in 2007

    CERN Multimedia

    2007-01-01

    "Delegates attending the 140th meeting of CERN Council heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collier (LHC), in 2007." (1 page)

  20. University of Tennessee deploys force10 switch for CERN work

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1/2 page)

  1. Last LHC superconducting main magnet completes the suite at CERN

    CERN Multimedia

    2006-01-01

    "CERN took delivery of the last superconducting main magnet for the Large Hadron Collider (LHC) on 27 November. This completes the full set of 1624 main magnets required to build the world's largest and most powerful particle accelerator." (1 page)

  2. A study of beam-beam effects in hadron colliders with a large number of bunches

    CERN Document Server

    Pieloni, Tatiana; Bay, Aurelio; Rivkin, Leonid

    2008-01-01

    A particle beam is a collection of a large number of charges and represents an electromagnetic potential for other charges, therefore exerting forces on itself and other beams. The control of this so called Beam-Beam Interactions (BBIs) in particle colliders is fundamental to preserve beam stability and achieve the collider maximal luminosity. In the case of the Large Hadron Collider (LHC) at CERN, these forces are experienced as localized periodic distortions when the two beams cross each other in the four experimental areas. The forces are most important for high density beams, i.e. high intensity and small beam sizes. Each LHC beam is composed of 2808 bunches, each containing $10^{11}$ protons and with a transverse size of 16~$\\mu $m at the interaction points. These extreme parameters are the key to obtain high ``luminosity'', i. e. the number of collisions per second needed to study rare physics phenomena. The BBI is therefore often the limiting factor for the luminosity of colliders. Within all BB effect...

  3. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  4. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  5. Study of Electron Pair Production in Hadron and Nuclear Collisions at the CERN SPS

    CERN Multimedia

    Liebold, H-P; Sako, H; Belaga, V; Bielcikova, J; Stachel, J

    2002-01-01

    The NA45/CERES experiment investigates primarily the production of electron-positron pairs and of direct photons in proton-nucleus and nucleus-nucleus collisions. For electron-positron pairs the experiment studies the continuum in the mass region of about 0.05 to 2 GeV/c$^2$ and the vector mesons $\\varrho ,~ \\omega$, and, $\\phi$. Since for electromagnetic probes final state interactions are practically negligible these observables are unique for studying the evolution and dynamics of ultrarelativistic heavy-ion collisions from the hot and dense early stage where a quark-gluon plasma is expected to be formed to the final freeze-out stage when hadrons decouple.\\\\ \\\\ The experiment also studies the spectral distributions of charged particles, their distribution relative to the reaction plane, and identified high momentum pions. Another topic of investigation are QED pairs produced in peripheral nuclear collisions.\\\\ \\\\ The first phase of the experiment, NA45, has been concluded with two main results: i) There is...

  6. The COMPASS Experiment at CERN

    CERN Document Server

    Abbon, P.; Alexakhin, V.Yu.; Alexandrov, Yu.; Alexeev, G.D.; Alekseev, M.G.; Amoroso, A.; Angerer, H.; Anosov, V.A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Becker, M.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bosteels, M.; Bradamante, F.; Braem, A.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Bytchkov, V.N.; Chalifour, M.; Chapiro, A.; Chiosso, M.; Ciliberti, P.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; Cristaudo, P.; Dafni, T.; d'Hose, N.; Dalla Torre, S.; d'Ambrosio, C.; Das, S.; Dasgupta, S.S.; Delagnes, E.; De Masi, R.; Deck, P.; Dedek, N.; Demchenko, D.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dibiase, N.; Dinkelbach, A.M.; Dolgopolov, A.V.; Donati, A.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Durand, D.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Falaleev, V.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Franz, J.; Fratnik, F.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Gheller, J.M.; Giganon, A.; Giorgi, M.; Gobbo, B.; Goertz, S.; Gorin, A.M.; Gougnaud, F.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Guskov, A.; Haas, F.; Hagemann, R.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Hedicke, S.; Heinsius, F.H.; Hermann, R.; Hess, C.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Horn, I.; Ilgner, C.; Ioukaev, A.I.; Ishimoto, S.; Ivanchin, I.; Ivanov, O.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kiefer, J.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, Kay; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kouznetsov, O.; Kowalik, K.; Kramer, D.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kubart, J.; Kuhn, R.; Kukhtin, V.; Kunne, F.; Kurek, K.; Kuzmin, N.A.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lednev, A.A.; Lehmann, A.; Levinski, V.; Levorato, S.; Lyashenko, V.I; Lichtenstadt, J.; Liska, T.; Ludwig, I.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Masek, L.; Massmann, F.; Matsuda, T.; Matthia, D.; Maximov, A.N.; Menon, G.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Molinie, F.; Mota, F.; Mutter, A.; Nagel, T.; Nahle, O.; Nassalski, J.; Neliba, S.; Nerling, F.; Neyret, D.; Niebuhr, M.; Niinikoski, T.; Nikolaenko, V.I.; Nozdrin, A.A.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Parsamyan, B.; Panzieri, D.; Paul, S.; Pawlukiewicz, B.; Pereira, H.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piedigrossi, D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Popov, A.A.; Pretz, J.; Procureur, S.; Quintans, C.; Rajotte, J.-F.; Ramos, S.; Razaq, I.; Rebourgeard, P.; Reggiani, D.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ropelewski, L.; Rousse, J.Y.; Rozhdestvensky, A.M.; Ryabchikov, D.; Samartsev, A.G.; Samoylenko, V.D.; Sandacz, A.; Merce, M.Sans; Santos, H.; Sapozhnikov, M.G.; Sauli, F.; Savin, Igor A.; Schiavon, P.; Schill, C.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Schonmeier, P.; Schroeder, W.; Seeharsch, D.; Seimetz, M.; Setter, D.; Shaligin, A.; Shevchenko, O.Yu.; Shishkin, A.A.; Siebert, H.-W.; Silva, L.; Simon, F.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sora, D.; Sosio, S.; Sozzi, F.; Srnka, A.; Stinzing, F.; Stolarski, M.; Sugonyaev, V.P.; Sulc, M.; Sulej, R.; Tarte, G.; Takabayashi, N.; Tchalishev, V.V.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tokmenin, V.V.; Trippel, S.; Urban, J.; Valbuena, R.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Wagner, M.; Webb, R.; Weise, E.; Weitzel, Q.; Wiedner, U.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Wollny, H.; Zanetti, A.M.; Zaremba, K.; Zavertyaev, M.; Zhao, J.; Ziegler, R.; Ziembicki, M.; Zlobin, Y.L.; Zvyagin, A.

    2007-01-01

    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.

  7. Cern collisions light up Copenhagen

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "Anyone passing by the Niels Bohr Institute in Copenhagen, Denmark, might be startled by some strange moving lights on the facade of the institute's main building. In fact, the dancing beams show, almost in real time, collisions form the Atlas experiment at Cern's Large Hadron Collider (LHC)" (1 paragraph)

  8. The CERN GSM monitoring system

    International Nuclear Information System (INIS)

    This paper presents the way CERN has approached the problem of monitoring its own GSM infrastructure, especially in the Large Hadron Collider (LHC) accelerator tunnel and other underground facilities, where a leaky feeder cable carries mobile phone signals, and where this technology is the only means for inter-personnel communications.

  9. Commissioning and First Operation of Superconducting Links at the Large Hadron Collider (LHC)

    CERN Document Server

    van Weelderen, R; Perin, A; Darve, C; Doohan, R S; Gilankar, S G

    2010-01-01

    The Large Hadron Collider (LHC) now under commissioning at CERN is a 26.7 km collider based on several thousand high-field superconducting magnets, the majority of which operating in superfluid helium below 2 K and some isolated magnets operating in normal helium at 4.5 K. Four superconducting links (DSLs) of about 76 m in length and one of about 517 m in length, were designed, constructed and installed over a three year period. Their purpose is to transport current over long distances whenever underground LHC space constraints prevents to put power converters, current feed boxes and magnets in each others’ proximity. The four 76 m long DSLs transport current between current feed boxes and several of the isolated magnets, whereas the 517 m long DSL transports current between two current feed boxes. The links are comprised of cryogenic, vacuum-insulated, transfer lines housing one or more superconducting cables. The operating temperatures are about 5 K for the DSL part that houses the cable and about 60 K fo...

  10. Cryogenic Heat Load and Refrigeration Capacity Management at the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Serio, L; Tavian, L; Van Weelderen, R; Wagner, U

    2009-01-01

    The Large Hadron Collider (LHC) is a 26.7 km high-energy proton and ion collider based on several thousand high-field superconducting magnets operating in superfluid helium below 2 K, now under commissioning at CERN. After a decade of development of the key technologies, the project was approved for construction in 1994 and the industrial procurement for the cryogenic system launched in 1997, concurrently with the completion of the R&D program. This imposed to base the sizing of the refrigeration plants on estimated and partially measured values of static and dynamic heat loads, with adequate uncertainty and overcapacity coefficients to cope with unknowns in machine configuration and in physical processes at work. With the cryogenic commissioning of the complete machine, full-scale static heat loads could be measured, thus confirming the correctness of the estimates and the validity of the approach, and safeguarding excess refrigeration capacity for absorbing the beam-induced dynamic loads. The metho...

  11. Development of superconducting links for the Large Hadron Collider machine

    International Nuclear Information System (INIS)

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R and D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine. (paper)

  12. Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections

    CERN Document Server

    Dawson, S; Orr, L H; Reina, L; Wackeroth, D

    2003-01-01

    We present in detail the calculation of the O(alpha_s^3) inclusive total cross section for the process pp -> t-tbar-h, in the Standard Model, at the CERN Large Hadron Collider with center-of-mass energy sqrt(s_H)=14 TeV. The calculation is based on the complete set of virtual and real O(alpha_s) corrections to the parton level processes q-qbar -> t-tbar-h and gg -> t-tbar-h, as well as the tree level processes (q,qbar)g -> t-tbar-h-(q,qbar). The virtual corrections involve the computation of pentagon diagrams with several internal and external massive particles, first encountered in this calculation. The real corrections are computed using both the single and the two cutoff phase space slicing method. The next-to-leading order QCD corrections significantly reduce the renormalization and factorization scale dependence of the Born cross section and moderately increase the Born cross section for values of the renormalization and factorization scales above m_t.

  13. Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider

    Indian Academy of Sciences (India)

    A P Singh; P C Bhat; N V Mokhov; S Beri

    2010-05-01

    The intense radiation environment at the Large Hadron Collider, CERN at a design energy of $\\sqrt{s} = 14$ TeV and a luminosity of 1034 cm−2S−1 poses unprecedented challenges for safe operation and performance quality of the silicon tracker detectors in the CMS and ATLAS experiments. The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton–proton collisions at $\\sqrt{s} = 14$ TeV and from machine-induced background such as beam–gas interactions and beam halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detectors.

  14. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N.

    2015-04-01

    The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  15. High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group

    CERN Document Server

    Rossi, L

    2012-01-01

    The Large Hadron Collider (LHC) is the largest scientific instrument ever built. It has been exploring the new energy frontier since 2009, gathering a global user community of 7,000 scientists. It will remain the most powerful accelerator in the world for at least two decades, and its full exploitation is the highest priority in the European Strategy for Particle Physics, adopted by the CERN Council and integrated into the ESFRI Roadmap. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about 10 years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 13 tesla superconducting magnets, very compact and ultra-precise superconduc...

  16. A New Calibration Technique for the ALICE Electromagnetic Calorimeter at the Large Hadron Collider

    Science.gov (United States)

    Watkins, E.; Perales, M.; Cervantes, M.; Garcia-Solis, E.; Sakai, S.; Ploskon, M.; Jacobs, P.

    2010-11-01

    The Large Hadron Collider at CERN is the world's largest and highest energy, particle and heavy ion collider. The LHC will explore the frontiers of particle physics using high energy proton+proton collisions and the properties of the Quark-Gluon Plasma through the collision of heavy nuclei at high energy. ALICE is one of the four LHC experiments, specialized for the study of heavy ion collisions. This study presents a new technique for the calibration of an essential detector of ALICE - the EMCal. We utilize various computational techniques and analyze proton-proton collision data recorded at 900 GeV. The ALICE TPC is used to isolate the tracks of e+e- pairs that originate from the decay of j/psi particle and that fall within the EMCal's acceptance. The TPC measures the momentum of these electron tracks, which is compared to the energy deposited by them in the EMCal. We therefore use the precise measurement of TPC momentum as the reference to calibrate the EMCal energy measurement. In this presentation we will show the steps taken to analyze the data from the TPC, how we performed the matching of electron tracks from the j/psi decay with the energy deposited in the EMCal, and some preliminary results of this calibration technique. Research funded by NSF and DoE.

  17. Search for Microscopic Black Hole Signatures at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ka Vang [Brown Univ., Providence, RI (United States)

    2011-05-01

    A search for microscopic black hole production and decay in proton-proton collisions at a center-of-mass energy of 7 TeV has been conducted using Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider. A total integrated luminosity of 35 pb-1 data sample, taken by CMS Collaboration in year 2010, has been analyzed. A novel background estimation for multi-jet events beyond TeV scale has been developed. A good agreement with standard model backgrounds, dominated by multi-jet production, is observed for various final-state multiplicities. Using semi-classical approximation, upper limits on minimum black hole mass at 95% confidence level are set in the range of 3.5 - 4.5 TeV for values of the Planck scale up to 3 TeV. Model-independent limits are provided to further constrain microscopic black hole models with additional regions of parameter space, as well as new physics models with multiple energetic final states. These are the first limits on microscopic black hole production at a particle accelerator.

  18. First electron-cloud studies at the Large Hadron Collider

    CERN Document Server

    Dominguez, O; Arduini, G; Metral, E; Rumolo, G; Zimmermann, F; Maury Cuna, H

    2013-01-01

    During the beam commissioning of the Large Hadron Collider (LHC) with 150, 75, 50, and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities, or emittance growth, were observed. Methods have been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise as well as heat-load observations. These methods allow us to monitor the scrubbing process, i.e., the reduction of the secondary emission yield as a function of time, in order to decide on the most appropriate strategies for machine operation. To better understand the influence of electron clouds on the beam dynamics, simulations have been carried out to examine both the coherent and the incoherent effects on the beam. In this paper we present the methodology and first results for the scrubbing monitoring process at the LHC. We also review simulated instability thresholds and tune footprints for beams of different emittance, interacting with an electr...

  19. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  20. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  1. The Large Hadron Collider: lessons learned and summary

    CERN Document Server

    Llewellyn Smith, Chris

    2012-01-01

    The Large Hadron Collider (LHC) machine and detectors are now working superbly. There are good reasons to hope and expect that the new domain that the LHC is already exploring, operating at 7 TeV with a luminosity of 1033 cm−2 s−1, or the much bigger domain that will be opened up as the luminosity increases to over 1034 and the energy to 14 TeV, will provide clues that will usher in a new era in particle physics. The arguments that new phenomena will be found in the energy range that will be explored by the LHC have become stronger since they were first seriously analysed in 1984, although their essence has changed little. I will review the evolution of these arguments in a historical context, the development of the LHC project since 1984, and the outlook in the light of reports on the performance of the machine and detectors presented at this meeting.

  2. The Hunt for New Physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.

  3. Overview of the Large Hadron Collider cryo-magnets logistics

    CERN Document Server

    Capatina, O; Bihery, R; Brunero, P; Chevalley, JM; Dauvergne, LP; Feniet, T; Foraz, K; Francey, J; Grenard, JL; Kershaw, K; Pelletier, S; Prodon, S; Rühl, Ingo; Uwumarogie, J; Valbuena, R; Vellut, G; Weisz, S

    2006-01-01

    More than 1700 superconducting cryo-magnets have to be installed in the Large Hadron Collider tunnel. The long, heavy and fragile LHC cryo-magnets are difficult to handle and transport in particular in the LEP tunnel environment originally designed for smaller, lighter LEP magnets. An installation rate of more than 20 cryo-magnets per week is needed to cope with the foreseen LHC installation end date. The paper gives an overview of the transport and installation sequence complexity, from the storage area at the surface to the cryo-magnet final position in the tunnel. The success of this task depends on a series of independent factors that have to be considered at the same time. The equipment needed for the transport and tunnel installation of the LHC cryo-magnets is briefly described. The manpower and equipment organisation as well as the challenges of logistics are then detailed. The paper includes conclusions and some of the lessons learned during the first phase of the LHC cryo-magnets installation.

  4. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    S Bansal; K Mazumdar; J B Singh

    2010-02-01

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible backgrounds. Realistic simulations have been used in the context of CMS experiment to devise a set of event selection criteria which eventually enhances the signal contribution compared to the background processes in characteristic distributions. In cut-based analysis, multi-jet background is found to overwhelm the signal in the finally selected sample. With an integrated luminosity of 10 fb-1, an upper limit of 36% on the branching ratio can be obtained for Higgs boson with a mass of 120 GeV/c2 for LHC energy of 14 TeV. Since the analysis essentially depends on the background estimation, detailed studies have been done to determine the background rates from real data.

  5. Hadron multiplicities in Pb+Pb collisions at the large hadron collider and pomeron loop effects

    International Nuclear Information System (INIS)

    We study the pseudo-rapidity distribution of hadron multiplicities of high energy Pb+Pb collisions by using color glass condensate dynamics at LHC/ALICE in the fixed coupling case. It is found that after including the pomeron loop effects the charged hadron multiplicities at central rapidity are about 1500 for central Pb+Pb collisions, which are significantly smaller than the saturation based calculations, ∼1700 ÷ 2500 and compatible with that based on a study of multiplicities in the fragmentation region. (authors)

  6. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects

    International Nuclear Information System (INIS)

    We study the pseudo-rapidity distribution of hadron multiplicities of high energy Pb+Pb collisions by using color glass condensate dynamics at LHC/ALICE in the fixed coupling case. It is found that after including the pomeron loop effects the charged hadron multiplicities at central rapidity are about 1500 for central Pb+Pb collisions, which are significantly smaller than the saturation based calculations, ∼ 1700 ÷ 2500 and compatible with that based on a study of multiplicities in the fragmentation region. (nuclear physics)

  7. Extension of the 1996 protocol to the 1991 co-operation agreement between the Department of the Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider project (LHC)

    CERN Document Server

    2002-01-01

    At its March 2002 meetings 2002, the Finance Committee and the Committee of Council were advised of the ongoing discussions with the Indian Authorities concerning a possibly increase of the Indian contribution to the construction of the LHC machine. These discussions have now been completed and a Protocol has been prepared to cover an additional Indian contribution to CERN in an amount of up to 26 MCHF. An amount equal to 50% of this additional contribution will be paid by CERN into the Indian Fund, under the same conditions as those defined in the 1996 Protocol covering the initial Indian contribution. The Finance Committee and the Committee of Council are invited to approve the conclusion of an Extension of the 1996 Protocol, to reflect this further Indian contribution.

  8. Melting hadrons, boiling quarks from Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERN : with a tribute to Rolf Hagedorn

    CERN Document Server

    2015-01-01

    This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...

  9. Distribution of hadron intranuclear cascade for large distance from a source

    International Nuclear Information System (INIS)

    Analytical solution of the problem of three-component hadron cascade development for large distances from a source is obtained in the framework of a series of simplifying assumptions. It makes possible to understand physical mechanisms of the process studied and to obtain approximate asymptotic expressions for hadron distribution functions

  10. Large Hadron Collider in crisis as magnet costs spiral upwards

    CERN Multimedia

    Adam, D

    2001-01-01

    Managers of the LHC project admitted this week that it faces cost overruns of several hundred million dollars. CERN will face years of budget cuts but this will cover only a fraction of the extra costs - the 20 member states will be asked to cover the rest (1 page).

  11. Benchmarking Electron-Cloud Build-Up and Heat-Load Simulations against Large-Hadron-Collider Observations

    CERN Document Server

    Dominguez, O; Maury, H; Rumolo, G; Zimmermann, F

    2011-01-01

    After reviewing the basic features of electron clouds in particle accelerators, the pertinent vacuum-chamber surface properties, and the electron-cloud simulation tools in use at CERN, we report recent observations of electron-cloud phenomena at the Large Hadron Collider (LHC) and ongoing attempts to benchmark the measured LHC vacuum pressure increases and heat loads against electron-cloud build-up simulations aimed at determining the actual surface parameters and at monitoring the so-called scrubbing process. Finally, some other electron-cloud studies related to the LHC are mentioned, and future study plans are described. Presented at MulCoPim2011, Valencia, Spain, 21-23 September 2011.

  12. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gildemeister, Otto; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmid, Peter; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trilling, George; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga–electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  13. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    Science.gov (United States)

    ATLAS Collabortion; Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Balek, P.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, A. K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.

    2012-12-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  14. The Old New Frontier: Studying the CERN-SPS Energy Range with NA61/SHINE

    OpenAIRE

    Szuba Marek

    2012-01-01

    With the Large Hadron Collider entering its third year of granting us insight into the highest collision energies to date, one should nevertheless keep in mind the unexplored physics potential of lower energies. A prime example here is the NA61/SHINE experiment at the CERN Super Proton Synchrotron. Using its large-acceptance hadronic spectrometer, SHINE aims to accomplish a number of physics goals: measuring spectra of identified hadrons in hadron-nucleus collisions to provide reference for a...

  15. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Rudolph C. Hwa

    2015-01-01

    Full Text Available The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and nonlocal. Models that are concerned with the pT spectra and azimuthal anisotropy belong to the former, that is, hadronization at a local point in (η,ϕ space, such as the recombination model. The nonlocal problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the (η,ϕ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small pT intervals to make the observation of distinctive features of clustering of soft particles, as well as voids, feasible that characterize the critical behavior at phase transition from quarks to hadrons, without any ambiguity posed by the clustering of jet particles.

  16. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and nonlocal. Models that are concerned with the pT spectra and azimuthal anisotropy belong to the former, that is, hadronization at a local point in (η,ϕ) space, such as the recombination model. The nonlocal problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the (η,ϕ) space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small pT intervals to make the observation of distinctive features of clustering of soft particles, as well as voids, feasible that characterize the critical behavior at phase transition from quarks to hadrons, without any ambiguity posed by the clustering of jet particles

  17. Phenomenology of Little Higgs Models at the Large Hadron Collider

    Science.gov (United States)

    Moats, Kenneth Paul

    Little Higgs models provide an elegant solution to the hierarchy problem of the Standard Model, introducing new particles at the TeV scale to cancel the quadratic divergences to the square of the Higgs boson mass. The research carried out in this thesis focuses on the Large Hadron Collider (LHC) phenomenology of two such Little Higgs models: the Littlest Higgs model and the Bestest Little Higgs model. Firstly, the results of a study of Higgs triplet boson production in the Littlest Higgs model are presented in the W+/- W+/-, W +/-Z, W+ W--, and ZZ channels at the LHC for a centre of mass energy of s = 14 TeV, comparing these results with the predictions of two additional Higgs triplet models: the Georgi-Machacek model and the Left-Right Symmetric model. It is found that, given the constraints on the triplet vacuum expectation value (vev), considerable luminosity is required to observe Higgs triplet bosons in vector boson scattering. Observing a Higgs triplet at the LHC is most promising in the Georgi-Machacek model due to a weaker constraint on the triplet vev. In this model, a Higgs triplet boson with a mass of 1.0 (1.5) TeV can be observed at the LHC with an integrated luminosity as low as 41 (119) fb--1 in the W+/- W+/- channel and as low as 171 (474) fb --1 in the W+/- Z channel. The structure of the Bestest Little Higgs model is then described, including the procedure for deriving the Feynman rules of this model. The results of a study of heavy quark production in the Bestest Little Higgs model at the LHC are presented, focusing on associated single production of the exotic charge 5/3 heavy quark, T5/3b , at s = 14 TeV for two scenarios of Yukawa couplings. Applying stringent kinematic cuts to reduce the backgrounds, it is found that, in the two scenarios considered, the T5/3b heavy quark with a mass of 400, 600 and 800 GeV could be discovered in the same-sign dilepton channel at the LHC with an integrated luminosity as low as 43, 149 and 797 fb--1

  18. Quantitative Calculations for Black Hole Production at the Large Hadron Collider

    CERN Document Server

    Bock, Nicolas

    2008-01-01

    The framework of Large Extra Dimensions provides a way to explain why gravity is weaker compared to the other forces in nature. A consequence of this model is the possible production of D-dimensional Black Holes in high energy p-p collisions at the Large Hadron Collider. The present work uses the CATFISH Black Hole generator to study quantitatively how these events could be observed in the hadronic channel at mid-rapidity using a particle tracking detector.

  19. Large-area silicon detection in hadronic sampling calorimetry

    International Nuclear Information System (INIS)

    The usage of a maximum size silicon wafer area was optimized by using a geometry with two trapezoidal detectors, each of 28 cm2. In order to enable the use of silicon detectors for hadron calorimeters a mosaic module consisting of 18 trapezoidal detectors was developed and assembled. Laser cutting technique was employed to minimize the dead area of the mosaic. In the performed investigations no physical deterioration was observed. (orig.)

  20. Measurement of → → inclusive process at Large Hadron Collider

    Indian Academy of Sciences (India)

    S Bansal; K Mazumdar; J B Singh

    2010-09-01

    In several scenarios of beyond Standard Model physics a new heavy resonance is invoked which may decay preferentially, to a pair of taus. Identification of the decay of Standard Model resonance to tau pairs at LHC via subsequent decays of the taus to leptons as well as hadrons is the first step towards the discovery. A method has been suggested to discriminate to tau pair to electron + muon final state against various backgrounds, for early phase of 14 TeV LHC.

  1. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    CERN Document Server

    Hwa, Rudolph C

    2014-01-01

    The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and non-local. Models that are concerned with the $p_T$ spectra and azimuthal anisotropy belong to the former, i.e., hadronization at a local point in $(\\eta,\\phi)$ space, such as the recombination model. The non-local problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the $(\\eta,\\phi)$ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small $p_T$ intervals to make feasible the observation of distinctive features of cl...

  2. CERN boss quashes LHC delay rumours

    CERN Multimedia

    2007-01-01

    "Robert Aymar, the director general of CERN, has dispelled rumours that a series of buckled electrical connectors at the Large Hadron Collider will delay the accelerator's official start-up date of May 2008. Writing in this week's CERN Bulletin, Aymar says that the problem concerns only a small percentage of the connectors and that it is "business as usual" for bringing the new accelerator online." (1,5 page)

  3. Loans may keep CERN collider on target

    CERN Multimedia

    Abbott, A

    1996-01-01

    The European Laboratory for Particle Physics (CERN) is considering taking out bank loans to fund its Large Hadron Collider project. CERN officials are evaluating this option in view of the German government's decision to substantially reduce its annual contributions to the project. They state that the bank loans may be the only way to complete the project by the year 2005, especially if other contributing nations follow Germany's lead.

  4. Large hadron collider physics program: Compact muon solenoid experiment

    Indian Academy of Sciences (India)

    J B Singh

    2000-04-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in -system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark–gluon plasma.

  5. Hadron and hadron-pair production at large transverse momentum in panti p and pp interactions at the ISR

    International Nuclear Information System (INIS)

    We have measured the production of one and two large transverse momentum hadrons in panti p and pp interactions in the range 2 < psub(T) < 6 GeV/c for the central rapidity region vertical strokeyvertical stroke< 0.9 at √s=63 and 31 GeV. No statistically significant difference between panti p and pp collisions is observed. The results are in accordance with lowest order QCD perturbative calculations and rule out a large contribution of Constituent Interchange Model (CIM), di-quark or quark-fusion subprocesses in this kinematic range. (orig.)

  6. The CERN's year

    International Nuclear Information System (INIS)

    CERN, the European organization for nuclear research, has just celebrated its fifty years of existence. Its first goal was to counterbalance the migration of physics scientists towards the USA by the creation of a physics laboratory gathering scientists from the different European countries. Today, the CERN's mission has changed and has overcome all the expectations of its founders. In 2008, it will become, with the LHC (Large Hadron Collider), the biggest particle accelerator in the world. The CERN employs about 3000 physicists, engineers, technicians and workers. There is also 6500 people from 80 different countries who use the CERN's facilities during the year. The CERN is controlled by 20 European member states and 6 observer countries, and 20 non-member countries participate to the programs in progress. The CERN's power comes from its international and cosmopolitan spirit. The whole most famous physicists of the world can work together for the progress of science and for a better understanding of matter, of its interactions and of our universe. Two Nobel prices of physics come from the CERN: C. Rubbia and S. Van der Meer in 1983 for the discovery of W+, W- and Z0 bosons, and G. Charpak for the development of particle detectors. One can foresee that the LHC will allow new scientific achievements, like for instance, during experiments for the quest of the famous Higgs boson. It is important also to mention that the CERN has been at the origin of several technological innovations in all technical and engineering domains in the framework of its fundamental physics researches. (J.S.)

  7. Revisiting slepton pair production at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Motivated by the shift in experimental attention towards electroweak supersymmetric particle production at the CERN LHC, we update in this paper our precision predictions at next-to-leading order of perturbative QCD matched to resummation at the next-to-leading logarithmic accuracy for direct slepton pair production in proton-proton collisions. Simplified models, now commonly adopted by the experimental collaborations for selectrons and smuons as well as mixing staus, are used as benchmarks for total cross sections at achieved and future center-of-mass energies. They are presented together with the corresponding scale and parton density uncertainties in graphical and tabular form for future reference. Using modern Monte Carlo techniques, we also reanalyze recent ATLAS and CMS slepton searches in light of our precision cross sections and for various assumptions on the decomposition of the sleptons and their neutralino decay products

  8. Temperature dependent formation-time approach for $\\Upsilon$ suppression at energies available at the CERN Large Hadraon Collider

    CERN Document Server

    Ganesh, S

    2015-01-01

    We present here a comprehensive model to describe the bottomonium suppression data obtained from the CERN Large Hadron Collider (LHC) at center-of-mass energy of $\\sqrt{s_{NN}}=2.76$ TeV. We employ a quasiparticle model (QPM) equation of state for the quark-gluon plasma (QGP) expanding under Bjorken's scaling law. The current model includes the modification of the formation time based on the temperature of the QGP, color screening during bottomonium production, gluon induced dissociation and collisional damping due to the imaginary part of the potential between the $b\\bar b$ pair. We propose a method for determining the temperature-dependent formation time of bottomonia using the solution of the time-independent Schr\\"{o}dinger equation and compare it with another approach based on time-dependent Schr\\"{o}dinger wave equation simulation. We find that these two independent methods based on different axioms give similar results for the formation time. Cold nuclear matter effects and feed-down from higher resona...

  9. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura recently announced that its radiation resistant single mode optical fiber has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large Hadron Collider (LHC) - near Geneva, Switzerland." (1/2 page)

  10. Bosons & More: Celebrating CERN / Part 2

    CERN Multimedia

    Team, CERN

    2013-01-01

    The "Bosons & More" event for CERN people this evening celebrated the success of the Open Days, and the exceptional achievements of the Large Hadron Collider (LHC). The British progressive rock band the Alan Parsons Live Project lead the celebrations until late in the night.

  11. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  12. CERN set sights on an early LHC

    CERN Multimedia

    Hellemans, A

    1997-01-01

    CERN voted to advance the completion date of the Large Hadron Collider by three years, to 2005, while cutting the budget of some other projects. It is hoped that the unprecedented power of the $2-billion LHC will help prove the existence of the Higgs boson and other theoretically predicted particles.

  13. Colliders for CERN after LEP 200

    International Nuclear Information System (INIS)

    For the long range future of CERN, the long range planning commission has explored various options, taking into account the actual development of physics and existing facilities. The solutions envisaged are Large Hadron Collider and e+e- collider (CLIC) in the 1-10 TEV range

  14. Torchwood sends inspection team to CERN

    CERN Multimedia

    Sherriff, Lucy

    2007-01-01

    "Torchwood's Captain Jack has been sighted at CERN's Large Hadron Collider. Does this mean that when it is switched on it is likely to open a rift under Cardiff from whence all manner of spooky things shall spring?" (1/2 page)

  15. CERN signs agreement with New Zealand

    CERN Multimedia

    2003-01-01

    "New Zealand's particle physicists have joined the world's most ambitious scientific undertaking with the signing of a Memorandum of Understanding (MoU) between their government and CERN . This agreement formalises the participation of New Zealand scientists in the laboratory's Large Hadron Collider (LHC) project" (1 page).

  16. Mirror mesons at the Large Hadron Collider (LHC)

    CERN Document Server

    Triantaphyllou, George

    2016-01-01

    The existence of mirror partners of Standard-Model fermions offers a viable alternative to a fundamental BEH mechanism, with the coupling corresponding to the gauged mirror generation symmetry becoming naturally strong at energies around 1 TeV. The resulting non-perturbative processes produce dynamical katoptron masses which might range from 0.1 to 1.15 TeV in a way circumventing usual problems with the S parameter. Moreover, they create mirror mesons belonging in two main groups, with masses differing from each other approximately by a factor of six and which might range approximately from 0.1 to 2.8 TeV. Since the corresponding phenomenology expected at hadron colliders is particularly rich, some interesting mirror-meson cross-sections are presented, something that might also lead to a deeper understanding of the underlying mirror fermion structure. Among other findings, results in principle compatible with indications from LHC concerning decays of new particles to two photons are analyzed.

  17. Transport of the Hadronic Forward (HF) calorimeter from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  18. Transport of the first half of the CMS hadronic forward calorimeter (HF) from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  19. High performance distributed objects in large hadron collider experiments

    International Nuclear Information System (INIS)

    This dissertation demonstrates how object-oriented technology can support the development of software that has to meet the requirements of high performance distributed data acquisition systems. The environment for this work is a system under planning for the Compact Muon Solenoid experiment at CERN that shall start its operation in the year 2005. The long operational phase of the experiment together with a tight and puzzling interaction with custom devices make the quest for an evolvable architecture that exhibits a high level of abstraction the driving issue. The question arises if an existing approach already fits our needs. The presented work casts light on these problems and as a result comprises the following novel contributions: - Application of object technology at hardware/software boundary. Software components at this level must be characterised by high efficiency and extensibility at the same time. - Identification of limitations when deploying commercial-off-the-shelf middleware for distributed object-oriented computing. - Capturing of software component properties in an efficiency model for ease of comparison and improvement. - Proof of feasibility that the encountered deficiencies in middleware can be avoided and that with the use of software components the imposed requirements can be met. - Design and implementation of an on-line software control system that allows to take into account the ever evolving requirements by avoiding hardwired policies. We conclude that state-of-the-art middleware cannot meet the required efficiency of the planned data acquisition system. Although new tool generations already provide a certain degree of configurability, the obligation to follow standards specifications does not allow the necessary optimisations. We identified the major limiting factors and argue that a custom solution following a component model with narrow interfaces can satisfy our requirements. This approach has been adopted for the current design

  20. Contribution supplémentaire de 5 milliards de yens du Japon au grand collisionneur de hadrons du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1998-01-01

    Japan's Ministry of Education, Science, Sports and Culture (Monbusho), has announced, subject to approval by the Diet, a further contribution of 5 billion Yen (approximately 56 million Swiss francs) for the construction of the LHC. This generous gesture reinforces the excellent relations that have been established between CERN and Japan.

  1. 1990 CERN School of Physics

    International Nuclear Information System (INIS)

    The CERN School of Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain reports of lectures on the following topics: Field theory, electroweak theory, physics beyond the Standard Model, QCD, heavy flavours and CP violation, results from LEP experiments, particle accelerator technology, tau charm factories, and the Large Hadron Collider project. (orig.)

  2. Development of a High-Level Trigger for the Dimuon Spectrometer of the ALICE Experiment at the Large Hadron Collider

    CERN Document Server

    Becker, Bruce

    The ALICE experiment at CERN's Large Hadronic Collider will mark the beginning of a new phase in the study of ultra-relativistic heavy ion-collisions. It will be possible to explore in great detail phenomena discovered or hinted at in the course of experiments at the Relativistic Heavy Ion Collider, in particular the signals of the quark-gluon plasma. One of the most promising signals of the creation of this new state of matter is the anomalous suppression of the Υ (bb) and J/v(cc) families. One of the main decay channels of these mesons is into dimuons and ALICE has a dedicated dimuon spectrometer in order to study the spectra of these interesting particles. The signal is, however, swamped by a large background from several other muonic sources. Due to the large data rate expected for ALICE and the limited bandwidth, a highly efficient and selective trigger is required for the experiment - the dimuon high-level trigger (dHLT). This thesis concerns the context, development and implementation of the ALICE dim...

  3. Parton transverse momenta and quantum-chromodynamic effects in large-p/sub T/ hadron production

    International Nuclear Information System (INIS)

    Inclusive pion production at large transverse momenta in pp collisions is studied in the framework of parton-parton scattering with partons carrying transverse momentum and with quark and gluon distributions determined from exact requirements of quantum chromodynamics. CERN ISR data are fairly well accounted for, but Fermilab data somewhat exceed the predictions. Gluon effects are considered in detail

  4. Production of tidal-charged black holes at the Large Hadron Collider

    OpenAIRE

    Gingrich, Douglas M.

    2010-01-01

    Tidal-charged black hole solutions localized on a three-brane in the five-dimensional gravity scenario of Randall and Sundrum have been known for some time. The solutions have been used to study the decay, and growth, of black holes with initial mass of about 10 TeV. These studies are interesting in that certain black holes, if produced at the Large Hadron Collider, could live long enough to leave the detectors. I examine the production of tidal-charged black holes at the Large Hadron Collide...

  5. Proceedings of the CAS - CERN Accelerator School: Course on High Power Hadron Machines, Bilbao, Spain, 24 May - 2 Jun 2011

    OpenAIRE

    Bailey, R.

    2013-01-01

    These proceedings collate lectures given at the twenty-fifth specialized course organised by the CERN Accelerator School (CAS). The course was held in Bilbao, Spain from 24 May to 2 June 2011, in collaboration with ESS Bilbao. The course covered the background accelerator physics, different types of particle accelerators and the underlying accelerator systems and technologies, all from the perspective of high beam power. The participants pursued one of six case studies in order to get "hands-...

  6. W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider

    CERN Document Server

    Cordero, F Febres; Wackeroth, D

    2009-01-01

    We present total and differential cross sections for W b anti-b and Z b anti-b production at the CERN Large Hadron Collider with a center-of-mass energy of 14 TeV, including Next-to-Leading Order (NLO) QCD corrections and full bottom-quark mass effects. We also provide numerical results obtained with a center-of-mass energy of 10 TeV. We study the scale uncertainty of the total cross sections due to the residual renormalization- and factorization-scale dependence of the truncated perturbative series. While in the case of Z b anti-b production the scale uncertainty of the total cross section is reduced by NLO QCD corrections, the W b anti-b production process at NLO in QCD still suffers from large scale uncertainties, in particular in the inclusive case. We also perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. The effects of a non-zero bottom-quark mass (m_b) cannot be neglected in phase-space regions where the relevant kine...

  7. CERN recognises LHC suppliers

    CERN Multimedia

    2002-01-01

    CERN has just presented the first awards recognising LHC suppliers. The Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang are the recipients of the first 'Golden Hadrons'.

  8. Electromagnetic Form Factors of Hadrons in Dual-Large Nc QCD

    International Nuclear Information System (INIS)

    In this talk, results are presented of determinations of electromagnetic form factors of hadrons (pion, proton, and Δ(1236)) in the framework of Dual-Large Nc QCD (Dual-QCD∞). This framework improves considerably tree-level VMD results by incorporating an infinite number of zero-width resonances, with masses and couplings fixed by the dual-resonance (Veneziano-type) model.

  9. Drell-Yan as an avenue to test noncommutative Standard Model at the Large Hadron Collider

    CERN Document Server

    Selvaganapathy, J; Konar, Partha

    2016-01-01

    We study the Drell-Yan process at the Large Hadron Collider in presence of the noncommutative extension of standard model. Using the Seiberg-Witten map, we calculate the production cross-section to the first order in the noncommutative parameter $\\Theta_{\\mu\

  10. Compact Higher Order Mode Filter for Crab Cavities in the Large Hadron Collider

    CERN Document Server

    Xiao, B P; Ben-Zvi, I; Calaga, R; Skaritka, J; Verdú-Andrés, S; Wu, Q

    2013-01-01

    A double quarter wave crab cavity was designed for the Large Hadron Collider (LHC) luminosity upgrade. Starting from the analytical calculation of simplified RLC circuit, a compact Higher Order Mode (HOM) filter is developed for this cavity. Finite element simulation results are presented. The design concept is generic and can easily be adapted to other cavities.

  11. Hard Processes in Proton-Proton Collisions at the Large Hadron Collider

    CERN Document Server

    Butterworth, Jonathan M; Salam, Gavin P

    2012-01-01

    The measurement of hard scattering processes, meaning those with energy scales of more than a few GeV, is the main method by which physics is being explored and extended by the experiments at the Large Hadron Collider. We review the principal measurements made so far, and what they have told us about physics at the energy frontier.

  12. Improving the discovery potential of charged Higgs bosons at the Tevatron and large hadron collider

    Indian Academy of Sciences (India)

    Stefano Moretti

    2003-02-01

    We outline several improvements to the experimental analyses carried out at Tevatron (Run 2) or simulated in view of the large hadron collider (LHC) that could increase the scope of CDF/D0 and ATLAS/CMS in detecting charged Higgs bosons.

  13. Summary of the Very Large Hadron Collider Physics and Detector subgroup

    International Nuclear Information System (INIS)

    We summarize the activity of the Very Large Hadron Collider Physics and Detector subgroup during Snowmass 96. Members of the group: M. Albrow, R. Diebold, S. Feher, L. Jones, R. Harris, D. Hedin, W. Kilgore, J. Lykken, F. Olness, T. Rizzo, V. Sirotenko, and J. Womersley. 9 refs

  14. Z-Z′ Mixing E˙ects at the Large Hadron Collider

    OpenAIRE

    Andreev, V. V.; Pankov, A. A.(The Abdus Salam ICTP Affiliated Centre, Technical University of Gomel, 246746, Gomel, Belarus)

    2014-01-01

    We discuss the expected sensitivity to Z′ boson e˙ects in the W ± boson pair production process at the Large Hadron Collider (LHC). The results of a model-dependent analysis of Z′ boson e˙ects are presented as constraints on the Z-Z′ mixing angle ˚ and Z′ boson mass.

  15. The $B-L$ Supersymmetric Standard Model with Inverse Seesaw at the Large Hadron Collider

    CERN Document Server

    Khalil, S

    2015-01-01

    We review the TeV scale $B-L$ extension of the Minimal Supersymmetric Standard Model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the Large Hadron Collider (LHC).

  16. Production of extra quarks at the Large Hadron Collider beyond the Narrow Width Approximation

    CERN Document Server

    Moretti, Stefano; Panizzi, Luca; Prager, Hugo

    2016-01-01

    This paper explores the effects of both finite width and interference (with background) in the production and decay of extra heavy quarks at the Large Hadron Collider (LHC). This dynamics is normally ignored in standard experimental searches and we assess herein the regions of validity of current approaches. Further, we discuss the configurations of masses, widths and couplings where the latter breaks down.

  17. Activity of CERN and LNF groups on large area GEM detectors

    CERN Document Server

    Alfonsi, M; Brock, I; Cerioni, S; Croci, G; David, E; De Lucia, E; De Oliveira, R; De Robertis, G; Domenici, D; Duarte Pinto, S; Felici, G; Gatta, M; Jacewicz, M; Loddo, F; Morello, G; Pistilli, M; Ranieri, A; Ropelewski, L; Sauli, F; Schioppa, M; Van Stenis, M

    2010-01-01

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450 x 450 mm2. Now a single-mask technology is used allowing foils to be made as large as 450 x 2000 mm2. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10 x 10 cm2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  18. Activity of CERN and LNF groups on large area GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, M. [CERN, Geneva (Switzerland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Brock, I. [Physikalisches Institute der Universitat Bonn, Bonn (Germany); Cerioni, S. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Croci, G.; David, E. [CERN, Geneva (Switzerland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Oliveira, R. [CERN, Geneva (Switzerland); De Robertis, G. [Sezione INFN di Bari, Bari (Italy); Domenici, D., E-mail: Danilo.Domenici@lnf.infn.i [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Duarte Pinto, S. [CERN, Geneva (Switzerland); Felici, G.; Gatta, M.; Jacewicz, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Loddo, F. [Sezione INFN di Bari, Bari (Italy); Morello, G. [Dipeartimento di Fisica Universita della Calabria e INFN, Cosenza (Italy); Pistilli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A. [Sezione INFN di Bari, Bari (Italy); Ropelewski, L. [CERN, Geneva (Switzerland); Sauli, F. [TERA Foundation, Novara (Italy)

    2010-05-21

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm{sup 2}. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm{sup 2}. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm{sup 2} GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne {Phi}-factory in Frascati.

  19. Activity of CERN and LNF groups on large area GEM detectors

    International Nuclear Information System (INIS)

    We report on the activity of CERN and INFN-LNF groups on the development of large area GEM detectors. The two groups work together within the RD51 Collaboration, to aim at the development of Micro-pattern Gas detectors technologies. The vast request for large area foils by the GEM community has driven a change in the manufacturing procedure by the TS-DEM-PMT laboratory, needed to overcome the previous size limitation of 450x450mm2. Now a single-mask technology is used allowing foils to be made as large as 450x2000mm2. The limitation in the short size, due to the definite width of the raw material, can be overcome by splicing more foils together. A 10x10cm2 GEM detector with the new single-mask foil has been tested with X-rays and the results are shown. Possible future applications for large area GEM are the TOTEM experiment upgrade at CERN, and the KLOE-2 experiment at the Dafne Φ-factory in Frascati.

  20. Proceedings of the Sixth International Workshop on Multiple Partonic Interactions at the Large Hadron Collider

    CERN Document Server

    Astalos, R; Bartalini, P; Belyaev, I; Bierlich, Ch; Blok, B; Buckley, A; Ceccopieri, F A; Cherednikov, I; Christiansen, J R; Ciangottini, D; Deak, M; Ducloue, B; Field, R; Gaunt, J R; Golec-Biernat, K; Goerlich, L; Grebenyuk, A; Gueta, O; Gunnellini, P; Helenius, I; Jung, H; Kar, D; Kepka, O; Klusek-Gawenda, M; Knutsson, A; Kotko, P; Krasny, M W; Kutak, K; Lewandowska, E; Lykasov, G; Maciula, R; Moraes, A M; Martin, T; Mitsuka, G; Motyka, L; Myska, M; Otwinowski, J; Pierog, T; Pleskot, V; Rinaldi, M; Schafer, W; Siodmok, A; Sjostrand, T; Snigirev, A; Stasto, A; Staszewski, R; Stebel, T; Strikman, M; Szczurek, A; Treleani, D; Trzebinski, M; van Haevermaet, H; van Hameren, A; van Mechelen, P; Waalewijn, W; Wang, W Y

    2015-01-01

    Multiple Partonic Interactions are often crucial for interpreting results obtained at the Large Hadron Collider (LHC). The quest for a sound understanding of the dynamics behind MPI - particularly at this time when the LHC is due to start its "Run II" operations - has focused the aim of this workshop. MPI@LHC2014 concentrated mainly on the phenomenology of LHC measurements whilst keeping in perspective those results obtained at previous hadron colliders. The workshop has also debated some of the state-of-the-art theoretical considerations and the modeling of MPI in Monte Carlo event generators. The topics debated in the workshop included: Phenomenology of MPI processes and multiparton distributions; Considerations for the description of MPI in Quantum Chromodynamics (QCD); Measuring multiple partonic interactions; Experimental results on inelastic hadronic collisions: underlying event, minimum bias, forward energy flow; Monte Carlo generator development and tuning; Connections with low-x phenomena, diffractio...

  1. Control protocol: large scale implementation at the CERN PS complex - a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    Abie, H. (CERN, 1211, Geneva 23 (Switzerland)); Benincasa, G. (CERN, 1211, Geneva 23 (Switzerland)); Coudert, G. (CERN, 1211, Geneva 23 (Switzerland)); Davydenko, Y. (CERN, 1211, Geneva 23 (Switzerland)); Dehavay, C. (CERN, 1211, Geneva 23 (Switzerland)); Gavaggio, R. (CERN, 1211, Geneva 23 (Switzerland)); Gelato, G. (CERN, 1211, Geneva 23 (Switzerland)); Heinze, W. (CERN, 1211, Geneva 23 (Switzerland)); Legras, M. (CERN, 1211, Geneva 23 (Switzerland)); Lustig, H. (CERN, 1211, Geneva 23 (Switzerland)); Merard, L. (CERN, 1211, Geneva 23 (Switzerland)); Pearson, T. (CERN, 1211, Geneva 23 (Switzerland)); Strubin, P. (CERN, 1211, Geneva 23 (Switzerland)); Tedesco, J. (CERN, 1211, Geneva 23 (Switzerland))

    1994-12-15

    The Control Protocol is a model-based, uniform access procedure from a control system to accelerator equipment. It was proposed at CERN about 5 years ago and prototypes were developed in the following years. More recently, this procedure has been finalized and implemented at a large scale in the PS Complex. More than 300 pieces of equipment are now using this protocol in normal operation and another 300 are under implementation. These include power converters, vacuum systems, beam instrumentation devices, RF equipment, etc. This paper describes how the single general procedure is applied to the different kinds of equipment. The advantages obtained are also discussed. ((orig.))

  2. Control protocol: large scale implementation at the CERN PS complex - a first assessment

    International Nuclear Information System (INIS)

    The Control Protocol is a model-based, uniform access procedure from a control system to accelerator equipment. It was proposed at CERN about 5 years ago and prototypes were developed in the following years. More recently, this procedure has been finalized and implemented at a large scale in the PS Complex. More than 300 pieces of equipment are now using this protocol in normal operation and another 300 are under implementation. These include power converters, vacuum systems, beam instrumentation devices, RF equipment, etc. This paper describes how the single general procedure is applied to the different kinds of equipment. The advantages obtained are also discussed. ((orig.))

  3. Using b-tagging to enhance the supersymmetry reach of the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Assuming that supersymmetry is realized with parameters in the hyperbolic branch/focus point region of the minimal supergravity model, we show that by searching for multijet+ETmiss events with tagged b jets the reach of experiments at the LHC may be extended by as much as 20% from current projections. The reason for this is that gluino decays to third generation quarks are enhanced because the lightest neutralino has substantial Higgsino components. Although we were motivated to perform this analysis because the hyperbolic branch/focus point region is compatible with the recent determination of the relic density of cold dark matter, our considerations may well have a wider applicability since decays of gluinos to third generation quarks are favored in a wide variety of models

  4. Detecting H→hh in the mirror model at the CERN Large Hadron Collider

    Science.gov (United States)

    Li, Wen-Sheng; Yin, Peng-Fei; Zhu, Shou-Hua

    2007-11-01

    The Higgs sector may play an important role in detecting mirror particles, which can be the candidates of dark matter and appear as missing energy in the detectors at the LHC. In this paper we worked out the Higgs boson spectrum and the Higgs couplings for the symmetric vacuum, namely v1=v2=v, in the mirror model, and investigated the constraints from electroweak precision observables. Our study showed that electroweak precision observables have already constrained the Higgs boson sector severely. We then explored the Higgs boson phenomenology, and focused on the scenario that the heavier Higgs boson H can decay into a pair of lighter Higgs bosons h. We proposed to study the invisible decay of the Higgs boson via the pair production of them, in which one Higgs boson decays into bottom quarks and the other decays invisibly. Our detail simulation for signals and backgrounds showed that the observation of the signal can reach 5σ significance for mH=260GeV and mh=115GeV with 10fb-1 integrated luminosity at the LHC. Moreover the possible method to further suppress dominant Zbb¯ background was discussed. We also simulated the signals and backgrounds for H→hh→4b. Our results showed that it is very difficult to isolate the signals from huge QCD continuum backgrounds.

  5. Open charm production in p + p and Pb + Pb collisions at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Effects of strong longitudinal color electric fields, shadowing, and quenching on the production of prompt open charm mesons (D0, D+, D∗+, Ds+) in central Pb + Pb collisions at √(sNN) = 2.76 TeV are investigated within the framework of the HIJING/B B-bar v2.0 model. We compute the nuclear modification factor RPbPbD, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of color fields (as characterized by the string tension κ), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for beauty mesons are presented. In addition, ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) p+p collisions at 2.76 TeV are also discussed. MB p+p collisions which constitute a theoretical baseline in our calculations are studied at centre of mass energies √s = 2.76 TeV and 7 TeV. (paper)

  6. Radiation zoning for vacuum equipment of the CERN Large Hadron Collider

    CERN Document Server

    Mahner, E; Cruikshank, P; Forkel-Wirth, D; Jiménez, J M

    2010-01-01

    Beam losses in high-energy particle accelerators are responsible for beam lifetime degradation. In the LHC beam losses will create a shower of particles while interacting with materials from the beam pipes and surroundings, resulting in a partial activation of material in the tunnel. Efforts have been made during the accelerator design to monitor and to reduce the activation induced by beam losses. Traceability for all vacuum components has been established providing a tool to follow-up individually each component or subcomponents installed in the tunnel, regardless of their future destination e.g. recycling or disposal. In the latter case, the history of vacuum components will allow calculating the beam-induced activation and permit comparisons with in-situ and ex-situ measurements. This zoning will also help to reduce collective and individual radiation doses to personnel during interventions. The paper presents the vacuum system layout and describes the LHC vacuum zoning and its implementation using an ORA...

  7. RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Baudrenghien, P.; /CERN

    2011-03-03

    The LHC RF station-beam interaction strongly influences the longitudinal beam dynamics, both single bunch and collective effects. Non-linearities and noise generated within the Radio Frequency (RF) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the RF accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the RF components and the configuration of the Low Level RF (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the RF system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations.

  8. Design considerations and expectations of a very large hadron collider

    International Nuclear Information System (INIS)

    The ELOISATRON Project is a proton-proton collider at very high energy and very large luminosity. The main goal is to determine the ultimate performance that is possible to achieve with reasonable extrapolation of the present accelerator technology. A complete study and design of the collider requires that several steps of investigations are undertaken. The authors count five of such steps as outlined in the report

  9. CERN: 50 and counting

    International Nuclear Information System (INIS)

    Fifty years is a long time in particle physics - and not just because most subatomic particles only exist for tiny fractions of a second. In 1954, the year that CERN was established, the leading high-energy laboratories in the US, and indeed the world, were at Berkeley in California and Brookhaven in New York. Today these two labs - with nine Nobel prizes for discoveries in particle physics between them - have been replaced by Stanford (established in 1962) and Fermilab (1967) as the focal points of high-energy physics in the US. CERN did not reach its current position of strength overnight. In the early years it struggled as US labs dominated the field and beat Europe's new lab to the big discoveries. The tide turned with the detection of weak neutral currents in 1973, and the discovery of the W and Z bosons 10 years later showed that CERN was capable of making truly massive discoveries. Today, completing the Large Hadron Collider (LHC) and its four detectors on schedule and within budget, and then ensuring that they run reliably from 2007 onwards, are CERN's top priorities. (U.K.)

  10. A silica aerogel counter for large-acceptance hadron detection

    International Nuclear Information System (INIS)

    In order to study the feasibility of large scale multicell counters, two prototypes with respective detection area 80x40 cm2 and 65x31 cm2 were constructed. The Cerenkov light produced in silica aerogel of refractive index n=1.03 and diffused in a well optimized box was detected with five quantacon photomultpliers. Results of beam tests concerning the aerogel thickness, the diffusing material and box shape, the influence of the incident particle position and the momentum threshold curves for π, K and p are presented. The final design of a multicell detection system is given. (Auth.)

  11. A silica aerogel counter for large-acceptance hadron detection

    CERN Document Server

    Arnault, C; Bassompierre, Gabriel; Burkhardt, W; Coignet, G; Dosselli, U; Heusse, P; Montanet, François; Schneegans, M

    1980-01-01

    In order to study the feasibility of large scale multicell counters, two prototypes with respective detection area 80*40 cm/sup 2/ and 65*31 cm/sup 2/ were constructed. The Cerenkov light produced in silica aerogel of refractive index n=1.03 and diffused in a well optimized box was detected with five quantacon photomultipliers. Results of beam tests concerning the aerogel thickness, the diffusing material and box shape, the influence of the incident particle position and the momentum threshold curves for pi , K and p are presented. The final design of a multicell detection system is given. (6 refs).

  12. Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    CERN Document Server

    Bittner, B; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.

    2016-01-01

    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide e?cient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge e?ects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial...

  13. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement chain and other organizations; (d) the general public, including onsite and website visitors and other media users. These benefits are respectively related to the knowledge output of scientists; human capital formation; technological spillovers; and direct cultural effects for the general public. Welfare effects for taxpayers can also be estimated by the contingent valuation of the willingness to pay for a pure public good for which there is no specific direct use (i.e., as non-use value). Using a Monte Carlo approach, w...

  14. Large X Hadron Physics and Correlations with Central Region Phenomena

    CERN Multimedia

    2002-01-01

    The experiment uses a forward double-septum magnetic spectrometer with acceptance of @+~150~mrad to study the production of multiparticle systems. The system of mini-drift MWPC's has a processor which enables real-time selection of different multiplicities. The 32-cell Cherenkov counters along with the T.O.F. system allow the identification and separation of @p's, K's and p's over a large momentum range. A 3~m~x~3~m shower counter is installed to measure @p|0's and @g's traversing the spectrometer. \\\\ \\\\ A magnetic spectrometer installed at 90|0 measures identified single particles (T.O.F. and aerogel Cherenkov counters) and permits the measurement of flavour correlations with the forward spectrometer. Momentum selection of the 90|0 particles is incorporated in the trigger. .in +3 The experiment is data taking and studying such topics as 1) Production of @L^c|+ @A @L@p|+@p|+@p|- @A pK|-@p|+ 2) Glueball search in diffractive production of p @A pK|0^sK@+@p, pK|0^sK|0^s, p@L@L, etc... 3) p@*, pp comparison inclu...

  15. Rare b hadron decays at the LHC

    CERN Document Server

    Blake, T; Hiller, G

    2015-01-01

    With the completion of Run~I of the CERN Large Hadron Collider, particle physics has entered a new era. The production of unprecedented numbers of heavy-flavoured hadrons in high energy proton-proton collisions allows detailed studies of flavour-changing processes. The increasingly precise measurements allow to probe the Standard Model with a new level of accuracy. Rare $b$ hadron decays provide some of the most promising approaches for such tests, since there are several observables which can be cleanly interpreted from a theoretical viewpoint. In this article, the status and prospects in this field are reviewed, with a focus on precision measurements and null tests.

  16. Rare b Hadron Decays at the LHC

    Science.gov (United States)

    Blake, T.; Gershon, T.; Hiller, G.

    2015-10-01

    With the completion of Run I of the CERN Large Hadron Collider, particle physics has entered a new era. The production of unprecedented numbers of heavy-flavored hadrons in high-energy proton-proton collisions allows detailed studies of flavor-changing processes. The increasingly precise measurements allow the Standard Model to be tested with a new level of accuracy. Rare b hadron decays provide some of the most promising approaches for such tests because there are several observables that can be cleanly interpreted from a theoretical viewpoint. In this article, we review the status and prospects in this field, with a focus on precision measurements and null tests.

  17. Computer Security: Security operations at CERN (4/4)

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Stefan Lueders, PhD, graduated from the Swiss Federal Institute of Technology in Zurich and joined CERN in 2002. Being initially developer of a common safety system used in all four experiments at the Large Hadron Collider, he gathered expertise in cyber-security issues of control systems. Consequently in 2004, he took over responsibilities in securing CERN's accelerator and infrastructure control systems against cyber-threats. Subsequently, he joined the CERN Computer Security Incident Response Team and is today heading this team as CERN's Computer Security Officer with the mandate to coordinate all aspects of CERN's computer security --- office computing security, computer centre security, GRID computing security and control system security --- whilst taking into account CERN's operational needs. Dr. Lueders has presented on these topics at many different occasions to international bodies, governments, and companies, and published several articles. With the prevalence of modern information technologies and...

  18. The CERN omega spectrometer. 25 years of physics. Proceedings

    International Nuclear Information System (INIS)

    The OMEGA spectrometer facility was closed down at the end of 1996. This was a necessary sacrifice in order to free resources for the construction of the Large Hadron Collider, which is now so closely associated with CERN's future. On December 10th, a symposium was organized at CERN to review physics at OMEGA. This report brings together the talks which were presented on that occasion. It starts with an introduction and a list of all the experiments at the facility. (orig.)

  19. Canadian ATLAS data center to support CERN's LHC

    CERN Multimedia

    2006-01-01

    "The biggest science experiment in history is currently underway at the world-famous CERN labs in Switzerland, and Canada is poised to play a critical role in its success. Thanks to a $10.5 million investment announced by the Canada Foundation for Innovation (CFI), an ultra-sophisticated computing facility -- the ATLAS Data Center -- will be created to support the ATLAS project at CERN's Large Hadron Collider (LHC)." (1 page)

  20. Measurement of vector meson and direct photon production at large transverse momentum at the CERN ISR

    International Nuclear Information System (INIS)

    The production at large transverse momentum of low mass electron pairs was investigated at the CERN Intersecting Storage Rings using lithium/xenon transition radiation detectors and liquid argon calorimeters. Production of the vector mesons rho0, ω0, and phi was observed with cross sections consistent with the assumptions that rho0, ω0, and π0 production are nearly equal at large p/sub t/ and that phi production is suppressed by about an order of magnitude relative to rho0 and ω0 production. The observed low mass virtual photon continuum between masses of 200 and 500 MeV was consistent with estimates of Dalitz decays plus predictions of the vector dominance model. The measured cross section for virtual photon production enabled a limit of (0.5 +- 1.0) percent to be placed on the ratio of direct real photon production to π0 production

  1. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  2. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  3. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    CERN Document Server

    Colecchia, Federico

    2013-01-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is t...

  4. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    OpenAIRE

    F. Colecchia

    2013-01-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most nota...

  5. Physics at the high-energy frontier - the Large Hadron Collider project

    CERN Document Server

    Brown, Robert; Evans, David; Gibson, Valerie; Nickerson, Richard

    2012-01-01

    The Large Hadron Collider (LHC), achieved its first particle collisions in late 2009 and is now running at 7 TeV, the highest energy ever attained in the laboratory, thereby opening the way for the search for many new phenomena. The aim of the meeting is to discuss the scientific, technical, sociological, political and financial challenges of bringing this huge international project to fruition.

  6. Electromagnetic Form Factors of Hadrons in Dual-Large $N_c$ QCD

    CERN Document Server

    Dominguez, C A

    2010-01-01

    In this talk, results are presented of determinations of electromagnetic form factors of hadrons (pion, proton, and $\\Delta(1236)$) in the framework of Dual-Large $N_c$ QCD (Dual-$QCD_\\infty$). This framework improves considerably tree-level VMD results by incorporating an infinite number of zero-width resonances, with masses and couplings fixed by the dual-resonance (Veneziano-type) model.

  7. Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider

    OpenAIRE

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Yaguna, Carlos E.

    2016-01-01

    We show that the proposed Large Hadron electron Collider (LHeC) will provide a great opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC -- including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determ...

  8. Phenomenology of supersymmetric Z ′ decays at the Large Hadron Collider

    OpenAIRE

    Corcella, Gennaro

    2015-01-01

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into superymmetric particles, such as chargino, neutralino and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at sqrt{s}=14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modif...

  9. Dragging Heavy Quarks in Quark Gluon Plasma at the Large Hadron Collider

    OpenAIRE

    Das, Santosh K; Alam, Jan-e; Mohanty, Payal

    2010-01-01

    The drag and diffusion coefficients of charm and bottom quarks propagating through quark gluon plasma (QGP) have been evaluated for conditions relevant to nuclear collisions at Large Hadron Collider (LHC). The dead cone and Landau-Pomeronchuk-Migdal (LPM) effects on radiative energy loss of heavy quarks have been considered. Both radiative and collisional processes of energy loss are included in the {\\it effective} drag and diffusion coefficients. With these effective transport coefficients w...

  10. Investigation of induced radioactivity in the CERN Large Electron Positron collider for its decommissioning

    CERN Document Server

    Silari, Marco

    2004-01-01

    The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...

  11. A position sensitive highly radiation hard and fast hadron calorimeter for a lead ion experiment at CERN SPS

    International Nuclear Information System (INIS)

    We present the performance of the Zero Degree Calorimeter (ZDC) built for the NA50 experiment at the CERN SPS. This detector measures the Cherenkov light produced in silica optical fibres embedded in tantalum and offers the double advantage of being highly radiation resistant (up to several Grad) and very fast (signal width of the order of 10 ns). It has an active volume of 5 x 5 x 65 cm3 with a fibre to tantalum volume ratio of 1/17; the fibres are positioned at an angle of 0 circle with respect to the beam direction and have a diameter of 365 μm. The measured energy resolution (σ/E) is 30% for protons at 205 GeV and 5% for lead ions at 160 GeV/nucleon.The detector exhibits also very good localising properties since it can detect the impact point of the lead beam on its front face with a precision better than 0.4 mm rms. (orig.)

  12. Large-Scale Procurement of Radiation Resistant Single-Mode Optical Fibers for CERN

    CERN Document Server

    Guillermain, Elisa; Kuhnhenn, Jochen; Ricci, Daniel; Weinand, Udo

    2015-01-01

    2400 km of special radiation resistant optical fibres were procured by CERN (European Organization for Nuclear Research), for the installation of more than 55 km of optical fibre cables in the accelerator complex underground during the Long Shutdown 1 (LS1). In the frame of this large-scale industrial production, a thorough quality assurance plan (QAP) was put in place and followed at each step of the process. In-depth qualification of optical fibres preceded the 17-month procurement process. All supplied batches were tested for their resistance to radiation, leading to more than 65 quality control irradiation tests. During the cable assembly process and the installations works, a full traceability down to the optical fibre level was ensured. The actions put in place in the frame of the QAP led to successful installation works and to full respect of the LS1 planning.

  13. Engineering a large application software project: the controls of the CERN PS accelerator complex

    International Nuclear Information System (INIS)

    The CERN PS accelerator complex has been progressively converted to full computer controls without interrupting its full-time operation (more than 6000 hours per year with on average not more than 1% of the total down-time due to controls). The application software amounts to 120 man-years and 450'000 instructions: it compares with other large software projects, also outside the accelerator world: e.g. Skylab's ground support software. This paper outlines the application software structure which takes into account technical requirements and constraints (resulting from the complexity of the process and its operation) and economical and managerial ones. It presents the engineering and management techniques used to promote implementation, testing and commissioning within budget, manpower and time constraints and concludes with experience gained

  14. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  15. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  16. Signature for a partership between CERN and Israel - His Excellency Mr Itzhak Levanon, Ambassador, Permanent Representative of Israel to the Unite Nations Office and specialized institutions in Geneva and Mr Robert Aymar, CERN Director General

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 29 November 2004, the Israeli ambassador to the United Nations Office at Geneva, Itzhak Levanon, and CERN's director-general, Robert Aymar, signed a new protocol to the Co-operation Agreement between the government of Israel and CERN. This protocol covers a substantial increase in the Israeli contribution to CERN's Large Hadron Collider (LHC) Project. Israeli scientists have been participating in CERN's scientific activities since 1960, and in 1992 Israel became the first non-member state to make regular financial contributions to CERN's budget.

  17. Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    P. Bauer et al.

    2002-12-05

    The following presents a study of the accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders (VLHCs). The main accelerator physics limitations to ultimate energy and luminosity in future energy frontier hadron colliders are synchrotron radiation (SR) power, proton-collision debris power in the interaction regions (IR), number of events-per-crossing, stored energy per beam and beam-stability [1]. Quantitative estimates of these limits were made and translated into scaling laws that could be inscribed into the particle energy versus machine size plane to delimit the boundaries for possible VLHCs. Eventually, accelerator simulations were performed to obtain the maximum achievable luminosities within these boundaries. Although this study aimed at investigating a general VLHC, it was unavoidable to refer in some instances to the recently studied, [2], 200 TeV center-of-mass energy VLHC stage-2 design (VLHC-2). A more thorough rendering of this work can be found in [3].

  18. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider.

    Science.gov (United States)

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S; Jeon, Sangyong; Gale, Charles

    2016-02-19

    The collective behavior of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low p_{T} direct photon spectrum by a factor of 2-3 in 0%-1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems. PMID:26943529

  19. Thermal photon radiation in high multiplicity p+Pb collisions at the Large Hadron Collider

    CERN Document Server

    Shen, C; Denicol, G S; Jeon, S; Gale, C

    2015-01-01

    The collective behaviour of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider (LHC), as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider (RHIC). In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low $p_T$ direct photon spectrum by a factor of 2-3 in 0-1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a clean signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.

  20. Mono-jet, -photon and - Z signals of a supersymmetric ( B - L) model at the Large Hadron Collider

    Science.gov (United States)

    Abdallah, W.; Fiaschi, J.; Khalil, S.; Moretti, S.

    2016-02-01

    Search for invisible final states produced at the Large Hadron Collider (LHC) by new physics scenarios are normally carried out resorting to a variety of probes emerging from the initial state, in the form of single-jet, -photon and - Z boson signatures. These are particularly effective for models of Supersymmetry (SUSY) in presence of R-parity conservation, owing to the presence in their spectra of a stable neutralino as a Dark Matter (DM) candidate. We assume here as theoretical framework the Supersymmetric version of the ( B - L) extension of the Standard Model (BLSSM), wherein a mediator for invisible decays can be the Z ' boson present in this scenario. The peculiarity of the signal is thus that the final state objects carry a very large (transverse) missing energy, since the Z ' is naturally massive and constrained by direct searches and Electro-Weak Precision Tests (EWPTs) to be at least in the TeV scale region. Under these circumstances the efficiency in accessing the invisible final state and rejecting the Standard Model (SM) background is very high. This somehow compensates the rather meagre production rates. Another special feature of this invisible BLSSM signal is its composition, which is often dominated by sneutrino decays (alongside the more traditional neutrino and neutralino modes). Sensitivity of the CERN machine to these two features can therefore help disentangling the BLSSM from more popular SUSY models. We assess in this analysis the scope of the LHC in establishing the aforementioned invisible signals through a sophisticated signal-to-background simulation carried out in presence of parton shower, hadronisation as well as detector effects. We find that significant sensitivity exists already after 300 fb-1 during Run 2. We find that mono-jet events can be readily accessible at the LHC, so as to enable one to claim a prompt discovery, while mono-photon and - Z signals can be used as diagnostic tools of the underlying scenario.

  1. Experiments at CERN in 1997

    International Nuclear Information System (INIS)

    This book summarises the current experimental programme at CERN. The experiments listed are taking place at one of the following machines: the Large Electron Positron Collider (LEP), the Super Proton Synchroton (SPS), the 28 GeV Proton Synchrotron (PS), including the Antiproton Decelerator (AD) for slow antiprotons and the ISOLDE facility for short-lived ions. The three experiments now approved for installation at the Large Hadron Collider (LHC) and the R and D projects aimed at the development of new detector technologies and data acquisition systems for the LHC experiments are also listed. (orig./WL)

  2. CERN comes under fresh financial pressure

    CERN Multimedia

    Dickson, D

    1996-01-01

    Germany's decision to effect a 10% cut in its annual subscription to the Large Hadron Collider (LHC) in 1997 has added to the financial problems of the European Laboratory for Particle Physics (CERN), Geneva, Switzerland. Reduced European contributions will have a crucial impact on the planned construction and completion of LHC. Proposals for non-European membership to reduce the financial burden on CERN members is doubtful in the current political context. The German move hints at a reappraisal of the funding projections for LHC.

  3. Performance of the ALICE experiment at the CERN LHC

    NARCIS (Netherlands)

    Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mis̈kowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Twinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Rd, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Safarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Sándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, C. B.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J M; Saard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Symons, T. J M; Szanto De Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; Van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, P. Y.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.; Zyzak, M.

    2014-01-01

    ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling proced

  4. CERN confident of LHC start-up in 2007

    CERN Multimedia

    Vanden Broeck, Renilde

    2007-01-01

    "Delegates attending the 140th meeting of CERN Council today heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collier (LHC) in 2007. (1/2 page)

  5. CERN confident of LHC start-up in 2007

    CERN Multimedia

    2006-01-01

    "Delegates attending the 140th meeting of CERN Council today heard a confident report from the Laboratory about the scheduled start-up of the world's highest energy particle accelerator, the Large Hadron Collider (LHC) in 2007." (1/2 page)

  6. U.S. tells CERN to wait for support

    CERN Multimedia

    Mervis, J

    1995-01-01

    The US has put off CERN's request for a $300 million contribution to help build the Large Hadron Collider. Department of Energy officials asserted that such a decision must wait until after the budget is finalized. House Science Committee Chairman Robert Walker also claimed it was too early to make a decision.

  7. EIB lends EUR 300 million for CERN's major collider

    CERN Multimedia

    2002-01-01

    "The European Investment Bank (EIB) is lending EUR 300 million to finance the final phase of construction of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The EIB loan will also help to finance the instrumentation to record and analyse the high-energy particle collisions at the LHC" (1 page).

  8. A Search for Vector Diquarks at the CERN LHC

    CERN Document Server

    Arik, E; Cetin, S A; Sultansoy, S F

    2002-01-01

    Resonant production of the first generation vector diquarks at the CERN Large Hadron Collider (LHC) have been investigated. It is shown that the LHC will be able to discover vector diquarks with masses up to 9 (8) TeV if coupling alpha_(D)~alpha_(s) (alpha_(em)).

  9. Al CERN prima fase sistema gestione dati LHC

    CERN Multimedia

    2003-01-01

    "Al via la prima fase per la realizzazione del sistema Lhc computing Grid (LCG), progettato per elaborare le quantita' di dati senza precedenti che, a partire dal 2007, saranno prodotte dagli esperimenti eseguiti con il nuovo grande acceleratore Large Hadron Collider (LHC), presso il Cern di Ginevra" 1 page

  10. Studies of proton-proton collisions at the CERN ISR with an identified charged hadron of high transverse momentum at 900. II

    International Nuclear Information System (INIS)

    Results are reported from an investigation of proton-proton collisions at a c.m. energy of 52.6 GeV, in which a charged hadron with large transverse momentum is produced near 900 in the c.m.s. The authors have studied the momentum and charge correlations between identified high-psub(T) trigger particles and other charged particles in the central region (rapidity mod(y) - and anti p triggers are observed to have fewer negative high-psub(T) recoil particles within mod(y) < 1 than other trigger particles. (Auth.)

  11. Signature for heavy Majorana neutrinos in hadronic collisions

    CERN Document Server

    D'Almeida, F; Martins-Simões, J A; Do Vale, M A B

    2000-01-01

    The production and decay of new possible heavy Majorana neutrinos are analyzed in hadronic collisions. New bounds on the mixing of these particles with standard neutrinos are estimated according to a fundamental representation suggested by grand unified models. A clear signature for these Majorana neutrinos is given by same-sign dileptons plus a charged weak vector boson in the final state. We discuss the experimental possibilities for the future Large Hadron Collider (LHC) at CERN. (15 refs).

  12. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  13. Standard Model Higgs boson searches with the ATLAS detector at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aleandro Nisati; on behalf of the ATLAS Collaboration

    2012-10-01

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at $\\sqrt{s} = 7$ TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass regions 144–232, 256–282 and 296–466 GeV.

  14. Electromagnetic form-factors of hadrons at large Q2 and effects of confinement

    International Nuclear Information System (INIS)

    The importance of the nonperturbative effects for the behaviour of electromagnetic form factors of hadrons at large Q2 is emphasized. In the framework of the topological expansion and the colour tube model it is demonstrated, that the dependence of form factors on Q2 is determined by the intercepts of Regge-trajectories. The perturbation theory is used in order to take into account the effects connected to the hard gluon emission. Good description of the magnetic form-factor of nucleon is obtained

  15. Production of two Higgses at the Large Hadron Collider in CP-violating MSSM

    OpenAIRE

    Bandyopadhyay, Priyotosh; Huitu, Katri

    2011-01-01

    Production of two Higgs bosons is studied in a CP violating supersymmetric scenario at the Large Hadron Collider with $E_{cm}=14$ TeV. There exists a region where a very light Higgs $\\lesssim 50$ GeV could not be probed by LEP experiment. This leads to so called 'LEP hole' region. Recently LHC found a Higgs boson around $\\sim 125$ GeV, which severely constrains the possibility of having lighter Higgs bosons, which cannot be detected, i.e., buried Higgs, in this model. We investigate the possi...

  16. Story of a journey: Rutherford to the Large Hadron Collider and onwards

    CERN Document Server

    Godbole, Rohini M

    2010-01-01

    In this article, I set out arguments why the Large Hadron Collider (LHC) : the machine and the experiments with it, are a watershed for particle physics. I give a historical perspective of the essential link between development of particle accelerators and that in our knowledge of the laws governing interactions among the fundamental particles, showing how this journey has reached destination LHC. I explain how the decisions for the LHC design; the energy and number of particles in the beam, were arrived at. I will end by discussing the LHC physics agenda and the time line in which the particle physicists hope to achieve it.

  17. Identification and Classification of Beam Loss Patterns in the Large Hadron Collider

    CERN Document Server

    Panagiotis, Theodoropoulos; Redaelli, Stefano; Herbster, Mark

    The Large Hadron Collider, is the largest particle accelerator ever built, achieving record beam energy and beam intensity. Beam losses are unavoidable and can risk the safety of accelerator’s components. Beam loss maps are used to validate the collimation system, designed to protect the accelerator against beam losses. The complexity of this system requires well defined inspection methods and well defined case studies that ensure normal operation and efficient performance evaluation. In this work, enhancements are proposed to the existing validation methods with extensions towards automating the inspection mechanisms, introducing pattern recognition and statistical learning methods.

  18. Production of charged Higgs boson associated with Top partner at the large hadron collider

    International Nuclear Information System (INIS)

    In the context of the littlest Higgs (LH) model and the left-right twin Higgs (LRTH) model, we study the production of charged Higgs boson associated with top partner at the LHC. We find that, in the LH model, its cross section can be significantly larger for the scale parameter f = 500 GeV, while sharply decreases as f increases. In the LRTH model, this production process mainly transfers to the t-bar tb-bar bb final state at the Large Hadron Collider and its production rate can reach 167.2 fb. (authors)

  19. Complementarity of Forward-Backward Asymmetry for discovery of Z' bosons at the Large Hadron Collider

    CERN Document Server

    Accomando, Elena; Fiaschi, Juri; Mimasu, Ken; Moretti, Stefano; Shepherd-Themistocleous, Claire

    2015-01-01

    The Forward-Backward Asymmetry (AFB) in Z' physics is commonly only thought of as an observable which possibly allows one to profiling a Z' signal by distinguishing different models embedding such (heavy) spin-1 bosons. In this brief review, we examine the potential of AFB in setting bounds on or even discovering a Z' at the Large Hadron Collider (LHC) and proof that it might be a powerful tool for this purpose. We analyse two different scenarios: Z's with a narrow and wide width, respectively. We find that, in both cases, AFB can complement the conventional searches in accessing Z' signals traditionally based on cross section measurements only.

  20. Applying Rule Ensembles to the Search for Super-Symmetry at the Large Hadron Collider

    OpenAIRE

    Conrad, J.; Tegenfeldt, F.

    2006-01-01

    In this note we give an example application of a recently presented predictive learning method called Rule Ensembles. The application we present is the search for super-symmetric particles at the Large Hadron Collider. In particular, we consider the problem of separating the background coming from top quark production from the signal of super-symmetric particles. The method is based on an expansion of base learners, each learner being a rule, i.e. a combination of cuts in the variable space d...

  1. Search for hadron jets and large transverse momentum electrons at the SPS anti p p collider

    International Nuclear Information System (INIS)

    The search of high transverse momentum electrons needs the use of all the different elements of the UA2 detector; therefore the description of this search is a good way to understand the features of the apparatus, and its performance in a collider environment. We present a preliminary analysis of the UA2 data collected during the last Collider run (20 nb-1 integrated luminosity) with particular emphasis on large transverse momentum hadron jets and on electrons having the configuration expected from the decay of electroweak bosons

  2. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    Science.gov (United States)

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  3. CERN's LHC is awarded the 2012 EPS Edison Volta Prize

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The European Physical Society (EPS), the Centro di Cultura Scientifica “Alessandro Volta” and Edison S.p.A. have awarded the 2012 EPS Edison Volta Prize for outstanding contributions to physics to three CERN physicists.   The award was given to: • Rolf-Dieter Heuer, CERN Director-General, • Sergio Bertolucci, CERN Director for Research and Computing, • Stephen Myers, CERN Director for Accelerators and Technology, for having led - building on decades of dedicated work by their predecessors - the culminating efforts in the direction, research and operation of the CERN Large Hadron Collider (LHC), which resulted in many significant advances in high energy particle physics, in particular, the first evidence of a Higgs-like boson in July 2012. To learn more, check out e-EPS News.

  4. Large Psub(T) photons and the gammaization of high energy hadron collisions

    International Nuclear Information System (INIS)

    Attention if drawn to the fact that the Drell-Yan parton model, with no added assumptions, puts a lower limit on the production of direct photons with large transverse momentum in hadron collisions. At square root of s = 53 GeV, γ/π is found to be about 0.5 per cent, but if gluons are added to the theory this ratio is increased to 1 approximately equal 10 per cent. Although the yield is substantially decreased at lower energies it should be observable (say at square root of s = 23 GeV) in anti p or meson induced interactions. The calculation hints at the possibility that photons constitute a large fraction of large psub(T) and, more speculatively, of all secondaries in very high energy hadron interactions. The results are compared with the thermodynamic model and the bremsstrahlung model, invoked to accommodate the observed direct lepton yield; they suggest that (sigma(pp → γX))/(sigma(pp → πX)) = 1 around 100 TeV. It is pointed out that this unusual possibility finds support in observed anomalies in cosmic-ray induced interactions above that energy. It would definitely have an impact on experiments at future accelerators, e.g. the search for new states via their leptonic decays (e.g. weak bosons). (author)

  5. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    CERN Multimedia

    Baron, T; Duran, G; Correia Fernandes, J; Ferreira, P; Gonzalez Lopez, J B; Jouberjean, F; Lavrut, L; Tarocco, N

    2013-01-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for video-conference or not), as well as maintenance and local support. Managing now nearly half of the 250 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper will focus on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audiovisual equipment monitoring systems, ...

  6. Expansions of $\\tau$ hadronic spectral function moments in a nonpower QCD perturbation theory with tamed large order behavior

    OpenAIRE

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel; Fischer, Jan

    2013-01-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling $\\alpha_s$ and other QCD parameters from the hadronic decays of the $\\tau$ lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mapp...

  7. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  8. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    2009-01-01

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  9. Monitoring Control Applications at CERN

    CERN Document Server

    Bernard, F; Milcent, H; Petrova, L B; Varela, F

    2011-01-01

    The Industrial Controls and Engineering (EN-ICE) group [1] of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protection systems, power interlocks for the Large Hadron Collider and other subsystems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE group is presently developing the Monitoring Operation of cOntrols Networks (MOON) tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (WinCC OA) [2] SCADA and makes usage of the Joint COntrols Project (JCOP) [3] and the UNified INdustrial COntrol System (UNICOS) [4] Frameworks developed at CERN. The tool provides centralized monitoring and software management of the different elements integrating the control systems like Windows and L...

  10. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  11. CP violation studies on the B0 -> DK*0 decays and hadronic trigger performance with the LHCb detector at CERN

    CERN Document Server

    Martin Sanchez, Alexandra

    In the Standard Model of particle physics, the Cabibbo-Kobayashi-Maskawa (CKM) mechanism describes the quark mixing effect. The CKM $\\gamma$ angle is one of the parameters of the Standard Model that are known less accurately. Direct measurements give an uncertainty of around $15^{\\circ}$, large with respect to the uncertainty on the value extracted from global fits, of $3^{\\circ}$. In order to test the Standard Model consistency, the $\\gamma$ angle needs to be measured precisely. This can be done using processes at the tree-level, where only Standard Model contributions are expected, or using processes involving loop diagrams, which can be sensitive to physics beyond the Standard Model. Differences in the $\\gamma$ measurement from tree and loop diagrams would be an indication of new physics. This thesis presents the first measurement of the $CP$ observables in the $\\overline{B}^0 \\to D\\overline{K}^{*0}$ decay. Sensitivity to $\\gamma$ arises from the interference of the $b \\to u$ mediated amplitude with the $...

  12. Snapshots of CERN

    CERN Multimedia

    Rebecca Leam

    Art was the language of communication between science and the thousands of visitors attending CERN’s two photographic exhibitions in Italy and Spain in October. The artistic images of CERN’s Nobel Prize winners, Large Hadron Collider (LHC) machinery and detectors raised people's curiosity and helped to promote the understanding of particle physics.   The exhibition “Accelerating Nobels” at Genoa’s 7th Science Festival. The exhibition “Accelerating Nobels” attracted over 600’000 visitors during Genoa’s 7th annual Science Festival. It showed science photographer Volker Steger’s 21 portraits of physics Nobels holding their own impromptu drawings of their best discovery. “The theme of the festival was ‘The Future’. The exhibition illustrated the long history of particle physics discoveries at CERN which all lead to what the LHC is going to find, including probably more ...

  13. Search for Supersymmetry using Heavy Flavour Jets with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Tua, Alan

    The Standard Model of particle physics, despite being extremely successful, is not the ultimate description of physics. The nature of dark matter is not well described, unification of the forces is not achieved and the theory is plagued by a hierarchy problem. One of the proposed solutions to these issues is supersymmetry. This thesis describes numerous searches for supersymmetry carried out using the ATLAS detector at the Large Hadron Collider. In scenarios where R-parity is conserved, supersymmetric final states contain large amounts of missing transverse energy. Furthermore, should supersymmetry correctly describe Nature, the scalar partners of the third generation quarks might be the lightest scalar quarks. The searches reported here exploit these possibilities and make use of signatures which are rich in missing transverse energy and jets coming from heavy flavour quarks. Searches are carried out for direct pair production of third generation scalar quarks as well as gluino-mediated production of these p...

  14. Willingness to pay for basic research: a contingent valuation experiment on the large hadron collider

    CERN Document Server

    Catalano, Gelsomina; Giffoni, Francesco

    2016-01-01

    An increasing number of countries and institutions are investing in large-scale research infrastructures (RIs) and in basic research. Scientific discoveries, which are expected thanks to RIs, may have a non-use value, in analogy with environmental and cultural public goods. This paper provides, for the first time, an empirical estimation of the willingness to pay (WTP) for discoveries in basic research by the general public. We focus on the Large Hadron Collider (LHC), the largest particle accelerator worldwide, where in 2012 the Higgs boson was discovered. Nobody knows the practical value of such discovery, beyond knowledge per se. The findings of our study are based on a dichotomous choice contingent valuation (CV) survey carried out in line with the NOAA guidelines. The survey involved 1,022 undergraduate students enrolled in more than 30 different degrees (including the humanities) at five universities located in four countries (Italy, France, Spain, UK). We ask two main research questions: Which are the ...

  15. Studies of proton-proton collisions at the CERN ISR with an identified charged hadron of high transverse momentum at 900. I

    International Nuclear Information System (INIS)

    In the course of an experiment to investigate the structure of final states from high energy proton-proton collisions containing an identified charged hadron of high transverse momentum near 900 in the c.m.s., the authors have studied correlations between the high-Psub(T) trigger particle and forward charged particles. An azimuthal asymmetry is observed for the forward particles. A transverse momentum recoil against the trigger particle is seen, largest at large Feynman x and apparently saturating with increasing trigger momentum. A flatter Psub(T) spectrum for the associated forward particles at 900 in azimuth to the trigger is also observed than in normal events. The dependence of the correlations on the quantum numbers of the trigger particle is generally small in this region of phase space. (Auth.)

  16. Studies of proton-proton collisions at the CERN ISR with an identified charged hadron of high transverse momentum at 900. II

    International Nuclear Information System (INIS)

    Results are reported from a study of proton-proton collisions at a c.m. energy of 52.6 GeV, in which a charged hadron with large transverse momentum is emitted near 900 in the c.m.s. Pairs of particles opposite in azimuth to the trigger particle with transverse momenta above a fixed value shows evidence for jet-like structures. Methods to isolate jet-like groups of particles are compared on the basis of a simple model of jet events. Results on the distribution and internal properties of jets from proton-proton collisions are presented, using one of these methods. The jets are found to be very similar in structure to jets observed in e+e- annihilations and in γp scattering, but have about 20% higher multiplicity mainly originating at small x(parallel). The charge of the jets is correlated with the charge of the trigger particle. (Auth.)

  17. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  18. Three years of digital photogrammetry at CERN

    International Nuclear Information System (INIS)

    The LHC (Large Hadron Collider) is the new particle accelerator project at CERN (European Laboratory for Particle Physics) in Geneva. It will be a 27 km long accelerator made of superconducting magnets. Four big physics detectors: ALICE, ATLAS, CMS, LHC-B, will be installed at four points around it. With this project, new survey requirements appear together with new spatial and time scale constraints. In order to respond to the demand, the CERN Positioning Metrology Group decided to expand its tool box by buying digital photogrammetric equipment three years ago. Basically this equipment consist of Kodak DCS460 cameras and of the Rollei-CDW (Close-range Digital Workstation) software. This system has been used quite extensively since its purchase. The next chapters illustrate the reasons for the choice of the digital photogrammetry tool at CERN and the evolution of its use. Some adapted tooling is also described below. (authors)

  19. CERN OVERVIEW animation

    CERN Multimedia

    Arzur Catel Torres

    2015-01-01

    This animation shows how the Large Hadron Collider (LHC) works. The film begins with an aerial view of CERN near Geneva, with outlines of the accelerator complex, including the underground Large Hadron Collider (LHC), 27-km in circumference. The positions of the four largest LHC experiments, ALICE, ATLAS, CMS and LHCb are revealed before we see protons travelling around the LHC ring. The proton source is a simple bottle of hydrogen gas. An electric field is used to strip hydrogen atoms of their electrons to yield protons. Linac 2, the first accelerator in the chain, accelerates the protons to the energy of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450 GeV. The protons are finally transferred to the two beam pipes of the LHC. The beam in one pipe circulates clockwise while ...

  20. 6th IT First Tuesday@CERN

    CERN Multimedia

    François Grey

    2005-01-01

    Thursday 12 May, 17:30-19:30, Main Auditorium, CERN Data management in the 21st Century: the Petabyte challenge A Petabyte is a million Gigabytes, the equivalent of over 200,000 DVDs. That may seem like an enormous amount of data, but managing such quantities of data is a reality in the world of science, and is increasingly becoming an imperative in the world of business. This IT First Tuesday@CERN presents the Petabyte challenge, and some of the emerging solutions, from both scientific and commercial perspectives. For CERN's Large Hadron Collider, a Grid solution has been chosen to provide the necessary distributed storage capacity for the anticipated 15 Petabytes of data per year that this collider will produce. IBM is CERN's storage partner in the CERN openlab for DataGrid applications, and is testing the companies innovative TotalStorage SAN distributed filesystem in CERN's demanding IT environment. For Lausanne-based VisioWave, managing stored video data provides an extreme storage challenge. For D...

  1. Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Souza, Moacyr Henrique Gomes E; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Awad, Adel; Khalil, Shaaban; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Tonutti, Manfred; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Karafasoulis, Konstantinos; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    A search for large extra spatial dimensions via virtual-graviton exchange in the diphoton channel has been carried out with the CMS detector at the LHC. No excess of events above the standard model expectations is found using a data sample collected in proton-proton collisions at sqrt(s) = 7 TeV and corresponding to an integrated luminosity of 36 inverse picobarns. New lower limits on the effective Planck scale in the range of 1.6-2.3 TeV at the 95% confidence level are set, providing the most restrictive bounds to date on models with more than two large extra dimensions.

  2. Search for Large Extra Dimensions in the Diphoton Final State at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia)

    2011-05-01

    A search for large extra spatial dimensions via virtual-graviton exchange in the diphoton channel has been carried out with the CMS detector at the LHC. No excess of events above the standard model expectations is found using a data sample collected in proton-proton collisions at sqrt(s) = 7 TeV and corresponding to an integrated luminosity of 36 inverse picobarns. New lower limits on the effective Planck scale in the range of 1.6-2.3 TeV at the 95% confidence level are set, providing the most restrictive bounds to date on models with more than two large extra dimensions.

  3. Simulation of electron-cloud heat load for the cold arcs of the Large Hadron Collider

    CERN Document Server

    Maury Cuna, Humberto; Rumolo, Giovanni; Zimmermann, Frank

    2013-01-01

    The heat load due to the electron cloud in the Large Hadron Collider (LHC) cold arcs is a concern for its performance near and beyond nominal beam current. We report the results of simulation studies, which examine the electron-cloud induced heat load for different values of low-energy electron reflectivity and secondary emission yield at injection energy, as well as at beam energies of 4 TeV and 7 TeV, for two different bunch spacing: 25 ns and 50 ns. Benchmarking the simulations against heat-load observations at different beam energies and bunch spacings allows an estimate of the secondary emission yield in the cold arcs of the LHC and of its evolution as a function of time.

  4. Testing the Littlest Higgs Model with T-parity at the Large Hadron Collider

    CERN Document Server

    Matsumoto, Shigeki; Tobe, Kazuhiro

    2008-01-01

    In the framework of the littlest Higgs model with T-parity (LHT), we study the production processes of T-even (T_+) and T-odd (T_-) partners of the top quark at the Large Hadron Collider (LHC). We show that the signal events can be distinguished from the standard-model backgrounds, and that information about mass and mixing parameters of the top partners can be measured with relatively good accuracies. With the measurements of these parameters, we show that a non-trivial test of the LHT can be performed. We also discuss a possibility to reconstruct the thermal relic density of the lightest T-odd particle A_H using the LHC results, and show that the scenario where A_H becomes dark matter may be checked.

  5. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider

    Science.gov (United States)

    Sun, Hao

    2012-04-01

    The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production. Two such channels are selected and the tree level results including leptonic final states are discussed: ZZ → l1-l1+l2-l2+ and ZZ → l-l+νν¯(l, l1,2 = e, μ). The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail. Besides the Z boson transverse momentum distributions, the azimuthal angle between the Z boson decay to fermions, ΔΦ, and their separations in the pseudo-rapidity-azimuthal angle plane, ΔR, as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.

  6. A clean signal for a top-like isosinglet fermion at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aarti Girdhar

    2013-12-01

    We predict a clean signal at the Large Hadron Collider ($\\sqrt{s} = 14$ TeV) for a scenario where there is a top-like, charge +2/3 vector-like isosinglet fermion. Such a quark, via mixing with the standard model top, can undergo decays via both flavour-changing Z-boson coupling and flavour-changing Yukawa interactions. We concentrate on the latter channel, and study the situation where, following its pair production, the heavy quark pair gives rise to two tops and two Higgs bosons. We show that when each Higgs decays in the $b\\bar{b}$ channel, there can be a rather distinct and background-free signal that can unveil the existence of the vector-like isosinglet quark of this kind.

  7. Searching for an elusive charged Higgs at the Large Hadron Collider

    CERN Document Server

    Maitra, Ushoshi; Nandi, S; Rai, Santosh Kumar; Shivaji, Ambresh

    2014-01-01

    We study the signals for a "fermiophobic" charged Higgs boson present in an extension of the standard model with an additional Higgs doublet and right handed neutrinos, responsible for generating Dirac-type neutrino masses. We study the pair production of the charged Higgs at the Large Hadron Collider (LHC), which can be relatively light and still allowed by experimental data. The charged Higgs decays dominantly into a $W$ boson and a very light neutral scalar present in the model, which decays invisibly and passes undetected. We find that the signal for such a charged Higgs is overwhelmed by the standard model background and will prove elusive at the 8 TeV run of the LHC. We present a cut-flow based analysis to pinpoint a search strategy at the 14 TeV run of the LHC which can achieve a signal significance of 5$\\sigma$ for a given mass range of the charged Higgs.

  8. A polarized window for left-right symmetry at the Large Hadron-Electron Collider

    CERN Document Server

    Mondal, Subhadeep

    2015-01-01

    The breaking of parity, a fundamental symmetry between left and right is best understood in the framework of left-right symmetric extension of the standard model. We show that the production of a heavy right-handed neutrino at the proposed Large Hadron-Electron Collider (LHeC) could give us the most simple and direct hint of the scale of this breaking in left-right symmetric theories. This production mode gives a lepton number violating signal with $\\Delta L=2$ which is very clean and has practically no standard model background. We highlight that the right-handed nature of $W_R$ exchange which defines the left-right symmetric theories can be confirmed by using a polarized electron beam and also enhance the production rates with relatively lower beam energy.

  9. Massively Parallel Computing at the Large Hadron Collider up to the HL-LHC

    CERN Document Server

    Lujan, Paul

    2015-01-01

    As the Large Hadron Collider (LHC) continues its upward progression in energy and luminosity towards the planned High-Luminosity LHC (HL-LHC) in 2025, the challenges of the experiments in processing increasingly complex events will also continue to increase. Improvements in computing technologies and algorithms will be a key part of the advances necessary to meet this challenge. Parallel computing techniques, especially those using massively parallel computing (MPC), promise to be a significant part of this effort. In these proceedings, we discuss these algorithms in the specific context of a particularly important problem: the reconstruction of charged particle tracks in the trigger algorithms in an experiment, in which high computing performance is critical for executing the track reconstruction in the available time. We discuss some areas where parallel computing has already shown benefits to the LHC experiments, and also demonstrate how a MPC-based trigger at the CMS experiment could not only improve perf...

  10. Is it possible to create a quantum electromagnetic "black hole" at the Large Hadron Collider?

    CERN Document Server

    Smolyaninov, Igor I

    2012-01-01

    As demonstrated by Chernodub, strong magnetic field forces vacuum to develop real condensates of electrically charged rho mesons, which form an anisotropic inhomogeneous superconducting state similar to Abrikosov vortex lattice. As far as electromagnetic field behaviour is concerned, this state of vacuum constitutes a hyperbolic metamaterial [1]. Here we demonstrate that spatial variations of magnetic field may lead to formation of electromagnetic "black holes" inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic "black holes" is quantized in units of the effective "Planck scale" squared. The magnetic fields of the required strength and geometrical configuration may be created on Earth in heavy-ion collisions at the Large Hadron Collider. We evaluate electromagnetic field distribution around an electromagnetic "black hole" which may be created as a result of such collision.

  11. The ALICE high momentum particle identification system: An overview after the first Large Hadron Collider run

    CERN Document Server

    Martinengo, P

    2011-01-01

    The ALICE High Momentum Particle Identification RICH detector (HMPID) was installed, with its 10 m(2) of Cesium Iodide (CsI) photo-cathodes, in the ALICE experiment at the Large Hadron Collider (LHC) in 2006. Since then, it has been thoroughly commissioned, together with its auxiliary systems, with cosmic rays and particles from beam dump/splash events recorded during various LHC injection tests in 2008 and 2009. Finally, the HMPID has successfully detected particles produced by the first proton-proton collisions at LHC in winter 2009. The present paper reviews the experience gained during the commissioning phase and summarizes the present status of the detector. Preliminary results concerning the detector performance are also reported. (C) 2010 Elsevier B.V. All rights reserved.

  12. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  13. Large Hadron Collider Physics (LHCP2017) conference | 15-20 May 2017 | Shanghai

    CERN Multimedia

    2016-01-01

    The fifth Annual Large Hadron Collider Physics will be held in Shanghai and hosted by Shanghai Jiao Tong University in the period of May 15-20, 2017. The main goal of the conference is to provide intense and lively discussions between experimenters and theorists in such research areas as the Standard Model Physics and Beyond, the Higgs Boson, Supersymmetry, Heavy Quark Physics and Heavy Ion Physics as well as to share a recent progress in the high luminosity upgrades and future colliders developments.     The LHCP2017 website: http://lhcp2017.physics.sjtu.edu.cn/ Event date: 15 - 20 May 2017 Location: Shanghai, China

  14. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    Science.gov (United States)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  15. Investigation of Injection Losses at the Large Hadron Collider with Diamond Based Particle Detectors

    CERN Document Server

    Stein, Oliver; Burkart, Florian; Dehning, Bernd; Griesmayer, Erich; Kain, Verena; Schmidt, Ruediger; Wollmann, Daniel

    2016-01-01

    During the operation of the Large Hadron Collider (LHC) in 2015, increased injection losses were observed. To minimize stress on accelerator components in the injection regions of the LHC and to guarantee an efficient operation these losses needed to be understood and possible mitigation techniques should be studied. Measurements with diamond particle detectors revealed the loss structure with ns-resolution for the first time. Based on these measurements, recaptured beam from the Super Proton Synchrotron (SPS) surrounding the nominal bunch train was identified as the major contributor to the injection loss signals. Methods to reduce the recaptured beam in the SPS were successfully tested and verified with the diamond particle detectors. In this paper the detection and classification of LHC injection losses are described. The methods to reduce these losses and verification measurements are presented and discussed.

  16. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  17. Probing the light radion through diphotons at the Large Hadron Collider

    CERN Document Server

    Bhattacharya, Satyaki; Huitu, Katri; Maitra, Ushoshi; Mukhopadhyaya, Biswarup; Rai, Santosh Kumar

    2014-01-01

    A radion in a scenario with a warped extra dimension can be lighter than the Higgs boson, even if the Kaluza-Klein excitation modes of the graviton turn out to be in the multi-TeV region. The discovery of such a light radion would be gateway to new physics. We show how the two-photon mode of decay can enable us to probe a radion in the mass range 60 - 110 GeV. We take into account the diphoton background, including fragmentation effects, and include cuts designed to suppress the background to the maximum possible extent. Our conclusion is that, with an integrated luminosity of 3000 $\\rm fb^{-1}$ or less, the next run of the Large Hadron Collider should be able to detect a radion in this mass range, with a significance of 5 standard deviations or more.

  18. Synchrotron Radiation and beam tube vacuum in a Very Large Hadron Collider; Stage 1 VLHC

    International Nuclear Information System (INIS)

    Synchrotron radiation induced photodesorption in particle accelerators may lead to pressure rise and to beam-gas scattering losses, finally affecting the beam lifetime. We discuss the beam tube vacuum in the low field Stage 1 Very Large Hadron Collider VLHC. Since VLHC Stage 1 has a room temperature beam tube, a non-evaporable getter (NEG St101 strip) pumping system located inside a pumping antechamber, supplemented by lumped ion pumps for pumping methane is considered. A possible beam conditioning scenario is presented for reaching design intensity. The most important results are summarized in this paper. More detailed reports of the calculations will be presented at the PAC2001 Conference, Chicago, IL to be held in June 2001, and at the Snowmass Conference, CO, to be held on July 2001

  19. Quantifying jet transport properties via large p{sub T} hadron production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-Quan; Zhang, Hanzhong; Zhang, Ben-Wei; Wang, Enke [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China)

    2016-01-15

    Nuclear modification factor R{sub AA} for large p{sub T} single hadron is studied in a next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the quark-gluon plasma is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter q{sub 0} and the mean free path λ{sub 0}, both at the initial time τ{sub 0}. A phenomenological study of the experimental data for R{sub AA}(p{sub T}) is performed to constrain the two parameters with simultaneous χ{sup 2}/d.o.f. fits to Relativistic Heavy Ion Collider as well as Large Hadron Collider data. We obtain for energetic quarks q{sub 0} ∼ 1.1±0.2 GeV{sup 2}/fm and λ{sub 0} ∼ 0.4±0.03 fm in central Au + Au collisions at √(S{sub NN}) = 200 GeV, while q{sub 0} ∼ 1.7±0.3 GeV{sup 2}/fm, and λ{sub 0} ∼ 0.5±0.05 fm in central Pb+Pb collisions at √(S{sub NN}) = 2.76 TeV. Numerical analysis shows that the best fit favors a multiple scattering picture for the energetic jets propagating through the bulk medium, with a moderate averaged number of gluon emissions. Based on the best constraints for λ{sub 0} and τ{sub 0}, the estimated value for the mean-squared transverse momentum broadening is moderate which implies that the hard jets go through the medium with small reflection. (orig.)

  20. Quantifying jet transport properties via large pT hadron production

    International Nuclear Information System (INIS)

    Nuclear modification factor RAA for large pT single hadron is studied in a next-to-leading order perturbative QCD parton model with medium-modified fragmentation functions (mFFs) due to jet quenching in high-energy heavy-ion collisions. The energy loss of the hard partons in the quark-gluon plasma is incorporated in the mFFs which utilize two most important parameters to characterize the transport properties of the hard parton jets: the jet transport parameter q0 and the mean free path λ0, both at the initial time τ0. A phenomenological study of the experimental data for RAA(pT) is performed to constrain the two parameters with simultaneous χ2/d.o.f. fits to Relativistic Heavy Ion Collider as well as Large Hadron Collider data. We obtain for energetic quarks q0 ∼ 1.1±0.2 GeV2/fm and λ0 ∼ 0.4±0.03 fm in central Au + Au collisions at √(SNN) = 200 GeV, while q0 ∼ 1.7±0.3 GeV2/fm, and λ0 ∼ 0.5±0.05 fm in central Pb+Pb collisions at √(SNN) = 2.76 TeV. Numerical analysis shows that the best fit favors a multiple scattering picture for the energetic jets propagating through the bulk medium, with a moderate averaged number of gluon emissions. Based on the best constraints for λ0 and τ0, the estimated value for the mean-squared transverse momentum broadening is moderate which implies that the hard jets go through the medium with small reflection. (orig.)

  1. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    Science.gov (United States)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  2. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    International Nuclear Information System (INIS)

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  3. Electron Clouds in High Energy Hadron Accelerators

    OpenAIRE

    Petrov, Fedor

    2013-01-01

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use...

  4. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  5. GERMANY AT CERN

    CERN Multimedia

    2001-01-01

    13 - 15 November 2001 Administration Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs OPENING CEREMONY 10h00 - 13 November GERMANY AT CERN Thirty-three German companies will be demonstrating their supplies and services offered for the construction of the Large Hadron Collider (LHC) and other key CERN programmes. The Industrial exhibition will be enriched with a display of objects of contemporary German art. The official German presentation is under the patronage of the Federal Minister of Education and Research (BMBF), Bonn. There follows : the list of exhibitors, the list of lectures to be given at the exhibition. A detailed programme will be available in due course at : your Divisional Secretariat, the Reception information desk, building 33, the exhibition. LIST OF EXHIBITORS Accel Instruments GmbH Representative: 1.1 Accel Instruments GmbH/CH-8754 Netsal apra-norm Elektromechanik GmbH Representative: 2.1 apra-norm s.n.c./F-67500 Haguenau Babcock Noell Nuclear GmbH Balcke-D&u...

  6. Jet Physics with A Large Ion Collider Experiment at the Large Hadron Collider

    CERN Document Server

    Klein, Jochen

    In the presence of the strongly-interacting medium created in relativistic heavy-ion collisions, highly energetic partons from hard interactions lose energy through scattering and radiating. This effect, referred to as jet quenching, is observed as a suppression of particles with large momenta transverse to the beam axis (high-$p_\\perp$). To study the impact of the medium evolution on the energy loss modelling in the Monte Carlo event generator JEWEL, we compare results obtained for different scenarios of Au-Au collisions at $\\sqrt{s_\\mathrm{NN}} = 200~\\mathrm{GeV}$. For this purpose, JEWEL was extended to use the output of relativistic hydrodynamic calculations in the OSCAR2008H format. We find the modelling of common observables, e.g. the nuclear modification factor, to be rather insensitive to the details of the medium evolution, for which the analytically accessible Bjorken expansion can thus be considered adequate. The OSCAR interface now allows further studies also at LHC energies. Jets of large transve...

  7. Studies of purification of the Resistive Plate Chamber gas mixture for the Large Hadron Collider experiments

    CERN Document Server

    Capeans, M; Guida, R; Hahn, F; Haider, S

    2009-01-01

    The Resistive Plate Chambers (RPCs) installed as part of the large muon detectors at the Large Hadron Collider (LHC) experiments use a gas mixture of 94.7% C2H2F4, 5% iC(4)H(10) and 0.3% SF6. Based on economical grounds, the design philosophy of the gas systems for the ATLAS and CMS RPC's foresees to recirculate the gas mixture in 90-95% closed loop circulation. At the LHC, RPC chambers are operated in a high radiation environment, conditions for which large amount of impurities in the return gas have been observed in earlier studies. They are potentially dangerous for the stable operation of the detectors, the materials in the detector and the gas system. While several purification stages have been foreseen in the present gas systems, chemical reactions between the absorber and the impurities are yet not well understood. Furthermore, the effects on the gas mixture of the foreseen factor 10 increase of luminosity for the LHC upgraded phase should be studied. We present the results of systematic studies of the...

  8. The role of CERN in the large construction contracts for LHC civil works

    CERN Document Server

    D'Aça-Castel-Branco, P

    1998-01-01

    The contracts for the civil engineering construction of the LHC are based upon the standard FIDIC (Fédération Internationale des Ingénieurs Conseils) document entitled "Conditions of Contract for Works of Civil Engineering Construction". FIDIC is a reputable supra-national and world-wide Federation of Consulting Engineers focused on the definition and regulation of the role of many parties involved with the International Construction Industry. An overview of FIDIC's and other Organizations', such as the World Bank, standard documents is presented. The difference between standard Contract documents and standard Bidding documents is pointed out. In view of CERN's status as an intergovernmental Organization, the original FIDIC standard documents needed to be adapted. The modifications are identified and explained. A concise definition of the role of each party concerned by the LHC construction Contracts, i.e. the Contractor, the Engineer and the Client (CERN), is made. Finally, a brief cost-benefit analysis o...

  9. The Scandinavian countries and CERN's large 300 GeV accelerator

    International Nuclear Information System (INIS)

    Following introductory chapters on the theme, the source material, the history, organisation and functioning of CERN and the place of nuclear research in the scientific research political landscape of the Scandinavian countries, the preliminary basis for the new 300 GeV synchroton, that it be sited elsewhere than in Switzerland is presented. The discussion as to whether Norway should offer a site is presented, and the reasons for the governments decision to do so given. The Swedish offer is also discussed. The discussions and attitudes in Sweden, Norway and Denmark to the first project are presented in turn, and their reasons for following the British rejection are given. The revised project is also described, and the discussions on this in the three countries are treated in turn. A chapter also describes Finland's relationship to CERN. In the final chapter certain aspects in e.g. the motivation of participants in the discussions are treated. (JIW)

  10. Summary of the Very Large Hadron Collider Physics and Detector Workshop

    OpenAIRE

    G. Anderson; U. Baur; Berger, M.; Borcherding, F; Brandt, A; Denisov, D.; Eno, S.; Han, T.; Keller, S; Khazins, D.; LeCompte, T.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Lykken, J; Olness, F.; Paige, F.; R. Scalise

    1997-01-01

    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV.

  11. Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach

    CERN Document Server

    He, Min; Rapp, Ralf

    2014-01-01

    Employing nonperturbative transport coefficients for heavy-flavor (HF) diffusion through quark-gluon plasma (QGP), hadronization and hadronic matter, we compute $D$- and $B$-meson observables in Pb+Pb ($\\sqrt{s}$=2.76\\,TeV) collisions at the LHC. Elastic heavy-quark scattering in the QGP is evaluated within a thermodynamic $T$-matrix approach, generating resonances close to the critical temperature which are utilized for recombination into $D$ and $B$ mesons, followed by hadronic diffusion using effective hadronic scattering amplitudes. The transport coefficients are implemented via Fokker-Planck Langevin dynamics within hydrodynamic simulations of the bulk medium in nuclear collisions. The hydro expansion is quantitatively constrained by transverse-momentum spectra and elliptic flow of light hadrons. Our approach thus incorporates the paradigm of a strongly coupled medium in both bulk and HF dynamics throughout the thermal evolution of the system.

  12. On the Deviation of the Standard Model Predictions in the Large Hadron Collider Experiments (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2016-01-01

    Full Text Available The newest Large Hadron Collider experiments targeting the search for New Physics manifested the possibility of new heavy particles. Such particles are not predicted in the framework of Standard Model, however their existence is lawful in the framework of another model based on J. A.Wheeler’s geometrodynamcs.

  13. Particle Showers in a Highly Granular Hadron Calorimeter

    CERN Document Server

    Seidel, Katja

    2010-01-01

    The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at a future Linear Collider. The hadron calorimeter uses small scintillator cells individually read out with silicon photomultipliers. The system with 7608 channels has been successfully operated in beam tests at DESY, CERN and Fermilab since 2006, and represents the first large scale tests of these devices in high energy physics experiments. The unprecedented granularity of the detector provides detailed information of the properties of hadronic showers, which helps to constrain hadronic shower models through comparisons with model calculations. Results on longitudinal and lateral shower profiles, compared to a variety of hadronic shower models, first results with a software compensation technique for the energy resolution and an outlook on the next generation detector prototype are presented.

  14. Golden Hadron awards for the LHC's top suppliers.

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The following firms have been selected to receive a GOLDEN HADRON AWARD 2003, in recognition of their outstanding achievement: JDL TECHNOLOGIES, Belgium "in producing automatic cable inspection systems", FURUKAWA ELECTRIC COMPANY, Japan "in producing high quality superconducting cable", IHI Corporation, Japan, and LINDE KRYOTECHNIK, Switzerland "in producing novel 1.8 K refrigeration units based on advanced cold compressor technology" for the Large Hadron Collider.Photos 01, 02: Recipients of the 2003 Golden Hadron awards at the presentation ceremony on 16 May.Photo 03: LHC project leader Lyn Evans updates the award recipients on work for CERN's new accelerator.Photo 04: René Joannes of JDL Technologies (left) receives a Golden Hadron award from LHC project leader Lyn Evans.Shinichiro Meguro, managing director of Furukawa Electric Company, receives a Golden Hadron award from LHC project leader Lyn Evans.Photo 06: Kirkor Kurtcuoglu of Linde Kryotechnik (left) and Motoki Yoshinaga, associate director of IHI...

  15. British researchers receive awards for Grid development: Andy McNab of the University of Manchester was presented with a CERN-UK award for outstanding achievement in Grid development

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    McNab has made key contributions to developing a robust security model for the Large Hadron Collider Computing Grid. The awards were presented by CERN's director-general, Robert Aymar, during a meeting of GridPP, a collaboration of particle physicists and computing scientists from the UK and CERN.

  16. Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider

    International Nuclear Information System (INIS)

    A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented. A new class of highly pixelated, fast response, high gain, radiation detectors is being developed based on plasma panel technology. In its most basic form it is known as a plasma panel sensor or 'PPS'. By depositing a photocathode on an interior surface facing the gas, a light-sensitive PPS, known as a plasma panel photosensor or 'PPPS' can be realized with potential advantages over other high-gain, light-detection devices such as photomultiplier tubes (PMT), solid state photomultipliers (SSPM), gas electron multipliers (GEM), Geiger-mode avalanche photodiodes (APD), multichannel plate photomultipliers (MCPPMT). By coupling the PPPS to a scintillator, a plasma panel scintillating detector ('PPSD') can be constructed for a host of applications: Compton telescopes, sampling calorimeters in high energy physics, medical imaging, homeland security, etc. The many potential attributes of PPS devices are attracting significant interest from nuclear physicists for detecting highly ionizing charged particles at radioactive ion beam (RIB) accelerators, as well as from high energy physicists for the detection of minimum ionizing particles (MIP) for the next generation of high and super-high luminosity colliders such as the Super Large Hadron Collider (SLHC) at CERN and the International Linear Collider (ILC). The goal of our research is to develop plasma panel based radiation detectors for both scientific and commercial applications. We describe below the basic theory of operation, our experimental effort and simulation results, and potential market opportunities for plasma display panel (PDP) manufacturers. For example, medical imaging, medical therapeutics and homeland security

  17. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  18. GPU Enhancement of the Trigger to Extend Physics Reach at the Large Hadron Collider

    CERN Document Server

    Lujan, P; Hunt, A; Jindal, P; LeGresley, P

    2013-01-01

    At the Large Hadron Collider (LHC), the trigger systems for the detectors must be able to process a very large amount of data in a very limited amount of time, so that the nominal collision rate of 40 MHz can be reduced to a data rate that can be stored and processed in a reasonable amount of time. This need for high performance places very stringent requirements on the complexity of the algorithms that can be used for identifying events of interest in the trigger system, which potentially limits the ability to trigger on signatures of various new physics models. In this paper, we present an alternative tracking algorithm, based on the Hough transform, which avoids many of the problems associated with the standard combinatorial track finding currently used. The Hough transform is also well-adapted for Graphics Processing Unit (GPU)-based computing, and such GPU-based systems could be easily integrated into the existing High-Level Trigger (HLT). This algorithm offers the ability to trigger on topological signa...

  19. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hanussek, Marja

    2012-05-15

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  20. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    International Nuclear Information System (INIS)

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production

  1. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    International Nuclear Information System (INIS)

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  2. Physics with colliding hadron beams

    CERN Document Server

    Wetherell, Alan M

    1972-01-01

    The results on p-p collisions obtained with the CERN ISR will be reviewed and the current experimental programme described. Future possibilities for colliding hadron beams, other than proton-proton, will be briefly discussed. (0 refs).

  3. The COMPASS Setup for Physics with Hadron Beams

    CERN Document Server

    Abbon, Ph.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M.L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Desforge, D.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M.A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, Ana Sofia; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D.V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J-M.; Rocco, E.; Rossiyskaya, N.S.; Rousse, J.Y.; Ryabchikov, D.I.; Rychter, A.; Samartsev, A.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This article describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  4. The COMPASS setup for physics with hadron beams

    Science.gov (United States)

    Abbon, P.; Adolph, C.; Akhunzyanov, R.; Alexandrov, Yu.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Ciliberti, P.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Colantoni, M.; Cotte, D.; Crespo, M. L.; Curiel, Q.; Dafni, T.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Desforge, D.; Dinkelbach, A. M.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Durand, D.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gatignon, L.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giganon, A.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Gregori, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d`Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Menon, G.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M. A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesaro, G.; Pesaro, V.; Peshekhonov, D. V.; Pires, C.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Reymond, J.-M.; Rocco, E.; Rossiyskaya, N. S.; Rousse, J.-Y.; Ryabchikov, D. I.; Rychter, A.; Samartsev, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Terça, G.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Weitzel, Q.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-04-01

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This paper describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup.

  5. The COMPASS setup for physics with hadron beams

    International Nuclear Information System (INIS)

    The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successfully used with positive and negative hadron beams and with liquid hydrogen and solid nuclear targets. This paper describes the new and upgraded detectors and auxiliary equipment, outlines the reconstruction procedures used, and summarises the general performance of the setup

  6. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Majerotto, Walter; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Szoncsó, Fritz; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Chekhovsky, Vladimir; Emeliantchik, Igor; Litomin, Aliaksandr; Makarenko, Vladimir; Mossolov, Vladimir; Shumeiko, Nikolai; Solin, Alexander; Stefanovitch, Roman; Suarez Gonzalez, Juan; Fedorov, Andrey; Korzhik, Mikhail; Missevitch, Oleg; Zuyeuski, Raman; Bansal, Monika; Bansal, Sunil; Beaumont, Willem; Cornelis, Tom; De Wolf, Eddi A; Druzhkin, Dmitry; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Goorens, Robert; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Lancker, Luc; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Dewulf, Jean-Paul; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Rugovac, Shkelzen; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Wickens, John; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; De Favereau De Jeneret, Jerome; Delaere, Christophe; Demin, Pavel; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Iope, Rogerio Luiz; Lagana, Caio; Lietti, Sergio M; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Vutova, Mariana; Roumenin, Chavdar; Uzunova, Daniela; Zahariev, Roman; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; He, Kang-Lin; Jiang, Chun-Hua; Li, Wei-Guo; Liang, Dong; Liang, Song; Meng, Xiangwei; Sun, Gongxing; Sun, Han-Sheng; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Yang, Min; Zang, Jingjing; Zhang, Xiaomei; Zhang, Zhen; Zhang, Zhenxia; Zhao, Wei-Ren; Zhu, Zian; Asawatangtrakuldee, Chayanit; Ban, Yong; Cai, Jianxin; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Hong-Tao; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Ye, Yan-Lin; Zhang, Linlin; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros

    2012-01-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W–, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 125 giga–electron volts. Although its measured properties are, withi...

  7. Vacuum stability and residual gas density estimation for the vacuum chamber upgrade of the ATLAS interaction region of the Large Hadron Collider

    CERN Document Server

    Bregliozzi, G; Baglin, V; Jimenez, J M

    2012-01-01

    The CERN Large Hadron Collider (LHC) has 54 km of ultra-high vacuum (UHV) beam chambers out of which about 90% are at cryogenic temperature (1.9 K) and the rest at room temperature. During operation, the residual gas density in the beam pipes is dominated by beam induced effect such ion, electron and photon-stimulated gas desorption. Therefore, the computation of gas density profile is of great importance to confirm the vacuum stability, and to estimate the beam lifetime. Moreover, the gas density profiles are essential to determine the machine induced background in the experimental areas, and to define the pressure profile in the cryogenic sectors where there is no vacuum instrumentation available. In this paper, the vacuum stability is studied for a newly proposed upgrade of the vacuum chamber at the ATLAS interaction point, using the vacuum stability code called VASCO. The residual gas density profile along the ATLAS vacuum chambers and the effects of photon and electron flux hitting the vacuum chamber wal...

  8. A New Boson with a Mass of 125 GeV Observed with the CMS Experiment at the Large Hadron Collider

    Science.gov (United States)

    CMS Collabortion; Abbaneo, D.; Abbiendi, G.; Abbrescia, M.; Abdullin, S.; Abdulsalam, A.; Acharya, B. S.; Acosta, D.; Acosta, J. G.; Adair, A.; Adam, W.; Adam, N.; Adamczyk, D.; Adams, T.; Adams, M. R.; Adiguzel, A.; Adler, V.; Adolphi, R.; Adzic, P.; Afanasiev, S.; Agostino, L.; Agram, J.-L.; Aguilar-Benitez, M.; Aguilo, E.; Ahmad, M.; Ahmad, M. K. H.; Ahuja, S.; Akchurin, N.; Akgun, U.; Akgun, B.; Akin, I. V.; Alagoz, E.; Albajar, C.; Albayrak, E. A.; Albergo, S.; Albert, M.; Albrow, M.; Alcaraz Maestre, J.; Aldá Júnior, W. L.; Aldaya Martin, M.; Alemany-Fernandez, R.; Alexander, J.; Aliev, T.; Alimena, J.; Allfrey, P.; Almeida, N.; Alverson, G.; Alves, G. A.; Aly, A.; Amaglobeli, N.; Amapane, N.; Ambroglini, F.; Amsler, C.; Anagnostou, G.; Anastassov, A.; Andelin, D.; Anderson, J.; Anderson, M.; Andrea, J.; Andreev, Yu.; Andreev, V.; Andreev, V.; Andrews, W.; Anfreville, M.; Angelini, F.; Anghel, I. M.; Anisimov, A.; Anjos, T. S.; Ansari, M. H.; Antonelli, L.; Anttila, E.; Antunovic, Z.; Apanasevich, L.; Apollinari, G.; Appelt, E.; Apresyan, A.; Apyan, A.; Arce, P.; Arcidiacono, R.; Ardalan, F.; Arenton, M. W.; Arezzini, S.; Arfaei, H.; Argiro, S.; Arisaka, K.; Arndt, K.; Arneodo, M.; Arora, S.; Asavapibhop, B.; Asawatangtrakuldee, C.; Asghar, M. I.; Askew, A.; Aspell, P.; Assran, Y.; Ata, M.; Atac, M.; Attebury, G.; Attikis, A.; Auffray, E.; Autermann, C.; Auzinger, G.; Avdeeva, E.; Avery, P.; Avetisyan, A.; Avila, C.; Awad, A.; Ayan, A. S.; Azarkin, M.; Azhgirey, I.; Aziz, T.; Azzi, P.; Azzolini, V.; Azzurri, P.; Baarmand, M. M.; Babb, J.; Baccaro, S.; Bacchetta, N.; Bachtis, M.; Baden, A.; Badgett, W.; Badier, J.; Baechler, J.; Baffioni, S.; Bagaturia, I.; Bagliesi, G.; Bai, Y.; Bailleux, D.; Baillon, P.; Bainbridge, R.; Bakhshiansohi, H.; Bakirci, M. N.; Bakken, J. A.; Balazs, M.; Baldin, B.; Ball, A. H.; Ball, G.; Ballin, J.; Ban, Y.; Banerjee, S.; Banerjee, S.; Bäni, L.; Banicz, K.; Bansal, M.; Bansal, S.; Banzuzi, K.; Barashko, V.; Barbagli, G.; Barberis, E.; Barbone, L.; Barczyk, A.; Bard, R.; Barfuss, A. F.; Bargassa, P.; Barge, D.; Baringer, P.; Barker, A.; Barnes, V. E.; Barnett, B. A.; Barney, D.; Barone, L.; Barrass, T.; Bartalini, P.; Barth, C.; Bartoloni, A.; Basegmez, S.; Basso, L.; Basti, A.; Bateman, E.; Battilana, C.; Bauer, J.; Bauer, D.; Bauer, G.; Bauerdick, L. A. T.; Baulieu, G.; Baumbaugh, B.; Baumgartel, D.; Baur, U.; Bayshev, I.; Bazterra, V. E.; Bean, A.; Beauceron, S.; Beaudette, F.; Beaumont, W.; Beaupere, N.; Becheva, E.; Bedjidian, M.; Beernaert, K.; Behner, F.; Behr, J.; Behrenhoff, W.; Behrens, U.; Belforte, S.; Beliy, N.; Belknap, D.; Bell, A. J.; Bell, K. W.; Bellan, R.; Bellato, M.; Bellazzini, R.; Bellinger, J. N.; Belotelov, I.; Belyaev, A.; Belyaev, A.; Benaglia, A.; Bencze, G.; Bendavid, J.; Benedetti, D.; Benelli, G.; Benettoni, M.; Benhabib, L.; Beni, N.; Benitez, J. F.; Benussi, L.; Benvenuti, A. C.; Beranek, S.; Beretvas, A.; Bergauer, T.; Berger, J.; Bergholz, M.; Beri, S. B.; Bernardes, C. A.; Bernardini, J.; Bernardino Rodrigues, N.; Bernet, C.; Berry, D.; Berry, E.; Berryhill, J.; Bertl, W.; Bertoldi, M.; Berzano, U.; Besancon, M.; Besson, A.; Betchart, B.; Betev, B.; Bethani, A.; Betts, R. R.; Beuselinck, R.; Bhandari, V.; Bhardwaj, A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharya, S.; Bhattacharya, S.; Bhatti, A.; Bheesette, S.; Bialas, W.; Bialkowska, H.; Biallass, P.; Bian, J. G.; Bianchi, G.; Bianchini, L.; Bianco, S.; Biasini, M.; Biasotto, M.; Biino, C.; Bilei, G. M.; Bilin, B.; Bilki, B.; Binkley, M.; Bisello, D.; Bitioukov, S.; Blau, B.; Blekman, F.; Blobel, V.; Bloch, D.; Bloch, P.; Bloom, K.; Bluj, M.; Blüm, P.; Blumenfeld, B.; Blyweert, S.; Boccali, T.; Bocci, A.; Bochenek, J.; Bockelman, B.; Bodek, A.; Bodin, D.; Boimska, B.; Bolla, G.; Bolognesi, S.; Bolton, T.; Bonacorsi, D.; Bonato, A.; Bondu, O.; Bonnett Del Alamo, M.; Bontenackels, M.; Boos, E.; Borcherding, F.; Bornheim, A.; Borras, K.; Borrello, L.; Bortignon, P.; Bortoletto, D.; Bose, T.; Bose, S.; Böser, C.; Bosi, F.; Bostock, F.; Botta, C.; Boudoul, G.; Bouhali, O.; Boulahouache, C.; Bourilkov, D.; Boutemeur, M.; Boutigny, D.; Boutle, S.; Bradley, D.; Braibant-Giacomelli, S.; Branca, A.; Branson, A.; Branson, J. G.; Brauer, R.; Braunschweig, W.; Breedon, R.; Breto, G.; Breuker, H.; Brew, C.; Brez, A.; Brigliadori, L.; Brigljevic, V.; Brinkerhoff, A.; Brito, L.; Broccolo, G.; Brochero Cifuentes, J. A.; Brochet, S.; Brom, J.-M.; Brona, G.; Brooke, J. J.; Broutin, C.; Brown, R. M.; Brownson, E.; Brun, H.; Bruno, G.; Buchmann, M. A.; Buchmuller, O.; Bucinskaite, I.; Budd, H.; Buege, V.; Bujak, A.; Bunichev, V.; Bunin, P.; Bunkowski, K.; Bunn, J.; Buontempo, S.; Burgmeier, A.; Burkett, K.; Busson, P.; Busza, W.; Butler, A. P. H.; Butler, P. H.; Butler, J. N.; Butt, J.; Butz, E.; Bylsma, B.

    2012-12-01

    The Higgs boson was postulated nearly five decades ago within the framework of the standard model of particle physics and has been the subject of numerous searches at accelerators around the world. Its discovery would verify the existence of a complex scalar field thought to give mass to three of the carriers of the electroweak force—the W+, W-, and Z0 bosons—as well as to the fundamental quarks and leptons. The CMS Collaboration has observed, with a statistical significance of five standard deviations, a new particle produced in proton-proton collisions at the Large Hadron Collider at CERN. The evidence is strongest in the diphoton and four-lepton (electrons and/or muons) final states, which provide the best mass resolution in the CMS detector. The probability of the observed signal being due to a random fluctuation of the background is about 1 in 3 × 106. The new particle is a boson with spin not equal to 1 and has a mass of about 1.25 giga-electron volts. Although its measured properties are, within the uncertainties of the present data, consistent with those expected of the Higgs boson, more data are needed to elucidate the precise nature of the new particle.

  9. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Miller, D W; Schwartzman, Ariel

    2011-01-01

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of $sqrt{s}=7$ TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include t...

  10. The High Luminosity Large Hadron Collider the new machine for illuminating the mysteries of Universe

    CERN Document Server

    Brüning, Oliver

    2015-01-01

    This book provides a broad introduction to the physics and technology of the High Luminosity Large Hadron Collider (HL-LHC). This new configuration of the LHC is one of the major accelerator projects for the next 15 years and will give new life to the LHC after its first 15-year operation. Not only will it allow more precise measurements of the Higgs boson and of any new particles that might be discovered in the next LHC run, but also extend the mass limit reach for detecting new particles. The HL-LHC is based on the innovative accelerator magnet technologies capable of generating 11–13 Tesla fields, with effectiveness enhanced by use of the new Achromatic Telescopic Squeezing scheme, and other state-of-the-art accelerator technologies, such as superconducting compact RF crab cavities, advanced collimation concepts, and novel power technology based on high temperature superconducting links. The book consists of a series of chapters touching on all issues of technology and design, and each chapter can be re...

  11. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    CERN Document Server

    Danisi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 μm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic im...

  12. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    Energy Technology Data Exchange (ETDEWEB)

    Darve, C.; /Fermilab; Balle, C.; Casas-Cubillos, J.; Perin, A.; Vauthier, N.; /CERN

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.

  13. Busca por dimensões extras no detector CMS do large hadron collider

    CERN Document Server

    Fernandez Perez Tomei, T R

    We present the results of a search for experimental evidence of extra space dimensions in proton-proton collisions at a center-of-mass energy of 7 TeV, furnished by the Large Hadron Collider accelerator. We analyzed the data taken by the Compact Muon Solenoid experiment during 2011, which total an integrated luminosity of 4.7 fb−1. The Randall-Sundrum warped extra dimensions model was used as a standard benchmark for the experimental signatures which could be observed in the data, in the presence of extra dimensions. The studied reaction is pp → G∗→ ZZ→ qqνν, where G∗ is the first Randall-Sundrum graviton resonance. The observations agree witht he Standard Model predictions. In the absence of experimental signals of extra dimensions, we put limits on the parameters of the Randall-Sundrum model. Upper limits, with 95% confidence, for the cross-section of processes which would raise the event yield in the channel considered are in the [0.047 – 0.021] pb range, for resonance masses in the [1000...

  14. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    International Nuclear Information System (INIS)

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC) . Taking advantage of Long Shutdown 1 (LS1) during 2014/2015, the Pixel Detector was brought to surface to equip it with new service panels and to repair modules. The Insertable B-Layer (IBL), a fourth layer of pixel sensors, was installed in-between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) were used and a new readout chip has been designed with CMOS 130 nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical performance. An overview of the lessons learned during the IBL project is presented, focusing on the challenges and highlighting the issues met during the production, integration, installation and commissioning phases of the detector. Early performance tests using cosmic and beam data are also presented

  15. Hadronic effects and observables in B →π ℓ+ℓ- decay at large recoil

    Science.gov (United States)

    Hambrock, Christian; Khodjamirian, Alexander; Rusov, Aleksey

    2015-10-01

    We calculate the amplitude of the rare flavor-changing neutral-current decay B →π ℓ+ℓ- at large recoil of the pion. The nonlocal contributions in which the weak effective operators are combined with the electromagnetic lepton-pair emission are systematically taken into account. These amplitudes are calculated at off-shell values of the lepton-pair mass squared, q2operator-product expansion, QCD factorization and light-cone sum rules. The results are fitted to hadronic dispersion relations in q2, including the intermediate vector meson contributions. The dispersion relations are then used in the physical region q2>0 . Our main result is the process-dependent addition Δ C9(B π )(q2) to the Wilson coefficient C9 obtained at 4 mℓ2factors from light-cone sum rules, this quantity is used to predict the differential rate, direct C P asymmetry and isospin asymmetry in B →π ℓ+ℓ- . We also estimate the total rate of the rare decay B →π ν ν ¯.

  16. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider

    CERN Document Server

    Aquilina, N; Sammut, N; Strzeclzyk, M; Todesco, E

    2012-01-01

    It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar pheno...

  17. Instrumentation Status of the Low-β Magnet Systems at the Large Hadron Collider (LHC)

    CERN Document Server

    Darve, C; Casas-Cubillos, J; Perin, A; Vauthier, N

    2011-01-01

    The low-β magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 1034cm-2s-1. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-β magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the in...

  18. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    CERN Document Server

    Darve, C; Casas-Cubillos, J; Perin, A; Vauthier, N

    2011-01-01

    The low-beta magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10**34/cm**2s. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-beta magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents ...

  19. Operational Experience and Consolidations for the Current Lead Control Valves of the Large Hadron Collider

    CERN Document Server

    Perin, A; Pirotte, O; Krieger, B; Widmer, A

    2012-01-01

    The Large Hadron Collider superconducting magnets are powered by more than 1400 gas cooled current leads ranging from 120 A to 13000 A. The gas flow required by the leads is controlled by solenoid proportional valves with dimensions from DN 1.8 mm to DN 10 mm. During the first months of operation, signs of premature wear were found in the active parts of the valves. This created major problems for the functioning of the current leads threatening the availability of the LHC. Following the detection of the problems, a series of measures were implemented to keep the LHC running, to launch a development program to solve the premature wear problem and to prepare for a global consolidation of the gas flow control system. This article describes first the difficulties encountered and the measures taken to ensure a continuous operation of the LHC during the first year of operation. The development of new friction free valves is then presented along with the consolidation program and the test equipment developed to val...

  20. Probing Electroweak Gauge Boson Scattering with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Anger, Philipp; Lammers, Sabine

    Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of $20.3\\;\\mathrm{fb}^{-1}$ at a center-of-mass e...

  1. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    Science.gov (United States)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-11-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge.

  2. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Shintaro, E-mail: skamada@ssd.hpk.co.jp [Hamamatsu Photonics, 1126-1 Ichino-cho, Hamamatsu City 435-8558 (Japan); Yamamura, Kazuhisa [Hamamatsu Photonics, 1126-1 Ichino-cho, Hamamatsu City 435-8558 (Japan); Unno, Yoshinobu; Ikegami, Yoichi [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Ibaraki, Tsukuba 305-0801 (Japan)

    2014-11-21

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge. - Highlights: • We achieved a tolerance of 1000 V with a 250-μm edge by Al2O3 side wall passivation. • Above is a wafer process and suitable for mass production. • For edge-spark protection, we suggest N+ edge with an isolation.

  3. Phenomenology of supersymmetric Z' decays at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Corcella, Gennaro [INFN, Laboratori Nazionali di Frascati, Frascati, RM (Italy)

    2015-06-15

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into supersymmetric particles, such as chargino, neutralino, and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at √(s) = 14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modified to accommodate the extra Z' boson and consistent with the discovery of a Higgs-like boson with mass around 125 GeV. Results are presented for several observables and compared with those obtained for direct Z' decays into lepton pairs, as well as direct production of supersymmetric particles. For the sake of comparison, Z' phenomenology in an effective supersymmetric extension of the Sequential Standard Model is also discussed. (orig.)

  4. Dijet signals for low mass strings at the Large Hadron Collider.

    Science.gov (United States)

    Anchordoqui, Luis A; Goldberg, Haim; Lüst, Dieter; Nawata, Satoshi; Stieberger, Stephan; Taylor, Tomasz R

    2008-12-12

    Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first resonant pole to determine the discovery potential of LHC for the first Regge excitations of the quark and gluon. Remarkably, the reach of LHC after a few years of running can be as high as 6.8 TeV. Even after the first 100 pb(-1) of integrated luminosity, string scales as high as 4.0 TeV can be discovered. Data on pp-->directgamma + jet can provide corroboration for string physics at scales as high as 5 TeV. PMID:19113614

  5. Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider

    CERN Document Server

    Lindner, Manfred; Rodejohann, Werner; Yaguna, Carlos E

    2016-01-01

    We show that the proposed Large Hadron electron Collider (LHeC) will provide a great opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC -- including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determine the values of right-handed neutrino and gauge boson masses that could be tested at the LHeC after one, five and ten years of operation. Our results indicate that this collider might probe, via the $\\Delta L =2$ signal $e^-p\\to e^+jjj$, Majorana neutrino masses up to $1$ TeV and $W_R$ masses up to $\\sim 6.5$ TeV. Interestingly, part of this parameter space is beyond the expected reach of the LHC and of future neutrinoless double beta decay experiments.

  6. Test of relativistic gravity for propulsion at the Large Hadron Collider

    CERN Document Server

    Felber, Franklin

    2009-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. The first exact time-dependent solutions of Einstein's gravitational field equation confirm that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated 'antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s^2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  7. Searching for Supersymmetry with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    French, Sky Trillium

    2011-01-01

    On Monday 23rd November 2009, the ATLAS experiment at the Large Hadron Collider began taking data at $\\sqrt{s}=900$ GeV. On the penultimate day of March the following year, after a brief shutdown, ATLAS resumed data taking but at $\\sqrt{s}=7$ TeV. These $\\sqrt{s}=7$ TeV collisions continued until the end of October 2010. This thesis presents the very first low-$p_T$ electron candidates from the complete 9$\\mu b^{-1} \\sqrt{s}=900$ GeV dataset, and higher-$p_T$ candidates from the first 1 nb$^{-1}$ of the $\\sqrt{s}=7$ TeV dataset. These candidates are presented in the context of electron reconstruction and identification and illustrate how various properties of these electrons compare with expectations based on Monte Carlo simulations. An observation is made of the $Z$ candidates present in the first ~220 nb$^{-1}$ of $\\sqrt{s}=7$ TeV collision data, these being amongst the first $Z$ bosons ever produced by a proton-proton collider. A detailed study is then presented of the full ~35pb$^{-1}$ 2010 $\\sqrt{s}=7$ T...

  8. Massively parallel computing at the Large Hadron Collider up to the HL-LHC

    International Nuclear Information System (INIS)

    As the Large Hadron Collider (LHC) continues its upward progression in energy and luminosity towards the planned High-Luminosity LHC (HL-LHC) in 2025, the challenges of the experiments in processing increasingly complex events will also continue to increase. Improvements in computing technologies and algorithms will be a key part of the advances necessary to meet this challenge. Parallel computing techniques, especially those using massively parallel computing (MPC), promise to be a significant part of this effort. In these proceedings, we discuss these algorithms in the specific context of a particularly important problem: the reconstruction of charged particle tracks in the trigger algorithms in an experiment, in which high computing performance is critical for executing the track reconstruction in the available time. We discuss some areas where parallel computing has already shown benefits to the LHC experiments, and also demonstrate how a MPC-based trigger at the CMS experiment could not only improve performance, but also extend the reach of the CMS trigger system to capture events which are currently not practical to reconstruct at the trigger level

  9. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    International Nuclear Information System (INIS)

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge. - Highlights: • We achieved a tolerance of 1000 V with a 250-μm edge by Al2O3 side wall passivation. • Above is a wafer process and suitable for mass production. • For edge-spark protection, we suggest N+ edge with an isolation

  10. A central rapidity straw tracker and measurements on cryogenic components for the large hadron collider

    International Nuclear Information System (INIS)

    The thesis is divided into two parts in which two different aspects of the Large Hadron Collider (LHC) project are discussed. The first part describes the design of a transition radiation tracker (TRT) for the inner detector in ATLAS. In particular, the barrel part was studied in detail. The barrel TRT consists of 52544 1.5 m long proportional tubes (straws), parallel to the beam axis and each with a diameter of 4 mm. The detector is divided into three module layers with 32 modules in each layer. The preparatory study comprises: module size optimization, mechanical and thermal calculations, tracking performance and material budget studies. The second part deals with the cryogenic system for the LHC superconducting magnets. They will work at a temperature below 2 K and it is essential to understand the thermal behaviour of the individual cryogenic components in order to assess the insulating properties of the magnet cryostat. The work involves the design of two dedicated heat-inlet measuring benches for cryogenic components, and the results from heat-inlet measurements on two different types of cryogenic components are reported. 54 refs., 79 figs., 14 tabs

  11. Phenomenology of supersymmetric Z' decays at the Large Hadron Collider

    International Nuclear Information System (INIS)

    I study the phenomenology of heavy neutral bosons Z', predicted in GUT-inspired U(1)' models, at the Large Hadron Collider. In particular, I investigate possible signatures due to Z' decays into supersymmetric particles, such as chargino, neutralino, and sneutrino pairs, leading to final states with charged leptons and missing energy. The analysis is carried out at √(s) = 14 TeV, for a few representative points of the parameter space of the Minimal Supersymmetric Standard Model, suitably modified to accommodate the extra Z' boson and consistent with the discovery of a Higgs-like boson with mass around 125 GeV. Results are presented for several observables and compared with those obtained for direct Z' decays into lepton pairs, as well as direct production of supersymmetric particles. For the sake of comparison, Z' phenomenology in an effective supersymmetric extension of the Sequential Standard Model is also discussed. (orig.)

  12. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  13. Hadronic Imaging Calorimetry

    CERN Document Server

    Kaplan, Alexander; Dubbers, Dirk

    This thesis focuses on a prototype of a highly granular hadronic calorimeter at the planned International Linear Collider optimized for the Particle Flow Approach. The 5.3 nuclear interaction lengths deep sandwich calorimeter was built by the CALICE collaboration and consists of 38 active plastic scintillator layers. Steel is used as absorber material and the active layers are subdivided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers (SiPM). The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. The work described in this thesis comprises the commissioning of the detector and the data acquisition with test beam particles over several months at CERN and Fermilab. The calibration of the calorimeter and the analysis of the recorded data is presented. A method to correct for the temperature dependent response of the SiPM has been developed and implemented. Its successful application shows that it...

  14. CERN: Digital image analysis in the world's largest research center for particle physics

    CERN Multimedia

    2005-01-01

    Those interested in researching into the smallest building blocks that matter is made up of need the largest instruments. CERN, near Geneva, Switzerland is where the most powerful circular accelerator in the world is being built: the Large Hadron Collider (LHC) for proton collisions. It has a circumference of 26.7 km (4 pages)

  15. Les Etats-Unis d'Amérique deviennent observateur au CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Council delegates applauded warmly as representatives of United States of America were welcomed to the Council session for the first time as official Observers. This new status follows the agreement between CERN and the United States for a contribution of $531 million to the Large Hadron Collider (LHC) project which was signed in Washington on 8 December (see Press Release no.7 1997).

  16. CERN to offer secure grid, published in itWorldCanada

    CERN Multimedia

    Broersma, Matthew

    2006-01-01

    CERN, the Geneva-based nuclear physics research center, has launched a collaborative effort with some of the biggest name in IT to tighten up security on its landmark Large Hadron Collider (LHC) project, as well as working on platform virtualization and the interoperability of grid software (1 page)

  17. Le nouvel accélérateur du CERN 1232 aimants sous la terre

    CERN Multimedia

    Du Brulle, Christian

    2005-01-01

    The LHC (Large Hadron Collider), whether the future particle accelerator of CERN, in Geneva, is now on its final assembling stage. Indeed, since Monday, the technicians and the engineers began to install under the ground the first magnets of this huge probing-matter machine in the ring of 27km under Switzerland and France

  18. Le CERN va devoir supprimer quelques 600 postes d'ici a 2007

    CERN Multimedia

    2002-01-01

    "Le Laboratoire europeen pour la physique des particules (CERN) qui procede actuellement a la construction du LHC (Large Hadron Collider) , le plus grand accelerateur de particules du monde, va devoir supprimer, comme cela avait ete evoque en juin, quelques 600 postes d'ici a 2007" (1 paragraph).

  19. Measurement of the s dependence of jet production at the CERN pp collider

    DEFF Research Database (Denmark)

    Appel, J.A.; Bagnaia, P.; Banner, M.;

    1985-01-01

    The production of very large transverse momentum (pT) hadron jets has been measured in the UA2 experiment at the CERN pp Collider for s=630 GeV. The inclusive jet production cross sections exhibit a pT-dependent increase with respect to the s=546 GeV data from previous Collider runs. This increase...

  20. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...