WorldWideScience

Sample records for cern cms silicon

  1. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  2. Studies for the Commissioning of the CERN CMS Silicon Strip Tracker

    CERN Document Server

    Bloch, Christoph; Abbaneo, Duccio; Fabjan, Christian Wolfgang

    2008-01-01

    In 2008 the Large Hardon Collider (LHC) at CERN will start producing proton-proton collisions of unprecedented energy. One of its main experiments is the Compact Muon Solenoid (CMS), a general purpose detector, optimized for the search of the Higgs boson and super symmetric particles. The discovery potential of the CMS detector relies on a high precision tracking system, made of a pixel detector and the largest silicon strip Tracker ever built. In order to operate successfully a device as complex as the CMS silicon strip Tracker, and to fully exploit its potential, the properties of the hardware need to be characterized as precisely as possible, and the reconstruction software needs to be commissioned with physics signals. A number of issues were identified and studied to commission the detector, some of which concern the entire Tracker, while some are specific to the Tracker Outer Barrel (TOB): - the time evolution of the signals in the readout electronics need to be precisely measured and correctly simulate...

  3. The "Silicon Wheel" prototype for the barrel of the silicon tracker deep inside the CMS detector at CERN'S future LHC proton collider

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Elements on a specially designed structure will track the emerging particles close to the beam pipe. The supporting structure is made out of special carbon fibre discs holding 112 detector modules (448 individual silicon detectors). The modules are arranged to provide three detection points per track and are distributed in seven layers on a spiral geometry to leave enough room for cables, cooling tubes, etc. The inner radius of the wheel is 20.5 cm; the overall diameter is 80 The prototype is a combined CMS silicon community effort; the main participating institutions were: Aachen (Germany), Bari (Italy), CERN, Florence (Italy), Imperial College (UK), Oulu (Finland), Padova, Perugia, Pisa (Italy), Rutherford Laboratory

  4. CERN Open Days CMS Posters

    CERN Multimedia

    Davis, Siona Ruth

    2016-01-01

    Themes: 1) You are here (location P5, Cessy) 2) CERN 3) LHC 4) CMS Detector 5) Magnet 6) Subdetectors (Tracker, ECAL, HCAL, Muons) 7) Trigger and Data Acquisition 8) Collaboration 9) Site Geography 10) Construction 11) Lowering and Installation 12) Physics

  5. CMS silicon tracker developments

    Energy Technology Data Exchange (ETDEWEB)

    Civinini, C. E-mail: carlo.civinini@fi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Della Marina, R.D.R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B

    2002-01-21

    The CMS Silicon tracker consists of 70 m{sup 2} of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors.

  6. CMS silicon tracker developments

    CERN Document Server

    Civinini, C; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borrello, L; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Frey, A; Fürtjes, A; Giassi, A; Giorgi, M; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Honma, A; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; König, S; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; Migliore, E; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Starodumov, Andrei; Stavitski, I; Stefanini, G; Surrow, B; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li Ya Hong; Watts, S; Wittmer, B

    2002-01-01

    The CMS Silicon tracker consists of 70 m/sup 2/ of microstrip sensors which design will be finalized at the end of 1999 on the basis of systematic studies of device characteristics as function of the most important parameters. A fundamental constraint comes from the fact that the detector has to be operated in a very hostile radiation environment with full efficiency. We present an overview of the current results and prospects for converging on a final set of parameters for the silicon tracker sensors. (9 refs).

  7. CERN Researchers' Night @ CMS + TOTEM

    CERN Document Server

    Hoch, Michael

    2011-01-01

    Young researchers' shifter training at CMS; • Introduction talk with discussion, • CMS control room shadowing the shifters • TOTEM control room introduction and discusson • Scientific poster work shop and presentation • Science Art installations ‘Faces of CMS’ & ‘Science Cloud’ • CMS Shift diploma presentation

  8. The CMS silicon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Focardi, E. E-mail: focardi@pi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Della Marina, R.; Dutta, S.; Eklund, C.; Feld, L.; Fiore, L.; French, M.; Freudenreich, K.; Frey, A.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Leubelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B.Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B

    2000-10-11

    This paper describes the Silicon microstrip Tracker of the CMS experiment at LHC. It consists of a barrel part with 5 layers and two endcaps with 10 disks each. About 10 000 single-sided equivalent modules have to be built, each one carrying two daisy-chained silicon detectors and their front-end electronics. Back-to-back modules are used to read-out the radial coordinate. The tracker will be operated in an environment kept at a temperature of T=-10 deg. C to minimize the Si sensors radiation damage. Heavily irradiated detectors will be safely operated due to the high-voltage capability of the sensors. Full-size mechanical prototypes have been built to check the system aspects before starting the construction.

  9. The CMS experiment at the CERN LHC

    OpenAIRE

    Adolphi et al., R.

    2008-01-01

    This article is available open access. Copyright @ 2008 IOP Publishing Ltd and SISSA. The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm−2 s−1 (1027 cm−2 s−1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid s...

  10. New CMS detectors under construction at CERN

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While the LHC will play the starring role in the 2013/2014 Long Shutdown (LS1), the break will also be a chance for its experiments to upgrade their detectors. CMS will be expanding its current muon detection systems, fitting 72 new cathode strip chambers (CSC) and 144 new resistive plate chambers (RPC) to the endcaps of the detector. These new chambers are currently under construction in Building 904.   CMS engineers install side panels on a CSC detector in Building 904. "The original RPC and CSC detectors were constructed in bits and pieces around the world," says Armando Lanaro, CSC construction co-ordinator. "But for the construction of these additional chambers, we decided to unify the assembly and testing into a single facility at CERN. There, CMS technicians, engineers and physicists are taking raw materials and transforming them into installation-ready detectors.” This new facility can be found in Building 904. Once the assembly site for the strai...

  11. CMS silicon tracker milestone 200

    CERN Document Server

    Dierlamm, A

    2002-01-01

    The tracker of CMS will fully consist of silicon micro-strip and pixel sensors. Building a detector with 210 m/sup 2/ sensor surface in about 3 years requires a tightly controlled construction schedule. All different aspects of the production are exercised within a pre- production of 200 modules (Milestone 200) to identify and eliminate possible bottlenecks and to test the complete electronic chain. The quality, process stability and radiation hardness of the silicon sensors will be permanently monitored. Automatic assembly procedure and industrial bonding machines will guarantee a fast and reliable construction. All modules will be tested for signal, noise and pedestals at room temperature and operation temperature of -10 degrees C. Quality assurance of the Milestone 200 sensors and modules including irradiation and stability tests are presented. (6 refs).

  12. An Automated Silicon Module Assembly System for the CMS Silicon Tracker

    CERN Document Server

    Honma, Alan; Labbé, Jean-Claude; Lenzi, Michela; Mannelli, Marcello; Oh, Alexander; Spagnolo, Paolo; Surrow, Bernd

    2002-01-01

    The CMS Tracker requires the assembly of about 20000 silicon detector modules. To ensure the assembly of such a large quantity with high, reproducible quality, an automated system for module assembly has been developed based on a high-precision robotic positioning machine. This system allows a much higher throughput and will result in much reduced manpower requirements than for traditional manual techniques. This note describes the design and performance of the automated Silicon module assembly system which has been developed within the CERN CMS Silicon Tracker group.

  13. CERN Open Days 2013, Point 5 - CMS: CMS Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: Come to LHC's Point 5 and visit the Compact Muon Solenoid (CMS) experiment that discovered the Higgs boson ! Descend 100 metres underground and take a walk in the cathedral-sized cavern housing the 14,000-tonne CMS detector. Ask Higgs hunters and other scientists just about anything, be it questions about their work, particle physics or the engineering challenges of building CMS.  On surface no restricted access  Point 5 will be abuzz all day long with activities for all ages, including literally "cool" cryogenics shows featuring the world's fastest ice-cream maker, dance performances, and much more.

  14. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  15. Kingdom of Bhutan VIP visit at CERN / CMS

    CERN Multimedia

    Hoch, Michael

    2014-01-01

    His Excellency Mr Yeshey Zimba Member of Parliament and His Excellency Daw Penjo Ambassador and Permanent Representative of the Kingdom of Bhutan visiting at CERN the LHC tunnel and the CMS experiment. Further guests were : Mrs Daw Zam, Mrs Thuji Zangmo, Mr. Rinchen Dorji, Mrs Dechen Wangmo, Ms Choni Ome Guided by R. Voss, Michael Hoch, Tiziano Camporesi

  16. VIP visit to CERN P5 CMS of Pakistan Science Members

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    VIP visit to CERN P5 CMS of PAEC & JCPC Science Members List of PAEC Visitors: Dr. Badar Suleman - Member Science PAEC & Member of JCPC Dr. Waqar M. Butt - Member Engineering (Head of HMC3) Dr. Maqsood Ahmad - Chief Scientist (Head of Accelerator Project) List of CMS participants: Prof. Joseph Incandela, CMS Spokesperson Dr. Austin Ball, CMS Technical Coordinator Mr Andrzej Charkiewicz, CMS Resources Manager Dr. Michael Hoch, CMS Outreach activities, CMS photographer and guide Dr. Achille Petrilli, CMS Team Leader

  17. R & D for the CMS silicon tracker

    CERN Document Server

    Feld, L; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Barr, A J; Bartalini, P; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borrello, L; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Peisert, Anna; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giraldo, A; Glessing, W D; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Honkanen, J A; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Kellogg, R G; König, S J; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Raffaelli, F; Raso, G; Raymond, M; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Wang, Y; Watts, S; Wittmer, B

    1999-01-01

    The CMS silicon tracker, consisting of about 70 m/sup 2/ of silicon microstrip devices, has to be operated for at least 10 years in a harsh radiation environment. The main implications of this environment on the detector design are summarized and an overview of the expected performance is given. (2 refs).

  18. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  19. The CMS Silicon Strip Tracker Concept, Production, and Commissioning

    CERN Document Server

    Pooth, Oliver

    2010-01-01

    With the start of the Large Hadron Collider LHC at CERN near Geneva, Switzerland, and the huge detectors along this particle accelerator, the largest high energy physics experiments ever are underway. One of the experiments is the CMS detector (Compact Muon Solenoid). With this experiment over 3,000 scientists and engineers worldwide will search for answers to fundamental questions in high energy physics. Oliver Pooth describes the silicon strip tracker of the CMS detector. With a sensitive silicon area of 200 m² it is a central part of the experiment and able to precisely measure charged particles originating from high energy proton collisions at the LHC. In total, more than 15,000 individual silicon strip detector modules were built and tested before they were integrated on larger substructures of the silicon strip tracker. The author discusses methods of quality control that are new to the field of particle detector physics. These methods were established to guarantee a uniform behaviour of all detector m...

  20. The CMS silicon strip tracker and its electronic readout

    CERN Document Server

    Friedl, M

    2001-01-01

    The Large Hadron Collider (LHC) at CERN (Geneva, CH) will be the world's biggest accelerator machine when operation starts in 2006. One of its four detector experiments is the Compact Muon Solenoid (CMS), consisting of a large-scale silicon tracker and electromagnetic and hadron calorimeters, all embedded in a solenoidal magnetic field of 4T, and a muon system surrounding the magnet coil. The Silicon Strip Tracker has a sensitive area of 206m sup 2 with 10 million analog channels which are read out at the collider frequency of 40 MHz. The building blocks of the CMS Tracker are the silicon sensors, APV amplifier ASICs, supporting front-end ASICs, analog and digital optical links as well as data processors and control units in the back-end. Radiation tolerance, readout speed and the huge data volume are challenging requirements. I have modeled the charge collection in silicon detectors which is discussed as well as the concepts of readout amplifiers with respect to the LHC requirements, including the deconvolut...

  1. Silicon strip detector qualification for the CMS experiment

    CERN Document Server

    Kaußen, Gordon

    2008-01-01

    The Compact Muon Solenoid (CMS) is one of the four experiments being installed at the Large Hadron Collider (LHC) which is located at the european organization for nuclear research CERN in Geneva. This proton-proton collider will explore a new energy regime of up to 14TeV center-of-mass energy. To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The entire strip tracker spans an active area of about 198m2 and consists of approximately 16000 modules. Before the silicon sensors were assembl...

  2. Beam-loss-induced electrical stress test on CMS Silicon Strip Modules

    CERN Document Server

    Fahrer, M; Hartmann, F; Heier, S; MacPherson, A; Muller, T H; Weiler, T h

    2004-01-01

    Based on simulated LHC beam loss scenarios, fully depleted CMS silicon tracker modules and sensors were exposed to 42 ns-long beam spills of approximately 10**1**1 protons per spill at the PS at CERN. The ionisation dose was sufficient to short circuit the silicon sensors. The dynamic behaviour of bias voltage, leakage currents and voltages over coupling capacitors were monitored during the impact. Results of pre- and post-qualification as well as the dynamic behaviour are shown.

  3. The silicon microstrip tracker for CMS

    CERN Document Server

    Pandoulas, D; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Bartalini, P; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Borrello, L; Bosi, F; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Elliot-Peisert, A; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giraldo, A; Glessing, W D; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Honkanen, J A; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Kellogg, R G; König, S J; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; My, S; Paccagnella, S; Palla, Fabrizio; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Raffaelli, F; Raso, G; Raymond, M; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Wang, Y; Watts, S; Wittmer, B; Xie, Z

    1999-01-01

    The CMS silicon strip tracker involves about 70 m/sup 2/ of instrumented silicon, with approximately 18500 microstrip detectors read out by 5*10/sup 6/ electronics channels. It has to satisfy a set of stringent requirements imposed by the environment and by the physics expected at the LHC: low cell occupancy and good resolution, radiation hardness aided by adequate cooling, low mass combined with high stability. These conditions have been incorporated in a highly modular design of the detector modules and their support structures, chosen to facilitate construction and to allow for easy assembly and maintenance. (3 refs).

  4. Automated silicon module assembly for the CMS silicon tracker

    CERN Document Server

    Surrow, B

    2001-01-01

    The CMS silicon tracker requires the assembly of about 20000 individual silicon detector modules. To ensure the assembly of such an amount with high, reproducible quality, an automated procedure has been developed for module assembly based on a high-precision robotic positioning machine. This procedure allows a much higher throughput and will result in much reduced manpower requirements than for traditional manual techniques. (1 refs).

  5. Web Based Monitoring in the CMS Experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Badgett, William [Fermilab; Borrello, Laura [Wisconsin U., Madison; Chakaberia, Irakli [Kansas State U.; Gigi, Dominique [CERN; Jo, Young-Kwon [Korea U.; Lopez-Perez, Juan Antonio [Fermilab; Maeshima, Kaori [Fermilab; Maruyama, Sho [Fermilab; Patrick, James [Fermilab; Rapsevicius, Valdas [Florida U.; Soha, Aron [Fermilab; Sulmanas, Balys [Fermilab; Wan, Zongru [Korea U.

    2014-09-03

    The Compact Muon Solenoid (CMS) is a large and complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To this end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user side. This paper describes the WBM system architecture and describes how the system was used during the first major data taking run of the LHC.

  6. Web Based Monitoring in the CMS Experiment at CERN

    CERN Document Server

    Badgett, William; Chakaberia, Irakli; Gigi, Dominique; Jo, Young-Kwon; Lopez-Perez, Juan Antonio; Maeshima, Kaori; Maruyama, Sho; Patrick, James; Rapsevicius, Valdas; Soha, Aron; Sulmanas, Balys; Wan, Zongru

    2014-01-01

    The Compact Muon Solenoid (CMS) is a large and complex general purpose experiment at the CERN Large Hadron Collider (LHC), built and maintained by many collaborators from around the world. Efficient operation of the detector requires widespread and timely access to a broad range of monitoring and status information. To this end the Web Based Monitoring (WBM) system was developed to present data to users located anywhere from many underlying heterogeneous sources, from real time messaging systems to relational databases. This system provides the power to combine and correlate data in both graphical and tabular formats of interest to the experimenters, including data such as beam conditions, luminosity, trigger rates, detector conditions, and many others, allowing for flexibility on the user side. This paper describes the WBM system architecture and describes how the system was used during the first major data taking run of the LHC.

  7. Silicon strip detector qualification for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaussen, Gordon

    2008-10-06

    To provide the best spatial resolution for the particle trajectory reconstruction and a very fast readout, the inner tracking system of CMS is build up of silicon detectors with a pixel tracker in the center surrounded by a strip tracker. The silicon strip tracker consists of so-called modules representing the smallest detection unit of the tracking device. These modules are mounted on higher-level structures called shells in the tracker inner barrel (TIB), rods in the tracker outer barrel (TOB), disks in the tracker inner disks (TID) and petals in the tracker end caps (TEC). The performance of the participating two shells of the TIB, four rods of the TOB and two petals of the TEC (representing about 1% of the final strip tracker) could be studied in different magnetic fields over a period of approximately two month using cosmic muon signals. The last test before inserting the tracker in the CMS experiment was the Tracker Slice Test performed in spring/summer 2007 at the Tracker Integration Facility (TIF) at CERN after installing all subdetectors in the tracker support tube. Approximately 25% of the strip tracker +z side was powered and read out using a cosmic ray trigger built up of scintillation counters. In total, about 5 million muon events were recorded under various operating conditions. These events together with results from commissioning runs were used to study the detector response like cluster charges, signal-to-noise ratios and single strip noise behaviour as well as to identify faulty channels which turned out to be in the order of a few per mille. The performance of the silicon strip tracker during these different construction stages is discussed in this thesis with a special emphasis on the tracker end caps. (orig.)

  8. CERN Open Data Portal - Improving usability and user experience of CMS Open Data research tools.

    CERN Document Server

    Hirvonsalo, Harri

    2015-01-01

    This report summarizes the work I have done during my assignment as participant of CERN Summer Students 2015 programme. Main goal of my Summer Student project was to lower the bar for people to start utilizing open data that CMS experiment has released in November 2014 to CERN Open Data Portal (http://opendata.cern.ch). Project included various working packages and tasks, such as: -Determine the obstacles that potential users of CMS research oriented open data who don’t have previous knowledge about internal workflow of analysis tasks at CMS experiment would run into. -Produce more introductory material and tutorials for conducting basic physics analyses with CMSSW to CERN Open Data Portal. -Study the feasibility of podio-framework (https://github.com/hegner/podio) for CMS Open Data users. The project work was done under the supervision of Kati Lassila-Perini whom I thank greatly for her help, patience and support.

  9. Studies on irradiated silicon sensors for the CMS tracker at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Andreas

    2014-02-14

    For the high luminosity phase of the LHC at CERN, the strip tracker of the CMS Experiment will be replaced due to higher demands on track density, track trigger and radiation damage. To study these aspects, more than 40 different silicon sensors were irradiated. Besides lab measurements, tests in an electron beam and Lorentz angle measurements were performed. A simulation model, which is capable to predict the charge distribution after a particle hit has been developed from these measurements.

  10. The hardware track finder processor in CMS at CERN

    CERN Document Server

    Kluge, A

    1997-01-01

    The work covers the design of the Track Finder Processor in the high energy experiment CMS (Compact Muon Solenoid, planned for 2005) at CERN/Geneva. The task of this processor is to identify muons and measure their transverse momentum. The track finder processor makes it possible to determine the physical relevance of each high energetic collision and to forward only interesting data to the data an alysis units. Data of more than two hundred thousand detector cells are used to determine the location of muons and measure their transverse momentum. Each 25 ns a new data set is generated. Measurem ent of location and transverse momentum of the muons can be terminated within 350 ns by using an ASIC (Application Specific Integrated Circuit). A pipeline architecture processes new data sets with th e required data rate of 40 MHz to ensure dead time free operation. In the framework of this study specifications and the overall concept of the track finder processor were worked out in detail. Simul ations were performed...

  11. CMS and CERN teams perform delicate surgery on the beamline at –18 m

    CERN Multimedia

    2012-01-01

    Over the Christmas period, teams from CMS and CERN worked on replacing a bellows unit using a very delicate method that ensured the beam pipe vacuum wasn’t affected during the task. Read more in the Technical Coordination contribution in this CMS Bulletin.

  12. CERN Library | Book presentation: "CMS: the art of science" | 26 April

    CERN Multimedia

    CERN Library

    2016-01-01

    "CMS: the art of science", by Michael Hoch, Ian Shipsey, Daniel Denegri, Stephen Preece and Mick Storr.   Tuesday 26 April at 4 p.m. Council Chamber (503 1-001) The physicist as artist: Michael Hoch photographed the extraordinary science cabinet of wonders CMS (the Compact Muon Solenoid Experiment) at CERN. With a foreword by François Englert, 2013 Nobel Laureate in Physics and co-discoverer of the Higgs boson. "CMS: the art of science", by Michael Hoch, Ian Shipsey, Daniel Denegri, Stephen Preece and Mick Storr, Lammerhuber, 2016, ISBN 9783903101043. More information at: https://indico.cern.ch/event/523057/.

  13. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Adler, Volker; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Bremer, R; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Feld, Lutz; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; Klein, Katja; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schmitz, Stefan Antonius; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing.

  14. Detector Developments for the LHC CMS TOB Silicon Detector Modules and ATLAS TileCal Read-Out Driver

    CERN Document Server

    Poveda, J; Ferrer, A

    2005-01-01

    This Research Report is divided in two different parts corresponding to two different periods of time working in different collaborations. First, a general approach to the framework where this work is set is presented at the Introduction: the CERN laboratory near Geneva, the LHC accelerator and its two general purpose experiments CMS and ATLAS. The first part of this report consists in the study of the performance of the silicon strip detectors specifically designed for the Tracker Outer Barrel (TOB) of the CMS Tracker detector. Results of the performance of CMS TOB silicon detector modules mounted on the first assembled double-sided rod at CERN are presented. These results are given in terms of noise, noise occupancies, signal to noise ratios and signal efficiencies. The detector signal efficiencies and noise occupancies are also shown as a function of threshold for a particular clustering algorithm. Signal efficiencies versus noise occupancy plots as a function of the threshold level, which could also be us...

  15. Optimization of the silicon sensors for the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Biino, C.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borello, L.; Braibant, S.; Breuker, H.; Brunetti, M.T.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Costa, M.; Creanza, D.; D' Alessandro, R.; DeMaria, N.; Palma, M. de; Dell' Orso, R.; Dutta, S.; Favro, G.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Frey, A. E-mail: ariane.frey@cern.ch; Friedl, M.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, W.; Gu, W.H.; Hall, G.; Hammarstrom, R.; Hebbeker, T.; Honkanen, A.; Honma, A.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Mc Evoy, B.; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Neviani, A.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pernicka, M.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Rizzo, F.; Santocchia, A.; Segneri, G.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Starodumov, A.; Stavitski, I.; Surrow, B.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuominiemi, J.; Tuuva, T.; Verdini, P.G.; Viertel, G.; Xie, Z.; Yahong, Li; Watts, S.; Wittmer, B

    2001-07-01

    The CMS experiment at the LHC will comprise a large silicon strip tracker. This article highlights some of the results obtained in the R and D studies for the optimization of its silicon sensors. Measurements of the capacitances and of the high voltage stability of the devices are presented before and after irradiation to the dose expected after the full lifetime of the tracker.

  16. Performance of the all-silicon CMS tracker

    CERN Document Server

    Caner, A

    2001-01-01

    The Compact Muon Solenoid (CMS) Tracker Collaboration has recently revised the tracking-detector layout. While the previous design relied on Micro Strip Gas Chamber (MSGC) and silicon detectors, the new layout implements solid state sensors as the sole technological choice. The new all-silicon layout is presented and the projected performance is discussed in terms of several benchmark topologies. (5 refs).

  17. Performance of the all-silicon CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Caner, Alessandra E-mail: alessandra.caner@cern.ch

    2001-04-11

    The Compact Muon Solenoid (CMS) Tracker Collaboration has recently revised the tracking-detector layout. While the previous design relied on Micro Strip Gas Chamber (MSGC) and silicon detectors, the new layout implements solid state sensors as the sole technological choice. The new all-silicon layout is presented and the projected performance is discussed in terms of several benchmark topologies.

  18. User and group storage management the CMS CERN T2 centre

    CERN Document Server

    Cerminara, G; Pfeiffer, A

    2015-01-01

    A wide range of detector commissioning, calibration and data analysis tasks is carried out by CMS using dedicated storage resources available at the CMS CERN Tier-2 centre. Relying on the functionalities of the EOS disk-only storage technology, the optimal exploitation of the CMS user/group resources has required the introduction of policies for data access management, data protection, cleanup campaigns based on access pattern, and long term tape archival. The resource management has been organised around the definition of working groups and the delegation to an identified responsible of each group composition. In this paper we illustrate the user/group storage management, and the development and operational experience at the CMS CERN Tier-2 centre in the 2012-2015 period.

  19. Control system design of the CERN/CMS tracker thermal screen

    CERN Document Server

    Carrone, E

    2003-01-01

    The Tracker is one of the CMS (Compact Muon Solenoid experiment) subdetectors to be installed at the LHC (Large Hadron Collider) accelerator, scheduled to start data taking in 2007 at CERN (European Organization for Nuclear Research). The tracker will be operated at a temperature of -10 degree C in order to reduce the radiation damage on the silicon detectors; hence, an insulated environment has to be provided by means of a screen that introduces a thermal separation between the Tracker and the neighboring detection systems. The control system design includes a formal description of the process by means of a thermodynamic model; then, the electrical equivalence is derived. The transfer function is inferred by the ratio of the voltage on the outer skin and the voltage input, i.e. the ratio of the temperature outside the tracker and the heat generated (which is the controlled variable). A PID (Proportional Integral Derivative) controller has been designed using MatLab. The results achieved so far prove that thi...

  20. CERN CMS High Level Trigger GUI for Configuration Editing - Documentation

    CERN Document Server

    Novak, Libor

    2014-01-01

    The configuration management system of the CMS HLT was redesigned and a new graphical user interface was needed. The basic concepts of the new GUI and the code structure are described in this documentation. Note that the GUI is not yet finished.

  1. from left to right : Mr Michel Della Negra (Last spokeperson of CMS), Prof. Tejinder ("Jim") Virdee (actual spokeperson of CMS), Mr Robert Aymar (CERN Director General) and Mr Sigurd Lettow (Chief Financial Officer of CERN) assist to the Lowering of the final element (YE-1) of the Compact Muon Solenoid (CMS) detector into its underground experimental cavern.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    from left to right : Mr Michel Della Negra (Last spokeperson of CMS), Prof. Tejinder ("Jim") Virdee (actual spokeperson of CMS), Mr Robert Aymar (CERN Director General) and Mr Sigurd Lettow (Chief Financial Officer of CERN) assist to the Lowering of the final element (YE-1) of the Compact Muon Solenoid (CMS) detector into its underground experimental cavern.

  2. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    OpenAIRE

    Masetti, Lorenzo

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a signicant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specic requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but present...

  3. Optimization of the silicon sensors for the CMS tracker

    CERN Document Server

    Albergo, S; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Basti, A; Biggeri, U; Biino, C; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borello, L; Braibant, S; Breuker, Horst; Unettib, M T; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Costa, M; Creanza, D; D'Alessandro, R; Demaria, N; De Palma, M; Dell'Orso, R; Dutta, S; Favro, G; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Frey, A; Friedl, M; Fürtjes, A; Giassi, A; Giorgi, M A; Giraldo, A; Glessing, W D; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Honkanen, A; Honma, A; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; König, S; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; Migliore, E; My, S; Neviani, A; Paccagella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pernicka, Manfred; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Siedling, R; Silvestris, L; Starodumov, Andrei; Stavitski, I; Surrow, B; Tempesta, P; Tonelli, G; Tricomi, A; Tuominiemi, Jorma; Tuuva, T; Verdini, P G; Viertel, Gert M; Xie, Z; Yahong, L; Watts, S; Wittmer, B

    2001-01-01

    The CMS experiment at the LHC will comprise a large silicon strip tracker. This article highlights some of the results obtained in the R&D studies for the optimization of its silicon sensors. Measurements of the capacitances and of the high voltage stability of the devices are presented before and after irradiation to the dose expected after the full lifetime of the tracker. (7 refs).

  4. Alignment of the CMS Silicon Strip Tracker during stand-alone Commissioning

    CERN Document Server

    Adam, W; Dragicevic, M; Friedl, M; Frühwirth, R; Hansel, S; Hrubec, J; Krammer, M; Oberegger, M; Pernicka, M; Schmid, S; Stark, R; Steininger, H; Uhl, D; Waltenberger, W; Widl, E; Van Mechelen, P; Cardaci, M; Beaumont, W; de Langhe, E; de Wolf, E A; Delmeire, E; Hashemi, M; Bouhali, O; Charaf, O; Clerbaux, B; Dewulf, J P; Elgammal, S; Hammad, G; de Lentdecker, G; Marage, P; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Devroede, O; De Weirdt, S; D'Hondt, J; Goorens, R; Heyninck, J; Maes, J; Mozer, Matthias Ulrich; Tavernier, S; Van Lancker, L; Van Mulders, P; Villella, I; Wastiels, C; Bonnet, J L; Bruno, G; De Callatay, B; Florins, B; Giammanco, A; Gregoire, G; Keutgen, Th; Kcira, D; Lemaitre, V; Michotte, D; Militaru, O; Piotrzkowski, K; Quertermont, L; Roberfroid, V; Rouby, X; Teyssier, D; daubie, E; Anttila, E; Czellar, S; Engström, P; Härkönen, J; Karimäki, V; Kostesmaa, J; Kuronen, A; Lampén, T; Lindén, T; Luukka, P R; Mäenää, T; Michal, S; Tuominen, E; Tuominiemi, J; Ageron, M; Baulieu, G; Bonnevaux, A; Boudoul, G; Chabanat, E; Chabert, E; Chierici, R; Contardo, D; Della Negra, R; Dupasquier, T; Gelin, G; Giraud, N; Guillot, G; Estre, N; Haroutunian, R; Lumb, N; Perries, S; Schirra, F; Trocme, B; Vanzetto, S; Agram, J L; Blaes, R; Drouhin, F; Ernenwein, J P; Fontaine, J C; Berst, J D; Brom, J M; Didierjean, F; Goerlach, U; Graehling, P; Gross, L; Hosselet, J; Juillot, P; Lounis, A; Maazouzi, C; Olivetto, C; Strub, R; Van Hove, P; Anagnostou, G; Brauer, R; Esser, H; Feld, L; Karpinski, W; Klein, K; Kukulies, C; Olzem, J; Ostapchuk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Beissel, F; Bock, E; Flugge, G; Gillissen, C; Hermanns, T; Heydhausen, D; Jahn, D; Kaussen, G; Linn, A; Perchalla, L; Poettgens, M; Pooth, O; Stahl, A; Zoeller, M H; Buhmann, P; Butz, E; Flucke, G; Hamdorf, R; Hauk, J; Klanner, R; Pein, U; Schleper, P; Steinbrück, G; Blüm, P; De Boer, W; Dierlamm, A; Dirkes, G; Fahrer, M; Frey, M; Furgeri, A; Hartmann, F; Heier, S; Hoffmann, K H; Kaminski, J; Ledermann, B; Liamsuwan, T; Müller, S; Müller, Th; Schilling, F P; Simonis, H J; Steck, P; Zhukov, V; Cariola, P; De Robertis, G; Ferorelli, R; Fiore, L; Preda, M; Sala, G; Silvestris, L; Tempesta, P; Zito, G; Creanza, D; De Filippis, N; De Palma, M; Giordano, D; Maggi, G; Manna, N; My, S; Selvaggi, G; Albergo, S; Chiorboli, M; Costa, S; Galanti, M; Giudice, N; Guardone, N; Noto, F; Potenza, R; Saizu, M A; Sparti, V; Sutera, C; Tricomi, A; Tuve, C; Brianzi, M; Civinini, C; Maletta, F; Manolescu, F; Meschini, M; Paoletti, S; Sguazzoni, G; Broccolo, B; Ciulli, V; D'Alessandro, R; Focardi, E; Frosali, S; Genta, C; Landi, G; Lenzi, P; Macchiolo, A; Magini, N; Parrini, G; Scarlini, E; Cerati, G; Azzi, P; Bacchetta, N; Candelori, A; Dorigo, T; Kaminsky, A; Karaevski, S; Khomenkov, V; Reznikov, S; Tessaro, M; Bisello, D; De Mattia, M; Giubilato, P; Loreti, M; Mattiazzo, S; Nigro, M; Paccagnella, A; Pantano, D; Pozzobon, N; Tosi, M; Bilei, G M; Checcucci, B; Fanò, L; Servoli, L; Ambroglini, F; Babucci, E; Benedetti, D; Biasini, M; Caponeri, B; Covarelli, R; Giorgi, M; Lariccia, P; Mantovani, G; Marcantonini, M; Postolache, V; Santocchia, A; Spiga, D; Bagliesi, G; Balestri, G; Berretta, L; Bianucci, S; Boccali, T; Bosi, F; Bracci, F; Castaldi, R; Ceccanti, M; Cecchi, R; Cerri, C; Cucoanes, A S; Dell'Orso, R; Dobur, D; Dutta, S; Giassi, A; Giusti, S; Kartashov, D; Kraan, A; Lomtadze, T; Lungu, G A; Magazzu, G; Mammini, P; Mariani, F; Martinelli, G; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Profeti, A; Raffaelli, F; Rizzi, D; Sanguinetti, G; Sarkar, S; Sentenac, D; Serban, A T; Slav, A; Soldani, A; Spagnolo, P; Tenchini, R; Tolaini, S; Venturi, A; Verdini, P G; Vos, M; Zaccarelli, L; Avanzini, C; Basti, A; Benucci, L; Bocci, A; Cazzola, U; Fiori, F; Linari, S; Massa, M; Messineo, A; Segneri, G; Tonelli, G; Azzurri, P; Bernardini, J; Borrello, L; Calzolari, F; Foà, L; Gennai, S; Ligabue, F; Petrucciani, G; Rizzi, A; Yang, Z; Benotto, F; Demaria, N; Dumitrache, F; Farano, R; Borgia, M A; Castello, R; Costa, M; Migliore, E; Romero, A; Abbaneo, D; Abbas, M; Ahmed, I; Akhtar, I; Albert, E; Bloch, C; Breuker, H; Butt, S; Buchmuller, O; Cattai, A; Delaere, C; Delattre, M; Edera, L M; Engstrom, P; Eppard, M; Gateau, M; Gill, K; Giolo-Nicollerat, A S; Grabit, R; Honma, A; Huhtinen, M; Kloukinas, K; Kortesmaa, J; Kottelat, L J; Kuronen, A; Leonardo, N; Ljuslin, C; Mannelli, M; Masetti, L; Marchioro, A; Mersi, S; Michal, S; Mirabito, L; Muffat-Joly, J; Onnela, A; Paillard, C; Pal, I; Pernot, J F; Petagna, P; Petit, P; Piccut, C; Pioppi, M; Postema, H; Ranieri, R; Ricci, D; Rolandi, G; Ronga, F; Sigaud, C; Syed, A; Siegrist, P; Tropea, P; Troska, J; Tsirou, A; Vander Donckt, M; Vasey, F; Alagoz, E; Amsler, Claude; Chiochia, V; Regenfus, Christian; Robmann, P; Rochet, J; Rommerskirchen, T; Schmidt, A; Steiner, S; Wilke, L; Church, I; Cole, J; Coughlan, J; Gay, A; Taghavi, S; Tomalin, I; Bainbridge, R; Cripps, N; Fulcher, J; Hall, G; Noy, M; Pesaresi, M; Radicci, V; Raymond, D M; Sharp, P; Stoye, M; Wingham, M; Zorba, O; Goitom, I; Hobson, P R; Reid, I; Teodorescu, L; Hanson, G; Jeng, G Y; Liu, H; Pasztor, G; Satpathy, A; Stringer, R; Mangano, B; Affolder, K; Affolder, T; Allen, A; Barge, D; Burke, S; Callahan, D; Campagnari, C; Crook, A; D'Alfonso, M; Dietch, J; Garberson, Jeffrey Ford; Hale, D; Incandela, H; Incandela, J; Jaditz, S; Kalavase, P; Kreyer, S; Kyre, S; Lamb, J; Mc Guinnessr, C; Mills, C; Nguyen, H; Nikolic, M; Lowette, S; Rebassoo, F; Ribnik, J; Richman, J; Rubinstein, N; Sanhueza, S; Shah, Y; Simms, L; Staszak, D; Stoner, J; Stuart, D; Swain, S; Vlimant, J R; White, D; Ulmer, K A; Wagner, S R; Bagby, L; Bhat, P C; Burkett, K; Cihangir, S; Gutsche, O; Jensen, H; Johnson, M; Luzhetskiy, N; Mason, D; Miao, T; Moccia, S; Noeding, C; Ronzhin, A; Skup, E; Spalding, W J; Spiegel, L; Tkaczyk, S; Yumiceva, F; Zatserklyaniy, A; Zerev, E; Anghel, I; Bazterra, V E; Gerber, C E; Khalatian, S; Shabalina, E; Baringer, P; Bean, A; Chen, J; Hinchey, C; Martin, C; Moulik, T; Robinson, R; Gritsan, A V; Lae, C K; Tran, N V; Everaerts, P; Hahn, K A; Harris, P; Nahn, S; Rudolph, M; Sung, K; Betchart, B; Demina, R; Gotra, Y; Korjenevski, S; Miner, D; Orbaker, D; Christofek, L; Hooper, R; Landsberg, G; Nguyen, D; Narain, M; Speer, T; Tsang, K V

    2009-01-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  5. Alignment of the CMS silicon strip tracker during stand-alone commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; et al.

    2009-07-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  6. Data Quality Monitoring for the CMS Silicon Tracker

    CERN Document Server

    Dutta, S; Mennea, Maria Santa; Zito, G

    2006-01-01

    The CMS silicon tracker, consisting of about 17,000 detector modules and divided into micro-strip and pixel sensors, will be the largest silicon tracker ever realized for high energy physics experiments. The detector performance will be monitored using applications based on the CMS Data Quality Monitoring\\,(DQM) framework and running on the High-Level Trigger Farm as well as local DAQ systems. The monitorable quantities of this large number of modules are divided into hierarchical structures reflecting the detector sections. In addition, they are organized into structures corresponding to the levels of data processing. The information produced are delivered to client applications according to their subscription requests. The client applications summarize and visualize the quantities received. We describe here the functionalities of the CMS tracker DQM applications and report preliminary performance tests.

  7. HEP data for everyone CERN open data and the ATLAS and CMS experiments

    CERN Document Server

    McCauley, Thomas

    2016-01-01

    A cornerstone of good scientific practice is to make results available to the public. This is especially true for experiments at the LHC at CERN where public investment in fundamental research is significant and long-standing. As part of their commitment to open access and public engagement the ATLAS and CMS collaborations have made several large datasets available to the public. There are many challenges posed in presenting complex and high-level data to the public in an accessible and meaningful way. We describe the solutions to these challenges, part of which is the creation and use of the CERN Open Data Portal and the content found therein. Furthermore we describe the impact and future plans of the ATLAS and CMS open access efforts including future releases of data and accompanying educational material.

  8. CERN Library and Art@CMS present Artist and Painter Xavier Cortada and CMS Physicist Pete Markowitz

    CERN Multimedia

    CERN Library

    2013-01-01

    Xavier Cortada is an American artist and painter, and an artist in residence at Florida International University (FIU) College of Architecture and the Arts who also specializes in participatory art projects. His work includes art installations at the Earth’s poles to generate awareness about climate change, child welfare murals in Bolivia and peace murals in Cyprus. Xavier will be in conversation with CMS physicist Pete Markowitz, also from FIU, to discuss the participatory art piece which they developed together. The piece will be showcased in the CMS detector hall on Thursday 11 April during the experiment’s conference week. The piece promises to "engage 300 scientists from around the world in a performance art piece that transforms them into the very subatomic particles they research". It is the first piece by Art@CMS, a new project inspired by the Arts@CERN programme. Discover more about how this new piece was developed and more about Xavier’s ...

  9. Production Testing and Quality Assurance of CMS Silicon Microstrip Tracker Readout Chips

    CERN Document Server

    Barrillon, Pierre; Hall, Geoffrey; Leaver, James; Noah, E; Raymond, M; Bisello, Dario; Candelori, Andrea; Kaminski, A; Stefanuti, L; Tessaro, Mario; French, Marcus

    2004-01-01

    The APV25 is the 128 channel CMOS chip developed for readout of the silicon microstrip tracker in the CMS experiment at the CERN Large Hadron Collider. The detector is now under construction and will be the largest silicon microstrip system ever built, with ~200m^2 of silicon sensors. Around 10^5 chips are required to instrument the system, which must operate for about 10 years in a high radiation environment with little or no possibility of microstrip system ever built, with ~200m^2 of silicon sensors. Around 10^5 chips are required to instrument the system, which must operate for about 10 years in a high radiation environment with little or no possibility of assurance of long term performance of the readout electronics, especially verification of radiation tolerance, is highly desirable. This has been achieved by means of automated probe testing of every chip on the silicon wafers from the foundry, followed by studies of sample die to evaluate in more detail properties of the chips which cannot easily be ex...

  10. Diaphragm metering pumps for cooling silicon sensors at the CERN research center for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Geiselhart, Marc [LEWA Pumpen AG, Reinach (Switzerland); CERN Press Office, Geneva (Switzerland)

    2016-12-15

    With approximately 9,600 magnets and a circumference of 26.659 km, the Large Hadron Collider (LHC) is the largest and most sophisticated accelerator operated by the CERN research institute. The Large Hadron Collider beauty (LHCb) experiment, the A Toroidal LHC ApparatuS (ATLAS) experiment, and the Compact Muon Solenoid (CMS) experiment are three of the four experiments currently installed at LHC. In order to achieve precise measurements, silicon detectors are built in close vicinity to the interaction point of all experiments. Carbon dioxide cooling plants cool the innermost layers of the silicon detectors down to temperatures as low as -40 C. Two diaphragm metering pumps have been used for the LHCb experiment since 2007. Two similar systems operated in redundancy guarantee from the beginning of 2015 the thermal management of the IBL sub-detector of the TALS experiment.

  11. Commissioning of Silicon detectors for the COMPASS experiment at CERN

    CERN Document Server

    Wagner, R M

    2001-01-01

    This document describes the silicon microstrip detectors used in the COMPASS experiment. The main features of silicon microstrip detectors, mechanisms of radiation damages and the principles of the Lazarus effect are reviewed. The specific realization of silicon microstrip detectors in the COMPASS experiment is described. Production and tests done in the lab are discussed. Here, emphasis is placed on the noise performance of the detectors. The analysis of readout and performance tests in a test beam at CERN is done. Commissioning, debugging and first tests of the detectors and of the readout system on the COMPASS beam line in the 2001 beam time are presented.

  12. Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Bremer, Richard; Feld, Lutz

    2008-01-01

    At the European Organization for Nuclear Research (CERN) ne ar Geneva the new proton-proton collider ring LHC and the experiments that will be operated a t this accelerator are currently being finalised. Among these experiments is the multi-purpose det ector CMS whose aim it is to discover and investigate new physical phenomena that might become ac cessible by virtue of the high center- of-mass energy and luminosity of the LHC. Two of the most inte nsively studied possibilities are the discovery of the Higgs Boson and of particles from the spectr um of supersymmetric extensions of the Standard Model. CMS is the first large experiment of high- energy particle physics whose inner tracking system is exclusively instrumented with silicon d etector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction poin t in 10–12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completi on of the end caps of the tracking system. The institute played a leading...

  13. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  14. CMS Silicon Tracker Module Assembly and Testing at FNAL

    CERN Document Server

    Coppage, Don; Gerber, Cecilia Elena; Kahl, William E; Medel, E; Ronzhin, Anatoly; Sogut, Kenan; Shabalina, Elizaveta; Spiegel, Leonard; Ten, Timour Borisovich

    2005-01-01

    This note is intended to provide details on a recent activity at FNAL in which CMS Tracker Outer Barrel modules were assembled and tested as part of a qualification of some of the sensor fabrication lines. At the same time the note serves to document the assembly and testing operations at FNAL for CMS silicon tracker modules. Of the 88 modules produced fo the qualification study at FNAL, one module was outside the mechanical alignment specification. For module bonding an introduced failure rate of 4.0x10^-4 faults per channel was observed. Eighty-five of the modules passed the full set of electrical tests. Two of the failures could be attributed to the sensors and one to a problem with the front-end hybrid. Additionally, a couple of the passed modules drew unusually high leakage currents. The high current modules are discussed in some detail.

  15. The upgrade of the CMS hadron calorimeter with silicon 5 photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Strobbe, N. [Fermilab

    2016-09-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  16. Operation, calibration and performance of the CMS silicon tracker

    CERN Document Server

    Focardi, Ettore

    2011-01-01

    The CMS tracker is the largest silicon detector ever built, covering an area close to 200 m$^2$ and consisting of 15 148 silicon strip and 1440 silicon pixel modules. The use of tracker data in physics analysis requires fine-grained monitoring and calibration procedures. Results from timing studies, threshold optimization, calibration of gains and Lorentz angle determination are shown and the impact on resolution and dE/dx measurements is discussed. In order to achieve an optimal track-parameter resolution, the position and orientation of its modules need to be determined with a precision of few micro meters and an accurate representation of the distribution of material in the tracker is needed. Results of the alignment of the full tracker are presented, based on the analysis of several million reconstructed tracks recorded during the commissioning of the CMS experiment with cosmic rays and the first proton-proton collisions. They have been validated by several data-driven studies and compared with prediction...

  17. New results on silicon microstrip detectors of CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Demaria, N. E-mail: natale.demaria@cern.ch; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bolla, G.; Bosi, F.; Borrello, L.; Bortoletto, D.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; De Palma, M.; Dell' Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Favro, G.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; Evoy, B. Mc; Meschini, M.; Messineo, A.; Migliore, E.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B

    2000-06-01

    Interstrip and backplane capacitances on silicon microstrip detectors with p{sup +} strip on n substrate of 320 {mu}m thickness were measured for pitches between 60 and 240 {mu}m and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4x10{sup 14} protons/cm{sup 2} of 24 GeV/c momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a <1 0 0> substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence found to enhance the stability.

  18. Development of a Test System for the Quality Assurance of Silicon Microstrip Detectors for the Inner Tracking System of the CMS Experiment

    CERN Document Server

    Axer, Markus

    2003-01-01

    The inner tracking system of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) which is being built at the European Laboratory for Particle Physics CERN (Geneva, Switzerland) will be equipped with two different technologies of silicon detectors. While the innermost tracker will be composed of silicon pixel detectors, silicon microstrip detectors are envisaged for the outer tracker architecture. The silicon microstrip tracker will house about 15,000 single detector modules each composed of a set of silicon sensors, the readout electronics (front end hybrid), and a support frame. It will provide a total active area of 198 m2 and ten million analogue channels read out at the collider frequency of 40 MHz. This large number of modules to be produced and integrated into the tracking system is an unprecedented challenge involving industrial companies and various research institutes from many different countries. This thesis deals with the physics of silicon sensors and the preparation of ...

  19. New results on silicon microstrip detectors of CMS tracker

    CERN Document Server

    Demaria, N; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bölla, G; Bosi, F; Borello, L; Bortoletto, Daniela; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Peisert, Anna; Favro, G; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giorgi, M A; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Saint-Koenig, M; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Meschini, M; Messineo, A; Migliore, E; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li, Y; Watts, S; Wittmer, B

    2000-01-01

    Interstrip and backplane capacitances on silicon microstrip detectors with pf strip on n substrate of 320 mu m thickness were measured for pitches between 60 and 240 mu m and width over pitch ratios between 0.13 and 0.5. Parametrisations of capacitance w.r.t. pitch and width were compared with data. The detectors were measured before and after being irradiated to a fluence of 4*10/sup 14/ protons/cm/sup 2/ of 24 GeV/e momentum. The effect of the crystal orientation of the silicon has been found to have a relevant influence on the surface radiation damage, favouring the choice of a (100) substrate. Working at high bias (up to 500 V in CMS) might be critical for the stability of detector, for a small width over pitch ratio. The influence of having a metal strip larger than the p/sup +/ implant has been studied and found to enhance the stability. (7 refs).

  20. The Honourable Lawrence Gonzi Prime Minister of Malta visiting CMS experiment on 10 January 2008, from left to right Ministry of Finance Permanent Secretary A. Camilleri, Ambassador V. Camilleri, Maltese Representative at CERN N. Sammut, Prime Minister L. Gonzi, CMS Collaboration Spokesperson T. Virdee, CERN Director-General R. Aymar, University of Malta Rector J. Camilleri, Adviser to Director-General E. Tsesmelis.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    The Honourable Lawrence Gonzi Prime Minister of Malta visiting CMS experiment on 10 January 2008, from left to right Ministry of Finance Permanent Secretary A. Camilleri, Ambassador V. Camilleri, Maltese Representative at CERN N. Sammut, Prime Minister L. Gonzi, CMS Collaboration Spokesperson T. Virdee, CERN Director-General R. Aymar, University of Malta Rector J. Camilleri, Adviser to Director-General E. Tsesmelis.

  1. Improvement in breakdown characteristics with multiguard structures in microstrip silicon detectors for CMS

    CERN Document Server

    Bacchetta, N; Candelori, A; Da Rold, M; Descovich, M; Kaminski, A; Messineo, A; Rizzo, F; Verzellesi, G

    2001-01-01

    To obtain full charge collection the CMS silicon detectors should be able to operate at high bias voltage. We observed that multiguard structures enhance the breakdown performance of the devices on several tens of baby detectors designed for CMS. The beneficial effects of the multiguard structures still remains after the strong neutron irradiation performed to simulate the operation at the LHC. (3 refs).

  2. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  3. Commissioning and Performance of the CMS Silicon Strip Tracker with Cosmic Ray Muons

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.

  4. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF

    CERN Document Server

    Fernández, C; Fouz-Iglesias, M C; Marin, J; Oller, J C; Willmott, C

    2002-01-01

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  5. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  6. Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN

    CERN Document Server

    Carrone, E; Tsirou, A

    The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls a...

  7. An Integrated Testing Facility for the Global Trigger of the CMS Experiment at CERN

    CERN Document Server

    Themel, Thomas; Wulz, Claudia-Elisabeth

    2010-01-01

    The Global Trigger is part of the Level-1 Trigger of the CMS experiment at CERN, with the task to find the most interesting events corresponding to a rate of 100 kHz from the basic Large Hadron Collider interaction rate of 40 MHz. It is expected to render a decision within 3:2 $\\mu$s, which necessitates an implementation using custom hardware. The implementation makes heavy use of Field Programmable Gate Array (FPGA) technology to reconcile the performance requirements with the need for exibility. The complexity of the Global Trigger system (13 boards with 51 FPGA chips) makes it vulnerable to a multitude of errors, from electrical errors such as bad solder joints or plug contacts up to logical errors in the implementation of the firmrmware and the configuration software. The goal of the work described in this thesis was to provide an integrated system that allows users to easily determine whether the system is working correctly and assists experts in tracking down the internal causes of such errors within th...

  8. Proton extraction from the CERN SPS using bent silicon crystals

    Science.gov (United States)

    Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.

    1996-10-01

    The extraction of high energy particles from a circular accelerator by means of channeling in bent crystals is an attractive alternative to classical extraction schemes, in particular for high energy proton colliders where a classical scheme becomes expensive and incompatible with normal operation. This paper reviews the ongoing extraction experiments at the CERN-SPS with bent silicon crystals. It describes the principles of beam extraction by means of a bent crystal and the different extraction schemes used: first- and multi-pass extraction and the methods to create diffusion. The limitations in tuning the accelerator to the desired impact parameters and crucial items concerning crystal preparation, bending and pre-alignment are discussed. The experimental procedures including an overview of the detection of circulating and extracted beam are given. Finally, the paper summarizes the results of these experiments together with ideas for future developments.

  9. Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker

    CERN Document Server

    Bremer, R; Klein, Katja; Schmitz, Stefan Antonius; Adler, Volker; Adolphi, Roman; Ageron, Michel; Agram, Jean-Laurent; Atz, Bernd; Barvich, Tobias; Baulieu, Guillaume; Beaumont, Willem; Beissel, Franz; Bergauer, Thomas; Berst, Jean-Daniel; Blüm, Peter; Bock, E; Bogelsbacher, F; de Boer, Wim; Bonnet, Jean-Luc; Bonnevaux, Alain; Boudoul, Gaelle; Bouhali, Othmane; Braunschweig, Wolfgang; Brom, Jean-Marie; Butz, Erik; Chabanat, Eric; Chabert, Eric Christian; Clerbaux, Barbara; Contardo, Didier; De Callatay, Bernard; Dehm, Philip; Delaere, Christophe; Della Negra, Rodolphe; Dewulf, Jean-Paul; D'Hondt, Jorgen; Didierjean, Francois; Dierlamm, Alexander; Dirkes, Guido; Dragicevic, Marko; Drouhin, Frédéric; Ernenwein, Jean-Pierre; Esser, Hans; Estre, Nicolas; Fahrer, Manuel; Fernández, J; Florins, Benoit; Flossdorf, Alexander; Flucke, Gero; Flügge, Günter; Fontaine, Jean-Charles; Freudenreich, Klaus; Frey, Martin; Friedl, Markus; Furgeri, Alexander; Giraud, Noël; Goerlach, Ulrich; Goorens, Robert; Graehling, Philippe; Grégoire, Ghislain; Gregoriev, E; Gross, Laurent; Hansel, S; Haroutunian, Roger; Hartmann, Frank; Heier, Stefan; Hermanns, Thomas; Heydhausen, Dirk; Heyninck, Jan; Hosselet, J; Hrubec, Josef; Jahn, Dieter; Juillot, Pierre; Kaminski, Jochen; Karpinski, Waclaw; Kaussen, Gordon; Keutgen, Thomas; Klanner, Robert; König, Stefan; Kosbow, M; Krammer, Manfred; Ledermann, Bernhard; Lemaître, Vincent; De Lentdecker, Gilles; Linn, Alexander; Lounis, Abdenour; Lübelsmeyer, Klaus; Lumb, Nicholas; Maazouzi, Chaker; Mahmoud, Tariq; Michotte, Daniel; Militaru, Otilia; Mirabito, Laurent; Müller, Thomas; Neukermans, Lionel; Ollivetto, C; Olzem, Jan; Ostapchuk, Andrey; Pandoulas, Demetrios; Pein, Uwe; Pernicka, Manfred; Perriès, Stephane; Piaseki, C; Pierschel, Gerhard; Piotrzkowski, Krzysztof; Poettgens, Michael; Pooth, Oliver; Rouby, Xavier; Sabellek, Andreas; Schael, Stefan; Schirm, Norbert; Schleper, Peter; Schultz von Dratzig, Arndt; Siedling, Rolf; Simonis, Hans-Jürgen; Stahl, Achim; Steck, Pia; Steinbruck, G; Stoye, Markus; Strub, Roger; Tavernier, Stefaan; Teyssier, Daniel; Theel, Andreas; Trocmé, Benjamin; Udo, Fred; Van der Donckt, M; Van der Velde, C; Van Hove, Pierre; Vanlaer, Pascal; Van Lancker, Luc; Van Staa, Rolf; Vanzetto, Sylvain; Weber, Markus; Weiler, Thomas; Weseler, Siegfried; Wickens, John; Wittmer, Bruno; Wlochal, Michael; De Wolf, Eddi A; Zhukov, Valery; Zoeller, Marc Henning

    2009-01-01

    The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. From

  10. Investigation of Fast Timing Capabilities of Silicon Sensors for the CMS High Granularity Calorimeter at HL-LHC

    CERN Document Server

    Apresyan, Artur

    2016-01-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and unprecedented in-time event pileup projected at the High Luminosity-LHC era. In this context, profiting from fast-timing information (~tens of picoseconds) embedded in the calorimeter would represent a unique capability for resolving information from individual collisions at the HL-LHC. This will enhance the reconstruction and physics capabilities of the CMS detector in terms of pileup mitigation and particle identification. The HGCAL is realized as a sampling calorimeter, including 40 layers of silicon pad detectors with pad areas of 0.5 â?? 1.0 cm^2 and three active thicknesses 320, 200 and 120 μm. Prototype p-in-n and n-in-p 5x5mm^2 silicon pads, with thicknesses of 285, 211 and 133μm, were tested with high-energy electrons at the CERN SPS. We present the motivation for this study including the concept and use of fast-timing in th...

  11. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  12. Integration of the end cap TEC+ of the CMS silicon strip tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, Richard

    2008-04-28

    CMS is the first large experiment of high-energy particle physics whose inner tracking system is exclusively instrumented with silicon detector modules. This tracker comprises 15 148 silicon strip modules enclosing the interaction point in 10-12 layers. The 1. Physikalisches Institut B of RWTH Aachen was deeply involved in the completion of the end caps of the tracking system. The institute played a leading role in the end cap design, produced virtually all support structures and several important electrical components, designed and built the laser alignment system of the tracker, performed system tests and finally integrated one of the two end caps in Aachen. This integration constitutes the central part of the present thesis work. The main focus was on the development of methods to recognise defects early in the integration process and to assert the detector's functionality. Characteristic quantities such as the detector noise or the optical gain of the readout chain were determined during integration as well as during a series of tests performed after transport of the end cap from Aachen to CERN. The procedures followed during the mechanical integration of the detector and during the commissioning of integrated sectors are explained, and the software packages developed for quality assurance are described. In addition, results of the detector readout are presented. During the integration phase, sub-structures of the end cap - named petals - were subjected to a reception test which has also been designed and operated as part of this thesis work. The test setup and software developed for the test are introduced and an account of the analysis of the recorded data is given. Before the end cap project entered the production phase, a final test beam experiment was performed in which the suitability of a system of two fully equipped petals for operation at the LHC was checked. The measured ratio of the signal induced in the silicon sensors by minimal ionising

  13. The construction of the CMS electromagnetic calorimeter: delivery of the 3rd and 4th endcap "Dees" and Ring Flanges to CERN

    CERN Multimedia

    2006-01-01

    Delivery of the 3rd and 4th Dees and Ring Flanges of the CMS-ECAL endcaps to CERN. The pictures show also an endcap crystal with its VPT (Vacuum PhotoTriode), the aluminium blackplates of the endcap Dees and four mock supercrystals (5x5 crystals) attached in their position on the backplate, along with 138 positional spacers. Finally, endcap assembly in the CMS construction hall in Cessy (neighbouring France) is also shown.

  14. The CMS Trigger Supervisor: Control and Hardware Monitoring System of the CMS Level-1 Trigger at CERN

    CERN Document Server

    Ildefons Magrans de Abril

    2008-01-01

    The experiments CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC ApparatuS) at the LargeHadron Collider (LHC) are the greatest exponents of the rising complexity in High Energy Physics (HEP) datahandling instrumentation. Tens of millions of readout channels, tens of thousands of hardware boards and thesame order of connections are figures of merit. However, the hardware volume is not the only complexitydimension, the unprecedented large number of research institutes and scientists that form the internationalcollaborations, and the long design, development, commissioning and operational phases are additional factorsthat must be taken into account.The Level-1 (L1) trigger decision loop is an excellent example of these difficulties. This system is based on apipelined logic destined to analyze without deadtime the data from each LHC bunch crossing occurring every25_ns, using special coarsely segmented trigger data from the detectors. The L1 trigger is responsible forreducing the rate of accepted crossings to...

  15. CERN Summer Student report 2016: Search for dark matter with CMS

    CERN Document Server

    Hallin, Anna

    2016-01-01

    During this summer student project I have followed the analysis procedures for a search for Dark Matter with the CMS experiment. The project has included studying how the detector works, learning how to analyse physics objects using the CMS software framework, studying the theory and analysis strategy for this particular search, and doing some work with observables and event displays to contribute to the analysis.

  16. Alignment of the CMS Silicon Tracker during Commissioning with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS silicon tracker, consisting of 1440 silicon pixel and 15148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to a precision of 3-4 microns RMS in the barrel and 3-14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several methods, including the laser alignment system, and compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.

  17. The Silicon Wheel of CMS-SiB1 Milestone Report

    CERN Document Server

    Wittmer, Bruno

    1998-01-01

    The CMS Silicon Barrel Detector is a subsystem of the CMS Tracker and consists of seven wheels. For the SiB1-Milestone, that was completed in Summer 1997, one of these wheels has been built and equipped with 14 working silicon microstrip detector modules and 112 dummy modules. The working modules consist of two detectors glued together each one having 1024 strips with a pitch of 50 micron that are read out by eight PreMux 128 Chips. In the dummy modules the Readout Electronics have been substituted by resistors simulating the heat load. The dummy silicon sensors have fiducial marks and were alligned with a precision of 5 micron. The supporting wheel structure is made out of carbon fiber and incorporates all services. The assembly precision of the support structure was better than 100 micron.

  18. Track and Vertex Reconstruction in CMS

    CERN Document Server

    Adam, W

    2006-01-01

    The CMS experiment relies on a Silicon pixel and micro-strip tracker for the reconstruction of tracks and vertices of charged particles in the harsh environment of proton and heavy-ion collisions at the LHC at CERN. An outline of the basic track and vertex reconstruction algorithms used in CMS is given and their performance is described. Results of more advanced algorithms like the Gaussian Sum Filter for electron reconstruction and robust vertex fitters are shown.

  19. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  20. Silicon sensors development for the CMS pixel system

    CERN Document Server

    Arndt, Kirk; Bortoletto, Daniela; Giolo, Kim; Horisberger, R P; Rohe, T; Roy, Amitava; Son Seung Hee

    2003-01-01

    The CMS experiment will operate at the Large Hadron Collider (LHC). A hybrid pixel detector located close to the interaction region of the colliding beams will provide high resolution tracking and vertex identification which will be crucial for b quark identification. Because of the radiation environment of the LHC, the performance of the sensors must be carefully evaluated up to a fluence of 6 multiplied by 10**1**4n//e//qcm **-**2. We expect that the sensors will be operated partially depleted during their operation at the LHC and we have implemented an n**+ on n sensor design. We have irradiated prototype sensors to a dose of 1 multiplied by 10 **1**5n //e//qcm**-**2. We present the results of our testing before and after irradiation.

  1. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  2. Process control strategy of the silicon sensors production for the CMS tracker

    CERN Document Server

    Fontaine, J C; Helleboid, J M; Krammer, M; Macchiolo, A

    2002-01-01

    In the framework of the CMS experiment, a quality control of the silicon sensors production has been developed for the tracker construction. The emphasis here is on the process stability control based on the characterization of test-structures made of eight different components. The measurements carried out are presented. Then the set-up and the software developed for this purpose are explained. The first results, including the ones obtained on faulty batches of sensors, are shown.

  3. Thermal Conductivity Measurement of the Silicon Sensor Support Frames of the CMS Tracker

    CERN Document Server

    Clerbaux, Barbara; Van der Velde, C; Vancaldenhoven, M; Van Lancker, Luc

    2005-01-01

    The silicon sensor support elements of the CMS tracker detector are made of carbon fiber, epoxy resin and/or graphite material. A function of the supports is to remove heat generated in the sensors and in the frontend electronics. In this note we present the results of studies we have performed of the thermal conductivity of these support elements. Results are presented for various production batches.

  4. Stand-alone Cosmic Muon Reconstruction Before Installation of the CMS Silicon Strip Tracker

    CERN Document Server

    Adam, W; Dragicevic, M; Friedl, M; Fruhwirth, R; Hansel, S; Hrubec, J; Krammer, M; Oberegger, M; Pernicka, M; Schmid, S; Stark, RS; Steininger, H; Uhl, D; Waltenberger, W; Widl, E; Van Mechelen, P; Cardaci, M; Beaumont, W; de Langhe, E; de Wolf, E A; Delmeire, E; Hashemi, M; Bouhali, O; Charaf, O; Clerbaux, B; Dewulf, J P; Elgammal, S; Hammad, G; de Lentdecker, G; Marage, P; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Devroede, O; De Weirdt, S; D'Hondt, J; Goorens, R; Heyninck, J; Maes, J; Mozer, M; Tavernier, S; Van Lancker, L; Van Mulders, P; Villella, I; Wastiels, C; Bonnet, J L; Bruno, G; De Callatay, B; Florins, B; Giammanco, A; Gregoire, G; Keutgen, Th; Kcira, D; Lemaitre, V; Michotte, D; Militaru, O; Piotrzkowski, K; Quertermont, L; Roberfroid, V; Rouby, X; Teyssier, D; Daubie, E; Anttila, E; Czellar, S; Engstrom, P; Harkonen, J; Karimaki, V; Kostesmaa, J; Kuronen, A; Lampen, T; Linden, T; Luukka, P R; Maenpaa, T; Michal, S; Tuominen, E; Tuominiemi, J; Ageron, M; Baulieu, G; Bonnevaux, A; Boudoul, G; Chabanat, E; Chabert, E; Chierici, R; Contardo, D; Della Negra, R; Dupasquier, T; Gelin, G; Giraud, N; Guillot, G; Estre, N; Haroutunian, R; Lumb, N; Perries, S; Schirra, F; Trocme, B; Vanzetto, S; Agram, J L; Blaes, R; Drouhin, F; Ernenwein, J P; Fontaine, J C; Berst, J D; Brom, J M; Didierjean, F; Goerlach, U; Graehling, P; Gross, L; Hosselet, J; Juillot, P; Lounis, A; Maazouzi, C; Olivetto, C; Strub, R; Van Hove, P; Anagnostou, G; Brauer, R; Esser, H; Feld, L; Karpinski, W; Klein, K; Kukulies, C; Olzem, J; Ostapchuk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Beissel, F; Bock, E; Flugge, G; Gillissen, C; Hermanns, T; Heydhausen, D; Jahn, D; Kaussen, G; Linn, A; Perchalla, L; Poettgens, M; Pooth, O; Stahl, A; Zoeller, M H; Buhmann, P; Butz, E; Flucke, G; Hamdorf, R; Hauk, J; Klanner, R; Pein, U; Schleper, P; Steinbruck, G; Blum, P; De Boer, W; Dierlamm, A; Dirkes, G; Fahrer, M; Frey, M; Furgeri, A; Hartmann, F; Heier, S; Hoffmann, K H; Kaminski, J; Ledermann, B; Liamsuwan, T; Muller, S; Muller, Th; Schilling, F P; Simonis, H J; Steck, P; Zhukov, V; Cariola, P; De Robertis, G; Ferorelli, R; Fiore, L; Preda, M; Sala, G; Silvestris, L; Tempesta, P; Zito, G; Creanza, D; De Filippis, N; De Palma, M; Giordano, D; Maggi, G; Manna, N; My, S; Selvaggi, G; Albergo, S; Chiorboli, M; Costa, S; Galanti, M; Giudice, N; Guardone, N; Noto, F; Potenza, R; Saizu, M A; Sparti, V; Sutera, C; Tricomi, A; Tuve, C; Brianzi, M; Civinini, C; Maletta, F; Manolescu, F; Meschini, M; Paoletti, S; Sguazzoni, G; Broccolo, B; Ciulli, V; D'Alessandro, R; Focardi, E; Frosali, S; Genta, C; Landi, G; Lenzi, P; Macchiolo, A; Magini, N; Parrini, G; Scarlini, E; Cerati, G; Azzi, P; Bacchetta, N; Candelori, A; Dorigo, T; Kaminsky, A; Karaevski, S; Khomenkov, V; Reznikov, S; Tessaro, M; Bisello, D; De Mattia, M; Giubilato, P; Loreti, M; Mattiazzo, S; Nigro, M; Paccagnella, A; Pantano, D; Pozzobon, N; Tosi, M; Bilei, G M; Checcucci, B; Fano, L; Servoli, L; Ambroglini, F; Babucci, E; Benedetti, D; Biasini, M; Caponeri, B; Covarelli, R; Giorgi, M; Lariccia, P; Mantovani, G; Marcantonini, M; Postolache, V; Santocchia, A; Spiga, D; Bagliesi, G; Balestri, G; Berretta, L; Bianucci, S; Boccali, T; Bosi, F; Bracci, F; Castaldi, R; Ceccanti, M; Cecchi, R; Cerri, C; Cucoanes, A S; Dell'Orso, R; Dobur, D; Dutta, S; Giassi, A; Giusti, S; Kartashov, D; Kraan, A; Lomtadze, T; Lungu, G A; Magazzu, G; Mammini, P; Mariani, F; Martinelli, G; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Profeti, A; Raffaelli, F; Rizzi, D; Sanguinetti, G; Sarkar, S; Sentenac, D; Serban, A T; Slav, A; Soldani, A; Spagnolo, P; Tenchini, R; Tolaini, S; Venturi, A; Verdini, P G; Vos, M; Zaccarelli, L; Avanzini, C; Basti, A; Benucci, L; Bocci, A; Cazzola, U; Fiori, F; Linari, S; Massa, M; Messineo, A; Segneri, G; Tonelli, G; Azzurri, P; Bernardini, J; Borrello, L; Calzolari, F; Foa, L; Gennai, S; Ligabue, F; Petrucciani, G; Rizzi, A; Yang, Z; Benotto, F; Demaria, N; Dumitrache, F; Farano, R; Borgia, M A; Castello, R; Costa, M; Migliore, E; Romero, A; Abbaneo, D; Abbas, M; Ahmed, I; Akhtar, I; Albert, E; Bloch, C; Breuker, H; Butt, S; Buchmuller, O; Cattai, A; Delaere, C; Delattre, M; Edera, L M; Engstrom, P; Eppard, M; Gateau, M; Gill, K; Giolo-Nicollerat, A S; Grabit, R; Honma, A; Huhtinen, M; Kloukinas, K; Kortesmaa, J; Kottelat, L J; Kuronen, A; Leonardo, N; Ljuslin, C; Mannelli, M; Masetti, L; Marchioro, A; Mersi, S; Michal, S; Mirabito, L; Muffat-Joly, J; Onnela, A; Paillard, C; Pal, I; Pernot, J F; Petagna, P; Petit, P; Piccut, C; Pioppi, M; Postema, H; Ranieri, R; Ricci, D; Rolandi, G; Ronga, F; Sigaud, C; Syed, A; Siegrist, P; Tropea, P; Troska, J; Tsirou, A; Vander Donckt, M; Vasey, F; Alagoz, E; Amsler, C; Chiochia, V; Regenfus, Christian; Robmann, P; Rochet, J; Rommerskirchen, T; Schmidt, A; Steiner, S; Wilke, L; Church, I; Cole, J; Coughlan, J; Gay, A; Taghavi, S; Tomalin, I; Bainbridge, R; Cripps, N; Fulcher, J; Hall, G; Noy, M; Pesaresi, M; Radicci, V; Raymond, D M; Sharp, P; Stoye, M; Wingham, M; Zorba, O; Goitom, I; Hobson, P R; Reid, I; Teodorescu, L; Hanson, G; Jeng, G Y; Liu, H; Pasztor, G; Satpathy, A; Stringer, R; Mangano, B; Affolder, K; Affolder, T; Allen, A; Barge, D; Burke, S; Callahan, D; Campagnari, C; Crook, A; D'Alfonso, M; Dietch, J; Garberson, Jeffrey Ford; Hale, D; Incandela, H; Incandela, J; Jaditz, S; Kalavase, P; Kreyer, S; Kyre, S; Lamb, J; Mc Guinness, C; Mills, C; Nguyen, H; Nikolic, M; Lowette, S; Rebassoo, F; Ribnik, J; Richman, J; Rubinstein, N; Sanhueza, S; Shah, Y; Simms, L; Staszak, D; Stoner, J; Stuart, D; Swain, S; Vlimant, J R; White, D; Ulmer, K A; Wagner, S R; Bagby, L; Bhat, P C; Burkett, K; Cihangir, S; Gutsche, O; Jensen, H; Johnson, M; Luzhetskiy, N; Mason, D; Miao, T; Moccia, S; Noeding, C; Ronzhin, A; Skup, E; Spalding, W J; Spiegel, L; Tkaczyk, S; Yumiceva, F; Zatserklyaniy, A; Zerev, E; Anghel, I; Bazterra, V E; Gerber, C E; Khalatian, S; Shabalina, E; Baringer, P; Bean, A; Chen, J; Hinchey, C; Martin, C; Moulik, T; Robinson, R; Gritsan, A V; Lae, C K; Tran, N V; Everaerts, P; Hahn, K A; Harris, P; Nahn, S; Rudolph, M; Sung, K; Betchart, B; Demina, R; Gotra, Y; Korjenevski, S; Miner, D; Orbaker, D; Christofek, L; Hooper, R; Landsberg, G; Nguyen, D; Narain, M; Speer, T; Tsang, K V

    2009-01-01

    The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15% of the final silicon strip detector, and over 4.7 million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses.

  5. The CMS Silicon Pixel detector for HL-LHC

    CERN Document Server

    Steinbrueck, Georg

    2016-01-01

    The LHC is planning an upgrade program which will bring the luminosity to about 5~$\\times10^{34}$~cm$^{-2}$s$^{-1}$ in 2026, with the goal of an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges of higher data rates and increased radiation. To maintain its physics potential in this harsh environment, the CMS detector will undergo a major upgrade program known as the Phase II upgrade. The new Phase II pixel detector will require a high bandwidth readout system and highly radiation tolerant sensors and on-detector ASICs. Several technologies for the sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs with acceptance extended from $\\vert\\eta\\vert<2.4$ to $\\vert\\eta\\vert<4$, are presented together with performance estimates.

  6. Calibration and alignment of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Stoye, M.

    2007-07-15

    The Large Hadron Collider (LHC) will dominate the high energy physics program in the coming decade. The discovery of the standard model Higgs boson and the discovery of super-symmetric particles are within the reach at the energy scale explored by the LHC. However, the high luminosity and the high energy of the colliding protons lead to challenging demands on the detectors. The hostile radiation environment requires irradiation hard detectors, where the innermost subdetectors, consisting of silicon modules, are most affected. This thesis is devoted to the calibration and alignment of the silicon tracking detector. Electron test beam data, taken at DESY, have been used to investigate the performance of detector modules which previously were irradiated with protons up to a dose expected after 10 years of operation. The irradiated sensors turned out to be still better than required. The performance of the inner tracking systems will be dominated by the degree to which the positions of the sensors can be determined. Only a track based alignment procedure can reach the required precision. Such an alignment procedure is a major challenge given that about 50000 geometry constants need to be measured. Making use of the novel {chi}{sup 2} minimization program Millepede II an alignment strategy has been developed in which all detector components are aligned simultaneously, as many sources of information as possible are used, and all correlations between the position parameters of the detectors are taken into account. Utilizing simulated data, a proof of concept of the alignment strategy is shown. (orig.)

  7. Charged particle detection performance of gas electron multiplier detector for the upgrade of CMS endcap muon system at the CERN LHC

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS detector is one of two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosities after second long shutdown. The forward region $\\mid \\eta \\mid \\geq 1.5$ of the CMS detector will face extremely high particle rates in 10s of kHz/cm2 and hence it will affect the momentum resolution and longevity of the muon detectors. To overcome these issues, the CMS-GEM collaboration has proposed to install new large size high rate capable triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The proposal has been approved recently. The first set of Triple GEM detectors will be installed in the GE1/1 region ($1.6 < \\mid \\eta \\mid < 2.2$) of muon endcap during phase-II upgrade of the LHC. Towards this goal, full size CMS Triple GEM prototype chambers have been fabricated and put under the test beam at the CERN SPS test beam facility. The GEM detectors were operated with two gas mixtures: Ar:CO2 (70:30) and Ar:CO2:CF4 (...

  8. The CMS Silicon Tracker Detector: an Overview of the R&D Current Status

    CERN Document Server

    Santocchia, A; Angarano, M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A; Bagliesi, G; Bartalini, P; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Da Rold, M; Bosi, F; Borrello, L; Bozzi, C; Breuker, H; Candelori, A; Caner, A; Dell'Orso, R; Castaldi, R; Carstro, A; Checcucci, B; Ciampolini, P; Creanza, D; Elliot-Peisert, A; de Palma, M; Della Marina, R; Bruzzi, M; Catacchini, E; Civinini, C; Connotte, J; Gu, W H; Luebelsmeyer, K; D'Alessandro, R; Pandoulas, D; Sielding, R; Wittmer, B; Fiore, L; Maggi, G; My, S; Raso, G; Selvaggi; Silvestris; Tempesta, P; Piperov, S; Tricomi, A; Potenza, R; French, M; Focardi, E; Meschini, M; Parrini, G; Pieri, M; Glessing, B; Hammerstrom, R; Huhtinen, M; Mannelli, M; Marchioro, A; Schmitt, B; Stefanini, G; Eklund, C; Karimäki, V; Skog, K; Tuuva, T; Hall, G; McEvoy, B; Ramond, M; Watts, S; Giraldo, A; Loreti, M; Martignon, G; Paccagnella, A; Stavitsky, I; Lariccia, P; Mantovani, G; Passeri, D; Servoli, L; Wang, Y; Giassi, A; Verdini, P G; Vannini, C; Tonelli, G; Xie, Z; Messineo, A; Palla, F; Raffaelli, F; Sguazzoni, G; Starodumov, A; Freudenreich, K; Lustermann, W; Viertel, G; Krammer, M; Hrubec, J

    1998-01-01

    The paper describes the Silicon Tracking System of the Compact Muon Solenoid ( CMS) and reviews the most recent results of the R&D activity on radiation resistant microstrip silicon detectors. The Silicon Tracker of CMS consists of 5 layers of microstrip detectors in the barrel and 10 disks on either side of the end-cap region. The detectors of the innermost layers ( 22.5 cm radial distance from the beam pipe) are required to operate up to an integrated fluence of 1.6 10 ^14 1-MeV-equivalent neutrons per cm2. The results, obtained with single-sided prototypes irradiated with a neutron fluence up to 2*10^14 n/cm2 in terms of signal-to-noise ratio, efficiency and spatial resolution are described. We also show a comparison between device simulations, laboratory measurements and experimental results. Lastly we describe the complex system prototypes which have been recently built to address the system aspects of such a large silicon tracker.

  9. Update on the Hadron calorimeter of the CMS Experiment at CERN.

    CERN Document Server

    Hagopian, Vasken

    2008-01-01

    The construction and assembly of the Hadron Calorimeter is now complete and commissioning is almost done. The hadron calorimeter inside the CMS detector is made of scintillator and copper absorber covering the |η| range of 0.0 to 3.0. The forward calorimeter, made of quartz fibers and iron absorber, covers the |η| range of 3.0 to 5.0. Recent test beam effort is aimed at understanding of the performance of the Hadron Calorimeter in conjunction with the lead tungstate crystal Electromagnetic Calorimeter. Recent test beam results using production modules help us improve resolution. Work has started on several upgrade fronts for the high luminosity LHC.

  10. System Tests with DC-DC Converters for the CMS Silicon Strip Tracker at SLHC

    CERN Document Server

    Klein, K; Karpinski, W; Merz, J; Sammet, J

    2008-01-01

    The delivery of power is considered to be one of the major challenges for the upgrade of the CMS silicon strip tracker for SLHC. The inevitable increase in granularity and complexity of the device is expected to result in a power consumption comparable or even higher than the power consumption of todays' strip tracker. However, the space available for cables will remain the same. In addition, a further increase of the tracker material budget due to cables and cooling is considered inacceptable, as the performance of the CMS detector must not be compromised for the upgrade. Novel powering schemes such as serial powering or usage of DC-DC converters have been proposed to solve the problem. To test the second option, substructures of the current CMS silicon strip tracker have been operated for the first time with off-the-shelf DC-DC buck converters as well as with first prototypes of custom-designed DC-DC converters. The tests are described and the results are discussed.

  11. Silicon Sensor Development for the CMS Tracker Upgrade

    CERN Document Server

    Auzinger, Georg; Elliott-Peisert, Anna

    The Large Hadron Collider at the European Council for Nuclear Research in Geneva is scheduled to undergo a major luminosity upgrade after its lifetime of ten years of operation around the year 2020, to maximize its scientific discovery potential. The total integrated luminosity will be increased by a factor of ten, which will dramatically change the conditions under which the four large detectors at the LHC will have to operate. The Compact Muon Solenoid, which has contributed to the recent discovery of a new, Higgs-like boson is one of them. Its innermost part -- the so-called tracker -- is a high-precision instrument that measures the created particles' trajectories by means of silicon detectors. With a total surface of more than 200 square-meters it is the largest device of its kind ever built. The increase in instantaneous luminosity in the upgraded LHC will lead to a dramatically increased track density at the interaction points of the colliding beams and thus also to a much more hostile radiation env...

  12. 4 July 2013- European Commission DG CONNECT Director-General R. Madelin, signing the guest book with CERN Director-General R. Heuer and visiting CMS experimental area with Collaboration Deputy Spokesperson J. Varela.

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    4 July 2013- European Commission DG CONNECT Director-General R. Madelin, signing the guest book with CERN Director-General R. Heuer and visiting CMS experimental area with Collaboration Deputy Spokesperson J. Varela.

  13. Observing high mass Higgs using pp to qqH at CERN CMS experiment

    CERN Document Server

    Yildiz, H D

    2004-01-01

    The observability of the Higgs signal in the mass range of 300-800 Ge V is searched in the vector boson fusion process with the CMS experiment. at LHC. The fusion process is characterized by two final state jets at large pseudorapidity. The forward calorimeter plays a key role in detecting these jets. The significant signals are obtained for H to WW to l nu jj and H to ZZ to lljj. Importance of the forward jet tagging is emphasized to extract the signal from the large QCD W/Z +jets and the tt backgrounds. This analysis shows that the Higgs with m/sub H/ = 300-800 GeV can be observed in WW and ZZ decay channels with an integrated luminosity of about 10 to 20 fb/sup -1/. (5 refs).

  14. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bregliozzi, G; Burkhardt, H; Cerutti, F; Ferrari, A; Huhtinen, M; Lechner, A; Levinsen, Y; Mereghetti, A; Mokhov, N V; Tropin, I S; Vlachoudis, V

    2013-01-01

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, a...

  15. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  16. The hybrid front end PCBs production for the CMS preshower

    CERN Document Server

    Soukoulias, P

    2009-01-01

    The High Energy Physics Detector CMS (Compact Muon Solenoid),installed at the Large Hadron Collider(LHC) at CERN,Geneva,has been built by an International Collaboration;CMS will measure and identify the particles from proton-proton collisions.One of the CMS component is the Preshower sub-detector,comprising 5000 silicon strip sensors connected to Hybrid Front End Boards for the readout.This paper focuses on an in-kind contibution of Greece.This work was carried out by researches,engineers and managers from a medium size Company,Prisma Electronics,located in Alexandropolis and researchers from CERN in Geneva,Demokritos in Athens and the University of Ioannina.The number of pieces fitting the technical specifications was close to 100%.Because of that,in March 2009,Prisma received as recognition a CERN CMS gold award.

  17. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the na...

  18. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ Management- CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management - CB - MB - FB Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2007 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of em¬pl...

  19. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ Management- CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management - CB - MB - FB Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2007 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of employment and ...

  20. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the natu...

  1. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat about the natur...

  2. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the iCMS Web site. The following items can be found on: http://cms.cern.ch/iCMS/ General - CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. LHC Symposiums Management - CB - MB - FB - FMC Agendas and minutes are accessible to CMS members through their AFS account (ZH). However some linked documents are restricted to the Board Members. FB documents are only accessible to FB members. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2006 Annual reviews are posted.   CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral students upon completion of their theses. Therefore it is requested that Ph.D students inform the CMS Secretariat a...

  3. Characterization of silicon sensor materials and designs for the CMS Tracker Upgrade

    CERN Document Server

    Dierlamm, Alexander Hermann

    2012-01-01

    During the high luminosity phase of the LHC (HL-LHC, starting around 2020) the inner tracking system of CMS will be exposed to harsher conditions than the current system was designed for. Therefore a new tracker is planned to cope with higher radiation levels and higher occupancies. Within the strip sensor developments of CMS a comparative survey of silicon materials and technologies is being performed in order to identify the baseline material for the future tracker. Hence, a variety of materials (float-zone, magnetic Czochralski and epitaxially grown silicon with thicknesses from 50$\\mu$m to 320$\\mu$m as p- and n-type) has been processed at one company (Hamamatsu Photonics K.K.), irradiated (proton, neutron and mixed irradiations up to 1.5e15n$_{eq}$/cm$^2$ and beyond) and tested under identical conditions. The wafer layout includes a variety of devices to investigate different aspects of sensor properties like simple diodes, test-structures, small strip sensors and a strip sensor array with varying strip p...

  4. 17 September 2013 - Estonian Minister of Education and Research J. Aaviksoo signing the guest book with CERN Director-General R- Heuer; visiting the TOTEM facility with TOTEM Collaboration Spokesperson S. Giani; in the LHC tunnel at Point 5 with International Relations Adviser T. Kurtyka and visiting the CMS cavern with CMS Collaboration Spokesperson J. Incandela. International Relations Adviser R. Voss present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    17 September 2013 - Estonian Minister of Education and Research J. Aaviksoo signing the guest book with CERN Director-General R- Heuer; visiting the TOTEM facility with TOTEM Collaboration Spokesperson S. Giani; in the LHC tunnel at Point 5 with International Relations Adviser T. Kurtyka and visiting the CMS cavern with CMS Collaboration Spokesperson J. Incandela. International Relations Adviser R. Voss present.

  5. 23rd June 2010 - University of Bristol Head of the Aerospace Engineering Department and Professor of Aerospace Dynamics N. Lieven visiting CERN control centre with Beams Department Head P. Collier, visiting the LHC superconducting magnet test hall with R. Veness and CMS control centre with Collaboration Spokesperson G. Tonelli and CMS User J. Goldstein.

    CERN Multimedia

    Jean-Claude Gadmer

    2010-01-01

    23rd June 2010 - University of Bristol Head of the Aerospace Engineering Department and Professor of Aerospace Dynamics N. Lieven visiting CERN control centre with Beams Department Head P. Collier, visiting the LHC superconducting magnet test hall with R. Veness and CMS control centre with Collaboration Spokesperson G. Tonelli and CMS User J. Goldstein.

  6. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

  7. CMS DOCUMENTATION

    CERN Multimedia

    CMS TALKS AT MAJOR MEETINGS The agenda and talks from major CMS meetings can now be electronically accessed from the ICMS Web site. The following items can be found on: http://cms.cern.ch/iCMS Management – CMS Weeks (Collaboration Meetings), CMS Weeks Agendas The talks presented at the Plenary Sessions. Management – CB – MB – FB Agendas and minutes are accessible to CMS members through Indico. LHCC The talks presented at the ‘CMS Meetings with LHCC Referees’ are available on request from the PM or MB Country Representative. Annual Reviews The talks presented at the 2008 Annual Reviews are posted in Indico. CMS DOCUMENTS It is considered useful to establish information on the first employment of CMS doctoral student upon completion of their theses.  Therefore it is requested that Ph.D students inform the CMS Secretariat about the nature of employment and name of their first employer. The Notes, Conference Reports and Theses published si...

  8. Academic Training: Technological challenges for LHC experiments, the CMS example

    CERN Document Server

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 28 February, 1, 2, 3 & 4 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Technological challenges for LHC experiments, the CMS example by P. SPHICAS/CERN-PH, G. DISSERTORI/ETH, Zürich, Ch. M. MANNELLI/CERN-PH, G. HALL/Imperial College, London. GB, P. FABBRICATORE/INFN, Genova, I Monday 28 February Design principles and performances of CMS P. Sphicas/CERN-PH Tuesday 1st March Crystal calorimetry in LHC environment G. Dissertori/ETH Zürich, CH Wednesday 2 March Silicon tracking in LHC environment M. Mannelli/CERN-PH Thursday 3 March Radhard fast electronics for LHC experiments G. Hall/Imperial College London, GB Friday 4 March Design principles of thin high field superconducting solenoids P. Fabbricatore/INFN Genova, I ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  9. 20 December 2013 - R. M. Cordeiro Dunlop Ambassador Permanent Representative of Brazil to the United Nations Office and other international organisations in Geneva visiting the LHC tunnel at Point 5 with CMS Collaboration, CERN Team Leader A. Petrilli and signing the Guest Book with CERN Director-General. Accompanied by J. Salicio and R. Voss throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    20 December 2013 - R. M. Cordeiro Dunlop Ambassador Permanent Representative of Brazil to the United Nations Office and other international organisations in Geneva visiting the LHC tunnel at Point 5 with CMS Collaboration, CERN Team Leader A. Petrilli and signing the Guest Book with CERN Director-General. Accompanied by J. Salicio and R. Voss throughout.

  10. Validation of the Read Out Electronics for the CMS Muon Drift Chambers at Tests Beam in CERN/GIF; Validacion en el Test Beam del CERN/GIF de la electronica de Lectura de las Camaras de Muones del Experimento CMS

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, C.; Fouz, M. c.; Marin, J.; Oller, J. C.; Willmott, C.; Amigo, L. J.

    2002-07-01

    Part of the readout system for the CMS muon drift chambers has been tested in test beams at CERN/GIF. Read Out Board (ROB) and HPTD have been validated with signals from a real muon beam, with an structure and flux similar to LHC operating conditions and using one of the chambers produced in CIEMAT already located in the test beam area under normal gas and voltage conditions. (Author) 5 refs.

  11. Silicon Sensor Prototypes for the Phase II Upgrade of the CMS Tracker

    CERN Document Server

    Bergauer, Thomas

    2015-01-01

    The CMS Tracker will be completely exchanged in the so called Phase-II upgrade. To preserve and enhance its performance in the High-Luminosity LHC phase, the new tracker will need to cope with very high radiation levels, track densities and pile-ups. In addition, it needs to provide input for the level-1 trigger. In this paper we present the baseline design of the new tracker, with a special emphasis on the two detector module concepts for the outer tracker, the 2S and PS module. The CMS Tracker collaboration designed and procured sensor prototypes from several vendors. These productions are intended for evaluating the production quality of the manufacturers, for providing functional sensors for module prototypes and for concluding the survey towards a suitable silicon base material and sensor design. Here we provide first results of the PS-p macro-pixel-light sensor and of full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  12. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    Energy Technology Data Exchange (ETDEWEB)

    Krzywda, A., E-mail: akrzywda@purdue.edu [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Alagoz, E.; Bubna, M. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Obertino, M. [Università del Piemonte Orientale, Novara (Italy); INFN, Sezione di Torino, Torino (Italy); Solano, A. [Università di Torino, Torino (Italy); INFN, Sezione di Torino, Torino (Italy); Arndt, K. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Uplegger, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Betta, G.F. Dalla [TIFPA INFN and Dipartimento di Ingegneria Industriale, Università di Trento, Via Sommarive 9, I-38123 Povo di Trento, TN (Italy); Boscardin, M. [Centro per Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Trento, Via Sommarive 18, I-38123 Povo di Trento, TN (Italy); Ngadiuba, J. [Università di Milano-Bicocca, Milan (Italy); Rivera, R. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Menasce, D.; Moroni, L.; Terzo, S. [Università di Milano-Bicocca, Milan (Italy); Bortoletto, D. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); Prosser, A.; Adreson, J.; Kwan, S. [Fermi National Accelerator Laboratory, Batavia, IL 60510-5011 (United States); Osipenkov, I. [Texas A and M University, Department of Physics, College Station, TX 77843 (United States); Bolla, G. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN 47907-2036 (United States); and others

    2014-11-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10{sup 15} n {sub eq}/cm{sup 2}.

  13. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    2011-01-01

    The Agendas and Minutes of the Management Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 The Agendas and Minutes of the Collaboration Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174

  14. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    2011-01-01

    The Agendas and Minutes of the Management Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 The Agendas and Minutes of the Collaboration Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174  

  15. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    2012-01-01

      The Agendas and Minutes of the Management Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 The Agendas and Minutes of the Collaboration Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174

  16. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    2010-01-01

    The Agendas and Minutes of the Management Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 The Agendas and Minutes of the Collaboration Board meetings are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174

  17. Radiation hardness and precision timing study of silicon detectors for the CMS High Granularity Calorimeter (HGC)

    Science.gov (United States)

    Currás, Esteban; Fernández, Marcos; Gallrapp, Christian; Gray, Lindsey; Mannelli, Marcello; Meridiani, Paolo; Moll, Michael; Nourbakhsh, Shervin; Scharf, Christian; Silva, Pedro; Steinbrueck, Georg; Fatis, Tommaso Tabarelli de; Vila, Iván

    2017-02-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb-1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb-1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 1016 neq/cm2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μm n-on-p and p-on-n silicon pads irradiated to fluences up to 1.6×1016 neq/cm2 is presented. The properties of these diodes studied before and after irradiation were leakage current, capacitance, charge collection efficiency, annealing effects and timing capability. The results of these measurements validate these sensors as candidates for the HGC system.

  18. Characterization of thin irradiated epitaxial silicon sensors for the CMS phase II pixel upgrade

    CERN Document Server

    Centis Vignali, Matteo; Eichhorn, Thomas; Garutti, Erika; Junkes, Alexandra; Steinbrueck, Georg

    2015-01-01

    The high-luminosity upgrade fo the large hadron collider foreseen for 2023 resulted in the decision to replace the tracker system of the CMS experiment. The innermost layer of the new pixel detector will experience fluences in the order of $\\phi_{eq} \\approx 10^{16}$~cm$^{-2}$ and a dose of $\\approx 5$~MGy after an integrated luminosity of 3000~fb$^{-1}$. Several materials and designs are under investigation in order to build a detector that can withstand such high fluences. Thin planar silicon sensors are good canditates to achieve this goal since the degradation of the signal produced by traversing particles is less severe than for thicker devices. A study has been carried out in order to characterize highly irradiated planar epitaxial silicon sensors with an active thickness of 100~$\\mu$m. The investigation includes pad diodes and strip detectors irradiated up to a fluence of $\\phi_{eq} = 1.3 \\times 10^{16}$~cm$^{-2}$. The electrical properties of diodes have bee...

  19. International Masterclass at CMS

    CERN Document Server

    Lapka, M

    2012-01-01

    The CMS collaboration welcomed a class of French high school students to the CERN facility in Meyrin, Switzerland on the 12 of March, 2012. Students spent the day meeting with physicists, hearing talks, asking questions, and participating in a hands-on exercise using real data collected by the CMS experiment on the Large Hadron Colider. Talks and other resources are available here: http://ippog-dev.web.cern.ch/resources/2012/ippog-international-masterclass-2012-cms

  20. 19th July 2010 - Italian Senators and Deputies on the occasion of the Third World Conference of Speakers of Parliament, visiting CMS control room with CERN Director-General R. Heuer.

    CERN Multimedia

    Jean-Claude Gadmer

    2010-01-01

    CERN-HI-1007208 01: In the CMS surafce building 3578, from left to right: ALICE Collaboration Spokesperson elect P. Giubellino, Guest Professor and Former Italian Senator G. Basini, Technology Deputy Department Head L. Rossi, Vice President House R. Buttiglione, Vice President of the Italian Senate V. Chiti,Engineering Department Head R. Saban, Permanent Representative of Italy to the UN Ambassador L. Mirachian, CMS Collaboration Spokesperson G. Tonelli, Director for Research and Computing S. Bertolucci.

  1. Impact of the recent results by the CMS and ATLAS Collaborations at the CERN Large Hadron Collider on an effective Minimal Supersymmetric extension of the Standard Model

    CERN Document Server

    Scopel, S; Fornengo, N; Bottino, A

    2011-01-01

    We discuss the impact for light neutralinos in an effective Minimal Supersymmetric extension of the Standard Model of the recent results presented by the CMS and ATLAS Collaborations at the CERN Large Hadron Collider for a search of supersymmetry in proton-proton collisions at a center-of-mass energy of 7 TeV with an integrated luminosity of 35 inverse pb. We find that, in the specific case of light neutralinos, efficiencies for the specific signature searched by ATLAS (jets+missing transverse energy and an isolated lepton) imply a lower sensitivity compared to CMS (which searches for jets +missing transverse energy). Focusing on the CMS bound, if squark soft masses of the three families are assumed to be degenerate, the combination of the ensuing constraint on squark and gluino masses with the experimental limit on the b to s + gamma decay imply a lower bound on the neutralino mass that can reach the value of 11.9 GeV, depending on the gluino mass. On the other hand, when the universality condition among squ...

  2. The design and construction of a double-sided Silicon Microvertex Detector for the L3 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Adam, A. [Technical Univ., Budapest (Hungary). Physical Inst.; Ahlen, S.; Marin, A.; Zhou, B. [Boston Univ., MA (United States); Ambrosi, G.; Babucci, E.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Caria, M.; Checcucci, B.; Easo, S.; Fiandrini, E.; Krastev, V.R.; Massetti, R.; Pauluzzi, M.; Santocchia, A.; Servoli, L. [INFN/Universita di Perugia (Italy); Baschirotto, A.; Bosetti, M.; Pensotti, S.; Rancoita, P.G.; Rattaggi, M.; Terzi, G. [INFN/Universita di Milano (Italy); Battiston, R. [CERN, Geneva (Switzerland)]|[INFN/Universita di Perugia (Italy); Bay, A.; Burger, W.J.; Extermann, P.; Perrin, E.; Susinno, G.F. [Univ. of Geneva (Switzerland); Bencze, G.Y.L.; Kornis, J.; Toth, J. [KFKI/Research Inst. for Particle and Nuclear Physics, Budapest (Hungary); Bobbink, G.J.; Duinker, P. [NIKHEF, Amsterdam (Netherlands); Brooks, M.L.; Coan, T.E.; Kapustinsky, J.S.; Kinnison, W.W.; Lee, D.M.; Mills, G.B.; Thompson, T.C. [Los Alamos National Lab., NM (United States); Busenitz, J.; DiBitonto, D. [Univ. of Alabama, Tuscaloosa, AL (United States); Camps, C.; Commichau, V.; Hangartner, K.; Schmitz, P. [RWTH, Aachen (Germany). 3. Physikalisches Institut; Castellini, G. [INFN/IROE, Firenze (Italy); Chen, A.; Hou, S.; Lin, W.T. [NCU, Chung/Li (Taiwan, Province of China); Gougas, A.; Kim, D.; Paul, T. [Johns Hopkins Univ., Baltimore, MD (United States); Hauviller, C.; Herve, A.; Josa, I. [CERN, Geneva (Switzerland); Landi, G. [INFN/Universita di Firenze (Italy); Lebeau, M. [LAPP, Annecy (France); Lecomte, P.; Viertel, G.M.; Waldmeier, S. [ETH Zurich (Switzerland); Leiste, R. [CERN, Geneva (Switzerland)]|[DESY-IFH, Zeuthen (Germany); Lejeune, E.; Weill, R. [Univ. of Lausanne (Switzerland); Lohmann, W.; Nowak, H.; Sachwitz, M.; Schoeniech, B.; Tonisch, F.; Trowitzsch, G.; Vogt, H. [DESY-IFH, Zeuthen (Germany); Passaleva, G. [INFN/Universita di Firenze (Italy)]|[INFN/Universita di Perugia (Italy); Yeh, S.C. [National Tsing Hua Univ., Hsinchu (Taiwan)

    1993-12-01

    A Silicon Microvertex Detector (SMD) has been commissioned for the L3 experiment at the Large Electron-Positron colliding-beam accelerator (LEP) at the European Center for Nuclear Physics, (CERN). The SMD is a 72,672 channel, two layer barrel tracker that is comprised of 96 ac-coupled, double-sided silicon detectors. Details of the design and construction are presented.

  3. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  4. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    Science.gov (United States)

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  5. Observation of Proton Reflection on Bent Silicon Crystals at the CERN SPS

    CERN Document Server

    Scandale, Walter

    2007-01-01

    We report the observation of the so-called volume reflection effect with 400 GeV/c protons interacting with bent silicon crystals in the H8 beam line performed by the H8RDD22 Collaboration at the CERN SPS. The volume reflection is an effect of the same nature of the particle channeling among the crystalline planes of a bent crystal. The reflection occurs at the tangency point of a particle trajectory with the bent crystalline planes where the transverse component of the particle momentum is reversed. The measurements were realized with a high spatial resolution detector mainly based on silicon microstrips showing the effect on particle trajectories of bent silicon crystals in several configurations. The proton beam was deviated in a direction opposite to that of channeling by 12-14 mrad, which is 1.3 times the critical angle, with an efficiency greater than 97% in a range of the proton-to-crystal incident angle as wide as the bending angle of crystallographic planes. This evidence opens new perspectives for m...

  6. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  7. Development of the silicon Multiplicity Detector for the NA50 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Alexeline, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Baglin, C. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bisi, V. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonazzola, G. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonello, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bussiere, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Capony, V. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Crovato, R. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Dabrowski, W. [Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow (Poland); De Remigis, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); De Witt, J. [SCIPP, Santa Cruz, CA (United States); Forlen, M. [Grenoble-1 Univ., 74 -Annecy (France). Lab. de Physique des Particules; Giubellino, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Grybos, P. [Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow (Poland); Idzik, M. [Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow (Poland); Kossakowski, R. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Marzari-Chiesa, A. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Masera, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Monteno, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Prado da Silva, W. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Ramello, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Rato Mendes, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Riccati, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Sartori, M.S. [Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1995-11-01

    We have designed a silicon microstrip detector to measure angular distribution and multiplicity of charged particles produced in high-energy Pb-Pb interactions for the NA50 experiment.NA50 will investigate the production of resonances decaying to dimuons at the CERN SpS. Given the low cross-section for these reactions, the experiment will have to function at very high rate, while the need to limit the background due to decays of {pi} and K mesons imposes an absorber very close to the target, resulting in a very short space available for the multiplicity detector.The multiplicity detector will therefore have to be very fast (dead time below 50ns), radiation resistant (up to the Mrad level as dose and up to more than 10{sup 13}particles/cm{sup 2} as non-ionizing damage), compact (less than 12cm along the beam) and of high granularity (in order to achieve a good resolution in central collisions with up to 1000 particles in the acceptance). The conditions on noise, speed and radiation hardness are comparable to the ones foreseen at the future Large Hadron Collider at CERN.We present the detector design and the first results on the components of the system which have been produced and tested up to now. In particular, we report on the performance achieved by the first complete detector modules (including two full-custom VLSI ASICs) and by the transputer-based readout system. (orig.).

  8. Radiation hardness and precision timing study of Silicon detectors for the CMS High Granularity Calorimeter (HGC)

    CERN Document Server

    Curras, E; Gallrapp, C; Gray, L; Mannelli, M; Meridiani, P; Moll, M; Nourbakhsh, S; Scharf, C; Silva, P; Steinbrueck, G; Tabarelli de Fatis, T; Vila, I

    2016-01-01

    The high luminosity upgraded LHC or Phase-II is expected to increase the instantaneous luminosity by a factor of 10 beyond the LHC's design value, expecting to deliver 250 fb^−1 per year for a further 10 years of operation. Under these conditions the performance degradation due to integrated radiation dose will need to be addressed. The CMS collaboration is planning to upgrade the forward calorimeters. The replacement is called the High Granularity Calorimeter (HGC) and it will be realized as a sampling calorimeter with layers of silicon detectors interleaved. The sensors will be realized as pad detectors with sizes of less that ∼1.0 cm^2 and an active thickness between 100 and 300 μm depending on the position, respectively, the expected radiation levels. For an integrated luminosity of 3000 fb^−1, the electromagnetic calorimetry will sustain integrated doses of 1.5 MGy (150 Mrads) and neutron fluences up to 10^16 neq/cm^2. A radiation tolerance study after neutron irradiation of 300, 200, and 100 μ...

  9. Radiation hardness and precision timing study of Silicon Detectors for the CMS High Granularity Calorimeter (HGCAL)

    CERN Document Server

    Curras Rivera, Esteban

    2016-01-01

    The high luminosity LHC (HL-LHC or Phase-II) is expected to increase the instantaneous luminosity of the LHC by a factor of about five, delivering about 250 fba-1 per year between 2025 and 2035. Under these conditions the performance degradation of detectors due to integrated radiation dose/fluence will need to be addressed. The CMS collaboration is planning to upgrade many components, including the forward calorimeters. The replacement for the existing endcap preshower, electromagnetic and hadronic calorimeters is called the High Granularity Calorimeter (HGCAL) and it will be realized as a sampling calorimeter, including 30 layers of silicon detectors totalling 600m^2. The sensors will be realized as pad detectors with cell sizes of between 0.5-1.0 cm^2 and an active thickness between 100 um and 300 um depending on their location in the endcaps the thinner sensors will be used in the highest radiation environment. For an integrated luminosity of 3000 fba-1, the electromagnetic calorimetry will sustain integ...

  10. Performance of CMS 3D silicon pixel detectors before and after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Obertino, M., E-mail: margherita.obertino@cern.ch [Università del Piemonte Orientale, Novara, and INFN, Torino (Italy); Solano, A. [Università di Torino and INFN, Torino (Italy); Alagoz, E. [Physics Department, Purdue University, West Lafayette, IN (United States); Andresen, J. [University of Colorado, Boulder (United States); Arndt, K.; Bolla, G.; Bortoletto, D. [Physics Department, Purdue University, West Lafayette, IN (United States); Boscardin, M. [Centro per i Materiali e i Microsistemi Fondazione Bruno Kessler (FBK), Povo di Trento (Italy); Brosius, R. [SUNY, Buffalo (United States); Bubna, M. [Physics Department, Purdue University, West Lafayette, IN (United States); Dalla Betta, G.-F. [INFN Padova (Gruppo Collegato di Trento) and Università di Trento, Povo di Trento (Italy); Jensen, F. [University of Colorado, Boulder (United States); Krzywda, A. [Physics Department, Purdue University, West Lafayette, IN (United States); Kumar, A. [SUNY, Buffalo (United States); Kwan, S. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Lei, C.M. [University of Colorado, Boulder (United States); Menasce, D.; Moroni, L. [INFN Milano Bicocca, Milano (Italy); Ngadiuba, J. [Università di Milano Bicocca and INFN, Milano (Italy); Osipenkov, I. [Texas A and M University, TX (United States); and others

    2013-12-01

    Three-dimensional (3D) silicon detectors are emerging as one of the most promising technologies for the innermost layers of tracking devices for the foreseen upgrades of the LHC. 3D sensors compatible with the CMS readout, fabricated at FBK (Trento, Italy), were tested in the laboratory and with a 120 GeV/c proton beam at the FNAL test beam facility, before and after irradiation up to a fluence of 3.5×10{sup 15}neq/cm{sup 2}. Preliminary results of the data analysis are presented. -- Highlights: •3D characterized in laboratory, tested with beam and irradiated with 800 MeV protons. •Leakage current: few hundred nA before irradiation, ∼10 μA after irradiation. •Depletion voltage: 20 V. Breakdown voltage: 25–35 V, not increasing after irradiation. •Efficiency: 97.5%, increasing when tilting sensors with respect to the beam. •Radiation effect: lower efficiency and lower collected charge.

  11. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, Thomas, E-mail: thomas.bergauer@oeaw.ac.at

    2016-09-21

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb{sup −1} over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p–p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow p{sub T} discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  12. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Science.gov (United States)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  13. Performance of CMS silicon microstrip detectors with the APV6 readout chip

    CERN Document Server

    Meschini, M; Angarano, M M; Azzi, P; Babucci, E; Bacchetta, N; Bader, A J; Bagliesi, G; Basti, A; Biggeri, U; Bilei, G M; Bisello, D; Boemi, D; Bosi, F; Borrello, L; Bozzi, C; Braibant, S; Breuker, Horst; Bruzzi, Mara; Buffini, A; Busoni, S; Candelori, A; Caner, A; Castaldi, R; Castro, A; Catacchini, E; Checcucci, B; Ciampolini, P; Civinini, C; Creanza, D; D'Alessandro, R; Da Rold, M; Demaria, N; De Palma, M; Dell'Orso, R; Della Marina, R; Dutta, S; Eklund, C; Peisert, Anna; Feld, L; Fiore, L; Focardi, E; French, M; Freudenreich, Klaus; Fürtjes, A; Giassi, A; Giorgi, M A; Giraldo, A; Glessing, B; Gu, W H; Hall, G; Hammarström, R; Hebbeker, T; Hrubec, Josef; Huhtinen, M; Kaminski, A; Karimäki, V; Saint-Koenig, M; Krammer, Manfred; Lariccia, P; Lenzi, M; Loreti, M; Lübelsmeyer, K; Lustermann, W; Mättig, P; Maggi, G; Mannelli, M; Mantovani, G C; Marchioro, A; Mariotti, C; Martignon, G; McEvoy, B; Messineo, A; My, S; Paccagnella, A; Palla, Fabrizio; Pandoulas, D; Papi, A; Parrini, G; Passeri, D; Pieri, M; Piperov, S; Potenza, R; Radicci, V; Raffaelli, F; Raymond, M; Santocchia, A; Schmitt, B; Selvaggi, G; Servoli, L; Sguazzoni, G; Siedling, R; Silvestris, L; Skog, K; Starodumov, Andrei; Stavitski, I; Stefanini, G; Tempesta, P; Tonelli, G; Tricomi, A; Tuuva, T; Vannini, C; Verdini, P G; Viertel, Gert M; Xie, Z; Li Ya Hong; Watts, S; Wittmer, B

    2000-01-01

    We present results obtained with full-size wedge silicon microstrip detectors bonded to APV6 (Raymond et al., Proceedings of the 3rd Workshop on Electronics for LHC Experiments, CERN/LHCC/97-60) readout chips. We used two identical modules, each consisting of two crystals bonded together. One module was irradiated with 1.7*10/sup 14/ neutrons/cm/sup 2/. The detectors have been characterized both in the laboratory and by exposing them to a beam of minimum ionizing particles. The results obtained are a good starting point for the evaluation of the performance of the "ensemble" detector plus readout chip in a version very similar to the final production one. We detected the signal from minimum ionizing particles with a signal-to- noise ratio ranging from 9.3 for the irradiated detector up to 20.5 for the non-irradiated detector, provided the parameters of the readout chips are carefully tuned. (9 refs).

  14. Performance of CMS silicon microstrip detectors with the APV6 readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, M. E-mail: meschini@fi.infn.it; Albergo, S.; Angarano, M.; Azzi, P.; Babucci, E.; Bacchetta, N.; Bader, A.; Bagliesi, G.; Basti, A.; Biggeri, U.; Bilei, G.M.; Bisello, D.; Boemi, D.; Bosi, F.; Borrello, L.; Bozzi, C.; Braibant, S.; Breuker, H.; Bruzzi, M.; Buffini, A.; Busoni, S.; Candelori, A.; Caner, A.; Castaldi, R.; Castro, A.; Catacchini, E.; Checcucci, B.; Ciampolini, P.; Civinini, C.; Creanza, D.; D' Alessandro, R.; Da Rold, M.; Demaria, N.; De Palma, M.; Dell' Orso, R.; Marina, R. Della; Dutta, S.; Eklund, C.; Elliott-Peisert, A.; Feld, L.; Fiore, L.; Focardi, E.; French, M.; Freudenreich, K.; Fuertjes, A.; Giassi, A.; Giorgi, M.; Giraldo, A.; Glessing, B.; Gu, W.H.; Hall, G.; Hammerstrom, R.; Hebbeker, T.; Hrubec, J.; Huhtinen, M.; Kaminsky, A.; Karimaki, V.; Koenig, St.; Krammer, M.; Lariccia, P.; Lenzi, M.; Loreti, M.; Luebelsmeyer, K.; Lustermann, W.; Maettig, P.; Maggi, G.; Mannelli, M.; Mantovani, G.; Marchioro, A.; Mariotti, C.; Martignon, G.; McEvoy, B.; Messineo, A.; My, S.; Paccagnella, A.; Palla, F.; Pandoulas, D.; Papi, A.; Parrini, G.; Passeri, D.; Pieri, M.; Piperov, S.; Potenza, R.; Radicci, V.; Raffaelli, F.; Raymond, M.; Santocchia, A.; Schmitt, B.; Selvaggi, G.; Servoli, L.; Sguazzoni, G.; Siedling, R.; Silvestris, L.; Skog, K.; Starodumov, A.; Stavitski, I.; Stefanini, G.; Tempesta, P.; Tonelli, G.; Tricomi, A.; Tuuva, T.; Vannini, C.; Verdini, P.G.; Viertel, G.; Xie, Z.; Li Yahong; Watts, S.; Wittmer, B

    2000-06-01

    We present results obtained with full-size wedge silicon microstrip detectors bonded to APV6 (Raymond et al., Proceedings of the 3rd Workshop on Electronics for LHC Experiments, CERN/LHCC/97-60) readout chips. We used two identical modules, each consisting of two crystals bonded together. One module was irradiated with 1.7x10{sup 14} neutrons/cm{sup 2}. The detectors have been characterized both in the laboratory and by exposing them to a beam of minimum ionizing particles. The results obtained are a good starting point for the evaluation of the performance of the 'ensemble' detector plus readout chip in a version very similar to the final production one. We detected the signal from minimum ionizing particles with a signal-to-noise ratio ranging from 9.3 for the irradiated detector up to 20.5 for the non-irradiated detector, provided the parameters of the readout chips are carefully tuned.

  15. Transport of the first half of the CMS hadronic forward calorimeter (HF) from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  16. A fast, high-granularity silicon multiplicity detector for the NA50 experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro, B. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Alexeline, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Baglin, C. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bisi, V. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonazzola, G. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bonello, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Bussiere, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Capony, V. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Crovato, R. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Dabrowski, W. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; De Remigis, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); De Witt, J. [SCIPP, Santa Cruz (United States); Forlen, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Giubellino, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Grybos, P. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; Idzik, M. [Academy of Min. and Metall., Cracow (Poland). Fac. of Phys. and Nucl. Tech.; Kossakowski, R. [Grenoble-1 Univ., 74 -Annecy (France). Lab. de Physique des Particules; Marzari-Chiesa, A. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Masera, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Monteno, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Prado da Silva, W. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Ramello, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Rato Mendes, P. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Riccati, L. [Istituto Nazionale di Fisica Nucleare, Turin (Italy); Sartori, M. [Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1995-06-01

    We have designed a silicon detector to measure the angular distribution and the multiplicity of charged secondaries produced in high-energy Pb-Pb interactions. It will be used to characterize the events in the NA50 experiment. The experiment will have to function at very high rate, and the silicon detectors will have to operate in the high-radiation area close to the target. Therefore, the detector will have to be very fast (dead time below 50 ns), radiation resistant (up to the Mrad level as dose and up to more than 10{sup 13} particles/cm{sup 2} as non-ionizing damage) and of high granularity. The conditions on noise, speed and radiation hardness are comparable to the ones foreseen at the future Large Hadron Collider at CERN. We present here the detector design, discuss some of the solutions which have been investigated and report first results on the components of the system which have been designed and produced up to now. (orig.).

  17. Radiation hard silicon microstrip detectors for use in ATLAS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Lars Gimmestad

    2005-07-01

    The Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will accelerate protons in colliding beams to a center of mass energy of 14 TeV at very high luminosities. The ATLAS detector is being built to explore the physics in this unprecedented energy range. Tracking of charged particles in high-energy physics (HEP) experiments requires a high spatial resolution and fast signal readout, all with as little material as possible. Silicon microstrip detectors meet these requirements well and have been chosen for the Semiconductor Tracker (SCT) which is part of the inner tracking system of ATLAS and has a total area of 61 m2. During the 10 years of operation at LHC, the total fluence received by the detectors is sufficiently large that they will suffer a severe degradation from radiation induced damage. The damage affects both the physics performance of the detectors as well as their operability and a great challenge has been to develop radiation hard detectors for this environment. An extensive irradiation programme has been carried out where detectors of various designs, including defect engineering by oxygen enriched silicon, have been irradiated to the expected fluence. A subsequent thermal annealing period is included to account for a realistic annual maintenance schedule at room temperature, during which the radiation induced defects alter the detector properties significantly. This thesis presents work that has been carried out in the Bergen ATLAS group with results both from the irradiation programme and from detector testing during the module production. (Author)

  18. Calibration, alignment and long-term performance of the CMS silicon tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Butz, E.

    2009-03-15

    With an active area of more than 200 m{sup 2}, the CMS silicon strip detector is the largest silicon tracker ever built. It consists of more than 15,000 individual silicon modules which have to meet very high standards in terms of noise behavior and electronic crosstalk, as well as their exact positioning within the tracker. Furthermore, the modules will be exposed to a harsh radiation environment over the lifetime of the tracker. This thesis deals with several of the above-mentioned aspects. In the first part, individual modules are investigated using a testbeam. Some of the modules were irradiated up to an integrated dose which corresponds to the expected one over the life time of the tracker. These modules are investigated with respect to their signal-to-noise behavior, and their cross-talk. Several operational parameters are varied, such as the temperature and the bias voltage. It is shown that the modules behave as expected. The signal-to-noise ratio is well above the specifications and the cross-talk increases only very moderately with irradiation. Furthermore, the spatial resolution of the modules is investigated. Different cluster algorithms are utilized and compared. It is shown that the spatial resolution is not much affected by irradiation and that the spatial resolution can be improved with respect to the current standard reconstruction. In the second part, larger structures of the silicon tracker are studied during the socalled 'tracker slice-test'. Two sectors from one of the tracker end caps are investigated. Special emphasis is given to the commissioning of the system and the monitoring of the various commissioning parameters. Furthermore, the noise of the system is investigated as a function of the ambient temperature and different powering schemes. It is shown that the noise of the system behaves as expected. The noise is stable within 2% for different powering schemes. Also possible failures of components are investigated and persistent

  19. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Sammet, Jan

    2014-03-18

    The instantaneous luminosity of the LHC is expected to reach 2 x 10{sup 34} s{sup -1}cm{sup -2} and 5 x 10{sup 34} s{sup -1}cm{sup -2} around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10{sup 15} n{sub eq}/cm{sup 2}. With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in

  20. 30th August 2010 - Permanent Representative of the People's Republic of China to the United Nations Office at Geneva, Ambassador Y. He visiting the CMS underground experimental area and LHC tunnel with CERN Director-General R. Heuer and Collaboration Spokesperson G. Tonelli.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1008197 01: in the LHC tunnel at Point 5: CMS Collaboaration Spokesperson G. Tonelli, Mrs L. Jianping (Ambassador's spouse), Mrs B. Heuer, Permanent Representative of the People's Republic of China to the United Nations Office at Geneva, Ambassador Y. He, CERN Director-General R. Heuer and Adviser R. Voss; CERN-HI-1008197 57: in front of the CMS experiment at LHC point 5: CMS technical Coordinator A. Ball, Mrs L. Jianping (Ambassador's spouse), Permanent Representative of the People's Republic of China to the United Nations Office at Geneva, Ambassador Y. He; Mrs B. Heuer, CERN Director-General R. Heuer, CMS Collaboaration Spokesperson G. Tonelli and Adviser R. Voss. CERN-HI-1008197 02 - 14: Welcome in front of building 3562 at CMS. Head of International relations F: Pauss gives the introduction talk to the delegation. CERN-HI-1008197 15 - 25: visiting CMS control room at Point 5 with Collaboration Spokesperson G. Tonelli; CERN-HI-1008197 26 - 29: visiting the service cavern in the CMS underground ar...

  1. CERN Holiday Gift Guide

    CERN Multimedia

    2013-01-01

    Do you have last-minute gifts to get? Stuck for ideas? The CERN Shop and the ATLAS and CMS secretariats have some wonderfully unique gifts and stocking-fillers for sale this year - perfect for the physics fanatics in your life. Let's take a look...   1. CERN Notebook, 10 CHF - 2. CERN Pop-up book, 30 CHF - 3. USB Stick 8GB, 25 CHF - 4. CERN Tumbler, 12 CHF 5. ATLAS 3D Viewer, 5 CHF - 6. ATLAS Puzzle, 15 CHF - 7. CMS Umbrella, 25 CHF   These gifts are all available at the CERN Shop, with the exception of the ATLAS 3D Viewer and the CMS umbrella, which are only available from the respective secretariats. Don’t forget! If you’re from CERN, you still have time to take advantage of a 10% off discount at the CERN shop. Offer ends 20 December.

  2. CERN videonews magazine Nr 2 : December 2002

    CERN Multimedia

    Audiovideo Service

    2002-01-01

    News from :ATRAP experiment's latest achievements. (CERN Bulletin 45/2002) CAST experiment. (CERN Bulletin 35/2002) InDiCo : the European digital conferencing project. (CERN Bulletin 42/2002) CMS : superconducting cable production Diaporama

  3. Experimental Studies Towards a DC-DC Conversion Powering Scheme for the CMS Silicon Strip Tracker at SLHC

    CERN Document Server

    Klein, Katja; Jussen, Ruediger; Karpinski, Waclaw; Merz, Jennifer; Sammet, J

    2009-01-01

    The upgrade of the CMS silicon tracker for the Super-LHC presents many challenges. The distribution of power to the tracker is considered particularly difficult, as the tracker power consumption is expected to be similar to or higher than today, while the operating voltage will decrease and power cables cannot be exchanged or added. The CMS tracker has adopted parallel powering with DC-DC conversion as the baseline solution to the powering problem. In this paper, experimental studies of such a DC-DC conversion powering scheme are presented, including system test measurements with custom DC-DC converters and current strip tracker structures, studies of the detector susceptibility to conductive noise, and simulations of the effect of novel powering schemes on the strip tracker material budget.

  4. 3 October 2013 - Ukrainian Vice Prime Minister Ukraine K. I. Gryschenko welcomed by CERN Director-General R. Heuer who introduces Head of International Relations R. Voss; Head of Technology Department F. Bordry; Deputy Head of International Relations E. Tsesmelis; Deputy Legal Counsel M. Wilbers; Adviser for Ukraine T. Kurtyka; Signing of the Agreement between Ukraine and CERN concerning the granting of the status of Associate Member at CERN; in the LHC tunnel at Point 5 and visiting CMS experimental area with CERN Team Leader A. Petrilli.

    CERN Document Server

    Anna Pantelia

    2013-01-01

    3 October 2013 - Ukrainian Vice Prime Minister Ukraine K. I. Gryschenko welcomed by CERN Director-General R. Heuer who introduces Head of International Relations R. Voss; Head of Technology Department F. Bordry; Deputy Head of International Relations E. Tsesmelis; Deputy Legal Counsel M. Wilbers; Adviser for Ukraine T. Kurtyka; Signing of the Agreement between Ukraine and CERN concerning the granting of the status of Associate Member at CERN; in the LHC tunnel at Point 5 and visiting CMS experimental area with CERN Team Leader A. Petrilli.

  5. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng [National-Provincial Laboratory of Special Function Thin Film Materials, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Eremin, Vladimir [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Verbitskaya, Elena, E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas [CERN, CH-1211, Geneva 23 (Switzerland); Kurfürst, Christoph [Technische Universität, Universitätsring 1, 1010 Wien (Austria); Härkönen, Jaakko [Helsinki Institute of Physics, Gustaf Hällströminkatu, 200014 Helsingin yliopisto (Finland)

    2016-07-11

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 10{sup 16} protons/cm{sup 2} while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development—results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014—is presented. Our main finding is that silicon detectors survive under irradiation to 1×10{sup 16} p/cm{sup 2} at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode. - Highlights: • Activities aimed at upgrading of Beam Loss Monitors (BLM) at HL-LHC are described. • Overview of in situ radiation tests of silicon BLMs immersed in LHe is presented. • Silicon detectors with 300 and 100 μm thickness survived radiation at 1.9 K. • Current injection is still effective at 1.9 K for radiation hardness improvement. • Si detectors are currently installed on the magnets for their operation as BLMs.

  6. Live CMS

    CERN Document Server

    2017-01-01

    CMS live from Facebook. The Pixel Tracker (or Pixel Detector) is the innermost instrument in the very heart of the CMS apparatus, installed around the LHC beampipe. This is the very point where new particles, such as the Higgs boson, are produced by the energy of the proton proton collisions, and so the Pixel detector receives the largest particle-flux of any sub-component of CMS. The new component is made up of two “parts”: a central barrel region (called BPIX), made of two cylindrical halves, and forward discs on either side of the collision point (FPIX). The new BPIX was manufactured by a consortium of European institutes from Switzerland, Italy and Germany, supported by CERN. The new FPIX was manufactured by 14 institutes in the USA.

  7. Pulse Shape Characterization of Silicon Diodes for HGCal with data from Beam Test at CERN

    CERN Document Server

    De Silva, Malinda

    2016-01-01

    The High Luminosity phase of the LHC (starting operation in 2025) will provide unprecedented instantaneous and integrated luminosity, with 25 ns bunch crossing intervals and up to 140 pileup events. A challenge is to provide excellent physics performance in such a harsh environment to fully exploit the HL-LHC potentialities and explore new physics frontiers. In this context, the High Granularity Calorimeter is the detector designed to provide electromagnetic and hadronic energy coverage and reconstruction in the forward direction of the upgraded CMS. In April 2016 and June 2016, a set of 36 diodes were tested in order to understand various characteristics of its performance, in order to use them in the upgraded HG Calorimeter. Here, the silicon diodes were mounted onto a test bench at CERN’s beam test area and exposed to electron showers. Data received from these diodes were acquired and analysed separately. The objective of this report is to show the variation of Time Rise, Time Over Threshold with various...

  8. CMS MANANGEMENT MEETINGS

    CERN Multimedia

    Management Board Agendas and minutes of meetings of the Management Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 Collaboration Board Agendas and minutes of meetings of the Collaboration Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 LHCC: Feedback from the CMS Referees, LHCC 97 February 25, 2009. The CMS LHCC referees met with representatives of CMS on 17-2-09, to review progress since the last November minireview. The main topics included shutdown construction, maintenance and repairs; status of the preshower detector; commissioning and physics analysis results from cosmic ray running and CSA08; preparations for physics, off line analysis, computing, and data distribution. TOTEM management and the TOTEM referees then joined us for a joint session to examine the readiness of the TOTEM detector. Detector construction, maintenance, and repairs. The referees congratulate CMS Management and the Detector Groups for the...

  9. Auger Physicists visit CMS

    CERN Multimedia

    Hoch, Michael

    2012-01-01

    Visit at CERN P5 CMS in the experimental cavern Alan Watson, Auger Spokesperson Emeritus, University of Leeds; Jim Cronin, Nobel Laureate, Auger Spokesperson Emeritus, University of Chicago; Jim Virdee, CMS Former Spokesperson, Imperial College; Jim Matthews, Auger Co-Spokesperson, Louisiana State University

  10. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Guthoff, Moritz; Dabrowski, Anne; De Boer, Wim; Stickland, David; Lange, Wolfgang; Lohmann, Wolfgang

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector ef fi ciency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, becaus...

  11. Iron Blocks of CMS Magnet Barrel Yoke.

    CERN Multimedia

    2000-01-01

    On the occasion of presenting the CMS Award 2000 to Deggendorfer Werft und Eisenbau GmbH the delivered blocks were inspected at CERN Point 5. From left to right: H. Gerwig (CERN, CMS Magnet Barrel Yoke Coordinator), G. Waurick (CERN), F. Leher (DWE, Project Engineer) and W. Schuster (DWE, Project Manager).

  12. Romanian President Visits CERN

    CERN Multimedia

    2001-01-01

    Director General Luciano Maiani watches as Romanian President Ion Iliescu signs the CERN guest book. On Friday the 12th of October, Romanian President Ion Iliescu arrived at CERN and was warmly greeted by Director General Luciano Maiani at the steps of building 500. After initial greetings and a general presentation of the laboratory, President Iliescu and his entourage embarked on a whistle stop tour of the CERN facilities. They visited the CMS magnet assembly hall and civil engineering work where presentations were made by CMS spokesperson Michel Della Negra and the ATLAS Tile Calorimeter where the president was introduced to Romanian physicists working here at CERN. Michel Della Negra explains some of the general principles behind CMS to President Iliescu during his visit last week. The Romanian teams working on CERN projects make very visible contributions, for example to the construction of the ATLAS experiment and to the preparation of its eventual scientific exploitation. 'Those of us on the ATLAS ...

  13. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    Management Board Agendas and minutes of meetings of the Management Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 Collaboration Board Agendas and minutes of meetings of the Collaboration Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 LHCC: Feedback from the CMS Referees, LHCC 97 February 25, 2009. The CMS LHCC referees met with representatives of CMS on 17-2-09, to review progress since the last November minireview. The main topics included  shutdown construction, maintenance and repairs;  status of the preshower detector; commissioning and physics analysis results from cosmic ray running and CSA08;   preparations for physics, off line analysis, computing, and data distribution. TOTEM management and the TOTEM referees then joined us for a joint session to examine the readiness of the TOTEM detector. Detector construction, maintenance, and repairs. The referees congratulate C...

  14. CMS MANAGEMENT MEETINGS

    CERN Multimedia

    Jim Virdee

    Management Board Agendas and minutes of meetings of the Management Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=223 Collaboration Board Agendas and minutes of meetings of the Collaboration Board are accessible to CMS members at: http://indico.cern.ch/categoryDisplay.py?categId=174 LHCC: Feedback from the CMS Referees, LHCC 97 February 25, 2009. The CMS LHCC referees met with representatives of CMS on 17-2-09, to review progress since the last November minireview. The main topics included  shutdown construction, maintenance and repairs;  status of the preshower detector; commissioning and physics analysis results from cosmic ray running and CSA08;   preparations for physics, off line analysis, computing, and data distribution. TOTEM management and the TOTEM referees then joined us for a joint session to examine the readiness of the TOTEM detector. Detector construction, maintenance, and repairs. The referees congratula...

  15. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Science.gov (United States)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  16. Some of the participants in the CMS magnet project pose in front of first module, which has just arrived at CERN.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Among them: Alain Hervé, CMS technical co-ordinator (holding his helmet); to his right, Pasquale Fabbricatore, in charge of the winding of the CMS magnet, from INFN in Genoa; and to his left, Domenico Campi, head of the CMS magnet group

  17. Track based alignment of the CMS silicon tracker and its implication on physics performance

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, Jula

    2011-08-15

    In order to fully exploit the discovery potential of the CMS detector for new physics beyond the Standard Model at the high luminosity and centre-of-mass energy provided by the Large Hadron Collider, a careful calibration of the detector and profound understanding of its impact on physics performance are necessary to provide realistic uncertainties for the measurements of physics processes. This thesis describes the track-based alignment of the inner tracking system of CMS with the Millepede II algorithm. Using the combined information of tracks from cosmic rays and collisions taken in 2010, a remarkable local alignment precision has been reached that meets the design specification for most regions of the detector and takes into account instabilities of the detector geometry over time. In addition, the impact of the alignment of b tagging or the Z boson resonance are investigated. The latter is studied to investigate the impact of correlated detector distortions which hardly influence the overall solution of the minimisation problem but introduce biases in the track parameters and thus the derived physics quantities. The determination and constraint of these weak modes present the future challenge of the alignment task at CMS. (orig.)

  18. 9 February 2012 - Permanent Representative of the Kingdom of Spain to the United Nations Office at Geneva and other International Organisations, Ambassador A. Santos Maraver signing the guest book with CERN Director-General; in the CERN Control Centre with N. Catalan; visiting the LHC tunnel at Point 5 and CMS underground experimental area with Collaboration Spokesperson J. Incandela; throughout accompanied by Adviser J. Salicio Diez and Former Physics Deputy Department Head L. Alvarez Gaumé.

    CERN Multimedia

    Visual Media Office

    2012-01-01

    9 February 2012 - Permanent Representative of the Kingdom of Spain to the United Nations Office at Geneva and other International Organisations, Ambassador A. Santos Maraver signing the guest book with CERN Director-General; in the CERN Control Centre with N. Catalan; visiting the LHC tunnel at Point 5 and CMS underground experimental area with Collaboration Spokesperson J. Incandela; throughout accompanied by Adviser J. Salicio Diez and Former Physics Deputy Department Head L. Alvarez Gaumé.

  19. 21 May 2013 - Greek Minister of Health A. Lykouretzos signing the guest book with CERN Director-General R. Heuer; visiting the LHC tunnel at POint 5 and CMS experimental cavern with Deputy Spokesperson T. Camporesi. CERN-HERMES Network Technical Coordinator E. Dimovasili; Life Sciences Adviser M. Dosanjh; National Contact Physicist, ATLAS Collaboration, NTU, Athens E. Gazis and International Relations Adviser R. Voss accompany the delegation throughout.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    21 May 2013 - Greek Minister of Health A. Lykouretzos signing the guest book with CERN Director-General R. Heuer; visiting the LHC tunnel at POint 5 and CMS experimental cavern with Deputy Spokesperson T. Camporesi. CERN-HERMES Network Technical Coordinator E. Dimovasili; Life Sciences Adviser M. Dosanjh; National Contact Physicist, ATLAS Collaboration, NTU, Athens E. Gazis and International Relations Adviser R. Voss accompany the delegation throughout.

  20. Overview of CMS robotic silicon module assembly hardware based on Aerotech Gantry Positioning system.

    CERN Multimedia

    Honma, Alan

    1999-01-01

    The goal of the robotic silicon module assembly pilot project is to fully automate the gluing and pick and placement of silicon sensors and front-end hybrid onto a carbon-fibre frame. The basis for thesystem is the Aerotech Gantry Positioning System (AGS10000) machineshown in the centre of the picture. To the left is the PC which contains the controller card and runs the user interface. To the rightis the rack of associated electronics which interfaces with the CERNbuilt tooling and vacuum chuck system.

  1. The CMS Electronic Logbook

    CERN Multimedia

    Bukowiec, S; Beccati, B; Behrens, U; Biery, K; Branson, J; Cano, E; Cheung, H; Ciganek, M; Cittolin, S; Coarasa Perez, J A; Deldicque, C; Erhan, S; Gigi, D; Glege, F; Gomez-Reino, R; Hatton, D; Hwong, Y L; Loizides, C; Ma, F; Masetti, L; Meijers, F; Meschi, E; Meyer, A; Mommsen, R K; Moser, R; O’Dell, V; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Racz, A; Raginel, O; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Shpakov, D; Simon, M; Sumorok, K; Sungho Yoon, A

    2010-01-01

    The CMS ELogbook (ELog) is a collaborative tool, which provides a platform to share and store information about various events or problems occurring in the Compact Muon Solenoid (CMS) experiment at CERN during operation. The ELog is based on a Model–View–Controller (MVC) software architectural pattern and uses an Oracle database to store messages and attachments. The ELog is developed as a pluggable web component in Oracle Portal in order to provide better management, monitoring and security.

  2. Evacuation drill at CMS

    CERN Multimedia

    Niels Dupont-Sagorin and Christoph Schaefer

    2012-01-01

    Training personnel, including evacuation guides and shifters, checking procedures, improving collaboration with the CERN Fire Brigade: the first real-life evacuation drill at CMS took place on Friday 3 February from 12p.m. to 3p.m. in the two caverns located at Point 5 of the LHC.   CERN personnel during the evacuation drill at CMS. Evacuation drills are required by law and have to be organized periodically in all areas of CERN, both above and below ground. The last drill at CMS, which took place in June 2007, revealed some desiderata, most notably the need for a public address system. With this equipment in place, it is now possible to broadcast audio messages from the CMS control room to the underground areas.   The CMS Technical Coordination Team and the GLIMOS have focused particularly on preparing collaborators for emergency situations by providing training and organizing regular safety drills with the HSE Unit and the CERN Fire Brigade. This Friday, the practical traini...

  3. Investigation of new sensor concepts and development of an effective model for the simulation of radiation damage hochbestrahlter silicon particle detectors

    CERN Document Server

    Eber, Robert

    Silicon sensors in the Tracker of the CMS experiment at CERN will suffer from sever radiation damage after the upgrade of the LHC beyond 2023. A new sensor design is presented and a two-defect radiation damage model for the simulation is developed for the prediction of the performance of future silicon sensors.

  4. CERN videonews magazine Nr 1 : October 2002

    CERN Multimedia

    Audiovideo Service; Photolab

    2002-01-01

    News from : . ATHENA : thousands of cold anti-atoms produced at CERN. (CERN Bulletin 39/2002) . CMS ECAL : news on the progress on the construction of the CMS detector . MICROCOSM : inauguration of a full-scale model of the LHC.(CERN Bulletin 42/2002) . Fete de la Science : 14-20 October 2002 in Pays de Gex. (CERN Bulletin 42/2002) . Diaporama : events from the last months

  5. Control of the fabrication process for the sensors of the CMS silicon strip tracker

    CERN Document Server

    Macchiolo, A

    2004-01-01

    The inner tracking system of the Compact Muon Solenoid experiment at the Large Hadron Collider consists of the world largest Silicon Strip Tracker. A detailed quality assurance program is under way to ensure the full compliance of all delivered sensors with the technical specifications. The focus will be here on the "Process Qualification Control" to monitor the stability of the fabrication process throughout the production phase. A description of the setup in the three laboratories involved (Florence, Strasbourg, Vienna) is given and the results obtained with the first delivered batches are shown.

  6. 11 March 2009 - Italian Minister of Education, University and Research M. Gelmini, visiting ATLAS and CMS underground experimental areas and LHC tunnel with Director for Research and Scientific Computing S. Bertolucci. Signature of the guest book with CERN Director-General R. Heuer and S. Bertolucci at CMS Point 5.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Members of the Ministerial delegation: Cons. Amb. Sebastiano FULCI, Consigliere Diplomatico Dott.ssa Elisa GREGORINI, Segretario Particolare del Ministro Dott. Massimo ZENNARO, Responsabile rapporti con la stampa Prof. Roberto PETRONZIO, Presidente dell’INFN (Istituto Nazionale di Fisica Nucleare) Dott. Luciano CRISCUOLI, Direttore Generale della Ricerca, MIUR Dott. Andrea MARINONI, Consulente scientifico del Ministro CERN delegation present throughout the programme: Prof. Sergio Bertolucci, Director for Research and Scientific Computing Prof. Fabiola Gianotti, ATLAS Collaboration Spokesperson Prof. Paolo Giubellino, ALICE Deputy Spokesperson, Universita & INFN, Torino Prof. Guido Tonelli, CMS Collaboration Deputy Spokesperson, INFN Pisa Dr Monica Pepe-Altarelli, LHCb Collaboration CERN Team Leader Guests in the ATLAS exhibition area: Dr Marcello Givoletti\tPresident of CAEN Dr Davide Malacalza\tPresident of ASG Ansaldo Superconductors and users: Prof. Clara Matteuzzi, LHCb Collaboration, Universita' d...

  7. 15th December 2010 - World Intellectual Property Organization Director-General F. Gurry signing the guest book with CERN Director-General R. Heuer; visiting CMS control room, experimental cavern and LHC tunnel with Collaboration Deputy Spokesperson J. Incandela, accompanied by M. Bona.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1012325 36, from left to right: WIPO Arbitration and Mediation Center, Global Issues Sector Director E. Wilbers; CERN Adviser, Relations with International Organisations, M. Bona; CMS Collaboration Deputy Spokesperson, University of California Santa Barbara J. Incandela; WIPO Deputy Director General, Global Issues Sector J. C. Wichard; WIPO Director-General F. Gurry; WIPO Executive Director and Chief of Staff, Office of the Director General N. Prasad.

  8. 1st February 2011-CERN Cultural Board for Engaging with the Arts, visiting CMS experimental area and LHC Tunnel at Point 5

    CERN Multimedia

    Michael Hoch

    2011-01-01

    Photo 1-4: Visit to CMS Control Room with G. Tonelli,CMS Collaboration Spokesperson Photo 5-9,16-20:CMS experimental area Photo 10-15:LHC Tunnel at Point 5 Photo 21:F. Madlener,Director of IRCAM Paris+S. Dorny,Director-General Lyon Opera House+C. Bollman,Art by Genève+M. Doser,AEgIS Collaboration Spokesperson,Former Physics Department Deputy Head+A. Koek,International Arts Development+G. Tonelli+M. Monje Cano,Arts Development Assistant (part-time work experience)+B. Ruf,Director of Kunsthalle Zürich

  9. JINR participation in the CMS project

    CERN Document Server

    Golutvin, I A

    2002-01-01

    The physics potential and the prospects of future experiments at the CMS detector of the Large Hadron Collider (LHC) at CERN are discussed. A status report is given on the research, development, and construction of the CMS endcap detectors for which JINR bears the full responsibility in the framework of the CMS collaboration. (7 refs).

  10. Life@CMS: Combining Higgs search data with ATLAS

    CERN Multimedia

    CERN

    2011-01-01

    First combined results from the CMS and ATLAS Higgs search at the LHC. Including exclusive footage from internal CMS meetings. For more information, visit: http://cms.web.cern.ch/news/atlas-and-cms-combine-summer-11-search-limits-standard-model-higgs

  11. 19 April 2013 - The University of Chicago Vice President for Research and for National Laboratories D. H. Levy signing the guest book with CERN Director for Accelerators and Technology S. Myers; in the LHC tunnel with L. Bottura; throughout accompanied by US CMS J. Butler. Mrs Levy and Mrs Butler took part.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 April 2013 - The University of Chicago Vice President for Research and for National Laboratories D. H. Levy signing the guest book with CERN Director for Accelerators and Technology S. Myers; in the LHC tunnel with L. Bottura; throughout accompanied by US CMS J. Butler. Mrs Levy and Mrs Butler took part.

  12. 28 June 2012 - Ambassador I. Piperkov, Permanent Representative of Bulgaria to the United Nations Office and other international organisations in Geneva and Spouse visiting CMS experimental area with Collaboration Deputy Spokesperson T. Camporesi and CERN Control Centre with M. Benedikt.Senior physicist L. Litov accompanies the delegation throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    28 June 2012 - Ambassador I. Piperkov, Permanent Representative of Bulgaria to the United Nations Office and other international organisations in Geneva and Spouse visiting CMS experimental area with Collaboration Deputy Spokesperson T. Camporesi and CERN Control Centre with M. Benedikt.Senior physicist L. Litov accompanies the delegation throughout.

  13. 31 August 2008 - Secretary General of the United Nations Ban Ki-moon visiting CMS experimental underground area and LHC tunnel with CERN Director-General R. Aymar and Collaboration Spokesperson T. Virdee. Director-General of the United Nations Office at Geneva S. Ordzhonikidze also present.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    Also present on the photographs: Guests: Representative of the French Republic O. Laurens-Bernard, Sous Préfet de Gex Deputy Permanent representative C. Guilhou, Permanent Mission of France to the UN CERN: CMS Collaboration Technical Coordinator A. Ball Chief Scientific Officer, Deputy Director-General J. Engelen Group Leader in matter of Safety C. Schaefer LHC engineer in charge L. Ponce

  14. 4th February 2011 - Austrian Academy of Sciences President H. Denk visiting CMS underground area with Collaboration Spokesperson G. Tonelli, Austrian Academy of Sciences Secretary General A. Suppan, CERN Head of International Relations F. Pauss and Director, High Energy Physics Laboratory, Austrian Academy of Sciences C Fabjan.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    4th February 2011 - Austrian Academy of Sciences President H. Denk visiting CMS underground area with Collaboration Spokesperson G. Tonelli, Austrian Academy of Sciences Secretary General A. Suppan, CERN Head of International Relations F. Pauss and Director, High Energy Physics Laboratory, Austrian Academy of Sciences C Fabjan.

  15. 20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

    CERN Document Server

    Maximilien brice

    2010-01-01

    20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

  16. 21 June 2010 - TUBITAK Vice President A. Adli signing the guest book with CERN Director-General R. Heuer, visiting the ATLAS control room at Point 1 with Former Collaboration Spokesperson P. Jenni and CMS Control Centre, building 354, with Collaboration Spokesperson G. Tonelli. Throughout accompanied by Adviser J. Ellis.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    21 June 2010 - TUBITAK Vice President A. Adli signing the guest book with CERN Director-General R. Heuer, visiting the ATLAS control room at Point 1 with Former Collaboration Spokesperson P. Jenni and CMS Control Centre, building 354, with Collaboration Spokesperson G. Tonelli. Throughout accompanied by Adviser J. Ellis.

  17. 5 June 2013 - Sri Lankan Senior Minister of Scientific Affairs T. Vitharana signing the guest book with Director-General R. Heuer, in the LHC tunnel at Point 5 with International Relations Adviser R. Voss and in the CMS cavern with CERN Team leader A. Petrilli.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    5 June 2013 - Sri Lankan Senior Minister of Scientific Affairs T. Vitharana signing the guest book with Director-General R. Heuer, in the LHC tunnel at Point 5 with International Relations Adviser R. Voss and in the CMS cavern with CERN Team leader A. Petrilli.

  18. The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Control Centre for LHC operations, located in Prevessin.

    CERN Multimedia

    Husi C.

    2007-01-01

    The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Control Centre for LHC operations, located in Prevessin.

  19. 18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  20. Status of RDMS CMS computing

    Science.gov (United States)

    Gavrilov, V.; Golutvin, I.; Kodolova, O.; Korenkov, V.; Levchuk, L.; Shmatov, S.; Tikhonenko, E.; Zhiltsov, V.

    2016-09-01

    The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. More than twenty institutes from Russia and Joint Institute for Nuclear Research (JINR) are involved in Russia and Dubna Member States (RDMS) CMS Collaboration. A proper computing grid-infrastructure has been constructed at the RDMS institutes for the participation in the running phase of the CMS experiment. Current status of RDMS CMS computing and plans of its development to the next LHC start are presented.

  1. American high school students visit CERN

    CERN Document Server

    Maximilien Brice

    2003-01-01

    Fifteen final-year students from Columbus High School, Mississippi, USA visited CERN recently with their physics teacher Ken Wester (left at rear). Mr Wester organized the trip after his participation in the 2002 edition of CERN's High School Teachers programme. The students visited the CMS construction site and the AD antimatter factory during their two-day visit. They are pictured here with Michel Della Negra, CMS spokesman (kneeling), in front of the model of the CMS detector in building 40.

  2. CMS tracking challenges yesterday, today and tomorrow

    CERN Document Server

    Brondolin, Erica

    2015-01-01

    The Compact Muon Solenoid (CMS) is one of the two general purpose experiments at the Large Hadron Collider (CERN). Until 2012 (Run1), pp collisions have been delivered with a minimal bunch time separation of 50 ns and a mean of about 15 collisions per bunch crossing. After the end of the long shut-down this year, LHC is foreseen to ultimately exceed an instantaneous luminosity of $10^{34}cm^{-2}s^{-1}$, which means a bunch time separation of 25 ns with a mean of more than 25 inelastic collisions superimposed on the event of interest (Run2). In this high-occupancy environment, obtaining a precise particle momentum reconstruction is one of the biggest challenges. To this end, the CMS collaboration has constructed the largest silicon tracker ever and has developed a sophisticated tracking software, that is able to successfully reconstruct the hundreds of tracks produced in each beam crossing.However, more challenges lie ahead. CERN is planning an upgrade program of the LHC collider which will bring the luminosi...

  3. CMS Factsheet

    CERN Multimedia

    Davis, Siona Ruth

    2016-01-01

    CMS Factsheets: containing facts about the CMS collaboration and detector. Printed copies of the English version are available from the CMS Secretariat. Responsible for translations: English only - E.Gibney (updated 2015)

  4. CMS 2017 Pixel detector replacement - A roll and B roll

    CERN Multimedia

    Paola Catapano

    2017-01-01

    On Thursday 2 March 2017 CERN physicists and engineers have carried out a highly complex operation right at the heart of one of the four main experiments of the Large Hadron Collider (LHC): the CMS detector, located 100 m below ground under French territory, at one of the LHC’s collision points. CMS is one of the four main detectors on the 27km LHC accelerator., and one of the two experiments which found the Higgs boson in 2012. The heart of the CMS experiment is the pixel detector, the innermost instrument in the very heart of the CMS apparatus, the very point where new particles, such as the Higgs boson, are produced by the energy of the proton proton collisions of the LHC accelerator. With thousands of silicon sensors, the new Pixel Tracker is now being upgraded to improve the particle-tracking capabilities of CMS. This operation, started on Tuesday Feb 28 when the first components of the new instrument were descended into the experiment’s cavern, is one of the most significant milestones ahead of the ...

  5. Electrical measurements of silicon sensors for the upgrade of the CMS detector; Vermessung von Siliziumsensoren fuer das Upgrade des CMS-Detektors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin

    2013-05-15

    Because of the upgrade in the LHC (2020-2022), in which the luminosity is increased to above 5.10{sup 34} cm{sup -2}s{sup -1}, in the CMS tracker a much higher radiation exposure than hitherto is to be expected. Therefore radiation-hardened sensors are required. For this reason in the framework of the Hamamatsu-Photonics-KK campaign among others Mpix sensors are studied. Furthermore they are tested concerning their material properties by characterizing befor and after the irradiation. Also the optimal geometry is searched for. This thesis studies two substrate types of the same thickness with two isolating mechanisms. Thereby also the influence of the geometry and different bias structures is regarded in order to draw conclusions on the radiation hardness.

  6. Bhutan at CERN

    CERN Multimedia

    2002-01-01

    On Tuesday 12 March, CERN received an extraordinary visitor, a very great representative of a very tiny country. His Royal Highness, Dasho Jigme Khesar Namgyal Wangchuk, Crown Prince of Bhutan, visited the assembly site of CMS. For those whose geographical knowledge is weak, Bhutan is a tiny bhuddist kingdom, nestled in the Himalayas and surrounded by two giants, India and China.

  7. Muse at CERN

    CERN Multimedia

    CERN Bulletin

    2016-01-01

    On 19 July, the world-famous, English rock band, Muse, visited CERN before taking centre-stage at Nyon’s Paléo Festival. They toured some of CERN’s installations, including the Synchrocyclotron and the Microcosm exhibition, and also looked in on CMS and the Antimatter Factory.    

  8. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  9. Optical readout and control systems for the CMS tracker

    CERN Document Server

    Troska, Jan K; Faccio, F; Gill, K; Grabit, R; Jareno, R M; Sandvik, A M; Vasey, F

    2003-01-01

    The Compact Muon Solenoid (CMS) Experiment will be installed at the CERN Large Hadron Collider (LHC) in 2007. The readout system for the CMS Tracker consists of 10000000 individual detector channels that are time-multiplexed onto 40000 unidirectional analogue (40 MSample /s) optical links for transmission between the detector and the 65 m distant counting room. The corresponding control system consists of 2500 bi-directional digital (40 Mb/s) optical links based as far as possible upon the same components. The on-detector elements (lasers and photodiodes) of both readout and control links will be distributed throughout the detector volume in close proximity to the silicon detector elements. For this reason, strict requirements are placed on minimal package size, mass, power dissipation, immunity to magnetic field, and radiation hardness. It has been possible to meet the requirements with the extensive use of commercially available components with a minimum of customization. The project has now entered its vol...

  10. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  11. CMS central barrel yoke

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The CMS experiment at CERN will use a massive solenoid housed within this return yoke, which will weigh 12 500 tonnes when completed. Magnetic fields generated within this structure will reach levels greater than any other magnet of this kind and will store enough energy to melt 18 tonnes of gold. Within the yoke is positioned the external vacuum chamber into which the solenoid will be placed.

  12. Member State Event: Telling CERN's story !

    CERN Multimedia

    2004-01-01

    As part of the events to mark the Laboratory's fiftieth anniversary, members of the CERN personnel are telling the story of CERN. Robert Cailliau (on the right), currently responsible for CERN's external communications, and Chiara Mariotti (in the center), a physicist working at CMS, were invited to talk about the history of CERN and the Web at a conference in the 'Science Thursdays' series entitled 'From the Quark to the Web' in Turin on 26 February.

  13. The CMS conductor

    CERN Document Server

    Blau, Bertrand; Curé, B; Folch, R; Hervé, A; Horváth, I L; Kircher, F; Musenich, R; Neuenschwander, J; Riboni, P; Seeber, B; Tavares, S; Sgobba, Stefano; Smith, R P

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The magnetic field is achieved by means of a four-layer superconducting solenoid. The stored magnetic energy is 2.7 GJ at nominal current of 20 kA (at 4.5 K operating temperature). The coil is wound from a high purity aluminum- stabilized Rutherford type conductor. Unlike other existing Al- stabilized thin solenoids, the structural integrity of the CMS coil is ensured both by the Al-alloy reinforcement welded to the conductor and an external support cylinder. The flat NbTi cable is embedded in high purity aluminum by a continuous co-extrusion process. (7 refs).

  14. The Silicon Sensors for the Compact Muon Solenoid Tracker - Design and Qualification Procedure

    CERN Document Server

    Agram, Jean-Laurent; Assouak, Samia; Bergauer T.; Bilei, Gian Mario; Borrello, Laura; Brianzi, Mirko; Civinini, Carlo; Dierlamm, Alexander; Dinu, Nicoleta; Demaria, Natale; Feld, Lutz; Focardi, Ettore; Fontaine, Jean-Charles; Forton, Eric; Furgeri, Alexander; Hartmann, Frank; Honma, Alan; Juillot, Pierre; Kartashov, Dmitry; Krammer, Manfred; Macchiolo, Anna; Mannelli, Marcello; Messineo, Alberto; Migliore, Ernesto; Militaru, Otilia; Piasecki, Christian; Santinelli, Roberto; Sentenac, Daniel; Servoli, Leonello; Starodumov, Andrei; Tonelli, Guido; Wang, Jason

    2003-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments at the Large Hadron Collider (LHC) under construction at CERN. Its inner tracking system consist of the world largest Silicon Strip Tracker (SST). In total it implements 24244 silicon sensors covering an area of 206 m^2. To construct a large system of this size and ensure its functionality for the full lifetime of ten years under LHC condition, the CMS collaboration developed an elaborate design and a detailed quality assurance program. This paper describes the strategy and shows first results on sensor qualification.

  15. Star spotting at CERN

    CERN Multimedia

    2008-01-01

    This June, two American celebrities (and physics enthusiasts!) came to CERN. Brian Cox gave Mike Einziger (right), lead guitarist with the rock band Incubus, the star treatment in the ATLAS cavern. Jesse Dylan embraces the spirit of ATLAS! Mike Einziger, lead guitarist with the rock band Incubus, visited CERN on Friday 13 June between concerts in Finland and England. Einziger, a lifelong science enthusiast descended into the ATLAS and CMS caverns and visited the SM18 test magnet facility during his brief tour of CERN. Einziger learned about the LHC through watching online lectures from University of Manchester and ATLAS physicist Brian Cox, and was thrilled to have the chance to see the detectors in person. The musician has created an orchestral piece, inspired in part by the work being done at CERN for the LHC, which will have its debut in Los Angeles on 23 August. Just over a week earlier, Jesse Dylan, Hollywood film director a...

  16. Iran approaches CERN

    CERN Multimedia

    2002-01-01

    Members of Parliament from the Islamic Republic of Iran visit SM18. From left to right : Ali Mojtahed-Shabestari, Deputy Ambassador of the Islamic Republic of Iran in Geneva, Diether Blechschmidt, from CERN, Abdol-Rahim Baharvand and Hossain Amiri, from the Iranian Parliament, Norbert Siegel, from CERN, Hossain Afarideh, Rasool Seddighi and Ahmad Shirzad from the Iranian Parliament. Five members of the Parliament of the Islamic Republic of Iran visited CERN for three days at the beginning of May. All of them have PhD's in Physics, as well as holding their job in politics. They are involved in legislation for science, research and education funding in Iran. Apart from their interest in CERN in general, they were especially attracted to the CMS detector, since an Iranian contribution to the LHC is now starting through a collaboration with the Institute for Studies in Theoretical Physics and Mathematics in Tehran.

  17. Glimos Instructions for CMS Underground Guiding - in english

    CERN Document Server

    CERN. Geneva; Dupont, Niels; Esposito, William

    2016-01-01

    In this presentation in english, the basic safety rules for CMS underground visits are explained. The trainees are taught how to plan/organize a CMS underground visit along important safety aspects of the CMS underground (Point 5). Content owners and presenters (CMS safety team) : Niels Dupont (in french), Michael Brodski (in german), William Esposito (in english) A pdf document on the subject is available as material from the indico event page. (TO BE DONE from https://twiki.cern.ch/Edutech/CMSGlimosInstructions!)   Tell us what you think via e-learning.support at cern.ch More tutorials in the e-learning collection of the CERN Document Server (CDS) http://cds.cern.ch/collection/E-learning%20modules?ln=en All info about the CERN rapid e-learning project is linked from http://twiki.cern.ch/ELearning  

  18. Glimos Instructions for CMS Underground Guiding - in french

    CERN Document Server

    CERN. Geneva; Dupont, Niels; Brodski, Michael

    2016-01-01

    In this presentation in french, the basic safety rules for CMS underground visits are explained. The trainees are taught how to plan/organize a CMS underground visit along important safety aspects of the CMS underground (Point 5). Content owners and presenters (CMS safety team) : Niels Dupont (in french), Michael Brodski (in german), William Esposito (in english) A pdf document on the subject is available as material from the indico event page. (TO BE DONE from https://twiki.cern.ch/Edutech/CMSGlimosInstructions!)   Tell us what you think via e-learning.support at cern.ch More tutorials in the e-learning collection of the CERN Document Server (CDS) http://cds.cern.ch/collection/E-learning%20modules?ln=en All info about the CERN rapid e-learning project is linked from http://twiki.cern.ch/ELearning  

  19. CMS Observes Single Top-Quark

    CERN Multimedia

    2011-01-01

      One of the many excellent results harvested by CMS from 2010 data. (Figure shows events vs cosine of the angle between lepton and light jets in t rest-frame.)   If you have any comments / suggestions please contact the editors: Marzena Lapka (marzena.lapka@cern.ch) and Achintya Rao (achintya.rao@cern.ch)  

  20. Transport of the Hadronic Forward (HF) calorimeter from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  1. CMS Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...

  2. Prime Minister of Pakistan visits CERN

    CERN Multimedia

    Anaïs Schaeffer

    2016-01-01

    On Saturday, 23 January 2016, CERN welcomed Mr Muhammad Nawaz Sharif, Prime Minister of Pakistan.   From left to right: Minister of Finance Mr Mohammad Ishaq Dar, Prime Minister of the Islamic Republic of Pakistan, Muhammad Nawaz Sharif, CERN Director-General Fabiola Gianotti and CMS national contact physicist Hafeez Hoorani. Mr Muhammad Nawaz Sharif arrived at Point 5 in Cessy, where he was welcomed onto French soil by the sous-préfet of Cessy, Stéphane Donnot, and, representing CERN, Director-General Fabiola Gianotti, Directors Eckhard Elsen and Charlotte Warakaulle, and Rüdiger Voss, the adviser for relations with Pakistan. It was the first visit by a head of government of Pakistan since the country became CERN's latest Associate Member State in July 2015. The Prime Minister then had the opportunity to visit the CMS underground experimental area accompanied by the CMS Spokesperson, Tiziano Camporesi, and the CMS collaboration’...

  3. CMS the art of science

    CERN Document Server

    Hoch, Michael; Denegri, Daniel; Preece, Stephen; Storr, Mick

    2016-01-01

    The physicist as artist: Michael Hoch photographed the extraordinary science cabinet of wonders CMS (the Compact Muon Solenoid Experiment) at CERN. With a foreword by François Englert, 2013 Nobel Laureate in Physics and co-discoverer of the Higgs boson.

  4. The CMS Detector Control System

    CERN Document Server

    Gomez-Reino Garrido, Robert

    2009-01-01

    The Compact Muon Solenoid (CMS) experiment at CERN is one of the Large Hadron Collider multi-purpose experiments. Its large subsystems size sum up to around 6 million Detector Control System (DCS) channels to be supervised. A cluster of ~100 servers is needed to provide the required processing resources. To cope with such a size a scalable approach has been chosen factorizing the DCS system as much as possible. CMS DCS has made a clear division between its computing resources and functionality by creating a computing framework allowing for plugging in functional components. DCS components are developed by the subsystems expert groups while the computing infrastructure is developed centrally. To ease the component development task, a framework based on PVSSII [1] has been developed by the CERN Joint Controls Project [2] (JCOP). This paper describes the current status of CMS Detector Control System, giving an overview of the DCS computing infrastructure, the integration of DCS subsystem functional components an...

  5. Testbeam and laboratory characterization of 3D CMS pixel sensors

    Science.gov (United States)

    Bubna, Mayur; Krzwyda, Alex; Alagoz, Enver; Bortoletto, Daniela

    2013-04-01

    Future generations of colliders, like High Luminosity Large Hadron Collider (HL-LHC) at CERN will deliver much higher radiation doses to the particle detectors, specifically those closer to the beam line. Inner tracker detectors will be the most affected part, causing increased occupancy and radiation damage to Silicon detectors. Planar Silicon sensors have not shown enough radiation hardness for the innermost layers where the radiation doses can reach values around 10^16 neq/cm^2. As a possible replacement of planar pixel sensors, 3D Silicon technology is under consideration as they show higher radiation hardness, and efficiencies comparable to planar sensors. Several 3D CMS pixel designs were fabricated at FBK, CNM, and SINTEF. They were bump bonded to the CMS pixel readout chip and characterized in the laboratory using radioactive source (Sr90), and at Fermilab MTEST beam test facility. Sensors were also irradiated with 800 MeV protons at Los Alamos National Lab to study post-irradiation behavior. In addition, several diodes and test structures from FBK were studied before and after irradiation. We report the laboratory and testbeam measurement results for the irradiated 3D devices.

  6. 25th May 2011 - Egyptian Minister for Scientific Research, Science and Technology A. Ezzat Salama signing the guest book with CERN Director-General R. Heuer and visiting CMS control centre with Collaboration Spokesperson G. Tonelli.

    CERN Document Server

    Maximilien Brice

    2011-01-01

    He visited the CMS control room on the Meyrin site with, from left, CMS spokesperson, Guido Tonelli, Alaa Awad, Fayum University, Hisham Badr, ambassador at the UN Geneva, and Maged Elsherbiny, president of the Scientific Research Academy.

  7. Guinness World Records: Presenting certificates to CERN

    CERN Multimedia

    Rao, Achintya

    2014-01-01

    The latest edition of the Guinness Book of World Records features CERN, crediting the CMS and ATLAS collaborations for the first observation of a Higgs boson. On 20 August, representatives of Guinness World Records visit CERN to hand over certificates for the record.

  8. CERN In Focus

    CERN Multimedia

    CERN audiovisual service

    2008-01-01

    First edition 2008 of Cern in Focus. On behalf of the audiovisual team, a selection of the latest videos filmed at CERN. Every six weeks, we will bring you the latest in CERN's activities, from LHC start up to the Computing Grid, featuring the experiments and many other goings-on at CERN. The agenda of this first edition of CERN in Focus features the visit of the prime minister of Malta, Lawrence Gonzi... CMS and the final descent of the YE-1 end cap... The departure of UA1 magnets to Japan... The start up of sectors 4 and 5... And finally, in our sports round up... We'll talk about football. New in brief this month... The final bolt is in place : On 7th November, in the bowels of the LHC tunnel, CERN's Director General Robert Aymar tightened a gold-plated bolt for the last arc interconnection of sector 1-2. This symbolic gesture marks the completion of all the arc interconnections of the LHC. Last welding work: it was never going to be an easy task. On this day last year just one sector had been completed,...

  9. Status and Commissioning of the CMS Experiment

    CERN Document Server

    Buchmüller, O L

    2007-01-01

    After a brief overview of the Compact Muon Solenoid (CMS) experiment, the status of construction and installation is described in the first part of the note. The second part of the document is devoted to a discussion of the general commissioning strategy of the CMS experiment, with a particular emphasis on trigger, calibration and alignment. Aspects of b-physics, as well as examples for early physics with CMS are also presented. CMS will be ready for data taking in time for the first collisions in the Large Hadron Collider (LHC) at CERN in late 2007.

  10. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  11. New Management for CMS

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    As of January 2010, Guido Tonelli becomes the new CMS Spokesperson with a two-year term of office. A Professor of General Physics at the University of Pisa, Italy, and a CERN Staff Member since January 2010, Tonelli had already been appointed as Deputy Spokesperson under the previous management. He has taken over from Jim Virdee, who was CMS Spokesperson from January 2007 to December 2009. Guido Tonelli, new CMS spokesperson At the same time as Tonelli becomes Spokesperson, two new Deputies, Albert De Roeck and Joe Incandela, as well as a whole new set of Coordinators, are also starting their terms of office. ”With the first data-taking run we have shown that CMS is an excellent experiment. The next challenge will be to transform CMS into a discovery machine with a view to making it synonymous with scientific excellence. This will be very tough but, again, the winning element will be the focus and coherent effort of the whole collaboration. On my side I'll do my best but I will need...

  12. CMS Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — This reference provides significant summary information about health expenditures and the Centers for Medicare & Medicaid Services' (CMS) programs. The...

  13. 15 janvier 2014 - A. Manoha, Présidente du Tribunal de Grande Instance de Bourg-en-Bresse en France, visite le tunnel du LHC au Point 5 avec R. Garoby, Chef adjoint du département Faisceaux; visite la caverne de l'expérience CMS avec D. Contardo, Chef du projet CMS Upgrade et signe le livre d'or avec R. Garoby. F. Eder, Délégué aux relations avec les Etats-hôtes du CERN présent.

    CERN Document Server

    Pantelia, Anna

    2014-01-01

    15 janvier 2014 - A. Manoha, Présidente du Tribunal de Grande Instance de Bourg-en-Bresse en France, visite le tunnel du LHC au Point 5 avec R. Garoby, Chef adjoint du département Faisceaux; visite la caverne de l'expérience CMS avec D. Contardo, Chef du projet CMS Upgrade et signe le livre d'or avec R. Garoby. F. Eder, Délégué aux relations avec les Etats-hôtes du CERN présent.

  14. UN Secretary General visits CERN

    CERN Multimedia

    2008-01-01

    UN Secretary General praises CERN in recent visit. Ban Ki-moon, Robert Aymar, CERN Director-General, and Sergei Ordzhonikidze, Director-General of the United Nations Office in Geneva at the CMS site.On Sunday 31 August, Ban Ki-moon, the UN Secretary General, made an important visit to CERN. Arriving in the late afternoon, he was warmly greeted at Point 5 by Robert Aymar, the Director-General, and the Sous-préfet of Gex, Olivier Laurens-Bernard. Accompanied by a UN delegation, Ban Ki-moon was also introduced to Jos Engelen, the Chief Scientific Officer, and Jim Virdee, the CMS spokesperson. He then took the opportunity to visit CMS and the machine tunnel. At the end of his short trip, Ban Ki-moon signed the Guest Book in the tradition of important dignitaries visiting CERN. Expressing his admiration for CERN’s spirit of collaboration, Ban Ki-moon said, "I am very honored to visit CERN, an invaluable scientific institution a...

  15. Construction and Calibration of the Laser Alignment System for the CMS Tracker

    CERN Document Server

    Adolphi, Roman

    2006-01-01

    The CMS detector (Compact Muon Solenoid) is under construction at one of the four proton-proton interaction points of the LHC (Large Hadron Collider) at CERN, the European Organization for Nuclear Research (Geneva, Switzerland). The inner tracking system of the CMS experiment consisting of silicon detectors will have a diameter of 2.4 m and a length of 5.4 m representing the largest silicon tracker ever. About 15000 silicon strip modules create an active silicon area of 200 m2 to detect charged particles from proton collisions. They are placed on a rigid carbon fibre structure, providing stability within the working conditions of a 4 T solenoid magnetic field at −10oC. Knowledge of the position of the silicon detectors at the level of 100 μm is needed for an efficient pattern recognition of charged particle tracks. Metrology methods are used to survey tracker subdetectors and the integrated Laser Alignment System (LAS) provides absolute positioning of support structure elements to better than 100 μm. Rela...

  16. DC-DC Conversion Powering Schemes for the CMS Tracker Upgrade

    CERN Document Server

    Feld, Lutz; Klein, Katja; Merz, Jennifer; Sammet, Jan; Wlochal,Michael

    2011-01-01

    The CMS experiment foresees upgrades of its silicon pixel and strip detectors for the luminosity upgrade of the Large Hadron Collider (LHC), CERN. Due to an increase in the number of readout channels and higher complexity, larger currents will have to be provided to the detector. Since cable channels are difficult to access and space for cables is limited, this would lead to excessively large resistive power losses in the supply cables, which increase with the current squared. CMS has therefore chosen a novel powering scheme based on DC-DC converters, which allows power to be delivered at a higher voltage and consequently lower current. The development of low-mass, low-noise DC-DC converters for application in CMS is presented, including studies of switching noise, magnetic emissions and power efficiency as well as system tests with silicon strip and pixel modules. A scheme for the integration of DC-DC converters in the silicon pixel detector, currently foreseen to be exchanged around 2016, will be discussed.

  17. First results from a beam test of a high-granularity silicon-based calorimeter for CMS at HL-LHC

    CERN Document Server

    Chatterjee, Rajdeep Mohan

    2016-01-01

    A prototype of the electromagnetic calorimeter for the CMS High Granularity Calorimeter that is being designed for the High Luminosity LHC (HL-LHC) was tested in a test beam at the Fermilab Test Beam Facility (FTBF). The detector consisted of 16 sampling layers of silicon sensors interspersed withtungsten plates for a total thickness of 15.3 X$_{0}$. Each of the hexagonal sensors were sub-divided into 128 cells, predominantly hexagonal in shape, of area ~1.1 cm$^2$. The analog signal from the 2048 cells was readout using the 64-channel SKIROC2 ASIC, developed by the LLR OMEGA group for the CALICE collaboration. Data were collected with a custom data acquisition system developed for these tests. The detector was calibrated using signals obtained with 120 GeV protons.We report here the design of the prototype detector and the results obtained from analyzing the data collected in July 2016, with electron beams at energies ranging from 4 to 32 GeV.

  18. Egypt receives computers from CERN

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    On Tuesday 22 October, CERN officially celebrated sending IT equipment to Egypt, the fifth country to benefit from such donations after Morocco, Ghana, Bulgaria and Serbia. Although no longer adequate for CERN's cutting-edge research, these machines are still suitable for less demanding applications.   Rolf Heuer and Amr Radi, during the official ceremony. In a ceremony to mark the occasion, Rolf Heuer, CERN Director-General, and Egyptian physicist Amr Radi, team leader of ASRT (Egypt’s Academy of Scientific Research and Technology) within the CMS collaboration, who has played a major part in the operation, expressed their enthusiasm for the project. A total of 196 servers and 10 routers will be installed on the ASRT premises in Cairo, where they will be used to analyse data from the ALICE and CMS experiments. For more information about CERN’s donations of IT equipment, see this Bulletin article.

  19. A Finnish delegation visits CERN

    CERN Multimedia

    2001-01-01

    Minister Maija Rask (front, centre) led a Finnish delegation on a visit to CERN last week. Here the delegation inspects CMS preparations with the collaboration's spokesman Michel Della Negra (front, left). On 19 February Finnish Minister of Education, Mrs Maija Rask, visited CERN. She led a delegation composed of Mr. Pekka Huttaniemi, Permanent Representative of Finland to the United Nations, Mrs Pirjo Välinoro, Ministerial Counsellor (Economic affairs), Mr Markku Linna, Director General of the Ministry of Education, and Mr Tapio Kosunen, Special Adviser at the Ministry. Accompanied by Director General Luciano Maiani, the delegation visited CMS experiment and the LHC superconducting magnet test hall, and met Finnish students and scientists at CERN.

  20. Data Logistics and the CMS Analysis Model

    CERN Document Server

    Managan, Julie E

    2009-01-01

    The Compact Muon Solenoid Experiment (CMS) at the Large Hadron Collider (LHC) at CERN has brilliant prospects for uncovering new information about the physical structure of our universe. Soon physicists around the world will participate together in analyzing CMS data in search of new physics phenomena and the Higgs Boson. However, they face a significant problem: with 5 Petabytes of data needing distribution each year, how will physicists get the data they need? How and where will they be able to analyze it? Computing resources and scientists are scattered around the world, while CMS data exists in localized chunks. The CMS computing model only allows analysis of locally stored data, “tethering” analysis to storage. The Vanderbilt CMS team is actively working to solve this problem with the Research and Education Data Depot Network (REDDnet), a program run by Vanderbilt’s Advanced Computing Center for Research and Education (ACCRE). The Compact Muon Solenoid Experiment (CMS) at the Large Hadron Collider ...

  1. CERN celebrates its 60th anniversary with its neighbours

    CERN Multimedia

    CERN, Team

    2014-01-01

    CERN celebrates its 60th anniversary with its neighbours Caption: On 24 and 25 May, CERN invited its neighbours to visit three sites in celebration of the laboratory's 60th anniversary. More than 8000 people from the region visited the LHC tunnel at Point 4, the LHCb detector at Point 8 and the CMS detector at Point 5. There were also many aboveground activities on the CMS site at Cessy. "Le CERN fête ses 60 ans avec ses voisins" Les 24 et 25 mai, le CERN a ouvert les portes de 3 sites pour fêter ses 60 ans avec ses voisins. Plus de 8000 personnes visiteurs de la région sont venus rencontrer les scientifiques du CERN, visiter les expériences CMS et LHCb et le tunnel du LHC, et participer aux nombreuses activités sur le site de CMS à Cessy.

  2. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2014-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  3. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  4. Denis Guedj at CERN

    CERN Multimedia

    2009-01-01

    Denis Guedj (right), pictured with Etiennette Auffray Hillemanns of the CMS collaboration and Hartmut Hillemanns of the DG-KTT group.French author Denis Guedj, who is also a mathematician and Professor of History of Science at Paris VIII University, visited CERN on 7 and 8 October. During a presentation in the CERN Library he discussed his 15 published books and likened the process of novel writing to working on a scientific experiment: it begins with a limited amount of data, and then questions arise, problems are solved and further research reveals truths. Denis Guedj works hard to ensure that his novels contain ‘true fiction’. His most recent visit to CERN will help him to write a new book set at the LHC in which he will combine his scientific interest in what happens when a proton and proton collide with a human story about what happens to a male and female physicist who meet in the LHC tunnel. "Visiting the CMS cavern was...

  5. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  6. The CMS conductor

    CERN Document Server

    Horváth, I L; Marti, H P; Neuenschwander, J; Smith, R P; Fabbricatore, P; Musenich, R; Calvo, A; Campi, D; Curé, B; Desirelli, Alberto; Favre, G; Riboni, P L; Sgobba, Stefano; Tardy, T; Sequeira-Lopes-Tavares, S

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments, which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN, the design field of the CMS magnet is 4 T, the magnetic length is 13 m and the aperture is 6 m. This high magnetic field is achieved by means of a 4 layer, 5 modules superconducting coil. The coil is wound from an Al-stabilized Rutherford type conductor. The nominal current of the magnet is 20 kA at 4.5 K. In the CMS coil the structural function is ensured, unlike in other existing Al-stabilized thin solenoids, both by the Al-alloy reinforced conductor and the external former. In this paper the retained manufacturing process of the 50-km long reinforced conductor is described. In general the Rutherford type cable is surrounded by high purity aluminium in a continuous co-extrusion process to produce the Insert. Thereafter the reinforcement is joined by Electron Beam Welding to the pure Al of the insert, before being machined to the final dimensions. During the...

  7. CMS AWARDS

    CERN Multimedia

    Steven Lowette

    Working under great time pressure towards a common goal in gradual steps can sometimes cause us to forget to take a step back, and celebrate what marvels have been achieved. A general need was felt within CMS to expand the recognition for our young scientists that made outstanding, well recognized and creative contributions to CMS, which served to significantly advance the performance of CMS as a complete and powerful experiment. Therefore, the Collaboration Board endorsed in March 2009 a proposal from the CB Chair and Advisory Group to award each year the newly created "CMS Achievement Award" to fourteen graduate students and postdocs that made exceptional contributions to the Tracker, ECAL, HCAL and Muon subdetectors as well as the TriDAS project, the Commissioning of CMS and the Offline Software and Computing projects. It was also agreed that there was a need to go back in time, and retroactively attribute awards for the years 2007 and 2008 when CMS went from a bare cavern to a detect...

  8. Investigation of design parameters and choice of substrate resistivity and crystal orientation for the CMS silicon microstrip detector

    CERN Document Server

    Braibant, S

    2000-01-01

    The electrical characteristics ( interstrip and backplane capacitance, leakage current, depletion and breakdown voltage) of silicon microstrip detectors were measured for strip pitches between 60 um and 240 um and various strip implant and metal widths on multi-geometry devices. Both AC and DC coupled devices wereinvestigated. Measurements on detectors were performed before and after irradiation with 24 GeV/c protons up to a fluence of 4.1x10E14 cm-2. We found that the total strip capacitance can be parametrized as a linear function of the ratio of the implant width over the read-out pitch only. We found a significant increase in the interstrip capacitance after radiation on detectors with standard <111> crystal orientation but not on sensors with <100> crystal orientation. We analyzed the measured depletion voltages as a function of the detector geometrical parameters ( read-out pitch, strip width and substrate thickness) found in the literature and we found a linear dependence in...

  9. CMS launches new educational tools

    CERN Multimedia

    Corinne Pralavorio

    2014-01-01

    On 5 and 11 November, almost 90 pupils from the Fermi scientific high school in Livorno, Italy, took part in two Masterclass sessions organised by CMS.   CMS Masterclass participants.  The pupils took over a hall at CERN for an afternoon to test a new software tool called CIMA (CMS Instrument for Masterclass Analysis) for the first time. The software simplifies the process of recording results and reduces the number of steps required to enter data. During the exercise, each group of pupils had to analyse about a hundred events from the LHC. For each event, the budding physicists determined whether what they saw was a candidate W boson, Z boson or Higgs boson, identified the decay mode and entered key data. At the end of the analysis, they used the results to reconstruct a mass diagram. CIMA was developed by a team of scientists from the University of Aachen, Germany, the University of Notre-Dame, United States, and CERN. CMS has also added yet another educational tool to its already l...

  10. Commissioning of the CMS Magnet

    CERN Document Server

    Campi, D; Gaddi, A; Gerwig, H; Hervé, A; Klyukhin, V; Maire, G; Perinic, G; Brédy, P; Fazilleau, P; Kircher, F; Levésy, B; Fabbricatore, P; Farinon, S; Greco, M

    2007-01-01

    CMS (Compact Muon Solenoid) is one of the large experiments for the LHC at CERN. The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ at full current. The flux is returned through a 10 000 t yoke comprising of five wheels and two end caps composed of three disks each. The magnet was designed to be assembled and tested in a surface hall, prior to be lowered at 90 m below ground, to its final position in the experimental cavern. The distinctive feature of the cold mass is the four-layer winding, made from a reinforced and stabilized NbTi conductor. The design and construction was carried out by CMS participating institutes through technical and contractual endeavors. Among them CEA Saclay, INFN Genova, ETH Zurich, Fermilab, ITEP Moscow, University of Wisconsin and CERN. The construction of the CMS Magnet, and of the coil in particular, has been completed last year. The magnet has just been powered to full field ...

  11. The muon chambers take centre stage at CMS

    CERN Multimedia

    2003-01-01

    The CMS muon chambers are now starting to arrive at CERN in significant numbers. All in all, the muon system of the CMS detector will comprise some 1400 of these chambers. Twenty percent of those for the endcaps have already been installed, while the assembly of those for the barrel will start in December.

  12. Prince Albert II of Monaco visits CERN

    CERN Multimedia

    2009-01-01

    With a strong curiosity for the work of CERN, HSH Prince Albert II of Monaco visited CMS and the CERN Control Centre on 2 September. "The Prince is interested in and sensitive to what CERN is doing. Monaco is closely linked to France, which is an important member of CERN. He wishes to express his help to the scientific community in every trip. He wants to meet scientists and to be really personally involved," explained Francois Chantrait, Head of the Press Service of the Prince’s Palace. CERN Director-General Rolf Heuer welcomed the Prince of Monaco to Point 5 with a presentation about CERN before they descended 100 metres underground to see the CMS experiment. Although the detector was closed up for test runs, he was able to see its grand scale as well as look at some of the intricate sample parts exhibited by CMS Spokesperson, Jim Virdee. The Prince wrote in the CERN Visitors’ Book that he perceives a realisation of promisin...

  13. 24 February 2012 - Portuguese Minister for Education and Science N. Crato visiting the LHC superconducting magnet test hall with technology Department Head F. Bordry and signing the guest book with CERN Director-General R. Heuer. The Minister is accompanied by Secretary of State for Science L. Parreira and LIP Director J.M. Gago. A. Henriques(ATLAS), C. Lourenço (CMS) and Adviser R. Voss accompany the delegation throughout.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    On 24 February Nuno Crato, the Portuguese minister for education and science, left, toured the LHC superconducting-magnet test hall accompanied by Frédérick Bordry, CERN’s technology department head. He also took the opportunity to visit the underground experimental areas of ATLAS and CMS, and heard about the LHC Computing Grid Project before meeting Portuguese scientists working at CERN.

  14. 18 December 2012 -Portuguese President of FCT M. Seabra visiting the Computing Centre with IT Department Head F. Hemmer, ATLAS experimental area with Collaboration Spokesperson F. Gianotti and A. Henriques Correia, in the LHC tunnel at Point 2 and CMS experimental area with Deputy Spokesperson J. Varela, signing an administrative agreement with Director-General R. Heuer; LIP President J. M. Gago and Delegate to CERN Council G. Barreia present.

    CERN Multimedia

    Samuel Morier-Genoud

    2012-01-01

    18 December 2012 -Portuguese President of FCT M. Seabra visiting the Computing Centre with IT Department Head F. Hemmer, ATLAS experimental area with Collaboration Spokesperson F. Gianotti and A. Henriques Correia, in the LHC tunnel at Point 2 and CMS experimental area with Deputy Spokesperson J. Varela, signing an administrative agreement with Director-General R. Heuer; LIP President J. M. Gago and Delegate to CERN Council G. Barreia present.

  15. 10 September 2013 - Italian Minister for Economic Development F. Zanonato visiting the ATLAS cavern with Collaboration Spokesperson D. Charlton and Italian scientists F. Gianotti and A. Di Ciaccio; signing the guest book with CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci; in the LHC tunnel with S. Bertolucci, Technology Deputy Department Head L. Rossi and Engineering Department Head R. Saban; visiting CMS cavern with Scientists G. Rolandi and P. Checchia.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    10 September 2013 - Italian Minister for Economic Development F. Zanonato visiting the ATLAS cavern with Collaboration Spokesperson D. Charlton and Italian scientists F. Gianotti and A. Di Ciaccio; signing the guest book with CERN Director-General R. Heuer and Director for Research and Scientific Computing S. Bertolucci; in the LHC tunnel with S. Bertolucci, Technology Deputy Department Head L. Rossi and Engineering Department Head R. Saban; visiting CMS cavern with Scientists G. Rolandi and P. Checchia.

  16. 26 April 2012 - Extraordinary and plenipotentiary Ambassador A. Dékány, Permanent Representative of the Republic of Hungary to the United Nations Office and other international organisations at Geneva, signing the guest book with CERN Director-General R. Heuer; visiting the LHC tunnel at Point 5 and CMS experimental area and surface building with Collaboration Deputy Spokespersom T. Camporesi; accompanied by M. Bajko, Technology Department. International Relations Office Adviser R. Voss also present.

    CERN Multimedia

    Jean-claude Gadmer

    2012-01-01

    26 April 2012 - Extraordinary and plenipotentiary Ambassador A. Dékány, Permanent Representative of the Republic of Hungary to the United Nations Office and other international organisations at Geneva, signing the guest book with CERN Director-General R. Heuer; visiting the LHC tunnel at Point 5 and CMS experimental area and surface building with Collaboration Deputy Spokespersom T. Camporesi; accompanied by M. Bajko, Technology Department. International Relations Office Adviser R. Voss also present.

  17. 6 February 2012 - Supreme Audit Institutions from Norway, Poland, Spain and Switzerland visiting the LHC tunnel at Point 5, CMS underground experimental area, CERN Control Centre and LHC superconducting magnet test hall. Delegations are throughout accompanied by Swiss P. Jenni, Polish T. Kurtyka, Spanish J. Salicio, Norwegian S. Stapnes and International Relations Adviser R. Voss. (Riksrevisjonen, Oslo; Tribunal de Cuentas , Madrid; the Court of Audit of Switzerland and Najwyzsza Izba Kontroli, Varsaw)

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    6 February 2012 - Supreme Audit Institutions from Norway, Poland, Spain and Switzerland visiting the LHC tunnel at Point 5, CMS underground experimental area, CERN Control Centre and LHC superconducting magnet test hall. Delegations are throughout accompanied by Swiss P. Jenni, Polish T. Kurtyka, Spanish J. Salicio, Norwegian S. Stapnes and International Relations Adviser R. Voss. (Riksrevisjonen, Oslo; Tribunal de Cuentas , Madrid; the Court of Audit of Switzerland and Najwyzsza Izba Kontroli, Varsaw)

  18. Last crystals for the CMS chandelier

    CERN Multimedia

    2008-01-01

    In March, the last crystals for CMS’s electromagnetic calorimeter arrived from Russia and China. Like dedicated jewellers crafting an immense chandelier, the CMS ECAL collaborators are working extremely hard to install all the crystals before the start-up of the LHC. One of the last CMS end-cap crystals, complete with identification bar code. Lead tungstate crystals mounted onto one section of the CMS ECAL end caps. Nearly 10 years after the first production crystal arrived at CERN in September 1998, the very last shipment has arrived. These final crystals will be used to complete the end-caps of the electromagnetic calorimeter (ECAL) at CMS. All in all, there are more than 75,000 crystals in the ECAL. The huge quantity of CMS lead tungstate crystals used in the ECAL corresponds to the highest volume ever produced for a single experiment. The excellent quality of the crystals, both in ter...

  19. CMS tracker observes muons

    CERN Multimedia

    2006-01-01

    A computer image of a cosmic ray traversing the many layers of the TEC+ silicon sensors. The first cosmic muon tracks have been observed in one of the CMS tracker endcaps. On 14 March, a sector on one of the two large tracker endcaps underwent a cosmic muon run. Since then, thousands of tracks have been recorded. These data will be used not only to study the tracking, but also to exercise various track alignment algorithms The endcap tested, called the TEC+, is under construction at RWTH Aachen in Germany. The endcaps have a modular design, with silicon strip modules mounted onto wedge-shaped carbon fibre support plates, so-called petals. Up to 28 modules are arranged in radial rings on both sides of these plates. One eighth of an endcap is populated with 18 petals and called a sector. The next major step is a test of the first sector at CMS operating conditions, with the silicon modules at a temperature below -10°C. Afterwards, the remaining seven sectors have to be integrated. In autumn 2006, TEC+ wil...

  20. ATLAS, CMS, LHCb and ALICE Career Networking Event 2015

    CERN Multimedia

    Marinov, Andrey; Strom, Derek Axel

    2015-01-01

    A networking event for alumni of the ATLAS, CMS, LHCb and ALICE experiments as well as current ATLAS/CMS/LHCb/ALICE postdocs and graduate students. This event offers an insight into career opportunities outside of academia. Various former members of the ATLAS, CMS, LHCb and ALICE collaborations will give presentations and be part of a panel discussion and elaborate on their experience in companies in a diverse range of fields (industry, finance, IT,...). Details at https://indico.cern.ch/event/440616

  1. Silicon Sensors for Trackers at High-Luminosity Environment

    CERN Document Server

    Peltola, Timo

    2015-01-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than the one of LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge ...

  2. Silicon detector technology development in India for the participation in international experiments

    Indian Academy of Sciences (India)

    Anita Topkar; S Praveenkumar; Bharti Aggarwal; S K Kataria; M D Ghodgaonkar

    2007-12-01

    A specific research and development program has been carried out by BARC in India to develop the technology for large area silicon strip detectors for application in nuclear and high energy physics experiments. These strip detectors will be used as pre-shower detector in the CMS experiment at LHC, CERN for 0/ rejection. The fabrication technology to produce silicon strip detectors with very good uniformity over a large area of ∼ 40 cm2, low leakage currents of the order of 10 nA/cm2 per strip and high breakdown voltage of >500 V has been developed by BARC. The production of detectors is already under way to deliver 1000 detector modules for the CMS and 90% production is completed. In this paper, research and development work carried out to develop the detector fabrication technology is briefly described. The performance of the silicon strip detectors produced in India is presented. The present status of the detector technology is discussed.

  3. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  4. CMS overview

    CERN Document Server

    Hong, Byungsik

    2015-01-01

    Most recent CMS data related to the high-density QCD are presented for pp and PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV. The PbPb collision is essential to understand collective behavior and the final-state effects for the detailed characteristics of hot, dense partonic matter, whereas the pPb collision provides the critical information on the initial-state effects including the modification of the parton distribution function in cold nuclei. This paper highlights some of recent heavy-ion related results from CMS.

  5. Brazil and CERN get closer

    CERN Multimedia

    2002-01-01

    The map of countries affiliated to CERN may in future include Brazil. On a visit to CERN last week, the Brazilian Minister of State for Science and Technology, Ronaldo Mota Sardenberg, expressed his country's interest in closer links to the Laboratory.   Luciano Maiani and the Brazilian Minister of State for Science and Technology Ronaldo Mota Sardenberg shake hands on CERN-Brazil co-operation. During his visit, the Minister and CERN Director General Luciano Maiani issued a joint statement for the continuation of a Co-operation Agreement first established in 1990. They also agreed to study the possibility of Brazil joining CERN-led Grid computing infrastructure projects. Brazilian physicists are already involved in the LHCb, ATLAS and CMS experiments. At the conclusion of the Minister's visit, he and Director-General Maiani agreed to establish a Working Group to examine ways of strengthening Brazil's links with CERN, and to prepare the way for a Brazilian request to CERN Council to become an Observer at th...

  6. DC-DC Conversion Powering Schemes for the CMS Tracker at Super-LHC

    CERN Document Server

    Klein, Katja; Jussen, Rüdiger; Karpinski, Waclaw; Merz, Jennifer; Sammet, Jan

    2010-01-01

    The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, houses the largest silicon strip tracker ever built. For the foreseen luminosity upgrade of the LHC, the Super-LHC, however, a completely new silicon tracker will have to be constructed. One out of several major improvements currently under consideration is the implementation of a track trigger, with tracking information being provided to the first level trigger. Such an intelligent tracker design, utilising fast digital readout electronics, will most certainly lead to an increased power consumption, compared to today's tracker. In combination with the desire to reduce the amount of passive material inside the tracking volume and the impracticality to exchange or even add additional supply cables, a novel powering scheme will be inevitable. In this article a powering scheme based on DC-DC conversion is proposed, and requirements for the DC-DC converters are discussed. Studies of important DC-DC converter quantities such as th...

  7. Differential top-quark-pair cross sections in pp collisions at {radical}(s)=7 TeV with CMS and charge multiplication in highly irradiated silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joern

    2013-09-15

    Modern particle-physics experiments like the ones at the Large Hadron Collider (LHC) are global and interdisciplinary endeavours comprising a variety of different fields. In this work, two different aspects are dealt with: on the one hand a top-quark physics analysis and on the other hand research and development towards radiation-hard silicon tracking detectors. The high centre-of-mass energy and luminosity at the LHC allow for a detailed investigation of top-quark-pair (t anti t) pro duction properties. Normalised differential t anti t cross sections (1)/({sigma}) (d{sigma}{sub t} {sub anti} {sub t})/(dX) are measured as a function of nine different kinematic variables X of the t anti t system, the top quarks and their decay products (b jets and leptons). The analysis is performed using data of proton-proton collisions at {radical}(s) = 7 TeV recorded by the CMS experiment in 2011, corresponding to an integrated luminosity of 5 fb{sup -1}. A high-purity sample of t anti t events is selected according to the topology of the lepton+jets decay channel. Lepton-selection and trigger efficiencies are determined with data-driven methods. The top-quark four-vectors are reconstructed using a constrained kinematic fit. The reconstructed distributions are corrected for background and detector effects using a regularised unfolding technique. By normalising the differential cross sections with the in-situ measured total cross section, correlated systematic uncertainties are reduced, achieving a precision of typically 4-11%. The results are compared to standard-model predictions from Monte-Carlo event generators and approximate next-to-next-to-leading-order (NNLO) perturbative QCD calculations. A good agreement is observed. A high-luminosity upgrade of the LHC (HL-LHC) is envisaged for 2022, which implies increased radiation levels for the silicon tracking detectors. The innermost pixel layer is expected to be exposed to a 1-MeV-neutron-equivalent fluence in the order of 10

  8. CERN and Pakistan consolidate their partnership

    CERN Multimedia

    2006-01-01

    During the President of Pakistan's visit to CERN, the Laboratory and Pakistan decided to strengthen their collaboration. The President of Pakistan, Pervez Musharraf, the Chairman of PAEC, Parvez Butt, and CERN's Director-General, Robert Aymar, exchange congratulations following the signing of the letter of intent to strengthen partnership between CERN and Pakistan.The President of the Islamic Republic of Pakistan, Pervez Musharraf, during his speech in the Council Chamber. The President of the Islamic Republic of Pakistan, General Pervez Musharraf, visited CERN on 27 January this year, accompanied by an important delegation of five ministers from the Pakistani Government, the Chairman of Pakistan's Atomic Energy Commission (PAEC), Parvez Butt, and an eminent former Chairman of the Commission, Ishfaq Ahmad, who pioneered cooperation with CERN. Welcomed by CERN's Director-General, Robert Aymar, the President visited the CMS experiment to which Pakistan is making a substantial contribution. The presidential pa...

  9. Debugging Data Transfers in CMS

    CERN Document Server

    Bagliesi, G; Bloom, K; Bockelman, B; Bonacorsi, D; Fisk, I; Flix, J; Hernandez, J; D'Hondt, J; Kadastik, M; Klem, J; Kodolova, O; Kuo, C M; Letts, J; Maes, J; Magini, N; Metson, S; Piedra, J; Pukhaeva, N; Tuura, L; Sonajalg, S; Wu, Y; Van Mulders, P; Villella, I; Wurthwein, F

    2010-01-01

    The CMS experiment at CERN is preparing for LHC data taking in several computing preparation activities. In early 2007 a traffic load generator infrastructure for distributed data transfer tests called the LoadTest was designed and deployed to equip the WLCG sites that support CMS with a means for debugging, load-testing and commissioning data transfer routes among CMS computing centres. The LoadTest is based upon PhEDEx as a reliable, scalable data set replication system. The Debugging Data Transfers (DDT) task force was created to coordinate the debugging of the data transfer links. The task force aimed to commission most crucial transfer routes among CMS sites by designing and enforcing a clear procedure to debug problematic links. Such procedure aimed to move a link from a debugging phase in a separate and independent environment to a production environment when a set of agreed conditions are achieved for that link. The goal was to deliver one by one working transfer routes to the CMS data operations team...

  10. The Duke of York visits CERN

    CERN Multimedia

    2004-01-01

    The Duke of York chats before inaugurating the UK@CERN exhibition. From left to right: Robert Aymar, CERN's Director General, the Duke of York, and leading UK scientists at CERN: Jim Virdee, CMS deputy spokeman; theorist John Ellis ; and Steve Myers, head of the AB Department. On 23 November, the Duke of York visited CERN and, in his capacity as the UK's Special Representative for International Trade and Investment, inaugurated the UK@CERN Exhibition. This biennial trade show was initially held in 1968, the first such exhibition by a CERN member state. This year 22 companies displayed goods and services that could be of interest to CERN scientists. In his inaugural speech, the Duke emphasized that business between companies and CERN "is a two-way information flow with mutual benefits." The companies make sales but also benefit from technologies that CERN transfers to them. CERN benefits from the exchange, the Duke said, addressing CERN's scientists, because it "frees your time for what you do best: science....

  11. Visualizing CMS muon drift tubes’ currents

    CERN Document Server

    Hamarik, Lauri

    2015-01-01

    This report documents my work as a summer student in the CMS DT group at CERN in July and August of 2015. During that time, I have participated in relocating DT monitoring experiment to GIF++ site and creating software to analyze drift tubes’ wires current dependence on luminosity and radioactivity.

  12. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  13. Thousands of kilometres to visit CERN

    CERN Multimedia

    2003-01-01

    Students from the Columbus high school in the state of Mississippi with their physics teacher Ken Wester (left at rear) and Michel Della Negra, CMS spokesman (in front).An American school at CERN ? Unusual, to say the least... Yet 15 students from the class of Ken Wester, physics teacher in the Columbus High School, Mississippi, didn't hesitate to travel thousands of kilometres to come to CERN. Ken Wester participated last year in CERN's High School Teacher programme. Enthralled by his visit, he has organised the trip for his final year students to visit CERN. The 18-year-olds arrived on the 10th March and spent two days at the laboratory, visiting the CMS construction site and the AD antimatter factory, before leaving on a tour of Switzerland and Germany.

  14. CERN Choir

    CERN Multimedia

    Staff Association

    2015-01-01

      Do you like singing? The CERN Choir is looking for basses and tenors Join us! Programme Spring Session 2015: Donizetti: Misere & Missa di Gloria e Credo Bellini: Salve Regina Bruckner: Requiem in D minor Next concert: Sunday 31 May 2015 at 17:00 Musicales de Comesières (GE) Rehearsals at CERN Main Auditorium, building 500 On Wednesdays from 20.00 to 22:00 Membership fee: January to June 150 CHF September to December: 100CHF Contact: Baudouin.bleus@cern.ch Facebook/Choeur-du-CERN

  15. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  16. CMS Awards

    CERN Multimedia

    2004-01-01

    Ali Mohammad Rafiee receives the CMS Gold Award from Michel Della Negra of CMS. As part of the fifth annual CMS Awards, Iranian contractor HEPCO, located in Arak, an industrial town 200 km west of Tehran, received their Gold Award in a ceremony held on 14 June 2004 (the other award winners were reported in bulletin 13/2004). The Awards are given each year to a small number of the approximately one thousand contractors working on the CMS project. Gold Awards are given for outstanding technical achievement in work carried out for the detector. HEPCO received the Award for the excellent quality of their work in constructing two 25 tonne support tables, two 75 tonne shields (FCS) and eight supporting brackets to lower the HF into the cavern. Welds and machining obtained tolerances that were very difficult in structures of that size. Mr. A. M. Rafiee, the General Manager of the company, acknowledged the benefits of this collaboration, and thanked the efforts and skills of the many staff involved.

  17. Thomas Kibble visits CERN

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    Emeritus Professor Sir Thomas W.B. Kibble, from Imperial College London visited LHC for the first time last week and delivered a colloquium on the genesis of electroweak unification and the Brout-Englert-Higgs mechanism.   From left to right: Jim Virdee, Tiziano Camporesi, Tom Kibble and Austin Ball on the visit to CMS. On his way back from Trieste, where he received the Abdus Salam International Centre for Theoretical Physics' Dirac Medal, Tom Kibble stopped by CERN for his first visit to the LHC. Kibble had a standing invitation from Jim Virdee, former CMS spokesperson, who is also a researcher from Imperial College London. Peter Jenni (left) and Tom Kibble tour the ATLAS detector. (Image: Erwan Bertrand) Kibble made the trip to CERN a family outing and brought along 14 relatives,  including his children and grandchildren. He visited the ATLAS detector with Peter Jenni, its former spokesperson, on Friday 10 October. In the afternoon, Kibble delivered a colloquium in the...

  18. CERN Video News, 2nd edition

    CERN Multimedia

    2002-01-01

    This week you will be able to watch on the web the second edition of CERN's video news (see Bulletin n°45/2002, p.3). On this news reel: the ATRAP experiment's latest achievements, superconducting cable production for CMS, the CAST experiment and the European digital conferencing project InDiCo. Go to : www.cern.ch/video, or Bulletin web page.

  19. Status of the CMS magnet (MT17)

    CERN Document Server

    Hervé, A; Campi, D; Cannarsa, P; Fabbricatore, P; Feyzi, F; Gerwig, H; Grillet, J P; Horváth, I L; Kaftanov, V S; Kircher, F; Loveless, R; Maugain, J M; Perinic, G; Rykaczewski, H; Sbrissa, E; Smith, R P; Veillet, L

    2002-01-01

    The CMS experiment (Compact Muon Solenoid) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with a free bore of 6 m diameter and 12.5-m length, enclosed inside a 10 000-ton return yoke. The magnet will be assembled and tested in a surface hall at Point 5 of the LHC at the beginning of 2004 before being transferred by heavy lifting means to an experimental hall 90 m below ground level. The design and construction of the magnet is a common project of the CMS Collaboration. The task is organized by a CERN based group with strong technical and contractual participation from CEA Saclay, ETH Zurich, Fermilab, INFN Genova, ITEP Moscow, University of Wisconsin and CERN. The magnet project will be described, with emphasis on the present status of the fabrication. (15 refs).

  20. Courrier CERN

    CERN Multimedia

    2015-01-01

    Example of the cover page of the French version of the CERN Courier; Courrier CERN from January 1962. The journal was published both in English and French up to volume 45, no. 5, June 2005. Since then there is a single-language edition where articles are published either in French or English with an abstract in the other language.

  1. CMS Resistive plate Champers

    CERN Document Server

    Zainab, Karam

    2013-01-01

    There are many types of gas detectors which are used in CERN in LHC project, There is a main parts for the gas detectors which must be in all gas detectors types like Multiwire proportional chambers, such as the micromesh gaseous structure chamber (the MicroMegas), Gas-electron multiplier (GEM) detector, Resistive Plate Champers... Compact Muon Solenoid (CMS) experiment detecting muons which are powerful tool for recognizing signatures of interesting physics processes. The CMS detector uses: drift tube (DT), cathode strip chamber (CSC) and resistive plate chamber (RPC). Building RPC’s was my project in summer student program (hardware). RPC’s have advantages which are triggering detector and Excellent time resolution which reinforce the measurement of the correct beam crossing time. RPC’s Organized in stations :  RPC barrel (RB) there are 4 stations, namely RB1, RB2, RB3, and RB4  While in the RPC endcap (RE) the 3 stations are RE1, RE2, and RE3. In the endcaps a new starion will be added and this...

  2. Tests of the CMS Phase 1 Upgrade FPIX Half Cylinders

    Science.gov (United States)

    Chen, Xuan; CMS Collaboration

    2017-01-01

    The pixel detector is an integral part of the CMS silicon tracker, designed to measure the position and momentum of charged particles produced in high-energy collisions at the Large Hadron Collider (LHC). The phase 1 upgrade of the CMS forward pixel detector will replace the existing forward pixel detector at the end of 2016. This upgrade will include three forward disks on each end, and is organized in four mechanical support structures, called half-cylinders. Each half-cylinder contains frontend readout electronic boards, power regulators, cables and fibers in addition to the three half disks with the active pixel modules. Full system tests are being performed on the half cylinders after each step of assembly and after its completion. I will describe the various steps of the testing and qualification procedure, focusing on the final assembly and the full system test for the integrated half-cylinder. I will also discuss the results obtained for the completed detector before its shipment to CERN.

  3. CERN & Society

    CERN Multimedia

    2016-01-01

    Non Member State Summer Students 2015 are interviewed about their decision to study STEM subjects, to apply for CERN NMSSS programme, their experience onsite @CERN and takeaways, their future goals and aspirations, offering also advice to fellow students.The Non Member State Summer Student Programme stands for a unique opportunity for students from all over the world to spend their summer at CERN in Geneva, getting involved in some of the world’s biggest experiments. For 8 weeks, summer students gather on-site at CERN and join in the day-to-day work of research. The Programme targets advanced undergraduate and beginning graduate students of physics, computing and engineering, particularly from developing countries. Participating students receive scientific training, attend lectures and work on laboratory-based projects alongside with CERN experts and fellow students.

  4. Radiation damage effects on CMS sensors quality assurance and irradiation tests

    CERN Document Server

    Furgeri, Alexander J; de Boer, Wim; Forton, E; Freudenstein, S; Hartmann, F

    2004-01-01

    The Large Hadron Collider (LHC) at the Centre Europeenne pour la Recherche Nucleaire (CERN), Geneva, Switzerland, is a proton-proton collider with a luminosity of 10**3**4/cm**2s and will be working for ten years (starting in 2007). The Compact Muon Solenoid (CMS) will be one of the four general-purpose detectors. The CMS tracker consists of ten barrel layers, plus 2 multiplied by 9 end cap discs, which amounts to a total of 24 328 silicon sensors with a total area of 206 m**2 silicon, covering a pseudorapidity of vertical bar eta; vertical bar less than approximately equals 2.5. For the sensors close to the beam pipe, fluences of 1.6 center dot 10**1**4n//1 MeV/cm**2 are expected over the ten-year lifetime. To guarantee the functionality of the single-side silicon sensors during the runtime of the LHC, quality assurance was developed. In the two Irradiation Qualification Centers (IQCs) in Karlsruhe, Germany, and Louvain-la-Neuve, Belgium, a fraction of 1% of the sensors are electrically qualified. In Karlsru...

  5. On 25 January Pervez Musharraf, president of Pakistan, visited CERN

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Welcomed by CERN's Director-General, Robert Aymar, the President visited the CMS experiment to which Pakistan is making a substantial contribution. The presidential party was given a guided tour of the experiment by CMS's Spokesman, Michel Della Negra, and Hafeez Hoorani, a Pakistani physicist from the National Centre for Physics in Islamabad (NCP), which is a member of the CMS collaboration.

  6. Serbian President visits CERN

    CERN Document Server

    Katarina Anthony

    2012-01-01

    On Tuesday 10 January, Serbian President Boris Tadić visited the Laboratory to sign the Agreement of granting the status of Associate Membership as the pre-stage to full Membership of CERN.    Before the signing ceremony, the President, welcomed by Director-General Rolf Heuer at CERN’s Point 5, took the opportunity to visit CERN. After a general introduction, the President took advantage of the shutdown to visit the LHC’s underground caverns. Leading the President through their respective experiments were spokespersons Fabiola Gianotti (ATLAS) and Joe Incandela (CMS).  After a morning of tours, President Tadić and Rolf Heuer signed the Agreement. Serbia’s status as an Associate Member as pre-stage to full Membership is expected to come into force following ratification by the Serbian Parliament. After a maximum period of five years, the CERN Council will decide on the admission of Serbia to full Membership. This new agreement continues Serbia&a...

  7. Three European ministers visit CERN

    CERN Multimedia

    2007-01-01

    There have been three ministerial visits to CERN this month. Gediminas Kirkilas, Prime Minister of Lithuania, and Robert Aymar, CERN’s Director-General.On 2 July, the Prime Minister of Lithuania, Gediminas Kirkilas, was welcomed by CERN’s Director-General, Robert Aymar, before being taken on a visit of the ATLAS cavern at Point 2 and the LHC tunnel. Michal Sewerynski, Poland’s Minister for Science and Higher Education, and Robert Aymar, CERN’s Director-General.Ten days later, Poland’s Minister for Science and Higher Education, Michal Sewerynski, visited the CMS cavern and assembly hall and the LHC tunnel. He was also given a tour of the LHC Computer Centre and the CERN Control Centre. His visit was rounded off with a presentation of Polish companies involved in CERN’s activities, followed by a meeting with Polish personnel working at CERN. J�...

  8. Swiss State Secretary visits CERN

    CERN Multimedia

    2008-01-01

    The new Swiss State Secretary for Education and Research recently visited CERN. Peter Jenni, the spokesperson for ATLAS, gave Mauro Dell’Ambrogio, the new Swiss State Secretary for Education and Research, a tour of ATLAS and the LHC tunnel.On 2 April, the newly appointed Swiss State Secretary for Education and Research, Mauro Dell’Ambrogio, was welcomed to CERN by Director-General Robert Aymar. On arrival the Swiss minister was given a guided tour of ATLAS and the adjoining LHC tunnel by Peter Jenni, the ATLAS spokesperson. Dr Dell’Ambrogio was then greeted by Swiss scientists and attended presentations by young post doc physicists about Swiss contributions to CMS and LHCb, in particular their work concerning hardware contribution and data analysis. There are 120 physicists from Swiss universities working on CERN’s experiments, and many more Swiss people working at CERN in other departments due to Switzerland’s special position as a host state. Also before ...

  9. Diffractive and Parton Processes with CMS and TOTEM Forward Detectors

    CERN Document Server

    Penzo, Aldo; Sen, Sercan

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment, in the Large Hadron Collider (LHC) at CERN, has several forward sub-detectors, consisting of calorimeters close to the beam pipe, that complement the central part of CMS, which covers a pseudorapidity range from -3 to +3. The TOTEM experiment, installed around the same interaction point as CMS, is tailored for diffractive measurements. CMS and TOTEM have strengthened their collaboration on a common project to achieve maximum forward acceptance and to perform measurements at full LHC luminosity.

  10. Hangout With CERN: Antimatter (S01E05)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this hangout we delve into the world of antimatter. How is it different from matter? What antimatter research is going on at CERN? Why? What have we learned so far and what will this research lead to? ATLAS physicist Steven Goldfarb is joined by CERN theorist Alex Arbey, Seth Zenz from the CMS experiment, and Michael Doser, Makoto Fujiwara and Masaki Hori from the antimatter experiments at CERN.Recorded live on 29th November 2012.

  11. Predicting dataset popularity for the CMS experiment

    CERN Document Server

    INSPIRE-00005122; Li, Ting; Giommi, Luca; Bonacorsi, Daniele; Wildish, Tony

    2016-01-01

    The CMS experiment at the LHC accelerator at CERN relies on its computing infrastructure to stay at the frontier of High Energy Physics, searching for new phenomena and making discoveries. Even though computing plays a significant role in physics analysis we rarely use its data to predict the system behavior itself. A basic information about computing resources, user activities and site utilization can be really useful for improving the throughput of the system and its management. In this paper, we discuss a first CMS analysis of dataset popularity based on CMS meta-data which can be used as a model for dynamic data placement and provide the foundation of data-driven approach for the CMS computing infrastructure.

  12. Predicting dataset popularity for the CMS experiment

    Science.gov (United States)

    Kuznetsov, V.; Li, T.; Giommi, L.; Bonacorsi, D.; Wildish, T.

    2016-10-01

    The CMS experiment at the LHC accelerator at CERN relies on its computing infrastructure to stay at the frontier of High Energy Physics, searching for new phenomena and making discoveries. Even though computing plays a significant role in physics analysis we rarely use its data to predict the system behavior itself. A basic information about computing resources, user activities and site utilization can be really useful for improving the throughput of the system and its management. In this paper, we discuss a first CMS analysis of dataset popularity based on CMS meta-data which can be used as a model for dynamic data placement and provide the foundation of data-driven approach for the CMS computing infrastructure.

  13. Award for the best CMS thesis

    CERN Multimedia

    2003-01-01

    The 2002 CMS PhD Thesis Award for has been presented to Giacomo Luca Bruno for his thesis defended at the University of Pavia in Italy and entitled "The RPC detectors and the muon system for the CMS experiment at the LHC". His work was supervised by Sergio P. Ratti from the University of Pavia. Since April 2002, Giacomo has been employed as a research fellow by CERN's EP Division. He continues to work on CMS in the areas of data acquisition and physics reconstruction and selection. Last Monday he received a commemorative engraved plaque from Lorenzo Foà, chairman of the CMS Collaboration Board. He will also receive expenses paid to an international physics conference to present his thesis results. Giacomo Luca Bruno with Lorenzo Foà

  14. Particle Flow at CMS and the ILC

    CERN Document Server

    Ballin, J A C

    2010-01-01

    This thesis describes hadron reconstruction at the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN, Geneva. The focus is on the particle flow reconstruction of these objects. This thesis revisits the subject of the CMS calorimeters' non-linear response to hadrons. Data from testbeam experiments conducted in 2006 & 2007 is compared with simulations and substantial differences are found. A particle flow calibration to correct the energy response of the testbeam data is evaluated. The reconstructed jet response is found to change by ~ 5% when a data-driven calibration is used in place of the calibration derived from simulation. Collision data taken at the early stage of CMS' commissioning is also presented. The hadron response in data is determined to be compatible with testbeam results presented in this thesis. This thesis also details the use of neural networks to improve the energy measurement of hadrons at CMS. The networks are implemented in a functional and concurrent ...

  15. Iranian and Kazakh representatives visit CERN

    CERN Multimedia

    2004-01-01

    On 1st and 4th March respectively, CERN received visits from Asset Issekeshev, Kazakhstan's Vice-Minister of Industry and Trade, and Reza Mansouri, Deputy Minister for Science, Research and Technology of the Islamic Republic of Iran. Asset Issekeshev and his delegation came to CERN with the aim of learning "the European way of building strong and effective ties between science and the industrial sector". Welcomed by Maximilian Metzger, CERN's Secretary-General, he visited the ATLAS assembly hall and the CLIC installations before signing the visitors' book. After a short visit to Point 5 (CMS), Reza Mansouri met CERN's Director-General, Robert Aymar, before talking to Iranian PhD students working on their theses at CERN. Asset Issekeshev, Kazakhstan's Vice-Minister of Industry and Trade, signs the visitors' book, watched by Maximilian Metzger, CERN's Secretary-General.From left to right: Mojtaba Mohammadi and Majid Hashemi (Iranian PhD students at CERN); Dr Daniel Denegri (CMS), Professor Re...

  16. 2 September 2009 - H.S.H. Prince Albert II of Monaco (second from right) visiting CMS underground experimental area with, from left to right, Ambassador R. Fillon, Collaboration Spokesperson T. Virdee and CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Tirage 1-28:caverne expérimentale CMS avec le Porte-parole de la Collaboration T. Virdee Tirage 29-42:CCC avec le Chef du Département Faisceaux(BE) P. Collier et Département Faisceaux, groupe opérations, LHC Ingénieur Responsable L. Ponce.

  17. Prime-Minister of Malta visits CERN

    CERN Multimedia

    2008-01-01

    The Prime-Minister of Malta, Dr Lawrence Gonzi, visited CERN and met Director-General, Robert Aymar, on 10 January. The Prime-Minister of Malta, Dr Lawrence Gonzi, and CERN Director-General, Robert Aymar, signed a cooperation agreement. Dr Gonzi was given guided tours of the CMS experiment at Point 5 in Cessy and of the LHC magnet test facility, in which his country was involved. One of the high points of the day was the signing of a cooperation agreement between CERN and the Government of the Republic of Malta, aimed at the development of scientific and technical collaboration. "I’m really enthusiastic about this agreement, which constitutes a first step towards real collaboration between the Maltese government and CERN," said Nicholas Sammut, a Maltese engineer at CERN who was present throughout the visit (on the right). See also the video.

  18. A silicon tracker for Christmas

    CERN Multimedia

    2008-01-01

    The CMS experiment installed the world’s largest silicon tracker just before Christmas. Marcello Mannelli: physicist and deputy CMS project leader, and Alan Honma, physicist, compare two generations of tracker: OPAL for the LEP (at the front) and CMS for the LHC (behind). There is quite a difference between 1m2 and 205m2.. CMS received an early Christmas present on 18 December when the silicon tracker was installed in the heart of the CMS magnet. The CMS tracker team couldn’t have hoped for a better present. Carefully wrapped in shiny plastic, the world’s largest silicon tracker arrived at Cessy ready for installation inside the CMS magnet on 18 December. This rounded off the year for CMS with a major event, the crowning touch to ten years of work on the project by over five hundred scientists and engineers. "Building a scientific instrument of this size and complexity is a huge technical a...

  19. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  20. The CMS High Level Trigger

    CERN Document Server

    Adam, W; Deldicque, C; Ero, J; Frühwirth, R; Jeitler, Manfred; Kastner, K; Köstner, S; Neumeister, N; Porth, M; Padrta P; Rohringer, H; Sakulinb, H; Strauss, J; Taurok, A; Walzel, G; Wulz, C E; Lowette, S; Van De Vyver, B; De Lentdecker, G; Vanlaer, P; Delaere, C; Lemaître, V; Ninane, A; van der Aa, O; Damgov, J; Karimäki, V; Kinnunen, R; Lampen, T; Lassila-Perini, K M; Lehti, S; Nysten, J; Tuominiemi, J; Busson, P; Todorov, T; Schwering, G; Gras, P; Daskalakis, G; Sfyrla, A; Barone, M; Geralis, T; Markou, C; Zachariadou, K; Hidas, P; Banerjee, S; Mazumdara, K; Abbrescia, M; Colaleoa, A; D'Amato, N; De Filippis, N; Giordano, D; Loddo, F; Maggi, M; Silvestris, L; Zito, G; Arcelli, S; Bonacorsi, D; Capiluppi, P; Dallavalle, G M; Fanfani, A; Grandi, C; Marcellini, S; Montanari, A; Odorici, F; Travaglini, R; Costa, S; Tricomi, A; Ciulli, a V; Magini, N; Ranieri, R; Berti, L; Biasotto, M; Gulminia, M; Maron, G; Toniolo, N; Zangrando, L; Bellato, M; Gasparini, U; Lacaprara, S; Parenti, A; Ronchese, P; Vanini, S; Zotto, S; Ventura P L; Perugia; Benedetti, D; Biasini, M; Fano, L; Servoli, L; Bagliesi, a G; Boccali, T; Dutta, S; Gennai, S; Giassi, A; Palla, F; Segneri, G; Starodumov, A; Tenchini, R; Meridiani, P; Organtini, G; Amapane, a N; Bertolino, F; Cirio, R; Kim, J Y; Lim, I T; Pac, Y; Joo, K; Kim, S B; Suwon; Choi, Y I; Yu, I T; Cho, K; Chung, J; Ham, S W; Kim, D H; Kim, G N; Kim, W; CKim, J; Oh, S K; Park, H; Ro, S R; Son, D C; Suh, J S; Aftab, Z; Hoorani, H; Osmana, A; Bunkowski, K; Cwiok, M; Dominik, Wojciech; Doroba, K; Kazana, M; Królikowski, J; Kudla, I; Pietrusinski, M; Pozniak, Krzysztof T; Zabolotny, W M; Zalipska, J; Zych, P; Goscilo, L; Górski, M; Wrochna, G; Zalewski, P; Alemany-Fernandez, R; Almeida, C; Almeida, N; Da Silva, J C; Santos, M; Teixeira, I; Teixeira, J P; Varelaa, J; Vaz-Cardoso, N; Konoplyanikov, V F; Urkinbaev, A R; Toropin, A; Gavrilov, V; Kolosov, V; Krokhotin, A; Oulianov, A; Stepanov, N; Kodolova, O L; Vardanyan, I; Ilic, J; Skoro, G P; Albajar, C; De Troconiz, J F; Calderón, A; López-Virto, M A; Marco, R; Martínez-Rivero, C; Matorras, F; Vila, I; Cucciarelli, S; Konecki, M; Ashby, S; Barney, D; Bartalini, P; Benetta, R; Brigljevic, V; Bruno, G; Cano, E; Cittolin, S; Della Negra, M; de Roeck, A; Favre, P; Frey, A; Funk, W; Futyan, D; Gigi, D; Glege, F; Gutleber, J; Hansen, M; Innocente, V; Jacobs, C; Jank, W; Kozlovszky, Miklos; Larsen, H; Lenzi, M; Magrans, I; Mannelli, M; Meijers, F; Meschi, E; Mirabito, L; Murray, S J; Oh, A; Orsini, L; Palomares-Espiga, C; Pollet, L; Rácz, A; Reynaud, S; Samyn, D; Scharff-Hansen, P; Schwick, C; Sguazzoni, G; Sinanis, N; Sphicas, P; Spiropulu, M; Strandlie, A; Taylor, B G; Van Vulpen, I; Wellisch, J P; Winkler, M; Villigen; Kotlinski, D; Zurich; Prokofiev, K; Speer, T; Dumanoglu, I; Bristol; Bailey, S; Brooke, J J; Cussans, D; Heath, G P; Machin, D; Nash, S J; Newbold, D; Didcot; Coughlan, A; Halsall, R; Haynes, W J; Tomalin, I R; Marinelli, N; Nikitenko, A; Rutherford, S; Seeza, C; Sharif, O; Antchev, G; Hazen, E; Rohlf, J; Wu, S; Breedon, R; Cox, P T; Murray, P; Tripathi, M; Cousins, R; Erhan, S; Hauser, J; Kreuzer, P; Lindgren, M; Mumford, J; Schlein, P E; Shi, Y; Tannenbaum, B; Valuev, V; Von der Mey, M; Andreevaa, I; Clare, R; Villa, S; Bhattacharya, S; Branson, J G; Fisk, I; Letts, J; Mojaver, M; Paar, H P; Trepagnier, E; Litvine, V; Shevchenko, S; Singh, S; Wilkinson, R; Aziz, S; Bowden, M; Elias, J E; Graham, G; Green, D; Litmaath, M; Los, S; O'Dell, V; Ratnikova, N; Suzuki, I; Wenzel, H; Acosta, D; Bourilkov, D; Korytov, A; Madorsky, A; Mitselmakher, G; Rodríguez, J L; Scurlock, B; Abdullin, S; Baden, D; Eno, S; Grassi, T; Kunori, S; Pavlon, S; Sumorok, K; Tether, S; Cremaldi, L M; Sanders, D; Summers, D; Osborne, I; Taylor, L; Tuura, L; Fisher,W C; Mans6, J; Stickland, D P; Tully, C; Wildish, T; Wynhoff, S; Padley, B P; Chumney, P; Dasu, S; Smith, W H; CMS Trigger Data Acquisition Group

    2006-01-01

    At the Large Hadron Collider at CERN the proton bunches cross at a rate of 40MHz. At the Compact Muon Solenoid experiment the original collision rate is reduced by a factor of O (1000) using a Level-1 hardware trigger. A subsequent factor of O(1000) data reduction is obtained by a software-implemented High Level Trigger (HLT) selection that is executed on a multi-processor farm. In this review we present in detail prototype CMS HLT physics selection algorithms, expected trigger rates and trigger performance in terms of both physics efficiency and timing.

  1. CMS Object—Oriented Analysis

    Institute of Scientific and Technical Information of China (English)

    V.Innocente; E.Meschi; 等

    2001-01-01

    The CMS OO reconstruction program-ORCA-has been used since 1999 to produce large samples of reconstructed Monte-Carlo events for detector optimization,trigger and physics studies,The events are stored in several Objectivity federations at CERN,in the US,Italy and other countries.To perform their studies physicists use different event samples ranging from complete datasets of TByte size to only a few events out of these datasets.We describe the implementation of these requirements in the ORCA software and the way collctions of events are accessed for reading,writing or copying.

  2. CMS: the first barrel ring completed!

    CERN Multimedia

    2000-01-01

    Seven years after design studies began, CERN and the German company DWE have erected the first of the five CMS yoke rings, a giant component weighing 1200 tonnes. The first ring of the CMS magnet yoke, a twelve-sided 15-metre-high colossus, has been erected in the new hall at Point 5 near Cessy. For the last few days it has stood unaided, no longer relying on the central structure required for its assembly. Its construction marks an important milestone in the CMS programme, the culmination of seven years of work at CERN and over two years of manufacturing at DWE. Awarded the contract by the Swiss Federal Institute of Technology (ETH), Zürich, the German manufacturer has produced and assembled the ring components in collaboration with a team from CERN. This feat of mechanical engineering was celebrated two weeks ago at a drink attended by the main protagonists, headed by Franz Kufner, divisional manager at DWE, Franz Leher, production engineer at DWE, Alain Hervé, CMS technical coordinator,...

  3. CMS releases new batch of LHC open data

    CERN Multimedia

    Achintya Rao

    2016-01-01

    CMS makes 300 TB of high-quality data from the LHC available to the public through the CERN Open Data Portal.   A CMS collision event as seen in the built-in event display on the CERN Open Data Portal (Image: CERN) The CMS collaboration has made 300 TB of high-quality data from the LHC available to the public through the CERN Open Data Portal. The collision data come in two types: The so-called “primary datasets” are in the same format used by the CMS Collaboration to perform research. The “derived datasets” on the other hand require a lot less computing power and can be readily analysed by university or even high-school students. Notably, CMS is also providing the simulated data generated with the same software version that should be used to analyse the primary datasets. Simulations play a crucial role in particle-physics research and CMS is also making available the protocols for generating the simulations that are provided. The data release is accompanie...

  4. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  5. CERN signs draft Memorandum of Understanding with Iran

    CERN Multimedia

    2001-01-01

    Left to right: Dr Henrik Foeth, Team Leader CMS; Dr Daniel Denegri, Physics Coordinator CMS; Prof. Tejinder Virdee, Deputy Spokesman CMS; Prof. Luciano Maiani, CERN Director-General - signing; Mr Jean-Marie Dufour, Head of the CERN Legal Service, Mr Ghodratollah Habibpour Gharakol, back; Dr Abdolali Sharghi, Advisor to the Minister and Director General, Office of International Scientific Cooperation, Iranian Ministry of Science, Research and Technology; Dr Mostafa Moin, Minister of Science, Research and Technology, Islamic Republic of Iran - signing; Dr Reza Mansouri, Director, International Scientific Meetings Office, Iranian Ministry of Science, Research and Technology; H. E. Dr Ali Khorram, Extraordinary and plenipotentiary Ambassador of the Islamic Republic of Iran to the United Nations in Geneva, Dr Hans F. Hoffmann, CERN Director for Technology Transfer & for Scientific Computing. Iranian Minister for Science, Research and Technology, Dr Mostafa Moin, and CERN Director-General Luciano Maiani, s...

  6. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  7. CMS Fast Facts

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has developed a new quick reference statistical summary on annual CMS program and financial data. CMS Fast Facts includes summary information on total program...

  8. CMS Wallet Card

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Wallet Card is a quick reference statistical summary on annual CMS program and financial data. The CMS Wallet Card is available for each year from 2004...

  9. Development of Silicon Sensor Characterization System for Future High Energy Physics Experiments

    Directory of Open Access Journals (Sweden)

    Preeti kumari

    2015-08-01

    Full Text Available The Compact Muon Solenoid (CMS is one of the general purpose experiments at the Large Hadron Collider (LHC, CERN and has its Tracker built of all silicon strip and pixel sensors. Si sensors are expected to play extremely important role in the upgrades of the existing Tracker for future high luminosity environment and will also be used in future lepton colliders. However, properties of the silicon sensors have to be carefully understood before they can be put in the extremely high luminosity condition. At Delhi University (DU, we have been working on the development of Si sensor characterization system, as part of the collaboration with the CMS Experiment and RD50 collaboration. This works reports the installation of current-voltage (I-V and capacitance-voltage (C-V systems at DU.

  10. Physics with CMS and Electronic Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Rohlf, James W. [Boston Univ., MA (United States)

    2016-08-01

    The current funding is for continued work on the Compact Muon Solenoid (CMS) at the CERN Large Hadron Collider (LHC) as part of the Energy Frontier experimental program. The current budget year covers the first year of physics running at 13 TeV (Run 2). During this period we have concentrated on commisioning of the μTCA electronics, a new standard for distribution of CMS trigger and timing control signals and high bandwidth data aquistiion as well as participating in Run 2 physics.

  11. Tests of CMS MSGC Modules at PSI

    CERN Document Server

    Beaumont, Willem; Bernier, Kim; Blum, Peter; Bouhali, Othmane; Boulogne, Isabelle; Bozzo, Marco; Brez, Alessandro; Buzulutskov, A; Coffin, Jean-Pierre Coffin; Daubie, Evelyne; De Lentdecker, Gilles; Devroede, O; Erbacher, Th; Fahrer, Manuel; Fontaine, Jean-Charles; Flügge, Gunter; Gariano, G; Geist, Walter M; Gottschalk, M; Helleboid, Jean-Marie; Huss, Daniel; Iacopi, F; Kärcher, Kurt; Latronico, Luca; Lounis, Abdenour; Lumb, Nicholas; Maazouzi, Chaker; Macke, D; Massai, Marco Maria; Mörmann, Dirk; Müller, Th; Neuberger, D; Nowack, Andreas; Papanestis, Antonios; Raffo, R; Roederer, Frank; Schulte, R; Shekhtman, L I; Sigward, M H; Simonis, H J; Spandre, Gloria; Spezziga, Mario; Struczinski, W; Tatarinov, A A; Toropin, Alexander N.; Van Doninck, Walter; Van Dyck, C; Van Lancker, Luc; Van der Velde, C; Vanlaer, Pascal; Bellazzini, Ronaldo; Zander, A; Barvich, Tobias; Zghiche, Amina; Zhukov, Valery; Brom, Jean-Marie; Ageron, M; Chowotz, Piotr; Albert, A; Mirabito, Laurent; Bluem, P.; Kaercher, K; Moermann, Dirk; Mueller, Th; Roederer, Frank; Weiler, Thomas

    1999-01-01

    The CMS experiment, to be installed at the future p-p collider LHC at CERN, foresees the use of Micro-Strip Gas Counters ( MSGC's) for the outer layers of its central tracker. Present developments focus on the reliability of MSGC's in the harsh radiation environment imposed by the LHC. This paper reports on tests of two baseline CMS MSGC's identical to those foreseen for the barrel part of the tracker, in a high intensity pion beam at the Paul Scherrer Institute ( PSI), in april 1999.

  12. Analysis of the CMS visitors feedback Poster

    CERN Multimedia

    Davis, Siona Ruth

    2016-01-01

    CMS welcomed over 5500 visitors underground during the 2013 CERN Open Days and more than 4500 during the Neighbourhood Days of 2014 on the occasion of CERN’s 60th anniversary. During the latter event, visitors gave their feedback on the visit experience by answering three questions: • In one sentence, what will you tell your friends about what you saw today? • What fact or story that you heard today impressed you the most? • Describe the CMS detector in three words. This poster will show the analysis of the answers given by visitors.

  13. Analysis of the CMS visitors feedback Poster

    CERN Multimedia

    Davis, Siona Ruth

    CMS welcomed over 5500 visitors underground during the 2013 CERN Open Days and more than 4500 during the Neighbourhood Days of 2014 on the occasion of CERN’s 60th anniversary. During the latter event, visitors gave their feedback on the visit experience by answering three questions: • In one sentence, what will you tell your friends about what you saw today? • What fact or story that you heard today impressed you the most? • Describe the CMS detector in three words. This poster will show the analysis of the answers given by visitors.

  14. FRANCE AT CERN

    CERN Multimedia

    2003-01-01

    From 23 to 25 September, French industry exhibited products and technologies which are related to the field of particle physics. Twenty five companies presented their latest developments in electrical engineering, IT, vacuum & low temperature technologies, and civil engineering. Bernard Frois, Director of the Energy, Transport, and Environment Department of the French Ministry for Research and New Technologies inaugurated the exhibition on 23 September. To make the most of his visit, he also visited the assembly halls of CMS and ATLAS and the hall where the superconducting magnets for the LHC are tested. From left to right: Jean-Claude Brisson, ILO, Robert Aymar, designated CERN Director General, Françoise Le Moign, Assistant General Consul at Geneva, Alain Guillouët, Head of the economic mission in Switzerland, French Embassy, Thierry Boquien, Ubifrance, French agency for international development of companies, Bernard Frois, Director of the Department for Energy, Transport, and Environment of the Fre...

  15. ́Etude des états finals à deux bosons Z dans le canal leptons-neutrinos dans l'expérience CMS auprès du LHC au CERN

    CERN Document Server

    Marionneau, Matthieu

    2011-01-01

    This thesis presents a study of ZZ final states performed with data recorded with the CMS detector. This study exploits the first data delivered by the LHC and recorded by CMS in 2010 and 2011. The ZZ production cross section is measured and limits are set on neutral electroweak triple gauge couplings. The existence of such couplings would be an indication of new physics beyond the Standard Model. Moreover, the ZZ process in the Standard Model is a background for Higgs searches and have to be well known. Some preliminary studies are performed on the CMS electromagnetic calorimeter. These studies are related to the selective readout system and to the laser monitoring system of the electromagnetic calorimeter. The measurement and the behaviour of the transverse missing energy are also studied in events containing one electroweak boson decaying into electron(s). This study shows that pileup has a important effect on missing transverse energy measurements. Some corrections have to be taken into account to deal wi...

  16. Bulgarians@cern.ch

    CERN Multimedia

    2000-01-01

    The happy Bulgarian family. From left to right, last row to first row: Ilka Antcheva, Georgi Antchev, Dimitri Borilkov, Ivana Hristova, Petiu Petev, Peicho Petkov, Borislav Pavlov, Peter Hristov, Mihail Tchijov, Stefan Piperov, Ekaterina Ivanova, Dimitar Kolev, Roumen Tzenov. Bobby is striding along with his white sneakers, black trousers belted high at the waist and a blue shirt buttoned up to the top. He comes to the coffee table and sits down on the chair crossing his legs. While speaking he fiddles with his glasses and his black curly hair dangles on the sides of his head. Borislav Pavlov or Bobby is a 22 year old Bulgarian summer Physics student at Sofia University and came to CERN to work on ORCA reconstruction software for the CMS experiment. “I will do my thesis on ORCA and it is so good that I can be here, work here where the projects actually happen and exchange experience with the people working here,” he says. “It is an honor for me.” Bulgaria joined CERN as a member state in 1999 but Bulgar...

  17. Robot adventures at CERN

    CERN Multimedia

    2015-01-01

    Imagine if the CERN robots had an end-of-year party... From retrieving data tapes to handling material safely, the robots at CERN fulfill numerous tasks. Find out more: http://cern.ch/go/VjX7 Produced by: CERN Video Productions Director: Christoph M. Madsen Copyright © 2015 CERN. Terms of use: http://copyright.web.cern.ch/

  18. Exploring the quality of latest sensor prototypes for the CMS Tracker Phase II Upgrade

    CERN Document Server

    Konig, Axel

    2016-01-01

    The LHC at CERN will reach its nominal luminosity soon. The luminosity will further be increased by a factor of five to seven during the third long shutdown (LS3) scheduled around 2024. The significant increase in luminosity along with the limitations of the current Tracker require a complete renewal of the CMS Outer Tracker, the Tracker Phase-2 Upgrade, during the LS3. New types of modules called PS and 2S modules are foreseen offering enhanced functionality and radiation hardness. Milestones in sensor R&D for the 2S modules as well as first characterization results are presented. AC-coupled silicon strip sensors of two vendors, produced on 6-inch as well as on 8-inch wafers, are considered which both feature the demanded n-in-p technology. Global as well as single strip parameters were measured providing insights into the quality of the sensors.

  19. Hangout with CERN: Penguins! (S03E07)

    CERN Multimedia

    Kahle, Kate

    2013-01-01

    In this week's hangout scientists from the LHCb Experiment at CERN explain why their experiment is a place to find penguins! But these are no ordinary penguins, these are electroweak penguins, who got their name via a strange tale involving a game of darts...Host ATLAS physicist Steven Goldfarb is joined by LHCb physicist Tom Blake, with LHCb physicist Nico Serra and CERN Theorist Gilad Perez, and CMS physicist Freya Blekman monitoring social media.Read more about chasing new physics with electroweak penguins in the latest CERN Courier: http://cerncourier.com/cws/article/cern/53421Recorded live on 6th June 2013.

  20. The run control and monitoring system of the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Gerry; /MIT; Boyer, Vincent; /CERN; Branson, James; /UCLA; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; /CERN; O' Dell, Vivian; /Fermilab; Erhan, Samim; /CERN /UC, San Diego; Gigi, Dominique; /CERN /Kyungpook Natl. U. /MIT /UCLA /CERN /INFN, Legnaro

    2007-10-01

    The CMS experiment at the LHC at CERN will start taking data in 2008. To configure, control and monitor the experiment during data-taking the Run Control and Monitoring System (RCMS) was developed. This paper describes the architecture and the technology used to implement the RCMS, as well as the deployment and commissioning strategy of this important component of the online software for the CMS experiment.

  1. art@CMS students' exhibition in Centre des Arts, ECOLINT

    CERN Multimedia

    CMS Communications Group; Geneva, Switzerland; Vaso Sideri

    2015-01-01

    This video documents the outcome of a science and art workshop with the participation of high-school students from the International School of Geneva (ECOLINT). The project was implemented in the framework of art@CMS, an education and outreach programme of the CMS experiment at CERN. In the video, the students present their artworks during the opening of their exhibition at the Centre des Arts of ECOLINT in Geneva.

  2. CERN choir

    CERN Multimedia

    2004-01-01

    Don't forget a special performance of Joseph Haydn's Creation, an oratorio in three parts, given by the CERN choir and the Annecy choir Pro Musica, this Sunday at 8.30 p.m. at the Grand Casino. Tickets (38 CHF) are available at Fnac Rive and Balexert.

  3. Calibration strategy of CMS electromagnetic calorimeter

    CERN Document Server

    Paramatti, R

    2004-01-01

    Calibration is one of the main factors that set limits on the ultimate performance of the CMS electromagnetic calorimeter at LHC. Crystals raw intercalibration from lab measurements during assembly and CERN-SPS test beam of Supermodules will represent the precalibration at the start-up. In situ calibration with physics events will be the main tool to reduce the constant term to the design goal of 0.5%. The calibration strategy will be described in detail.

  4. Jets and Missing Transverse Energy in CMS

    CERN Document Server

    Dobur, Didar

    2009-01-01

    We report on the current simulation studies regarding the reconstruction of Jets and Missing Transverse Energy (MET) with the CMS detector at the CERN proton-proton LHC accelerator. The performance of various jet algorithms is compared, when using calorimeter energy deposits as inputs to the algorithm. The plan for obtaining jet energy corrections is outlined and data-driven correction methods are described. Finally, the performance of MET reconstruction is summarized.

  5. The CMS Integration Grid Testbed

    CERN Document Server

    Graham, G E; Aziz, Shafqat; Bauerdick, L.A.T.; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yu-jun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge Luis; Kategari, Suchindra; Couvares, Peter; DeSmet, Alan; Livny, Miron; Roy, Alain; Tannenbaum, Todd; Graham, Gregory E.; Aziz, Shafqat; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yujun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge; Kategari, Suchindra; Couvares, Peter; Smet, Alan De; Livny, Miron; Roy, Alain; Tannenbaum, Todd

    2003-01-01

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distrib ution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuo us two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. ...

  6. Distributed computing grid experiences in CMS

    CERN Document Server

    Andreeva, Julia; Barrass, T; Bonacorsi, D; Bunn, Julian; Capiluppi, P; Corvo, M; Darmenov, N; De Filippis, N; Donno, F; Donvito, G; Eulisse, G; Fanfani, A; Fanzago, F; Filine, A; Grandi, C; Hernández, J M; Innocente, V; Jan, A; Lacaprara, S; Legrand, I; Metson, S; Newbold, D; Newman, H; Pierro, A; Silvestris, L; Steenberg, C; Stockinger, H; Taylor, Lucas; Thomas, M; Tuura, L; Van Lingen, F; Wildish, Tony

    2005-01-01

    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data- taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure ...

  7. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, VI; Sarycheva, L I; Klyukhin, V I; Ball, A; Gaddi, A; Amapane, N; Gerwig, H; Andreev, V; Cure, B; Mulders, M; Loveless, R; Karimaki, V; Popescu, S; Herve, A

    2010-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  8. Russian institute receives CMS Gold Award

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The Snezhinsk All-Russian Institute of Scientific Research for Technical Physics (VNIITF) of the Russian Federal Nuclear Centre (RFNC) is one of twelve CMS suppliers to receive awards for outstanding performance this year. The CMS Collaboration took the opportunity of the visit to CERN of the Director of VNIITF and his deputy to present the CMS Gold Award, which the institute has received for its exceptional performance in the assembly of steel plates for the CMS forward hadronic calorimeter. This calorimeter consists of two sets of 18 wedge-shaped modules arranged concentrically around the beam-pipe at each end of the CMS detector. Each module consists of steel absorber plates with quartz fibres inserted into them. The institute developed a special welding technique to assemble the absorber plates, enabling a high-quality detector to be produced at relatively low cost.RFNC-VNIITF Director Professor Georgy Rykovanov (right), is seen here receiving the Gold Award from Felicitas Pauss, Vice-Chairman of the CMS ...

  9. Recent CMS Results

    Directory of Open Access Journals (Sweden)

    Dorigo Tommaso

    2014-04-01

    Full Text Available The CMS experiment obtained a large number of groundbreaking results from the analysis of 7- and 8-TeV proton-proton collisions produced so far by the Large Hadron Collider at CERN. In this brief summary only a few of those results will be discussed. The new scalar discovered in 2012 has been studied in detail and all its characteristics have been found in agreement with standard model predictions for a Brout-Englert-Higgs boson. The large sample of top quark events collected in 2011 and 2012 have allowed world-class measurements of its mass; the combination of those results is Mt = 173.49 ± 0.36 ± 0.91 GeV. The rare decay Bs0 → μμ has been observed and found in agreement with standard model predictions; the search for the rare decay B0 → μμ has allowed to set a 95% CL limit on the branching fraction at 1.1 × 10−9. These two results strongly constrain new physics models.

  10. CERN NEWS : HIGGS UPDATE 2011

    CERN Multimedia

    CERN video productions

    2011-01-01

    In a seminar held at CERN today, the ATLAS and CMS experiments presented the status of their searches for the Standard Model Higgs boson. Their results are based on the analysis of considerably more data than those presented at the summer conferences, sufficient to make significant progress in the search for the Higgs boson, but not enough to make any conclusive statement on the existence or non-existence of the elusive Higgs. The main conclusion is that the Standard Model Higgs boson, if it exists, is most likely to have a mass constrained to the range 116-130 GeV by the ATLAS experiment, and 115-127 GeV by CMS. Tantalising hints have been seen by both experiments in this mass region, but these are not yet strong enough to claim a discovery.

  11. UK Minister enthusiastic after visit to CERN

    CERN Multimedia

    2008-01-01

    ON Tuesday 5 August the UK Secretary of State for Innovation, Universities and Skills, John Denham, came to CERN. The UK continues its strong links with CERN.The Minister was welcomed on arrival at CERN by Robert Aymar, the Director-General, and senior British scientists. Following a short presentation, he began a comprehensive tour of the Laboratory with a visit to both the LHC at point 5 and the CMS experiment. After lunch the Minister’s busy schedule continued, completing his overview of the main areas of UK participation at CERN. As soon as he had signed the guest book, he was whisked off to visit the LHCb experiment, the LHC computing grid project (LCG) and the ATLAS control room. However, the last item on his itinerary was perhaps the most illuminating. Meeting a diverse group of British scientists, from technical and summer students to staff members with more than 30 years of experience, the Minister had the opportunity...

  12. On 23 November, the Duke of York visited CERN and, in his capacity as the UK's Special Representative for International Trade and Investment, inaugurated the UK@CERN Exhibition.

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    Pictures 01 & 02 : The Duke of York chats before inaugurating the UK@CERN exhibition. From left to right: Robert Aymar, CERN's Director General, the Duke of York, and leading UK scientists at CERN: Jim Virdee, CMS deputy spokeman; theorist John Ellis ; and Steve Myers, head of the AB Department.

  13. ETH Zurich tour at CERN.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Right to left: Thomas Wobmann and Markus Zemp visit the LHC tunnel at CERN with G nther Dissertori and Marcel Wyler of ETH Zurich. Their visit was part of the top prize for a competition organised by the ETH department of physics to coincide with its open day in June. Residents of Zurich and surrounding Swiss cantons were invited to answer five physics questions broadcast on local radio and the Internet the week before the open day. The two winners' reward for knowing who did not believe that God plays dice, among other things, was a flight offered by Swiss International Air Lines to Geneva and a VIP tour of CERN. One highlight was a trip to the underground site of the future CMS experiment, where the scale of the enormous cavern makes construction machines look like children's toys.

  14. CMS Forward-Backward MSGC milestone

    CERN Document Server

    Bouhali, O; Barthe, S; Beaumont, W; Beckers, T; Beissel, F; Benhammou, Ya; Bergdolt, A M; Bernier, K; Boulogne, I; Bozzo, M; Brom, J M; Camps, C; Chorowicz, V; Coffin, J; Commichau, V; Contardo, D; Croix, J; De Troy, J G; Drouhin, F; Eberle, H; Flügge, G; Fontaine, J C; Geist, Walter M; Goerlach, U; Gundlfinger, K; Hangarter, K; Haroutunian, R; Helleboid, J M; Hoffer, M; Hoffmann, C; Huss, D; Ischebeck, R; Jeanneau, F; Juillot, P; Kapp, M R; Krauth, M; Kremp, J; Lounis, A; Lübelsmeyer, K; Maazouzi, C; Macke, D; Mirabito, L; Nowack, A; Pandoulas, D; Petertill, M; Pooth, O; Racca, C; Ripp, I; Schmitz, P; Schulte, R; Schultz von Dratzig, A; Schunck, J P; Schuster, G; Schwaller, B; Sigward, M H; Smadja, G; Stefanescu, J; Tissot, S; Todorov, T; Udo, Fred; Van Doninck, W K; Van Dyck, C; Van Lancker, L; Van der Velde, C; Vanlaer, P; Verdini, P G; Wortmann, R; Zghiche, A; Zhukov, V

    1998-01-01

    The CMS MF1 milestone was set in order to evaluate system aspects of the CMS forward-backward MSGC tracker, to check the design and feasibility of mass production and to set up assembly and test procedures. We describe the construction and the experience gained with the operation of a system of 38 MSGC detectors assembled in six multi-substrate detector modules corresponding to the geometry of the forward-backward MSGC tracker in CMS. These modules were equipped with MSGCs mounted side by side, forming a continuous detector surface of about 0.2 m2. Different designs were tried for these modules. The problems encountered are presented with the proposed solutions. Operation conditions for the 38 MSGCs are reported from an exposure to a muon beam at the CERN SPS. Gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with the detection efficiency, the spatial resolution, alignment and edge studies.

  15. CMS live #WhatsUpLHC

    CERN Multimedia

    CERN video productions; Paolo Catapano

    2017-01-01

    CMS live from Facebook. The Pixel Tracker (or Pixel Detector) is the innermost instrument in the very heart of the CMS apparatus, installed around the LHC beampipe. This is the very point where new particles, such as the Higgs boson, are produced by the energy of the proton proton collisions, and so the Pixel detector receives the largest particle-flux of any sub-component of CMS. The new component is made up of two “parts”: a central barrel region (called BPIX), made of two cylindrical halves, and forward discs on either side of the collision point (FPIX). The new BPIX was manufactured by a consortium of European institutes from Switzerland, Italy and Germany, supported by CERN. The new FPIX was manufactured by 14 institutes in the USA.

  16. Track reconstruction in CMS high luminosity environment

    CERN Document Server

    Sguazzoni, Giacomo

    2014-01-01

    The CMS tracker is the largest silicon detector ever built, covering 200 square meters and providing an average of 14 high-precision measurements per track. Tracking is essential for the reconstruction of objects like jets, muons, electrons and tau leptons starting from the raw data from the silicon pixel and strip detectors. Track reconstruction is widely used also at trigger level as it improves objects tagging and resolution.The CMS tracking code is organized in several levels, known as iterative steps, each optimized to reconstruct a class of particle trajectories, as the ones of particles originating from the primary vertex or displaced tracks from particles resulting from secondary vertices. Each iterative step consists of seeding, pattern recognition and fitting by a kalman filter, and a final filtering and cleaning. Each subsequent step works on hits not yet associated to a reconstructed particle trajectory.The CMS tracking code is continuously evolving to make the reconstruction computing load compat...

  17. Moment of truth for CMS

    CERN Multimedia

    2006-01-01

    One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.

  18. Track Reconstruction Performance in CMS

    CERN Document Server

    Azzurri, Paolo

    2008-01-01

    The expected performance of track reconstruction with LHC events using the CMS silicon tracker is presented. Track finding and fitting is accomplished with Kalman Filter techniques that achieve efficiencies above 99\\% on single muons with $p_T >$1~GeV/c. Difficulties arise in the context of standard LHC events with a high density of charged particles, where the rate of fake combinatorial tracks is very large for low $p_T$ tracks, and nuclear interactions in the tracker material reduce the tracking efficiency for charged hadrons. Recent improvements with the CMS track reconstruction now allow to efficiently reconstruct charged tracks with $p_T$ down to few hundred MeV/c and as few as three crossed layers, with a very small fake fraction, by making use of an optimal rejection of fake tracks in conjunction with an iterative tracking procedure.

  19. HGCal Simulation Analyses for CMS

    CERN Document Server

    Bruno, Sarah Marie

    2015-01-01

    This summer, I approached the topic of fast-timing detection of photons from Higgs decays via simulation analyses, working under the supervision of Dr. Adolf Bornheim of the California Institute of Technology. My specific project focused on simulating the high granularity calorimeter for the Compact Muon Solenoid (CMS) experiment. CMS detects particles using calorimeters. The Electromagnetic Calorimeter (ECal) is arranged cylindrically to form a barrel section and two “endcaps.” Previously, both the barrel and endcap have employed lead tungstate crystal detectors, known as the “shashlik” design. The crystal detectors, however, rapidly degrade from exposure to radiation. This effect is most pronounced in the endcaps. To avoid the high expense of frequently replacing degraded detectors, it was recently decided to eliminate the endcap crystals in favor of an arrangement of silicon detectors known as the “High Granularity Calorimeter” (HGCal), while leaving the barrel detector technology unchanged. T...

  20. CERN Shuttle

    CERN Multimedia

    General Infrastructure Services Department

    2011-01-01

    As of Monday 21 February, a new schedule will come into effect for the Airport Shuttle (circuit No. 4) at the end of the afternoon: Last departure at 7:00 pm from Main Buildig, (Bldg. 500) to Airport (instead of 5:10 p.m.); Last departure from Airport to CERN, Main Buildig, (Bldg. 500), at 7:30 p.m. (instead of 5:40 p.m.). Group GS-IS

  1. Preliminary Cluster Size and Efficiencies results of CMS RPC at GIF++

    CERN Document Server

    Gonzalez Blanco Gonzalez, Genoveva

    2016-01-01

    A brief description and first preliminary results of the Efficiencies and Cluster Size measurements of the CMS Resistive Plate Chambers, will be presented inside the Gamma Irradiation Facility GIF++ at CERN. Preliminary studies that sets the base performance measurements of CMS RPC for starting aging studies.

  2. Member State Event: Telling CERN's Story

    CERN Multimedia

    2004-01-01

    As part of the events to mark the Laboratory's fiftieth anniversary, members of the CERN personnel are telling the story of CERN. Robert Cailliau (on the right of the photograph), co-inventor of the Web and currently responsible for CERN's external communications, and Chiara Mariotti (in the center), a physicist working at CMS, were invited to talk about the history of CERN and the Web at a conference in the 'Science Thursdays' series entitled 'From the Quark to the Web' in Turin on 26 February. This was not their first appearance before a non-specialist audience (almost 1000 people that day!) eager to find out what goes on in a unique research centre like CERN as talking about the Laboratory's activities and its history are part and parcel of their work for the Organization. Anniversary Events in the Member States: This 'Science Thursday' event devoted to CERN was one of Italy's contributions to CERN's fiftieth anniversary celebrations. Coming up soon in the Member States: Italy International Centre...

  3. Chips for discovering the Higgs boson and other particles at CERN: Present and future

    CERN Document Server

    Snoeys, W

    2015-01-01

    Integrated circuits and devices revolutionized particle physics experiments, and have been essential in the recent discovery of the Higgs boson by the ATLAS and CMS experiments at the Large Hadron Collider at CERN [1,2]. Particles are accelerated and brought into collision at specific interaction points where detectors, giant cameras of about 40 m long by 20 m in diameter, take pictures of the collision products as they fly away from the collision point. These detectors contain millions of channels, often implemented as reverse biased silicon pin diode arrays covering areas of up to 200 m2 in the center of the experiment, generating a small (~1fC) electric charge upon particle traversals. Integrated circuits provide the readout, and accept collision rates of about 40 MHz with on-line selection of potentially interesting events before data storage. Important limitations are power consumption, radiation tolerance, data rates, and system issues like robustness, redundancy, channel-to-channel uniformity, timing d...

  4. Hangout with CERN: Lights, web-cam, action!

    CERN Multimedia

    Kate Kahle, CERN Social Media Manager

    2013-01-01

    Armed with laptops, CERN people answer questions live on YouTube every Thursday via "Hangout with CERN". Find out more and give feedback for the chance to win tickets to see comedian Eddie Izzard.   A snapshot from “Hangout with CERN: Higgs, the unanswered questions”. "Can you hear me?" "Your microphone is muted!" Most CERN people are familiar with the conveniences and challenges of video conferencing. Well, now CERN is using video chats known as “hangouts” as another way to reach the general public and answer their questions. Currently in its second series, the “Hangout with CERN” initiative is going strong, with thousands of people tuning in every week to find out more about CERN's activities. The idea of hangouts began in early 2012, when Achintya Rao from the CMS collaboration started to use them to engage with the public, following on from the award-winning ATLAS vir...

  5. EU Commissioner for Research, Science and Innovation visits CERN

    CERN Multimedia

    Svetlomir Stavrev

    2015-01-01

    The EU Commissioner for Research, Science and Innovation, Carlos Moedas, visited CERN on 30 January 2015. He was invited by the Director-General to obtain a first-hand impression of some of the world's largest and most complex scientific instruments, just before the eagerly awaited restart of the LHC at record energies.   EU Commissioner Carlos Moedas (first row, fourth from right), accompanied by members of CERN management and researchers involved in the CESSAMag project. The Commissioner was informed about the missions and various activities of CERN, including knowledge transfer and technologies for medical applications. He visited CMS, some of the magnets developed by CERN for SESAME in the framework of the EU co-funded CESSAMag project, and the IT Computing Centre.  The Commissioner encouraged CERN to engage in a European Science Cloud Pilot that could be built on top of existing and highly successful distributed computing initiatives, in some of which CERN played a fu...

  6. Grid Interoperation with ARC middleware for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, Erik; Groenager, Michael; Johansson, Daniel; Kleist, Josva [Nordic DataGrid Facility, Kastruplundgade 22, 1., DK-2770 Kastrup (Denmark); Field, Laurence; Qing, Di [CERN, CH-1211 Geneve 23 (Switzerland); Frey, Jaime [University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI (United States); Happonen, Kalle; Klem, Jukka; Koivumaeki, Jesper; Linden, Tomas; Pirinen, Antti, E-mail: Jukka.Klem@cern.c [Helsinki Institute of Physics, PO Box 64, FIN-00014 University of Helsinki (Finland)

    2010-04-01

    The Compact Muon Solenoid (CMS) is one of the general purpose experiments at the CERN Large Hadron Collider (LHC). CMS computing relies on different grid infrastructures to provide computational and storage resources. The major grid middleware stacks used for CMS computing are gLite, Open Science Grid (OSG) and ARC (Advanced Resource Connector). Helsinki Institute of Physics (HIP) hosts one of the Tier-2 centers for CMS computing. CMS Tier-2 centers operate software systems for data transfers (PhEDEx), Monte Carlo production (ProdAgent) and data analysis (CRAB). In order to provide the Tier-2 services for CMS, HIP uses tools and components from both ARC and gLite grid middleware stacks. Interoperation between grid systems is a challenging problem and HIP uses two different solutions to provide the needed services. The first solution is based on gLite-ARC grid level interoperability. This allows to use ARC resources in CMS without modifying the CMS application software. The second solution is based on developing specific ARC plugins in CMS software.

  7. Etude des désintégrations radiatives Z$^0 \\rightarrow \\mu\\mu\\gamma$ et recherches du boson de Higgs dans le canal H$\\rightarrow \\gamma\\gamma$ dans l'expérience CMS au LHC (CERN)

    CERN Document Server

    Bondu, Olivier

    The Large Hadron Collider (LHC) at CERN (European Organisation for Nuclear Research) has been in operation since 2009 at the border between France and Switzerland. This particle accelerator has provided a significant quantity of proton-proton collisions, at center of mass energies of 7 TeV (2010 and 2011) and 8 TeV (since April 2012). One of the purposes of the Compact Muon Solenoid (CMS) experiment, which records and analyses those collisions, is the search for Higgs bosons. In the Standard Model, this particle would be the quantum of the Higgs field, thought to explain the electroweak symmetry-breaking mechanism. One of the most sensitive channels for the search for a light Higgs boson (i.e. for masses between 90 GeV=c2 and 150 GeV=c2) at the LHC is through its decay into two photons. Indeed, the production of two highly energetic and isolated photons in the final state is a clean signal in hadronic collisions, despite the small branching ratio. Moreover, at these masses, the width of the reconstructed inva...

  8. Indian high-school students dive into particle physics at CERN

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    CERN hosted its first group of high-school students from India in a week-long programme in June, with lectures, visits and hands-on activities that brought them a little closer to the world of particle physics. Abhishek Anand, whose internship with CMS coincided with this programme, documented his experience for the CMS blog (see here).   The students with CERN Director-General Rolf Heuer and Head of International Relations Rüdiger Voss.

  9. CMS Brochure (english version)

    CERN Multimedia

    Marcastel, F.

    2006-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  10. CMS brochure (English)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  11. CMS brochure (French)

    CERN Multimedia

    Lefevre, C

    2009-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  12. CMS Brochure (italian version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  13. CMS Brochure (french version)

    CERN Multimedia

    Marcastel, F.

    2006-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  14. CMS Brochure (german version)

    CERN Multimedia

    Marcastel, F

    2007-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  15. CMS brochure (Italian version)

    CERN Multimedia

    Lefevre, C

    2010-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which started up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  16. CMS brochure (Greek version)

    CERN Multimedia

    Lefèvre, C

    2006-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  17. CMS brochure (Spanish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  18. CMS Program Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Office of Enterprise Data and Analytics has developed CMS Program Statistics, which includes detailed summary statistics on national health care, Medicare...

  19. CMS brochure (Polish version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  20. CMS brochure (English version)

    CERN Multimedia

    Marcastel, Fabienne

    2014-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which has started up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  1. CMS Drug Spending

    Data.gov (United States)

    U.S. Department of Health & Human Services — CMS has released several information products that provide spending information for prescription drugs in the Medicare and Medicaid programs. The CMS Drug Spending...

  2. CMS Records Schedule

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Records Schedule provides disposition authorizations approved by the National Archives and Records Administration (NARA) for CMS program-related records...

  3. CMS brochure (Catalan version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    CMS is the heaviest detector at the LHC, the most powerful particle accelerator in the world, which will start up in 2008. A multi-purpose detector, CMS is composed of several systems built around a powerful superconducting magnet.

  4. The French Research Minister visits CERN

    CERN Multimedia

    2008-01-01

    On Friday, 6 June, the French Minister for Higher Education and Research, Valérie Pécresse, was welcomed by CERN Director-General, Robert Aymar. Robert Aymar accompanies Valérie Pécresse and Bernard Accoyer on a visit to CMS. A dozen physicists took part in the round-table discussion, including the Director-General, project leaders, deputy spokesmen, members of the experiments, CERN personnel and users.At first, the Minister was given a tour of the CMS experiment and the LHC tunnel, accompanied by the President of the French National Assembly, Bernard Accoyer. The delegation then took part in a round-table discussion. The main objective of the Minister’s visit was to obtain input on the organisation of large research infrastructures, based on information concerning CERN’s administrative and scientific configuration and the experiment collaborations. As J.-J. Blaising, Head of the PH Depa...

  5. CMS offline web tools

    CERN Document Server

    Metson, S; Bockelman, B; Dziedziniewicz, K; Egeland, R; Elmer, P; Eulisse, G; Evans, D; Fanfani, A; Feichtinger, D; Kavka, C; Kuznetsov, V; Van Lingen, F; Newbold, D; Tuura, L; Wakefield, S

    2008-01-01

    We describe a relatively new effort within CMS to converge on a set of web based tools, using state of the art industry techniques, to engage with the CMS offline computing system. CMS collaborators require tools to monitor various components of the computing system and interact with the system itself. The current state of the various CMS web tools is described along side current planned developments.

  6. CMS 2006 - CMS France days; CMS 2006 les journees CMS FRANCE

    Energy Technology Data Exchange (ETDEWEB)

    Huss, D.; Dobrzynski, L.; Virdee, J.; Boudoule, G.; Fontaine, J.C.; Faure, J.L.; Paganini, P.; Mathez, H.; Gross, L.; Charlot, C.; Trunov, A.; Patois, Y.; Busson, P.; Maire, M.; Berthon, U.; Todorov, T.; Beaudette, F.; Sirois, Y.; Baffioni, S.; Beauceron, S.; Delmeire, E.; Agram, J.L.; Goerlach, U.; Mangeol, D.; Salerno, R.; Bloch, D.; Lassila-Perini, K.; Blaha, J.; Drobychev, G.; Gras, P.; Hagenauer, M.; Denegri, D.; Lounis, A.; Faccio, F.; Lecoq, J

    2006-07-01

    These CMS talks give the opportunity for all the teams working on the CMS (Compact Muon Spectrometer) project to present the status of their works and to exchange ideas. 5 sessions have been organized: 1) CMS status and perspectives, 2) contributions of the different laboratories, 3) software and computation, 4) physics with CMS (particularly the search for the Higgs boson), and 5) electronic needs. This document gathers the slides of the presentations.

  7. CMS-Wave

    Science.gov (United States)

    2014-10-27

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection

  8. CMS outreach event to close LS1

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CMS opened its doors to about 700 students from schools near CERN, who visited the detector on 16 and 17 February during the last major CMS outreach event of LS1.   Pellentesque sapien mi, pharetra vitae, auctor eu, congue sed, turpis. Enthusiastic CMS guides spent a day and a half showing the equally enthusiastic visitors, aged 10 to 18, the beauty of CMS and particle physics. The recently installed wheelchair lift was called into action and enabled a visitor who arrived on crutches to access the detector cavern unimpeded.  The CMS collaboration had previously devoted a day to school visits after the successful “Neighbourhood Days” in May 2014 and, encouraged by the turnout, decided to extend an invitation to local schools once again. The complement of nearly 40 guides and crowd marshals was aided by a support team that coordinated the transportation of the young guests and received them at Point 5, where a dedicated safety team including first-aiders, security...

  9. Detector Control System for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon groupbuilt several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  10. CMS Software Distribution on the LCG and OSG Grids

    CERN Document Server

    Rabbertz, K; Ashby, S; Corvo, M; Argiro, S; Darmenov, N; Darwish, R; Evans, D; Holzman, Burt; Ratnikova, N; Muzaffar, S; Nowack, A; Wildish, T; Kim, B; Weng, J; Buge, V

    2006-01-01

    The efficient exploitation of worldwide distributed storage and computing resources available in the grids require a robust, transparent and fast deployment of experiment specific software. The approach followed by the CMS experiment at CERN in order to enable Monte-Carlo simulations, data analysis and software development in an international collaboration is presented. The current status and future improvement plans are described.

  11. The CMS ECAL Project - Overview and Status Report

    CERN Document Server

    Nessi-Tedaldi, F

    1999-01-01

    An overview is given of the Lead Tungstate ( PbWO4) electromagnetic crystal calorimeter for the CMS detector at the Large Hadron Collider ( LHC) at CERN in Geneva. This includes a description of the engineering design, the development of the calorimeter components, the read-out system and results obtained in particle beams.

  12. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  13. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  14. CMS Comic Book Brochure

    CERN Document Server

    2006-01-01

    To raise students' awareness of what the CMS detector is, how it was constructed and what it hopes to find. Titled "CMS Particle Hunter," this colorful comic book style brochure explains to young budding scientists and science enthusiasts in colorful animation how the CMS detector was made, its main parts, and what scientists hope to find using this complex tool.

  15. OVAL: the CMS Testing Robot

    CERN Document Server

    Chamont, D

    2003-01-01

    Oval is a testing tool which help developers to detect unexpected changes in the behavior of their software. It is able to automatically compile some test programs, to prepare on the fly the needed configuration files, to run the tests within a specified Unix environment, and finally to analyze the output and check expectations. Oval does not provide utility code to help writing the tests, therefore it is quite independant of the programming/scripting language of the software to be tested. It can be seen as a kind of robot which apply the tests and warn about any unexpected change in the output. Oval was developed by the LLR laboratory for the needs of the CMS experiment, and it is now recommended by the CERN LCG project.

  16. CERN moves to http://home.cern

    CERN Multimedia

    2015-01-01

    A new top-level domain for CERN will be inaugurated next week, with the migration of the core website to http://home.cern.   The new home.cern webpage. The .cern top-level domain is intended for the exclusive use of CERN and its affiliates, and will soon be open for applications from within the community. Clear governance mechanisms for registration and management of .cern domains have been put in place. Applications for domains may be submitted by current members of the CERN personnel, and must be sponsored by a CERN entity such as a department, experiment, project or CERN-recognised experiment. For more information please refer to the registration policy. The acquisition of the .cern top-level domain was negotiated via ICANN’s new gTLD programme by a board comprising members of the CERN Legal Service, Communications group and IT department. .cern is one of over 1,300 new top-level domains that will launch over the coming months and years. The .cern domain nam...

  17. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (mailto:caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web at: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 7372...

  18. CERN celebrating the Lowering of the final detector element for large Hadron Collider

    CERN Multimedia

    2008-01-01

    In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.

  19. Polymicro technologies receives prestigious award from European Organization for Nuclear Research (CERN)

    CERN Multimedia

    2003-01-01

    The CMS Collaboration of CERN presented two awards today to Polymicro Technologies, LLC of Phoenix, AZ in appreciation of their achievements in the development and production of radiation resistant silica optical fibers for use in the CMS detector (1/2 page).

  20. Members of the Forum Engelberg visit CERN

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The Forum Engelberg is an annual interdisciplinary conference held in Engelberg, Switzerland intended to act as an international platform for debate and exchange of views on key issues affecting scientific research, technology, economics and philosophy. Its President is Hubert Curien - former French Minister of Research and Space Research, and President of the CERN Council from 1994 to 1996. Photo 01: (left to right) Mrs Mireille Quirina; D. Denegri, Physics Coordinator, CMS experiment; and Mrs Marisa Jaconi at the CMS detector's assembly site. In the background is the CMS magnet system under construction. The red concentric rings are part of the barrel yoke, which returns the magnetic flux generated by the superconducting coil. Supported from the innermost barrel ring is the outer cylinder of the vacuum tank that will house the superconducting coil.

  1. Differential Top-Quark-Pair Cross Sections in pp Collisions at $\\sqrt{s} = 7$~TeV with CMS and Charge Multiplication in Highly-Irradiated Silicon Sensors

    CERN Document Server

    Lange, Jörn Christian; Klanner, Robert

    2013-01-01

    Modern particle-physics exp eriments like the ones at the Large Hadron Collider (LHC) are global and interdisciplinary endeavours comprising a variety of dierent elds. In this work, two dierent asp ects are dealt with: on the one hand a top-quark physics analysis and on the other hand research and development towards radiation- hard silicon tracking detectors. The high centre-of-mass energy and luminosity at the LHC allow for a detailed investigation of top-quark-pair ( t t ) pro duction prop erties. Normalised dierential t t cross sections 1 d t t dX are measured as a function of nine dierent kinematic variables X of the t t system, the top quarks and their decay pro ducts (b jets and leptons). The analysis is p erformed using data of proton-proton collisions at p s = 7 TeV recorded by the CMS exp eriment in 2011, corresp onding to an integrated luminosity of 5 fb 1 . A high-purity sample of t t events is selected according to the top ology of the lep- ton+jets decay channel. Lepton-selection and trigger eci...

  2. CMS Tracker Alignment Performance Results Summer 2016

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The tracking system of the CMS detector provides excellent resolution for charged particle tracks and an efficient way of tagging jets. In order to reconstruct good quality tracks, the position and orientation of each silicon pixel and strip modules need to be determined with a precision of several micrometers. The performance of the CMS tracker alignment in 2016 using cosmic-ray data recorded at 0 T magnetic field and proton-proton collision data recorded at 3.8 T magnetic field has been studied. The data-driven validation of the results are presented. The time-dependent movement of the pixel detector's large-scale structure is demonstrated.

  3. TIM CERN

    CERN Multimedia

    2016-01-01

    -What it is TIM, Train Inspection Monorail for the LHC -What is it used for Real time measurements and inspections along the LHC tunnel -How is it working Autonomous vehicle following pre-defined missions Embedded fail safe control and different measurement technologies Runs on battery with autonomous charging mechanism when stands still -Some interesting/curious information about it Adaptive speed up to 6 km/h Monitoring of tunnel structure, oxygen, communication bandwidth and temperature Equipped with a radioprotection probe for radiation mapping of the LHC Provides visual and infrared imaging of the LHC Compact design to be able to cross the LHC sector and ventilation doors Several different wagons can be integrated for specific missions 2 TIM units currently running in the LHC and parked waiting for commands in the CMS bypass

  4. On 25 January Pervez Musharraf, president of Pakistan, visited CERN

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The President of Pakistan, Pervez Musharraf, and the Chairman of PAEC, Parvez Butt , meeting CERN's Pakistani community. There are currently 75 Pakistani physicists and engineers taking part in three major CERN projects: CMS, ATLAS and the development of the Computing Grid for the LHC (LCG).

  5. Interview Rolf Heuer, CERN Director general, on the Higgs searches results at the LHC (GERMAN VERSION)

    CERN Multimedia

    CERN Visual Media Office

    2012-01-01

    Rolf Heuer, CERN Director General, answers in GERMAN to questions on the results of the Higgs searches at ATLAS and CMS, July 4 2012, his personal feelings of the importance of the results and its implications on CERN and particle physics.

  6. Recent Results on the Performance of the CMS Tracker Readout System

    CERN Document Server

    Fulcher, J; Coughlan, J; Bainbridge, R; Church, I; Foudas, C; Hall, G; Pesaresi, M; Ageron, M; Rogers, G; Taghavi, S; Tomalin, I R; Zorba, O; Drouhin, F; Gross, L; Vintache, D; Baulieu, G; Giassi, A; Arcidiacono, R

    2007-01-01

    The CMS Silicon Tracker comprises a complicated set of hardware and software components that have been thoroughly tested at CERN before final integration of the Tracker. A vertical slice of the full readout chain has been operated under near-final conditions. In the absence of the tracker front-end modules, simulated events have been created within the FED (Front End Driver) and used to test the readout reliability and efficiency of the final DAQ (Data Acquisition). The data are sent over the S-Link 64 bit links to the FRL(Fast Readout Link) modules at rates in excess of 200 MBytes/s per FED depending on setup and conditions. The current tracker DAQ is fully based on the CMS communication and acquisition tool XDAQ. This paper discusses setup and results of a vertical slice of the full Tracker final readout system comprising 2 full crates of FEDs, 30 in total, read out through 1 full crate of final FRL modules. This test is to complement previous tests done at Imperial College[3] taking them to the next level ...

  7. New links between Ecuador and CERN

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A new protocol recently signed in Quito opens the way to stronger links between the Ecuadorian scientific community and CERN. The operational framework provided by the protocol will enable scientists from Ecuador to take part in CERN’s projects, supported by the Ecuadorian authorities.   Picture taken during the signing ceremony at SENESCYT (Quito, Ecuador) on 12 July 2011. From left to right: Guillermo Solórzano, Minister for Coordination of Knowledge and Human Talent, Rene Ramirez Gallegos, National Secretary for Higher Education, Science and Technology - SENECYT, Felicitas Pauss and Jose Salicio from CERN. Ecuador’s involvement with CERN dates back to 1999 when a first International Co-operation Agreement was signed. However, despite these early beginnings,   only a few scientists from Ecuador, affiliated to non-Ecuadorian institutes, have since been directly involved in CERN’s projects, in particular the CMS experiment a...

  8. CMS L1 Calorimeter Trigger performance in 2016 data

    CERN Document Server

    CMS Collaboration

    2016-01-01

    After the first long shutdown, the LHC has restarted at a centre-of-mass energy of 13 TeV. The LHC is expected to achieve an instantaneous luminosity larger than $10^{34}$ $\\mathrm{cm}^{-2}\\cdot\\mathrm{s}^{-1}$ and an average number of pile-up interactions of at least 40. The CMS Level-1 trigger architecture has undergone a full upgrade in order to maintain and improve the trigger performance under these new conditions. It will allow CMS to keep the trigger rate under control and to avoid a significant increase in trigger thresholds that would have a negative impact on the CMS physics program. First studies of the performance of the calorimeter trigger upgrade for electrons, photons, tau leptons, jets and energy sums are shown. Details of the algorithms and commissioning may be found in CMS-DP-2015-009, CMS-DP-2015-003, CMS-DP-2015-051 and the CMS Technical Design Report for the Level-1 Trigger upgrade: CERN-LHCC-2013-011, CMS-TDR-12 (2013).

  9. Grid Interoperation with ARC Middleware for the CMS Experiment

    CERN Document Server

    Edelmann, Erik; Frey, Jaime; Gronager, Michael; Happonen, Kalle; Johansson, Daniel; Kleist, Josva; Klem, Jukka; Koivumaki, Jesper; Linden, Tomas; Pirinen, Antti; Qing, Di

    2010-01-01

    The Compact Muon Solenoid (CMS) is one of the general purpose experiments at the CERN Large Hadron Collider (LHC). CMS computing relies on different grid infrastructures to provide computational and storage resources. The major grid middleware stacks used for CMS computing are gLite, Open Science Grid (OSG) and ARC (Advanced Resource Connector). Helsinki Institute of Physics (HIP) hosts one of the Tier-2 centers for CMS computing. CMS Tier-2 centers operate software systems for data transfers (PhEDEx), Monte Carlo production (ProdAgent) and data analysis (CRAB). In order to provide the Tier-2 services for CMS, HIP uses tools and components from both ARC and gLite grid middleware stacks. Interoperation between grid systems is a challenging problem and HIP uses two different solutions to provide the needed services. The first solution is based on gLite-ARC grid level interoperability. This allows to use ARC resources in CMS without modifying the CMS application software. The second solution is based on developi...

  10. CERN OVERVIEW animation

    CERN Multimedia

    Arzur Catel Torres

    2015-01-01

    This animation shows how the Large Hadron Collider (LHC) works. The film begins with an aerial view of CERN near Geneva, with outlines of the accelerator complex, including the underground Large Hadron Collider (LHC), 27-km in circumference. The positions of the four largest LHC experiments, ALICE, ATLAS, CMS and LHCb are revealed before we see protons travelling around the LHC ring. The proton source is a simple bottle of hydrogen gas. An electric field is used to strip hydrogen atoms of their electrons to yield protons. Linac 2, the first accelerator in the chain, accelerates the protons to the energy of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450 GeV. The protons are finally transferred to the two beam pipes of the LHC. The beam in one pipe circulates clockwise while ...

  11. Silicon sensors for trackers at high-luminosity environment

    Science.gov (United States)

    Peltola, Timo

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented.

  12. Study of the impact of environmental parameters on the operation of CMS RPCs

    CERN Document Server

    Assran, Yasser

    2011-01-01

    CMS (Compact Muon Solenoid) is a general purpose detector designed to run at the highest luminosity at Large Hadron Collider (LHC), CERN, Geneva, Switzerland. The muon system of the CMS experiment relies on Drift Tubes (DT), Cathode Strip Chambers (CSC) and Resistive Plate Chambers (RPC). RPCs are dedicated for the first level muon trigger and they are characterized by bakelite electrodes delimited in a specialized gas volume filled with operational gas mixture. This analysis has been done for the RPC chambers installed in CMS experiment at CERN. The Currents of CMS RPCs chambers are analyzed as a function of environmental parameters such as Temperature, Humidity and pressure, which are important for the operation of the muon detector system. A novel Neural Network approach has been used to analyze the data and to build a model using experimental measurements and combining the results of the simulations. Data from RPC Chambers in CMS experiment are taken and compared to the results from neural Network.

  13. Slowly does it as giant magnet goes underground at CERN

    CERN Multimedia

    2007-01-01

    "At 5:00 am GMT this morning the heaviest piece of the Compact Muon Solenoid (CMS) particle detector began a momentous journey into its experimental cavern, 100 metres undergound at CERN, Geneva. You can watch it on th webcam link." (1,5 page)

  14. Slowly does it as giant magnet goes underground at CERN

    CERN Multimedia

    Ormrod, Gill

    2007-01-01

    "At 5:00 am GMT this morning (28th February 2007) the heaviest piece of the Compact Muon Solenoid (CMS) particle detector began a momentous journey into its experimental cavern, 100 metres underground at CERN, Geneva." (1,5 page)

  15. Jeff FROST, video artist for U2, visits CERN

    CERN Multimedia

    2015-01-01

    Video artist Jeff Frost came to CERN last April to produce video art for the U2 band's 2015 tour Innocence and Experience. He spent a week and visited in The Globe, the ATLAS, CMS experiments and ALICE caverns, Idea Square, the COMPASS experiment, the AD, the Aegis experiment, n-ToF, LEIR, ISOLDE, SM18, the Computing Centre.

  16. Bienvenue au CERN !

    CERN Multimedia

    CERN Press Office. Geneva

    1998-01-01

    CERN, the Laboratory which invented the World-Wide Web has re-invented its public Web site. The new face of CERN has gone live at http://www.cern.ch/ Public . CERN's new Web pages have been designed to give visitors an informative introduction to the fascinating world of particle physics. For those whose whirl around the Web only allows a short stop, there's the 'CERN in two minutes' page.

  17. CMS upgrades for SLHC

    CERN Document Server

    Palla, Fabrizio

    2006-01-01

    I will discuss the impact of the LHC luminosity upgrade on CMS detector. While most of the CMS can possibly cope with the increased luminosity, the Tracker must undergo a major redesign in technology both in terms of detector substrates as well as in the data transfer links. I will show the impact on CMS of reduced bunch length and machine elements close to the interaction point.

  18. CMS Tracker Commissioning using cosmic muon data

    CERN Document Server

    Borgia, Maria Assunta

    2008-01-01

    Many physics channels, and in particular events containing top quarks, produce b jets in the final state which need to be distinguished from more copious backgrounds containing only light flavored jets. Tagging of b-jets, mainly relies upon relatively distinct properties of b-hadrons such as large proper lifetime, large mass, decays to final states with high charged track multiplicities. Precise spatial reconstruction close to the interaction point and efficient track reconstruction are key ingredients for all b-tagging algorithms. These rely on stable, low noise, low occupancy and highly efficient tracking detectors. This is a short review of the results of the studies on the CMS tracker performances carried out with cosmics at the CERN Tracker Integration Facility from march to july 2007, in order to show how this performance is in line with the requirement of the CMS community for a good b-tagging.

  19. Performance of the CMS Event Builder

    CERN Document Server

    Andre, Jean-marc Olivier; Branson, James; Brummer, Philipp Maximilian; Chaze, Olivier; Cittolin, Sergio; Contescu, Cristian; Craigs, Benjamin Gordon; Darlea, Georgiana Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Doualot, Nicolas; Erhan, Samim; Fulcher, Jonathan Richard; Gigi, Dominique; Gladki, Maciej Szymon; Glege, Frank; Gomez Ceballos, Guillelmo; Hegeman, Jeroen Guido; Holzner, Andre Georg; Janulis, Mindaugas; Jimenez Estupinan, Raul; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrova, Petia; Pieri, Marco; Racz, Attila; Reis, Thomas; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Zejdl, Petr; Hamburg; California; San Diego; California; Chicago; Illinois; Massachusetts Institute of Technology; Cambridge; Massachusetts; also at Vilnius University; Vilnius; Lithuania; also at

    2017-01-01

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz. It transports event data at an aggregate throughput of ~100 GB/s to the high-level trigger (HLT) farm. The CMS DAQ system has been completely rebuilt during the first long shutdown of the LHC in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gb/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gb/s Infiniband FDR CLOS network has been chosen for the event builder. We report on the performance of the event builder system and the steps taken to exploit the full potential of the network technologies.

  20. Analysing CMS transfers using Machine Learning techniques

    CERN Document Server

    Diotalevi, Tommaso

    2016-01-01

    LHC experiments transfer more than 10 PB/week between all grid sites using the FTS transfer service. In particular, CMS manages almost 5 PB/week of FTS transfers with PhEDEx (Physics Experiment Data Export). FTS sends metrics about each transfer (e.g. transfer rate, duration, size) to a central HDFS storage at CERN. The work done during these three months, here as a Summer Student, involved the usage of ML techniques, using a CMS framework called DCAFPilot, to process this new data and generate predictions of transfer latencies on all links between Grid sites. This analysis will provide, as a future service, the necessary information in order to proactively identify and maybe fix latency issued transfer over the WLCG.

  1. Synchronization of the CMS Cathode Strip Chambers

    CERN Document Server

    Raknessa, G; Wang, D

    2007-01-01

    The synchronization of the trigger and data acquisition systems for the Cathode Strip Chambers (CSCs) in the Compact Muon Solenoid (CMS) detector at CERN is described. The CSC trigger system is designed to trigger CMS on muons with high efficiency (~99% per chamber) and is able to accurately identify its 25ns proton bunch crossing. To date, asynchronous cosmic ray data have been used to define the protocol and to refine timing algorithms, allowing synchronization to be realized within and between chambers to within ±10 ns. Final synchronization of the CSCs requires timing parameters to be accurate to 2 ns. This goal will be readily achieved from the cosmic ray baseline using data taken with the synchronous beam structure of the Large Hadron Collider.

  2. Concept of the CMS Trigger Supervisor

    CERN Document Server

    Magrans de Abril, Ildefons; Varela, Joao

    2006-01-01

    The Trigger Supervisor is an online software system designed for the CMS experiment at CERN. Its purpose is to provide a framework to set up, test, operate and monitor the trigger components on one hand and to manage their interplay and the information exchange with the run control part of the data acquisition system on the other. The Trigger Supervisor is conceived to provide a simple and homogeneous client interface to the online software infrastructure of the trigger subsystems. This document specifies the functional and non-functional requirements, design and operational details, and the components that will be delivered in order to facilitate a smooth integration of the trigger software in the context of CMS.

  3. UK @ CERN

    CERN Multimedia

    FI Department

    2008-01-01

    17 – 18 November 2008 9.00 a.m. - 5.00 p.m. on Monday 17 November 9.00 a.m. - 5.00 p.m. on Tuesday 18 November Individual meetings will take place in the technicians’ or engineers’ offices. The companies will contact relevant users/technicians but anyone wishing to arrange an appointment with a specific company can contact Caroline Laignel (caroline.laignel@cern.ch, tel. 73722). A list of the companies is available from all departmental secretariats and on the web here. List of companies: 1. Caburn MDC Europe Ltd. 2. Croft Engineering Services 3. Cryox Ltd. 4. Goodfellow Cambridge Ltd. 5. Gravatom Engineering Systems Ltd. 6. High Voltage Technology 7. Lilco Ltd. 8. Micro Metalsmiths Ltd. 9. Photek Ltd. 10. Shadow Robot Company 11. Sundance Multiprocessor Technology Ltd. 12. Tessella plc 13. Thermal Resources Management Ltd. 14. Torr Scientific Ltd. For further information please contact Mrs C. Laignel, FI-DI, tel. 73722.

  4. CMS OnlineWeb-Based Monitoring

    Science.gov (United States)

    Badgett, William; Chakaberia, Irakli; Lopez-Perez, Juan Antonio; Maeshima, Kaori; Maruyama, Sho; Soha, Aron; Sulmanas, Balys; Wan, Zongru

    For large international High Energy Physics experiments, modern web technologies make the online monitoring of detector status, data acquisition status, trigger rates, luminosity, etc., accessible for the collaborators anywhere and anytime. This helps the collaborating experts monitor the status of the experiment, identify the problems and improve data taking efficiency. We present the online Web-Based Monitoring project of the CMS experiment at the LHC at CERN.The data sources are relational databasesandvarious messaging systems. The projectprovidesavast amountof in-depth information including real-time data, historical trends and correlations in a user-friendly way.

  5. CMS OnlineWeb-Based Monitoring

    CERN Document Server

    Wan, Zongru; Chakaberia, Irakli; Lopez-Perez, Juan Antonio; Maeshima, Kaori; Maruyama, Sho; Soha, Aron; Sulmanas, Balys; Wan, Zongru

    2012-01-01

    For large international High Energy Physics experiments, modern web technologies make the online monitoring of detector status, data acquisition status, trigger rates, luminosity, etc., accessible for the collaborators anywhere and anytime. This helps the collaborating experts monitor the status of the experiment, identify the problems, and improve data-taking efficiency. We present the Web-Based Monitoring project of the CMS experiment at the LHC of CERN. The data sources are relational databases and various messaging systems. The project provides a vast amount of in-depth information including real time data, historical trend, and correlations, in a user friendly way.

  6. CMS: Higgs boson decays to four muons

    CERN Multimedia

    Taylor, Lucas

    1997-01-01

    This track is an example of simulated data modelled for the CMS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. The Higgs boson is produced in the collision of two protons at 14 TeV and quickly decays into four muons, a type of heavy electron which is not absorbed by the detector. The tracks of the other products of the collision are shown by lines and the energy deposited in the detector is shown in blue. Image creator : Lucas Taylor.

  7. Recent Results of the CMS Experiment

    Science.gov (United States)

    Dorigo, Tommaso

    2016-11-01

    The CMS experiment has produced a large number of new measurements with data collected during Run 1 by the CERN Large Hadron Collider (LHC). In this report a few results in Higgs and top physics will be mentioned. After a shutdown in 2013 and 2014, the LHC restarted proton-proton collisions at the unprecedented center-of-mass energy of 13 TeV in June 2015. The data collected until August 2015 have yielded interesting events and allowed the extraction of the first results of searches at the high-energy end of mass spectra, where the effect of the higher collision energy is largest.

  8. Understanding the performance of CMS calorimeter

    Indian Academy of Sciences (India)

    Seema Sharma; on behalf of the CMS Collaboration

    2007-12-01

    The performance of the CMS hadron calorimeter is studied using test beam facilities at CERN. Two wedges of brass-scintillator calorimeter are exposed to negative and positive beams with momenta between 3 and 300 GeV/c. Light produced in the scintillators are collected using wavelength shifting fibres and read out using hybrid photo-diodes. Each of the wedges has 17 layers of scintillators. In one of these wedges signal from all 17 layers are grouped together while in the other each layer is read out separately. The response, energy resolution, longitudinal and lateral shower profiles are measured.

  9. Performance Tests of CMSSW on the CernVM

    Science.gov (United States)

    Petek, Marko; Gowdy, Stephen

    2012-12-01

    The CERN Virtual Machine (CernVM) Software Appliance is a project developed in CERN with the goal of allowing the execution of the experiment's software on different operating systems in an easy way for the users. To achieve this it makes use of Virtual Machine images consisting of a JEOS (Just Enough Operating System) Linux image, bundled with CVMFS, a distributed file system for software. This image can then be run with a proper virtualizer on most of the platforms available. It also aggressively caches data on the local user's machine so that it can operate disconnected from the network. CMS wanted to compare the performance of the CMS Software running in the virtualized environment with the same software running on a native Linux box. To answer this wish, a series of tests were made on a controlled environment during 2010-2011. This work presents the results of those tests.

  10. CERN as seen by its personnel

    CERN Multimedia

    2009-01-01

    How are the various players in research experiencing the run-up to the restart of the LHC? How do they feel their work is perceived outside CERN? After interviewing the inhabitants of Meyrin, Divonne-les-Bains and Geneva on the subject of the LHC and CERN, the Bulletin went to put its questions to the CERN personnel themselves. For some, working at CERN had always been a childhood dream. Today, as we approach the restart of the largest particle accelerator in the world, everybody is very enthusiastic about taking part in this adventure. In the words of a CMS physicist: "This is something that happens once in a scientist’s lifetime!" But what do the researchers consider to be the most important thing we do at CERN? It’s difficult to pin them down to any one specific thing, so this question gets the virtually unanimous general reply: "the advancement of knowledge". Many also mention the concrete spin-offs of technology transfer. However, nobody can anticipate what developments will arise in this field: wh...

  11. CMS Create #2 | 3-4 October | Register now!

    CERN Multimedia

    2016-01-01

    CMS Create brings together CERN members and students from IPAC Design Genève (see here). The goal is to build a prototype exhibit illustrating what CMS does and how it does it. The exhibit will introduce the world of a particle physics detector to the general public, and to younger visitors in particular.    CMS Create, hosted by IdeaSquare, was first held in November 2015. There were 4 highly diverse teams made of participants from many educational backgrounds and from 15 nationalities. 36% of these were women; a figure we hope will grow this year. The 25 participants were CMS physicists, computer scientists, engineers, other CMS collaborators and IPAC students. The 2015 winning exhibit is now permanently installed in the visitor reception centre at CMS Point 5, which was visited by 20.600 visitors during 2015. Are you creative and motivated to share your ideas?  Take part in CMS Create #2, meet with scientists and designers from all over the world and explain to CER...

  12. Readout architecture for the Pixel-Strip module of the CMS Outer Tracker Phase-2 upgrade

    CERN Document Server

    Caratelli, Alessandro; Jan Kaplon; Kloukinas, Konstantinos; Simone Scarfi

    2016-01-01

    The Outer Tracker upgrade of the Compact Muon Solenoid (CMS) experiment at CERN introduces new challenges for the front-end readout electronics. In particular, the capability of identifying particles with high transverse momentum using modules with double sensor layers requires high speed real time interconnects between readout ASICs. The Pixel-Strip module combines a pixelated silicon layer with a silicon-strip layer. Consequently, it needs two different readout ASICs, namely the Short Strip ASIC (SSA) for the strip sensor and the Macro Pixel ASIC (MPA) for the pixelated sensor. The architecture proposed in this paper allows for a total data flow between readout ASICs of $\\sim$100\\,Gbps and reduces the output data flow from 1.3\\,Tbps to 30\\,Gbps per module while limiting the total power density to below 100\\,mW/cm$^2$. In addition a system-level simulation framework of all the front-end readout ASICs is developed in order to verify the data processing algorithm and the hardware implementation allowing mult...

  13. DC-DC conversion powering schemes for the CMS tracker at Super-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Klein, K; Feld, L; Jussen, R; Karpinski, W; Merz, J; Sammet, J, E-mail: katja.klein@cern.c [I. Physikalisches Institut B, RWTH Aachen University, Aachen (Germany)

    2010-07-15

    The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, houses the largest silicon strip tracker ever built. For the foreseen luminosity upgrade of the LHC, the Super-LHC, however, a completely new silicon tracker will have to be constructed. One out of several major improvements currently under consideration is the implementation of a track trigger, with tracking information being provided to the first level trigger. Such an intelligent tracker design, utilising fast digital readout electronics, will most certainly lead to an increased power consumption, compared to today's tracker. In combination with the desire to reduce the amount of passive material inside the tracking volume and the impracticality to exchange or even add additional supply cables, a novel powering scheme will be inevitable. In this article a powering scheme based on DC-DC conversion is proposed, and requirements for the DC-DC converters are discussed. Studies of important DC-DC converter quantities such as the power efficiency, conducted and radiated noise levels, and material budget are presented, and a possible implementation of DC-DC buck converters into one proposed track trigger layout is sketched.

  14. Inserting the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The huge superconducting solenoid for CMS is inserted into the cryostat barrel. CMS uses the world's largest thin solenoid, in terms of energy stored, and is 12 m long, with a diameter of 6 m and weighing 220 tonnes. When turned on the magnet will produce a field strength of 4 T using superconducting niobium-titanium material at 4.5 K.

  15. CMS tracker slides into centre stage

    CERN Multimedia

    2006-01-01

    As preparations for the magnet test and cosmic challenge get underway, a prototype tracker has been carefully inserted into the centre of CMS. The tracker, in its special platform, is slowly inserted into the centre of CMS. The CMS prototype tracker to be used for the magnet test and cosmic challenge coming up this summer has the same dimensions -2.5 m in diameter and 6 m in length- as the real one and tooling exactly like it. However, the support tube is only about 1% equipped, with 2 m2 of silicon detectors installed out of the total 200 m2. This is already more than any LEP experiment ever used and indicates the great care needed to be taken by engineers and technicians as these fragile detectors were installed and transported to Point 5. Sixteen thousand silicon detectors with a total of about 10 million strips will make up the full tracker. So far, 140 modules with about 100 000 strips have been implanted into the prototype tracker. These silicon strips will provide precision tracking for cosmic muon...

  16. 16th November 2010 - Chinese Vice Minister of Science and Technology J. Cao signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1011300 19-41: visiting SM18 with F. Bertinelli CERN-HI-1011300 43-66; visiting CMS Control Centre in Meyrin with Collaboration Spokesperson G. Tonelli CERN-HI-1011300 67-85: in the ATLAS Visitor Centre with Former Collaboration Spokesperson P. Jenni CERN-HI-1011300 86-87: meeting young representatives of the CERN Chinese community in the Glassbox, restaurant 1.

  17. Finite element stress analysis of the CMS magnet coil

    CERN Document Server

    Desirelli, Alberto; Farinon, S; Levesy, B; Ps, C; Rey, J M; Sgobba, Stefano

    2000-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments which are being designed in the framework of the Large Hadron Collider (LHC) project at CERN. The design field of the CMS magnet is 4 T, the magnetic length is 12.38 m and the aperture is 6.36 m. This is achieved with a 4 layer-5 module superconducting Al-stabilized coil energised at a nominal current of 20 kA. The finite element analysis (FEA) carried out is axisymmetric elasto-plastic. FEA has also been carried out on the suspension system and on the conductor. (8 refs).

  18. CMS ECAL Front-End boards the XFEST project

    CERN Document Server

    Collard, Caroline; Debraine, A; Decotigny, D; Dobrzynski, L; Karar, A; Regnault, N; Romanteau, T

    2005-01-01

    The Front-End (FE) boards are part of the On-detector electronics system of the CMS electromagnetic calorimeter (ECAL). Their digital functionalities and properties are tested by a dedicated test bench located at Laboratoire Leprince-Ringuet, prior to the board integration in the CMS detector at CERN. XFEST, acronym for eXtended Front-End System Test, is designed to perform tests that can last several hours, on up to 12 FE boards in parallel. The system is designed to deliver 80 tested boards per week. This contribution presents the XFEST set-up and the results of the measurements on FE boards.

  19. Performance Testing of the CMS Cathode Strip Chambers

    CERN Document Server

    Breedon, Richard; Andreev, M. Tripathi V; Arisaka, Katsushi; Cline, David; Hauser, Jay; Ignatenko, Mikhail; Lisowsky, B; Matthey, Christina; Rakness, Gregory; Wenman, Daniel

    2009-01-01

    The production, installation, and testing of 468 cathode strip chambers for the endcap muon system of the CMS experiment played a critical role in the preparation of the endcap muon system for the final commissioning. Common testing procedures and sets of standard equipment were used at 5 international assembly centers. The chambers were then thoroughly retested after shipment to CERN. Final testing was performed after chamber installation on the steel disks in the CMS detector assembly building. The structure of the detector quality control procedure is presented along with the results of chamber performance validation tests.

  20. Phase 1 upgrade of the CMS forward hadronic calorimeter

    CERN Document Server

    Noonan, Daniel Christopher

    2016-01-01

    The CMS experiment at the Large Hadron Collider at CERN is upgrading the photo- detection and readout system of the forward hadronic calorimeter. The phase 1 upgrade of the CMS forward calorimeter requires the replacement of the current photomultiplier tubes, as well as the installation of a new front-end readout system. The new photomultiplier tubes contain a thinner window as well as multi-anode readout. The front-end electronics will use the QIE10 ASIC which combines signal digitization with timing information. The major components of the upgrade as well as the current status are described in this paper.

  1. CERN completes transition to lead-ion running at the LHC

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    ALICE experiment a. General views ALICE control room b. Interview Paolo Giubellino, ALICE spokesperson elect, INFN Torino c. Interview Juergen Schukraft, ALICE spokesperson, CERN d. Events display: first heavy ion collisions at ALICE 2. CMS experiment a. General views CMS control room b. Interview Bolek Wyslouch, CMS Heavy Ions Run Coordinator, MIT c. Events display: first heavy ion collisions at CMS 3. ATLAS experiment a. General views ATLAS control room b. Interview Peter Steinberg, ATLAS , Brookhaven National Laboratory c. Interview Will Brooks, ATLAS, Univ. Tecnica Federico Santa Maria (UTFSM) d. Events display: first heavy ion collisions at ATLAS

  2. New Zealand students on tour at CERN

    CERN Document Server

    2005-01-01

    The three prize-winners Katrina Hamblin, Jordan Roach and Ellen Clarkson in front of the CMS magnet, with their teacher Noema Watene on the left. The "Journey to the End of Science" makes a stop at CERN. Katrina Hamblin, Jordan Roach and Ellen Clarkson, three high-school students from Fairfield College in Hamilton, New Zealand, won first prize in the New Zealand Royal Society's scientific film competition - the trip of a lifetime to Europe. The reward for their excellent documentary on the nuclear physicist and winner of the Nobel prize for Medicine Maurice Wilkins was a trip to Italy and Switzerland, stopping at CERN on the way. Accompanied by one of their teachers and a science journalist, the students were shown around the antiproton decelerator and the CMS experiment by Alick Macpherson, a Kiwi physicist at CERN. Their faithful camera always at the ready, the students filmed every minute of their visits to the various sites - perhaps they were hatching plans for next year's competition...

  3. Hangout with CERN: Welcome to CERN (S01E01)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this first Hangout with CERN "Welcome to CERN" ATLAS physicist Steven Goldfarb, CERN theorist Alvaro De Rujula and Mick Storr from the CERN education group introduce CERN and answer some of the questions received via #askCERN on Twitter and Google+. Recorded live on 1st November 2012.

  4. Virgin Galactic explores CERN

    CERN Multimedia

    2016-01-01

    Virgin Galactic visited CERN with a group of future astronauts and Sir Richard Branson. During their visit the group was shown around various experiments, including the Globe, SM18, AMS and the CERN Control Centre.

  5. CERN Shop Christmas Sale

    CERN Multimedia

    Visits & Exhibition Service/ETT-VE

    2001-01-01

    11-13.12.2001 Looking for Christmas present ideas? Come to the Reception Shop Special Stand in Meyrin, Main Building, ground floor, from Tuesday 11 to Thursday 13 December from 10.30 to 16.00. CERN Calendar 10.- CERN Sweat-shirts(M, L, XL) 30.- CERN T-shirt (M, L, XL) 20.- New CERN silk tie (2 colours) 35.- Fancy silk tie (blue, bordeau) 25.- Silk scarf (light blue, red, yellow) 35.- Swiss army knife with CERN logo 25.- CERN watch 25.- CERN baseball cap 15.- CERN briefcase 15.- Book 'Antimatter' (English) 35.- Book 'How the web was born' (English) 25.- The Search for Infinity (French, Italian, English, German) 40.-   If you miss this special occasion, the articles are also available at the Reception Shop in Building 33 from Monday to Saturday between 08.30 and 17.30 hrs.

  6. Doing business with CERN

    CERN Multimedia

    2015-01-01

    The Procurement Service, in collaboration with the Communications group’s Design team, has recently launched a new information campaign targeted at companies wishing to supply their products and services to CERN. This campaign comprises:   A brochure, available in hard and soft copy:  http://procurement.web.cern.ch/brochures/doing-business-with-cern.   A 6-minute video overview: https://procurement-dev.web.cern.ch/doing-business-with-cern. This campaign is intended for Member State firms with whom CERN is yet to do business. The key objectives are: To emphasise that CERN can be considered a major customer across a wide range of activities;   To present CERN’s procurement procedures in a dynamic and digestible way;   To highlight the information available on CERN’s procurement website: http://procurement.web.cern.ch. Furthermore, a new section called “Having a contract with CERN” is also now ava...

  7. VNR CMS Pixel detector replacement

    CERN Multimedia

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  8. France at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Rolf Heuer, CERN Director General, visits the exhibition "La France au CERN". The exhibition France at CERN, organized by UBIFRANCE in collaboration with CERN's GS/SEM (Site Engineering and Management) service, took place from Monday 7 to Wednesday 9 June in the Main Building. The 36 French firms taking part came to present their products and technologies related to the Organization's activities. The next exhibition will be "Netherlands at CERN" in November.

  9. Greece at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1997-01-01

    Greece, one of CERN*'s founding Member States, inaugurated its first Industrial Exhibition at the Meyrin site on Tuesday, 14 October. After a meeting with CERN's Director General, Professor Christopher Llewellyn Smith, Professor Emmanuel Frangoulis, the General Secretary of the Greek Ministry of Industry, accompanied by Prof Emmanuel Floratos, Greek delegate to CERN council visited the DELPHI experiment on the LEP collider, guided by Andromachi Tsirou, a Greek physicist.

  10. La Pologne au CERN

    CERN Document Server

    CERN Press Office. Geneva

    1995-01-01

    On 28 November 1995 the first Polish industrial and technological exhibition opened at CERN. In his inaugural speech Prof Aleksander Luczak, the Polish Deputy Prime Minister, announced : "The first Polish exhibition which I am opening today indicates a new stage of our presence at CERN. It provides an opportunity for CERN to get better acquainted with our industrial potential and, on the other hand, provides an opportunity for our exhibitors to learn more about CERN and the extraordinary people who work here.

  11. The CERN Library

    CERN Multimedia

    Hester, Alec G

    1968-01-01

    Any advanced research centre needs a good Library. It can be regarded as a piece of equipment as vital as any machine. At the present time, the CERN Library is undergoing a number of modifications to adjust it to the changing scale of CERN's activities and to the ever increasing flood of information. This article, by A.G. Hester, former Editor of CERN COURIER who now works in the Scientific Information Service, describes the purposes, methods and future of the CERN Library.

  12. CMS Analysis School Model

    Energy Technology Data Exchange (ETDEWEB)

    Malik, S. [Nebraska U.; Shipsey, I. [Purdue U.; Cavanaugh, R. [Illinois U., Chicago; Bloom, K. [Nebraska U.; Chan, Kai-Feng [Taiwan, Natl. Taiwan U.; D' Hondt, J. [Vrije U., Brussels; Klima, B. [Fermilab; Narain, M. [Brown U.; Palla, F. [INFN, Pisa; Rolandi, G. [CERN; Schörner-Sadenius, T. [DESY

    2014-01-01

    To impart hands-on training in physics analysis, CMS experiment initiated the concept of CMS Data Analysis School (CMSDAS). It was born over three years ago at the LPC (LHC Physics Centre), Fermilab and is based on earlier workshops held at the LPC and CLEO Experiment. As CMS transitioned from construction to the data taking mode, the nature of earlier training also evolved to include more of analysis tools, software tutorials and physics analysis. This effort epitomized as CMSDAS has proven to be a key for the new and young physicists to jump start and contribute to the physics goals of CMS by looking for new physics with the collision data. With over 400 physicists trained in six CMSDAS around the globe, CMS is trying to engage the collaboration in its discovery potential and maximize physics output. As a bigger goal, CMS is striving to nurture and increase engagement of the myriad talents, in the development of physics, service, upgrade, education of those new to CMS and the career development of younger members. An extension of the concept to the dedicated software and hardware schools is also planned, keeping in mind the ensuing upgrade phase.

  13. CMS Phase II Upgrade Scope Document

    CERN Document Server

    Butler, J; Klute, M; Mans, J; Silvestris, L; on behalf of the CMS, Collaboration; CERN. Geneva. The LHC experiments Committee; LHCC

    2015-01-01

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics by both the European Strategy Group and the US Particle Physics Project Prioritization Panel. To fulfil the full potential of this program, which includes the study of the nature of the Higgs boson, the investigation of the properties of any newly discovered particles in the upcoming LHC runs, and the extension of the mass reach for further discoveries, an integrated luminosity of 3000 fb-1 will have to be accumulated by the end of the program. In preparation for operation at the HL-LHC , CMS has documented the necessary upgrades and their expected costs in a Technical Proposal submitted to the CERN LHC Committee (LHCC) in mid-2015. The material presented in the current “Scope Document” provides additional information to assist the LHCC and the CERN Resource Review Board (RRB) in their review of the CMS upgrade. The document commences with a summary of the process followed to develop the scope of t...

  14. In the CERN Library

    CERN Multimedia

    1963-01-01

    Seen in this picture is Noria Christophoridou, librarian of the Greek Atomic Energy Commission, who has been sent by her government to CERN for a year to widen her experience of library and documentation services. In the photograph she is providing information to Kurt Gottfried, a CERN visiting scientist from Harvard University, who is spending a year with CERN's Theory Division

  15. 2005 CERN Relay Race

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    The CERN Relay Race takes place each year in May and sees participants from all areas of the CERN staff. The winners in 2005 were The Shabbys with Los Latinos Volantes in second and Charmilles Technologies a close third. To add a touch of colour and levity, the CERN Jazz Club provided music at the finishing line.

  16. CERN Photowalk 2015

    CERN Multimedia

    2015-01-01

    CERN is organising a Photowalk on Friday 25 September 2015. At this event a few selected photographers will get the chance to come to CERN, the European Organization for Nuclear Research, for an exclusive behind-the-scenes tour of the laboratory. For more information: http://photowalk2015.web.cern.ch/

  17. Data Scouting in CMS

    CERN Document Server

    Anderson, Dustin James

    2016-01-01

    In 2011, the CMS collaboration introduced Data Scouting as a way to produce physics results with events that cannot be stored on disk, due to resource limits in the data acquisition and offline infrastructure. The viability of this technique was demonstrated in 2012, when 18 fb$^{-1}$ of collision data at $\\sqrt{s}$ = 8 TeV were collected. The technique is now a standard ingredient of CMS and ATLAS data-taking strategy. In this talk, we present the status of data scouting in CMS and the improvements introduced in 2015 and 2016, which promoted data scouting to a full-fledged, flexible discovery tool for the LHC Run II.

  18. SIGURNOST CMS-A

    OpenAIRE

    Kaluža, Marin; Vukelić, Bernard; Rojko, Tamara

    2016-01-01

    Za razvoj web-sjedišta danas se često koriste CMS-ovi. Web-sjedišta meta su raznim malicioznim napadačima, stoga je potrebno poznavati razinu sigurnosti web-sjedišta i postaviti maksimalnu moguću razinu sigurnosti. U radu su prikazane osnovne značajke poznatijih CMS-ova u otvorenom pristupu Wordpress, Joomla i Drupal. Objašnjeno je deset najčešćih web-ranjivosti. Izvršeno je testiranje web-ranjivosti pomoću različitih programskih alata. Testirane su osnovne instalacije CMS-ova. Nakon ...

  19. Local Trigger Electronics for the CMS Drift Tubes Muon detector

    CERN Document Server

    Travaglini, R

    2003-01-01

    In the CMS detector in preparation for the CERN LHC collider, the Drift Tubes Muon Chambers are equipped with mini-crates hosting custom electronics for fast data processing and local trigger generation. In particular the Trigger Server of a DTC consists of Track Sorter Slave ASICs and a Track Sorter Master system. The trigger electronics boards are in production, to be ready for the muon detector installation in the CMS barrel starting at the end of 2003.In this work, the performance of the Trigger Server will be discussed, on the basis both of high-statistics tests with predefined patterns and of test beam data collected at CERN, where a DTC was exposed to a muon beam having an LHC-like bunch structure. Finally, some system performance expectations, concerning radiation tolerance and signal transmission issues during LHC running, will be also discussed.

  20. Role of guard rings in improving the performance of silicon detectors

    Indian Academy of Sciences (India)

    Vijay Mishra; V D Srivastava; S K Kataria

    2005-08-01

    BARC has developed large-area silicon detectors in collaboration with BEL to be used in the pre-shower detector of the CMS experiment at CERN. The use of floating guard rings (FGR) in improving breakdown voltage and reducing leakage current of silicon detectors is well-known. In the present work, it has been demonstrated that FGRs can also be used to improve the spectroscopic response of silicon detectors. The results have been confirmed by carrying out -particle ≈ 5 MeV) and -ray (60 keV) spectroscopies with the FGR floating or biased and the underlying physics aspect behind the change in spectra is explained. Although reduction in leakage current after biasing one of the guard rings has been reported earlier, the role of a guard ring in improving the spectroscopic response is reported for the first time. Results of TCAD simulations for silicon detectors with the guard ring under different biasing conditions have been presented. Low yield in producing large-area silicon detectors makes them very costly. However, with one of the FGRs biased even a detector having large surface leakage current can be used to give the same response as a very good detector. This makes the use of large-area silicon detectors very economical as the yield would be very high (> 90%).

  1. Members of the Forum Engelberg visit CERN

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The Forum Engelberg is an annual interdisciplinary conference held in Engelberg, Switzerland intended to act as an international platform for debate and exchange of views on key issues affecting scientific research, technology, economics and philosophy. Its President, Hubert Curien - former French Minister of Research and Space Research, and President of the CERN Council from 1994 to 1996 - is pictured here. Photo 01: Hubert Curien in front of the first half of the CMS detector's barrel hadronic calorimeter (HCAL). The barrel HCAL is a cylindrical structure which will surround the collision region and measure the energy of quarks and jets emerging at large angles relative to the beam direction. Photo 02: Hubert Curien (left) with Bernard Ecoffey, Founder of the Forum Engelberg, in front of the first half of the CMS detector's barrel hadronic calorimeter.

  2. CERN Video News

    CERN Multimedia

    2003-01-01

    From Monday you can see on the web the new edition of CERN's Video News. Thanks to a collaboration between the audiovisual teams at CERN and Fermilab, you can see a report made by the American laboratory. The clip concerns the LHC magnets that are being constructed at Fermilab. Also in the programme: the spectacular rotation of one of the ATLAS coils, the arrival at CERN of the first American magnet made at Brookhaven, the story of the discovery 20 years ago of the W and Z bosons at CERN. http://www.cern.ch/video or Bulletin web page.

  3. CERN Cricket Club

    CERN Multimedia

    CERN Cricket Club

    2010-01-01

    CERN Cricket Club Match Reports The cricket season is well under way, despite the weather, and several matches have been played. The match reporters have, however, found it too difficult to limit their reports to ¼ of a page, hence the reports have not appeared in the bulletin. All reports can be found at http://cern.ch/Club-Cricket/reports/reports.html The list of forthcoming matches can be consulted at http://cern.ch/Club-Cricket/fixtures.html Further information about the CERN Cricket Club can be found at http://cern.ch/Club-Cricket/

  4. CERN Photo club

    CERN Multimedia

    CERN Photo club

    2016-01-01

    The CERN Photo Club organizes in collaboration with Canon Switzerland a photo contest open to all members of the CERN (Persons with a CERN access card). The only restriction is that the photos must have been taken with a CANON camera (DSLR, bridge or compact) between 1 and 31 October 2016. Send your three best pictures at  Photo.Contest@cern.ch with a short description explaining the images. Further information on the Photo club website: http://photoclub.web.cern.ch/content/photo-contest-october-2016

  5. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  6. Britain at CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    On 8 October, H.E. Mr David Beattie, British Ambassador to Switzerland, Mr John R. Nichols, H.M. Consul-General in Geneva and, Prof. Christopher Llewellyn Smith, CERN*'s Director General, formally opened the industrial exhibition of thirty-three British hi-tech companies at CERN, which takes place from 8 to 11 October, 1996. The exhibition offers British companies the opportunity to display their products in fields that are of immediate importance to the scientists, engineers and technicians working at CERN, and also to scientists from non-Member States who take part in research projects at CERN.

  7. Ministers from Belgium and the Netherlands visit CERN

    CERN Multimedia

    2005-01-01

    The Belgian Minister of Economy, Energy, Foreign Trade and Science Policy, Marc Verwilghen, with CERN's Director-General, Robert Aymar.From left to right, Frank Linde, Director of the Netherlands National Institute for Nuclear Physics and High Energy Physics (NIKHEF), Jos Engelen, CERN's Chief Scientific Officer, Maria van der Hoeven, Netherlands Minister for Education, Culture and Science, and Herman Ten Kate, Head of the ATLAS magnet project, visiting the ATLAS assembly hall. Marc Verwilghen, Belgian Minister of Economy, Energy, Foreign Trade and Science Policy, came to CERN on 8 April 2005, where he visited the CMS assembly hall and underground cavern, as well as the hall where the LHC superconducting magnets are being tested. A few days later, on 21 April, the Netherlands Minister for Education, Culture and Science, Mrs Maria van der Hoeven, was welcomed to CERN by the Director-General, Robert Aymar, and the Chief Scientific Officer, Jos Engelen. Minister van der Hoeven visited the ATLAS installations, t...

  8. Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC

    CERN Document Server

    Abbrescia, M; Guida, R; Iaselli, G; Liuzzi, R; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Trentadue, R; Benussi, L; Bertani, M; Bianco, S; Caponero, M A; Colonna, D; Donisi, D; Fabbri, F L; Felli, F; Ortenzi, M G B; Pallotta, M; Paolozzi, A; Passamonti, L; Ponzio, B; Pucci, C; Polese, G S G; Segoni, I; Cavallo, N; Fabozzi, F; Paolucci, P; Piccolo, D; Belli, C S G; Grelli, A; Necchi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P

    2006-01-01

    The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC proton collider (CERN, Switzerland) will employ an online gas analysis and monitoring system of the freon-based gas mixture used. We give an overview of the CMS RPC gas system, describe the project parameters and first results on gas-chromatograph analysis. Finally, we report on preliminary results for a set of monitor RPC.

  9. First joint test beam of CMS Drift Tubes (DT) and Resistive Plate Chambers (RPC)

    CERN Multimedia

    Paolo Giacomelli

    2001-01-01

    The first full size muon drift tube chamber ever built for the CMS barrel with the final cell design (constructed at CIEMAT, Madrid) was succesfully tested with a muon beam in September 2001 at the Gamma Irradiation Facility (GIF) at CERN. For the first time also both muon detectors for the CMS barrel (DT + RPC) were coupled together. The results of this test were fully succesful and confirmed the excellent performance of both detectors together in a radiation environment.

  10. Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, P; Andelin, D; Anicin, I; Antunovic, Z; Arcidiacono, R; Arenton, M W; Auffray, E; Argiro, S; Askew, A; Baccaro, S; Baffioni, S; Balazs, M; Bandurin, D; Barney, D; Barone, L M; Bartoloni, A; Baty, C; Beauceron, S; Bell, K W; Bernet, C; Besancon, M; Betev, B; Beuselinck, R; Biino, C; Blaha, J; Bloch, P; Borisevitch, A; Bornheim, A; Bourotte, J; Brown, R M; Buehler, M; Busson, P; Camanzi, B; Camporesi, T; Cartiglia, N; Cavallari, F; Cecilia, A; Chang, P; Chang, Y H; Charlot, C; Chen, E A; Chen, W T; Chen, Z; Chipaux, R; Choudhary, B C; Choudhury, R K; Cockerill, D J A; Conetti, S; Cooper, S; Cossutti, F; Cox, B; Cussans, D G; Dafinei, I; Da Silva Di Calafiori, D R; Daskalakis, G; David, A; Deiters, K; Dejardin, M; De Benedetti, A; Della Ricca, G; Del Re, D; Denegri, D; Depasse, P; Descamps, J; Diemoz, M; Di Marco, E; Dissertori, G; Dittmar, M; Djambazov, L; Djordjevic, M; Dobrzynski, L; Dolgopolov, A; Drndarevic, S; Drobychev, G; Dutta, D; Dzelalija, M; Elliott-Peisert, A; El Mamouni, H; Evangelou, I; Fabbro, B; Faure, J L; Fay, J; Fedorov, A; Ferri, F; Franci, D; Franzoni, G; Freudenreich, K; Funk, W; Ganjour, S; Gascon, S; Gataullin, M; Gentit, F X; Ghezzi, A; Givernaud, A; Gninenko, S; Go, A; Gobbo, B; Godinovic, N; Golubev, N; Govoni, P; Grant, N; Gras, P; Haguenauer, M; Hamel de Monchenault, G; Hansen, M; Haupt, J; Heath, H F; Heltsley, B; Hintz, W; Hirosky, R; Hobson, P R; Honma, A; Hou, G W S; Hsiung, Y; Huhtinen, M; Ille, B; Ingram, Q; Inyakin, A; Jarry, P; Jessop, C; Jovanovic, D; Kaadze, K; Kachanov, V; Kailas, S; Kataria, S K; Kennedy, B W; Kokkas, P; Kolberg, T; Korjik, M; Krasnikov, N; Krpic, D; Kubota, Y; Kuo, C M; Kyberd, P; Kyriakis, A; Lebeau, M; Lecomte, P; Lecoq, P; Ledovskoy, A; Lethuillier, M; Lin, S W; Lin, W; Litvine, V; Locci, E; Longo, E; Loukas, D; Luckey, P D; Lustermann, W; Ma, Y; Malberti, M; Malclès, J; Maletic, D; Manthos, N; Maravin, Y; Marchica, C; Marinelli, N; Markou, A; Markou, C; Marone, M; Matveev, V; Mavrommatis, C; Meridiani, P; Milenovic, P; Miné, P; Missevitch, O; Mohanty, A K; Moortgat, F; Musella, P; Musienko, Y; Nardulli, A; Nash, J; Nedelec, P; Negri, P; Newman, H B; Nikitenko, A; Nessi-Tedaldi, F; Obertino, M M; Organtini, G; Orimoto, T; Paganoni, M; Paganini, P; Palma, A; Pant, L; Papadakis, A; Papadakis, I; Papadopoulos, I; Paramatti, R; Parracho, P; Pastrone, N; Patterson, J R; Pauss, F; Peigneux, J-P; Petrakou, E; Phillips II, D G; Piroué, P; Ptochos, F; Puljak, I; Pullia, A; Punz, T; Puzovic, J; Ragazzi, S; Rahatlou, S; Rander, J; Razis, P A; Redaelli, N; Renker, D; Reucroft, S; Ribeiro, P; Rogan, C; Ronquest, M; Rosowsky, A; Rovelli, C; Rumerio, P; Rusack, R; Rusakov, S V; Ryan, M J; Sala, L; Salerno, R; Schneegans, M; Seez, C; Sharp, P; Shepherd-Themistocleous, C H; Shiu, J G; Shivpuri, R K; Shukla, P; Siamitros, C; Sillou, D; Silva, J; Silva, P; Singovsky, A; Sirois, Y; Sirunyan, A; Smith, V J; Stöckli, F; Swain, J; Tabarelli de Fatis, T; Takahashi, M; Tancini, V; Teller, O; Theofilatos, K; Thiebaux, C; Timciuc, V; Timlin, C; Titov, M; Topkar, A; Triantis, F A; Troshin, S; Tyurin, N; Ueno, K; Uzunian, A; Varela, J; Verrecchia, P; Veverka, J; Virdee, T; Wang, M; Wardrope, D; Weber, M; Weng, J; Williams, J H; Yang, Y; Yaselli, I; Yohay, R; Zabi, A; Zelepoukine, S; Zhang, J; Zhang, L Y; Zhu, K; Zhu, R Y

    2010-01-01

    Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

  11. CMS: Simulated Higgs to two jets and two electrons

    CERN Multimedia

    1997-01-01

    This track is an example of simulated data modelled for the CMS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. Here a Higgs boson is produced which decays into two jets of hadrons and two electrons. The lines represent the possible paths of particles produced by the proton-proton collision in the detector while the energy these particles deposit is shown in blue.

  12. CMS Collaboration Board Meeting

    CERN Multimedia

    Hoch, Michael

    2013-01-01

    The first CMS Collaboration Board meeting of the year (2013) provided an opportunity to thank Teresa Rodrigo, Matthias Kasemann and Randy Ruchti, the 2011-12 CB Chair, Deputy Chair and Secretary, respectively.

  13. Diphoton searches (CMS)

    CERN Document Server

    Quittnat, Milena Eleonore

    2016-01-01

    Many physics scenarios beyond the standard model predict the existence of heavy resonances decaying to diphotons. This talk presents searches for BSM physics in the diphoton final state at CMS, focusing on the recent results.

  14. CMS Statistics Reference Booklet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The annual CMS Statistics reference booklet provides a quick reference for summary information about health expenditures and the Medicare and Medicaid health...

  15. CMS Financial Reports

    Data.gov (United States)

    U.S. Department of Health & Human Services — This section contains the annual CMS financial statements as required under the Chief Financial Officers (CFO) Act of 1990 (P.L. 101-576). The CFO Act marked a major...

  16. CMS Financial Reports

    Data.gov (United States)

    U.S. Department of Health & Human Services — This section contains the annual CMS financial statements as required under the Chief Financial Officers (CFO) Act of 1990 (P.L. 101-576). The CFO Act marked a...

  17. Signature d'un projet de protocole d'accord entre le CERN et l'Iran

    CERN Multimedia

    CERN Press Office. Geneva

    2001-01-01

    Iranian Minister for Science, Research and Technology, Dr Mostafa Moin, and CERN Director-General, Professor Luciano Maiani, today signed a draft Memorandum of Understanding concerning the participation of Iranian universities in the Laboratory's scientific programme. Under this agreement, one Iranian researcher and three students will come to CERN to participate in the CMS experiment, with Iranian industry contributing to the experiment's construction. The Memorandum also paves the way for possible further Iranian involvement with experiments at CERN.

  18. CERN honours Georges Charpak

    CERN Multimedia

    2009-01-01

    CERN pays tribute to the work of Georges Charpak at a colloquium in honour of his 85th birthday. var flash_video_player=get_video_player_path(); insert_player_for_external('Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo', 'mms://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-Multirate-200-to-753-kbps-480x360.wmv', 'false', 480, 360, 'https://mediastream.cern.ch/MediaArchive/Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-posterframe-480x360-at-10-percent.jpg', '1167500', true, 'Video/Public/Movies/2009/CERN-MOVIE-2009-008/CERN-MOVIE-2009-008-0600-kbps-maxH-360-25-fps-audio-128-kbps-48-kHz-stereo.mp4'); Watch the video conference of Georges Charpak.   On 9 March CERN’s Main Auditorium was the venue for a fascinating and moving celebration marking the 85th birthday of Georges Charpak, who was awarded the Nobel Prize for Physics in 1992 for his inven...

  19. CMS Honours Three Russian and Bielorussian companies

    CERN Multimedia

    2003-01-01

    On 7 March, CMS handed out the three latest Gold Awards under its scheme for honouring its best suppliers suppliers (c.f. Bulletin n°10/2003). Three Russian and Bielorussian firms were honoured, on the occasion of a visit by dignitaries from the two countries. CERN played host to Anatoly Sherbak, Head of the Fundamental Research Department of the Russian Federation Ministry of Industry and Science, Ambassador Sergei Aleinik, Permanent Representative of the Republic of Belarus to the Office of the United Nations at Geneva, Andrei Pirogov, Assistant Permanent Representative of the Russian Federation to the Office of the United Nations, and Alexei Sissakian, Vice Director of the JINR (Joint Institute for Nuclear Research) at Dubna in Russia. The directors of the three Russian and Bielorussian firms have received their awards and are seen with the visiting Russian and Bielorussian dignitaries and the CMS leaders in front of the CMS hadron calorimeter, on the spot where the detector is being assembled.These promi...

  20. Electrical joints in the CMS superconducting magnet

    CERN Document Server

    Farinon, S; Curé, B; Fabbricatore, P; Greco, Michela; Musenich, R

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The CMS coil consists of five independent modules each containing four winding layers. Each winding layer is composed of a single length of aluminum stabilized and aluminum alloy reinforced conductor. Each of the four conductor lengths within a module will be electrically joined after winding is completed, and each of the five modules will be connected to the magnet bus bars during module assembly. Due to the large dimensions of the conductor and to the high current it carries, the conductor joints are sources of substantial and nontrivial joule heating during nonsteady state operation of the magnet. In addition to steady-state conditions, three transient conditions have been analyzed. The first is related to the current diffusion during a magnet transient that results in a time dep...

  1. CERN encourages girls to "expand their horizons"

    CERN Multimedia

    François Briard

    2015-01-01

    On 14 November, CERN took part for the fourth time in "Élargis tes horizons" (see here), a conference organised every two years at Geneva University for girls from the local region aged 11 to 14 aiming to encourage them to take up studies and careers in the scientific and technical domains.   Claude Sanz (left), a fellow in the EN Department, explaining to three girls how to build a particle accelerator in a salad bowl. This year, young physicists and engineers from ATLAS and CMS ran three workshops: "Seeing the invisible using a cloud chamber", "Great cold fun and treats with liquid nitrogen" and "Build your own accelerator in a salad bowl!" CERN was also represented at the Forum de Découverte, represented by the Diversity Office and the Medialab team, presenting the "Higgnite" interactive experiment, which illustrates the principle of the Higgs field. More...

  2. CMS Tracker Performance

    CERN Document Server

    Palmonari, Francesco

    2012-01-01

    particle trajectories as well as primary and secondary vertices, multi-step calibration procedures including module alignment are required. Results from operating the CMS tracker during the first two years of 7 TeV LHC collisions will be presented. These include aspects such as the data acquisition, detector slow control, and data quality monitoring. Projections for the evolution of the CMS tracker performance with increasing irradiation will be given.

  3. b Tagging in CMS

    CERN Document Server

    Tomalin, Ian R

    2008-01-01

    Many of the exotic particles expected at the LHC, such as SUSY, Higgs bosons and top quarks, will decay to b quarks. This paper presents the methods used to identify b-jets at CMS. The algorithms exploit the long B hadron lifetime, semi-leptonic B decays and jet kinematics. The prospect for measuring the performance of these b-tags directly from CMS data is examined. Finally, the use of b-tagging in the High-Level Trigger is explained.

  4. Members of the Forum Engelberg visit CERN

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The Forum Engelberg is an annual interdisciplinary conference held in Engelberg, Switzerland intended to act as an international platform for debate and exchange of views on key issues affecting scientific research, technology, economics and philosophy. Its President is Hubert Curien - former French Minister of Research and Space Research, and President of the CERN Council from 1994 to 1996. Photo 01: Thérèse Wolf, Secretary of Forum Engelberg; Alain Hervé; Horst Wenninger; and Alexander Höchli, Forum member and former Landammann of the canton of Obwalden, at the CMS detector's assembly site.

  5. A Nobel Prize winner visits CERN

    CERN Multimedia

    2007-01-01

    Nobel Prize-winning astrophysicist George Smoot visited CERN on 2 February with a message for particle physicists and cosmologists alike. After a tour of ATLAS and CMS, Smoot gave a talk to a packed Council Chamber about the connections between particle physics and cosmology, and how the two disciplines can help each other to find answers to their cosmic questions. Smoot's group at Lawrence Berkeley National Laboratory is currently working on the development of the Max Planck Surveyor, the next generation of satellite to study cosmic microwave background anisotropy, which will teach us about how our universe was formed.

  6. CMS prepares for new challenges

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    One of the world’s largest physics experiments has just had a change in leadership. This is a chance for the collaboration to take stock of the tremendous work done for LS1 and to prepare for the challenges that lie ahead.   From left to right: Kerstin Borras, Tiziano Camporesi and Paris Sphicas. “The keyword is teamwork. That’s the only way you can effectively manage a large number of extremely talented and motivated people,” says Tiziano Camporesi who took the reins of the CMS collaboration at the beginning of the year. The recipe might seem easier on paper than in practice. However, given his 28 years at CERN, two of which he spent as the head of the DELPHI collaboration, Camporesi has extensive experience in managing large scientific collaborations and success in this respect is well within his reach: “I have learned many lessons from the past and I believe that building consensus is instrumental to successful leadership.” The C...

  7. CMS Grid Activities in Europe

    Institute of Scientific and Technical Information of China (English)

    C.Grandi; L.Berti; 等

    2001-01-01

    The CMS experiment at the CERN LHC collider is producing large amounts of simulated data in order to provide an adequate statistic for the Trigger System design.These productions are performed in a distributed environment,prototyping the hierarchical model of LHC computing centers developed by MONARC.A GRID approach is being used for interconnecting the Regional Centers.The main issues which are currently addressed are:automatic submission of data production requests to available productioin sites,data transfer among production sites,“best-replica” location and submission of enduser analysis job to the appropriate Regional Center,In each production site different hardware configurations are being tested and exploited.Furthermore robust job submission systems.which are also able to provide the needed bookkeeping of the produced data are being developed.BOSS(Batch Object Submission System)is an interface to the local computing center scheduling system that has been developed in order to allow recording in a relational database of information produced by the jobe running on the batch facilities A summary of the current activites and a plan for the use of DataGrid PM9 tools are presented.

  8. 24 April 2012 - Chinese Extraordinary and Plenipotentiary Ambassador, Permanent Representative of the People's Republic of China to the United Nations Office at Geneva L. Zhenmin signing the guest book with CERN Director-General R. Heuer

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    CERN-HI-1204089 tirage 15: AMS Collaboration Spokesperson S. Ting, CERN Director-General R. Heuer and Ambassador L. Zhenmin; CERN-HI-1204089 16to the end: in the LHC tunnel at POint 5 with Adviser T. Kurtyka and CMS experimental cavern with Collaboration Spokesperson J. Incandela.

  9. Performance Studies of the Full Length Prototype for the CASTOR Forward Calorimeter of the CMS Experiment

    CERN Document Server

    Basegmez, S; Gouskos, L; Katsas, P; Katkov, I; Khein, L

    2008-01-01

    CASTOR is a project of a forward \\v{C}erenkov sampling calorimeter for the CMS experiment at the LHC collider, with quartz plates as active medium and tungsten as absorber. Several prototypes of the calorimeter have been constructed and tested at CERN. Results of the beam test performed with a full length prototype in summer of 2007 at CERN SPS machine are reported here.

  10. Operation and performance of the CMS tracker

    CERN Document Server

    Malberti, Martina

    2014-01-01

    The CMS silicon tracker is the largest silicon detector ever built. It consists of an inner pixel detector, with 66 million readout channels, and an outer 200 m$^{2}$ silicon strip detector with 10 million channels. The successful operation of this detector during the first three years of LHC running with proton-proton and heavy ion collisions is discussed. Results include operational challenges encountered during data taking that influenced the active fraction and readout efficiency of the detectors. Details are given on the performance at high occupancy with respect to local observables, such as signal-to-noise ratio and hit reconstruction efficiency, and on radiation effects with respect to the evolution of power consumption, sensor bias, readout thresholds and leakage current.

  11. CERN Open Days The LHC demystified!

    CERN Multimedia

    2008-01-01

    Lots of surprises are being planned for the CERN Open Days scheduled for 5 and 6 April (see 21 January edition of the Bulletin). Fred’s itinerary on 6 April 20089.00 a.m\tDeparture from SM12 at CERN (the pit down which all the LHC magnets were lowered into the tunnel)9.15 a.m. Saint-Genis theatre10.00 a.m.\tRoussillon communal hall in Crozet 10.50 a.m. La Chenaille communal hall in Echenevex 11.40 a.m. CMS Building SX5 at Cessy 2.30 p.m. La Forge communal hall in Versonnex 3.30 p.m. Le Levant communal hall in Ferney Voltaire4.40 Forum in Meyrin 5.30 p.m. Main Auditorium at CERN For instance, Fred, who fronts the French television programme "C’est pas sorcier" on France 3 will be taking part in the Open Day for the general public on Sunday, 6 April. He will be on board a CERN lorry carrying a 35 tonne 15 m long dipole magnet and will make halts at eight Swiss and French communes around the LHC Ring to meet the local inhabitants (see...

  12. Status and Roadmap of CernVM

    Science.gov (United States)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  13. First two barrel ECAL supermodules inserted in CMS HCAL

    CERN Multimedia

    K.Bell

    2006-01-01

    The first two barrel "supermodules" for the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. The barrel ECAL will consist of 36 supermodules, many of which have already been produced (see CERN Bulletin 17-18, 2006). Team from CMS ECAL, CMS Integration and CEA-DAPNIA were involved in the insertion, with the production/integration of the supermodules themselves involving many technicians, engineers and physicists from many institutes. From left to right: Olivier Teller, Maf Alidra and Lucien Veillet.

  14. Challenges for the CMS Computing Model in the First Year

    CERN Document Server

    Fisk, Ian

    2009-01-01

    CMS is in the process of commissioning a complex detector and a globally distributed computing infrastructure simultaneously. This represents a unique challenge. Even at the beginning there is not sufficient analysis or organized processing resources at CERN alone. In this presentation we discuss the unique computing challenges CMS expects to face during the first year of running and how they influence the baseline computing model decisions. During the early accelerator commissioning periods, CMS will attempt to collect as many events as possible when the beam is on in order to provide adequate early commissioning data. Some of these plans involve overdriving the Tier-0 infrastructure during data collection with recovery when the beam is off. In addition to the larger number of triggered events, there will be pressure in the first year to collect and analyze more complete data formats as the summarized formats mature. The large event formats impact the required storage, bandwidth, and processing capacity acro...

  15. Particles Hunters: the CMS Quest

    CERN Multimedia

    CERN MultiMedia Productions

    2004-01-01

    Words from physicists Anne-Sylvie Giolo ETH Zürich, Joao Varela Lisbon Inst. of Physics, Paul Lecoq CERN, Duccio Abbaneo CERN, Apollo Go CERN, Jan Troska CERN, Walter Van Doninck VUB Brussel, Jim Rohlf Boston University, Randy Ruchti Univ. of Notre Dame USA.

  16. A banner bearing the fiftieth anniversary logo is raised in the CMS hall, symbolically marking the start of the festivities in France. Robert Aymar, Director-General of CERN, can be seen at the commands of the overhead crane, while Gilles Giuliani, Sub-Prefect of Gex, applauds warmly.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    CERN's Director-General thanked the mayors of the local communes for their support, as well as the representatives of the Communauté de Communes of the Pays de Gex and the Conseil général of the Ain. He also mentioned the social role of a research body like CERN.

  17. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  18. CMS Software Distribution and Installation Systems:Concepts,Practical Solutions and Experience at Fermilab as a CMS Tier 1 Center

    Institute of Scientific and Technical Information of China (English)

    NataliaM.Ratnikova; GregoryE.Graham

    2001-01-01

    The CMS Collaboration of 2000 scientists involves 150 institutions from 31 nations spread all over the world.CMS software system integration and release management is performed at CERN.Code management is based on CVS,with read or write access to the repository via a CVS server,Software configuration,release management tools(SCRAM) are being developed at CERN.Software releases are then distributed to regional centers,where the software is used by a local community for a wide variety of tasks,such as software development detector simulation and reconstruction and physics analysis.Depending on specific application,the system environment and local hardware requirements,different approaches and tools are used for the CMS software installation at different places.This presentation describes concepts and reactial solutions for a variety of ways of software distribution,with an emphasis on the CMS experience at Fermilab,Installation and usage of different models used for the production farm,for code development and for physics analysis are described.

  19. Hangout with CERN: Extra dimensions (S03E02)

    CERN Multimedia

    Kahle, Kate

    2013-01-01

    Authors of two of the most cited papers in physics for the past ten years, this hangout features special guest theorists Lisa Randall from Harvard University and Raman Sundrum from University of Maryland, who join CERN physicists to look at how the LHC experiments are investigating extra dimensions.Our host, physicist Steven Goldfarb connects from the ATLAS experiment control centre with physicist Christophe Clement from Stockholm University, Sweden and Taylor Bayouth a CERN Visitor from Los Angeles, with Achintya Rao monitoring questions on social media. Also joining the discussion is CMS experiment physicist Sam Harper from Rutherford Appleton Laboratory, UK.Recorded live on 25th April 2013.

  20. Quality assurance for CMS Tracker LV and HV Power Supplies

    CERN Document Server

    Costa, Marco; Sertoli, M; Trapani, P; Periale, L; Isabella, L; Landi, C; Lucchesi, A

    2007-01-01

    This work describes the quality assurance measurements that have been carried out on about 2000 Power Supply Units produced in CAEN technology for the CMS Silicon Tracker Detector. The automate procedure and the characteristics of the dedicated Test Fixture developed for this activity are described in details. Magnetic field tolerance and radiation hardness of Tracker power supply units is also discussed at length.

  1. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  2. Germany at CERN

    CERN Document Server

    2005-01-01

    From left to right: Maximilian Metzger, CERN's Secretary-General, Hermann Schunck, Director at the German Federal Ministry of Education and Research, and Robert Aymar, CERN's Director-General, talking to Wolfgang Holler from Butting, one of the companies at the "Germany at CERN" exhibition. Far right : Susanne-Corinna Langer-Greipl from BMBF, delegate to the CERN Finance Committee. For three days, CERN's Main Building was transformed into a showcase for German industry. Twenty-nine companies from sectors related to particle physics (electrical engineering, vacuum and low temperature technology, radiation protection, etc.) were here for the ninth "Germany at CERN" exhibition, organised by the German Federal Ministry of Education and Research (BMBF), which gave them the opportunity to meet scientists and administrators from the Laboratory. On 1 March the exhibition was visited by a German delegation headed by Dr Hermann Schunck, Director at BMBF.

  3. CERN Cricket club

    CERN Multimedia

    CERN Cricket club

    2015-01-01

    The CERN Cricket Club 2015 season begins soon, the first net practice is scheduled (weather permitting) for Thursday April 16th, at 18:00! The club is always looking for new players and newcomers will be made very welcome. Anyone who is interested in joining the club should sign up on our web site: http://cern.ch/Club-Cricket/ or turn up for net practice, which takes place each Thursday evening from April 16th (apart from CERN official holidays) until the end of September (starting at 18:00 to around 19:30) at the CERN Prévessin site: http://club-cricket.web.cern.ch/Club-Cricket/CERN-Ground.html The first match will be at home on Sunday, April 19th against Rhone CC from Lyon.

  4. German visits to CERN

    CERN Multimedia

    2007-01-01

    State secretary to Germany's Federal Ministry of Education and Research, Frieder Meyer-Krahmer, with CERN's Director-General Robert Aymar.On 21 February, Professor Frieder Meyer-Krahmer, State Secretary to Germany's Federal Ministry of Education and Research, came to CERN. He visited the ALICE and ATLAS experiments and the computing centre before meeting the CERN's Director-General, some German physicists and members of the top management. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Peter Frankenberg, and CERN's Director-General, Robert Aymar, signing an agreement on education. In the background: Sigurd Lettow, CERN's Director of Finance and Human Resources, and Karl-Heinz Meisel, Rector of the Fachhochschule Karlsruhe. The Minister of Science, Research and the Arts of the Baden-Württemberg regional government, Prof. Peter Frankenberg, visited CERN on 23 February. He was accompanied by the Rector of the Fachhochschule Karlsruhe, Prof. Karl-Heinz Meisel, and b...

  5. CERN and the environment

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    New webpages answer common questions about CERN and the environment.   One of the new public webpages dedicated to CERN and the environment. Do your neighbours ever ask you about CERN’s environmental impact? And about radiation in particular? If so, the answers to those questions can now be found online on a new set of public webpages dedicated to CERN and the environment. These pages, put together by the Occupational Health, Safety and Environmental Protection (HSE) unit and the groups responsible for CERN's site maintenance, contain a wealth of information on topics linked to the environment, such as biodiversity at CERN, waste management, ionising radiation, and water and electricity consumption. “CERN forms part of the local landscape, with its numerous sites and scientific activities. It’s understandable that people living nearby have questions about the impact of these activities and it’s important that we respond with complete transp...

  6. Young Artists@ CERN

    CERN Multimedia

    2004-01-01

    In view of 50th anniversary of CERN, about 20 young artists will be visiting CERN from 26 to 31 January to learn about the laboratory's research and the mysterious world of particle physics. The impressions they take home will be the main inspiration for the artwork they will then produce for an exhibition to be inaugurated in October 2004 as part of CERN's 50th anniversary celebration. We are looking for scientists who are interested in the Art-Science synergy and who can volunteer to discuss their work at CERN to these young artists during this week (25-31/01). Please contact renilde.vanden.broeck@cern.ch if you are interested. The project is called Young Artists@ CERN and for more information look at this website: http://www.hep.ucl.ac.uk/~andy/CERNart/

  7. CMS Thesis Award

    CERN Multimedia

    2004-01-01

    The 2003 CMS thesis award was presented to Riccardo Ranieri on 15 March for his Ph.D. thesis "Trigger Selection of WH → μ ν b bbar with CMS" where 'WH → μ ν b bbar' represents the associated production of the W boson and the Higgs boson and their subsequent decays. Riccardo received his Ph.D. from the University of Florence and was supervised by Carlo Civinini. In total nine thesis were nominated for the award, which was judged on originality, impact within the field of high energy physics, impact within CMS and clarity of writing. Gregory Snow, secretary of the awarding committee, explains why Riccardo's thesis was chosen, ‘‘The search for the Higgs boson is one of the main physics goals of CMS. Riccardo's thesis helps the experiment to formulate the strategy which will be used in that search.'' Lorenzo Foà, Chairperson of the CMS Collaboration Board, presented Riccardo with an commemorative engraved plaque. He will also receive the opportunity to...

  8. CERN - better than science fiction!

    CERN Multimedia

    2007-01-01

    From left to right: Allan Cameron (Production Designer), Sam Breckham (Location Manager), James Gillies (Head of Communication at CERN), Jacques Fichet (from the CERN audiovisual service), Rolf Landua (former spokesman of the ATHENA antihydrogen experiment at CERN and Head of CERN's Education Group), Ron Howard, and Renilde Vanden Broeck (CERN press officer).

  9. CERN Relay Race

    CERN Document Server

    CERN Running Club

    2010-01-01

    The CERN relay race will take place around the Meyrin site on Thursday 20 May, starting at 12.15. If possible, please avoid driving on the site during this 20-minute period. If you do meet runners while driving your car, please STOP until they have all passed. Thank you for your cooperation. Details on the route, and how to register your team for the relay race, can be found at: https://espace.cern.ch/Running-Club/CERN-Relay

  10. The CERN PC farm

    CERN Multimedia

    Serge Bellegarde

    2005-01-01

    Housed in the CERN Computer Centre, these banks of computers process and store data produced on the CERN systems. When the LHC starts operation in 2008, it will produce enough data every year to fill a stack of CDs 20 km tall. To handle this huge amount of data, CERN has also developed the Grid, allowing the processing power to be shared between computer centres around the world.

  11. Sharing resources@CERN

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The library is launching a 'sharing resources@CERN' campaign, aiming to increase the library's utility by including the thousands of books bought by individual groups at CERN. This will improve sharing of information among CERN staff and users. Photo 01: L. to r. Eduardo Aldaz, from the PS division, Corrado Pettenati, Head Librarian, and Isabel Bejar, from the ST division, read their divisional copies of the same book.

  12. An outlook of the user support model to educate the users community at the CMS Experiment

    CERN Document Server

    Malik, Sudhir

    2011-01-01

    The CMS (Compact Muon Solenoid) experiment is one of the two large general-purpose particle physics detectors built at the LHC (Large Hadron Collider) at CERN in Geneva, Switzerland. The diverse collaboration combined with a highly distributed computing environment and Petabytes/year of data being collected makes CMS unlike any other High Energy Physics collaborations before. This presents new challenges to educate and bring users, coming from different cultural, linguistics and social backgrounds, up to speed to contribute to the physics analysis. CMS has been able to deal with this new paradigm by deploying a user support structure model that uses collaborative tools to educate about software, computing an physics tools specific to CMS. To carry out the user support mission worldwide, an LHC Physics Centre (LPC) was created few years back at Fermilab as a hub for US physicists. The LPC serves as a "brick and mortar" location for physics excellence for the CMS physicists where graduate and postgraduate scien...

  13. Dear CERN Computing Community,

    CERN Multimedia

    2003-01-01

    This is to remind you that LXPLUS6 cluster will be switched off on: Friday May 30th 2003 12:00 CETPlease start using lxplus.cern.ch now to avoid unnecessary problems at the last minute. Note especially, that telnet and ftp to lxplus.cern.ch are not provided and will not work, instead secure protocols such as ssh and sftp should be used. Also LINUX6 resources in LXBATCH will no longer be available from the same date - Friday May 30th 2003 8:00 CET. See: http://cern.ch/plus/issues.html for other know issues. Vladimir Bahyl CERN/IT/FIO/FS

  14. Dear CERN Computing Community,

    CERN Multimedia

    2003-01-01

    This is to remind you that LXPLUS6 cluster will be switched off on: Friday May 30th 2003 12:00 CET Please start using lxplus.cern.ch now to avoid unnecessary problems at the last minute. Note especially, that telnet and ftp to lxplus.cern.ch are not provided and will not work, instead secure protocols such as ssh and sftp should be used. Also LINUX6 resources in LXBATCH will no longer be available from the same date - Friday May 30th 2003 8:00 CET. See: http://cern.ch/plus/issues.html for other know issues. Vladimir Bahyl CERN/IT/FIO/FS

  15. Integrity at CERN

    CERN Document Server

    Department, HR

    2015-01-01

    In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.

  16. Britain at CERN

    CERN Multimedia

    2000-01-01

    H. E. Mr Christopher Hulse, Ambassador of United Kingdom in Switzerland, CERN Director General Luciano Maiani, Sir David Wright, Chief Executive of British Trade International and Roger Cashmore, CERN Director of research visit the Britain at CERN exhibition. From 14 to 17 November 30 British companies exhibited leading edge technologies at CERN. This is Britain's 18th exhibition at CERN since 1968. Out of the 30 companies, which attended the Britain at CERN exhibition in 1998, 25 have received an order or a contract relating to CERN during the last two years. The exhibition was inaugurated on Tuesday by Sir David Wright, Chief Executive of British Trade International. He was accompanied by H.E. Mr Christopher Hulse CMG, OBE, Her Majesty's Ambassador to Switzerland, and Mr. David Roberts, Deputy Head of Mission and Director of Trade Promotion at the British Embassy in Bern. CERN Director-General, Professor Luciano Maiani, underlined the major contribution of British physicists to CERN, pointing out the fact ...

  17. Higgs Physics at CMS

    CERN Document Server

    Donato, Silvio

    2017-01-01

    The discovery of the Standard Model Higgs boson performed by the CMS and ATLAS collaborations during the LHC Run 1 has been an important success. This document is a short review of the search for the Higgs boson performed by the CMS collaboration during the LHC Run 1 and Run 2. In the first part, after a brief description of the Higgs boson production and decay channels, the Run-1 results are presented emphasizing the possible hints of New Physics. The main part of this document is devoted to the search for the Higgs boson with the 13 TeV data collected by the CMS experiment in 2015 and 2016, including the Standard Model searches as well as the Beyond Standard Model searches, such as the search for additional Higgs bosons and for resonant and non-resonant double Higgs boson production.

  18. The Latest from CMS

    CERN Multimedia

    2009-01-01

    CMS is on track to be ready for physics one month in advance of the LHC restart. The final installations are being completed and tests are being run to ensure that the experiment is as well prepared as possible to exploit sustained LHC operation throughout 2010. Physics week in Bologna, Italy, was a valuable time for CMS collaborators to discuss preparations for numerous physics analyses, as well as the performance of the detector during the recent data-taking period with cosmics (CRAFT 09). During this five-week exercise, more than 300 million cosmic events were recorded with the magnetic field on. This large data-set is being used to further improve the sub-detector alignment, calibration and performance whilst awaiting p-p collisions. Meanwhile, in the experimental cavern, Wolfram Zeuner, Deputy Technical Coordinator of CMS, reports "We are now very nearly closed up again. We are just doing the final clean-up work and are ready t...

  19. Distributed Analysis in CMS

    CERN Document Server

    Fanfani, Alessandra; Sanches, Jose Afonso; Andreeva, Julia; Bagliesi, Giusepppe; Bauerdick, Lothar; Belforte, Stefano; Bittencourt Sampaio, Patricia; Bloom, Ken; Blumenfeld, Barry; Bonacorsi, Daniele; Brew, Chris; Calloni, Marco; Cesini, Daniele; Cinquilli, Mattia; Codispoti, Giuseppe; D'Hondt, Jorgen; Dong, Liang; Dongiovanni, Danilo; Donvito, Giacinto; Dykstra, David; Edelmann, Erik; Egeland, Ricky; Elmer, Peter; Eulisse, Giulio; Evans, Dave; Fanzago, Federica; Farina, Fabio; Feichtinger, Derek; Fisk, Ian; Flix, Josep; Grandi, Claudio; Guo, Yuyi; Happonen, Kalle; Hernandez, Jose M; Huang, Chih-Hao; Kang, Kejing; Karavakis, Edward; Kasemann, Matthias; Kavka, Carlos; Khan, Akram; Kim, Bockjoo; Klem, Jukka; Koivumaki, Jesper; Kress, Thomas; Kreuzer, Peter; Kurca, Tibor; Kuznetsov, Valentin; Lacaprara, Stefano; Lassila-Perini, Kati; Letts, James; Linden, Tomas; Lueking, Lee; Maes, Joris; Magini, Nicolo; Maier, Gerhild; McBride, Patricia; Metson, Simon; Miccio, Vincenzo; Padhi, Sanjay; Pi, Haifeng; Riahi, Hassen; Riley, Daniel; Rossman, Paul; Saiz, Pablo; Sartirana, Andrea; Sciaba, Andrea; Sekhri, Vijay; Spiga, Daniele; Tuura, Lassi; Vaandering, Eric; Vanelderen, Lukas; Van Mulders, Petra; Vedaee, Aresh; Villella, Ilaria; Wicklund, Eric; Wildish, Tony; Wissing, Christoph; Wurthwein, Frank

    2009-01-01

    The CMS experiment expects to manage several Pbytes of data each year during the LHC programme, distributing them over many computing sites around the world and enabling data access at those centers for analysis. CMS has identified the distributed sites as the primary location for physics analysis to support a wide community with thousands potential users. This represents an unprecedented experimental challenge in terms of the scale of distributed computing resources and number of user. An overview of the computing architecture, the software tools and the distributed infrastructure is reported. Summaries of the experience in establishing efficient and scalable operations to get prepared for CMS distributed analysis are presented, followed by the user experience in their current analysis activities.

  20. 2 October 2012 - Egyptian Academy of Scientific Research and Technology President M. Al Sherbiny signing a protocol agreement with CERN Director-General R. Heuer, witnessed by Ambassador to the UN W. Bassim. This signature is followed by the signature of an MoU with ALICE and CMS Collaborations.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Where present: ALICE Collaboration: CP. Giubellino, F. Carminati, C. Decosse, and A. N. Tawfik CMS Collaboration: T. Camporesi A. Charkiewicz, A. De Roeck, A. Petrilli, A. Sharma with S. Aly, Y. Assran, M. Attia, R. Masod and A. Radi

  1. CERN stop-over for KEK and Fermilab Directors

    CERN Multimedia

    2001-01-01

    En route for a meeting of the International Committee for Future Accelerators, ICFA, held at Germany's DESY laboratory, the Directors of Japan's KEK laboratory and Fermilab in the United States had a stop-over at CERN last Wednesday 7 February. Dr Hirotaka Sugawara, Director General of Japan's high energy physics laboratory, KEK, visited the Antiproton Decelerator, AD. From left to right, Masaki Hori, member of the ASACUSA collaboration, John Eades, contact person for ASACUSA, Dr Hirotaka Sugawara, Werner Pirkl, the PS Division engineer responsible for the Radio Frequency Quadrupole decelerator in the foreground, and Kurt Hübner, CERN's Director of Accelerators. Dr Michael S. Witherell, Director of the Fermi National Accelerator Laboratory, Fermilab, visited construction sites for the LHC, ATLAS, and CMS. He is seen here with a module of the CMS hadronic calorimeter in building 186.

  2. TEDxCERN breaks the rules

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    On Friday, 9 October, TEDxCERN brought together 14 ‘rule-breakers’ to explore ideas that push beyond the boundaries of academia. They addressed a full house of 600 audience members, as well as thousands watching the event online.   TEDxCERN broke all the rules this year - starting with its choice of venue. The CMS construction hall at Point 5 was converted into a gala-centre, complete with soundstage and dance floor. It was a stunning transformation that also brought to life the hall’s to-scale photo of the CMS detector. The image served as the back-drop to a light-projection show entitled “Turbulence” by artist François Moncarey (see the video). From star-singer Imogen Heap to CERN’s own Edda Gschwendtner, the line-up of speakers was as diverse as it was educational. They discussed using tangible interfaces that allow human interaction via e-devices and the potential of 3D technology as a means of revo...

  3. Heavy Ions in CMS

    Directory of Open Access Journals (Sweden)

    Fernandez Perez Tomei Thiago Rafael

    2013-11-01

    Full Text Available The capabilities of the CMS experiment allow to investigate various hard probes, as well as bulk particle production and collective phenomena, using the calorimetry, muon and tracking systems covering a large range in pseudorapidity. In this paper selected results of the CMS experiment from p-p and Pb-Pb collisions at √sNN = 2.76 TeV are discussed. First results from the recent p-Pb Run at √sNN = 5.02 TeV are also be presented.

  4. First Physics at CMS

    CERN Document Server

    Mulders, Martijn

    2009-01-01

    The year 2008 marked the completion of the Large Hadron Collider (LHC) and the LHC detectors. The construction and commissioning of these scientific instruments, unprecedented in scale, complexity and precision, involved a number of challenging physics measurements and analyses, even before the first proton-proton collisions. This report highlights a selection of such physics measurements for and by the Cosmic Muon Solenoid (CMS) detector. These first physics analyses at CMS illustrate the depth of our understanding of the detector and demonstrate its readiness for data taking.

  5. CMS Comic Book

    CERN Multimedia

    Gill, Karl Aaron

    2006-01-01

    Titled "CMS Particle Hunter," this colorful comic book style brochure explains to young budding scientists and science enthusiasts in colorful animation how the CMS detector was made, its main parts, and what scientists hope to find using this complex tool. Book invites young students to get involved in particle physics themselves to join the adventure. Written by Dave Barney and Aline Guevera. Layout and drawings by Eric Paiharey and Frederic Vignaux. Available in English, French, German, Italian, Spanish and Portuguese. Year Produced: 2006. Update: September 2013.

  6. Automating the CMS DAQ

    CERN Document Server

    Bauer, Gerry; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Darlea, Georgiana Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez Ceballos, Guillelmo; Gomez-Reino Garrido, Robert; Hartl, Christian; Hegeman, Jeroen Guido; Holzner, Andre Georg; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; Nunez Barranco Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Ozga, Wojciech Andrzej; Paus, Christoph Maria Ernst; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Spataru, Andrei Cristian; Stieger, Benjamin Bastian; Sumorok, Konstanty; Veverka, Jan; Wakefield, Christopher Colin; Zejdl, Petr

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90\\% and to even improve it to 95\\% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  7. Model of CMS Tracker

    CERN Multimedia

    Breuker

    1999-01-01

    A full scale CMS tracker mock-up exposed temporarily in the hall of building 40. The purpose of the mock-up is to study the routing of services, assembly and installation. The people in front are only a small fraction of the CMS tracker collaboration. Left to right : M. Atac, R. Castaldi, H. Breuker, D. Pandoulas,P. Petagna, A. Caner, A. Carraro, H. Postema, M. Oriunno, S. da Mota Silva, L. Van Lancker, W. Glessing, G. Benefice, A. Onnela, M. Gaspar, G. M. Bilei

  8. Automating the CMS DAQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  9. CMS Tracker operational experience

    CERN Document Server

    Fiori, Francesco

    2016-01-01

    The CMS Tracker was repaired, recalibrated and commissioned successfully for the second run of Large Hadron Collider. In 2015 the Tracker performed well with improved hit efficiency and spatial resolution compared to Run I. Operations successfully transitioned to lower temperatures after commissioning environmental control and monitoring. This year the detector is expected to withstand luminosities that are beyond its design limits and will need a combined effort of both online and offline team to yield the high quality data that is required to reach our physics goals. We present the experience gained during the second run of the LHC and show the latest performance results of the CMS Tracker.

  10. ATLAS/CMS Upgrades

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00370685; The ATLAS collaboration

    2016-01-01

    Precision studies of the Standard Model (SM) and the searches of the physics beyond the SM are ongoing at the ATLAS and CMS experiments at the Large Hadron Collider (LHC). A luminosity upgrade of LHC is planned, which provides a significant challenge for the experiments. In this report, the plans of the ATLAS and CMS upgrades are introduced. Physics prospects for selected topics, including Higgs coupling measurements, Bs,d -> mumu decays, and top quark decays through flavor changing neutral current, are also shown.

  11. 15 June 2009 - President of the Republic of Mozambique A. Guebuza visiting CMS experimental area with Non Member-State Relations Adviser J. Ellis, Collaboration Spokesperson T. Virdee and Ambassador to Switzerland and Permenant Representative of the Republic of Mozambique to the United Nations Office and the World Trade Organization in Geneva F. V. Vehlo Rodrigues.

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Tirage 1-3:H.E. A. Guebuza with Adviser for Non-Member States, J. Ellis and CMS Spokesperson, T. Virdee in CMS experimental area Tirage 4:H.E. A. Guebuza with CERN Director-General, R. Heuer Tirage 5-8: Presentation of CERN's activities by R. Heuer Tirage 9-12:H.E. A. Guebuza with Coordinator for External Relations,F. Pauss and R. Heuer Tirage 13-30:visiting CMS underground experimental area

  12. CERN News The Higgs or not the Higgs? Spin will tel... PART 1

    CERN Multimedia

    CERN Visual Media Office; JACQUES FICHET

    2012-01-01

    Following the announcement of the discovery of a new particle made at CERN on July 4, this piece of videonews from CERN explains what is missing to declare that the new boson found at the LHC is actually the Higgs or not and that to finally answer that question precise measurements of the spin of the newly found particle have to be made. Contains interviews to CMS Higgs Searches co-convener, Christopher Paus and theoretician John Ellis.

  13. Analysis of petal longterm test data for the CMS-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heydhausen, Dirk

    2008-12-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva will start end of 2008. One of the experiments at the LHC is the multipurpose detector CMS (Compact Muon Solenoid). A key part of the CMS detector is the tracking system, that is composed of a silicon pixel detector forming the innermost part, surrounded by silicon strip sensors. Currently, it is the largest silicon detector in the world with an active area of 198 m{sup 2}. The strip tracker itself consists of four subdetectors. One of these are the tracker end caps (TEC) with an active area of 82 m{sup 2}. Besides this large aperture, their position in the forward region plays a key role for physics analysis due to the fact that many of the interesting events are expected to be boosted in the forward region (pp collider). This area splits up into 10,288 sensors with 3,988,765 channels in total. In several steps the modules constructed and tested before being mounted onto the final substructures (petals). An important longterm test has been performed which qualifies the petals to be installed into the detector. The focus of the present work is in the longterm test. The test procedure is described. A method for identification and classification of defect channels is presented. This method has been developed based on the test results of a previous test ('ARC-test'), which has examined each module before the assembly onto the petals. A cross-check has been performed to compare the results with data from a subsequent test ('sector-test'), that is performed after the petals have been integrated into the TEC. A good agreement shows the consistency of the presented results. With the help of this method a channel defect rate of approximately 0.09% can be measured. Further defects like 'dead' components became visible after integration of the petals into the TEC and raised this number up to 0.33% defect and non-recoverable channels. (orig.)

  14. Webinar on PTM with CMS

    Science.gov (United States)

    2013-12-04

    Introduction to CMS Coastal and Hydraulics Laboratory Integrated waves, current, and sediment transport model in the Surface-water Modeling System ... CMS US Army Corps of Engineers BUILDING STRONG® PTM Webinar on PTM with CMS Mitchell E. Brown Civil Engineering Technician Honghai Li...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Webinar on PTM with CMS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  15. The winding line for the CMS reinforced conductor

    CERN Document Server

    Fabbricatore, P; D'Urzo, C; Farinon, S; Gaddi, A; Levesy, B; Loche, L; Musenich, R; Rondeaux, F; Penco, R; Valle, N

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the length is 12.5 m and the free bore is 6 m. The use of a reinforced conductor for the CMS coil required a sustained activity of development at industrial level, to understand how to handle, to pre-bend and to wind the conductor with an inner winding technique. The winding line was designed and constructed according to this experience. The working principles of the line are under test through the winding of a prototype of a CMS coil module. The prototype has the same radius of a CMS module (6900 mm outer diameter), but a shorter axial length (670 mm against 2500 for the module). The critical operations are related to the accurate pre-bending of the conductor, the positioning of the turns into the winding, the axial compaction, and the correct handling of 50-ton windings. (9 refs).

  16. Detector Control System and Efficiency Performance for CMS RPC at GIF++

    CERN Document Server

    Gul, Muhammad; Cimmino, A; Crucy, S; Fagot, A; Rios, A A O; Tytgat, M; Zaganidis, N; Aly, S; Assran, Y; Radi, A; Sayed, A; Singh, G; Abbrescia, M; Iaselli, G; Maggi, M; Pugliese, G; Verwilligen, P; Doninck, W V; Colafranceschi, S; Sharma, A; Benussi, L; Bianco, S; Piccolo, D; Primavera, F; Bhatnagar, V; Kumari, R; Mehta, A; Singh, J; Ahmad, A; Asghar, M I; Muhammad, S; Awan, I A; Hoorani, H R; Ahmed, W; Shahzad, H; Shah, M A; Cho, S W; Choi, S Y; Hong, B; Kang, M H; Lee, K S; Lim, J H; Park, S K; Kim, M; Goutzvitz, M; Grenier, G; Lagarde, F; Estrada, C U; Pedraza, I; Severiano, C B; Carrillo Moreno, S; Vazquez Valencia, F; Pant, L M; Buontempo, S; Cavallo, N; Esposito, M; Fabozzi, F; Lanza, G; Lista, L; Meola, S; Merola, M; Orso, I; Paolucci, P; Thyssen, F; Braghieri, A; Magnani, A; Montagna, P; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Ban, Y; Qian, S J; Choi, M; Choi, Y; Goh, J; Kim, D; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Lomidze, D; Bagaturia, I; Avila, C; Cabrera, A; Sanabria, J C; Crotty, I; Vaitkus, J

    2016-01-01

    In the framework of the High Luminosity LHC upgrade program, the CMS muon group built several different RPC prototypes that are now under test at the new CERN Gamma Irradiation Facility (GIF++). A dedicated Detector Control System has been developed using the WinCC-OA tool to control and monitor these prototype detectors and to store the measured parameters data.

  17. Quality Control of CMS - GE1/1 Muon Detector Upgrade

    CERN Document Server

    Salem, Safaa

    2016-01-01

    This report summarizes the project I get assigned to as a CERN summer student from 27th of June 2016 to 19th of August 2016. It is mainly focused on Quality Control of CMS GE1/1 muon detector upgrade.

  18. Performance of the gas gain monitoring system of the CMS RPC muon detector

    CERN Document Server

    Benussi, L; Passamonti, L; Piccolo, D; Pierluigi, D; Raffone, G; Russo, A; Saviano, G; Ban, Y; Cai, J; Li, Q; Qian, S; Wang, D; Xu, Z; Zhang, F; Choi, Y; Kim, D; Choi, S; Hong, B; Kang, J W; Kang, M; Kwon, J H; Lee, K S; Park, S K; Pant, L; Singh, V B J; Kumar, A M R; Kumar, S; Chand, S; Singh, A; Bhandari, V K; Cimmino, A; Ocampo, A; Thyssen, F; Tytgat, M; Van Doninck, W; Ahmad, A; Muhamma, S; Shoaib, M; Hoorani, H; Awan, I; Ali, I; Ahmed, W; Asqhar, M I; Shahzad, H; Sayed, A; Ibrahim, A; Ali, S; Ali, R; Radi, A; Elkafrawi, T; Sharma, A; Colafranceschi, S; Abbrescia, M; Verwilligen, P; Meola, S; Cavallo, N; Braghieri, A; Montagna, P; Riccardi, C; Salvini, P; Vitulo, P; Dimitrov, A; Hadjiiska, R; Litov, L; Pavlov, B; Petkov, P; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Sultanov, G; Vutova, M; Stoykova, S; Ibarguen, H S; Pedraza Morales, M I; Bernardino, S Carpinteyro; Bagaturia, I

    2015-01-01

    The RPC muon detector of the CMS experiment at the LHC (CERN, Geneva, Switzerland) is equipped with a Gas Gain Monitoring (GGM) system. A report on the stability of the system during the 2011-2012 data taking run is given, as well as the observation of an effect which suggests a novel method for the monitoring of gas mixture composition.

  19. Link System Performance at the First Global Test of the CMS Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Arce, P.; Calvo, E.; Figueroa, C.F.; Rodrigo, T.; Vila, I.; Virto, A.L. [Universidad de Cantabria (Spain); Barcala, J.M.; Fernandez, M.G.; Ferrando, A.; Josa, M.I.; Molinero, A.; Oller, J.C. [CIEMAT, Madrid (Spain)

    2001-07-01

    A test of components and a global test of the CMS alignment system was performed at the 14 hall of the ISR tunnel at CERN along Summer 2000. Positions are reconstructed and compared to survey measurements. The obtained results from the measurements of the Link System are presented here. (Author) 12 refs.

  20. Construction and test of the final CMS Barrel Drift Tube Muon Chamber prototype

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Benitez, M.; Alberdi, J.; Arneodo, M.; Banicz, K.; Benettoni, M.; Benvenuti, A.; Bethke, S.; Cerrada, M. E-mail: cerrada@ciemat.es; Cirio, R.; Colino, N.; Conti, E.; Dallavalle, M.; Daniel, M.; Dattola, D.; Daudo, F.; De Giorgi, M.; Dosselli, U.; Fanfani, A.; Fanin, C.; Fouz, M.C.; Gasparini, F.; Gasparini, U.; Giacomelli, P.; Giordano, V.; Gonella, F.; Grandi, C.; Guaita, P.; Guerzoni, M.; Lacaprara, S.; Lippi, I.; Marcellini, S.; Marin, J.; Martinelli, R.; Maselli, S.; Meneguzzo, A.; Migliore, E.; Mocholi, J.; Monaco, V.; Montanari, A.; Montanari, C.; Odorici, F.; Oller, J.C.; Paoletti, S.; Passaseo, M.; Pegoraro, M.; Peroni, C.; Puerta, J.; Reithler, H.; Romero, A.; Romero, L.; Ronchese, P.; Rossi, A.M.; Rovelli, T.; Sacchi, R.; Salicio, J.M.; Staiano, A.; Steinbeck, T.; Torassa, E.; Travaglini, R.; Ventura, L.; Ventura, S.; Vitelli, A.; Voetee, F.; Wegner, M.; Willmott, C.; Zotto, P.; Zumerle, G

    2002-03-21

    A prototype of the CMS Barrel Muon Detector incorporating all the features of the final chambers was built using the mass production assembly procedures and tools. The performance of this prototype was studied in a muon test beam at CERN and the results obtained are presented in this paper.