WorldWideScience

Sample records for cermets

  1. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  2. Oxidation-resistant cermet

    Science.gov (United States)

    Phillips, W. M.

    1977-01-01

    Chromium metal alloys and chromium oxide ceramic are combined to produce cermets with oxidation-resistant properties. Application of cermets includes use in hot corrosive environments requiring strong resistive materials.

  3. Cermet fuel thermal conductivity

    International Nuclear Information System (INIS)

    Cermets have been proposed as a candidate fuel for space reactors for several reasons, including their potential for high thermal conductivity. However, there is currently no accepted model for cermet fuel thermal conductivity. The objective of the work reported in this paper was to (a) investigate the adequacy of existing models; (b) develop, if necessary, an improved model; and (c) provide recommendations for future work on cermet thermal conductivity. The results from this work indicate that further work is needed to accurately characterize cermet fuel thermal conductivity. It was determined that particle shape and orientation have a large impact on cermet thermal conductivity

  4. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. The concept evolved in the 1960's with the objective of developing a reactor design which could be used for a wide range of mobile power generation systems including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests and in-reactor irradiation tests using cermet fuel were carried out by General Electric in the 1960's as part of the 710 Development Program and by Argonne National laboratory in a subsequent activity. Cermet fuel development programs are currently underway at Argonne National laboratory and Pacific Northwest Laboratory as part of the Multi-Megawatt Space Power Program. Key features of the cermet fueled reactor design are 1) the ability to achieve very high coolant exit temperatures, and 2) thermal shock resistance during rapid power changes, and 3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, there is a potential for achieving a long operating life because of 1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and 2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core

  5. Process for fabrication of cermets

    Science.gov (United States)

    Landingham, Richard L.

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  6. Cermet fuel reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  7. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs

  8. Functionally graded cermets

    Directory of Open Access Journals (Sweden)

    L. Jaworska

    2006-04-01

    Full Text Available Purpose: Cermets have very good plasticity and high hardness. Functionally graded cermets secure obtaining of cutting tools with hard wear resistance surface layer and ductile body frame. A new FGM was obtained using P/M method.Design/methodology/approach: Materials were obtained using free sintering at vacuum and the high temperature-high pressure sintering method. Functionally graded cermets have more amount of hard phase in the surface layer and lower participation of this phase in the body frame. FGMs were prepared by the layers pressing method and the centrifugal deposition method.Findings: Material with 55 wt.% of TiC and 45 wt.% of (Ni,Mo was prepared. The phase’s composition of this material was analysed. The ring structure of material and complex carbides formation was confirmed. The gradient of the phase composition and hardness measurement are presented. Phase composition of FGM strongly depend on conditions of centrifugal sedimentation process: duration, rotation speed, solid content, dispersive liquids. The centrifugal deposition process of powders forming guarantees gradient phase composition for materials obtaining the powder metallurgy methods. The FGM obtained by powders forming method should be sintered using pressure processes in a closed containers (or special assembly because of materials high porosity which is a result of various chemical contents of this same material parts.Practical implications: Due to their low chemical affinity to steel and the resistance for high temperatures oxidation, cermets have better cutting properties than carbides. Application of cermet inserts guarantees the high quality of machined surface (low roughness. Cermets could be used in “dry cutting” processes.Originality/value: The centrifugal deposition method for powders with phases content gradient forming is original value.

  9. Cermets from molten metal infiltration processing

    Energy Technology Data Exchange (ETDEWEB)

    Landingham, Richard L.

    2013-09-10

    New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.

  10. Cermets from molten metal infiltration processing

    Science.gov (United States)

    Landingham, Richard Lee

    2012-09-18

    New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.

  11. Hafnium carbide cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Dong-Ik, Ch.; Eun-Pyo, K.

    Praha: Czechoslovak association for crystal growth, 2008 - (Nitsch, K.; Rodová, M.), s. 8-9 ISBN 978-80-254-0864-3. [Development of Materials Science in Research and Education/18th./. Hnanice (CZ), 02.09.2008-05.09.2008] Institutional research plan: CEZ:AV0Z20430508 Keywords : Hafnium carbide * tungsten * cermets * plasma spraying * hot pressing, Subject RIV: BL - Plasma and Gas Discharge Physics

  12. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  13. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets. PMID:25958611

  14. Direct metal brazing to cermet feedthroughs

    International Nuclear Information System (INIS)

    An improved method for brazing metallic components to a cermet surface in an alumina substrate eliminates the prior art metallized layer over the cermet via and adjoining alumina surfaces. Instead, a nickel layer is applied over the cermet surface only and metallic components are brazed directly to this nickel coated cermet surface. As a result, heretofore unachievable tensile strength joints are produced. In addition, cermet vias with their brazed metal components can be spaced more closely in the alumina substrate because of the elimination of the prior art metallized alumina surfaces

  15. Cermet crucible for metallurgical processing

    Science.gov (United States)

    Boring, Christopher P.

    1995-01-01

    A cermet crucible for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.

  16. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  17. Solar Absorptance of Cermet Coatings Evaluated

    Science.gov (United States)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  18. Cermet materials, self-cleaning cermet filters, apparatus and systems employing same

    Science.gov (United States)

    Kong, Peter C.

    2005-07-19

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  19. -Based Cermet Inert Anodes for Aluminum Electrolysis

    Science.gov (United States)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  20. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM2Cu3O(6.5+x)wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  1. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  2. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  3. Cermet fuels for space power systems

    International Nuclear Information System (INIS)

    A refractory-metal matrix, UN-fueled cermet is a very promising fuel candidate for a wide range of multi-megawatt space reactor systems, e.g., steady-state, flexible duty-cycle, or bimodal, single- or two-phase liquid-metal cooled reactors, or thermionic reactors. Cermet fuel is especially promising for reactor designs that require operational strategies which incorporate rapid power changes because of its anticipated capability to withstand thermal shock

  4. Cermet Coatings for Solar Stirling Space Power

    Science.gov (United States)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.

  5. Inverted amorphous silicon solar cell utilizing cermet layers

    Science.gov (United States)

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  6. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  7. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  8. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  9. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  10. Evaluation of Cermet Fuels Test Data

    International Nuclear Information System (INIS)

    Test results characterizing ceramic-metallic (cermet) fuels are available from fuel development programs conducted for the ANP project, the 710 reactor program and the Argonne National Laboratory (ANL) nuclear rocket program. There is some overlap in the materials candidates tested in these programs. Test conditions were however significantly different due to wide variation in intended applications of these high temperature cermet fuels. This paper provides an overview of these development efforts, define (where possible) the damage mechanisms thought to be responsible for fuel operating limitations, and identify the fundamental physical mechanisms thought to be responsible. In more recent years, a new form of cermet fuels based on uranium-zirconium carbonitride (U,Zr)CN was developed and tested by the Innovative Nuclear Space Power and Propulsion Institute, University of Florida, and the Scientific Research Associates 'LUTCH' of Russia. The most significant outcome of the joint INSPILUTCH program was the establishment of the high temperature characteristics of the uranium-zirconium carbonitride, (U,Zr)CN and its long term compatibility with the metallic matrix. The improved features of uranium-zirconium carbonitride include chemical compatibility with tungsten matrix and stability at temperatures as high as 3300 K, high uranium density, and high thermal conductivity. The paper also presents a brief summary of the (U,Zr)CN base cermet fuel test results. (authors)

  11. Methods of fabricating cermet materials and methods of utilizing same

    Science.gov (United States)

    Kong, Peter C.

    2006-04-04

    Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an aluminia phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.

  12. A review of cermet-based spectrally selective solar absorbers

    OpenAIRE

    Cao, Feng; McEnaney, Kenneth; Chen, Gang; Ren, Zhifeng

    2013-01-01

    Spectrally selective solar absorbers harvest solar energy in the form of heat. Solar absorbers using cermet-based coatings demonstrate a high absorptance of the solar spectrum and a low emittance in the infrared (IR) regime. Extensive work has been done to optimize cermet-based solar absorbers to achieve high performance by exploring different cermet (ceramic–metal composite) materials and film configurations through different preparation techniques such as electrodeposition, sputtering, puls...

  13. Magnesium Cermets and Magnesium-Beryllium Alloys

    International Nuclear Information System (INIS)

    The paper describes some results of work on the development of magnesium-magnesium oxide cermets and of super heat-resistant magnesiumberyllium alloys produced by powder metallurgical methods. The introduction of even a minute quantity of finely dispersed magnesium oxide into magnesium results in a strengthening of the material, the degree of which increases with increased magnesium oxide concentration, although variation of this concentration within the limits of 0.3 to 5 wt.% has a comparatively slight effect on the corresponding variation in the short-term strength over the whole range of temperatures investigated. At 20oC, in the case of the cermets, σβ = 28 to 31 kg/mm2 and δ = 3 .5 to 4.5%; at 500oC σβ = 2.6 to 3.2 kg/mm2 and δ =30 to 40%. The positive effect of the finely dispersed oxide phase is particularly evident in protracted tests. For magnesium cermets, σ (300)/100 = 2.2 kg/mm2. Characteristic of the mixtures is the high thermal stability of the strength properties, linked chiefly with the thermodynamic stability of the strength-giving oxide phase in the metal matrix. The use of powder metallurgical methods has yielded super heat-resistant magnesium-beryllium alloys containing heightened concentrations of beryllium (PMB alloys). In their strength characteristics PMB alloys are close to Mg-MgO cermets, but the magnesium-beryllium alloys have a degree and duration of resistance to high temperature oxidation which exceeds the corresponding qualities of the magnesium alloys at present known. Thus, in air of 580oC, PMB alloys with 2 to 5% beryllium maintain a high resistance to oxidation for a period of over 12000 to 14000 h. This long-term heat resistance is chiefly a result of the amount of beryllium in the alloy, and increases with increasing beryllium content. PMB alloys are also marked by high resistance to short bursts of overheating. Magnesium cermets and magnesium-beryllium alloys, with their enhanced high-temperature stability, are capable

  14. Cermet-fueled reactors for advanced space applications

    International Nuclear Information System (INIS)

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel were carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper

  15. Some physics aspects of cermet and ceramic fast systems

    International Nuclear Information System (INIS)

    The characteristics of a system using an iron-based oxide cermet as fuel material are discussed. A transport theory investigation to develop methods of predicting the effect of core heterogeneity on reactivity and flux distribution is described. Some preliminary calculations are also given of resonance self-shielding and Doppler temperature effects in a cermet system. (author)

  16. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.

    Science.gov (United States)

    An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B

    2012-12-01

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature. PMID:23151148

  17. Fabrication and thermal conductivity of boron carbide/copper cermet

    International Nuclear Information System (INIS)

    Studies on fabrication and thermal conductivity of B4C/Cu cermet were made to obtain high performance neutron absorber materials for Liquid Metal-cooled Fast Breeder Reactor (LMFBR). A mixed powder of B4C and Cu was mechanically blended at high speed thereby a coating layer of Cu was formed on the surface of B4C powder. Then the B4C powder with Cu coating was hot pressed at temperatures from 950 to 1,050degC to form a B4C cermet. A high density B4C/Cu cermet with 70 vol% of B4C and relative density higher than 90% was successfully fabricated. In spite of the low volume fraction of Cu, the B4C/Cu cermet exhibited high thermal conductivity which originated from the existence of continuous metallic phase Cu in B4C/Cu cermet. (author)

  18. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  19. Relationship between Magnetic and Mechanical Properties of Cermet Tools

    International Nuclear Information System (INIS)

    The commercial cermet cutting tools consist of multi-carbide and a binder metal of iron group, such as cobalt and nickel which are ferromagnetic. In this paper, a new approach to evaluate the mechanical properties of TiCN based cermet by magnetic properties were studied in relation to binder content and sintering conditions. The experimental cermet was prepared using commercial composition with the other binder contents by PM process. It was found that the magnetic properties of the sintered cermets remarkably depended on the microstructure and the total carbon content. The magnetic saturation was proportional to increment of coercive force. At high carbon content in sintered cermet, the magnetic saturation was increased by decreasing the concentration of solutes such as W, Mo, Ti in Co-Ni binder. As the coercive force increases, the hardness usually increases. The strength and toughness of the cermet also increased with increasing the magnetic saturation. The measurement of magnetic properties made it possible to evaluate the mechanical properties in the cermet cutting tools

  20. Cermet Spent Nuclear Fuel Casks and Waste Packages

    International Nuclear Information System (INIS)

    Multipurpose transport, aging, and disposal casks are needed for the management of spent nuclear fuel (SNF). Self-shielded cermet casks can out-perform current SNF casks because of the superior properties of cermets, which consist of encapsulated hard ceramic particulates dispersed in a continuous ductile metal matrix to produce a strong high-integrity, high-thermal conductivity cask. A multi-year, multinational development and testing program has been developing cermet SNF casks made of steel, depleted uranium dioxide, and other materials. Because cermets are the traditional material of construction for armor, cermet casks can provide superior protection against assault. For disposal, cermet waste packages (WPs) with appropriate metals and ceramics can buffer the local geochemical environment to (1) slow degradation of SNF, (2) reduce water flow though the degraded WP, (3) sorb neptunium and other radionuclides that determine the ultimate radiation dose to the public from the repository, and (4) contribute to long-term nuclear criticality control. Finally, new cermet cask fabrication methods have been partly developed to manufacture the casks with the appropriate properties. The results of this work are summarized with references to the detailed reports. (authors)

  1. Heterogeneous composite bodies with isolated lenticular shaped cermet regions

    Science.gov (United States)

    Sherman, Andrew J.

    2009-12-22

    A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice the average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.

  2. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  3. Investigation of Impact Resistance of Protective Barriers Made from Cermets

    Science.gov (United States)

    Ischenko, A. N.; Tabachenko, A. N.; Afanasieva, S. A.; Belov, N. N.; Burkin, V. V.; Martsunova, L. S.; Rogaev, K. S.; Yugov, N. T.

    2016-01-01

    Ceramic-metal materials (cermets) based on titanium diboride and boron carbide are designed and produced by the method of self-propagating high-temperature synthesis, with the pressure applied to the combustion products. The data, obtained by an experimental-theoretical investigation of impact resistance of protective barriers containing the above-mentioned materials in collisions with a spherical steel projectile, are presented. A better impact resistance of TiB2 + B4C cermets compared to that of Al2O3- ceramics is demonstrated. A possibility of prediction calculations of impact resistance of the specimens containing cermets in the range of collision rates under study is shown.

  4. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mixed oxide (MOX) (U,Pu)O2, and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO2), where PuO2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO2/PuO2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  5. Mechanical behaviour of U3O8-Al cermets

    International Nuclear Information System (INIS)

    Homogeneous, high density U3O8-Al cermets, containing between 5 W% and 55 Wt% of U3ω8 were fabricated using hot swaging and powder metallurgy technics. Tensile tests were performed at room temperature on specimens obtained from the cermets fabricated. The results show that the ultimate tensile strength (UTS) and elongation to fracture decrease with increasing U3O8 in the cermet. The UTS is shown to be proportional to the minimum matrix load bearing cross-sectional area. The main influence of an increase in the content of U3O8 in the cermet appears to be the decrease in the minimum matrix, load bearing cross-section. (Author)

  6. A cermet fuel reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk

  7. Cermet anode compositions with high content alloy phase

    Science.gov (United States)

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  8. Cermet-fueled space reactor for multimegawatt power

    International Nuclear Information System (INIS)

    A bimodal, cermet-fueled, nuclear space power system which provides 10 MWe of power for long-term, continuous operation and 500 MWe of power for burst operation is described. The cermet fuel for the nuclear system consists of a tungsten-urania, hexagonal matrix which is characterized by high strength at elevated temperatures and a high thermal conductivity. High-temperature qualification tests for the cermet fuel were carried out in the 1960s. The results of this program are utilized as a starting point for the conceptual design of a bimodal configuration with coolant exit temperatures exceeding 2400 K and a power density greater than 2400 W/cu cm. It is concluded that with an aggressive development program the cermet-fueled nuclear power system can be utilized to meet the multimegawatt requirements for high temperatures, high power densities, and long lifetimes

  9. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  10. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  11. Sintering, Microstructure, and Electrical Conductivity of Zirconia-Molybdenum Cermet

    Science.gov (United States)

    Guo, Yanling; Tang, Lei; Zhang, Jieyu

    2015-08-01

    Monolithic zirconia-molybdenum ( m-ZrO2/Mo) cermets of different compositions (5-40 vol.% Mo) and different initial Mo particles sizes (0.08-13 μm) were prepared by traditional powder metallurgy process. The influences of metal content and initial particle sizes on the densification behavior, microstructure, and electrical conductivity of the cermets were studied. A percolation threshold value was obtained about 17.1 vol.% molybdenum fraction, above which a sharp increase in the electrical conductivity was observed. The temperature dependence of the electrical conductivity of cermets was studied. The cermet containing 5 vol.% Mo showed the ionic nature of the conductivity, while the metallic nature was observed in the samples of Mo fraction up to 16 vol.%. The activation of conductivity for ionic type of conductivity and the temperature coefficient of resistivity as well as the effect of porosity on electronic type conductivity are discussed.

  12. Thoria-based cermet nuclear fuel : cermet fabrication and behavior estimates

    International Nuclear Information System (INIS)

    Cermet nuclear fuels have been demonstrated to have significant potential to enhance fuel performance because of low internal fuel temperatures and low stored energy. The combination of these benefits with the inherent proliferation resistance, high burnup capability, and favorable neutronic properties of the thorium fuel cycle produces intriguing options for advanced nuclear fuel cycles. This paper describes aspects of a Nuclear Energy Research Initiative (NERI) project with two primary goals: (1) evaluate the feasibility of implementing the thorium fuel cycle in existing or advanced reactors using a zirconium-matrix cermet fuel, and (2) develop enabling technologies required for the economic application of this new fuel form. Critical elements in the demonstration of this new fuel form include developing low-cost fabrication methods and characterizing the cermet properties and important performance parameters. A powder-in-tube drawing and heat treatment process is being evaluated as an alternative to hot extrusion. In this method, zirconium metal and ceramic microspheres are mixed, poured into a Zircaloy shell, and compacted into simulated fuel pins. Important processing variables being evaluated include the amount of compaction required to achieve a desired matrix density and the inter-drawing thermal treatment temperature required to achieve adequate matrix fusion and grain growth

  13. Neutron sources of palladium-252Cf oxide cermet wire

    International Nuclear Information System (INIS)

    Palladium-252Cf oxide cermet has been developed as a versatile, safe source form for 252Cf with low contamination potential. Developmental wire containing 1.85 mg of 252Cf has been sold in three orders to U. S. commercial encapsulators. Bare palladium-252Cf oxide cermet wire containing 252Cf concentrations of 5, 50, or 500 μg/in. is expected to be offered for general sale in the near future. (U.S.)

  14. Development and application of high strength ternary boride base cermets

    International Nuclear Information System (INIS)

    Reaction boronizing sintering is a novel strategy to form a ternary boride coexisting with a metal matrix in a cermet during liquid phase sintering. This new sintering technique has successfully developed world first ternary boride base cermets with excellent mechanical properties such as Mo2FeB2, Mo2NiB2 and WCoB base ones. In these cermets Mo2FeB2 and Mo2NiB2 base ones consist of a tetragonal M 3B2 (M: metal)-type complex boride as a hard phase and a transition metal base matrix. The cermets have already been applied to wear resistant applications such as injection molding machine parts, can making tools, and hot copper extruding dies, etc. This paper focuses on the characteristics, effects of the additional elements on the mechanical properties and structure, and practical applications of the ternary boride base cermets. - Graphical abstract: TRS and hardness of Ni-5B-51Mo-17.5Cr and Ni-5B-51Mo-12.5Cr-5V-xMn mass% cermets as functions of Mn content (Fig. 17)

  15. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  16. Anisotropy of thermal expansion and electric resistance of cermet germanium telluride

    International Nuclear Information System (INIS)

    Anisotropies of thermal expansion α and electric resistance ρ of cermet germanium telluride were investigated depending on pressing conditions. It is shown that anisotropy of cermet germanium telluride depends sufficiently on pressing conditions with respect to thermal expansion and electric resistance. It was established that anisotropy of the cermet germanium telluride was strongly affected by pressing force and temperature. Anisotropy of the cermet germanium telluride also depends with respect to α and ρ on the material and size of the mould

  17. The microstructure of (Nb,Ti)C-35Ni(Y2O3) cermet

    International Nuclear Information System (INIS)

    The microstructure of (Nb,Ti)C-35Ni (Y2O3) cermet prepared via hot isostatic pressing (HIP) is observed by transmission electron microscopy (TEM). The mechanism of Y2O3 improving the flexural strength at high temperature of the cermet is suggested and the reasons for no surrounding structure formation in the cermet are explained

  18. Cermet sintering on the oase of molybdenum, nickel, aluminium oxide in dry and wet hydrogen medium

    International Nuclear Information System (INIS)

    Cermet sintering on the base of molybdenum, nickel and aluminium oxide in dry and wer hydrogen medium is studied. It is stated that presence of water vapours permits to decrease sintering temperature of molybdenum containing cermets and to prepare dense nickeliferous cermets. Cermet density can he rather high at final stages of sintering that is probably conditioned by decrease of growth rate of corundum crystals. Pressing pressure activates cermet siptering at intermediate stages and it is low effective at finite stages of condensation. Constancy of relative reduction of void volume is preserved only at final stages of sintering

  19. Cermet fabrication by thermal spraying and hot isostatic pressing

    International Nuclear Information System (INIS)

    An assessment is made of the feasibility of fabricating high integrity cermets by means of thermal spraying and hot isostatic pressing. Such cermets are applicable in the form of erosion-resistant gun tube liners obviating the use of such strategic elements as Co and Cr. Al2O3-28 vol percent Ni disks and cylinders were prepared by plasma spraying and hot isostatic pressing at 1350 C and 103 MPa. Characterization consisted of immersion density measurements and microstructural analysis. Specimens machined from the disks were used for thermal and mechanical properties testing. While thermal properties were found to be comparable to those of highly developed cermet systems, moduli and strengths were lower due to residual pores, high metal content, and a coarse microstructure

  20. Molybdenum-UO2 cermet irradiation at 1145 K.

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  1. Cold Spray Deposition of WC-Co Cermets

    OpenAIRE

    Pereira de Magalhaes e Couto, Miguel

    2014-01-01

    The main subject of this Thesis is the production of hard, wear and corrosion resistant cermets tungsten carbide and cobalt cermets (WC-Co) with different contents in cobalt matrix, onto low carbon steels and aluminum alloy Al7075-T6 substrates, by means of Cold Gas Spray (CGS). The current state of the art for the deposition of WC-Co uses High Velocity Oxy-Fuel (HVOF) as the main technique. Understanding both techniques was also one of the keys points in this work. A deep theoretical ap...

  2. Preparation of refractory cermet structures for lithium compatibility testing

    Science.gov (United States)

    Heestand, R. L.; Jones, R. A.; Wright, T. R.; Kizer, D. E.

    1973-01-01

    High-purity nitride and carbide cermets were synthesized for compatability testing in liquid lithium. A process was developed for the preparation of high-purity hafnium nitride powder, which was subsequently blended with tungsten powder or tantalum nitride and tungsten powders and fabricated into 3 in diameter billets by uniaxial hot pressing. Specimens were then cut from the billets for compatability testing. Similar processing techniques were applied to produce hafnium carbide and zirconium carbide cermets for use in the testing program. All billets produced were characterized with respect to chemistry, structure, density, and strength properties.

  3. CER-MET SPHERE-PAC fuel potential

    International Nuclear Information System (INIS)

    During operation of the fuel rods in an LWR core the low thermal conductivity of oxide fuel causes high temperatures in the fuel column. This imposes restrictions on the permissible power increases of the fuel rods during in-reactor operation. In a joint KEMA-ECN-GKN programme the applicability of a 3-fraction mixture of large MOX spheres with medium and small natural UO2 spheres in an 88 percent smear density sphere-pac columns of LWR fuel rods has been shown. A 3-fraction CER-MET sphere-pac fuel column of large UO2 or MOX spheres with medium and small spheres of a metal alloy, has a much higher thermal conductivity than pure oxide fuel. Sooner or later uranium becomes scarcer and plutonium from reprocessing plants has to be used in LWR fuel. Then, for CER-MET sphere-pac fuel only 1 fraction has to be fabricated from the plutonium of the reprocessing plants. Moreover, thanks to the low operation temperatures in the CER-MET sphere-pac fuel column the restrictions on power increases become less stringent and the stored heat in the core is lower than in pure oxide cores. The major material aspects of this new CER-MET sphere-pac fuel are presented here. (author). 19 refs.; 7 tabs

  4. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHU Liu; LING Guo-ping; LI Jian; WANG You-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al203 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.%Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt%) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs,ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM.The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  5. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHULiu; LINGGuo-ping; LIJian; WANGYou-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al2O3 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.% Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt% ) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs, ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM. The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  6. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  7. CERMET fuel behavior and properties in ADS reactors

    International Nuclear Information System (INIS)

    Within the EUROTRANS Integrated Project, Forschungszentrum Karlsruhe (FZK) and the Institute for Transuranium Elements (ITU) are joining their efforts to study the behavior of Mo-based CERMET non-uranium fuel for the ADS. Contributions include core safety calculations, and fuel property measurements and irradiation experiments. Safety studies for optimized EFIT core designs have concluded that, for the new low power cores of EFIT with a power class of ∼400 MWth and a fuel power density of ∼250 MW/m3, the CERMET-loaded cores behave favorably and the design limits of the fuels were not violated. Mo-based CERMET fuel pellets and pins loaded with Pu and Am were fabricated for irradiation programmes which will start by mid-2007 in PHENIX (France) and HFR-Petten (The Netherlands). The thermal diffusivity and specific heat of the CERMET fuels (loaded with Pu and Am) were the main properties measured, and the thermal conductivity was deduced. The results were used to prepare the safety report for the irradiation experiments

  8. Palladium based cermet composite for hydrogen separation at elevated temperature

    Science.gov (United States)

    Tsai, Yen-Chang; Lin, Chien-Cheng; Lin, Wei-Lin; Wang, Jeng-Han; Chen, San-Yuan; Lin, Pang; Wu, Pu-Wei

    2015-01-01

    A cermet composite consisting of palladium and BaCe0.4Zr0.4Gd0.1Dy0.1O3-x (BCZGD) is fabricated by mixing palladium and BCZGD powders in a ball mill, followed by pressing and sintering at 1450 °C for 24 h in air. The Pd-BCZGD cermet demonstrates impressive hydrogen permeation flux in a mixture of hydrogen and carbon dioxide at elevated temperature, in which the palladium plays the predominant role of facile transport in the hydrogen atoms whereas the BCZGD provides channels for proton conduction. Material characterization including scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermo-gravimetric analysis (TGA) are performed. XRD patterns indicate pure phases of fcc palladium and perovskite BCZGD. SEM images and element mapping suggest a homogeneous mixture of cermet without noticeable defect and phase segregation. TGA results confirm stability of the cermet against carbon dioxide without chemical decomposition. The hydrogen permeation flux is determined via a gas chromatography from 400 to 700 °C at various hydrogen concentration gradients. We record a hydrogen flux of 1.25 cm3 min-1 cm-2 in 50% hydrogen and 50% carbon dioxide at 700 °C, with a selectivity of H2/CO2 approaching infinity.

  9. Aspects of fretting wear of sprayed cermet coatings

    International Nuclear Information System (INIS)

    Two experimental fretting programmes which investigated aspects of fretting wear of sprayed cermet coatings are reviewed. These programmes were conducted in support of components used in the advanced gas-cooled reactor. It is speculated that the results from these programmes are compatible with a simple two-stage wear model. This model assumes that an initial wear process occurs which is dominated by an interlocking and removal of asperities. Such a phase will be dependent on the superficial contact areas and possibly the interfacial load, but the latter aspect is not considered. This initial wear is of very short duration and is followed by a mild, oxidative, wear mode. Coatings data are also compared with those for structural steels. In short-term low temperature tests it appears that structural steels have comparable performance with the cermet coatings but it is argued that this is an artefact of the wear process. However, at high temperatures (6000C) wear of stainless steel could not be determined, the specimens showing a net weight gain. It is concluded that for in-reactor fretting applications cermet coatings will have advantages over structural steels at low temperatures. Even in high temperature regions some operation at low temperatures is experienced and consequently cermet coatings may be useful here also. (orig.)

  10. Basic research on cermet nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshi; Sto, Seichi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Takano, Masahide; Minato, Kazuo; Fukuda, Kosaku

    1998-01-01

    Production of cermet nuclear fuel having fine uranium dioxide (UO{sub 2}) particles dispersed in matrix metal requires basic property data on the compatibility of matrix metal with fission product compounds. It is thermodynamically suggested that, as burnup increases, cesium in oxide fuel reacts with the fuel, other fission products or cladding pipe and produces cesium uranates, cesium molybdate, or cesium chromate in stainless steel cladding pipe. Attempt was made to measure the thermal expansion coefficient and thermal conductivity of cesium uranates (Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}), cesium molybdate (Cs{sub 2}MoO{sub 4}) and cesium chromate (Cs{sub 2}CrO{sub 4}). Thermal expansion was measured by X-ray diffraction and determined by Cohen`s method. Thermal conductivity was obtained by measuring thermal diffusion by laser flash method. The thermal expansion of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} is as low as 1.2% for the former and 1.0% for the latter, up to 1000K. The thermal expansion of Cs{sub 2}MoO{sub 4} is as high as that of Cs{sub 2}CrO{sub 4}, 2.1% for the former and 2.5% for the latter at temperatures from room temperature to 873K. Average thermal expansion in this temperature range is 4.4 x 10{sup -5} K{sup -1} for Cs{sub 2}MoO{sub 4} and 4.2 x 10{sup -5} K{sup -1}. The thermal expansion of Cs{sub 2}CrO{sub 4} is four times higher than that of UO{sub 2} and five times higher than that of Cr{sub 2}O{sub 3}. The thermal conductivity of Cs{sub 2}UO{sub 4} is nearly equal to that of Cs{sub 2}U{sub 2}O{sub 7} in absolute value and temperature dependency. Cs{sub 2}U{sub 2}O{sub 7}, having different thermal conductivity between {alpha} and {beta} phases, shows higher conductivity with {beta} than with {alpha}, about 1/4 of that of UO{sub 2} at 1000K. The thermal conductivity of Cs{sub 2}CrO{sub 4} is nearly equal to that of Cs{sub 2}MoO{sub 4} in absolute value and temperature dependency. (N.H.)

  11. The design of cermet fuel phase fraction and fuel particle diameter

    International Nuclear Information System (INIS)

    UO2-Zr-2 is an ideal cermet fuel. As an exemplification with this fuel, this paper emphatically elucidates the irradiation theory of cermet fuel and its application in the design of cermet fuel phase fraction and of fuel particle diameter. From the point of view of the irradiation theory and the consideration for sandwich rolling, the suitable volume fraction of UO2 phase of 25% and diameter of UO2 particle of 100 +- 15 μm are selected

  12. A binder phase of TiO based cermets

    Institute of Scientific and Technical Information of China (English)

    LI Qing-kui; GUAN Shao-kang; ZHONH Hui; LI Jiang; ZHONG Hai-yun

    2005-01-01

    A binder phase of TiO based cermets, a kind of imitated gold materials, was developed by adding active element Si to Fe-Cr alloy, and the related mechanisms were studied. The wettability, matching in thermodynamics and interfacial strength were investigated by the high temperature sessile drop method and element area scanning. The linear expansion coefficients of the materials were measured using TAH100 thermal analyzer. The results show that the wettability of Fe-Cr alloy on TiO are small, with a wetting angle about 90°. After adding some Si in Fe-Cr alloy, its wetting angle can be decreased to about 25°, the interfacial reactions can be prevented effectively and high interface binding can be formed. Fe-25%Cr-1.5%Si matches the thermal expansion coefficient of TiO, so it is a kind of relatively perfect binder for TiO based cermets imitated gold.

  13. High pressure gas-filled cermet spark gaps

    International Nuclear Information System (INIS)

    The results of modernization of the R-48 and R-49 spark gaps making it possible to improve their electrical characteristics are presented. The design is described and characteristics of gas-filled cermet spark gaps are presented. By the voltage rise time of 5-6 μs in the Marx generator scheme they provide for the pulse break-through voltage of 120 and 150 kV. By the voltage rise time of 0.5-1 μs the break-through voltage of these spark gaps may be increased up to 130 and 220 kV. The proper commutation time is equal to ≤ 0.5 ns. Practical recommendations relative to designing cermet spark gaps are given

  14. Advanced propulsion engine assessment based on a cermet reactor

    Science.gov (United States)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  15. Ultra fine microstructure in WC-Co cermet

    Energy Technology Data Exchange (ETDEWEB)

    Lay, S.; Loubradou, M.; Donnadieu, P. [LTPCM- UMR 5614 - CNRS -INPG-UJF, Domaine Universitaire, Saint Martin d' Heres cedex (France)

    2004-10-01

    Grain growth inhibitors like VC are added to WC-Co cermets to avoid abnormal grain growth during sintering. Though the effect of vanadium is known for a long time, the controlling mechanism remains to understand. Microstructural investigations carried out on industrial samples have permitted to locate precisely the inhibitor after sintering. These results are discussed in connection with WC grain growth mechanism. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Cermet materials prepared by combustion synthesis and metal infiltration

    Science.gov (United States)

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  17. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe2B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo)2B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo)2B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe2B - Co (400-500 HV) constituting the matrix. (author)

  18. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    Science.gov (United States)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  19. Cermet Transport, Storage, and Disposal Packages Using Depleted Uranium Dioxide and Steel

    International Nuclear Information System (INIS)

    It is proposed that the steel components of spent nuclear fuel (SNF) storage casks, transport casks, and repository waste packages (WPs) be replaced with a depleted uranium dioxide (DUO2)-steel cermet consisting of DUO2 particulates embedded in a continuous-steel phase. Typical cermets use a sandwich-type construction with clean uncontaminated steel layers on both sides of the cermet. Cermets have several potential advantages over other materials of construction: (1) better gamma and neutron shielding than steel; (2) ability to withstand extreme conditions (fire, accident, sabotage); (3) potential to improve repository performance when used in WPs; and (4) use of excess DUO2 and recycled steel from nuclear facilities, thereby avoiding disposal costs for these materials. New methods of manufacture and other factors may provide economic incentives for cermet packages when large numbers of casks are manufactured

  20. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets.

    Science.gov (United States)

    Chester, David; Bermel, Peter; Joannopoulos, John D; Soljacic, Marin; Celanovic, Ivan

    2011-05-01

    Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class of materials known as cermets. While our approach is completely general, the most promising cermet candidate combines nanoparticles of silica and tungsten. We find that 4-layer silica-tungsten cermet selective solar absorbers can achieve thermal transfer efficiencies of 84.3% at 400 K, and 75.59% at 1000 K, exceeding comparable literature values. Three layer silica-tungsten cermets can also be used as selective emitters for InGaAsSb-based thermophotovoltaic systems, with projected overall system energy conversion efficiencies of 10.66% at 1000 K using realistic design parameters. The marginal benefit of adding more than 4 cermet layers is small (less than 0.26%, relative). PMID:21643366

  1. The development of nano-modified Ti(C,N) cermets.

    Science.gov (United States)

    Rong, Chunlan; Chen, Wenling; Zhang, Xiaobo; Liu, Ning

    2007-01-01

    The unique combination of mechanical properties such as excellent wear resistance and good chemical stability at elevated temperature helps titanium carbonitride based (Ti (C, N)-based) cermets to play an important roles in metal cutting operations. Nowadays, cermets cutting tools are widely used for semi-finishing and finishing works on steel and cast iron. However, their brittleness is still an unavoidable limitation for their utilization. With the development of nano-technology, nano-modified cermets have received more attention due to the high toughening enhancements. In this review, the development of nano-modified Ti(C,N) cermets is discussed including the fabrication, microstructure, mechanical properties, cutting performance and the practical applications in different fields. Many patents having important effect on the development of cermets were noticed, too. PMID:19076029

  2. Cermet fuel behaviour and properties in ADS reactors

    International Nuclear Information System (INIS)

    Within the EUROTRANS Integrated Project co- financed within the 6th Framework Programme of the European commission, the sub-critical Accelerator Driven System (ADS) is now being considered as a potential means to burn long-lived transuranium nuclides. Within the EUROTRANS Programme, the domain AFTRA is responsible to develop and provide the data basis for the fuels to be used in the European Facility for Industrial Transmutation (EFIT). The preferred fuel for such a fast neutron reactor is uranium-free, highly enriched with plutonium and minor actinides. Requirements for ADS transmuter fuels are strongly linked with the core design and safety parameters, the fuel properties and the ease of fabrication and reprocessing. This study concerns the behaviour and properties of fuels with molybdenum as inert matrix. The status of the development work was presented at the last ICENES conference [1]. Since then, the design of the European Facility for Industrial Transmutation (EFIT) was developed and the transmutation capability, the burn-up behaviour, the reactivity swing and power peaking factors, and the safety performance were determined for different cores with inert matrix fuels like MgO and Mo. For the EFIT, the CERMET with the Mo matrix is recommended as the reference fuel and CERCER with the MgO matrix as a back-up solution. The thermal diffusivity and specific heat of the CERMET fuels (loaded with Pu and Am) were measured, and the thermal conductivity was deduced. The thermal conductivity of the CERMET fuels was also predicted using a model proposed in [1], with a microstructure corresponding to a random distribution of spheres, with overlapping. This model microstructure takes into account the negative effects arising from the possible formation of small agglomerates of inclusions in the CERMET fuels. The agreement between the theoretical and calculated values is relatively good (the error is between 0 and 15% of the value of the thermal conductivity

  3. Magnetic Properties of the WC-Co Cermet Powders

    Science.gov (United States)

    Serban, V. A.; Malaescu, I.; Ercuta, A.; Marin, C. N.; Stefu, N.; Opris, C.; Codrean, C.; Utu, D.

    2010-08-01

    The magnetic behavior, both quasistatic (50 Hz) and dynamic (10 kHz-1 MHz) of a set of three powder samples from the WC-Co cermet system were investigated in the as-cast state. The results have shown magnetic hysteresis in the low frequency AC fields. In high frequency fields, the complex magnetic permeability was examined; a weak maximum of the imaginary component that was detected in the frequency range close to 100 kHz was attributed to structure-dependent magnetic relaxation.

  4. Coating with overlay metallic-cermet alloy systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  5. Characterization of TiC-FeCrMn Cermets Produced by Powder Metallurgy Method

    Directory of Open Access Journals (Sweden)

    Märt Kolnes

    2015-09-01

    Full Text Available TiC-NiMo cermets combine relatively low density with high hardness. Because nickel is known as a toxin and allergen and allergy to nickel is a phenomenon which has assumed growing importance in recent years there has been a flurry of activity to find alternatives to the nickel binder in cermets. It is also the global research and technical development trend in the powder metallurgy cermets industry. In present research TiC-based cermets with FeCrMn binder system were fabricated. Three different sintering conditions were used (vacuum sintering, sinter/HIP and sintering under low Ar pressure. Because of high vapor pressure of manganese different sintering conditions and technologies were investigated to depress the Mn-loss during sintering. Chemical composition of TiC-FeCrMn cermets after different sintering conditions were analyzed by energy-dispersive X-ray spectroscopy (EDS and mechanical properties – hardness and fracture toughness were evaluated on the samples. Results of research showed that Ni-free TiC-based CrMn-steels bonded cermets compare unfavorably with cermets bonded with CrNi austenitic steels in terms of fracture toughness and corrosion resistance. Noticeable Mn-loss during vacuum sintering can be avoided when sintering under low Ar gas pressure.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7364

  6. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    Science.gov (United States)

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements. PMID:25956565

  7. The promise and challenges of cermet fueled nuclear thermal propulsion reactors

    International Nuclear Information System (INIS)

    The use of cermet fuels in nuclear thermal propulsion systems was examined and the characteristics of systems using these fuel forms is discussed in terms of current mission and safety requirements. For use at high temperatures cermet fueled reactors utilize ceramic fuels with refractory metals as the matrix material. Cermet fueled reactors tend to be heavy when compared to concepts that utilize graphite as the fuel matrix because of the high density of the refractory metal matrix which makes up 20-40 percent of the total volume. On the positive side the metal matrix is strong and more resistant to loads from either the launch or flow induced vibration. The compatibility of the tungsten cermet with hydrogen is excellent and lifetimes of several hours is certainly achievable. Probably the biggest drawback to cermet nuclear thermal propulsion concepts is that the amount of actual data to support the theoretical conclusions is small. In fact there is no data under representative conditions of temperature, propellant and flux for the required fuel burnup. Although cermet systems appear to be attractive, the lack of fuel data at representative conditions does not allow reliable comparisons of cermet systems to systems where fuel data is available. 10 refs

  8. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    International Nuclear Information System (INIS)

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO2, Al2O3, Gd2O3, etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO2) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al2O3) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO2 for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate casks with variable cermet compositions as a function of

  9. Elastic properties of ceramic composite materials (cermet type) on the basis of refractory oxides

    International Nuclear Information System (INIS)

    One investigated into elastic properties of Al2O3 and ZrO2 base cermets reinforced by 12Kh18N9T steel metal frame characterized by increased mechanical strength, by a simple making procedures and by essential service reliability. Dependence of elastic modules of the given cermets on porosity within rather wide range of its values is satisfactorily described by the presented formulae. Modules of cermet elasticity are shown to increase at growth of Al2O3 concentration up to the maximum permissible values

  10. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Swaney, P.M.; Tiegs, T.N. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO{sub 2}, Al{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO{sub 2}) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al{sub 2}O{sub 3}) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO{sub 2} for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate

  11. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    Science.gov (United States)

    Miwa, Shuhei; Osaka, Masahiko; Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya

    2015-10-01

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO2-x were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO2-x below the oxygen potential of Mo/MoO2 oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO2-x with those of pure PuO2-x were discussed in terms of the microstructure.

  12. Testing of cermet fuel pins in the MIR reactor (intermediate results)

    International Nuclear Information System (INIS)

    Fuel elements with cermet fuel are designed and the technology for their manufacturing is developed. The fuel elements of two types are tested in the MIR reactor: 1) the elements with metallurgical provision of a cermet fuel pin-cladding contact (brazing); 2) the elements with a cladding tightly pressed to a cermet pin (rolling). The test results show successful operation of the first type fuel elements with the fuel consisting of uranium dioxide powder, dispersed in a matrix of zirconium base or aluminium base alloy. All fuel elements of the second type appear to be leaking

  13. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    Science.gov (United States)

    Stewart, Mark E.

    2015-01-01

    To better understand Cermet engine performance, examined historical material development reports two issues: High vaporization rate of UO2, High temperature chemical stability of UO2. Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance. Few samples were tested above 2770 K. Results above 2770 K are ambiguous. Contemporary testing may clarify performance. Cermet sample testing during the NERVA Rover era. Important properties, melting temperature, vaporization rate, strength, Brittle-to-Ductile Transition, cermet sample test results, engine performance, location, peak temperature.

  14. Cermet fuel for fast reactor – Fabrication and characterization

    International Nuclear Information System (INIS)

    (U, Pu)O2 ceramic fuel is the well-established fuel for the fast reactors and (U, Pu, Zr) metallic fuel is the future fuel. Both the fuels have their own merits and demerits. Optimal solution may lie in opting for a fuel which combines the favorable features of both fuel systems. The choice may be the use of cermet fuel which can be either (U, PuO2) or (Enriched U, UO2). In the present study, attempt has been made to fabricate (Natural U, UO2) cermet fuel by powder metallurgy route. Characterization of the fuel has been carried out using dilatometer, differential thermal analyzer, X-ray diffractometer, and Scanning Electron Microscope. The results show a high solidus temperature, high thermal expansion, presence of porosities, etc. in the fuel. The thermal conductivity of the fuel has also been measured. X-ray diffraction study on the fuel compact reveals presence of α U and UO2 phases in the matrix of the fuel

  15. Cermet fuel for fast reactor – Fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kutty, P.S.; Kutty, T.R.G. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Shantanu [Uranium Extraction Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-11-15

    (U, Pu)O{sub 2} ceramic fuel is the well-established fuel for the fast reactors and (U, Pu, Zr) metallic fuel is the future fuel. Both the fuels have their own merits and demerits. Optimal solution may lie in opting for a fuel which combines the favorable features of both fuel systems. The choice may be the use of cermet fuel which can be either (U, PuO{sub 2}) or (Enriched U, UO{sub 2}). In the present study, attempt has been made to fabricate (Natural U, UO{sub 2}) cermet fuel by powder metallurgy route. Characterization of the fuel has been carried out using dilatometer, differential thermal analyzer, X-ray diffractometer, and Scanning Electron Microscope. The results show a high solidus temperature, high thermal expansion, presence of porosities, etc. in the fuel. The thermal conductivity of the fuel has also been measured. X-ray diffraction study on the fuel compact reveals presence of α U and UO{sub 2} phases in the matrix of the fuel.

  16. Cermet with Slow TiC Coarsening During Sintering

    Science.gov (United States)

    Lin, Chun-Ming; Tsai, Che-Wei; Huang, Sheng-Min; Yang, Chih-Chao; Yeh, Jien-Wei

    2014-10-01

    New TiC/Co1.5CrFeNi1.5Ti0.5 cermet was developed by exploiting the advantages of the high-entropy alloy (HEA) binder. A much finer grain structure and thus improved hardness-toughness combination were obtained as compared with two traditional binders, Ni and Ni13Mo7. From the coarsening behavior of TiC grains, the coarsening process of TiC in these three binders is diffusion-controlled. The activation energy of TiC + 20%Co1.5CrFeNi1.5Ti0.5 is the highest and that of TiC + 20%Ni is the lowest. The high activation energy of the Co1.5CrFeNi1.5Ti0.5 binder was attributable to its high content of carbon-strong-binding elements, Cr and Ti, and cooperative diffusion and higher packing density of multiple different-sized atoms. Low diffusion coefficient, low surface energy of TiC grains, and low solubility of Ti in the HEA liquid explain the slow coarsening of TiC grains. This study demonstrates that Co1.5CrFeNi1.5Ti0.5 is an excellent HEA binder for TiC cermets.

  17. Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, V. E., E-mail: ovcharenko.ove45@mail.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Ivanov, Yu. F., E-mail: ivanov.yufi55@mail.ru [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mohovikov, A. A., E-mail: mohovikov.maa28@rambler.ru [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Baohai, Yu, E-mail: baohai.bhyu@imr.ac.cn, E-mail: yanhui.yhzhao@imr.ac.cn; Zhao, Yanhui, E-mail: baohai.bhyu@imr.ac.cn, E-mail: yanhui.yhzhao@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 (China)

    2014-11-14

    A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It is possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.

  18. Properties of U sub 3 O sub 8 -aluminum cermet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, H.B.

    1989-10-01

    Nuclear fuel elements containing U{sub 3}O{sub 8} dispersed in an aluminum matrix have been used in research and test reactors for about 30 years. These elements, sometimes called cermet fuel, are made by powder metallurgical methods (PM) and can accommodate up to approximately 50 wt % uranium in the core section of extruded tubes. Cermet fuel elements have been fabricated and irradiated at the Savannah River Site (SRS). Irradiation behavior is excellent. Extruded tubes with up to 50 wt % uranium have been successfully irradiated to fission densities of about 2 {times} 10{sup 21} fissions per cc of core. Physical, mechanical, and chemical properties of cermet fuels are assembled into a reference document. Results will be used by Argonne National Laboratory to design cermet fuel elements for possible use in the New Production Reactor at SRS. 57 refs., 33 figs., 12 tabs.

  19. Microstructure and Raman spectra of Ag-MgF2 cermet films

    Institute of Scientific and Technical Information of China (English)

    Shouhua Shi(史守华); Zhuoliang Cao(曹卓良); Zhaoqi Sun(孙兆奇)

    2003-01-01

    Ag-MgF2 cermet films with different Ag fractions were prepared by vacuum evaporation. The microstruc-ture of the films was examined by Raman scattering technique. The surface-enhanced Raman spectrumfor MgF2 molecules in the cermet film strongly suggests the existence of Ag nanoparticles dispersed inMgF2 matrix. The intensities of the Raman spectra of Ag-MgF2 cermet films increase with Ag fraction.The enhancement of Raman scattering disappears when Ag content reaches wt.20%. The analyses withthe transmission electron microscopy showed that Ag-MgF2 cermet films are mainly composed of amor-phous MgF2 matrix with embedded faced-center-cubic Ag nanoparticles. It suggests that the percolationthreshold should be around wt.20% of Ag content.

  20. Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal

    International Nuclear Information System (INIS)

    A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It is possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers

  1. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek JÕELEHT

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.

  2. Analytical calculation of transfers across a cermet for solid oxide fuel cells and electrolyzers

    Science.gov (United States)

    Dumortier, Mikaël; Sanchez, José; Keddam, Michel; Lacroix, Olivier

    2014-02-01

    This work focuses on the calculation of transfers inside a cermet for solid oxide membrane fuel cells and electrolyzers. A differential system of equations presented in a previous work is linearized for low inlet current densities using assumptions that can be checked quantitatively. By integrating the linearized equations, we obtain explicit functions that allow direct calculation of the physical quantities describing the transfers of the process inside the cermet. The functions show good agreement with the values obtained with the non-linearized system. In addition, the model does not require any numerical simulation to be solved and can be implemented in common spread sheets fairly accurately. A remarkable dimensionless number, named A, appears in the demonstration and is used for the calculation of the reaction layer thickness of the cermet, where 99.9% of the charge transfer occurs. This thickness does not depend on inlet current density or on the thickness of the cermet.

  3. Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Lixia ZHANG; Jicai FENG

    2004-01-01

    The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interlace. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

  4. Preparation and electrical properties of dense micro-cermets made of nickel ferrite and metallic copper

    OpenAIRE

    Baco-Carles, Valérie; Pasquet, Isabelle; LAURENT, Véronique; Gabriel, Armand; Tailhades, Philippe

    2009-01-01

    Dense micro-cermets made of nickel ferrites and copper micrometric particles were obtained from partial reduction under hydrogenated atmosphere at 350 C of mixed copper nickel ferrites, and sintering in nitrogen at 980 C. The small copper particles are homogeneous in size and well dispersed in the spinel oxide matrix. No exudation of copper metal was observed after sintering. The micro-cermets prepared are semi-conducting materials with electrical conductivity lying from 44 to 130 S/cm at 980...

  5. Plasma Spraying of Refractory Cermets by the Water-Stabilized Spray (WSP) System

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, Vlastimil; Chráska, Pavel; Cheong, D.-I.; Yang, S.-H.

    Las Vegas: ITSC Partner Societies, 2009 - (Marple, B.; Hyland, M.; Lau, Y.; Li, C.; Lima, R.; Montavon, G.), s. 824-829. (ITSC). ISBN 978-1-61503-004-0. [Thermal Spray 2009: International Thermal Spray Conference. Las Vegas (US), 04.05.2009-07.05.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * refractory cermets * tungsten cermets * zirconium carbide Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass www.asminternational.org

  6. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  7. Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.

    Science.gov (United States)

    Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin

    2009-12-11

    Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint. PMID:19836751

  8. Evolution of Ti(C,N)-based cermet microstructures

    Institute of Scientific and Technical Information of China (English)

    李晨辉; 熊惟皓; 余立新

    2002-01-01

    Two series of Ti(C,N)-based cermet materials originating from the same chemical composition but with different grain size distribution and sintered to different stages of the sintering cycle have been studied using SEM,TEM,EDX,and XRD.Much of the surrounding structure is formed during solid state sintering.During the solid state sintering,at first,the Mo and W rich (Ti,Mo,W)C inner rim is formed by the interaction among TiC,WC,and Mo2C;then the Mo and W lean (Ti,Mo,W)(C,N)outer rim is formed.During the liquid phase sintering,the outer rim of coarse grains grows rapidly throw a solution-reprecipitation process;also coarse grains grow by particle coalescence.The interface between coarse grain outer rim and binder is flat (crystal surface).

  9. Cermet sphere-pac concept for inert matrix fuel

    Science.gov (United States)

    Pouchon, M. A.; Nakamura, M.; Hellwig, Ch.; Ingold, F.; Degueldre, C.

    2003-06-01

    In the inert matrix fuel concept, plutonium reprocessed from spent fuel is burned in an inert matrix, e.g. yttria-stabilized zirconia. Coming from wet reprocessing, the internal gelation can perform an easy micro-spheres production. Utilization of these particles in a sphere-pac realizes a direct fuel production. Besides being economical, this direct usage offers an almost dustless fabrication. One disadvantage of yttria-stabilized zirconia as matrix is its low thermal conductivity. A further reduction by the macroscopic structure of a sphere bed seems unacceptable. This can be eluded by the insertion of a highly conducting phase. Similar to the cermet concept with the embedment of ceramic fuel into metal, the infiltration of a fine metal fraction into a coarse ceramic fuel fraction is studied here. The initial thermal conductivity shows much higher calculated values and the sintering behaviour is also clearly enhanced compared to the pure ceramic bed.

  10. Nanocomposite cermets for hydrogen production and SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mezentseva, Natalia; Alikina, Galina; Pelipenko, Vladimir [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Smorygo, Oleg [Powder Metallurgy Institute, Minsk (Belarus); Ross, Julian R.H. [Limerick Univ. (Iran, Islamic Republic of). Centre of Environmental Research; Sadykov, Vladislav [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Novosibirsk State Univ. (Russian Federation)

    2010-07-01

    Nanocomposite cermets comprised of Ni particles (10-60 wt.%) embedded into complex oxide matrix (Y- or Sc-stabilized zirconia combined with doped Ce-Zr oxides or perovskites) and promoted by Pt or Tu were synthesized via Pechini and (co)impregnation routes. Samples were characterized by BET, XRD, TEM with EDX, H{sub 2}, C{sub 2}H{sub 5}OH and CH{sub 4} TPR. The catalytic properties of nanocomposite materials were studied in the Sr of CH{sub 4}, ethanol and acetone at intermediate temperatures and short contact times. Performance of best compositions supported as porous strongly adhering layers on several types of heat-conducting substrates was demonstrated to be high and stable in SR (steam reforming) for all types of fuels. (orig.)

  11. Fracture toughness of two phase WC-Co cermets

    International Nuclear Information System (INIS)

    The present analysis is an attempt to show that fracture toughness of cermets based on WC-Co and the like can be predicted with reasonable accuracy from a simple fracture mechanics relationship. The resistance to fracture has been considered to manifest primarily from the plastic deformation of Co phase. The constrained deformation behavior of the ductile Co phase between the rigid WC grains, approximated to the behavior of ideal plastic flow of a ductile layer sandwiched between rigid platens, has been incorporated into the fracture toughness predictions. Reasonable assumptions on in situ flow and fracture behavior of Co phase have been made in such estimations. Comparison of the calculated fracture toughness values with the experimental data of a large number of WC-Co systems of varying microstructural conditions, indicates reasonable agreement

  12. A study of Mo-V and Mo-V-Fe alloys for conductive cermet applications

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.J.; Damkroger, B.K.; Ewsuk, K.G.; Glass, S.J.; Monroe, S.L.; Reece, M.; Smugeresky, J.E.

    1998-06-01

    Molybdenum and alumina cermets are currently being used for small, simple geometry, electrical feed-throughs in insulating alumina ceramic bodies. However, with larger and more complex geometries, high residual stresses and cracking of the alumina ceramic occur due to differences in coefficient of thermal expansion (CTE) between cermet and the surrounding 94% alumina. The difference in CTE is caused by the Mo in the cermet, which lowers the CTE of the cermet relative to the 94% alumina ceramic. A study was conducted at Sandia National Laboratories to develop CTE-matched cermets based on binary Mo-V and ternary Mo-V-X alloy systems. It was found that the CTE of 94% alumina (over the range 1,000 C to room temperature) could be precisely matched by a binary Mo-32.5V alloy. However, to address concerns regarding the selective oxidation of V, Mo-V-X alloys with CTE`s similar to 94% alumina were made with Fe or Co additions. The ternary additions are limited to about 3 wt.% to maintain a single phase BCC alloy, and permit some reduction in the V addition. Powders were fabricated from both Mo-27V and Mo-22V-3Fe, and were evaluated in 3 hr./1,625 C cermet sintering trials. The results of those trials suggest that extensive reaction occurs between the Vanadium component of the alloy and the alumina ceramic. In view of these results the authors have begun to evaluate the feasibility of fabricating Iridium alumina cermets. Iridium is an attractive choice due to its close CTE match to 94% alumina ceramic. Preliminary results indicate there is no detrimental reaction between the Iridium and alumina phases.

  13. Effect of a titanium nitride interlayer on the densification, properties and microstructure of cermets based on alumina and nickel. Part 1: Densification and properties

    NARCIS (Netherlands)

    Li, Shujie; Khosrovabadi, Paul Babayan; Kolster, Ben H.

    1992-01-01

    In order to manufacture cermets based on Al2O3 and Ni, Al2O3 particles were first coated with TiN by CVD and then mixed with pure Ni powder. The cermets were produced from the mixed powders by powder metallurgy processes. The relative density and the mechanical properties of the cermets are improved

  14. A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement.

    Science.gov (United States)

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan

    2014-01-01

    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954

  15. Metal-AlN cermet solar selective coatings deposited by direct current magnetron sputtering technology

    Science.gov (United States)

    Zhang, Qi-Chu

    1998-02-01

    A series of metal-aluminium nitride (M-AlN) cermet materials for solar selective coatings was deposited by a novel direct current (d.c.) magnetron sputtering technology. Aluminium nitride was used as the ceramic component in the cermets, and stainless steel (SS), nickel-based alloy 0022-3727/31/4/003/img1 (NiCr), molybdenum-based alloy 0022-3727/31/4/003/img2 (TZM) and tungsten were used as the metallic components. The aluminium nitride ceramic and metallic components of the cermets were deposited by simultaneously running both an aluminium target and another metallic target in a gas mixture of argon and nitrogen. The ceramic component was deposited by d.c. reactive sputtering and the metallic component by d.c. non-reactive sputtering. The total sputtering gas pressure was 0.8-1.0 Pa and the partial pressure of reactive nitrogen gas was set at 0.020-0.025 Pa which is sufficiently high to ensure that a nearly pure AlN ceramic sublayer was deposited by d.c. reactive sputtering. Because of the excellent nitriding resistance of stainless steel and the other alloys and metal, a nearly pure metallic sublayer was deposited by d.c. sputtering at this low nitrogen partial pressure. A multilayered system, consisting of alternating metallic and AlN ceramic sublayers, was deposited by substrate rotation. This multisublayer system can be considered as a macrohomogeneous cermet layer with metal volume fraction determined by controlling the thicknesses of metallic and ceramic sublayers. Following this procedure, M-AlN cermet solar selective coatings with a double cermet layer structure were deposited. The films of these selective surfaces have the following structure: a low metal volume fraction cermet layer is placed on a high metal volume fraction cermet layer which in turn is placed on an aluminium metal infrared reflection layer. The top surface layer consists of an aluminium nitride antireflection layer. A solar absorptance of 0.92-0.96 and a normal emittance of 0.03-0.05 at

  16. Preparation and preliminary testing of cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    李劼; 赖延清; 周科朝; 李志友; 刘业翔

    2003-01-01

    Recent development of inert anodes for the primary aluminium industry was reviewed. The preparation method of functionally gradient material was introduced into inert anode research area, and a research flow sheet of functionally gradient cermet inert anode was set down. In order to carry out the preparation and optimization of composite oxides as the ceramic matrix of cermet inert anode, the following problems: solid state reaction synthesis of complex oxides, corrosion mechanism of complex oxides in Na3AlF6-Al2O3 melts, effects of NiO content on the corrosion rate and resistivity at high temperature of NiFe2O4-NiO ceramics were studied. The preparation and sintering mechanism of NiFe2O4 based cermets were deeply studied to properly control the sintering atmosphere and temperature system. By efficaciously controlling the sintering atmosphere, the oxidization of metallic phase and the decomposition or deoxidization of ceramic phase are avoided effectively during the sintering process of cermets at various temperatures. By optimizing the composition recipe and sintering temperature system, cermets of relatively high density are prepared without the spillage or asymmetric distribution of metallic phase.

  17. Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets

    International Nuclear Information System (INIS)

    The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 deg. C (∼5.1-5.5 ppm deg. C-1), but the CTE of ZrC increased to ∼12.2 ppm deg. C-1 at 1000 deg. C compared to ∼7.2-8.5 ppm deg. C-1 for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (∼30-37 W m-1 K-1). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30 vol% Mo had a critical temperature difference of 350 deg. C, which was ∼120 deg. C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC.

  18. Mo-Al{sub 2}O{sub 3} cermet research and development

    Energy Technology Data Exchange (ETDEWEB)

    Glass, S.J.; Monroe, S.L.; Stephens, J.J.; Moore, R.H. [and others

    1997-08-01

    This report describes the results to date of a program that was initiated to predict and measure residual stresses in Mo-Al{sub 2}O{sub 3} cermet-containing components and to develop new materials and processes that would lead to the reduction or elimination of the thermal mismatch stresses. The period of performance includes work performed CY95-97. Excessive thermal mismatch stresses had produced cracking in some cermet-containing neutron tube components. This cracking could lead to a loss of hermeticity or decreased tube reliability. Stress predictions were conducted using finite element models of the various components, along with the thermal coefficient of expansion (CTE), Young`s modulus, and strength properties. A significant portion of the program focused on the property measurements for the existing cermet materials, processing conditions, and the measurement technique. The effects of differences in the properties on the predicted residual stresses were calculated for existing designs. Several potential approaches were evaluated for reducing the residual stresses and cracking in cermet-containing parts including reducing the Mo content of the cermet, substituting a ternary alloy with a better CTE match with alumina, and substituting Nb for Mo. Processing modifications were also investigated for minimizing warpage that occurs during sintering due to differential sintering. These modifications include changing the pressing of the 94ND2 alumina and changing to a 96% alumina powder from AlSiMag.

  19. Literature review of thermal and radiation performance parameters for high-temperature, uranium dioxide fueled cermet materials

    International Nuclear Information System (INIS)

    High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO2 fuel particles, use of oxide stabilizers in the UO2, minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet

  20. Comparative studies of CERCER and CERMET fuels for EFIT from the viewpoint of core performance and safety

    International Nuclear Information System (INIS)

    The European Facility for Industrial Transmutation (EFIT) has been developed within the 6. EU Framework by the EUROTRANS Program, aiming at a generic conceptual design of an accelerator driven transmuter. This paper deals with assessments of EFIT cores with CERCER and CERMET fuels from the viewpoint of core performance and safety. The conclusive remarks can be drawn as follows. Because of its much better thermal conductivity, the CERMET core can be designed by using thicker pins, so that it has the same or even better transmutation performance compared to the CERCER core. Both CERCER and CERMET fuels fulfill safety requirements. Moreover the CERMET fuel has higher fuel safety margins than the CERCER one. Preliminary analyses show that the CERMET total core power can be further increased by 50% at least without exceeding fuel and clad temperature limits. (authors)

  1. Zr-ZrO2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    Science.gov (United States)

    Zhang, Qi-Chu; Hadavi, M. S.; Lee, K.-D.; Shen, Y. G.

    2003-03-01

    High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80°C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80°C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80°C were achieved.

  2. Zr-ZrO{sub 2} cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qichu [School of Physics, University of Sydney, NSW 2006 (Australia); Hadavi, M S [School of Physics, University of Sydney, NSW 2006 (Australia); Lee, K-D [School of Physics, University of Sydney, NSW 2006 (Australia); Shen, Y G [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong (China)

    2003-03-21

    High solar performance Zr-ZrO{sub 2} cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO{sub 2} cermet solar selective coatings on a Zr or Al reflector with a surface ZrO{sub 2} or Al{sub 2}O{sub 3} anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO{sub 2} cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al{sub 2}O{sub 3}/Zr-ZrO{sub 2}/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al{sub 2}O{sub 3}/Zr-ZrO{sub 2}/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80 deg. C for a concentration factor of 2. The Al{sub 2}O{sub 3}/Zr-ZrO{sub 2}/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO{sub 2} cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80 deg. C were achieved.

  3. Zr-ZrO2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    International Nuclear Information System (INIS)

    High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80 deg. C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80 deg. C were achieved

  4. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  5. Improved bonding strength of bioactive cermet Cold Gas Spray coatings.

    Science.gov (United States)

    Gardon, M; Concustell, A; Dosta, S; Cinca, N; Cano, I G; Guilemany, J M

    2014-12-01

    The fabrication of cermet biocompatible coatings by means Cold Gas Spray (CGS) provides prosthesis with outstanding mechanical properties and the required composition for enhancing the bioactivity of prosthetic materials. In this study, hydroxyapatite/Titanium coatings were deposited by means of CGS technology onto titanium alloy substrates with the aim of building-up well-bonded homogeneous coatings. Powders were blended in different percentages and sprayed; as long as the amount of hydroxyapatite in the feedstock increased, the quality of the coating was reduced. Besides, the relation between the particle size distribution of ceramic and metallic particles is of significant consideration. Plastic deformation of titanium particles at the impact eased the anchoring of hard hydroxyapatite particles present at the top surface of the coating, which assures the looked-for interaction with the cells. Coatings were immersed in Hank's solution for 1, 4 and 7 days; bonding strength value was above 60 MPa even after 7 days, which enhances common results of HAp coatings obtained by conventional thermal spray technologies. PMID:25491809

  6. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  7. Preparation and microstructure of nanocrystalline grain Ag-MgF2 cermet film

    International Nuclear Information System (INIS)

    Nanocrystalline grain Ag-MgF2 cermet films were prepared by using sintered-in-vacuum Ag-MgF2 mixture granules as evaporant. The microstructure and the electronic energy states of the films were examined by x-ray diffraction, transmission electron microscopy, electron diffraction and x-ray photoelectron spectroscopy. The results showed that obtained Ag-MgF2 cermet films consist of mainly amorphous MgF2 matrix with embedded fcc-Ag nanocrystalline grains. The principal x-ray diffraction peaks at d = 3.4245, 2.6102, and 2.0503 Angstrom are probably related to Ag-MgF2 cermet composite structure

  8. Characterization of porous texture of cermet electrode for steam electrolysis at intermediate temperature

    International Nuclear Information System (INIS)

    Electrodes designed for PCEC (Proton Conducting Electrolyzing Cell) should ensure both electron and proton conductions and also allowed the supply or the draining of gaseous phase such as steam, hydrogen and oxygen. Porous cermet electrodes fulfil these requirements: percolated metallic phase for electron conduction, ceramic for proton conduction, and pores for transport of reactant and products in gas phase. The electrochemical reactions will take place at boundaries of these three phases, commonly named triple points. Therefore, the cermet electrode has to possess a sufficient open porosity and the expanded metallic surface area exposed to pores as large as possible. In this work, the pore texture of cermet electrodes was characterized by means of Electrochemical Impedance Spectroscopy in aprotic liquid medium. The parameter regression calculation based on de Levie's transmission-line model allowed us to determine the pore texture characterized by expanded surface area, number, mean radius of pores, and open porosity.

  9. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  10. Fabrication and optimisation of highly efficient cermet-based spectrally selective coatings for high operating temperature

    International Nuclear Information System (INIS)

    In terms of both high photo-thermal efficiency and high stability, multi-layer structures based on metal-dielectric composites (cermet) can be considered the most attractive selective solar absorbers for receiver tubes operating at medium-high temperatures in the field of solar thermodynamic plants. The double cermet layer approach represents a very simple fabrication method and can give high performances in terms of high solar absorptance and low hemispherical emittance. Optimised solar coatings based on cermet layers were fabricated in our laboratories by sputtering technique following the double layer approach. The joined employment of ellipsometric measurements and optical simulation is proposed as an effective method to optimise and fabricate coatings showing the best performances at a fixed operating temperature of the receiver tube. Interesting results concerning an optimised spectrally selective coating are shown. Solar absorptance higher than 0.94 and hemispherical emittance at 580 oC lower than 0.13 were obtained.

  11. Structure and strength of carbide-steel cermet and their changes during heat treatment

    International Nuclear Information System (INIS)

    Both homogeneous and 'graded' materials were produced by pressing and sintering of titanium carbide TiCx (0.7 x takes place during the joining. If the titanium carbide is carbon deficient that the carbon goes from the steel binder to TiCx, and this redistribution intensity with the x decreases. So-named graded cermets were produced on controlled distribution of TiCx with different x. An additional flow of carbon from C-rich to C-poor TiCx layers was obtained in these cermets. These changes both in the steel and TiCx compositions result in changes in such processes as austenitization, carbide dissolution and precipitation, and martensitic transformation. Both general strength of the material and the gradient of properties in graded cermets can be increased using kinetic factors of element redistribution and structure changes resulted from the heat treatment. (author)

  12. An electrochemical impedance study on cermet anodes in alumina-saturated molten cryolite

    International Nuclear Information System (INIS)

    This paper reports on electrochemical impedance spectra of NiO-NiFe2O4-Cu cermet anodes in alumina-saturated molten cryolite at anodic potentials above the decomposition potential of alumina which exhibited a loop with a characteristic frequency of about 1 Hz. A similar feature was observed using platinum anodes under the same experimental conditions. Analysis of these data suggests the loop was due to gas bubbling. Features associated with charge-transfer processes were not sufficiently resolved to determine the corrosion properties of the cermet anode

  13. Preparation and electrical properties of dense micro-cermets made of nickel ferrite and metallic copper

    Science.gov (United States)

    Baco-Carles, Valérie; Pasquet, Isabelle; Laurent, Véronique; Gabriel, Armand; Tailhades, Philippe

    2009-08-01

    Dense micro-cermets made of nickel ferrites and copper micrometric particles were obtained from partial reduction under hydrogenated atmosphere at 350 °C of mixed copper nickel ferrites, and sintering in nitrogen at 980 °C. The small copper particles are homogeneous in size and well dispersed in the spinel oxide matrix. No exudation of copper metal was observed after sintering. The micro-cermets prepared are semi-conducting materials with electrical conductivity lying from 44 to 130 S/cm at 980 °C. Their overall characteristics make them interesting for inert anodes dedicated to aluminium electrolysis in melted cryolite.

  14. Grain size stabilization of tetragonal phase of zirconia in sputtered Zr- O cermet films

    OpenAIRE

    M. S. Hadavi; S. H. Keshmiri; A. Kompany; Zhang, Q. C.

    2005-01-01

     In this research, thin films of Zr/ZrO2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by XRD method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O2. By controlling of O2 flow rate, the different metal volume fractions in the cermet layers were achieved. The optical response of the samples was studied using spectroscopy methods. Also th...

  15. Fabrication of WC-Co cermets by laser engineered net shaping

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yuhong [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Smugeresky, John E. [Sandia National Laboratories, Livermore, CA 94551 (United States); Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)], E-mail: jmschoenung@ucdavis.edu

    2008-10-15

    The Laser Engineered Net Shaping (LENS) technology is an extension of rapid prototyping technologies into the direct fabrication of metal parts. Bulk dense tungsten carbide-cobalt (WC-Co) cermets were produced without any molds using the LENS technology, starting from granules consisting of nanostructured WC crystallites in a Co matrix. Thermal behavior of the LENS process, shape change and coarsening of WC crystallites were investigated in this work to study the mechanisms of microstructural evolution of the cermets. Microstructures with alternating layers were observed, which is relevant to the thermal behavior of the LENS process. Variations in hardness result from the change in cooling rate along the specimen height.

  16. Plasma cermet coatings with nanosized particles of carbides and nitrides of Ti

    International Nuclear Information System (INIS)

    Plasma cermet coatings deposited with the use of local protection of sprayed material against oxidation are under study. It is shown that mechanical alloying of a TiCN-Ni-Mo cermet powder permits attaining uniform distribution of a hardening phase over the matrix. The coatings deposited using this powder have high density structure and high microhardness (up to 14196.2 MPa). On mechanical alloying, sintering and deposition the formation of Ni3(MoTi)C, NiC, MoC, Mo2C, NiTi, Ni3N phases occurs due to TiCN interaction with a matrix

  17. Characterization of Cr-O cermet solar selective coatings deposited by using direct-current magnetron sputtering technology

    International Nuclear Information System (INIS)

    Cr-O (Cr-CrO) cermet solar selective coatings with a double cermet layer film structure were prepared by using a special direct-current (dc) magnetron sputtering technology. The typical film structure from the surface to the bottom substrate was an Al2O3 anti-reflection layer on a double Cr-O cermet layer on an Al metal infrared reflection layer. The deposited Cr-O cermet solar selective coating had an absorptance of α = 0.93 - 0.95 and an emittance of ε = 0.09 - 0.10(100 .deg. C). The absorption layers of the Cr-O cermet coatings deposited on glass and silicon substrates were identified as being amorphous by using X-ray diffraction (XRD). Atomic force microscopy (AFM) showed that Cr-O cermet layers were very smooth and that their grain sizes were very small. The result of thermal stability test showed that the Cr-O cermet solar selective coating was stable for use at temperatures of under 400 .deg. C.

  18. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  19. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    In the present investigation Mo2FeB2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  20. Model of deformation and fracture of TiB2+B4C based cermet under dynamic loading

    International Nuclear Information System (INIS)

    One introduces a mathematical model describing deformation and fracture of titanium diboride and boron carbide base (TiB2+B4C) cermet with a metal binder under impact loading. TiB2+B4C base cermet with a metal binder was prepared by means of self-propagating high-temperature synthesis. In terms of the mentioned model one solved the problem dealing with penetration of TiB2+B4C base cermet into aluminium semi-infinite barrier

  1. Interaction on boundary of current-conducting and glass-forming phases in cermet films under annealing

    International Nuclear Information System (INIS)

    The electron-probe microanalysis permits investigating the interaction on the boundary of current-conducting and glass-binding phases in cermet films without noble metals on the base of ruthenium oxide. The performed studies along with experiments on model microsections subject to annealing in different media have shown the differences in the process of formation of structure and properties of cermet resistive elements as well as a significance of the oxidation process of current-conducting phase in formation of high working characteristics of cermet resistors on the base of hexaborides of the rare-earth elements

  2. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64. ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  3. Plasma Spraying of Zirconium Carbide – Hafnium Carbide – Tungsten Cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    Vol. 3. Reutte: PlanseeGroup, 2009, s. 1-3. (GT49). ISBN N. [Plansee Seminar on High Performance PM Materials /17th./. Reutte (AT), 25.05.2009-29.05.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Hafnium carbide * zirconium carbide * tungsten cermets * plasma spraying * water stabilized plasma Subject RIV: BL - Plasma and Gas Discharge Physics

  4. Ball mill assisted synthesis of Ni-YSZ cermet anode by electroless technique and their characterization

    International Nuclear Information System (INIS)

    Ni-YSZ composite cermet used as the anode material for solid oxide fuel cell is prepared by electroless technique involving an important sensitization process of YSZ. In the present investigation, the sensitization process of YSZ is carried out through cost-effective controlled ball milling. The effect of milling speed on electrical, thermal and microstructural properties of such anodes is investigated and optimized at 45 rpm. Microstructural analysis of the synthesized Ni-YSZ cermets prepared under the optimized milling conditions showed a core-shell microstructure with YSZ as core and fine metallic Ni particulates as the shell. The interconnected metallic Ni creates a conductive pathway at room temperature. Such type of unique core-shell anode cermet, results in higher electrical conductivity (σ800deg.C ∼ 500 S/cm) at much lower Ni content (∼33 vol%) compared to conventional anode cermet with thermal expansion coefficient (∼11.48 x 10-6 K-1) compatible to other cell components.

  5. Nickel-cermet anode for fuel elements with LSGM-electrolyte

    International Nuclear Information System (INIS)

    Effect of certain process variables (burning temperature, interface layer thickness of the solid electrolyte Ce0.82Gd0.18O1.91 (GDC), quantity of the GDC-electrolyte in Ni-cermet) on electrochemical and electric properties of the nickel-cermet (Ni-GDC) anode for fuel elements with the La0.88Sr0.12Ga0.82Mg0.18O2.85 (LSGM) electrolyte is studied. It is shown that polarization resistance of such electrode depends weakly on the quantity of GDC-electrolyte in the Ni-cermet and on the interface GDC-layer thickness (4.5-23.5 μm), but it grows with the increase of sintering temperature of anode. Contact resistance is established to concentrate at the GDC/LSGM bound in cells with the developed nickel-cermet electrode. At 700 Deg C developed anodes make provision for the current density 1 A/cm2 at overwork less than 100 mV when using wet hydrogen and methane-oxygen mixture as fuel

  6. PLASMA SPRAYING OF REFRACTORY CERMETS BY THE WATER-STABILIZED SPRAY (WSP®) SYSTEM

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, V.; Cheong, D.-I.; Chráska, Pavel

    2009-01-01

    Roč. 54, č. 3 (2009), s. 241-253. ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * tungsten Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  7. The possible use of cermet fuel in the DIDO and PLUTO heavy-water research reactors

    International Nuclear Information System (INIS)

    International restrictions on the supply of highly enriched uranium have resulted in the requirement to fuel research reactors with a lower-enrichment uranium fuel. A study has been made of the feasibility of using low-enrichment fuels of a new type in the DIDO and PLUTO reactors. This work has been done as a contribution to the studies currently being carried out internationally on the implications of using lower-enrichment fuels in heavy-water-moderated research reactors. The uranium content of the U/Al alloy at present used cannot be increased sufficiently to maintain the requisite U235 content without undesirable effects on the physical properties of the alloy. A different type of fuel will therefore be required to maintain the desired nuclear characteristics. A possible solution to the problem is the use of a cermet (U3O8/Al) fuel material. Cermet fuel has poorer thermal conductivity than metallic fuel, and may also contain particles of the ceramic of a size that approaches the total thickness of the cermet core. We therefore have to consider both the average temperature of the centre of the fuel and whether large particles of the ceramic may be significantly hotter than the average. This paper describes a preliminary study of the feasibility of this concept from the heat-transfer and safety viewpoints. Calculations have been made for a cermet of 20%-enrichment 2.3g U/cm3, used in a high-power element in a DIDO-type reactor. To accommodate the cermet, the cladding has been reduced in thickness to 0.318mm (0.0125 in) the core increasing to 1.044mm, but the fuel geometry is otherwise unchanged. It is concluded that from the heat-transfer viewpoint there is no problem during normal operation or the maximum credible power transient in these reactors. (author). 10 refs, 6 figs, 2 tabs

  8. Cermet Fuel Element (FE) on the basis of micro fuel - FE prototype for future power engineering

    International Nuclear Information System (INIS)

    The FE with ceramic fuel and cladding of E110 alloy under average burnup depth of 43-45MW day/kg U with providing of 3 and 4 year operation periods are used successfully in WWER. The program had been developed for improving of the fuel cycles economical indexes and for further increasing the WWER operational characteristics. In this program the reactor safety increasing has been foreseen and also the coefficient of capacity using (KIUM) at the expense of the average implement of 55-60 MW day/kg U has been achieved. The program foresees also the integration of 5-6 year fuel cycle and other developments. It is planning to solve the pointed problems with help of traditional technical solution, directed to the improving of FE with ceramic fuel. In the present paper the design-engineering and experimental development results have been presented for creation of cermet FE on the basis of micro-fuel with matrix structure (in the further -the cermet FE) for WWER. The works have been carried out over period of the last 10 years in SRI SIA 'Luch' jointly with OKB 'Gidropress', VSRINM Bochvar name, RNTs 'Kurchatovsky institute', FEI and other. During the cermet FE introduction on the basis micro fuel at the NPP, external FE construction constant is kept. That allows installation of the new active zones without any sufficient changing of reactor installations constructions. Using of cermet FE in a new generation of WWER will allow to realize its quality in large volume, in particular, to create the first hermetic contour, to simplify and to reduce the price of safety systems, automatic adjustment, radiation protection, heat transfer purity, etc. The using of cermet FE, for example, in WWER may attach to the installation the exceeded operational properties of safety in different operation conditions, manoeuvrability, vibration strength, FA life time and FE geometrical stability

  9. Neutronic calculations of AFPR-100 reactor based on Spherical Cermet Fuel particles

    International Nuclear Information System (INIS)

    Highlights: • AFPR-100 reactor considered as a small nuclear reactor without on-site refueling originally based on TRISO micro-fuel element. • The AFPR-100 reactor was re-designed using the new Spherical Cermet fuel element. • The adoption of the Cermet fuel instead of TRISO fuel reduces the core lifetime operation by 3.1 equivalent full power years. • We discussed the new micro-fuel element candidate for small and medium sized reactors. - Abstract: The Atoms For Peace Reactor (AFPR-100), as a 100 MW(e) without the need of on-site refueling, was originally based on UO2 TRISO fuel coated particles embedded in a carbon matrix directly cooled by light water. AFPR-100 is considered as a small nuclear reactor without open-vessel refueling which is proposed by Pacific Northwest National Laboratory (PNNL). An account of significant irradiation swelling in the silicon carbide fission product barrier coating layer of TRISO fuel element, a Spherical Cermet Fuel element has been proposed. Indeed, the new fuel concept, which was developed by PNNL, consists of changing the pyro-carbon and ceramic coatings that are incompatible with low temperature by Zirconium. The latter was chosen to avoid any potential Wigner energy effect issues in the TRISO fuel element. Actually, the purpose of this study is to assess the goal of AFPR-100 concept using the Cermet fuel; undeniably, the fuel core lifetime prediction may be extended for reasonably long period without on-site refueling. In fact, we investigated some neutronic parameters of reactor core by the calculation code SRAC95. The results suggest that the core fuel lifetime beyond 12 equivalent full power years (EFPYs) is possible. Hence, the adoption of Cermet fuel concept shows a core lifetime decrease of about 3.1 EFPY

  10. Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering

    International Nuclear Information System (INIS)

    Highlights: ► Processing of Fe-based cermets by pressureless sintering and spark plasma sintering. ► Influence of carbon content on the sintering mechanism and hardness. ► The cermet phase diagram was calculated and permits to explain the microstructure. ► SPS provides ferritic matrix and different carbide distribution than CPS samples. ► Pressureless sintered samples contain retained austenite at room temperature. - Abstract: Iron-based cermets are an interesting class of metal-ceramic composites in which properties and the factors influencing them are to be explored. In this work the metal matrix contains Cr, W, Mo and V as alloying elements, and the hard phase is constituted by 50 vol% of titanium carbonitride (TiCN) particles. The work studies the influence of the C content and the processing method on the sinterability, microstructure and hardness of the developed cermet materials. For that purpose, cermet samples with different C content in the matrix (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%) were prepared by conventional pressureless sintering (CPS) and, in order to achieve finer microstructures and to reduce the sintering time, by spark plasma sintering (SPS). The density and hardness (HV30) of the processed materials was evaluated, while their phase composition and microstructure was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The equilibrium phase diagram of the composite material was calculated by ThermoCalc software in order to elucidate the influence of the carbon content on the obtained phases and developed microstructures.

  11. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    Energy Technology Data Exchange (ETDEWEB)

    Gao Ningfeng [EcoTopia Science Inst., Nagoya Univ., Nagoya (Japan); Advanced Mfg. Research Inst., National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan); Inagaki, F.; Sasai, R.; Itoh, H. [EcoTopia Science Inst., Nagoya Univ., Nagoya (Japan); Watari, K. [Advanced Mfg. Research Inst., National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2005-07-01

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO{sub 3} aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO{sub 3} hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO{sub 3} aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 {mu}m in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 {mu}m in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO{sub 3} aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO{sub 3}.0.33H{sub 2}O powder and a small amount of WO{sub 3}. The recovered WO{sub 3}.0.33H{sub 2}O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  12. Deposition, structure, and properties of cermet thin films composed of Ag and Y-stabilized zirconia

    International Nuclear Information System (INIS)

    This paper reports that Ag1-x[(Y2O3)0.1(ZrO2)0.9]x (YSZ) cermet thin films have been deposited by reactive magnetron cosputtering from Ag and Zr/Y targets in Ar-O2 mixtures. The deposition conditions were such that the YSZ component in the films was fully oxidized. The film densities varied from ∼75% to >85% as the total pressure was decreased from 20 to 5 mTorr. Film resistivities ρ varied with Ag volume fraction fAg from 5 x 10-6 Ω-cm to >109 Ω-cm. For fAg Ag. For fAg > 0.4, ρ decreased more gradually with increasing fAg. ρ in annealed films ranged from 4 x 10-4 Ω-cm for fAg = 0.4 to 5 x 10-6 Ω-cm for pure Ag. Long term (>100 h) annealing at ≥700 degrees C resulted in a gradual increase in cermet resistivity due to Ag evaporation and Ag segregation to surface islands. Both decomposition mechanisms were effectively suppressed due to Ag evaporation and Ag segregation to surface islands. Both decomposition mechanisms were effectively suppressed at up to 750 degrees C by depositing a 1 μm thick porous perovskite cap layer on the cermet. Complex impedance spectroscopy measurements in air of cermet electrodes on YSZ electrolytes gave interfacial resistances that were a factor of ∼6 lower than those of pure AG electrodes, e.g., 1.4 Ω-cm2 at 750 degrees C. Ag-YSZ cermets thus have potential as high-conductivity, low-overpotential air electrode materials for solid-oxide electrochemical devices operating at temperatures ≤750 degrees C

  13. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    International Nuclear Information System (INIS)

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO3 aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO3 hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO3 aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 μm in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 μm in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO3 aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO3.0.33H2O powder and a small amount of WO3. The recovered WO3.0.33H2O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  14. The development of fabrication techniques for europia/iron cermets tips for coarse control arms in Dido and Pluto

    International Nuclear Information System (INIS)

    The applicability of cermet-fabrication techniques to the production of europia/iron cermets for use as coarse-control arm tips in the materials test reactors DIDO and PLUTO has been investigated. Spheroids of europia were prepared by a dry agglomeration process. These were sintered, dispersed in iron powder and pressed into plates; the plates were then sintered to densify the iron matrix. These stages were optimised to produce a strong cermet with a europia density of 2.75 g/cm3. The uniformity of distribution of the absorber particles was confirmed by radiography, and adequate neutron-absorption worth by measurements carried out in the GLEEP reactor. An outline flow sheet has been prepared for the manufacture of europia/iron cermet plates suitable for use in the tips of DIDO and PLUTO coarse-control arms. (U.K.)

  15. Microstructural control of Ni-YSZ cermet anode for planer thin-film solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) cermet anode was fabricated for solid oxide fuel cells (SOFCs) by conventional ceramic processing using NiO-YSZ composite particles. Microstructures of the anode were carefully characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Ni-YSZ cermet anode was consisting of fine YSZ connections, as the conducting pass of oxygen ions, on the surface of Ni network, as that of electrons, with continuous pore structure and as that of gaseous species. No amorphous phases were present at the interface between Ni and YSZ, and there was an orientation relationship between Ni and YSZ grains (111)Ni//(111)YSZ. The cermet anode showed a high electrical performance at 800 deg. C. These results indicated that the electrochemical activity of the Ni-YSZ cermet anode was enhanced with the present microstructure

  16. Thermal conductivity of ZrO2-Mo and Mo-base metal-cermet laminar composites

    International Nuclear Information System (INIS)

    Heat conduction is studied for composites consisting of alternating Mo and ZrO2-Mo cermet layers produced by compaction and sintering of cast 0.15-0.20 mm thick films. Thermal conductivity is studied by the method of stationary heat flow within the temperature range 550-900 K. It is established that the thermal conductivity may vary from 20 to 100 W/(mxgrad) depending on the cermet phase content

  17. Preparation and properties of 4. 25Cu-0.75Ni/NiFe2O4 cermet

    Institute of Scientific and Technical Information of China (English)

    LI Jie; ZHANG Gang; LAI Yan-qing; TIAN Zhong-liang; QIN Qing-wei

    2005-01-01

    4.25Cu-0.75Ni/NiFe2 O4 cermets were prepared by doping NiFe2 O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2 O4 cermets decreases with increasing temperature, and has a turning point at 590 ℃, which is similar to that of NiFe2 O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4. 25Cu-0. 75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1 200 ℃ to 1 300 ℃, the relative density increases from 89.86% to 95.33 %0, and the resistivity at 960 ℃ decreases and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obples sintered at 1 200 ℃ for 2 h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders.

  18. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning. Final report, August 1990--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  19. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  20. On a fast reactor cycle scheme that incorporates a thoria-based minor actinide-containing cermet fuel

    International Nuclear Information System (INIS)

    A fast reactor cycle scheme that incorporates a thoria-based minor actinide-containing cermet fuel is given. The present cermet fuel consists of an oxide solid solution of Th and minor actinides and Mo-inert matrix. It has been proposed as a high-performance device that can enhance minor actinide incineration in a fast reactor cycle. It is used in an independent small sub-cycle, whereby dedicated cycle technologies are adopted. Two-step reprocessing process was proposed for the present cermet fuel; it consists of a pre-removal of Mo-inert matrix and an actinide recovery. A preliminary test for the pre-removal of Mo-inert matrix was carried out using a surrogate cermet fuel. Burnup characteristics of a fast reactor core loaded with the cermet fuel were investigated by using neutronic calculation codes. It was revealed that a heterogeneous composition of Mo-inert in inner and outer cores may lead to an effective transmutation of minor actinides and a flattered power density. It was concluded that the present cermet fuel was potentially promising as a high-performance incineration device of minor actinides for fast reactors. (author)

  1. Structural and tribological properties of supersonic sprayed Fe–Cu–Al–Al{sub 2}O{sub 3} nanostructured cermets

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, E.P., E-mail: Emmanuel.Georgiou@mtm.kuleuven.be [KU Leuven, Dept. MTM, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Achanta, S. [Falex Tribology NV, Wingepark 23B, 3110 Rotselaar (Belgium); Dosta, S.; Fernández, J. [Thermal Spray Centre (CPT), Dpt. Ciència dels Materials i Enginyeria Metal.lúrgica, Universitat de Barcelona Martí i Franques 1, E-08028, Barcelona (Spain); Matteazzi, P. [CSGI and MBN Nanomaterialia, Via Bortolan 42, Vascon di C. (Italy); Kusinski, J. [Faculty of Metal Engineering and Industrial Computer Science, University of Mining and Metallurgy, Mickiewicza 30 Ave., 30-059 Cracow (Poland); Piticescu, R.R. [National Institute for Nonferrous and Rare Metals, 102 Biruintei Blvd., Pantelimon, Ilfov (Romania); Celis, J.-P. [KU Leuven, Dept. MTM, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium)

    2013-06-15

    A nanostructured cermet coating consisting of alumina dispersed in a Fe–Cu–Al matrix was deposited by supersonic spraying. The experiments revealed a strong effect of deposition parameters and chemical composition of the powders on the structural characteristics of the Fe–Cu–Al + Al{sub 2}O{sub 3} sprayed cermet. This cermet is made up of complex metallurgical phases as revealed by electron microscopy and X-ray diffraction. The mechanical properties of the different phases detected were determined by nanoindentation. Finally, the friction and wear behavior of this nanostructured sprayed cermet were compared to the ones of benchmark materials. It was found that the Fe–Cu–Al + Al{sub 2}O{sub 3} cermet coating exhibit better tribological properties than the benchmark materials thanks to an appropriate balance of hard and soft phases, and a nanostructuring. The wear mechanism was investigated to establish a ‘structure–property’ relationship for this type of nanostructured cermet coatings.

  2. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-06-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted ‘traditional’ fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of

  3. Optimizing analysis of W-AlN cermet solar absorbing coatings

    International Nuclear Information System (INIS)

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al2O3 ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 3500C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al2O3 anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal infrared reflector. (author)

  4. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  5. Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Gong, Feng; Pang, Jiming; Wang, Yintao

    2015-09-25

    Highlights: • Ni–Co binder improves the solid solution reaction and the wetting of hard phases. • Cermets with 25 wt.% binder have evenly distributed grains with moderate rims. • Co/(Ni + Co) ratios influence the grain sizes and microstructure features of cermets. • The cermets with pure Co as binder exhibit optimal mechanical properties. - Abstract: To optimize the mechanical properties of Ti(C,N)-based cermets used as tool materials, the cermets with different Ni–Co binder contents and Co/(Ni + Co) weight ratios were prepared. The effects of metal binder content and Co/(Ni + Co) ratio on the microstructure and mechanical properties of Ti(C,N)-based cermets were investigated by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and measuring the transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The experimental results reveal that increasing Ni–Co binder content can increase the thickness of rim phases by improving the solid solution reaction and the wetting of hard phases. The cermets with 25 wt.% binder addition present good comprehensive mechanical properties, which is attributed to the moderate rim phases and uniformly distributed Ti(C,N) grains. The Co/(Ni + Co) weight ratios in binder have a great influence on the grain sizes and microstructure features of Ti(C,N)-based cermets, in virtue of the synergic effects between the wettability of Co and the solubilizing capacity of Ni on hard phases. The cermets with pure Co as binder exhibit optimal mechanical properties with a TRS of 1767 ± 81 MPa, a hardness of 12.26 ± 0.10 GPa and a K{sub IC} of 8.40 ± 0.47 MPa m{sup 1/2}, which meet the requirements for tool materials. And the cermets with a Co/(Ni + Co) ratio of 0.2 have the second best mechanical properties with a TRS of 1848 ± 201 MPa, a hardness of 11.12 ± 0.40 GPa and a K{sub IC} of 9.43 ± 0.54 MPa m{sup 1/2}, in which the lower hardness can

  6. Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets

    International Nuclear Information System (INIS)

    An appropriate heating rate in the sintering process is crucial to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were sintered to investigate the influence of heating rate on the mechanical properties and microstructure of the cermet materials. The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (KIC) were tested. The microstructure, indention crack, fracture morphology and phase composition of the cermets were also studied by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results reveal that the heating rate has a great influence on the mechanical properties and microstructure of Ti(C,N)-based cermets. The cermets sintered at the heating rate of 3 °C/min between 1300 °C and 1430 °C have the optimum comprehensive mechanical properties with a transverse rupture strength of 1605±107 MPa, a hardness of 12.02±0.25 GPa and a fracture toughness of 10.73±0.40 MPa m1/2. The heating rate can affect the reaction among the constituents of Ti(C,N)-based cermets and then influence the elements distribution in the core–rim microstructures and the lattice parameter of Ti(C,N) phase. When the heating rate is between 2 °C/min and 5 °C/min, the lower the heating rate is, the coarser the Ti(C,N) grains become. A higher heating rate is detrimental to the formation of core–rim microstructures, and a lower heating rate can result in grain coarsening and inhomogeneous microstructure. The observation of indention cracks and fracture surfaces show that the intergranular cracks and intergranular fractures mainly occur in the cermets with larger binder mean free path and medium grains. While the cleavage fractures appear more in the cermets with grain coarsening, and the transgranular fractures exist more in the cermets with non-fully developed fine grains

  7. Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Zhang, Hongshan; Qin, Wenzhen; Gong, Feng

    2015-03-25

    An appropriate heating rate in the sintering process is crucial to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were sintered to investigate the influence of heating rate on the mechanical properties and microstructure of the cermet materials. The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}) were tested. The microstructure, indention crack, fracture morphology and phase composition of the cermets were also studied by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results reveal that the heating rate has a great influence on the mechanical properties and microstructure of Ti(C,N)-based cermets. The cermets sintered at the heating rate of 3 °C/min between 1300 °C and 1430 °C have the optimum comprehensive mechanical properties with a transverse rupture strength of 1605±107 MPa, a hardness of 12.02±0.25 GPa and a fracture toughness of 10.73±0.40 MPa m{sup 1/2}. The heating rate can affect the reaction among the constituents of Ti(C,N)-based cermets and then influence the elements distribution in the core–rim microstructures and the lattice parameter of Ti(C,N) phase. When the heating rate is between 2 °C/min and 5 °C/min, the lower the heating rate is, the coarser the Ti(C,N) grains become. A higher heating rate is detrimental to the formation of core–rim microstructures, and a lower heating rate can result in grain coarsening and inhomogeneous microstructure. The observation of indention cracks and fracture surfaces show that the intergranular cracks and intergranular fractures mainly occur in the cermets with larger binder mean free path and medium grains. While the cleavage fractures appear more in the cermets with grain coarsening, and the transgranular fractures exist more in the cermets with non-fully developed fine grains.

  8. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  9. Lateral stress evolution in chromium sulfide cermets with varying excess chromium

    Science.gov (United States)

    Petel, O. E.; Appleby-Thomas, G. J.; Wood, D. C.; Capozzi, A.; Nabavi, A.; Goroshin, S.; Frost, D. L.; Hazell, P. J.

    2016-04-01

    The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a one-dimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium contents.

  10. Fundamentals of liquid phase for modern cermets and functionally graded cemented carbonitrides (FGCC)

    International Nuclear Information System (INIS)

    Metallurgical reactions and microstructure developments during sintering of modern cermets and functionally graded cemented carbonitrides (FGCC) were investigated by modern thermal and analytical methods such as mass spectrometer (MS), differential thermal analysis (DTA), differential scanning calorimeter (DSC), dilatometer (DIL), microscopy and analytical electronic microscopy with energy dispersive spectrometer (EDS). The complex phase reactions and phase equilibrium in the multi-component system Ti/Mo/W/Ta/Nb/C,N-Co/Ni were studied. The melting behaviors in the systems of TiC-WC/MoC-Ni/Co, TiC-TiN-WC-Co and TiCN-TaC-WC-Co have been established. By better understanding of the mechanisms that govern the sintering processing and metallurgical reactions, new cermets and different types of functionally graded cemented carbonitrides (FGCC) with desired microstructures and properties were developed and fabricated. (author)

  11. The AC conduction in Ag - Al2O3 cermet sandwich structures

    International Nuclear Information System (INIS)

    We have prepared cermet thin ms of Ag - Al2O3 sandwiched between Al electrodes by evaporation of the elements onto glass substrates in vacuo of 10-6 torr. Conductance and loss factor were obtained in evaporated Al/Ag - Al2O3/Al sandwich structures for m thickness ∼ 100 to 200nm containing 5 to 20 wt % Ag in the Al2O3 matrix at room temperature. The ac conductivity of Ag-Al2O3 cermet thin ms can be presented by the form AωS. The losses are discussed on the basis of concept of Goswami and Goswami model and are found to be in conformity with this model. (author)

  12. Effect of air plasma spraying parameters on WC-Co cermet coating

    International Nuclear Information System (INIS)

    WC-Co cermet coatings were produced on AISI 321 stainless steel samples by air plasma spraying system. In this regard, the coatings were deposited by varying the spraying distance i.e. 80 mm and 100 mm. It was observed that spraying distance play an important role on the final properties of the WC-Co cermet coating. The coatings were characterized by optical and electron microscopy, microhardness testing and X-Ray Diffractometry. A remarkable micro-structural difference was observed between the two coatings. It was observed that the coatings produced at 80 mm having more porosity and un-melted particles as compared to that produced at higher distance. Similarly, the change in concentration of metallurgical phases was also observed. (author)

  13. Cermet anode with continuously dispersed alloy phase and process for making

    Science.gov (United States)

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions and methods for making are disclosed which comprise NiO--NiFe.sub.2 O.sub.4 --Cu--Ni. Addition of an effective amount of a metallic catalyst/reactant to a composition of a nickel/iron/oxide, NiO, copper, and nickel produces a stable electrode having significantly increased electrical conductivity. The metallic catalyst functions to disperse the copper and nickel as an alloy continuously throughout the oxide phase of the cermet to render the electrode compositon more highly electrically conductive than were the third metal not present in the base composition. The third metal is preferably added to the base composition as elemental metal and includes aluminum, magnesium, sodium and gallium. The elemental metal is converted to a metal oxide during the sintering process.

  14. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  15. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    International Nuclear Information System (INIS)

    Highlights: • Criticality safety studies consider a generic space nuclear reactor in reentry scenarios. • Describes the submersion criticality behavior for a reactor fueled with a tungsten cermet fuel. • Study considers effects of varying fuel content, geometry, and other conditions. - Abstract: Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores

  16. Structure and electric resistivity of sintered and plasma sprayed tungsten-based cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.; Sedláček, J.

    Bratislava : STU Bratislava, 2009 - (Koman, M.; Mikloš, D.), s. 68-69 ISBN 978-80-89088-81-2. - (Joint Seminar). [Joint Seminar – Development of materials science in research and education/19th./. Závažná Poruba (SK), 31.08.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Electric resistivity * Plasma spraying * refractory cermets * zirconium carbide Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Metal-Matrix Hardmetal/Cermet Reinforced Composite Powders for Thermal Spray

    Directory of Open Access Journals (Sweden)

    Dmitri GOLJANDIN

    2012-03-01

    Full Text Available Recycling of materials is becoming increasingly important as industry response to public demands, that resources must be preserved and environment protected. To produce materials competitive in cost with primary product, secondary producers have to pursue new technologies and other innovations. For these purposes different recycling technologies for composite materials (oxidation, milling, remelting etc are widely used. The current paper studies hardmetal/cermet powders produced by mechanical milling technology. The following composite materials were studied: Cr3C2-Ni cermets and WC-Co hardmetal. Different disintegrator milling systems for production of powders with determined size and shape were used. Chemical composition of produced powders was analysed.  To estimate the properties of recycled hardmetal/cermet powders, sieving analysis, laser granulometry and angularity study were conducted. To describe the angularity of milled powders, spike parameter–quadric fit (SPQ was used and experiments for determination of SPQ sensitivity and precision to characterize particles angularity were performed. Images used for calculating SPQ were taken by SEM processed with Omnimet Image Analyser 22. The graphs of grindability and angularity were composed. Composite powders based on Fe- and Ni-self-fluxing alloys for thermal spray (plasma and HVOF were produced. Technological properties of powders and properties of thermal sprayed coatings from studied powders were investigated. The properties of spray powders reinforced with recycled hardmetal and cermet particles as alternatives for cost-sensitive applications were demonstrated.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1348

  18. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    Craft, A.E., E-mail: aaron.craft@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); O’Brien, R.C., E-mail: Robert.OBrien@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); Howe, S.D., E-mail: Steven.Howe@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-07-01

    Highlights: • Criticality safety studies consider a generic space nuclear reactor in reentry scenarios. • Describes the submersion criticality behavior for a reactor fueled with a tungsten cermet fuel. • Study considers effects of varying fuel content, geometry, and other conditions. - Abstract: Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  19. Assessment of properties thermal sprayed coatings realised using cermet blend powder

    OpenAIRE

    Brezinová, J.; A. Guzanová; Spišák, E.

    2014-01-01

    The article deals with the assessment of selected properties of plasma sprayed coatings based on ZrSiO4 doped with different volume fractions of metal dopant (Ni). Mixed powders are cermet blends. Aim of the work consists of verificating the possibility to replace the application of Ni interlayer by adding Ni directly to the ceramic powder and apply them together in a single technological operation. The coatings were studied from point of view of their structure, porosity, adhesion of the coa...

  20. Structure and mechanical properties of plasma WC-Co cermet coatings

    International Nuclear Information System (INIS)

    A comparative analysis of phase compositions and microhardness values of WC-Co cermet coatings produced by plasma and high-speed gas-flame spraying has been carried out. It was shown that WC carbide and all type tungsten carbides content in the coatings rise up to 52 and 80% respectively when the plasma flow temperature is decreased. Microhardness of sprayed particles takes a value of 22 GPa while that of initial powder is 23 GPa

  1. Cermet insert high voltage holdoff improvement for ceramic/metal vacuum devices

    Science.gov (United States)

    Ierna, W.F.

    1986-03-11

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  2. Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources

    Science.gov (United States)

    Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.

    1972-01-01

    Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.

  3. Cermet insert high voltage holdoff for ceramic/metal vacuum devices

    Science.gov (United States)

    Ierna, William F.

    1987-01-01

    An improved metal-to-ceramic seal is provided wherein the ceramic body of the seal contains an integral region of cermet material in electrical contact with the metallic member, e.g., an electrode, of the seal. The seal is useful in high voltage vacuum devices, e.g., vacuum switches, and increases the high-voltage holdoff capabilities of such devices. A method of fabricating such seals is also provided.

  4. Microstructure and mechanical properties of hot isostatically pressed cermets with TiN coatings

    Institute of Scientific and Technical Information of China (English)

    ZHENG Liyun; XIONG Weihao; YAN Xianmei; LI Guo'an

    2006-01-01

    To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPing) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that after the HIPing process, there was a higher increase in critical load in the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also found that the HIPing posttreatment process is well suited for increasing the adhesion strength between the coating and the substrate.

  5. Repository Criticality Control with Depleted-Uranium-Dioxide Cermet Waste Packages

    International Nuclear Information System (INIS)

    It is proposed that the structural components and internal basket structures of waste packages (WPs) be constructed of depleted uranium dioxide (DUO2)-steel cermets. The cermet contains 2 DUO2 imbedded in a steel matrix. The WPs are filled with spent nuclear fuel (SNF) and placed 2 in a geological repository. The WP provides a handling container for placement of SNF in the repository and is an engineered barrier to delay SNF degradation and subsequent release of radionuclides. SNF and other fissile wastes contain enriched uranium and transuranic fissile isotopes; thus, the potential for nuclear criticality exists. Most of the transuranic fissile isotopes, such as 239Pu, will have decayed to 233U or 235U before significant fissile-isotope migration from the degraded SNF or other fissile waste forms has occurred. Consequently, post-closure repository criticality issues are primarily from the fissile isotopes of uranium. As the WP degrades, the 238U in the DUO2-steel cermet would mix with the degrading SNF and isotopically dilute 233U and 235U to levels that would ensure that post-closure criticality would not occur

  6. Investigation on microstructures of NiO-YSZ composite and Ni-YSZ cermet for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Tahereh; Sarrafi, Mohammad Hassan; Haji, Mohsen; Raissi, Babak; Maghsoudipour, Amir [Materials and Energy Research Center, Karaj, Tehran 14155-4777 (Iran)

    2010-09-15

    NiO-YSZ composites and Ni-YSZ cermets were successfully performed for solid oxide fuel cell applications. These composites must have enough porosity and appropriate microstructure for transferring the fuel gases. In this study, ball-milling was used as a simple, cost-effective method for the purpose of mixing the raw materials. The homogeneity of NiO-YSZ composites was examined by Map mode of SEM. NiO-YSZ composites were reduced at the high temperature under the controlled atmosphere to fabricate Ni-YSZ cermet. Variations in the anode phases were investigated by XRD and microstructure and porosity of composites were observed by SEM. Effective parameters like temperatures and the amount of pore former were investigated on open porosity, bulk density, electrical conductivity as well as electrochemical impedance of NiO-YSZ composites and Ni-YSZ cermet. A thin layer of YSZ was deposited by EPD as an electrolyte on NiO-YSZ composites which had various amount of open porosity, to study its effect on the performance of semi-cells by electrochemical impedance. (author)

  7. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    A.E. Craft; R. C. O' Brien; S. D. Howe; J. C. King

    2014-07-01

    Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  8. Grain size stabilization of tetragonal phase of zirconia in sputtered Zr- O cermet films

    Directory of Open Access Journals (Sweden)

    M. S. Hadavi

    2005-06-01

    Full Text Available  In this research, thin films of Zr/ZrO2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by XRD method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O2. By controlling of O2 flow rate, the different metal volume fractions in the cermet layers were achieved. The optical response of the samples was studied using spectroscopy methods. Also the effect of vacuum annealing on the structures and the optical properties were studied. XRD results indicated that the prepared samples were amorphous and vacuum annealing induced crystallization in the cermet films. This research also showed that without doping, the tetragonal phase of zirconia can be stabilized at a temperature lower than the normal transition temperature. This is “grain size stabilization” and relates to the small size of the crystallites. In order to study the electron diffraction in the selected area patterns (SAD, the samples were analyzed by a high-resolution transmission microscope. The SAD results showed that all of the as prepared samples were amorphous showing evidence of very small Zr crystallites immersed in a dielectric medium.The SAD results are in close agreement with those obtained by XRD analysis.

  9. Filling Source Feedthrus with Alumina/Molybdenum CND50 Cermet: Experimental, Theoretical, and Computational Approaches

    International Nuclear Information System (INIS)

    This report is a summary of the work completed in FY00 for science-based characterization of the processes used to fabricate cermet vias in source feedthrus. In particular, studies were completed to characterize the CND50 cermet slurry, characterize solvent imbibition, and identify critical via filling variables. These three areas of interest are important to several processes pertaining to the production of neutron generator tubes. Rheological characterization of CND50 slurry prepared with 94ND2 and Sandi94 primary powders were also compared. The 94ND2 powder was formerly produced at the GE Pinellas Plant and the Sandi94 is the new replacement powder produced at CeramTec. Processing variables that may effect the via-filling process were also studied and include: the effect of solids loading in the CND50 slurry; the effect of milling time; and the effect of Nuosperse (a slurry ''conditioner''). Imbibition characterization included a combination of experimental, theoretical, and computational strategies to determine solvent migration though complex shapes, specifically vias in the source feedthru component. Critical factors were determined using a controlled set of experiments designed to identify those variables that influence the occurrence of defects within the cermet filled via. These efforts were pursued to increase part production reliability, understand selected fundamental issues that impact the production of slurry-filled parts, and validate the ability of the computational fluid dynamics code, GOMA, to simulate these processes. Suggestions are made for improving the slurry filling of source feedthru vias

  10. DURABILITY AND TRIBOLOGICAL PROPERTIES OF THERMALLY SPRAYED WC CERMET COATING IN LUBRICATED ROLLING WITH SLIDING CONTACT

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2010-09-01

    Full Text Available Durability and tribological properties of thermally sprayed WC-Cr-Ni cermet coating were investigated experimentally in lubricated rolling with sliding contact conditions. By means of the high energy type flame spraying (Hi-HVOF method, the coating was formed onto the axially ground and circumferentially ground roller specimens made of a thermally refined carbon steel. In the experiments, the WC cermet coated steel roller was mated with the carburized hardened steel roller without coating in line contact condition. The coated roller was mated with the smooth non-coated roller under a contact pressure of 1.0 or 1.2 GPa, and it was mated with the rough non-coated roller under a contact pressure of 0.6 or 0.8 GPa. As a result, it was found that in general, the coating on the circumferentially ground substrate shows a lower durability compared with that on the axially ground substrate and this difference appears more distinctly for the higher contact pressure for both smooth mating surface and rough mating surface. It was also found that there are significant differences in the tribological properties of WC cermet coating depending on the contact pressure. In addition, depending on the smooth or rough mating surface, remarkable differences in the tribological properties were found.

  11. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Luis H., E-mail: bertortega@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX (United States); Kaminski, Michael D., E-mail: kaminski@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States); Zeng, Zuotao, E-mail: zeng@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States); Cunnane, James, E-mail: cunnane@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States)

    2013-07-15

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 10{sup 3} kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  12. Grain size stabilization of tetragonal phase of zirconia in sputtered Zr-O cermet films

    International Nuclear Information System (INIS)

    In this research, thin films of Zr/ZrO2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by x-ray diffraction method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O2. By controlling of O2 flow rate, the different metal volume fractions in the cermet layers were achieved. The optical response of the samples was studied using spectroscopy methods. Also the effect of vacuum annealing on the structures and the optical properties were studies. x-ray diffraction results indicated that the prepared samples were amorphous and vacuum annealing induced crystallization in the cermet films. This research also show that without doping, the tetragonal phase of Zirconia can be stabilized at a temperature lower than the normal transition temperature. This is grain size stabilization and relates to the small size of the crystallizes. In order to study the electron diffraction in the selected area patterns, the samples were analysed by a high-resolution transmission microscope. The selected area patterns results showed that all of the as prepared samples were amorphous showing evidence of very small Zr crystallites immersed in a dielectric medium. The Sad results are in close agreement with those obtained by x-ray diffraction analysis

  13. Reactions during the processing of U3O8-Al cermet fuels

    International Nuclear Information System (INIS)

    The cermet fuel (U3O8 dispersed in Al) being considered thermodynamically unstable because of the potential for an exothermic metallothermic reduction reaction. This paper describes work performed to qualify the extent of reaction during powder metallurgy (P/M) processing of the U3O8-Al cermet fuel, and to determine the effect of partial reduction to U4O9 on the metallothermic reduction reaction. During the fabrication of the U3O8-Al cermet fuel by the P/M technique, a significant portion of the U3O8 is reduced to U4O9. The reaction between U4O9 and Al is also exothermic; however the maximum heat released by the reaction is substantially less than that released for the U3O8-Al reaction, approximately 335 J (80 cal) per gram of oxide reacted compared to 940 J (225 cal). Metallothermic reduction reactions for U3O8/U4O9/Al mixtures do not occur at the normal reactor operating temperature, ∼ 370 K (∼ 100 degrees C) or at temperatures below the melting point of aluminum, 930 K (660 degrees C)

  14. Thermal residual stress evolution in a TiC-50 vol.% Ni3Al cermet

    International Nuclear Information System (INIS)

    Volume averaged thermal residual stresses in a TiC-50 vol.% Ni3Al cermet were measured over a temperature range from room temperature to about l250 K using in situ neutron diffraction. At room temperature, the thermal residual stresses in both the Ni3Al binder and the TiC particles were about 1.6 GPa. In the temperature range studied, the residual stress exhibited primarily elastic behavior during heating, followed by a non-linear cooling. The path dependency is attributed to a limited plastic flow and severe strain hardening in the Ni3Al binder phase below 900 K during cooling. Furthermore, the isothermal annealing of the cermet at l250 K for 10 h did not show any creep relaxation of residual stresses or development of interfacial phases. An elastic finite-element model was developed which approximately predicts the thermal residual stress evolution in the TiC-50 vol.% Ni3Al cermet studied

  15. Neutronic Lifetime Analyses of Small and Medium Reactors with TRISO and Cermet Fuel. Annex III

    International Nuclear Information System (INIS)

    The Nuclear Physics Laboratory, Faculty of Sciences, University Mohammed V (Rabat, Morocco) have studied the innovative small and medium reactors (the AFPR from the USA, the FBNR from Brazil, the VKR-MT from the Russian Federation, and the PFPWR50 from Japan, performing independent neutronics and depletion analyses in confirmation of the results from the design teams. These innovative reactors are designed to have a long core lifetime and operate without on-site refuelling. Their main design objectives are to provide enhanced safety, proliferation resistance and cost reduction. This ANNEX presents calculation results of the depletion analyses performed for cells with the two types of micro fuel elements (cermet and TRISO). The results for the benchmark problems cover neutron spectrum, neutron multiplication factors versus fuel burn-up and other related parameters for all considered reactor concepts. The final results prove that all of the considered reactor concepts can achieve long refuelling interval. The focus of the calculations performed was on comparing cermet and TRISO fuel options. Specifically analyzed was an option to retain long-life core operation in direct transition from a TRISO based to the cermet based fuel. More details on the fuel and reactor design and the codes and data libraries used in the calculations can be found in Chapter 5 of the report

  16. Development of mixed conducting dense nickel/Ca-doped lanthanum zirconate cermet for gas separation application

    International Nuclear Information System (INIS)

    Highlights: ► Phase pure La1.95Ca0.05Zr2O7-δ (LCZ) material is prepared by combustion synthesis. ► LCZ and Ni-LCZ bulk samples are prepared with theoretical density close to 100%. ► Bulk electrical conductivity ∼400 S/cm is obtained for Ni–LCZ cermet at 750 °C. -- Abstract: La1.95Ca0.05Zr2O7-δ (LCZ) and Ni–LCZ cermet have been prepared by combustion synthesis and conventional solid state mixing methods respectively. Both the materials are sintered in air and controlled atmosphere (5% H2 in Ar). The density obtained for the material sintered at 1400 °C in controlled atmosphere is found to be more than 99.5%. This sintering temperature (1400 °C) is considered to be much lower compared to the conventional sintering temperature. The corresponding total conductivity for such Ni–LCZ cermet materials is ∼400 S/cm measured at 750 °C having 40 vol% of Ni and 60 vol% LCZ.

  17. Fabrication and characterization of 900 °C-sintered Ni/Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Highlights: ► Ni/Cu/YSZ cermet cathodes were fabricated by high energy ball-milling and sintering. ► Electrical conductivity and microstructure of the cermet cathode were investigated. ► Fabrication of the cermets showed a good prospect for HTE cathode material. - Abstract: Ni/Cu/YSZ cermet (volume ratio of Ni:Cu:YSZ = 40:20:40) is more electronically conductive than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of nickel, copper, and YSZ powders, pressing into pellets (Ø 10 mm × 1 mm) and subsequent sintering process at 900 °C under flowing 5%-H2/Ar gas. The Ni/Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as SEM, XRD, and laser diffraction and scattering method. Electrical conductivity of sintered Ni/Cu/YSZ cermet pellets fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermet. The effect of ball-milling time on electrical conductivity and microstructure of Ni/Cu/YSZ cermets for HTE was investigated. The particle size of Ni/Cu/YSZ decreased while electrical conductivity increased with milling time: enhanced electrical conductivity is attributed to well-connected Ni/Cu/YSZ particles rendered by increased ball-milling time.

  18. Interaction of hydrogen sulfide with Zr0.92Y0.08O2-δ/40% Ni cermet

    International Nuclear Information System (INIS)

    The interaction of hydrogen sulfide with a cermet composed of zirconium oxide and yttrium oxide doped with metallic nickel (Ni) in the stoichiometric form Zr0.92Y0.08O2-δ/40 vol% Ni and a pure nickel metal was studied at 500 and 650 deg. C utilizing high temperature X-ray photoelectron spectroscopy and high-temperature scanning electron microscopy. The hydrogen sulfide (H2S) did not appear to interact with the cermet at 500 deg. C with H2S exposures of 6 x 10-5 Torr for 1 h, but interaction of H2S with the cermet was observed at 650 deg. C at similar H2S exposures. The amount and the rate of reaction of H2S were significantly lower with the cermet than with the pure nickel metal at 650 deg. C with similar H2S exposures. The dispersion of nickel in the zirconium and yttrium oxide matrix decreased the reaction of H2S with nickel in the cermet

  19. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Andrei SURŽENKOV

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  20. Effect of metallic phase species on the corrosion resistance of M/(10NiO-NiFe2O4) cermet inert anode of aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    NiFe2O4-based cermet inert anodes with metallic phase compositions of Cu, Ni and 85Cu15Ni were prepared by cold pressing-sintering. Their corrosion resistance was also investigated in Na3 AlF6-Al2 O3 melts. The results show that the metallic phase species in cermets have no effect on the concentration of impurities in bath during electrolysis, the total steady-state concentration of impurities is almost the same, I.e. Between 4.12 × 10-4- 4.80 × 10-4. There exists metal preferential corrosion for the cermet inert anode with metal Ni as metallic phase. For NiFe2 O4-based cermets, the cermet with metal Cu as metallic phase exhibits better corrosion resistance than the others.

  1. Studies on stability of U-UO2/PuO2 Cermet fuel for fast reactor and its interaction with T91 cladding

    International Nuclear Information System (INIS)

    Cermet is an advanced fuel concept for fast reactor systems. The fuel consists of ceramic fissile material dispersed in a metallic matrix. The advantages of this fuel include high thermal conductivity, ability to retain fission products etc. The cermet fuel can be either (U, PuO2) or (enriched U, UO2). In the present study chemical compatibility of (U, Nat UO2) cermet fuel with T91 cladding has been carried out by diffusion couple experiment. U-UO2 cermet fuel has been fabricated by a powder metallurgy route. The thermal stability of U-UO2 cermet fuel was studied by heating the fuel at 1223 K for 1000 h. SEM results reveal no change in the microstructure indicating good stability of the fuel at 1223 K. The results of the diffusion couple experiments indicate that Zr liner was effective in preventing fuel-clad chemical interaction. (author)

  2. Large-scale calculations of solid oxide fuel cell cermet anode by tight-binding quantum chemistry method

    International Nuclear Information System (INIS)

    Improvement of anode characteristics of solid oxide fuel cells is important for the better cell performance and especially the direct use of hydrocarbons. A mixture of ceramics and metal is generally used as anode, and different combinations of ceramics and metals lead to different electrode characteristics. We performed large-scale calculations to investigate the characteristics of Ni/CeO2 and Cu/CeO2 anodes at the electronic level using our tight-binding quantum chemical molecular dynamics program. Charge distribution analysis clarified the electron transfer from metal to oxide in both anodes. The calculations of density of states clarified different contributions of Ni and Cu orbitals to the energy levels at around Fermi level in each cermet. Based on the obtained results, we made considerations to explain different characteristics of both cermet anodes. The effectiveness of our approach for the investigation of complex cermet system was proved

  3. Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications

    International Nuclear Information System (INIS)

    The purpose of this study is to computationally design a wide-angle cermet-based solar selective absorber for high temperature applications by using a characteristic matrix method and a genetic algorithm. The present study investigates a solar selective absorber with tungsten–silica (W–SiO2) cermet. Multilayer structures of 1, 2, 3, and 4 layers and a wide range of metal volume fractions are optimized. The predicted radiative properties show good solar performance, i.e., thermal emittances, especially beyond 2 μm, are quite low, in contrast, solar absorptance levels are successfully high with wide angular range, so that solar photons are effectively absorbed and infrared radiative heat loss can be decreased. -- Highlights: • Electromagnetic simulation of radiative properties by characteristic matrix method. • Optimization for multilayered W–SiO2 cermet-based absorber by a Genetic Algorithm. • We propose a successfully high solar performance of solar selective absorber

  4. Spark Plasma Sintering of Load-Bearing Iron-Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications

    Science.gov (United States)

    Montufar, Edgar B.; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastián; Celko, Ladislav; Klakurková, Lenka; Spotz, Zdenek; Diéguez-Trejo, Guillermo; Fohlerová, Zdenka; Dvorak, Karel; Zikmund, Tomáš; Kaiser, Jozef

    2016-04-01

    Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. The process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron with consolidation through spark plasma sintering (SPS). The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, x-ray diffraction and diametral tensile strength tests, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although a short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion tests show that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

  5. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 - O2 environment

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-06-01

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings.

  6. The anomalous behaviour of Ag-Al2O3 Cermet electroformed devices

    International Nuclear Information System (INIS)

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al2O3/Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of ∼ 4 x 10-6 torr. The formed characteristics were explained on the basis of filamentary model. (author)

  7. Thermoemission properties of cermets of eutectic composition in Me(4)-(C,B)-(Mo,Re,W)

    International Nuclear Information System (INIS)

    Studies in thermoemission properties of cathodes, which represent sintered cermets of eutectic composition of (Ti, Zr, Nf)C - (Mo, Re, W) and ZrB2 - (Mo, Re, W) systems and are characterized by quasi-eutectic structures of ''coarse conglomerate'', established a common for Me'X-Me'' eutectic systems effect of the electron work function decrease and of the emission high stability. This effect is shown to be connected with the peculiarities of interphase mass exchange in fine-disperse systems at the stage of sintering and formation of Me'' film with adsorbed Me, C and Be atoms on the emitter surface

  8. Nondestructive evaluation of a cermet coating using ultrasonic and eddy current techniques

    International Nuclear Information System (INIS)

    This paper describes a series of experiments conducted to characterize cermet coatings using conventional ultrasonic and eddy current techniques as well as an ultrasonic leaky surface wave method. The results demonstrate the ability of these techniques to detect the presence of artificial defects on the surface or beneath the surface of the coating. In addition, ultrasonic tests in particular ultrasonic leaky surface waves demonstrate the ability to detect the presence of manufacturing flaws. Ultrasonic time-of-flight and eddy current quadrature measurements also show sensitivity to variations in coating thickness

  9. Assessment of properties thermal sprayed coatings realised using cermet blend powder

    Directory of Open Access Journals (Sweden)

    J. Brezinová

    2014-10-01

    Full Text Available The article deals with the assessment of selected properties of plasma sprayed coatings based on ZrSiO4 doped with different volume fractions of metal dopant (Ni. Mixed powders are cermet blends. Aim of the work consists of verificating the possibility to replace the application of Ni interlayer by adding Ni directly to the ceramic powder and apply them together in a single technological operation. The coatings were studied from point of view of their structure, porosity, adhesion of the coatings in relation to the volume of dopant added and wear resistance. The best properties reached composite coating doped with 12 % Ni.

  10. Microstructure and optical absorption of Au-MgF2 nanoparticle cermet films

    Institute of Scientific and Technical Information of China (English)

    Sun Zhao-Qi; Cai Qi; Song Xue-Ping

    2006-01-01

    The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied.The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm.Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm.With increasing Au content,absorption peak intensity increases,profile narrows and location redshifts.Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.

  11. Plasma cermet WC-Co coatings hardened by micro- and nanosized carbides

    International Nuclear Information System (INIS)

    Significant changes of the structure and phase composition of formed cermet WC-Co coatings are possible under plasma spraying of mechanically alloyed nano- and micro-sized powders. WC carbide content can be lowered from 43.9% in initial powder to 3.8% in coating. During deposition process, intense formation of non-equilibrium phases takes place which are fixed in the coating at quenching from a liquid state at cooling rate of 108 K/s. In spite of the changes of phase composition of WC-Co hard alloy, inner bulk of sprayed particles has a high (15-23 GPa) value of microhardness

  12. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  13. The anomalous behaviour of Ag-Al sub 2 O sub 3 Cermet electroformed devices

    CERN Document Server

    Khan, M S R

    2003-01-01

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al sub 2 O sub 3 /Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of approx 4 x 10 sup - sup 6 torr. The formed characteristics were explained on the basis of filamentary model.

  14. Structure and stresses in high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2012-02-01

    Full Text Available Purpose: of this paper is description of stresses in brazing joints of different physical and mechanical properties and evaluation of microstructure and mechanical properties of large dimensional vacuum brazed joints of WC–Co (ISO K05, Fe-TiC sinter plates (Ferro–Titanit Nicro 128 and precipitation hardened stainless steel of 14-5 PH (X5CrNiMoCuNb14-5 using copper as the brazing filler metal.Design/methodology/approach: Microscopic examinations with the use of scanning electron microscope were performed to establish microstructure of the joint. Shear strength Rt and tensile strength Rm of the joints have been defined.Findings: It have been state, that the basic factors decreasing strength of the joint, which can occur during vacuum brazing of the WC-Co, Fe-TiC sinters - Cu brazing filler metal - 14-5 PH steel joints are diffusive processes leading to exchange of the cermets and brazing filler metal elements. They can have an unfavourable influence on ductility and quality of the joint..Research limitations/implications: Results of numerical calculations of three-dimensional models of cermets and steel brazed joints stresses are presented. Particular attention was paid to stresses occurring in joints of large brazing surfaces. It was shown that joints microstructure and mechanical properties depend on chemical composition filler and parent materials, diffusion process during brazing, leading of the cermets and filler metal components replacement as well as joint gap thickness. The thickness of the joints and parent materials have an essential influence on the value of the local stress.Practical implications: As a result of conducted experiments criteria for generating high dimension coatings of cermets plates brazed to steel. The PM Fe-TiC and PM WC - Co composite plates vacuum-brazed to steel as cutting coatings have been worked out and applied in industry.Originality/value: An original value of the paper is to prove the tendency of

  15. Advanced WC-Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B. [Centre for Advanced Materials Processing, Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, West Bengal (India)], E-mail: bnmondal@rediffmail.com; Das, P.K. [Central Glass and Ceramic Research Institute, Kolkata (India); Singh, S.K. [Institute of Minerals and Materials Technology (IIMT), Bhubeneswar (India)

    2008-12-20

    The synthesis of titanium carbonitride (TiCN) powders by thermal plasma using extended arc thermal plasma reactor and the effect of TiCN reinforcement for the development of advanced WC-Co cermets has been studied with respect to hardness and fracture toughness. These classes of materials are being investigated for future application in wear-resistant seals, cutting tools, etc. Metallurgical reactions and microstructural developments during sintering of cermets and functionally graded cemented carbonitrides are being investigated by analytical methods such as differential thermal analysis/thermo-gravimetric analysis, X-ray diffraction and analytical Scanning electron microscopy with energy dispersive X-ray spectroscopy. By an in-depth understanding of the complex phase reactions and the mechanisms that govern the sintering process and metallurgical reactions, new cermets and different types of functionally graded cemented carbonitrides with desired microstructures and properties have been attempted to develop. The significant improvement of micro-hardness was observed with optimal concentration of TiCN reinforcement addition in WC-Co system without sacrificing much fracture toughness value of the composite cermets.

  16. Thoria-based cermet nuclear fuel : sintered microsphere fabrication by spray drying

    International Nuclear Information System (INIS)

    Cermet nuclear fuels have been demonstrated to have significant potential to enhance fuel performance because of low internal fuel temperatures and low stored energy. The combination of these benefits with the inherent proliferation resistance, high burnup capability, and favorable neutronic properties of the thorium fuel cycle produces intriguing options for advanced nuclear fuel cycles. This paper describes aspects of a Nuclear Energy Research Initiative (NERI) project with two primary goals: (1) Evaluate the feasibility of implementing the thorium fuel cycle in existing or advanced reactors using a zirconium-matrix cermet fuel, and (2) Develop enabling technologies required for the economic application of this new fuel form. Spray drying is a physical process of granulating fine powders that is used widely in the chemical, pharmaceutical, ceramic, and food industries. It is generally used to produce flowable fine powders. Occasionally it is used to fabricate sintered bodies like cemented carbides, but it has not, heretofore, been used to produce sintered microspheres. As a physical process, it can be adapted to many powder types and mixtures and thus, has appeal for nuclear fuels and waste forms of various compositions. It also permits easy recycling of process ''wastes'' and minimal chemical waste streams that can arise in chemical sol/gel processing. On the other hand, for radioactive powders, it presents safety challenges for processing these materials in powder form and in achieving microspheres of high density and perfection

  17. Report on the source of the electrochemical impedance on cermet inert anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Stice, N.D.

    1991-02-01

    the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

  18. Development and evaluation of directionally solidified Cermet electrodes for thermionic energy converters

    International Nuclear Information System (INIS)

    At Eindhoven University of Technology, the high temperature materials research group HOTEMA is currently developing a new type of emitter electrode for thermionic energy converters. These Cermet electrodes consist of a refractory metal substrate coated with a directionally solidified metal-ceramic eutectic. In a joint research program, emitter materials produced in Eindhoven are evaluated by Thermo Electron in Waltham. A research diode incorporating a directionally solidified Mo-Al2O3,Cr2O3 Cermet emitter was build and tested. This converter exhibited stable performance at emitter temperatures up to 1650K. The barrier index at T /SUB E/ = 1400K was 2.04 eV. Minimum collector work function as measured by the retarding plot method was 1.53 eV. This low work function may be related to oxygen which as post operational Auger analyses showed was present at both emitter and collector. These results suggest that an emitter of this type has potential of providing significantly improved thermionic converter performance

  19. Characterization of oxide scales to evaluate high temperature oxidation behavior of Ti(C,N)-based cermets in static air

    International Nuclear Information System (INIS)

    Research highlights: → Oxide scales formed consisted of NiO outerlayer, NiTiO3 interlayer and TiO2-based innerlayer. → Transition layers formed consisted of Ti-, Ni- and Mo-based oxides. → Oxidation process was mainly controlled by O inward thermodynamic activity. → Cermet with Ni-20Cr binder exhibited better oxidation resistance, due to the richness of Cr in binder and rim phases. → Cr was completely and incompletely oxidized to form Cr0.17Mo0.83O2 and Cr-rich Ti-based oxides, respectively, thus decreasing O inward thermodynamic activity. - Abstract: Two Ti(C,N)-based cermets with Ni and Ni-20Cr metallic binder were oxidized at 800 oC and 1000 oC for up to 100 h in static air, and the oxide scales and the transition layers formed on both the cermets were characterized to evaluate their high temperature oxidation behavior in static air using XRD, SEM and EDS. The oxide scales formed on both the cermets at 800 oC and 1000 oC were not dense, and were multi-layered, consisting of NiO outerlayer, NiTiO3 interlayer and TiO2-based innerlayer. The transition layers were present between the oxide scales and the substrates with increasing oxidation time, which consisted of Ti-based, Ni-based and Mo-based oxides. Oxidation process of both the cermets was mainly controlled by O inward thermodynamic activity, and oxidation at 1000 oC was faster than that at 800 oC. However, cermet with Ni-20Cr metallic binder was oxidized slower than cermet with Ni metallic binder, due to the richness of Cr in Ni-based binder phase and the rim phase of Ti(C,N) ceramic grains. Cr was completely oxidized to form Cr0.17Mo0.83O2, and was incompletely oxidized to Cr-rich Ti-based oxides, leading to the decrease of O inward thermodynamic activity.

  20. Design and safety studies on the European Facility for Industrial Transmutation (EFIT) with CERMET fuel

    International Nuclear Information System (INIS)

    European R and D for ADS design and fuel development is driven in the 6th FP of the EU by the EUROTRANS Programme [1]. In EUROTRANS two ADS design routes are followed, the XT-ADS and the EFIT. The XT-ADS is designed to provide the experimental demonstration of transmutation in an Accelerator Driven System. The EFIT development, the European Facility for Industrial Transmutation, aims at a generic conceptual design of a full transmuter. A key issue of the R and D work is the choice of an adequate fuel to be used in an Accelerator Driven Transmuter (ADT) like EFIT. Various fuel forms have been assessed. CERCER and CERMET fuels, specifically with the matrices MgO and Mo, have finally been selected and are now under closer investigation. Within EUROTRANS, a special domain named 'AFTRA', is responsible to more deeply assess the behavior of these dedicated fuels and to provide the fuel data base for the core design of the EFIT. The EFIT concept has to be optimized towards: a good transmutation efficiency, high burnup, low reactivity swing, low power peaking, adequate subcriticality, reasonable beam requirements and a high safety level. The final recommendation on fuels by AFTRA gave a ranking of these fuels based on the mentioned criteria. The composite CERMET fuel (Pu0.5,Am0.5)O2-x - Mo (with the isotope 92Mo comprising 93% of the molybdenum) has been recommended as the primary candidate for the EFIT. This CERMET fuel fulfils adopted criteria for fabrication and reprocessing, and provides excellent safety margins. Disadvantages include the cost for enrichment of 92Mo and a lower specific transmutation rate of minor actinides, because of the higher neutron absorption cross-section of the matrix. The composite CERCER fuel (Pu0.4,Am0.6)O2-x - MgO has therefore been recommended as a backup solution as it might offer a higher consumption rate of minor actinides, and can be manufactured for a lower unit cost. This paper is in fact a sequel to our last paper [2] in this

  1. Development of a B4C/Al cermet for use as an improved structural neutron absorber

    International Nuclear Information System (INIS)

    This paper reports that an aluminum and boron carbide cermet was evaluated for possible application as a neutron absorbing material where structural strength and rigidity will be required. The boron carbide/aluminum composite possessed unique continuous interconnected ceramic and metal phases. Traditional boron containing neutron absorbing materials have relied upon dispersions of particles in metal or polymeric matrices. The dispersion of boron carbide particles placed restriction on the B10 concentration, introduced areal inhomogeneities, and necessitated the use of cladding to achieve desired strength. Utilization of two continuous phases allowed for considerable strength properties without having to include cladding. Boron concentrations in excess of 60 v/o were obtained in the cermet, a level that only hot pressing could surpass. Also, the boron carbide particle distribution could be adjusted to optimize strength and/or improve homogeneity of B10 within the materials. A material with these characteristics will be ideal for demanding applications such as shipping casks and storage racks. The higher boron content provides for improved areal densities, thus reducing the shielding volume. Space can be conserved without sacrificing structural strength. This material can be fabricated in plates ranging in thickness from 0.076 to over 2.540 cm. Curved or complex shapes are also possible. The cost of this cermet can be expected to be much lower than hot-pressed boron carbide material. The evaluation was made on the basis of physical performance of the boron carbide/aluminum cermet. Properties were measured over a range of loadings and particle distributions of the boron carbide. A semi-guided bend test was performed on 0.254 cm thick plates to measure the ability of the cermet to withstand deformation. The B10 density was measured by neutron attenuation methods

  2. Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC–ZrC–Co–Ni cermets

    International Nuclear Information System (INIS)

    TiC–ZrC–Co–Ni cermets with different ZrC contents were prepared by vacuum sintering. Microstructure, mechanical properties and thermal shock resistance were investigated. The results show that bright spherical grains in the microstructure are observed and their relative amounts increase with increasing ZrC addition. X-ray diffraction and energy-dispersive spectrometry results indicate that bright spherical grains are (Zr, Ti)C solid solution with more Zr content. The relative density, hardness and transverse rupture strength decrease with the increase of ZrC content. The fracture toughness, however, increases a little and then decreases. Thermal shock resistance of the cermets with 10%ZrC is the best and then declines with more ZrC addition. The parameter Rst of the cermets is also calculated on the basis of the physical parameters of the constituents to interpret the thermal shock of the cermets.

  3. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,Si)N/TiN coatings obtained by the cathodic arc evaporation process

    OpenAIRE

    Leszek A. Dobrzañski; Klaudiusz Golombek

    2005-01-01

    This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,Si)N/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting...

  4. TiN+gradient or multi(Ti,Al,Si)N+TiN coatings deposited on cermets by CAE process: characteristic of structure and properties

    OpenAIRE

    L.A. Dobrzański; K. Gołombek

    2005-01-01

    Purpose: It has been demonstrated in the paper that deposition of the multilayer and gradient coatings with the PVD method in the Cathodic Arc Evaporation CAE process on tools made from cermets.Design/methodology/approach: Structural examinations are presented of the applied coatings and their substrate made on the TEM, SEM and on the light microscope. Evaluation of the adhesion of the deposited coatings onto the cermets was made using the scratch test. Cutting properties of the investigated ...

  5. Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs) – A comparative study

    International Nuclear Information System (INIS)

    Highlights: • Cermet anodes Ni-BaZrO3 (Ni-BZO) & Ni-BaZr0.85Y0.15O3-δ (Ni-BZY) were synthesised • Resultant microstructure of both cermet anodes shown to be similar • Minimum Rp in Ni-BZY in 10%H2/N2 with matrix phase of higher proton conductivity. • Strong links shown between R2 and proton conduction in cermet matrix phase. • Magnitude of R3 lower for Ni-BZO than for Ni-BZY under similar conditions. - Abstract: The matrix phase of protonic ceramic fuel cell (PCFC) cermet anodes potentially plays a vital role in hydrogen oxidation kinetics. The present work aims to investigate such involvement by selecting ceramic-oxide matrices with widely dissimilar levels of proton conduction. The materials chosen were that of the proton conducting phase BaZr0.85Y0.15O3-δ and the nominal composition BaZrO3 of negligible proton conduction. Cermet anodes Ni-BaZrO3 and Ni-BaZr0.85Y0.15O3-δ were synthesized by the acetate-H2O2 combustion method for Ni contents of 40 vol%. The microstructure and electrochemical performance of the cermet anodes were investigated by scanning electron microscopy (SEM) and electrochemical impedance measurements (EIS) respectively. The polarisation behaviour of the two nickel cermet anodes was studied as a function of temperature, hydrogen partial pressure (pH2) and water vapor partial pressure (pH2O). The results confirm that polarisation resistance is highly sensitive to the composition of the ceramic phase of the cermet anode and that the higher frequency electrode response exhibits strong links to levels of proton transport in the ceramic-oxide matrix

  6. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array

    International Nuclear Information System (INIS)

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO2, H2S, and CS2 in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO2, H2S, and CS2, respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO2, H2S, and CS2, respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for clean air. The

  7. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    Science.gov (United States)

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  8. The Influence of Cr3C2 and VC as Alloying Additives on the Microstructure and Properties of Reactive Sintered WC-Co Cermets

    Directory of Open Access Journals (Sweden)

    Kristjan JUHANI

    2012-03-01

    Full Text Available Investigated WC-Co cermets were produced via reactive sintering. In case of reactive sintering the elemental powders of tungsten, carbon black as graphite source and cobalt at first activated throw high energy milling and then the carbide synthesis is taking place in the same cycle with liquid phase sintering of the cermets. Because there is a lack of information about the influence of alloying additives on the reactive sintered WC-Co cermets, small amount of chromium carbide or vanadium carbide was added to the powders. To investigate the influence of carbon content in initial powder mixture on the microstructure and properties of reactive sintered WC-Co cermets alloyed with Cr3C2 and VC cermets with different carbon content were produced. The hardness, transverse rupture strength and erosion resistance of alloyed WC-Co cermets depending on carbon content in initial powder mixture is exhibited.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1347

  9. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H2/Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  10. Determination of poisoning schemes for the innovating fuels reactivity. Application to plutonium CERCER and CERMET control

    International Nuclear Information System (INIS)

    In the framework of the plutonium production optimization in the PWR, many solutions are studied to decrease or recycle the plutonium of the nuclear fuels. Among these solutions, the inert matrix fuels (IMF) are proposed in this thesis. In seven chapters the author presents, the context and the state of the art, the different matrix, the calculi codes such as APOLLO2 or TRIPOLI4 needed to the neutronic analysis, the different fuel assemblies (CERMET UO2, MOX, PuO2 and PuO2-UO2), the efficiency of the control rods in the case of the PWR, the cross sections problem, preliminary reflexions on critical accidents. (A.L.B.)

  11. HIGH TEMPERATURE EROSION WEAR OF CERMET PARTICLES REINFORCED SELF-FLUXING ALLOY MATRIX HVOF SPRAYED COATINGS

    Directory of Open Access Journals (Sweden)

    Andrei Surzhenkov

    2015-09-01

    Full Text Available In the present paper, the resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy matrix coatings to high temperature erosion wear is studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The impact angles were 30 and 90 degrees, initial particle velocity was 50 m/s, temperature of the test - 650 degrees. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7617

  12. Behavior of cermets (Fe powder + Al2O3) obtained 'in situ' in cast iron

    International Nuclear Information System (INIS)

    The introduction of hard ceramic particles in a ferrous matrix modifies its behavior when undergoing stresses associated with wear resistance. So that this occurs, the particles must be properly selected, with reference to their hardness, size, shape and dispersion. These compound materials are called MMC (metal matrix composites) or cermets. This work looks at the methodology for producing cast iron pieces using a traditional sand mold casting process, using MMC tablets, and placing them in some areas of the piece that will undergo wear from abrasion. The following steps are described in the production of MMC tablets and of the casting material in the foundry's pilot plant. The material was studied and the metallurgical quality was evaluated together with its resistance to the abrasive wear

  13. Effect of chromium addition on the corrosion behavior of WC cermet coatings in strong acid environment

    International Nuclear Information System (INIS)

    Corrosion and corrosion-wear studies on WC cermet coatings were performed in a strong acid (5 wt.% H2SO4) solution. Four different coating compositions such as WC-Co, WC-Ni, WC-Co-Cr, and WC-CrC-Ni were used. An immersion test and an electrochemical test results showed galvanic corrosion occurred between WC particle/binder metal in the coating layers and general corrosion of metallic binder for the WC-Co and WC-Ni coatings. Due to formation of beneficial chromium oxide on the coating surface, the best corrosion resistant and corrosion-wear properties were observed in the WC-Co-Cr coating. For the WC-CrC-Ni coating, the corrosion resistance depended on small inter-connected cracks in the coating layer. (orig.)

  14. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    Science.gov (United States)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  15. Methods of characterization of the binder phase in WC-Co cermets

    International Nuclear Information System (INIS)

    In technological application of cermets carbides are sintered with so-called binder metals Co and Ni. It is supposed that relevant properties are dependent on the partial solution of carbides and carbon in the binder. In thepresent work alloys W-Co-C were produced with more than 850Co to simulate the binder phase of the technological material, solution treated at 1300K, 1400K and 1500K, and saturation magnetisation plus the lattice parameter of the cubic Co determined. The corresponding property curves show breaks at the solubility limits. In the solubility regions the content dependence of the two properties were fitted to certain expressions. Whereas the W dependence is well-known from the literature the present work show als a significant C dependence. (G.Q.)

  16. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  17. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  18. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Robert T [ORNL; Collins, Jack Lee [ORNL; Hunt, Rodney Dale [ORNL; Ladd-Lively, Jennifer L [ORNL; Patton, Kaara K [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  19. Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique

    Science.gov (United States)

    Afzal, M.; Ajmal, M.; Nusair Khan, A.; Hussain, A.; Akhter, R.

    2014-03-01

    Tungsten carbide cermet powder with 12%Co was deposited on stainless steel substrate by air plasma spraying method. Two types of coatings were produced i.e. thick (430 µm) and thin (260 µm) with varying porosity and splat morphology. The coated samples were treated with CO2 laser under the shroud of inert atmosphere. A series of experimentation was done in this regard, to optimize the laser parameters. The plasma sprayed coated surfaces were then laser treated on the same parameters. After laser melting the treated surfaces were characterized and compared with as-sprayed surfaces. It was observed that the thickness of the sprayed coatings affected the melt depth and the achieved microstructures. It was noted that phases like Co3W3C, Co3W9C4 and W were formed during the laser melting in both samples. The increase in hardness was attributed to the formation of these phases.

  20. Spectral broadening effects of spontaneous emission and density of state on plasmonic enhancement in cermet waveguides.

    Science.gov (United States)

    Chen, Keyong; Feng, Xue; Zhang, Chao; Cui, Kaiyu; Huang, Yidong

    2013-01-14

    Based on the full integration formula of Purcell factor (PF) deduced from Fermi's Golden Rule, the plasmonic enhancement in Au(1-α)S3N4(α) cermet waveguides is evaluated with the joint impact of finite emission linewidth and the broadening of PF spectrum. The calculation results indicate that the PF would be significantly degraded by the two broadening effects though the SPP resonance frequency can be tuned with different volume fractions (α) of Si3N4. It is also found that the critical emission linewidth is approximately linear to the PF spectrum linewidth. Thus in order to achieve strong plasmonic enhancement, both the emission and PF spectrum linewidths should be dramatically reduced. PMID:23388935

  1. [Evaluation of cermet fillings in abutment teeth in removable partial prostheses].

    Science.gov (United States)

    Saulic, S; Tihacek-Sojic, Lj

    2001-01-01

    The aim of the study was to describe the clinical process of setting the purpose filling on abutment teeth, after finishing the removable partial dentures. The aim was also to investigate the use of cermet glass-ionomer cement for the purpose filling in the abutment teeth for removable partial dentures, as well as to investigate the surface of the purpose filling. For the clinical evaluation of purpose filling slightly modified criteria according to Ryg's were used in 20 patients with different type of edentulousness. Changes occurring on the surface of purpose filling have been experimentally established by the method of scanning electron microscopy on the half-grown third molars in seven patients. It could be concluded that cement glass-ionomer was not the appropriate material for the purpose fillings in abutment teeth for removable partial dentures. PMID:11858021

  2. Microstructure and mechanical properties of WC-20wt% Co/ZrO2(3Y)cermet composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The cermet composites WC-20wt%Co/ZrO2(3Y) with four different contents of ZrO2(3Y) were prepared by normal vacuum sinter processing; the optical microscope and SEM were used to characterize their microstructures.The hardness, bending strength and impact toughness of the specimens were determined.The experimental results show that ZrO2(3Y) particles in WC-20wt%Co matrix are spherical particles in different sizes which are distributed uniformly in Co phases and WC phases, the bending strength and impact toughness of the WC-20wt%Co cermet composites added ZrO2(3Y) improve remarkably, but the hardness values have little change.

  3. Solid-particle erosion of tungsten carbide/cobalt cermet vs. hardened AISI 440C stainless steel

    International Nuclear Information System (INIS)

    Solid-particle erosion tests were conducted on hardened AISI 440C stainless steel and a cermet that consisted of ∼90 vol.% submicrometer WC embedded in ∼10 vol.% Co. Angular Al2O3 abrasives were used as the erodent. Experimental variables were: angle of impact = 20, 50, or 90 degrees; erodent velocity = 60 or 120 m/s; erodent nominal diameter = 63 or 143 (micro)m. For all test conditions, the stainless steel eroded faster than the cermet. Analysis of weight-loss data and examination of eroded surfaces by scanning electron microscopy indicated that the erosion mechanisms were similar for the two hard materials. Both exhibited significant plasticity when impacted, but the stainless steel's response to impact appeared to have been more ductile in nature

  4. Design, safety and fuel developments for the EFIT accelerator-driven system with CERCER and CERMET cores

    International Nuclear Information System (INIS)

    European R and D for ADS design, fuel and general technology development is driven in the 6. FP of the EU by the EUROTRANS programme. In EUROTRANS, two ADS design routes are followed, the XT-ADS and the EFIT. The XT-ADS is designed to provide the experimental demonstration of transmutation in an accelerator-driven System. The longer-term EFIT development, the European Facility for Industrial Transmutation, with which this paper is deals, aims at a generic conceptual design of a full transmuter. The EUROTRANS Domain DM1 (DESIGN) developed the conceptual reference design of the EFIT, a 400 MWth ADT, loaded with a CERCER, U-free fuel based on an MgO matrix. The Domain DM3 (AFTRA), responsible for fuel development within EUROTRANS, in parallel developed a core loaded with a Mo-92 CERMET matrix-based fuel. In both cores for the cladding, the 9Cr1MoVNb T91 steel has been chosen. The core coolant is pure lead with inlet and outlet temperatures of 673 K and 753 K. The windowless target for the 800 MeV proton beam also contains pure lead. The EFIT concept was intended to be optimised towards: a good transmutation efficiency, high burn-up, low reactivity swing, low power peaking, adequate subcriticality, reasonable beam requirements and a high level of safety. In the current paper the two designs are reported and discussed. For the project, detailed design calculations have been performed both with deterministic and Monte Carlo methods. An extensive safety study is currently under way for the CERCER reference core. For the CERMET core the most important safety analyses have already been performed, sufficient for a preliminary safety assessment. The status of the design work and fuel development for the CERCER and CERMET cores is presented. In addition the results of the CERMET safety analyses are given. (authors)

  5. Effect of V content on the microstructure and mechanical properties of Mo2FeB2 based cermets

    International Nuclear Information System (INIS)

    Four series of cermets with V content between 0 and 7.5 wt.% in 2.5 wt.% increments were studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. It was found that the grain size was affected by the V content. The cermets with 2.5 wt.% V addition exhibited the smallest grain size. An increasing V content decreased the wettability of the binder on the Mo2FeB2 hard phase, and accordingly resulted in the increase of porosity and aggregation of ceramic grains. EDS results showed that V addition occurred primarily in the hard phase, with a little amount in the Fe alloy binder. In addition, the content of Mo element in the binder decreased with increasing V content. The cermets with 2.5 wt.% V addition showed the highest TRS, hardness and fracture toughness of 2350 MPa, HRA 90.6 and 15.1 MPa m1/2, respectively.

  6. Microstructure and cutting performance of Ti(C, N)-based cermets heat-treated in nitrogen

    Institute of Scientific and Technical Information of China (English)

    LIU Wenjun; XIONG Weihao; ZHENG Yong; SHI Zengmin; YE Jiajian

    2007-01-01

    Ti(C, N)-based cermets were treated using hot isostatic pressing (HIP) at 1423 K in nitrogen. The microstructures compared with the as-sintered cermets were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and electron microprobe analysis. It was found that high nitrogen activity in the surface zone resulted in the formation of gradient structure. Approximately 20-μm-deep, nitrogen-rich and titanium-rich hard surface zone was introduced by the beat treatment. The nitrogen activity was the driving force that caused the transportation of the atoms through the binder, titanium towards the surface, and tungsten and molybdenum inwards. In the surface zone, the particle size became fine, the inner rim disappeared, and the volume fraction of the outer rim and the binder phase considerably reduced. Small grains of TiN, WC, Mo2C, and nitrogen-rich carbonitride phases formed in the surface zone during the heat treatment, improving the tribological property of the heat-treated cermet.

  7. Structural Characteristics and Magnetic Properties of Al2O3 Matrix-Based Co-Cermet Nanogranular Films

    Directory of Open Access Journals (Sweden)

    Giap Van Cuong

    2015-01-01

    Full Text Available Magnetic micro- and nanogranular materials prepared by different methods have been used widely in studies of magnetooptical response. However, among them there seems to be nothing about magnetic nanogranular thin films prepared by a rf cosputtering technique for both metals and insulators till now. This paper presented and discussed preparation, structural characteristics, and magnetic properties of alumina (Al2O3 matrix-based granular Co-cermet thin films deposited by means of the cosputtering technique for both Co and Al2O3. By varying the ferromagnetic (Co atomic fraction, x, from 0.04 to 0.63, several dominant features of deposition for these thin films were shown. Structural characteristics by X-ray diffraction confirmed a cermet-type structure for these films. Furthermore, magnetic behaviours presented a transition from paramagnetic- to superparamagnetic- and then to ferromagnetic-like properties, indicating agglomeration and growth following Co components of Co clusters or nanoparticles. These results show a typical granular Co-cermet feature for the Co-Al2O3 thin films prepared, in which Co magnetic nanogranules are dispersed in a ceramic matrix. Such nanomaterials can be applied suitably for our investigations in future on the magnetooptical responses of spinplasmonics.

  8. Influence of the chemical composition and temperature in the mechanical behaviour of U3O8-Al cermets

    International Nuclear Information System (INIS)

    U3O8-Al nuclear cermets, with U3O8 content varying from zero to 80 wt%, were prepared by rotary swaging of U3O8-Al compacts at 5000C. Specimens were fabricated from these materials and tensile tested at the temperatures 250, 2000, 3000 and 4000C at a strain rate of 4.3 x 10-5s-1. The yield stress σ sub(E) and the ultimate tensile strength σ sub(R), were analysed as a function of the test temperature and cermet composition. The results show that the dependence of σ sub(E) and σ sub(R) on composition can be explained in terms of the variation of the minimum load bearing cross-sectional area of the aluminum matrix with U3O8 concentration. The temperature dependence of σ sub(R) and σ sub(E) of the cermets was seen to be similar to the temperature dependence of these parameters of the aluminum matrix. (Author)

  9. Monte Carlo Depletion Analysis of a TRU-Cermet Fuel. Design for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Monte Carlo depletion has generally not been considered practical for designing the equilibrium cycle of a reactor. One objective of the work here was to demonstrate that recent advances in high performance computing clusters is making Monte Carlo core depletion competitive with traditional deterministic depletion methods for some applications. The application here was to a sodium fast reactor core with an innovative TRU cermet fuel type. An equilibrium cycle search was performed for a multi-batch core loading using the Monte Carlo depletion code Monteburn. A final fuel design of 38% w/o TRU with a pin radius of 0.32 cm was found to display similar operating characteristics to its metal fueled counterparts. The TRU-cermet fueled core has a smaller sodium void worth, and a less negative axial expansion coefficient. These effects result in a core with safety characteristics similar to the metal fuel design, however, the TRU consumption rate of the cermet fueled core is found to be higher than that of the metal fueled core. (authors)

  10. Effect of CaO doping on corrosion resistance of Cu/(NiFe2O4-10NiO) cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatic pressing-sintering process,and their corrosion resistance to Na3AlF6-K3AlF6-AI2O3 melt was studied.The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added.During the electrolysis,the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO atceramic grain boundary,which accelerates the penetration of electrolyte.Thus,the corrosion resistance to melts ofCu/(NiFe2O4-10NiO) cermet inert anode is reduced.To improve the corrosion resistance of the cermet inert anode,the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.

  11. Optimal design of regression of additive Cr/sub 2/O/sub 3/ in Al/sub 2/O/sub 3/-Mo cermet

    International Nuclear Information System (INIS)

    In order to improve the properties of A1/sub 2/O/sub 3/ - Mo cermet materials, the authors investigated the influence of the additive Cr/sub 2/O/sub 3/ on A1/sub 2/O/sub 3/-Mo cermet. The mathematical statistics (multi-variable analysis of regression) have been used in this study. Optimal content of Cr/sub 2/O/sub 3/ has been determined. A1/sub 2/O/sub 3/-Cr/sub 2/O/sub 3/-Mo cermet system has been put forward, and the mathematical model of optimal design has been obtained. A large number of experiments indicate that the compositions of cermet decided by the mathematical model of optimal design agree with the experimental results. Microstructure, mechanical properties of the new cermet materials, and the mechanism of corrosion in salt bath were studied. This paper indicates clearly that the additive Cr/sub 2/O/sub 3/ greatly increases density and binding strength between the ceramic phase and metal phase and decreases porosity

  12. Microstructure and characteristics of high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2009-12-01

    Full Text Available Purpose: In the article a state of the question concerning stresses in brazing joints of different physical and mechanical properties was appraised as well as possibility of their decrease due to use of different techniques from technological experiments to numerical methods. Evaluation of microstructure and mechanical properties of large dimensional vacuum brazed joints of WC – Co and Ferro Titanit Nicro 128 sinters and precipitation hardened stainless steel of 14 –5 PH (X5CrNiMoCuNb14-5 using copper and silver – copper as the brazing filler metal.Design/methodology/approach: Microscopic examinations with the use of scanning electron microscope (SEM were performed to establish microstructure and diffusion influences on creation of intermetallic phases in the joint. Shear strength Rt and tensile strength Rm of the joints have been defined. It have been state, that the basic factors decreasing quality of the joint, which can occur during vacuum brazing of the WC - Co ISO K05 sinter – Cu or Ag - Cu brazing filler metal – 14 -5 PH steel joints are diffusive processes leading to exchange of the cermets and brazing filler metal elements and creation of intermetallic in the joint. It can have an unfavourable influence on ductility and quality of the joint.Findings: Results of numerical calculations of two-dimensional models of brazed joints for different sizes of surfaces brazed at a constant width of solder gap are presented. Particular attention was paid to stresses occurring in joints of large brazing surfaces.Results of the investigate proved that joints microstructure and mechanical properties depend on filler and parent materials, diffusion process during brazing, leading to exchange of the cermets components and filler metal as well as joint geometry (mainly gap thickness.Practical implications: The results have been applied in surfaces are used in large dimension spinning nozzles of a die for polyethylene granulation, in that

  13. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  14. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    Science.gov (United States)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  15. Conceptual Design of a CERMET NTR Fission Core Using Multiphysics Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian J. Gross; William T. Taitano

    2011-08-01

    An initial pre-conceptual CERMET Nuclear Thermal Propulsion reactor system is investigated within this paper. Reactor configurations are investigated where the fuel consists of 60 vol.% UO2 and 40 vol.% W where the UO2 consists of Gd2O3 concentrations of 5 and 10 mol.%.Gd2O3. The fuel configuration consisting of 5 mol.% UO2 was found to have a total mass of 2761 kg and a thrust to weight ratio of 4.10 and required a coolant channel surface area to fueled volume ratio of approximately 15.0 in order to keep the centerline temperature below 3000 K. The configuration consisting of 10 mol.% Gd2O3 required a surface area to volume ratio of approximately 12.2 to cool the reactor to a peak temperature of 3000 K and had a total mass of 3200 kg and a thrust to weight ratio of 3.54. It is not known yet what concentration of Gd2O3 is required to maintain fuel stability at 3000 K; however, both reactors offer the potential for operations at 25,000 lb, and at a specific impulse which may range from 900 to 950 seconds.

  16. Interaction of sintered powder metallic materials and cermets with the stainless steel melt

    International Nuclear Information System (INIS)

    Interaction of materials of nonconsumable electrodes for the electric contact-melting welding method with stainless steel melt in argon is studied. contact angles are measured during wetting of tungsten, molybdenum, titanium nitride, NKTM cermet and TiN-Cr composite bases with steel melt. It is shown that steel does not wet titanium nitride and NKTM. In this case there is no diffusion of the base elements into steel and steel into TiN base. Inconsiderable penetration of the steel phase into the base of the NKTM material as well as the absence of the NKTM material penetration and of the base material penetration into the steel melt are observed. An interaction of liquid steel with tungsten and molybdenum as well as formation of multicomponent solid solutions and intermetallic compounds is established. It is shown that interaction of steel with bases of the TiN-Cr composite is accompanied by solution of stainless steel components in the metallic binder of the base which is characterized by an increase of the binder microhardness as well as by growth of TiN grains. The hgher is the Cr content in the base material, the more significant are the above phenomena

  17. Sintering behaviour and mechanical properties of Cr3C2–NiCr cermets

    Indian Academy of Sciences (India)

    A Özer; Y K Tür

    2013-10-01

    Cr3C2–NiCr cermets are used as metal cutting tools due to their relatively high hardness and low sintering temperatures. In this study, a powder mixture consisting of 75 wt% Cr3C2–25 wt% NiCr was sintered at four different temperatures and characterized for itsmicrostructure and mechanical properties. The highest relative density obtained was 97% when sintered at 1350 °C. As the relative density increased, elastic modulus, transverse rupture strength, fracture toughness and hardness of the samples reached to a maximum of 314 GPa, 810 MPa, 10.4 MPa.m1/2 and 11.3 GPa, respectively. However, sintering at 1400 °C caused further grain growth and pore coalescence which resulted in decreasing density and degradation of all mechanical properties. Fracture surface investigation showed that the main failure mechanism was the intergranular fracture of ceramic phase accompanied by the ductile fracture of the metal phase which deformed plastically during crack propagation and enhanced the fracture toughness.

  18. Corrosion of MTR type fuel plates containing U3O8-Al cermet cores

    International Nuclear Information System (INIS)

    The fuel plate samples containing U3O8-Al cermet cores with concentrations from 10 to 90% of U3O8 weight were fabricated. Samples with 58% of U3O8 eight were fabricated using compacts with densities from 75 to 95% of theoretical density. The influences of U3O8 concentration and porosity of compacted core on porosity and uniformity of core thickness are discussed. The U3O8-Al cores were submitted to corrosion tests and exposed to deionized water at temperatures of 30, 50, 70 and 900C by cladding deffect produced artificially. The results shown that core corrosion is accompanied by hydrogen release. The total volum of released hydrogen and the time interval to observe the initiation of hydrogen releasing (incubation time) are depending on core pososity and absolute temperature. A mechanism for U3O8-Al core corrosion process is proposed and discussed. The cladding of fuel plate samples was submitted to corrosion tests under similar conditons of the IAE-R1 reactor operating at 2, 5 and 10 MW. (Author)

  19. Corrosion of cermet anodes during low temperature electrolysis of alumina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kozarek, R.L.; Ray, S.P.; Dawless, R.K.; LaCamera, A.F.

    1997-09-26

    Successful development of inert anodes to replace carbon anodes in Hall cells has the potential benefits of lower energy consumption,lower operating costs, and reduced CO{sub 2} and CO emissions. Using inert anodes at reduced current density and reduced operating temperature (800 C) has potential for decreasing the corrosion rate of inert anodes. It may also permit the use of new materials for containment and insulation. This report describes the fabrication characteristics and the corrosion performance of 5324-17% Cu Cermet anodes in 100 hour tests. Although some good results were achieved, the corrosion rate at low temperature (800 C) is varied and not significantly lower than typical results at high temperature ({approximately} 960 C). This report also describes several attempts at 200 hour tests, with one anode achieving 177 hours of continuous operation and another achieving a total of 235 hours but requiring three separate tests of the same anode. The longest run did show a lower wear rate in the last test; but a high resistance layer developed on the anode surface and forced an unacceptably low current density. It is recommended that intermediate temperatures be explored as a more optimal environment for inert anodes. Other electrolyte chemistries and anode compositions (especially high conductivity anodes) should be considered to alleviate problems associated with lower temperature operation.

  20. Formation/consolidation of WC-Co cermets by simple shear

    International Nuclear Information System (INIS)

    Previous research using equal channel angular extrusion (ECAE) has shown that the process can be used to produce ultrafine equiaxed grains and filamentary microstructures. This method can also be used to effectively consolidate discontinuous material such as powder. A drawback of conventional extrusion is that the resulting inhomogeneous deformation is often not ideal for complex shaped industrial parts. In contrast, ECAE can be used for uniform deformations by simple shear to produce large and small cross-section material form which parts can be made. The extrusion procedure is carried out by extruding a long billet from an inlet channel to an exit channel of the same size which intersects the inlet channel at a sharp angle; 90 degree is typical. The process can be repeated on the same part to impart a large amount of shear deformation to the entire billet, except for small end areas. The principal objective of this study was to determine the effect of simple shear on the consolidation of WC-Co powders. The effect of the extrusion temperature and the amount of shear on the compaction and formation of the WC cermets were investigated. In this research, the successful consolidation of (W+C)-Co and WC-Co powders by ECAE is reported. The ECAE processed WC-Co phases and sample properties compare favorably with those of conventionally sintered material

  1. High Temperature Erosion Wear of Cermet Particles Reinforced Self-Fluxing Alloy HVOF Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Andrei SURZHENKOV

    2015-09-01

    Full Text Available The resistance of high velocity oxy-fuel (HVOF sprayed TiC-NiMo and Cr3C2-Ni cermet particles reinforced NiCrSiB self-fluxing alloy coatings to high temperature erosion wear was studied. Microstructure of the coatings was examined by SEM, phase composition was determined by XRD. A four-channel centrifugal particle accelerator was applied to study the high temperature erosion wear of the coatings. The angles of impingement were 30º and 90º, initial particle velocity was 50 m/s, the average temperature of the test – 650 ºC. Volume wear of the coatings was calculated and compared to the respective values of the reference materials. Wear mechanisms were studied by SEM. HVOF sprayed coatings exhibited lower wear, than WC-15Co hardmetal and steel HARDOX 400, but higher wear than steel AISI 304. TiC-NiMo particles reinforced self-fluxing alloy coating demonstrated virtually the same wear resistance, as the Cr3C2-Ni particles reinforced self-fluxing alloy coating, at 30º and the better wear resistance at 90º.

  2. Microstructure and temperature coefficient of resistance of thin cermet resistor films deposited from CrSi2-Cr-SiC targets by S-gun magnetron

    International Nuclear Information System (INIS)

    Technological solutions for producing nanoscale cermet resistor films with sheet resistances above 1000 Ω/□ and low temperature coefficients of resistance (TCR) have been investigated. 2-40 nm thick cermet films were sputter deposited from CrSi2-Cr-SiC targets by a dual cathode dc S-gun magnetron. In addition to studying film resistance versus temperature, the nanofilm structural features and composition were analyzed using scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and electron energy loss spectroscopy. This study has revealed that all cermet resistor films deposited at ambient and elevated temperatures were amorphous. The atomic ratio of Si to Cr in these films was about 2 to 1. The film TCR displayed a significant increase when the deposited film thickness was reduced below 2.5 nm. An optimized sputter process consisting of wafer degassing, cermet film deposition at elevated temperature with rf substrate bias, and a double annealing in vacuum, consisting of in situ annealing following the film sputtering and an additional annealing following the exposure of the wafers to air, has been found to be very effective for the film thermal stabilization and for fine tuning the film TCR. Cermet films with thicknesses in the range of 2.5-4 nm deposited using this technique had sheet resistances ranging from 1800 to 1200 Ω/□ and TCR values from -50 ppm/ deg. C to near zero, respectively. A possible mechanism responsible for the high efficiency of annealing the cermet films in vacuum (after preliminary exposure to air), resulting in resistance stabilization and TCR reduction, is also discussed.

  3. Estudio de la intercara en materiales compuestos tipo cermet para el diseño de matrices metálicas alternativas

    OpenAIRE

    Alvaredo Olmos, Paula; Macía Rodríguez, Eric; Gordo Odériz, Elena

    2015-01-01

    Uno de los grandes temas de investigación actual en el campo de los materiales compuestos tipo cermet base TiCN es la búsqueda de matrices metálicas alternativas a las convencionales las cuales cuentan en su composición Ni y/o Co de manera mayoritaria. El objetivo principal que debe cumplir el cermet con una matriz metálica alternativa es alcanzar propiedades similares e incluso superiores a las obtenidas con matrices convencionales utilizando materiales más económicos e inocuos. Además, sien...

  4. Use of fuel elements and fuel rod arrays of WWER-type with 20 % enriched cermet fuel for reactors of floating power plant KLT-40S

    International Nuclear Information System (INIS)

    It was carried out numerical analysis of the physical characteristics of change from normal active zone to fuel elements and fuel rod arrays using fuel cycle of WWER-1000 type as well as at replacement of oxide fuel to cermet fuel (60%UO2+40% of silumin) with 20% enrichment. At that the main physical characteristics of active zone and reactor are kept - geometric sizes, power, coolant properties etc. It was given the main physical properties of fuel elements and fuel rod arrays of active zone with cermet fuel. Calculation of neutron physical characteristics was carried out. The reactor has internal self-protectability

  5. High temperature oxidation behaviour of nanostructured cermet coatings in amixed CO/sub 2/ - O/sub 2/ environment

    International Nuclear Information System (INIS)

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (alpha-Al /sub 2/O/sub 3/ and TiO/sub 2/) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500 degree C, 600 degree C and 700 degree C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15 percentage CO/sub 2/, 10 percentage O/sub 2/ and 75 percentage N/sub 2/. This research investigates the effects of CO/sub 2/ and O/sub 2/ partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO/sub 2/ at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO/sub 2/ in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO/sub 2/ acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO/sub 2/ particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Nu i-Tau i compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings. (author)

  6. High temperature oxidation behaviour of nanostructured cermet coatings in a mixed CO2 – O2 environment

    International Nuclear Information System (INIS)

    Nanostructured ceramic-metallic (cermet) coatings composed of nanosized ceramic particles (α-Al2O3 and TiO2) dispersed in a nickel matrix were co-electrodeposited and then oxidized at 500°C, 600°C and 700°C in a mixed gas using a Thermo-gravimetric Analysis (TGA) apparatus. The mixed gas was composed of 15% CO2, 10% O2 and 75% N2. This research investigates the effects of CO2 and O2 partial pressures on time-depended oxidation rates for coatings and compared them to the results from atmospheric oxidation under similar temperatures. The increase in partial pressure of oxygen due to the presence of CO2 at each tested temperature was calculated and correlated to the oxidation rate of the coatings. The results showed that the presence of CO2 in the system increased the oxidation rate of cermet coatings when compared to atmospheric oxidation at the same temperature. It was also shown that the increase in the oxidation rate is not the result of CO2 acting as the primary oxidant but as a secondary oxidant which results in an increase of the total partial pressure of oxygen and consequently higher oxidation rates. The WDS and XRD analyses results showed that the presence of nanosized TiO2 particles in a nickel matrix can improve oxidation behaviour of the coatings by formation of Ni-Ti compounds on oxidizing surface of the coating which was found beneficiary in reducing the oxidation rates for cermet coatings

  7. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    International Nuclear Information System (INIS)

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of 'best estimates' provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  8. Nuevos materiales tipo cermet de matriz Fe: estudio de la composición, microestructura y propiedades

    OpenAIRE

    Alvaredo Olmos, Paula

    2012-01-01

    En la industria de la fabricación de herramientas de corte el material más utilizado en los últimos años ha sido el carburo cementado o metal duro, WC‐Co; sin embargo, debido a su alto coste y a su toxicidad, en la actualidad existe un interés por buscar alternativas a su utilización. Los cermets base TiCN podrían ser una opción competitiva debido a su superioridad en propiedades como dureza y resistencia al desgaste y a la oxidación; no obstante los metales que se utilizan convencionalmente ...

  9. Enhanced stability of Zr-doped Ba(CeTb)O(3-δ)-Ni cermet membrane for hydrogen separation.

    Science.gov (United States)

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-07-25

    A mixed protonic and electronic conductor material BaCe(0.85)Tb(0.05)Zr(0.1)O(3-δ) (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe(0.95)Tb(0.05)O(3-δ) membrane due to the Zr doping. PMID:26097915

  10. In-pile and out-of-pile testing of a molybdenum-uranium dioxide cermet fueled themionic diode

    Science.gov (United States)

    Diianni, D. C.

    1972-01-01

    The behavior of Mo-UO2 cermet fuel in a diode for thermionic reactor application was studied. The diode had a Mo-0.5 Ti emitter and niobium collector. Output power ranged from 1.4 to 2.8 W/cm squared at emitter and collector temperatures of 1500 deg and 540 C. Thermionic performance was stable within the limits of the instrumentation sensitivity. Through 1000 hours of in-pile operation the emitter was dimensionally stable. However, some fission gases (15 percent) leaked through an inner clad imperfection that occurred during fuel fabrication.

  11. Small PWR 'PFPWR50' using cermet fuel of Th-Pu particles

    International Nuclear Information System (INIS)

    An innovative concept of PFPWR50 has been studied. The main feature of PFPWR50 has been to adopt TRISO coated fuel particles in a conventional PWR cladding. Coated fuel particle provides good confining ability of fission products. But it is pointed out that swelling of SiC layer at low temperature by irradiation has possibilities of degrading the integrity of coated fuel particle in the LWR environment. Thus, we examined the use of Cermet fuel replacing SiC layer to Zr metal or Zr compound. And the nuclear fuel has been used as fuel compact, which is configured to fix coated fuel particles in the matrix material to the shape of fuel pellet. In the previous study, graphite matrix is adopted as the matrix material. According to the burnup calculations of the several fuel concepts with those covering layers, we decide to use Zr layer embedded in Zr metal base or ZrC layer with graphite matrix. But carbon has the problem at low temperature by irradiation as well as SiC. Therefore, Zr covering layer and Zr metal base are finally selected. The other feature of PFPWR50 concept has been that the excess reactivity is suppressed during a cycle by initially loading burnable poison (gadolinia) in the fuels. In this study, a new loading pattern is determined by combining 7 types of assemblies in which the gadolinia concentration and the number of the fuel rods with gadolinia are different. This new core gives 6.7 equivalent full power years (EFPY) as the core life of a cycle. And the excess reactivity is suppressed to less than 2.0%Δk/k during the cycle. (author)

  12. Characterization and High-Temperature Erosion Behaviour of HVOF Thermal Spray Cermet Coatings

    Science.gov (United States)

    Kumar, Pardeep; Sidhu, Buta Singh

    2016-01-01

    High-velocity oxygen fuel (HVOF) thermal spray, carbide-cermet-based coatings are usually employed in high-temperature erosive and erosive-corrosive environments. Extensive literature is available on high-temperature erosion performance of HVOF coatings under moderate to low particle flux and velocities for application in boiler tubes. This research work presents the characterization and high-temperature erosion behaviour of Cr3C2-25NiCr and WC-10Co-4Cr HVOF-sprayed coatings. Coatings were formulated on the substrate steel of type AISI 304, commonly used for the fabrication of pulverized coal burner nozzles (PCBN). Erosion testing was carried out in high-temperature air-jet erosion tester after simulating the conditions akin to that prevailing in PCBN in the boiler furnace. The coatings were tested for erosion behaviour at different angles and temperatures by freezing other test parameters. Brittle erosion behaviour was depicted in erosion testing, and the coatings couldn't restrain the erodent attacks to protect the substrate. High particle velocity and high particle flux were attributed to be the reasons of extensive erosive weight loss of the coatings. The surface morphology of the eroded specimens was analysed from back-scattered electron images to depict the probable mechanism of material removal. The coatings were characterized with optical microscopy, SEM-EDS analysis, XRD analysis, micro-hardness testing, porosity measurements, surface roughness testing and bond strength testing. The work was undertaken to investigate the performance of the selected coatings in highly erosive environment, so as to envisage their application in PCBNs for protection against material degradation. The coatings could only sustain in oblique impact erosion at room temperature and depleted fully under all other conditions.

  13. Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors

    International Nuclear Information System (INIS)

    This paper presents an experimental study of the electrical conduction mechanisms in thick-film (cermet) resistor. The resistors were made from one custom and three commercially formulated inks with sheet resistivities ranging from 102 to 106 Ω/D7Alembertian in decade increments. Their microstructure and composition have been examined using optical and scanning electron microscopy, electron microprobe analysis, x-ray diffraction, and various chemical analyses. This portion of our study shows that the resistors are heterogeneous mixtures of metallic metal oxide particles (approx.4 x 10-5 cm in diameter) and a lead silicate glass. The metal oxide particles are ruthenium containing pyrochlores, and are joined to form a continuous three-dimensional network of chain segments. The principal experimental work reported here is an extensive study of the electrical transport properties of the resistors. The temperature dependence of conductance has been measured from 1.2 to 400 K, and two features common to all resistors are found. There is a pronounced decrease in conductance at low temperatures and a shallow maximum at several hundred Kelvin. Within the same range of temperatures the reversible conductance as a function of electric field from 0 to 28 kV/cm has been studied. The resistors are non-Ohmic at all temperatures, but particularly at cryogenic temperatures for low fields. At higher fields the conductance shows a linear variation with electric field. The thick-film resistors are found to have a small dielectric constant and a (nearly) frequency-independent conductance from dc to 50 MHz. The magnetoresistance to 100 kG, the Hall mobility, and the Seebeck coefficient of most of the resistors have been measured and discovered to be quite small. Many of the electrical transport properties have also been determined for the metal oxide particles which were extracted from the fired resistors

  14. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  15. Reaction occurring during sintering and the characteristics of TiC-20 TiN-15 WC-10 TaC-9 Mo-5.5 Ni-11 Co cermet

    International Nuclear Information System (INIS)

    Several important mechanical and physico-mechanical properties and cutting performance properties of TiC-20%TiN-15%WC-10%TaC-9%Mo-5.5%Ni-11%Co cermets are reported and discussed, and compared with properties of TcC-9%Mo-16.5%Ni cermets and WC-based cemented carbides. The improvement in transverse rupture strength is attributed to the solid solution strengthening effect of the binder phase through the dissolution of a large amount of refractory metals such as Mo and W. The new cermet also shows improved groove wear resistance which is mainly due to its excellent corrosion resistance. (author)

  16. High performance mid-temperature selective absorber based on titanium oxides cermet deposited by direct current reactive sputtering of a single titanium target

    Science.gov (United States)

    Tang, Lu; Cao, Feng; Li, Yang; Bao, Jiming; Ren, Zhifeng

    2016-01-01

    This article reports the design and fabrication of a new double cermet-based low-mid temperature solar selective absorber based on TiOx cermet layers, which were deposited with a single Ti target by varying O2 partial pressure in sputtering chamber as reactive gas. High metal volume fraction cermet 1 and low metal volume fraction cermet 2 were deposited with O2 partial pressure of 0.15 mTorr and 0.25 mTorr, respectively, with direct current power density of 6.58 W cm-2. The complex refractive indices from ellipsometry were used to design solar selective absorber. The reflectance, thermal stability, and morphology were studied in absorbers on Cu and stainless steel. The effect of TiO2 and SiO2 as anti-reflective coating layers was investigated. The absorber on Cu substrate has high absorptance of 90.8% and low emittance of 4.9% (100 °C), and changed to 96.0% and 6.6%, respectively, after annealing at 300 °C for 4 days.

  17. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H2/Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  18. Investigation on hole manufacture in 42CrMo4 steel using 3-flute carbide drills and 6-flute cermet reamers

    DEFF Research Database (Denmark)

    Müller, Pavel; De Chiffre, Leonardo

    An investigation on cutting forces and hole quality using carbide 3-flute self-centering drills and 6-flute cermet reamers was performed on 42CrMo4 alloy steel. Different depths of cuts were analyzed with respect to cutting thrust and cutting torque, hole diameter, form and surface integrity. Good...

  19. Effect of Yb2O3 doping on the grain boundary of NiFe2O4-10NiO-based cermets after sintering

    Science.gov (United States)

    He, Han-bing

    2015-12-01

    xYb2O3-15(20Ni-Cu)/(85 - x)(NiFe2O4-10NiO) ( x = 0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect of Yb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), and electron probe microanalysis (EPMA), YbFeO3 was produced along the grain boundary. The YbFeO3 was concluded to not only have formed from the interaction between the NiFe2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiFe2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the production of YbFeO3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance.

  20. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO2, U–25 wt%UO2 and U–30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO2 compositions.

  1. Cold spray deposition of a WC-25Co cermet onto Al7075-T6 and carbon steel substrates

    International Nuclear Information System (INIS)

    This work focussed on the deposition of wear-resistant and corrosion-resistant WC-25Co cermet powders on carbon steel and aluminium (Al7075-T6) substrates by cold gas spraying (CGS). The unique combination of mechanical, physical and chemical properties of WC-Co cermets has led to their widespread use for the manufacture of wear-resistant parts. X-ray diffraction tests were run on the powder and coatings to determine possible phase changes during the spraying process. The bonding strength of the coatings was measured by adhesion tests (ASTM C633-08). The sliding (ASTM G99-04) and abrasive (ASTM G65-00) wear resistance of the coatings were also studied. Corrosion resistance was determined by electrochemical measurements and salt fog spray tests (ASTM B117-03). CGS achieved thick, dense and hard WC-25Co coatings on both aluminium alloy Al7075-T6 and carbon steel substrates, with excellent tribological and electrochemical properties. We thus conclude that this method is very competitive compared with conventional thermal spraying techniques, giving thick, dense and hard coatings on both aluminium alloy Al7075-T6 and carbon steel substrates, with excellent tribological and electrochemical properties.

  2. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Science.gov (United States)

    D'Agata, E.; Knol, S.; Fedorov, A. V.; Fernandez, A.; Somers, J.; Klaassen, F.

    2015-10-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like 241Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using 10B to "produce" helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  3. Rugometric and Microtopographic Inspection of Cr–Cr2O3 Cermet Solar Absorbers

    Directory of Open Access Journals (Sweden)

    Manuel F. M. Costa

    2006-12-01

    Full Text Available The development of new efficient and cost effective solar energy collectors and converters either quantum or thermal attracts great attention and effort in a number of research laboratories all over the world. Cr–Cr2O3 cermet PVD coatings can be successfully employed in thermal converters. Their energy conversion efficiency depends on their chemical and physical structural characteristics and related optical properties like reflectance, emittance, solar light absorption, or absorptance and transmittance. Parameters such as roughness and topographic characteristics of the produced coatings will greatly influence their relevant optical properties. A careful evaluation of the coatings' roughness and their microtopographic inspection is fundamental. The Cr–Cr2O3 cermet coatings sputter deposited on cooper and aluminium shows similar absorption (92% but the first ones present a better emittance and higher waviness (over 30% with similar roughness. In comparison with commercially available solar panels with a slightly better absorption but worse emittance our coatings have a much lower waviness (∼150% and roughly 50% higher roughness.

  4. Characterization of Ni-cermet degradation phenomena I. Long term resistivity monitoring, image processing and X-ray fluorescence analysis

    Science.gov (United States)

    Ananyev, M. V.; Bronin, D. I.; Osinkin, D. A.; Eremin, V. A.; Steinberger-Wilckens, R.; de Haart, L. G. J.; Mertens, J.

    2015-07-01

    The present paper is devoted to Ni-cermet degradation phenomena and places emphasis on experimental approaches and data handling. The resistivity of Ni-YSZ cermet (nickel and 8 mol.% yttria stabilized zirconia) anode substrates was monitored during 3000 h at 700 and 800 °C in a gas mixture of 80 vol.% water vapor and 20 vol.% hydrogen. The experimentally evaluated dependence of resistivity of the Ni-YSZ substrates can be well described by exponential decay functions. Post test analysis by image processing and XRF (X-ray fluorescence) analysis for characterization of the microstructure and elemental composition were carried out for virgin samples and after 300, 1000 and 3000 h of exposure time. The 3D-microstructure was reconstructed using an original spheres packing algorithm. Two processes leading to the Ni-YSZ degradation were observed: Ni-phase particle coarsening and volatilization. The effect of these processes on resistivity and such microstructure parameters as porosity, Ni-phase fraction, Ni and YSZ phases particle size distributions, triple phase boundary length, and tortuosity factor are considered in this paper.

  5. Multigroup calculation of criticality and power distribution in a two-pass fast spectrum cermet-fueled reactor

    International Nuclear Information System (INIS)

    The advanced propulsion group at Pratt ampersand Whitney has developed a nuclear thermal rocket concept, the XNR2000, for use on lunear, Mars, and deep-space planetary missions. The XNR2000 engine is powered by a fast spectrum cermet-fueled nuclear reactor that heats up hydrogen propellant to a maximum of 2850 K. An expander cycle is used to deliver 12 kg/s hydrogen to the core, producing 25,000 lbf thrust at 944 s of specific impulse. The reactor comprises a beryllium-reflected outer annulus core and an inner core with the hydrogen propellant entering from the bottom of the outer core and exiting from the bottom part of the inner core to the thrust chamber. Both the outer and inner cores are loaded with prismatic cermet fuel elements. The baseline XNR2000 reactor core consists of 90 fuel elements in the outer core and 61 in the inner core, arranged in the pattern. This paper focuses on the neutronic analysis of the baseline XNR2000 reactor

  6. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    OpenAIRE

    Lemboub Samia; Boudebane Said; Atoui L'hadi

    2013-01-01

    Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC), basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole), génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermiq...

  7. Effect of Cr{sub 3}C{sub 2} content on the microstructure and properties of Mo{sub 2}NiB{sub 2}-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Lang; Li, XiaoBo; Zhang, Dan; Yang, ChengMing; Yin, FuCheng [Xiangtan Univ., Hunan (China). School of Materials Science and Engineering; Xiangtan Univ., Hunan (China). Key Lab. of Materials Design and Preparation Technology of Hunan Province; Xiangtan Univ., Hunan (China). Key Lab. of Low Dimensional Materials and Application Technology of Ministry of Education; Xiao, YiFeng [Xiangtan Univ., Hunan (China). Key Lab. of Materials Design and Preparation Technology of Hunan Province

    2015-10-15

    Four series of Mo{sub 2}NiB{sub 2}-based cermets with Cr{sub 3}C{sub 2} addition of between 0 and 7.5 wt.% in 2.5 wt.% increments were studied by means of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The transverse rupture strength and hardness were also measured. It was found that Cr{sub 3}C{sub 2} completely dissolved in Mo{sub 2}NiB{sub 2}-based cermets. Cr{sub 3}C{sub 2} addition improved the wettability of the Ni binder phase on the Mo{sub 2}NiB{sub 2} hard phase, which resulted in a decrease in the porosity and an increase in the phase uniformity. The cermets with 2.5 wt.% Cr{sub 3}C{sub 2} content showed relatively fine grains and almost full density. A high Cr{sub 3}C{sub 2} content resulted in the formation of M{sub 6}C (M = Mo, Cr, Ni) phase. In addition, energy dispersive X-ray spectroscopy results showed that the content of Mo in the binder decreased with increasing Cr{sub 3}C{sub 2} content. The cermets with 2.5 wt.% Cr{sub 3}C{sub 2} addition exhibited the highest transverse rupture strength of 2210 MPa, whereas the cermets without Cr{sub 3}C{sub 2} addition exhibited the highest hardness.

  8. Study of the Ni-NiAl2O4-YSZ cermet for its possible application as an anode in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nanocrystalline Ni-NiAl2O4-YSZ cermet with a possible application as anode in solid oxide fuel cells (SOFCs) has been developed. The powders were prepared by using an alternative solid-state method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 oC and oxide reduction (NiO -Al2O3-YSZ → Ni-NiAl2O4-YSZ) at 800 oC for 8 h in a tubular reactor furnace using 10% H2/N2. Eight samples with 45% Ni and 55% Al2O3-YSZ in concentrations of Al2O3 oxides from 10 to 80 wt% of were mixed to obtain the cermets. The obtained material was compressed using unidirectional axial pressing and calcinations from room temperature to 800 oC. Good results were registered using a heating rate of 1 oC min-1 and a special ramp to avoid anode cracking. Thermal expansion, electrical conductivity, and structural characterization by thermo-mechanical analyser (TMA) techniques/methods, the four-point probe method for conductivity, scanning electron microscopy (SEM), x-ray energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and the Rietveld method were carried out. Cermets in the range 5.5 to 11% Al2O3 present a crystal size around 200 nm. An inversion degree (I) in the NiAl2O4 spinel structure of the cermets Ni-NiAl2O4-YSZ was found after the sintering and reduction processes. Good electrical conductivity and thermal expansion coefficient were obtained for the cermet with 12 wt% of spinel structure formation

  9. Exploring Cu2O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    International Nuclear Information System (INIS)

    Highlights: • Cu2O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu2O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO2 and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu2O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu2O/Cu was investigated in Na3AlF6–CaF2–Al2O3 electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu2O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling content of Cu phase. The calculated corrosion rate was about 1.5–7

  10. Degradation of conductivity and microstructure under thermal and current load in Ni-YSZ cermets for SOFC anodes

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune; Barfod, R.; Liu, Yuliang

    2006-01-01

    The degradation of electrical conductivity in porous nickel-yttria stabilized zirconia composite cermets in a H2/H2O atmosphere under high temperature treatments has been investigated. The parameters varied were: temperature, water partial pressure, and electrical current load. The microstructure...... and area fraction of percolated Ni was measured. Temperature proved to have the largest effect on the degradation. Samples tested at 1000°C, in contrast to 750°C, showed a severe decrease of conductivity and growth of Ni particles. Higher water partial pressure accelerated Ni particle growth at both...... temperatures, but the loss of percolation and conductivity at 1000°C was less severe under high water partial pressure. A possible explanation for this behavior is discussed....

  11. High temperature properties of TiCN-Mo2C-Co cermets studied by mechanical spectroscopy

    International Nuclear Information System (INIS)

    Low frequency internal friction measurements were performed on TiC0.7N0.3-Mo2C-Co cermets in an inverted torsion-pendulum working with forced oscillations. A thermally activated high temperature background and three thermally activated peaks were observed in the internal friction spectra. Two peaks, which are stable during thermal treatments, appear (at 1 Hz) at about 1050 K and 1200 K respectively. The third peak, appearing at about 950 K, is only observed during the first heating of the as-received samples. In order to locate the relaxation phenomena, similar measurements were performed on carbide-carbonitride skeletons, in which the metallic binder phase was chemically removed. Complementary microstructural characterizations, performed by conventional TEM, allow one to identify the physical mechanisms responsible for the IF peaks and background. (orig.)

  12. Effect of hot isostatic pressing nitrogen on the microstructure and properties of a Ti(C, N)-based cermet

    Institute of Scientific and Technical Information of China (English)

    YAN Xianmei; XIONG Weihao; YANG Yong; ZHENG Liyun

    2006-01-01

    The high-temperature, high-pressure hot isostatic pressing technology was used for depositing hard coatings on Ti(C, N)-based cermets. The microstructure and properties of the sample were investigated using optical microscopy, scanning electron microscopy, X-ray diffraction, electron probe microanalysis, and microhardness tester. The results showed that the rich titanium and nitrogen in surface zone were induced by the heat treatment. The high nitrogen activity of the surface region was the driving force for outward transport of titanium and inward transport of tungsten in the cobalt binder. The toughness and hardness were improved and a hardness gradient was formed. It is the high-temperature, high-pressure N2that enables closure of holes, thereby alleviating defects and prolonging tool life.

  13. Corrosion behavior of laser-clad Mo2NiB2 cermet coating on low carbon steel substrate

    International Nuclear Information System (INIS)

    A Mo2NiB2 cermet coating on low carbon steel substrate was fabricated by laser cladding technique. The coating consisted of γ-(Fe, Ni) as a metallic matrix binder and Mo2NiB2 particles as a reinforced phase distributed uniformly in the microstructure. Corrosion behavior of the coating was investigated and the commercial 1Cr, 304SS, and G3 were used for comparison. G3 exhibited the highest corrosion resistance and 1Cr the lowest corrosion resistance, whereas 304SS and the coating exhibited the intermediate and similar corrosion resistance. However, the severe pitting corrosion which was observed in 304SS did not exist for the coating. (author)

  14. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  15. Al2O3/Al Cermets by Plasma Spraying: Optical Response of Experimental and Numerically Represented Materials

    Science.gov (United States)

    Toru, D.; Echegut, R.; Quet, A.; De Sousa Meneses, D.; del Campo, L.; Piombini, H.; Echegut, P.; Bianchi, L.

    2016-01-01

    Optical properties of plasma-sprayed coatings and numerically represented samples were studied at wavelengths ranging from visible to mid-infrared. The paper focuses on Al2O3 and Al2O3/Al cermet coatings with different metal concentrations. Microstructure and composition of the samples were characterized in order to explain their optical response that is highly dependent on volume and/or surface scattering as a function of the wavelength range. 2D scanning electron microscopy and 3D x-ray microtomography images were exploited to get statistical data in order to numerically represent simplified samples from the complex microstructure of plasma-sprayed coatings. A Monte Carlo ray-tracing model, based on geometrical optical laws, was then applied to reproduce experimental trends of the acquired optical spectra. Good agreement with the experimental data was obtained.

  16. Characterisation and tribological investigation on thermally processed nanostructured Fe-based and Cu-based cermet materials.

    Science.gov (United States)

    Basak, A K; Eddine, W Zein; Celis, J P; Matteazzi, P

    2010-02-01

    The feasibility of achieving a nanostructured material after different thermal processing of nanosized powders is presented. The thermal processing was done by either atmospheric plasma spraying, laser sintering, or extrusion followed by hot isostatic pressing. The structural characterisation of such thermally processed nanostructured Fe-based and Cu-based metallic or Al2O3 reinforced cermets, confirmed the retention of a nanostructure after each of these thermal processes. Hardness measurements confirmed an increased hardness as expected in the case that nanostructuring is achieved. The role of grain boundaries and second phase particles on the retention of the nanostructure after thermal processing is discussed. Finally, the possible benefit of nanostructuring on the friction and wear behaviour of materials in sliding tests against corundum in ambient air is reported and discussed. PMID:20352775

  17. Microstructure and strength of brazed joints of TiB2 cermet to TiAl-based alloys

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 曹健

    2003-01-01

    In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal. The microstructural analyses indicate that two reaction products, Ti(Cu, Al)2 and Ag based solid solution (Ag(s.s)), are present in the brazing seam, and the interface structure of the brazed joint is TiB2/TiB2+ Ag(s.s) /Ag(s.s)+Ti(Cu, Al)2/Ti(Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases as the brazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.

  18. Machinability of Hastelloy C-276 Using Hot-pressed Sintered Ti(C7N3)-based Cermet Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    XU Kaitao; ZOU Bin; HUANG Chuanzhen; YAO Yang; ZHOU Huijun; LIU Zhanqiang

    2015-01-01

    C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent fallure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59mm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.

  19. Machinability of hastelloy C-276 using Hot-pressed sintered Ti(C7N3)-based cermet cutting tools

    Science.gov (United States)

    Xu, Kaitao; Zou, Bin; Huang, Chuanzhen; Yao, Yang; Zhou, Huijun; Liu, Zhanqiang

    2015-05-01

    C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent failure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59μm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.

  20. Acoustic emission analysis of Vickers indentation fracture of cermet and ceramic coatings

    International Nuclear Information System (INIS)

    The aim of this work was to develop an instrumented experimental methodology of quantitative material evaluation based on the acoustic emission (AE) monitoring of a dead-weight Vickers indentation. This was to assess the degree of cracking and hence the toughness of thermally sprayed coatings. AE data were acquired during indentation tests on samples of coatings of nominal thickness 250–325 µm at a variety of indentation loads ranging from 49 to 490 N. Measurements were carried out on five different carbide and ceramic coatings (HVOF as-sprayed WC-12%Co (JP5000 and JetKote), HIPed WC-12%Co (JetKote) and as-sprayed Al2O3 (APS/Metco and HVOF/theta-gun)). The raw AE signals recorded during indentation were analysed and the total surface crack length around the indent determined. The results showed that the total surface crack length measured gave fracture toughness (K1c) values which were consistent with the published literature for similar coatings but evaluated using the classical approach (Palmqvist/half-penny model). Hence, the total surface crack length criteria can be applied to ceramic and cermet coatings which may or may not exhibit fracture via radial cracks. The values of K1c measured were 3.4 ± 0.1 MPa m1/2 for high-velocity oxygen fuel (HVOF) (theta-gun) Al2O3, 4.6 ± 0.3 MPa m1/2 for as-sprayed HVOF (JetKote) WC-12%Co, 7.1±0.1 MPa m1/2 for as-sprayed HVOF (JP5000) WC-12%Co and 7.4 ± 0.2 MPa m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings. The crack lengths were then calibrated against the AE response and correlation coefficients evaluated. The values of K1c measured using AE correlations were 3.3 MPa m1/2 for HVOF (theta-gun) Al2O3, 2.6 MPa m1/2 for APS (Metco) Al2O3, 2.5 MPa m1/2 for as-sprayed HVOF (JetKote) WC-12%Co, 6.3 MPa m1/2 for as-sprayed HVOF (JP5000) WC-12%Co and 8.6 MPa m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings. It is concluded that within each category of coating type, AE can be used as a suitable surrogate for crack length

  1. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    Energy Technology Data Exchange (ETDEWEB)

    Junru, Yang; Chuanjuan, Song; Minglan, Wang; Yeukan, Zhang; Jing, Sun [College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao (China)

    2016-01-15

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate.

  2. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    International Nuclear Information System (INIS)

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate

  3. Effect of composition on the degree of anisotropy of thermal expansion and electric resistance of cermet specimens of GeTe

    International Nuclear Information System (INIS)

    A study was made on α temperature coefficient of thermal expansion and ρ specific electric resistance of cermet germanium telluride for alloys close to stoichiometric composition. It is shown that anisotropy of thermal expansion of cermet germanium telluride depends sufficiently on its composition. This dependence is clearly pronounced if tellurium content in alloys equals 50.4-51.2 at.%. The maximal anisotropy is observed in the alloy containing 50.8 at.% of tellurium. The temperature of extreme value of temperature coefficient of linear expansion decreases from 440 down to 373 deg.C for alloys with 49-50.8 at.% of tellurium, and grows from 373 up to 405 deg.C if tellurium content equals 50.8-52 at.%

  4. Propriétés thermomécaniques de cermets à base de ferrite spinelle : influence de l'oxydation

    OpenAIRE

    Huchet, Guillaume

    2010-01-01

    Co-encadrement de la thèse : Vincent Maurel In order to replace consumable carbon electrodes in the Hall-Heroult electrolysis process, the development of inert anodes resistant to oxidation is a technical challenge for main leaders in aluminum production. Some of the recent researches were focused on promising and original cermets constituted of a dual phase ceramic matrix and dispersed metallic particles, which have sufficient electric conductivity and corrosion resistance at high tempera...

  5. A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods

    Science.gov (United States)

    Sahani, P.; Karak, S. K.; Mishra, B.; Chakravarty, D.; Chaira, D.

    2016-06-01

    Silicon carbide (SiC)-boron carbide (B4C) based cermets were doped with 5, 10, and 20 wt pct Silicon (Si) and their sinterability and properties were investigated for conventional sintering at 2223 K (1950 °C) and spark plasma sintering (SPS) at 1623 K (1350 °C). An average particle size of ~3 µm was obtained after 10 hours of milling. There is an enhancement of Vickers microhardness in the 10 wt pct Si sample from 18.10 in conventional sintering to 27.80 GPa for SPS. The relative density, microhardness, and indentation fracture toughness of the composition SiC60(B4C)30Si10 fabricated by SPS are 98 pct, 27.80 GPa, and 3.8 MPa m1/2, respectively. The novelty of the present study is to tailor the wettability and ductility of the cermet by addition of Si into the SiC-B4C matrix. Better densification with improved properties is achieved for cermets consolidated by SPS at lower temperatures than conventional sintering.

  6. Evaluation of Die-Soldering and Erosion Resistance of High Velocity Oxy-Fuel Sprayed MoB-Based Cermet Coatings

    Science.gov (United States)

    Khan, Faisal Farooq; Bae, Gyuyeol; Kang, Kicheol; Na, Hyuntaek; Kim, Junghwan; Jeong, Taeho; Lee, Changhee

    2011-09-01

    Soldering and erosion are two of the biggest serious problems faced in the die-casting industries. Cermet coatings utilized by high-velocity oxy-fuel (HVOF) spray technology have been developed in an attempt to overcome these problems. MoB-based cermet feedstock powders (MoB/NiCr and MoB/CoCr) were deposited on SKD61 (AISI H-13) substrates used as a preferred die (mold) material. Microstructural and mechanical properties of the coatings have been characterized by scanning electron microscopy, x-ray diffraction, Romulus bond strength test, and Vickers microhardness test. The durability of these coatings on cylindrical specimens against soldering also has been investigated by immersing in molten aluminum alloy (ADC-12) for 25 h at 670 °C and subsequently, compared with that of NiCr and CoMoCr coatings. Both types of MoB-based cermet coatings have shown high soldering resistance as negligible intermetallic formation occurred during the immersion test. This result is attributed to the existence of multiple inert borides in the coatings. The coatings also showed excellent mechanical properties. MoB/NiCr, in particular, showed higher bond strength, hardness, and wear resistance than MoB/CoCr. This suggests that MoB/NiCr will show higher durability than MoB/CoCr, NiCr, and CoMoCr during high pressure die-casting of aluminum alloys.

  7. Effect of metallic phase content on mechanical properties of (85Cu- 15Ni)/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    (85Cu-15Ni)/(10NiO-NiFe2O4) cermets were prepared with Cu-Ni mixed powders as toughening metallic phase and 10NiO-NiFe2O4 as ceramic matrix. The phase composition, microstructure of composite and the effect of metallic phase content on bending strength, hardness, fracture toughness and thermal shock resistance were studied. X-ray diffraction analysis indicates the coexistence of (Cu-Ni), NiO and NiFe2O4 phases in the cermets. Within the content range of metallic phase from 0% to 20% (mass fraction), the maximal bending strength (176.4 MPa) and the minimal porosity (3.9%) of composite appear at the metallic phase content of 5%. The fracture toughness increases and Vickers' hardness decreases with increasing metal content. When the thermal shock temperature difference (△t) is below 200 ℃, the loss rate of residual strength for 10NiO-NiFe2O4 ceramic is only 8%, but about 40% for (85Cu-15Ni)/(10NiO-NiFe2O4) cermets. As △t is above 200 ℃, the residual strength sharply decreases for sample CN0 and falls slowly for samples CN5-CN20.

  8. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  9. A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods

    Science.gov (United States)

    Sahani, P.; Karak, S. K.; Mishra, B.; Chakravarty, D.; Chaira, D.

    2016-03-01

    Silicon carbide (SiC)-boron carbide (B4C) based cermets were doped with 5, 10, and 20 wt pct Silicon (Si) and their sinterability and properties were investigated for conventional sintering at 2223 K (1950 °C) and spark plasma sintering (SPS) at 1623 K (1350 °C). An average particle size of ~3 µm was obtained after 10 hours of milling. There is an enhancement of Vickers microhardness in the 10 wt pct Si sample from 18.10 in conventional sintering to 27.80 GPa for SPS. The relative density, microhardness, and indentation fracture toughness of the composition SiC60(B4C)30Si10 fabricated by SPS are 98 pct, 27.80 GPa, and 3.8 MPa m1/2, respectively. The novelty of the present study is to tailor the wettability and ductility of the cermet by addition of Si into the SiC-B4C matrix. Better densification with improved properties is achieved for cermets consolidated by SPS at lower temperatures than conventional sintering.

  10. Evaluation of the feasibility of applying cermet fuel pins on basis of uranium enriched UP to 20% 235U to up-rated power research reactors

    International Nuclear Information System (INIS)

    The paper deals with the feasibility of employing fuel pins with a cermet fuel composition (UO2 particulates in an Al-based alloy) clad with the zirconium-based Zr+1%Nb alloy to elevated power research reactors. The fuel pin production process enables to place uranium dioxide particulates, up to 65% by volume, into small diameter claddings and to attain in fuel composition the volume densities up to 6.4 g U/cm3 of uranium. The impregnation of the charged UO2 particulates with the liquid matrix material in the subsequent course of fuel pin fabrication enables to ensure high thermal conductivity of the cermet fuel composition and zero thermal resistance at the fuel-cladding interface. The computations (made, by way of example, with reference to the IR-8 research reactor) have shown that the replacement of tubular fuel elements with high-enriched uranium, by fuel pins whose cermet fuel is not enriched over 20% is possible in principle, with the main thermal-hydraulics and neutronics characteristics of the reactor being conserved. (authors)

  11. Reaction of yttria-stabilized zirconia with zirconium, silicon and Zircaloy-4 at high temperature: a compatibility study for cermet fuels

    International Nuclear Information System (INIS)

    Compatibility studies for cermet (ceramic and metal) fuels have been completed for a temperature range of 1073-1423 K. A reaction between yttria-stabilized zirconia (YSZ), as a simulated fuel, and Zr, as a candidate for a metallic matrix, has been observed at temperatures ≥1273 K, which means the formation of a metallic reaction layer at the interface between YSZ and Zr and the occurrence of metallic phases inside the YSZ. Similar results were observed for the YSZ-Zry4 (cladding) system. On the other hand, the degree of reaction was relatively large for the YSZ-Si (metallic matrix) system, and Si diffused into the YSZ. However, the maximum fuel center-line temperature can be predicted to be less than ∼1273 K for cermet fuels. Therefore, compatibility between the ceramic fuel and the metallic matrix should be good under normal reactor operational conditions. Furthermore, since the temperature of the fuel-cladding gap is lower, the cermet fuel and the cladding material are compatible

  12. High temperature mechanical properties of Ti(C,N)-Mo2C-Ni cermets studied by internal friction measurements

    International Nuclear Information System (INIS)

    Internal friction measurements were performed on TiC0.7N0.3-Mo2C-Ni metal-bonded refractory materials, in order to study how the composition and the microstructure of cermets control the mechanical properties of these materials. A free inverted torsion-pendulum was used, oscillating in the 0.2-2 Hz frequency range, up to 1273 K. Isothermal I.F. spectra were measured in a forced torsion-pendulum in the 10-10-4 Hz range, and up to 1400 K. One thermally activated I.F. peak at 1100 K (at 0.5 Hz), is superimposed with a high temperature I.F. background. The amplitude of the background and the activation energy of the peak are strongly dependent on the Mo and C content in the material. Transmission electronic microscope observations give complementary results to identify the relaxation mechanisms. In the physical model proposed to describe the anelastic behaviour of these materials, the 1100 K peak is attributed to the dragging of Mo atoms by dislocations in Ni-Mo-Ti alloy, while the high temperature background is associated with long distance displacements of dislocations in this binder phase. The refractory skeleton gives a contribution to the high temperature background, and to another peak at 900 K. A comparison is made with I.F. measurements in WC-Co, that confirms the specific role of the metallic phase for each system. (orig.)

  13. Laser nanostructured Co nanocylinders-Al{sub 2}O{sub 3} cermets for enhanced & flexible solar selective absorbers applications

    Energy Technology Data Exchange (ETDEWEB)

    Karoro, A., E-mail: angela@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Nuru, Z.Y.; Kotsedi, L.; Bouziane, Kh. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Mothudi, B.M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Physics Dept., University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa)

    2015-08-30

    Highlights: • Co-Al{sub 2}O{sub 3} was synthesized by electrodeposition & femtosecond laser structuring. • The ultrafast laser structuring significantly increases the solar absorption. • Co-Al{sub 2}O{sub 3} exhibited 0.98 solar absorptance and 0.03 thermal emittance. - Abstract: We report on the structural and optical properties of laser surface structured Co nanocylinders-Al{sub 2}O{sub 3} cermets on flexible Aluminium substrate for enhanced solar selective absorbers applications. This new family of solar selective absorbers coating consisting of Co nanocylinders embedded into nanoporous alumina template which were produced by standard electrodeposition and thereafter submitted to femtosecond laser surface structuring. While their structural and chemical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and atomic force microscopy, their optical characteristics were investigated by specular & diffuse reflectance. The optimized samples exhibit an elevated optical absorptance α(λ) above 98% and an emittance ε(λ) ∼0.03 in the spectral range of 200–1100 nm. This set of values was suggested to be related to several surface and volume phenomena such as light trapping, plasmon surface effect as well as angular dependence of light reflection induced by the ultrafast laser multi-scale structuring.

  14. Laser nanostructured Co nanocylinders-Al2O3 cermets for enhanced & flexible solar selective absorbers applications

    Science.gov (United States)

    Karoro, A.; Nuru, Z. Y.; Kotsedi, L.; Bouziane, Kh.; Mothudi, B. M.; Maaza, M.

    2015-08-01

    We report on the structural and optical properties of laser surface structured Co nanocylinders-Al2O3 cermets on flexible Aluminium substrate for enhanced solar selective absorbers applications. This new family of solar selective absorbers coating consisting of Co nanocylinders embedded into nanoporous alumina template which were produced by standard electrodeposition and thereafter submitted to femtosecond laser surface structuring. While their structural and chemical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and atomic force microscopy, their optical characteristics were investigated by specular & diffuse reflectance. The optimized samples exhibit an elevated optical absorptance α(λ) above 98% and an emittance ɛ(λ) ∼0.03 in the spectral range of 200-1100 nm. This set of values was suggested to be related to several surface and volume phenomena such as light trapping, plasmon surface effect as well as angular dependence of light reflection induced by the ultrafast laser multi-scale structuring.

  15. Laser nanostructured Co nanocylinders-Al2O3 cermets for enhanced & flexible solar selective absorbers applications

    International Nuclear Information System (INIS)

    Highlights: • Co-Al2O3 was synthesized by electrodeposition & femtosecond laser structuring. • The ultrafast laser structuring significantly increases the solar absorption. • Co-Al2O3 exhibited 0.98 solar absorptance and 0.03 thermal emittance. - Abstract: We report on the structural and optical properties of laser surface structured Co nanocylinders-Al2O3 cermets on flexible Aluminium substrate for enhanced solar selective absorbers applications. This new family of solar selective absorbers coating consisting of Co nanocylinders embedded into nanoporous alumina template which were produced by standard electrodeposition and thereafter submitted to femtosecond laser surface structuring. While their structural and chemical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and atomic force microscopy, their optical characteristics were investigated by specular & diffuse reflectance. The optimized samples exhibit an elevated optical absorptance α(λ) above 98% and an emittance ε(λ) ∼0.03 in the spectral range of 200–1100 nm. This set of values was suggested to be related to several surface and volume phenomena such as light trapping, plasmon surface effect as well as angular dependence of light reflection induced by the ultrafast laser multi-scale structuring

  16. Erosion-oxidation behavior of thermal sprayed Ni20Cr alloy and WC and Cr3C2 cermet coatings

    Directory of Open Access Journals (Sweden)

    Clarice Terui Kunioshi

    2005-06-01

    Full Text Available An apparatus to conduct high temperature erosion-oxidation studies up to 850 °C and with particle impact velocities up to 15 m.s-1 was designed and constructed in the Corrosion Laboratories of IPEN. The erosion-oxidation behavior of high velocity oxy fuel (HVOF sprayed alloy and cermet coatings of Ni20Cr, WC 20Cr7Ni and Cr3C2 Ni20Cr on a steel substrate has been studied. Details of this apparatus and the erosion-oxidation behavior of these coatings are presented and discussed. The erosion-oxidation behavior of HVOF coated Cr3C2 25(Ni20Cr was better than that of WC 20Cr7Ni, and the erosion-oxidation regimes have been identified for these coatings at particle impact velocity of 3.5 m.s-1, impact angle of 90° and temperatures in the range 500 to 850 °C.

  17. Coefficient of Friction Measured from Nano- to Macro-Normal Loads on Plasma Sprayed Nanostructured Cermet Coatings

    Science.gov (United States)

    Basak, A. K.; Celis, J.-P.; Vardavoulias, M.; Matteazzi, P.

    2014-02-01

    Alumina dispersed FeCuAl-based nanostructured cermet coatings were deposited from nanostructured powders by atmospheric plasma spraying on low carbon steel substrates. Nanostructuring was retained in the deposited coatings which exhibit up to four distinctive phases as revealed by electron microscopy. In this study, the friction behavior of the distinctive phases at nano-normal load scale was investigated alongside their contribution to the overall friction behavior at macro-normal load scale. Friction behavior at nano-normal load scale was investigated by lateral force microscopy, whereas conventional tribometers were used for investigations at micro and macro-normal loads. It appeared that, the friction measured at nano-normal loads on individual phases is dictated by both composition and hardness of the corresponding phases, and thus influences the overall friction behavior of the coatings at macro-normal loads. Moreover, the coefficient of friction at macro-normal loads differs from the one at nano-normal loads, and deviates from Amonton's friction law.

  18. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented as a...... transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...

  19. Bulk TiC xN 1-x-15%Co cermets obtained by direct spark plasma sintering of mechanochemical synthesized powders

    OpenAIRE

    Borrell, Amparo; Salvador, M. D.; Rocha, Victoria G.; Fernández, Adolfo; Avilés Escaño, Miguel Ángel; Gotor, F.J.

    2012-01-01

    TiC xN 1-x-15 wt.%Co cermets were obtained by a mechanically induced self-sustaining reaction (MSR) and sintered by spark plasma sintering (SPS) technique at different temperatures (1200-1400°C) for 1 min in vacuum under a uniaxial load of 80 MPa. The evolution of microstructure and mechanical properties was investigated. SPS allowed high densification with limited grain growth at a relatively low temperature. Material sintered at 1300°C showed a good combination of mechanical properties wi...

  20. Cinétique et mécanismes de corrosion sèche d'un cermet à base Cu-Ni

    OpenAIRE

    Rioult, Fabien

    2005-01-01

    In the course of the development of new materials for inert anodes in the aluminum electrolysis process, cermets have been shown to be good candidates due to combined properties of conduction and resistance to corrosion. At temperatures as high as 900-1000°C, these materials must be particularly resistant, not only to the corrosion by the electrolytic bath, but also to the corrosion by the gaseous atmosphere, which contains oxygen and fluorides. This study was devoted to the kinetics of oxida...

  1. Abrasive wear behaviour of conventional and large-particle tungsten carbide-based cermet coatings as a function of abrasive size and type

    OpenAIRE

    Kamdi, Z.; Shipway, P.H.; Voisey, K.T.; Sturgeon, A.J.

    2011-01-01

    Abrasive wear behaviour of materials can be assessed using a wide variety of testing methods, and the relative performance of materials will tend to depend upon the testing procedure employed. In this work, two cermet type coatings have been examined, namely (i) a conventional tungsten carbide-cobalt thermally sprayed coating with a carbide size of between ∼0.3 – 5 μm and (ii) a tungsten carbide-nickel alloy weld overlay with large spherical carbides of the order of ∼50 – 140 μm in diameter (...

  2. TiN+gradient or multi(Ti,Al,SiN+TiN coatings deposited on cermets by CAE process: characteristic of structure and properties

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2005-12-01

    Full Text Available Purpose: It has been demonstrated in the paper that deposition of the multilayer and gradient coatings with the PVD method in the Cathodic Arc Evaporation CAE process on tools made from cermets.Design/methodology/approach: Structural examinations are presented of the applied coatings and their substrate made on the TEM, SEM and on the light microscope. Evaluation of the adhesion of the deposited coatings onto the cermets was made using the scratch test. Cutting properties of the investigated materials were determined basing on the technological continuous cutting tests of the C45E steel. Microhardness tests of the deposited coatings were made on the ultra-micro-hardness tester. Surface roughness tests were also made before depositing the coatings and after completing the PVD process.Findings: It has been demonstrated in this work that deposition of the TiN+(Ti,Al,SiN+TiN multilayer or gradient coatings with the PVD (Cathodic Arc Evaporation process on tools made from cemented carbides, results in the increase of coatings’ hardness and improvement of their adhesion to the substrate, in comparison with the multiple-layer coatings deposited using the PVD method on the same substrate materials, deciding improvement of the working properties of cutting tools coated with the TiN+gradient or multi(Ti,Al,SiN+TiN system coatings, compared with coatings developed on the same sintered tool materials, but uncoated or coated with simple coatings.Practical implications: Gradient coatings deposited with the CAE method onto the cermet substrate qualify for the widespread industrial use on cutting tools and offering the possibility to use them in the pro-ecological dry cutting processes without the use of the cutting fluids and in the „Near-Net-Shape” technology.Originality/value: In the paper the research of newly worked out multilayer and gradient TiN+(Ti,Al,SiN+TiN nanocrystalline coatings deposited in the PVD method on cermets carried out in order to

  3. Preparation and performance characterization of the Fe-Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo; Wang, S.R.; Liu, R.Z.; Wen, T.L. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2007-05-15

    An anodic cermet of Fe-Ni alloy and scandia stabilized zirconia (ScSZ) has been investigated for a solid oxide fuel cell (SOFC) running on ethanol fuel. Composite anodes having alloy compositions of 0, 12.5, 25, 37.5, 50 and 100 wt.% Ni were exposed to ethanol stream at 700 C for 12 h to demonstrate that carbon formation is greatly suppressed on the Fe-Ni alloys compared to that of pure Ni. Then the short-term stability for the cells with the Ni/ScSZ and Fe{sub 0.5}Ni{sub 0.5}/ScSZ anodes in ethanol stream at 700 C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.03 to 1.1 V, and power densities increased from 120 to 460 mW cm{sup 2} as the operating temperature of a SOFC with Fe{sub 0.5}Ni{sub 0.5}/ScSZ anode was increased from 700 to 850 C in ethanol stream. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibits slightly less total impedance than that observed for the cell with Fe{sub 0.5}Ni{sub 0.5}/ScSZ anode. The performance of a fuel cell made with the Ni/ScSZ and Fe{sub 0.5}Ni{sub 0.5}/ScSZ anodes was tested in ethanol stream for 48 h and showed a significant decrease in polarization resistance with time. Impedance spectra of similar fuel cells suggest that small carbon deposits are formed with time and that the decrease in polarization resistance is due to enhanced electronic conductivity in the anode. (author)

  4. Electronic structures, elastic properties, and minimum thermal conductivities of cermet M{sub 3}AlN

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Chen, ZhiQian, E-mail: chen_zq@swu.edu.cn [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Li, ChunMei; Li, Feng; Nie, ChaoYin [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2014-08-15

    The electronic structures and elastic anisotropies of cubic Ti{sub 3}AlN, Zr{sub 3}AlN, and Hf{sub 3}AlN are investigated by pseudopotential plane-wave method based on density functional theory. At the Fermi level, the electronic structures of these compounds are successive with no energy gap between conduct and valence bands, and exhibit metallicity in ground states. In valence band of each partial density of states, the different orbital electrons indicate interaction of corresponding atoms. In addition, the anisotropy of Hf{sub 3}AlN is found to be significantly different from that of Ti{sub 3}AlN and Zr{sub 3}AlN, which involve the differences in the bonding strength. It is notable that Hf{sub 3}AlN is a desired thermal barrier material with the lowest thermal conductivity at high temperature among the three compounds. - Graphical abstract: 1.Young's moduli of anti-perovskite Ti{sub 3}AlN, Zr{sub 3}AlN, and Hf{sub 3}AlN in full space. 2.Electron density differences on crystal planes (1 0 0), (2 0 0), and (1 1 0) of anti-perovskite Zr{sub 3}AlN. - Highlights: • We calculated three anti-perovskite cermets with first-principles theory. • We illustrated 3D Young modulus and found the anomalous anisotropy. • We explained the anomaly and calculated the minimum thermal conductivities.

  5. Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrO{sub x} cermet coatings on aluminium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gaouyat, Lucie, E-mail: lucie.gaouyat@fundp.ac.be [Solid State Physics Laboratory, Research Center in Physics of Matter and Radiation (PMR), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur (Belgium); Mirabella, Frédéric [CRM Group – AC and CS, 57b boulevard de Colonster, B-4000 Liège (Belgium); Deparis, Olivier [Solid State Physics Laboratory, Research Center in Physics of Matter and Radiation (PMR), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur (Belgium)

    2013-04-15

    NiCrO{sub x} ceramic–metal composites (i.e. cermets) exhibit not only oxidation and moisture resistances, which are very important for industrial applications, but also remarkable solar selective absorption properties. In order to reach the best optical performances with only one coating layer, tuning of the magnetron sputtering process parameters (O{sub 2} flow rate, pressure and deposition time) was performed systematically. The process window turned out to be very narrow implying a critical tuning of the parameters. The optimal operating point was determined for a single layer coating of NiCrO{sub x} on an aluminium substrate, leading to a spectrally integrated solar absorption as high as 78%. Among various material properties, the focus was put on the optical reflectance of the coating/substrate system, which was measured by UV–vis–NIR spectrophotometry. Using complex refractive index data from the literature, the theoretical reflectance spectra were calculated and found to be in good agreement with the measurements. Chemical analysis combined with scanning electronic and atomic force microscopies suggested a cermet structure consisting of metallic Ni particles and a compound matrix made of a mixture of chromium oxide, nickel oxide and nickel hydroxide.

  6. Study on Temperature Filed Simulation During Electro-discharge Machining of TiC/Ni Cermet%TiC/Ni金属陶瓷电火花加工温度场仿真研究

    Institute of Scientific and Technical Information of China (English)

    冯业瑞; 郭永丰; 李宗峰

    2016-01-01

    为深入研究TiC/Ni金属陶瓷电火花加工过程,进行了TiC/Ni金属陶瓷电火花加工单脉冲放电温度场仿真。建立了TiC/Ni金属陶瓷颗粒随机分布模型,运用ANSYS软件采用生死单元法对TiC/Ni金属陶瓷进行单脉冲温度场仿真研究,并对结果进行了实验验证。结果表明:TiC/Ni金属陶瓷颗粒随机分布模型适于TiC/Ni金属陶瓷电火花加工温度场仿真,且随着峰值电流及脉宽的增大,TiC/Ni金属陶瓷蚀除体积增加,表现为试验时材料蚀除率增加。%To study electro-discharge machining (EDM) process of TiC/Ni cermet ,the temperature field simulation of single pulse EDM of TiC/Ni cermet was carried out ,the randomly distribution model of TiC/Ni cermet particles was established. The single pulse temperature field was simulated using birth-death element method based on ANSYS software. Experimental results verify that the model is suitable for EDM temperature field simulation of TiC/Ni cermet. The results also show that with increase of peak current and pulse-on time ,due to increase of material removal rate ,material removal volume of TiC/Ni cermet increase.

  7. Ni-CeO2 Cermets Synthesis by Solid State Sintering of Ni/CeO2 Multilayer

    Directory of Open Access Journals (Sweden)

    Aleksandras ILJINAS

    2013-12-01

    Full Text Available Nickel and gadolinium doped cerium oxide (GDC cermet is intensively investigated for an application as an anode material for solid oxide fuel cells based on various electrolytes. The purpose of the present investigation is to analyze morphology, microstructure, and optical properties of deposited and annealed for one hour in the temperatures from 500 ºC to 900 ºC Ni/CeO2 multilayer thin films deposited by sputtering. The crystallographic structure of thin films was investigated by X-ray diffraction. The morphology of the film cross-section was investigated with scanning electron microscope. The elemental analysis of samples was investigated by energy-dispersive X-ray spectroscopy. The fitting of the optical reflectance data was made using Abeles matrix method that is used for the design of interference coatings. The film cross-section of the post-annealed samples consisted of four layers. The first CeO2 layer (on Si had the same fine columnar structure with no features of Ni intermixing. The part of Ni (middle-layer after annealing was converted to NiO with grain size exceeding 100 nm. The CeO2 layer deposited on Ni was divided into two layers. Lower layer had small grains not exceeding 25 nm and consisting of NiO and CeO2 mixture. Upper layer consisted of CeO2 columns with approximate thickness of 50 nm. Ni sample annealed at 600 ºC was fully oxidized. The NiO thickness and refraction index were almost steady after annealing in various temperatures. The approximation of experimental reflectance data was successful only for the samples with one transparent homogeneous layer. The reflectance of the Ni/CeO2 samples annealed at intermediate temperatures could not be fitted using one-layer or three-layer model. That may show that a simplified model could not be implemented. The real system has complicated distribution of refraction index. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3073

  8. Exploring Cu{sub 2}O/Cu cermet as a partially inert anode to produce aluminum in a sustainable way

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-Chao [School of Mechanical Engineering, Huaihai Institute of Technology and Jiangsu Province R and D Institute of Marine Resources, Lianyungang 222005 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Ning, E-mail: xiening@hit.edu.cn [School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shao, Wen-Zhu, E-mail: wzshao@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ivanov, V.V. [Physical Chemistry Department, Siberian Federal University, Krasnoyarsk 660041 (Russian Federation)

    2014-10-15

    Highlights: • Cu{sub 2}O/Cu cermet was used as a candidate partially inert anode material to produce aluminum alloys. • The thermal corrosion behavior of Cu{sub 2}O/Cu was investigated in molten salt at 960 °C. • The corrosion rate is largely governed by the geometrical structures of Cu in the prepared samples. • The corrosion rate increases with decreasing sizes and increasing filling contents of Cu phase. • The corrosion rate was 1.8–9 cm/y and the Cu contents is less than 6.2 wt.% in the produced aluminum. - Abstract: As an energy-intensive process, aluminum production by the Hall–Héroult method accounts for significant emissions of CO{sub 2} and some toxic greenhouse gases. The utilization of an inert anode in place of a carbon anode was considered as a revolutionary technique to solve most of the current environmental problems resulting from the Hall–Héroult process. However, the critical property requirements of the inert anode materials significantly limit the application of this technology. In light of the higher demand for aluminum alloys than for pure aluminum, a partially inert anode was designed to produce aluminum alloys in a more sustainable way. Here, Cu{sub 2}O/Cu cermet was chosen as the material of interest. The thermal corrosion behavior of Cu{sub 2}O/Cu was investigated in Na{sub 3}AlF{sub 6}–CaF{sub 2}–Al{sub 2}O{sub 3} electrolyte at 960 °C to elucidate the corrosion mechanisms of this type of partially inert anode for the production of aluminum or aluminum alloys. Furthermore, the effects of the geometrical structure of the Cu phase on the thermal corrosion behavior of Cu{sub 2}O/Cu cermet in the electrolyte were investigated as well. The thermal corrosion rate was evaluated by the weight loss method and the results show that the samples prepared with branch-like Cu have higher thermal corrosion rate than those prepared with spherical Cu, and the corrosion rate increases with decreasing size and increasing filling

  9. Effect of Si on 1Cr18Ni11Nb/TiO interface and investigation of TiO based cermet binder phase

    Institute of Scientific and Technical Information of China (English)

    LI Qingkui; ZHONG Hui; GUAN Shaokang; LI Jiang; ZHONG Haiyun

    2005-01-01

    The effect of trace amount of active element Si on the wetting and interface characteristics of 1Cr1 8Ni1 1Nb/TiO was investigated. Based on the results, a new binder phase for TiO based cermets imitated gold materials was developed,and the related mechanisms were studied. The results indicated that there was small wet-ability of the 1Crl8Ni11Nb alloy on TiO, and the interface binding strength of 1Cr1 8Ni1 1Nb/TiO was low. 1.5%Si in 1Cr1 8Ni1 1No could not only make the alloy wet TiO, but also lead to mutual dissolving near the interface, forming high interface binding strength and matching with the thermal expansion coefficient of TiO.

  10. Results from 100 h electrolysis testing of NiFe2O4 based cermet as inert anode in aluminum reduction

    Institute of Scientific and Technical Information of China (English)

    LAI Yan-qing; TIAN Zhong-liang; LI Jie; YE Shao-long; LI Xin-zheng; LIU Ye-xiang

    2006-01-01

    A 100 mm diameter cup-shaped inert anode for aluminum electrolysis consisting of cermet 17Ni/83(10NiO-90NiFe2O4) was prepared and the operating performance was evaluated in a laboratory cell with the electrolyte CR2.3 and Al2O3 concentration 7.43% (mass fraction). The results indicate that no major operational difficulties are encountered during the testing which lasts for 101.5 h and the inert anode exhibits good general performances. The steady-state average concentration of impurity Ni in the bath is close to the solubility, however, the Fe concentration is lower than its solubility. The contents of the main contaminants for aluminum produced are Ni 0.128 8%, Fe 1.007 4%. The corrosion rate of inert anode under electrolysis conditions based on the content of impurity Ni in metal aluminum is approximately 8.51 mm/a.

  11. Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (-8 + 1 μm) to Produce Superfine Structured Cermet Coatings

    Science.gov (United States)

    Tillmann, W.; Vogli, E.; Baumann, I.; Matthaeus, G.; Ostrowski, T.

    2008-12-01

    Thermal spraying technology represents a novel and promising approach to protect forming tools with complex surfaces and highest shape accuracy against abrasive wear and galling. However, due to high or nonuniform layer thicknesses or inappropriate surface roughness conventional coarse-structured coatings are not suitable to achieve this aim. The application of novel submicron or nanoscaled feedstock materials in the thermal spray process can provide the deposition of cermet coatings with significantly improved characteristics and is recently of great interest in science and industry. In this collaborative study, the feeding and HVOF spraying of WC-Co submicron powders (-8 + 1 μm) have been investigated to manufacture superfine structured, wear resistant, near-net-shape coatings with improved macroscopic properties and smooth surfaces. The influences of varying HVOF gas compositions on the spray process and the coating properties have been analyzed.

  12. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  13. Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Directory of Open Access Journals (Sweden)

    Hernández-González, L. W.

    2011-06-01

    Full Text Available This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds.

    El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco respecto al tiempo de dos insertos de carburo recubiertos y un cermet durante el torneado de acabado en seco del acero AISI 1045 con velocidades de corte de 400, 500 y 600 m/min. Los resultados fueron comparados utilizando el análisis de varianza y el análisis de regresión lineal para describir la relación entre el desgaste del flanco y el tiempo de maquinado, obteniéndose la ecuación del modelo ajustado. La investigación demostró un efecto significativo de la velocidad de corte y del tiempo de maquinado en el desgaste del flanco en el maquinado de alta velocidad. El mejor desempeño se obtuvo para el carburo recubierto con tres capas, mientras que el carburo con dos capas sufrió el mayor desgaste a elevadas velocidades de corte.

  14. Electrocatalytic cermet sensor

    Science.gov (United States)

    Shoemaker, Erika L.; Vogt, Michael C.

    1998-01-01

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  15. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  16. Nouveaux revêtements multicouches diamantés nanograins sur cermets WC-Co : étude des phénomènes microstructuraux intervenant aux interfaces lors de l'élaboration

    OpenAIRE

    Faure, Cyril

    2010-01-01

    The combination of good mechanical properties and low specific mass ensures the increasing use of composite materials to reduce the weight of mechanical structures. However, their machining induces premature and random wear of WC-Co cermet cutting-tools. The origin of this study comes from the necessity to protect cutting-tools surfaces by hard and resistant coatings like NCD diamond. Unfortunately, the cobalt found in these cemented carbides catalyses graphite formation at the interface with...

  17. Model-supported interpretation of the electrochemical characteristics of solid oxide fuel cells with Ni/YSZ cermet anodes; Modellgestuetzte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden

    Energy Technology Data Exchange (ETDEWEB)

    Gewies, Stefan

    2009-01-29

    This work presents the development, validation and application of a multiscale model for the detailed description of a solid oxide fuel cell (SOFC) with a Ni/YSZ (nickel/yttria-stabilized zirconia) cermet anode. The aim of the study is the identification of the physico-chemical loss processes, as seen in impedance spectra and polarization curves. The model consists of an elementary kinetic description of the electrochemistry including the development of an electrical double layer at the electrode/electrolyte interface of the cermet anode, a homogenized description of charge and gas-phase transport in the electrodes as well as a macroscopic description of convective and diffusive mass transport in the gas phase above the electrodes. For the rst time this study allows for a complete description of the impedance spectra of a diffusively fuel-supplied cermet anode. By comparing simulations with experiments on symmetrical cells (University of Karlsruhe) three dominant loss processes could be identified. The model was extended to account for the description of segmented SOFCs. In correspondence with experimental data (German Aerospace Center) the simulations show strong gradients in current densities and gas concentrations. (orig.)

  18. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  19. One-step mechanosynthesis of nano structured Ti(C{sub x}N{sub 1-x}) cermets at room temperature and their microstructure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, Ujjwal Kumar [Dept. of Physics, Sreegopal Banerjee College, Bagati, Magra, Hooghly 712148 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Dept. of Physics, The University of Burdwan, Golapbag, Burdwan 713104 (India)

    2012-06-15

    Nano structured Ti(C{sub x},N{sub 1-x}) (x = 0.1-0.5 mol fraction) cermets are prepared at room temperature in a single step by ball-milling the stoichiometric mixtures of elemental {alpha}-Ti and graphite powders under nitrogen atmosphere. Within 1 h of milling (for x = 0.1), the {alpha}-Ti (hcp) phase partially transformed to metastable {beta}-Ti (cubic) phase and the initiation of Ti(C{sub x},N{sub 1-x}) (fcc) phase is noticed. Complete formation of Ti(C{sub 0.1}N{sub 0.9}) composition is observed after 5 h of milling and the other compositions are formed within 7 h of milling without any contamination either from the starting ingredients or from the milling media. Microstructure characterization of all unmilled and ball-milled powders is made by analyzing their respective X-ray diffraction (XRD) patterns employing the Rietveld structure refinement method. The microstructure of ball-milled samples is also characterized by high resolution transmission electron microscope (HRTEM). These analyses reveal the inclusion of both C and N atoms into the {alpha}-Ti lattice and confirm the average particle size of almost monodispersed spherical particles of Ti(C{sub x},N{sub 1-x}) is {approx}4 nm. The final compositions are also verified by energy dispersive X-ray (EDX) elemental analysis. Ti(C{sub x},N{sub 1-x}) cermets are insulators and their optical band gap increases continuously from {approx}4.58-5.38 eV with increasing C concentrations. - Highlights: Black-Right-Pointing-Pointer {alpha}-Ti to {beta}-Ti conversion is observed during 1 h of milling. Black-Right-Pointing-Pointer Ti{sub 0.9}C{sub 0.1}N (fcc) phase is noticed to form after 1 h of milling. Black-Right-Pointing-Pointer Lattice parameter of Ti(C{sub x}N{sub 1-x}) increases according to Vegard's law. Black-Right-Pointing-Pointer Particle size estimation of Ti{sub 0.9}C{sub 0.1}N from X-ray and HRTEM are in good agreement.

  20. Study on cermet CBN grinding wheels for ultra-precision grinding%一种新型超精磨金属陶瓷CBN砂轮的研究

    Institute of Scientific and Technical Information of China (English)

    陈卫东; 韩云

    2012-01-01

    通过考察不同因素对砂轮锋利性、寿命及加工工件表面粗糙度的影响,优选出了端面超精磨CBN砂轮的制备工艺.通过对比实验,得出最优配比如下:CBN磨料的粒径优选添加40 μm,陶瓷空心球的粒度优选添加240目,其添加量优选体积分数为20%,金属粉的优选体积分数为9%.该配方制备的CBN砂轮的锋利性、寿命及加工工件的表面粗糙度均达到了较好的效果.%By studying main influence factors on wheel sharpness, lifetime and machined surface roughness of workpieces, optimum manufacturing technology of cermet CBN grinding wheel for end ultra-precision grinding was researched. After a series of comparative experiments, optimized manufacturing parameters were obtained as follows; particle size of CBN grits 40 μm; hollow ceramic sphere size 240 meshes with addition amount 20% (volume fraction) ; and volume fraction of metal powder 9%. CBN grinding wheels prepared according to the formula above showed better properties, such as sharpness, lifespan and surface roughness of machined workpieces.

  1. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds. PMID:27052726

  2. Effect of electrolysis superheat degree on anticorrosion performance of 5Cu/(10NiO-NiFe2O4) cermet inert anode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AIF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and15.09% respectively under superheat degree of 95 and 195 ℃C. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.

  3. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    Science.gov (United States)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  4. EFFECT OF Cu-Ni CONTENT ON THE CORROSION RESISTANCE OF (Cu-Ni)/(10NiO-90NiFe2O4) CERMET INERT ANODE FOR ALUMINUM ELECTROLYSIS

    Institute of Scientific and Technical Information of China (English)

    Z.L. Tian; Y.Q. Lai; J. Li; Y.X. Liu

    2008-01-01

    (Cu-Ni)/(10NiO-9ONiFe2O4 ) cermet inert anodes containing metal Cu-Ni 0,5, 10, 15 and 20 wt pet were prepared and their corrosion resistance to Na3AlF6-Al2O3 melts was investigated. The results indicate that the content of metal Cu-Ni has little effect on the steady-state concentration of Ni in the electrolyte and the values could not be used to effectively differentiate their corrosion resistance. The steady-state concentration of Fe decreases from 304×10-8 to 168×10-6 and that of Cu increases from 21×10-6 to 71×10-6 with the content of metal Cu-Ni increasing from 0 to 20 wt pct. Post-examination shows that metallic phase Cu-Ni is corroded preferentially during electrolysis and many pores are left at the anode surface. Considering the corrosion resistance and electrical conductivity, the cermet containing metal Cu-Ni 5 wt pct should be selected and studied further.

  5. 激光熔覆MoB/CoCr金属陶瓷涂层的微观组织%Microstructure of MoB/CoCr cermet coating by laser cladding

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌; 王洪涛; 白小波; 林厚勤; 温雨

    2012-01-01

    MoB/CoCr cermet coating was prepared on 45 steel surface by using 5 kW CO2 laser. Microstructure, composition analysis and microhardness were studied. The results show that MoB/CoCr cermet coating is metallurgically bonded with substrate. The main elements of cladding layer are Mo, Cr and Co, the content of Fe ( wt% ) are increased obviously for diffusing among the alloyed zone. The hardness of the cladding layer is obviously higher than that of the substrate, which achieves the effect of surface strengthening.%采用5 kW CO2激光器在45钢表面激光熔覆制备MoB/CoCr金属陶瓷涂层,对涂层的微观组织、成分分布和显微硬度进行研究。结果表明,MoB/CoCr金属陶瓷涂层组织致密,与基体呈冶金结合。激光熔覆的熔覆区中的主要元素是Mo、Cr和Co,合金化区由于元素互扩散,Fe元素含量明显增加。激光熔覆后MoB/CoCr金属陶瓷涂层的硬度远远大于基体的硬度,起到了表面强化的作用。

  6. Anodic Corrosion Behavior of NiFe2O4-Based Cermet in Na3AlF6-K3AlF6-AlF3 for Aluminum Electrolysis

    Science.gov (United States)

    Tian, Zhongliang; Lai, Yanqing; Yang, Shu; Li, Jie; Hwang, Jiann-Yang; Liu, Yexiang

    2015-03-01

    A (Cu,Ni)/(10NiO-NiFe2O4) cermet was tested as an inert anode for aluminum electrolysis in Na3AlF6-K3AlF6-AlF3 melt at 1173 K (900 °C), and its corrosion behavior was studied. The results show that the low-temperature Na3AlF6-K3AlF6-AlF3 bath is beneficial, improving the service conditions. With the combined effects of the electrolyte composition and the nascent oxygen during electrolysis, the metal phase (Cu,Ni) at the surface of anode will not be leached preferentially, but be transferred into the aluminates including FeAl2O4, NiAl2O4 and CuAl2O4. This is helpful for the anode to improve its corrosion resistance.

  7. Basic study on cermet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Kimihide; Sato, Seichi; Ohashi, Hiroshi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Minato, Kazuo; Fukuda, Kosaku

    1996-01-01

    Cesium is a major nuclear fission product which is volatile and corrosive and it is able to interact with fuels, cladding tubes and/or other fission products resulting in productions of various compounds. The presence of those compounds may give rise to physical and chemical interactions between fuels and the cladding tube, resulting in changes in their heat transfer coefficients. In this study, some cesium uranates were prepared in the laboratory. Then, Cs{sub 2}UO{sub 4}, Cs{sub 2}U{sub 2}O{sub 7} and Cs{sub 2}U{sub 4}O{sub 12} were thermodynamically analyzed by phase equilibrium calculation using the calculation code, CHEMSAGE. And physicochemical properties of these compounds were investigated. The reaction conditions for producing the three compounds were determined. The equilibrium diagram revealed that Cs{sub 2}UO{sub 4} is stable in a wider range for the partial pressures of oxygen and cesium than Cs{sub 2}U{sub 2}O{sub 7} or Cs{sub 2}U{sub 4}O{sub 12}. Some orange colored product was obtained from the reaction of Cs{sub 2}CO{sub 3} and U{sub 3}O{sub 8} in an electric furnace and Cs{sub 2}U{sub 2}O{sub 7} but not Cs{sub 2}UO{sub 4} was identified by X-ray diffraction of the product. (M.N.)

  8. Study on Abrasive Wear Properties of MoB/CoCr Cermet Coating%MoB/CoCr金属陶瓷涂层的磨粒磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌

    2012-01-01

    在310S基体表面采用低压等离子喷涂(LPPS)技术制备MoB/CoCr金属陶瓷涂层.用扫描电镜观察涂层的组织结构:测试了MoB/CoCr涂层的显微硬度和结合强度;用湿式橡胶轮磨粒磨损试验机测试涂层的磨损性能.结果显示:MoB/CoCr涂层组织为层状结构,涂层与310S基体之间、表面涂层与过渡涂层之间结合良好.MoB/CoCr涂层具有较高的硬度值和结合强度,且具有良好的抗磨粒磨损性能.%MoB/CoCr cermet coating was deposited by low pressure plasma spraying (LPPS) on 310S steel. The microstructure of the MoB/CoCr coating was observed by SEM. The microhardness and bonding strength of the MoB/CoCr coating were tested. The abrasive wear properties were evaluated by wet sand rubber wheel tester. The results show that MoB/CoCr coating is dense and has excellent combination with 310S steel substrate. MoB/CoCr coating has high hardness and excellent wear properties.

  9. Effect of Co addition on densification and mechanical properties of 17Ni-(10NiO-NiFe2O4) cermet%Co添加对17Ni-(10NiO-NiFe2O4)金属陶瓷的致密化及力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    林启权; 赵爽; 姜滔; 董文正

    2015-01-01

    为了改善17Ni-(10NiO-NiFe2O4)金属陶瓷惰性阳极中金属相的分布,在原料中添加不同含量的Co,以Co-Ni取代纯Ni作为金属相,采用真空烧结方法制备17(xCo-Ni)-(10NiO-NiFe 2 O 4)金属陶瓷,并研究Co添加量对金属陶瓷物相组成、显微组织、致密度及力学性能的影响。结果表明:烧结样品主要由Co-Ni、NiFe 2 O 4、NiO组成,部分Co与陶瓷基体反应生成CoO与Fe 2 O 3。添加适量Co可以改善金属相在陶瓷相的分布和形貌,使团聚孤立的金属相分布均匀,且部分球状金属相变为长条状金属相;同时,添加适量Co还可以促进烧结,提高试样的致密度。适量Co的添加还能降低晶粒尺寸,大幅提高金属陶瓷材料强度与韧性。当Co质量分数为金属相的20%时,金属陶瓷的综合性能最好,致密度、抗弯强度、断裂韧性及硬度分别达到96.87%、163.65 MPa、8.38 MPa/m1/2和820.81HV。%In order to improve the distribution of metal phase in the 17Ni-(10NiO-NiFe2O4)cermet, 17(xCo-Ni)-(10NiO-NiFe2O4)cermet were prepared by vacuum sintering method using Co-Ni instead of Ni as the metal phase. And the effects of Co content on the phase composition, microstructure, relative density and mechanical properties of the cermet were investigated. The results show that the cermet is composed of Co-Ni, NiFe2O4and NiO, a part of Co reacts with ceramic matrix to form CoO and Fe2O3. The proper addition of Co can significantly improve the distribution and morphology of the metal phase, the agglomerate isolated metal phases can distribute uniformly and a part of spherical metal phases can change to elongated metal phases. Moreover, the proper addition of Co can promote sintering and increase the density of sample. Co addition can refine the grain size and greatly increase the strength and the toughness of cermet. When the mass fraction of Co in metal phase is 20%, the combination properties of sample are the best. The

  10. Performance of Ni/ScSZ cermet anode modified by coating with Gd{sub 0.2}Ce{sub 0.8}O{sub 2} for an SOFC running on methane fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo; Ye, X.F.; Wang, S.R.; Nie, H.W.; Shi, J.; Hu, Q.; Qian, J.Q.; Sun, X.F.; Wen, T.L. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2006-11-22

    A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd{sub 0.2}Ce{sub 0.8}O{sub 2}) prepared using a simple combustion process within the pores of the anode for a solid oxide fuel cell (SOFC) running on methane fuel. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Then, the short-term stability for the cells with the Ni/ScSZ and 2.0wt.%GDC-coated Ni/ScSZ anodes in 97%CH{sub 4}/3%H{sub 2}O at 700{sup o}C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.098 to 1.179V, and power densities increased from 224 to 848mWcm{sup -2}, as the operating temperature of an SOFC with 2.0wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850{sup o}C in humidified methane. The coating of nano-sized Gd{sub 0.2}Ce{sub 0.8}O{sub 2} particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cells. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0wt.%GDC-coated Ni/ScSZ anode. Introduction of nano-sized GDC particles into the pores of porous Ni/ScSZ anode will result in a substantial increase in the ionic conductivity of the anode and increase the triple phase boundary region expanding the number of sites available for electrochemical activity. No significant degradation in performance has been observed after 84h of cell testing when 2.0wt.%GDC-coated Ni/ScSZ anode was exposed to 97%CH{sub 4}/3%H{sub 2}O at 700{sup o}C. Very little carbon was detected on the anodes, suggesting that carbon deposition was limited during cell operation. Consequently, the GDC coating on the pores of anode made it possible to have good stability for long-term operation due to low carbon deposition. (author)

  11. Microstructure and properties of MoB/CoCr cermet coating on 45 steel prepared by laser cladding%45钢表面激光熔覆MoB/CoCr金属陶瓷覆层的组织与性能

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌; 王洪涛; 白小波; 于福义

    2012-01-01

    采用激光熔覆技术在45钢基体表面熔覆MoB/CoCr金属陶瓷覆层,对MoB/CoCr覆层进行X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)的微观组织结构分析和对覆层的硬度进行测试。结果表明:熔覆层组织致密,与基体结合牢固且呈冶金结合;熔覆层的主要物相为CoMo2B2和CoMoB,主要的化学成分是Mo、Cr和Co,合金化区中Fe元素的含量明显增加。硬度测试表明熔覆层的硬度值是45钢硬度值的10倍以上。%MoB/CoCr cermet coating was prepared on 45 steel surface by laser cladding. Microstructure of MoB/CoCr coating was characterized by XRD, SEM and EDS,and mierohardness of the coating was also studied. The results show that MoB/CoCr cermet coating with metallurgical bonding to substrate is dense. The main phases of the cladding layer are CoMo2B2and CoMoB, and its main chemical composition is Mo, Cr and Co, the content of Fe increases obviously in the alloying zone of the cladding layer. The hardness of the cladding layer is much higher than that of the substrate.

  12. Influence of the indium concentration on microstructural and electrical properties of proton conducting NiO–BaCe{sub 0.9−x}In{sub x}Y{sub 0.1}O{sub 3−δ} cermet anodes for IT-SOFC application

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Milan, E-mail: milan@iq.unesp.br [Instituto de Quimica, UNESP–LIEC, CMDMC, Rua Prof. Francisco Degni, 55, CEP 14800-900, Araraquara, SP (Brazil); Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Brankovic, Goran [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Foschini, Cesar Renato; Cilense, Mario; Longo, Elson; Varela, José Arana [Instituto de Quimica, UNESP–LIEC, CMDMC, Rua Prof. Francisco Degni, 55, CEP 14800-900, Araraquara, SP (Brazil)

    2013-06-25

    Highlights: ► The influence of indium concentration on anode properties was investigated. ► The cermet anode powders were obtained without any undesirable phases. ► Anode substrates were tested on chemical stability in the CO{sub 2} atmosphere. ► Conductivity measurements confirmed percolation through Ni grains. ► Fuel cell tests confirmed functionality of anode substrates. -- Abstract: Optimization of the major properties of anodes based on proton conductors, such as microstructure, conductivity and chemical stability, is yet to be achieved. In this study we investigated the influence of indium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO–BaCe{sub 0.9−x}In{sub x}Y{sub 0.1}O{sub 3−δ} (NiO–BCIYx) anodes. Four compositions of cermet anode substrates NiO–BCIYx were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of indium. Anode substrates tested on chemical stability in the CO{sub 2} atmosphere showed high stability compared to anode substrates based on commonly used doped barium cerates. Microstructural properties of the anode pellets before and after testing in CO{sub 2} were investigated using X-ray diffraction analysis. Impedance spectroscopy measurements were used for evaluation of electrical properties of the anode pellets and the conductivity values of reduced anodes of more than 14 S cm{sup −1} at 600 °C confirmed percolations through Ni particles. Under fuel cell operating conditions, the cell with a Ni–BCIY20 anode achieved the highest performance, demonstrating a peak power density 223 mW/cm{sup 2} at 700 °C confirming the functionality of Ni–BCIY anodes.

  13. Powdered grit made of a fused cermet

    OpenAIRE

    Marlin, Samuel; Orera, V. M.; Peña Torre, José Ignacio; Laguna-Bercero, M. A.; Larrea Arbáizar, Ángel; Merino Rubio, Rosa Isabel

    2010-01-01

    [EN] Powdered grit comprising a fused cennet of zirconium oxide (Zr02) doped with a dopant chosen from yttrium, scandium, and a mixture of scandium and of almninium and/or of cerimn, and of nickel (Ni) and/or of cobalt (Co), said cennet having a eutectic stmcture, the contents, in mol%, of zirconium oxide, nickel and cobalt being such that 0.2S0Ni + O.l76Co :::; (Zr02+ dopant) :::; 0.428Ni + 0.333Co, and said powdered grit having a median diameter D50 ofbetween 0.3 /lm and 100 /lm.

  14. Chemical aspects of antiballistic cermets preparation

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Kubatík, Tomáš František; Chráska, Tomáš; Mušálek, Radek; Janata, Marek; Mastný, L.

    Prague: Czech Society of Industrial Chemistry, 2015 - (Kalenda, P.; Lubojacký, J.), s. 218-224. (ICCT). ISBN 978-80-86238-79-1. [International Conference on Chemical Technology-ICCT2015/3./. Mikulov (CZ), 13.04.2015-15.04.2015] R&D Projects: GA MPO FR-TI2/702 Institutional support: RVO:61389021 Keywords : Anti-ballistic ceramics * armour ceramics * plasma spraying * titanium boride * plasma spraying * titanium nitride Subject RIV: CA - Inorganic Chemistry http://www.amca.cz/icct/Full_Papers_ICCT_2015_web.pdf

  15. Controlled atmosphere for fabrication of cermet electrodes

    Science.gov (United States)

    Ray, Siba P.; Woods, Robert W.

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  16. Electrocatalytic cermet gas detector/sensor

    Science.gov (United States)

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  17. Research on Microstructure and Performance of MoB/CoCr Cermet Coatings Sprayed on 20G Steel Surface%20G钢表面喷涂MoB/CoCr金属陶瓷涂层的组织性能研究

    Institute of Scientific and Technical Information of China (English)

    陈袅; 张仁元; 李风

    2011-01-01

    MoB/CoCr cermet coatings were deposited on 20G steel by low pressure plasma spraying (LPPS). The microstructure and phase composition of coatings were characterized by XRD, SEM and EDAX, and the bond strength and thermal shock resistance performance were studied. The results show that phase component of powder and coating had little change. The coatings are dense and have excellent combination with substrate. The main constituents of coatings remain invariant and the coatings have excellent performance of bond strength and thermal shock resistance. The MoB/CoCr coating has much higer durability after 1080 h immersion test in the molten Al-12.07% Si.%在20G钢换热管表面上利用低压等离子喷涂(UPS)制备MoB/CoCr金属陶瓷涂层.采用X射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDAX)对涂层的物相组成、微观组织和成分进行了表征,并对涂层的结合强度和抗热震性能进行研究.研究表明:喷涂前后涂层的物相相差不大,涂层为层状结构;涂层与20G基体之间、表面涂层与过渡涂层之间结合良好,涂层致密;涂层具有良好的结合强度和抗热震性能,在熔融AI-12.07% Si中经过1080h腐蚀后,涂层基本保持完好,具有很好的抗熔融铝硅腐蚀性能.

  18. Stability, characterization and functionality of proton conducting NiO–BaCe{sub 0.85−x}Nb{sub x}Y{sub 0.15}O{sub 3−δ} cermet anodes for IT-SOFC application

    Energy Technology Data Exchange (ETDEWEB)

    Žunić, Milan, E-mail: milan@iq.unesp.br [Instituto de Quimica, UNESP-LIEC, CMDMC, Rua Prof. Francisco Degni, 55, CEP 14800-900, Araraquara, SP (Brazil); Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Branković, Goran [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade (Serbia); Basoli, Francesco [Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome (Italy); Cilense, Mario; Longo, Elson; Varela, José Arana [Instituto de Quimica, UNESP-LIEC, CMDMC, Rua Prof. Francisco Degni, 55, CEP 14800-900, Araraquara, SP (Brazil)

    2014-10-01

    Highlights: • The influence niobium concentration on properties of anode substrates was investigated. • The cermet anode powders were obtained without any undesirable phases. • Porous anode substrates showed chemical stability in the CO{sub 2} atmosphere. • Conductivity values of reduced anode samples were σ{sup *} > 50 S cm{sup −1}. • Fuel cell tests demonstrated functionality of anode substrates. - Abstract: There are many of properties of anodes based on proton conductors, like microstructure, conductivity and chemical stability, which should be optimized. In this work we were dealing with the influence of niobium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO–BaCe{sub 0.85−x}Nb{sub x}Y{sub 0.15}O{sub 3−δ} (NiO–BCNYx) anodes. Four anode substrates NiO–BCNYx of different Nb concentration were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of niobium. Chemical stability tests showed strong influence of Nb amount on the chemical stability of anodes in the CO{sub 2}. Microstructural properties of the anode pellets before and after testing in CO{sub 2} were investigated using X-ray diffraction analysis. Electrical properties of anode samples were examined by impedance spectroscopy measurements and the conductivity values of reduced anodes were more than 50 S cm{sup −1} at 600 °C confirming percolation through Ni particles. Fuel cells were fabricated with aim to examine the functionality of anodes. During the fuel cell test the cell with Ni–BCNY10 anode achieved the highest performance, demonstrating a peak power density of 164 mW cm{sup −2} at 650 °C, which confirmed the functionality of Ni–BCNY anodes.

  19. Carbon-resistant Ni-Zr0.92Y0.08O2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methane-steam as fuel

    Science.gov (United States)

    Hua, Bin; Li, Meng; Luo, Jing-li; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Two types of anode-supported cell are fabricated by tape casting, screen printing and sintering processes. The first one is a conventional anode supported cell (ASC); and the other, namely CASC, contains an extra layer of Ni-Cu/Ni-Fe alloys-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (NCF-BZCYYb) cermet catalyst on the surface of the anode-support. Using CH4-3 mol. % H2O as the fuel, the initial performance of the CASC is moderately improved, compared with that of the ASC; the power density of the CASC and ASC at 500 mA cm-2 and 800 °C remain stable on the level of 470 mW cm-2 for approximately 11 and 0.8 h, respectively, before cell disintegration caused by carbon formation. The performances of the CASC in the fuel of CH4-33.3 mol. % H2O are significantly increased above the level of the ASC, demonstrating an initial peak power density ranging from 280 to 1638 mW cm-2 at temperatures between 600 and 800 °C and a stable power density of 485 mW cm-2 at 500 mA cm-2 and 800 °C for 48 h. Carbon deposition in the anode region of the tested CASC cell is not detected, as the NCF-BZCYYb is a more active catalyst than the Ni-Zr0.92Y0.08O2-δ (YSZ) anode-support for CH4 steam reforming.

  20. HREM characterization of VC in doped WC-Co cermets

    International Nuclear Information System (INIS)

    The microstructure of sintered WC-Co composite doped with VC is investigated by several techniques (TEM, HREM, EDS, EELS) in order to accurately locate the VC phase. Small VC precipitates are frequently found at the junction between two WC grains in the corner of cobalt pockets. Due to the good match between the WC and VC parameters, the VC grains adopt a preferential orientation with regards to WC: (111)vc // (0001)wc with vc // wc. Moreover steps along the wc directions are observed at the interface between cobalt and WC. Small VC precipitates lying on the (0001)wc facet of the steps are identified. A thin VC layer less than 1 nm thick covering all (0001)wc surfaces of WC grains is also pointed out. Most WC grain boundaries contain a thin film of VC phase whereas some high coincidence grain boundaries seem to be free from second phase. (author)

  1. Cavitation Erosion of Cermet-Coated Aluminium Bronzes

    Directory of Open Access Journals (Sweden)

    Ion Mitelea

    2016-03-01

    Full Text Available The cavitation erosion resistance of CuAl10Ni5Fe2.5Mn1 following plasma spraying with Al2O3·30(Ni20Al powder and laser re-melting was analyzed in view of possible improvements of the lifetime of components used in hydraulic environments. The cavitation erosion resistance was substantially improved compared with the one of the base material. The thickness of the re-melted layer was in the range of several hundred micrometers, with a surface microhardness increasing from 250 to 420 HV 0.2. Compositional, structural, and microstructural explorations showed that the microstructure of the re-melted and homogenized layer, consisting of a cubic Al2O3 matrix with dispersed Ni-based solid solution is associated with the hardness increase and consequently with the improvement of the cavitation erosion resistance.

  2. Fabrication and characterisation of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    India is pursuing its three stage nuclear power programme. In 2nd stage it plans to erect number of fast reactors which will be requiring large amount of plutonium as one of the important feed materials. It plans to begin with Mixed Oxide (MOX) fuelled fast reactors and finally shift to metallic fuel based fast reactors. Mixed oxide (MOX) (U, PU)O2, and metallic (U, Pu, Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity, low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion which is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burn up, fuel cladding interaction and lower margin between operating and melting temperature

  3. Planar metal-supported SOFC with novel cermet anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine; Persson, Åsa Helen; Ramousse, Severine; Mogensen, Mogens Bjerg

    2011-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni-YSZ based anodes are used in metal suppo...

  4. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  5. Modified cermet fuel electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  6. Armor of cermet with metal therein increasing with depth

    Science.gov (United States)

    Wilkins, M.L.; Holt, A.C.; Cline, C.F.; Foreschner, K.E.

    1973-07-01

    The system described consists of a ceramic matrix having a gradient of fine ductile metallic particles dispersed therein in an amount of from 0.0%, commencing at the front or impact surface of the armor, to about 2 to 15% by volume along the interface to the back of the system. (auth)

  7. Development of Planar Metal Supported SOFC with Novel Cermet Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine; Persson, Åsa Helen; Brodersen, Karen; Srivastava, Akhilesh Kumar; Frandsen, Henrik Lund; Lundberg, Mats; Ramousse, Severine; Mogensen, Mogens Bjerg

    2009-01-01

    Metal-supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. When Ni-YSZ based anodes are used in metal supported ...

  8. Fine Grained Tungsten Claddings for Cermet Based NTP Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In October 2011, NASA initiated the Nuclear Cryogenic Propulsion Stage (NCPS) program to evaluate the feasibility and affordability of Nuclear Thermal Propulsion...

  9. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  10. Corrosion properties of HVOF cermet coatings with bond coats in an aqueous chloride environment

    International Nuclear Information System (INIS)

    WC-17Co coatings with Ni-5Al bonding layers were deposited on Al-7075 by HVOF spraying. The top-coat consisted of layers comprising tungsten carbide particles embedded in a Co(W,C) matrix of varied composition.The coated specimens were subjected to potentiodynamic polarization in 3.5% aqueous NaCl at 25, 35 and 45 deg. C. The coatings exhibited pseudopassivity caused by the oxidation of tungsten, carbon and possibly cobalt. Chronoamperometric measurements indicated that the inhomogeneous binder composition induced active corrosion processes taking place simultaneously with pseudopassivity. Cyclic polarization suggested that the coatings were not susceptible to pit corrosion in the temperature range of 25-45 deg. C. The likely 'critical pitting' temperature of the coatings was 60 deg. C. Higher testing temperatures led to lower corrosion potentials and faster corrosion kinetics

  11. Alumina-Mo cermet composite compacts obtained by SPS from mechanical activated powders

    OpenAIRE

    Boyero Molina, Carlos

    2013-01-01

    In this work, the main purpose is to develop different composites of Al2O3-Mo varying the volume percentage of materials to see their variation of properties and to find the best composition of metal and ceramic in order to get the best results. As a short way to explain the process to develop the composite, we could say that these were the main stages of the production: 1. For obtaining a homogeneous ceramic-metallic mixture of powders we milled alumina and molybdenum powde...

  12. Microstructural evolution during the combustion synthesis of TiC-Al cermet with larger metallic particles

    International Nuclear Information System (INIS)

    Carbon black powders were incorporated into coarse aluminum and titanium powders, and the mixture was used for a combustion front quenching test. The microstructural evolution in the quenched sample was analyzed with scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). In addition, the combustion temperature and rate were measure, and the phase constituent of the final product was inspected by X-ray diffraction (XRD). The results showed that the combustion reaction started with the melting of the Al particles and formation of Al3Ti around the Ti particles, and it proceeded in a reaction-dissolution-precipitation mechanism. After melting of the Al and formation of Al3Ti, the Ti, especially C particles dissolved into the Al liquid and forming Ti-Al-C solution, as a result, TiC grains precipitated out of the saturated liquid solution. With an increase in temperature, Al3Ti then decomposed and TiC also precipitated from the melt. In the final products, besides TiC particles and Al matrix, a small amount of Al3Ti was also founded. Also, previous results were explained, and a model corresponding to this mechanism was drawn

  13. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    International Nuclear Information System (INIS)

    This patent describes a method of fabricating metal-ceramic composites from previously formed ceramic precursor starting constituents selected from boron-carbide, boron and borides and metals reactive therewith selected from reactive metals, alloys thereof, and compounds thereof which reduce to reactive metals or alloys thereof. It comprises: chemically pretreating the previously formed starting constituents of a ceramic precursor; consolidating the chemically pretreated starting constituents into a porous ceramic precursor; infiltrating molten reactive metal into the chemically pretreated ceramic precursor; wherein the step of chemically pretreating the starting constituents of the ceramic precursor alters the surface chemistry to enhance infiltration of the precursor by the molten reactive metal by slowing the kinetics of reaction relative to the kinetics of densification

  14. Method of making a cermet fuel electrode containing an inert additive

    Science.gov (United States)

    Jensen, Russel R.

    1992-01-01

    An electrode is attached to a solid electrolyte material by: (1) mixing a metallic nickel component and 1 wt% to 10 wt% of yttria stabilized zirconia having particle diameters up to 3 micrometers with an organic binder solution to form a slurry, (2) applying the slurry to a solid zirconia electrolyte material, (3) heating the slurry to drive off the organic binder and form a porous layer of metallic nickel substantially surrounded and separated by the zirconia particles, and (4) electro-chemical vapor depositing a skeletal structure between and around the metallic nickel and the zirconia particles where the metallic nickel components do not substantially sinter to each other, yet the layer remains porous.

  15. Microgravity effects on electrodeposition of metals and metal-cermet mixtures

    Science.gov (United States)

    Maybee, George W.; Riley, Clyde; Coble, H. Dwain

    1987-01-01

    An experimental system, designed to investigate the potential advantages of electrodeposition in microgravity, is being developed by the McDonnell Douglas Astronautics Company-Huntsville Division and the University of Alabama in Huntsville. It is intended to fly as an Orbiter payload when NASA resumes STS operations. The system will provide power, thermal conditioning, command and control for the production of electrodeposits; system performance data will be recorded for post-flight analysis. Plated metal surfaces will be created using simple electrolytic cells with pure metal electrodes immersed in aqueous electrolytic solutions. Crystalline structure and other properties will be analyzed to identify differences between samples produced in flight and those obtained from ground-based operations.

  16. Evaluation of cermet materials suitable for lithium lubricated thrust bearings for high temperature operation

    Science.gov (United States)

    Sinclair, J. H.; Hendrixson, W. H.

    1974-01-01

    Cerment materials (HfC - 10 wt% W; HfC - 10 wt% TaC - 10 wt%W; HfC - 2 wt% CbC - 8 wt% Mo;Hfn - 10 wt% W; Hfn - 10 wt% TaN - 10 wt% W; and ZrC - 17 wt% W) were evaluated for possible use as lithium-lubricated bearings in the control system of a nuclear reactor. Tests of compatibility with lithium were made in T-111 (Ta-8W-2Hf) capsules at temperatures up to 1090 C. The tendencies of HfC-TaC-W, HfC-CbC-Mo, and HfN-W to bond to themselves and to the refractory alloys T-111 and TZM when enclosed in lithium-filled capsules under a pressure of 2000 psi at 980 and 1200 C for 1933 hours were evaluated. Thermal expansion characteristics were determined for the same three materials from room temperature to 1200 C. On the basis of these tests, HfC-10 TaC-10W and HfN-10W were selected as the best and second best candidates, respectively, of the materials tested for the bearing application.

  17. Electronic structures, elastic properties, and minimum thermal conductivities of cermet M3AlN

    Science.gov (United States)

    Wang, Jin; Chen, ZhiQian; Li, ChunMei; Li, Feng; Nie, ChaoYin

    2014-08-01

    The electronic structures and elastic anisotropies of cubic Ti3AlN, Zr3AlN, and Hf3AlN are investigated by pseudopotential plane-wave method based on density functional theory. At the Fermi level, the electronic structures of these compounds are successive with no energy gap between conduct and valence bands, and exhibit metallicity in ground states. In valence band of each partial density of states, the different orbital electrons indicate interaction of corresponding atoms. In addition, the anisotropy of Hf3AlN is found to be significantly different from that of Ti3AlN and Zr3AlN, which involve the differences in the bonding strength. It is notable that Hf3AlN is a desired thermal barrier material with the lowest thermal conductivity at high temperature among the three compounds. Young's moduli of anti-perovskite Ti3AlN, Zr3AlN, and Hf3AlN in full space. Electron density differences on crystal planes (1 0 0), (2 0 0), and (1 1 0) of anti-perovskite Zr3AlN. ="fx1"/>

  18. Improvement in SOFC anode performance by finely-structured Ni/YSZ cermet prepared via heterocoagulation.

    Science.gov (United States)

    Sunagawa, Yoji; Yamamoto, Katsutoshi; Muramatsu, Atsushi

    2006-03-30

    A novel preparation technique for a nanostructured anode for a solid oxide fuel cell is investigated. By mixing nanometer-sized NiO and YSZ powders in a pH-controlled aqueous media, a fine mixture of nanoparticles is successfully obtained through heterocoagulation. The anode prepared from thus prepared mixture has a large triple phase boundary and shows a great improvement in the anode performance by increasing the electric conductivity and effective surface area. PMID:16553437

  19. Superstructure formation and variation in Ni-GDC cermet anodes in SOFC.

    Science.gov (United States)

    Li, Zhi-Peng; Mori, Toshiyuki; Auchterlonie, Graeme John; Zou, Jin; Drennan, John

    2011-05-28

    The microstructures and spatial distributions of constituent elements at the anode in solid oxide fuel cells (SOFCs) have been characterized by analytical transmission electron microscopy (TEM). High resolution TEM observations demonstrate two different types of superstructure formation in grain interiors and at grain boundaries. Energy-filtered TEM elemental imaging qualitatively reveals that mixture zones exist at metal-ceramic grain boundaries, which is also quantitatively verified by STEM energy dispersive X-ray spectroscopy. It was apparent that both metallic Ni and the rare-earth elements Ce/Gd in gadolinium-doped ceria can diffuse into each other with equal diffusion lengths (about 100 nm). This will lead to the existence of mutual diffusion zones at grain boundaries, accompanied by a change in the valence state of the diffusing ions, as identified by electron energy-loss spectroscopy (EELS). Such mutual diffusion is believed to be the dominant factor that gives rise to superstructure formation at grain boundaries, while a different superstructure is formed at grain interiors, as a consequence solely of the reduction of Ce(4+) to Ce(3+) during H(2) treatment. This work will enhance the fundamental understanding of microstructural evolution at the anode, correlating with advancements in sample preparation in order to improve the performance of SOFC anodes. PMID:21494741

  20. Formation of molybdenum boride cermet coating by the detonation spray process

    Science.gov (United States)

    Yang, Gao; Zu-Kun, Hei; Xiaolei, Xu; Gang, Xin

    2001-09-01

    The effects of the powder particle size and the acetylene/oxygen gas flow ratio during the detonation spray process on the amount of molybdenum phase, porosity, and hardness of the coatings using MoB powder were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The results show that the presence of metallic molybdenum in the coating results from decomposition of MoB powder during thermal spray. The compositions of the coatings are metallic Mo, MoB, and Mo2B, which are different from the phases of the original powder. The amount of molybdenum phase increases monotonously with the oxygen/acetylene ratio, but the increasing rate for the fine powder is faster than that for the coarse powder. The porosity and hardness of the coating are related to the amount of molybdenum phase. The phase constitution of the coating is discussed.

  1. Preparation, microstructure and mechanical properties of TiC0.35N0.35-TiNi cermets

    International Nuclear Information System (INIS)

    The conditions of preparation are studied, the dimensions of structural constituents are determined, the hardness and strength by bend of alloys on the basis of the TiC ∼0.35N∼0.35 defective-nitride with titanium-nickel binding, obtained by the liquid-phase caking of the TiC∼0.5N∼0.5, Ti and Ni powder mixtures, are studied. It is shown, that the strength by the cross-sectional bend naturally increases with increase in the bond content, reaching 1800 MPa in the alloys with 30 mass % of titanium nickelide. The TiCo0.35±0.04N0.35±0.04 + 30 mass % (vol.%) TiNi samples are characterized by optimal combination of hardness and strength by the cross-sectional bend

  2. Deposition of various metal, ceramic, and cermet coatings by an industrial-scale large area filtered arc deposition process

    International Nuclear Information System (INIS)

    Nearly defect-free nitride, carbide, and oxiceramic coatings have been deposited by a unidirectional dual large area filtered arc deposition (LAFAD) process. One LAFAD dual arc vapor plasma source was used in both gas ionization and coating deposition modes with and without vertical magnetic rastering of the plasma flow. Substrates made of different metal alloys, as well as carbide and ceramics, were installed at different vertical positions on the 0.5 m diameter turntable of the industrial-scale batch coating system which was rotated at 12 rpm to assess deposition rates and coating thickness uniformity. Targets of the same or different compositions were installed on the primary cathodic arc sources of the LAFAD plasma source to deposit a variety of coating compositions by mixing the metal vapor and reactive gaseous components in a magnetically confined, strongly ionized plasma flow with large kinetic energy. The maximum deposition rate typically ranged from 1.5 μm/h for TiCr/TiCrN to 2.5 μm/h for Ti/TiN multilayer and AlN single layer coatings, and up to 6 μm/h for AlCr-based oxiceramic coatings for primary cathode current ranging from 120 to 140 A. When the arc current was increased to 200 A, the deposition rates of TiN-based coatings were as high as 5 μm/h. The vertical coating thickness uniformity was ±15% inside of a 150 mm area without vertical rastering. Vertical rastering increased the uniform coating deposition area up to 250 mm. The coating thickness distribution was well correlated with the output ion current distribution as measured by a multisection ion collector probe. Coatings were characterized for thickness, surface profile, adhesion, hardness, and elemental composition. Estimates of electrical resistivity indicated good dielectric properties for most of the TiCrAlY-based oxiceramic, oxinitride, and nitride coatings. The multielement LAFAD plasma flow consisting of fully ionized metal vapor with a reactive gas ionization rate in excess of 50% was found especially suitable for deposition of nanocomposite, nanostructured coatings. Potential industrial applications of this highly productive coating deposition process are discussed.

  3. Impact of Reduction Parameters on the Initial Performance and Stability of Ni/(Sc)YSZ Cermet Anodes for SOFCs

    DEFF Research Database (Denmark)

    Ebbehøj, Søren Lyng; Ramos, Tania; Mogensen, Mogens Bjerg

    2012-01-01

    temperatures of 850 °C and 1000 °C was evaluated for tape-cast, thin electrolyte, Nickel/8 mol% Yttria-Stabilized Zirconia (Ni/8YSZ) or (Ni/10Sc1YSZ) symmetric cells. High temperature activation produced the lower Ohmic and polarization resistances related to Triple Phase Boundary (TPB) charge transfer...... processes for Ni/10Sc1YSZ cells. The Ni/8YSZ cells behaved oppositely with respect to reduction temperature. A hypothesis is proposed relating performance to variations in Ni microstructure, Ni/ceramic contacting and extent of TPB resulting from differences in reduction parameters. Further, the performance...

  4. Corrosion resistance of tungsten carbide based cermet coatings deposited by High Velocity Oxy-Fuel spray process

    International Nuclear Information System (INIS)

    WC-17Ni and WC-17Co coatings were deposited on mild steel and stainless steel substrates by High Velocity Oxy-Fuel (HVOF) spray process. WC-17Ni and WC-17Co coatings were obtained by the spray process and the porosity of these coatings was measured. Polarization and electrochemical impedance spectroscopy (EIS) were performed on both uncoated substrates and coated samples immersed in 3% NaCl solution. WC-17Ni coating with a lower porosity, serve as a better barrier and effectively prevented corrosion attack when it was deposited on mild steel substrate. The nickel binder in the WC-17Ni coating was found to have a better corrosion resistance than the cobalt binder in the WC-17Co coating

  5. Spray pyrolytically grown NiAlOx cermets for solar thermal selective absorbers: spectral properties and thermal stability

    Indian Academy of Sciences (India)

    A Bagheri Khatibani; S M Rozati

    2016-02-01

    After deposition of NiAlOx thin films on stainless-steel substrates by the spray pyrolysis technique, various properties of the films were investigated using Fourier transform infrared spectroscopy, UV–visible reflectance spectrophotometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical quantities were determined using reflectance spectra in the relevant spectrum region. At first the optimal substrate temperature was selected and then different nickel to aluminium ratios were examined to find the efficient solar absorber. The SEM revealed changes in morphology due to different molar ratios. The XRD of the selected sample showed a mixture of nickel and nickel oxide phases with the strong presence of substrate peaks and without the presence of alumina phase while in the EDX test the peaks corresponding to O, Al and Ni appeared. Long-term thermal stability study was performed by means of performance criterion concept.

  6. The Use of Molybdenum-Based Ceramic-Metal (CerMet) Fuel for the Actinide Management in LWRs

    International Nuclear Information System (INIS)

    The technical and economic aspects of the use of molybdenum depleted in the isotope 95Mo (DepMo) for the transmutation of actinides in a light water reactor are discussed. DepMo has a low neutron absorption cross section and good physical and chemical properties. Therefore, DepMo is expected to be a good inert matrix in ceramic-metal fuel. The costs of the use of DepMo have been assessed, and it was concluded that these costs can be justified for the transmutation of the actinides neptunium, americium, and plutonium

  7. Silver-praseodymium oxy-sulfate cermet: A new composite cathode for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Yang, Tao; Shaula, Aliaksandr L.; Mikhalev, Sergey M.; Ramasamy, Devaraj; Fagg, Duncan P.

    2016-02-01

    Ag-Pr2O2SO4 is identified as a promising new composite material to enhance the cathodic oxygen reduction reaction in solid oxide fuel cells. Ag-Pr2O2SO4 was studied in terms of synthesis, stability of Pr2O2SO4 in CO2, and electrochemical behavior as a cathode. The performance of the composite cathode was assessed as a function of temperature by A.C. impedance using a symmetrical cell arrangement in oxygen. The global performance of an anode-supported fuel cell Ag-Pr2O2SO4/CGO/NiO-CGO was also assessed, the highest power density being 1.5 W cm-2 at 800 °C. A longevity test of this cell performed at 800 °C under load for 24 days demonstrated high stability with Ag-Pr2O2SO4 cathode.

  8. XRD and HRTEM characterization of mechanosynthesized Ti{sub 0.9}W{sub 0.1}C cermet

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, S. [Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Dutta, H. [Department of Physics, Vivekananda College, Burdwan 713103, West Bengal (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2013-12-25

    Highlights: •Cubic Ti{sub 0.9}W{sub 0.1}C is formed after 50 min of milling of α-Ti, W and graphite powders. •Nanocrystalline Ti{sub 0.9}W{sub 0.1}C with particle size ∼11 nm is obtained after 8 h milling. •Average particle size of Ti{sub 0.9}W{sub 0.1}C from XRD analysis and HRTEM is very close. •Formation of Ti{sub 0.9}W{sub 0.1}C is hindered as compared with TiC. -- Abstract: Elemental powder mixture of titanium, tungsten and graphite is milled by high energy planetary ball mill at a fixed ball to powder mass ratio (BPMR) for different duration to produce nanosized particles of Ti{sub 0.9}W{sub 0.1}C hard metal. Microstructure characterization in terms of lattice imperfections and phase quantification of ball-milled samples has been done primarily by analyzing the XRD pattern and employing Rietveld method of structure and microstructure refinement. After 8 h of ball-milling full formation of Ti{sub 0.9}W{sub 0.1}C is noticed without any contamination of other phase or milling media. TEM study of 8 h ball-milled sample gives direct supportive evidence of structural and microstructural evaluation by XRD pattern analysis. A comparative study of microstructural changes between TiC and Ti{sub 0.9}W{sub 0.1}C helps to understand the effect of addition of W as solute in Ti–C metal matrix.

  9. Microwave processing: A potential technique for preparing NiO–YSZ composite and Ni–YSZ cermet

    Indian Academy of Sciences (India)

    Kanchan Lata Singh; Ajay Kumar; Anirudh P Singh; S S Sekhon

    2008-08-01

    In the present study, microwave energy (2.45 GHz) has been used to prepare nickel oxide–yttria stabilized zirconia (NiO–YSZ) composites of composition, NiO–(1 – ) Zr0.9Y0.1O1.95 ( = 0.2, 0.3, 0.4, 0.5 and 0.6), from a precursor obtained by mixing NiO, Y2O3 and monoclinic ZrO2 in their stoichiometric ratio. The composites have been prepared by conventional processing also to compare the products with those of microwave processed products. During comparison, it was observed that NiO–YSZ composites of each composition obtained by microwave processing had cubic phase of YSZ while in the conventionally prepared composites of compositions, = 0.2 and 0.3, monoclinic, tetragonal and cubic phases of zirconia existed instead of its pure cubic phase. The composites were reduced to yield Ni–YSZ.

  10. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2007-01-01

    Nickel (Ni)—yttria-stabilized zirconia (YSZ) cermets are a prevalent material used for solid oxide fuel cells. The cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. Direct current conductivity measurements...... were performed on cermets and cermets where the Ni component was removed. Measurements were carried out before, during, and after redox cycling the cermet. The cermet conductivity degraded over time due to sintering of the nickel phase. Following oxidizing events, the conductivity of the cermets...

  11. Ni-YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg

    2006-01-01

    Ni-YSZ cermets are a prevalent material used for solid oxide fuel cells. However, the cermet degrades upon redox cycling. The degradation is related to microstructural changes, but knowledge of the mechanisms has been limited. DC conductivity measurements were performed on cermets and cermets......, where the Ni component was removed, before, during and after redox cycling the cermet. The cermet conductivity degraded over time due to sintering of the nickel phase. Following oxidizing events, the conductivity of the cermets improved, whereas the conductivity of the YSZ phase decreased. A model of...

  12. Enhanced Thermal Stability of W-Ni-Al[subscript 2]O[subscript 3] Cermet-Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors

    OpenAIRE

    Cao, Feng; Kraemer, Daniel; Sun, Tianyi; Lan, Yucheng; Chen, Gang; Ren, Zhifeng

    2014-01-01

    Solar thermal technologies such as solar hot water and concentrated solar power trough systems rely on spectrally selective solar absorbers. These solar absorbers are designed to efficiently absorb the sunlight while suppressing re-emission of infrared radiation at elevated temperatures. Efforts for the development of such solar absorbers must not only be devoted to their spectral selectivity but also to their thermal stability for high temperature applications. Here, selective solar absorber...

  13. Characterization of time-varying macroscopic electro-chemo-mechanical behavior of SOFC subjected to Ni-sintering in cermet microstructures

    Science.gov (United States)

    Muramatsu, M.; Terada, K.; Kawada, T.; Yashiro, K.; Takahashi, K.; Takase, S.

    2015-10-01

    In order to perform stress analyses of a solid oxide fuel cell (SOFC) under operation, we propose a characterization method of its time-varying macroscopic electro-chemo-mechanical behavior of electrodes by considering the time-varying geometries of anode microstructures due to Ni-sintering. The phase-field method is employed to simulate the micro-scale morphology change with time, from which the time-variation of the amount of triple-phase boundaries is directly predicted. Then, to evaluate the time-variation of the macroscopic oxygen ionic and electronic conductivities and the inelastic properties of the anode electrode, numerical material tests based on the homogenization method are conducted for each state of sintered microstructures. In these homogenization analyses, we also have to consider the dependencies of the properties of constituent materials on the temperature and/or the oxygen potential that is supposed to change within an operation period. To predict the oxygen potential distribution in an overall SOFC structure under long-period operation, which determines reduction-induced expansive/contractive deformation of oxide materials, an unsteady problem of macroscopic oxygen ionic and electronic conductions is solved. Using the calculated stress-free strains and the homogenized mechanical properties, both of which depend on the operational environment, we carry out the macroscopic stress analysis of the SOFC.

  14. An investigation of the corrosion of WC-Co cermets in CN--containing aqueous solutions. Part II: Synchrotron-based high lateral-resolution XPS study

    International Nuclear Information System (INIS)

    In the literature on the corrosion behaviour of WC-Co hardmetal grades, it has been pointed out that - typically - corrosion resistance in several aqueous environments relies on the formation of pseudo-passivating layers on top of the two-phase material. So far, no detailed space-dependent study has been performed of the local structure and chemistry of such peculiar corrosion-product layers. In this paper, we propose a detailed chemical analysis - performed with a remarkably advanced synchrotron-based photo-electron microscope - of samples whose electrochemical (CV) and spectroelectrochemical (in situ SFG and ERS) characterisation has been published in a companion paper [B. Bozzini, B. Busson, G.P. De Gaudenzi, L. D'Urzo, C. Mele, A. Tadjeddine, Corros. Sci. 49 (2007) 2392-2405].

  15. Electron-beam Treatment of Tungsten-free TiC/NiCr Cermet Ⅱ: Structural Transformations in the Subsurface Layer

    Institute of Scientific and Technical Information of China (English)

    Baohai YU; V.E.Ovcharenko; S.G.Psakhie; O.V.Lapshin

    2006-01-01

    The character of structural changes in the surface layer of titanium carbide (TiC) with Ni-Cr alloy binder was investigated theoretically and experimentally after electron-beam treatment of the material surface. The thermal influence of the electron-beam irradiation on the surface layer microstructure of the composite fine-grained material was mathematically analyzed. Quantitative estimations of the depth of the zone in microstructural phase transformations were carried out. The microstructure and concentration profile of Ti distribution in the metallic binder over the cross section of the surface layer with microstructural phase transformations after electron-pulse treatment of the hard metal surface were experimentally investigated.

  16. Effect of working condition on thermal stress of NiFe2O4-based cermet inert anode in aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    LI Jie; WANG Zhi-gang; LAI Yan-qing; LIU Wei; YE Shao-long

    2007-01-01

    Based on the FEA software ANSYS, a model was developed to simulate the thermal stress distribution of inert anode. In order to reduce its thermal stress, the effect of some parameters on thermal stress distribution was investigated, including the temperature of electrolyte, the current, the anode cathode distance, the anode immersion depth, the surrounding temperature and the convection coefficient between anode and circumstance. The results show that there exists a large axial tensile stress near the tangent interface between the anode and bath, which is the major cause of anode breaking. Increasing the temperature of electrolyte or the anode immersion depth will deteriorate the stress distribution of inert anode. When the bath temperature increases from 750 to 970 ℃, the maximal value and absolute minimal value of the 1st principal stress increase by 29.7% and 29.6%, respectively. When the anode immersion depth is changed from 1 to 10 cm, the maximal value and absolute minimal value of the 1st principal stress increase by 52.1% and 65.0%, respectively. The effects of other parameters on stress distribution are not significant.

  17. Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes

    International Nuclear Information System (INIS)

    RUTA-70 model for simulations with the internally coupled codes DYN3D/ATHLET and DYN3D/RELAP5 was developed. A 3-D power distribution in the core is calculated by DYN3D with thermal-hydraulic feedback from the system codes. A steady-state corresponding to the full reactor power and an accident scenario initiated by failure of all primary coolant pumps were simulated with the DYN3D/ATHLET and DYN3D/RELAP5 coupled code systems to verify these codes. The compared coupled codes give close predictions for the initial and final states of the simulated accident but not for the transition between them. The observed deviations are explained by differences in the subcooled boiling models of the employed versions of ATHLET and RELAP5. Nevertheless, both simulations confirm a high level of the reactor inherent safety. The allowed safety margins were not reached. (orig.)

  18. Simulations of RUTA-70 reactor with CERMET fuel using DYN3D/ATHLET and DYN3D/RELAP5 coupled codes

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Y.; Rohde, U. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany); Baranaev, Y.; Glebov, A. [State Scientific Center of the Russian Federation, Obninsk, Kaluga Region (Russian Federation). Inst. for Physics and Power Engineering

    2012-08-15

    RUTA-70 model for simulations with the internally coupled codes DYN3D/ATHLET and DYN3D/RELAP5 was developed. A 3-D power distribution in the core is calculated by DYN3D with thermal-hydraulic feedback from the system codes. A steady-state corresponding to the full reactor power and an accident scenario initiated by failure of all primary coolant pumps were simulated with the DYN3D/ATHLET and DYN3D/RELAP5 coupled code systems to verify these codes. The compared coupled codes give close predictions for the initial and final states of the simulated accident but not for the transition between them. The observed deviations are explained by differences in the subcooled boiling models of the employed versions of ATHLET and RELAP5. Nevertheless, both simulations confirm a high level of the reactor inherent safety. The allowed safety margins were not reached. (orig.)

  19. Influence of the metallic matrix ratio on the wear resistance (dry and slurry abrasion) of plasma sprayed cermet (chromia / stainless steel) coatings

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel; Medarhri, Z.; Touimi, S.; Fauchais, P.

    2006-01-01

    Roč. 201, č. 5 (2006), s. 2006-2011. ISSN 0257-8972 R&D Projects: GA AV ČR(CZ) 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * composite coating * tribology * hardness * wear * abrasion * chromia/stainless steel Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.559, year: 2006

  20. An investigation of the corrosion of WC-Co cermets in CN{sup -}-containing aqueous solutions. Part II: Synchrotron-based high lateral-resolution XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, via Monteroni, 73100 Lecce (Italy)], E-mail: benedetto.bozzini@unile.it; Dalmiglio, Matteo [Sincrotrone Trieste SCpA, SS14-Km163.5 in Area Science Park, I-34012 Trieste (Italy); De Gaudenzi, Gian Pietro [Films S.p.a., v. Megolo 2, I-28877, Anzola d' Ossola (Italy); D' Urzo, Lucia [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, via Monteroni, 73100 Lecce (Italy); Gregoratti, Luca [Sincrotrone Trieste SCpA, SS14-Km163.5 in Area Science Park, I-34012 Trieste (Italy)

    2009-08-15

    In the literature on the corrosion behaviour of WC-Co hardmetal grades, it has been pointed out that - typically - corrosion resistance in several aqueous environments relies on the formation of pseudo-passivating layers on top of the two-phase material. So far, no detailed space-dependent study has been performed of the local structure and chemistry of such peculiar corrosion-product layers. In this paper, we propose a detailed chemical analysis - performed with a remarkably advanced synchrotron-based photo-electron microscope - of samples whose electrochemical (CV) and spectroelectrochemical (in situ SFG and ERS) characterisation has been published in a companion paper [B. Bozzini, B. Busson, G.P. De Gaudenzi, L. D'Urzo, C. Mele, A. Tadjeddine, Corros. Sci. 49 (2007) 2392-2405].

  1. Nanoporous Ni-Ce0.8Gd0.2O1.9-x thin film cermet SOFC anodes prepared by pulsed laser deposition.

    Science.gov (United States)

    Infortuna, Anna; Harvey, Ashley S; Muecke, Ulrich P; Gauckler, Ludwig J

    2009-05-21

    Nickel oxide-gadolinia-doped ceria thin films with a ceria composition of 80 at% Ce and 20 at% Gd were grown by pulsed laser deposition on sapphire and SiO2/Si wafers as well as on yttria stabilized zirconia polycrystalline substrates. Upon reduction of the NiO phase in a H2/N2 atmosphere at 600 degrees C, a stable three-phase, 3-D interconnecting microstructure was obtained of metallic Ni, ceramic, and pores. Coarsening and segregation of the Ni to the surface of the film was observed at higher temperatures. The kinetics of this process depend strongly on the microstructures that can be developed in situ during deposition or post-deposition heat treatments. In situ minimization of Ni-coarsening can be achieved at temperatures as low as 500 degrees C when the deposition pressure does not exceed 0.02 mbar. For films deposited at higher pressure and at temperatures below 800 degrees C, coarsening can be minimized post deposition by annealing in air at 1000 degrees C. The films showed very good metallic conductivity and stability upon thermal cycling in a reducing atmosphere. Redox cycles performed at 600 degrees C between air and H2 induced a loss of connectivity of the metallic phase and consequent degradation of the conductivity. After 16 cycles, corresponding to 65 hrs, the conductivity is reduced by one order of magnitude. PMID:19421477

  2. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

    OpenAIRE

    D. Kekes; P. Psyllaki; M. Vardavoulias

    2014-01-01

    The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF) spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by part...

  3. Effect of Carburization on the Mechanical Properties of Biomedical Grade Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    Yong Luo; Haibo Jiang; Gang Cheng; Hongtao Liu

    2011-01-01

    Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5×106 Pa·m1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.

  4. Research on Preparation, Microstructure and Performance of MoB/CoCr Cermet Coatings%MoB/CoCr金属陶瓷涂层的制备、组织结构及性能研究

    Institute of Scientific and Technical Information of China (English)

    陈枭; 张仁元; 李风

    2009-01-01

    利用低压等离子喷涂(LPPS)制备了MoB/CoCr金属陶瓷涂层.通过X射线衍射(XRD)分析物相组成、扫描电镜(SEM)、能谱(EDAX)对涂层的微观组织和成分进行分析,并对涂层的结合强度和抗热震性能进行研究.研究结果表明:粉末与喷涂后涂层物相差异不大,涂层为层状结构,随压力越高,粉末熔化越充分;涂层与基体结合良好,涂层致密;涂层喷涂后主要成分保持不变,且具有良好的结合强度和抗热震性能,经过1080 h熔融Al-12.07%Si腐蚀后,涂层完好,具有很好的抗腐蚀性能.

  5. Effect of TiB2 on microstructure of TiC-based cermet%TiB2对TiC基金属陶瓷显微组织的影响

    Institute of Scientific and Technical Information of China (English)

    李鹏; 曾晓雁; 熊惟皓

    2005-01-01

    研究了TiB2对TiC基金属陶瓷显微组织的影响.试验发现1420℃下烧结90min后,TiC基金属陶瓷的硬质相颗粒明显长大.分析表明,TiB2在高温下能够与TiC基金属陶瓷中的Mo反应生成MoB,并主要分布于硬质相表面的环形相中.硬质相的长大可能与MoB导致的液相不足和硬质相颗粒接触长大有关.

  6. An SFG and ERS investigation of the corrosion of CoW0.013C0.001 alloys and WC-Co cermets in CN--containing aqueous solutions

    International Nuclear Information System (INIS)

    In order to increase the knowledge of the corrosion mechanism, in situ spectroelectrochemical methodologies were employed in the investigation of the electrochemical interface of WC-Co hardmetals. Together with standard cyclic voltammetries (CV), ElectroReflectance Spectroscopy (ERS) and Sum Frequency Generation (SFG) spectroscopy measurements were performed both on a Co-base alloy, simulating the metallic binder of hardmetal composites, and on a model WC-Co system. A cyanide solution, encountered in the gold extraction industry, was employed as electrolyte. Electrochemical cells and experimental apparatuses were designed to allow in situ experiments. CV measurements showed corrosion attack to run at potentials more anodic than -500 mV vs. Ag/AgCl, both for the alloy and the composite. The high reactivity of the alloy in cyanide environment was witnessed by the time-dependence of the surface vibrational (SFG) and electronic (SFG and ERS) properties under cathodic polarisation. Furthermore, SFG measurements highlighted two different adsorbation sites for cyanide ion, probably α- and ε-Co. The WC-Co system showed a pseudo-passivation peak, typical of the corrosion behaviour of this material, due to precipitation of corrosion products. ERS data at 532 nm showed an ennobling of the potential at which the reflectivity increase was recorded

  7. An SFG and ERS investigation of the corrosion of CoW{sub 0.013}C{sub 0.001} alloys and WC-Co cermets in CN{sup -}-containing aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy)]. E-mail: benedetto.bozzini@unile.it; Busson, Bertrand [CLIO-LCP, Batiment 201P2, Universitaire Paris Sud 11, 91420 Orsay Cedex (France); De Gaudenzi, Gian Pietro [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); D' Urzo, Lucia [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Mele, Claudio [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Tadjeddine, Abderrahmane [UDIL-CNRS, Batiment 201P1, BP34, 91898 Orsay, Cedex (France)

    2007-05-15

    In order to increase the knowledge of the corrosion mechanism, in situ spectroelectrochemical methodologies were employed in the investigation of the electrochemical interface of WC-Co hardmetals. Together with standard cyclic voltammetries (CV), ElectroReflectance Spectroscopy (ERS) and Sum Frequency Generation (SFG) spectroscopy measurements were performed both on a Co-base alloy, simulating the metallic binder of hardmetal composites, and on a model WC-Co system. A cyanide solution, encountered in the gold extraction industry, was employed as electrolyte. Electrochemical cells and experimental apparatuses were designed to allow in situ experiments. CV measurements showed corrosion attack to run at potentials more anodic than -500 mV vs. Ag/AgCl, both for the alloy and the composite. The high reactivity of the alloy in cyanide environment was witnessed by the time-dependence of the surface vibrational (SFG) and electronic (SFG and ERS) properties under cathodic polarisation. Furthermore, SFG measurements highlighted two different adsorbation sites for cyanide ion, probably {alpha}- and {epsilon}-Co. The WC-Co system showed a pseudo-passivation peak, typical of the corrosion behaviour of this material, due to precipitation of corrosion products. ERS data at 532 nm showed an ennobling of the potential at which the reflectivity increase was recorded.

  8. Analysis of the electrochemical performance of MoNi-CeO2 cermet as anode material for solid oxide fuel cell. Part I. H2, CH4 and H2/CH4 mixtures as fuels

    Science.gov (United States)

    Escudero, M. J.; Gómez de Parada, I.; Fuerte, A.; Serrano, J. L.

    2014-05-01

    This paper investigates the catalytic activity and the electrochemical performance of bimetallic formulation combining Mo and Ni with CeO2 (MoNi-Ce) in relation its potential use as anode material for SOFC. The catalytic properties were evaluated for methane partial oxidation as function of temperature and the carbon deposition on the anode surface was analysed by TG-MS. A conversion of 12.8% was reached for partial methane oxidation at 850 °C as well as a high coke resistance. The electrochemical performance was studied in a single cell with La0.58Sr0.4Fe0.8Co0.2O3-δ (LSCF) as cathode, La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as electrolyte and MoNi-Ce as anode. A thin buffer layer of La0.4Ce0.6O4-δ (LCD) between anode and electrolyte was used to avoid possible interfacial reactions. The cell was tested in different humidified fuels (H2, CH4 and H2/CH4 mixtures) and static air at 750, 800 and 850 °C. The electrochemical behaviour was evaluated by current-voltage curves, impedance spectroscopy and load demand. Stability tests were also performed in pure CH4 at each studied temperature in order to assess degradation of the electrochemical cell performance. No significant performance degradation was detected in all studied fuels even pure methane, which suggests that MoNi-Ce is a suitable anode material for direct methane SOFC.

  9. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  10. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    International Nuclear Information System (INIS)

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 μm) and Cu (5 μm) layers, and the other with a Ni (15 μm) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  11. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Andreatta, Francesco, E-mail: francesco.andreatta@uniud.i [Dipartimento di Scienze e Tecnologie Chimiche, Universita Degli Studi di Udine, Via del Cotonificio 108, 33100 Udine (Italy); Matesanz, Laura [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Akita, Adriano H. [UNESP, Instituto de Quimica, CP 355, 14800-900 Araraquara, SP (Brazil); Paussa, Luca; Fedrizzi, Lorenzo [Dipartimento di Scienze e Tecnologie Chimiche, Universita Degli Studi di Udine, Via del Cotonificio 108, 33100 Udine (Italy); Fugivara, Cecilio S. [UNESP, Instituto de Quimica, CP 355, 14800-900 Araraquara, SP (Brazil); Gomez de Salazar, Jose M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Benedetti, Assis V. [UNESP, Instituto de Quimica, CP 355, 14800-900 Araraquara, SP (Brazil)

    2009-12-30

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 mum) and Cu (5 mum) layers, and the other with a Ni (15 mum) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  12. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by partial decomposition of the WC particles, lamellar morphology and micro-porosity among the solidified splats. Tribological behavior was studied under sliding friction conditions using a Si3N4 ball as counterbody and the friction coefficient and volume loss were determined as a function of the cermet fraction. Microscopic examinations of the wear tracks and relevant cross sections identified the wear mechanisms involved. Coatings containing only the metallic phase were worn out through a combination of ploughing, micro-cracking and splat exfoliation, whilst those containing only the cermet phase primarily by micro-cracking at the individual splat scale. The wear mechanisms of the composite coatings were strongly affected by their randomly stratified structure. In-depth cracks almost perpendicular to the coating/ substrate interface occurring at the wear track boundaries resulted in cermet trans-splat fracture.

  13. Final report on the characterization of the film on inert anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Stice, N.D.

    1991-01-01

    Results of post-test microscopic and elemental analysis of the reaction zone on polarized cermet inert anodes, over a range of current densities and alumina concentrations, suggest that an alumina film does not form to protect the anode from dissolution. Rather, significant morphological and compositional changes occur at or near the anode surface. These changes and the chemical reactions that cause them involve the cermet material itself and appear to be responsible for properties that were previously assigned to an alumina film. In particular, a reaction layer formed from the cermet material may have protective properties, while changes in roughness and porosity may contribute to the electrochemical impedance.

  14. Immersion pyrometer

    International Nuclear Information System (INIS)

    A protective sheath for a temperature sensing device is described comprising: (a) a metal tube having one closed end to provide a cavity for a temperature sensing device; (b) a series of protective layers comprising at least two cermet layers consisting essentially of Al/sub 2/O/sub 3/-Cr/sub 2/O/sub 3/-Mo covering the outer surface of the metal tube, the concentration of molybdenum in the at least two cermet layers decreasing in proceeding from the inner to the outer layers, and each of the cermet layers having a porosity of from about 4% to about 33%; (c) a ceramic layer of substantially pure Al/sub 2/O/sub 3/-Cr/sub 2/O/sub 3/ covering the outermost of the at least two cermet layers, the ceramic layer having a porosity of from about 4% to about 33%

  15. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    International Nuclear Information System (INIS)

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film

  16. Electrochemical Characterization of Ni/ScYSZ Electrodes as SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Søgaard, Martin; Mogensen, Mogens Bjerg

    2014-01-01

    Investigations of Ni/ScYSZ cermets were performed by electrochemical impedance spectroscopy (EIS) using different symmetric designs: electrolyte supported (ESC) and anode supported (ASC) cells. The obtained spectra were analyzed using distribution of relaxation times (DRT), and complex non...

  17. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yung-Hsiang; Brahma, Sanjaya [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Tzeng, Y.H. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Ting, Jyh-Ming, E-mail: jting@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-10-15

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film.

  18. Relationships between structures and performance of SOFC anodes

    DEFF Research Database (Denmark)

    Klemensø, Trine; Mogensen, Mogens Bjerg; Jacobsen, Torben

    The nickel-YSZ cermet of the state-of-the-art anode-supported solid oxide fuel cell (SOFC) degrades upon redox cycling. The degradation is a critical issue for the commercialization of the technology. Nickel-YSZ cermets with variable composition and microstructure were examined during redox cycling...... to obtain knowledge of the degradation mechanism, and to identify parameters and characterization tools to improve the cermet. The investigation techniques included direct observations of the microstructure (light microscopy, scanning electron microscopy, environmental scanning electron microscopy...... bulk expansion of the cermet structure upon oxidation. The bulk expansion promoted cracking of the electrolyte. The redistribution of the reduced nickel phase was observed to occur as rounding of the particles, and nickel sintering. The degree of sintering depended on the temperature, the composition...

  19. Internal reforming development for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Internal reforming of natural gas within a solid oxide fuel cell (SOFC) is expected to make it a more efficient system for the production of electrical power. Nickel-zirconia cermets are prime candidate material for use as the anode in an SOFC. This paper reports four procedures used to prepare 16 nickel-zirconia cermets: tape casting, slurry, incorporation of pore formers, and granulation. The resultant cermets had nickel contents from 50% to 80%,porosities from 14% to 66%, and mean pore sizes of 0.25--1.8 μm. The catalytic behavior of two cermets was determined in a continuously stirred tank reactor at atmospheric pressure over a temperature range of 800--1000 degrees C and steam-to-hydrocarbon ratios of 2--8 mol/mol using pure methane as the feed. The data support the reaction being first order with respect to methane and -1.25 for steam

  20. Properties of porous FeAlO/FeAl ceramic matrix composite influenced by mechanical activation of FeAl powder

    Indian Academy of Sciences (India)

    V Usoltsev; S Tikhov; A Salanov; V Sadykov; G Golubkova; O Lomovskii

    2013-12-01

    Porous ceramic matrix composites FeAlO/FeAl with incorporated metal inclusions (cermets) were synthesized by pressureless method, which includes hydrothermal treatment of mechanically alloyed FeAl powder followed by calcination. Their main structural, textural and mechanical features are described. Variation of FeAl powder alloying time results in non-monotonous changes of the porosity and mechanical strength. Details of the cermet microstructure and its relation to the mechanical properties are discussed.

  1. Fabrication of Dispersed CERamic-CERamic and Ceramic-METallic pellets for the Transmutation of Actinides

    Science.gov (United States)

    Fernández, A.; Haas, D.; Konings, R. J. M.; Somers, J.

    2003-07-01

    This paper describes the development of fabrication technology for target materials to be used in irradiation experiments, in the PHENIX and HFR reactors. Several target concepts will be tested: micro- as well as macrodispersed composites of (Am,Y,Zr)O2 in MgO (cercer) and macrodispersed composites of (Pu,Y,Zr)O2 in Stainless Steel (cermet) material. Results of the completed fabrication campaigns for cermet and cercer will be presented.

  2. Development of low enrichment MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Work up to October 1983 on the development of a manufacturing route for the manufacture of low enriched fuel at Dounreay concentrated on the roll-bonding method of plate manufacture. Both U-Al alloy and U3O8-Al cermet elements at 45% enrichment have been irradiated and the fabrication of 20% enriched U3O8-Al cermet elements is in hand. (author). 3 refs, 2 tabs

  3. Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion

    DEFF Research Database (Denmark)

    Primdahl, S.; Mogensen, Mogens Bjerg

    2002-01-01

    Five types of anodes for solid oxide fuel cells (SOFC) are examined on an yttria-stabilised zirconia (YSZ) electrolyte by impedance spectroscopy at 850 degreesC in hydrogen. The examined porous anodes are a Ni/Zr(0.92)Y(0.16)O(2.08) (Ni/YSZ) cermet, a Ni/Ce(0.9)Gd(0.1)O(1.95) (Ni/CGI) cermet, a Ce...

  4. Co-Ni-NiFe2O4金属陶瓷的制备及抗氧化性研究%THE PREPARATION OF Co-Ni-NiFe2O4 CERMET AND STUDY OF ANTI-OXIDATION

    Institute of Scientific and Technical Information of China (English)

    王俊茹; 李玉胶; 朱春城

    2009-01-01

    采用传统的粉末冶金技术及真空固相烧结的方法,制备出了Co-Ni-NiFe2O4金属陶瓷惰性阳极材料,通过研究确定了制备NiFe2O4粉体及真空固相烧结Co-Ni-NiFe2O4金属陶瓷的合理工艺.实验表明:Co-Ni-NiFe2O4金属陶瓷在960℃条件下的氧化动力学曲线近似符合抛物线规律,NiFe2O4含量越多,试样的抗氧化性越强;并且在高温氧化后,氧化膜在生长过程中产生明显的择优取向.

  5. O processo de infiltração em ferramentas de perfuração de rochas com o uso dos pós de tungstênio e carboneto de tungstênio: as características e resultados da microestrutura e dureza do cermet

    Directory of Open Access Journals (Sweden)

    Luis Antonio Ccopa Ybarra

    2009-01-01

    Full Text Available The process of infiltration for manufacturing of rock drilling tools (crown analyzed three process with the utilization of the three powders (matrix, two containing tungsten carbides and one containing tungsten particles, on the microstructure and hardness of a hard metal for rock drilling tool (crown were investigated. The crown samples were prepared by the infiltration technique, where the compacted matrix powder in a graphite mold, assembled with a steel shank, was infiltrated by a copper alloy in order to consolidate the hard metal and to join it with the steel shank. The powders and/ or the cross-sections of the hard metals were characterized by chemical analysis, X-ray diffraction, particle size analysis, density, optical and scanning electron microscopy, energy dispersive spectroscopy, and differential thermal analysis. Beside the predominant phases, tungsten carbide and/or tungsten, the powders presented a small fraction of metallic particles. The results of microstructural analysis of hard metals were correlated with the chemical, phase, particle size and morphology, and compressibility characteristics of the powders investigated. Also were determinate the micro and macrohardness of the hard metals and realized the microstructural analysis on the region of the interface between the hard metals and the steel shank and also difference of temperature on process of infiltration on each matrix powder.

  6. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form even though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.

  7. Influence of reduction conditions on electrical properties of NiO-zirconia composites for solid oxide fuel cell electrode

    Science.gov (United States)

    Orui, Himeko; Nozawa, Kazuhiko; Arai, Hajime; Kanno, Ryoji

    2015-08-01

    The electrical properties of nickel-zirconia cermets as the anode material for solid oxide fuel cells (SOFCs) were studied for Sc2O3-Al2O3-stabilized ZrO2 (SASZ), together with conventional Y2O3-stabilized ZrO2 (YSZ). The reduction behavior of the cermets in terms of achieving better electrical conductivity was examined under constant temperature ramp rate (CTR) and constant temperature (CT) conditions. The reduction process and electrical conduction thus obtained were affected by the NiO particle size and porosity, and the zirconia composition of the starting NiO-zirconia composite material. All the NiO-zirconia anodes examined in this study exhibited high conductivity after reduction at a CT of 800 °C. The CTR condition resulted in lower electrical conductivity for the Ni-zirconia cermet. In particular, NiO-SASZ using coarse NiO powder exhibited only ionic conduction with a low electronic contribution, which was due to the absence of nickel-nickel percolation. Thermogravimetric analysis of the NiO reduction indicated that NiO-SASZ and NiO-YSZ had different reduction mechanism which might correspond to the interaction between NiO and zirconia and the long-term stability of these cermets. A kinetic analysis of the NiO reduction process revealed that fast and constant nucleation during the initial stage of reduction is important for the construction of nickel-nickel connections in the cermets.

  8. Fuel selection criteria specific for double stratum minor actinide burners

    International Nuclear Information System (INIS)

    The scope of this presentation covers the following topics: Accelerator driven systems in the double strata fuel cycle; parametric studies of neutronic properties foe dedicated inert matrix fuels (solid solution oxides ZrO2, ThO; solid solution nitrides ZrN, HfN, YN; CERCER oxides MgO; CERMET oxides Cr, V, Mo, Mo-92, W). Fertile matrices do not improve neutronic performance of americium bearing fuels. High linear rating (high thermal conductivity + high melting temperature) improves neutronic performance as well. CERCER oxide in MgO matrix appears to be a reasonable reference fuel for Minor Actinide burning in LBE cooled ADS. Solid solution nitride in ZrN or CERMET oxide in Mo-92 matrix offer better performance, but high T stability (nitrides) and helium release (CERMET) issues need to be addressed. These fuels will be fabricated and irradiated in Phenix starting 2005

  9. Properties and microstructure of NiO/SDC materials for SOFC anode applications

    Institute of Scientific and Technical Information of China (English)

    CHENG Jigui; DENG Liping; ZHANG Benrui; SHI Ping; MENG Guangyao

    2007-01-01

    NiO/SDC composites and Ni/SDC cermets for solid oxide fuel cell (SOFC) anode applications were prepared from nickel oxide (NiO) and samaria doped ceria (SDC) powders by the powder metallurgy process. The physical and mechanical properties, as well as the microstructure of the NiO/SDC composites and the Ni/SDC cermets were investigated. It is shown that the sintering temperature of the NiO/SDC composites and NiO content plays an important role in determining the microstructure and properties of the NiO/SDC composites, which, in turn, influences the microstructure, electrical conductivity, and mechanical properties of the Ni/SDC cermets. The present study demonstrated that composition and tprocess parameters must be appropriately selected to optimize the microstructure and the properties of NiO/SDC materials for solid oxide fuel cell applications.

  10. Transfer printing of thin electrolyte layers in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Prica, M.; Kendall, K. [Keele Univ. (United Kingdom). Centre for Inorganic Chemistry and Materials Science; Painter, M. [Cookson Matthey, Stoke-on-Trent (United Kingdom)

    1995-12-31

    A transfer printing method for depositing micron and potentially submicron layers on a substrate to form a solid oxide fuel cell has been developed. This method is advantageous because it is economic and applies to planar, tubular and corrugated geometries. This paper reports the study of a 1.2 {micro}m layer of yttria-stabilized zirconia electrolyte deposited onto a nickel/ yttria-stabilized zirconia cermet tube with an outside diameter of 2.5 mm, where the cermet was either in the pre-fired or fired state. The electrolyte/cermet were fired at 1,500 C for one hour. Preliminary tests carried out on the fired tube show that the electrolyte is thin and uniform.

  11. Investigation of the Corrosion Behaviors of HVOF-Sprayed Carbide Cernet Coatings in Molten Al-Zn-Si Alloy Bath

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhen-hua; TAN Xing-hai; ZHANG Yue-gang; SUN Jia-shu

    2004-01-01

    In continuous hot-dip galvanization process the corrosion and chemical stability of the sink roll in the galvanizing bath are important problem which effects on the quality and productivity. In order to protect the sink roll the carbide cermet and/or ceramic coatings were deposited on the surface of the sink roll. The WC-, Cr3 C2-cermet coatings were deposited by high velocity oxygen fuel (HVOF) spray, respectively. The coating samples were immersed in molten Zn-alloy containing 50 wt % aluminum at 833 K for 24 hr and 144 hr, respectively. The inter-diffusion and inter-reaction of Zn, Al and elements in coating and corrosion behaviors of these coatings were investigated by XRD, SEM and EPMA etc. The corrosion mechanisms of the carbide cermet coatings and ceramic coatings in molten High Al-Zn-alloy were approached.

  12. Fracture toughness of a nanoscale WC-Co tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Densley, J.M.; Hirth, J.P. [Washington State Univ., Pullman, WA (United States). School of Mechanical and Materials Engineering

    1997-12-22

    Tungsten carbide tool steels, comprising WC particles with 6.7--25wt% Co distributed in the interparticle regions as a quasi-continuous binder phase, can be considered as WC-Co composites. The fracture toughness of such WC-Co composites is dependent on the volume fraction, contiguity and thickness of the cobalt binder, and the size of the tungsten carbide grains. Research has shown that the ductile binder undergoes nearly all the plastic deformation during fracture, which provides the primary energy consuming process that enhances fracture resistance. Recent manufacturing developments have given rise to the production of a WC-6.7wt% Co cermet having an average WC grain size of 70 nm, with a corresponding binder mean thickness, h, of 9 nm calculated from d = h(1{minus}V{sub f})/V{sub f} where d = 70 nm and V{sub f} = 0.114. This composite has shown a higher wear resistance than that of conventional cermets in proportion to their hardness. Such improvement has been attributed to the difficulty in forming dislocations in the very small grains. There are also indications that the Co binder in the nanoscale cermet contains higher contents of dissolved W and C than for conventional scale cermets. Because plastic deformation is initially confined to the binder phase, it was of interest to perform mode 1 and mixed mode toughness tests on the nanoscale cermet to determine whether flow localization influenced mixed mode toughness as in bulk materials. Two generations of this cermet were provided by Rogers Tool Works. The first generation, A, had lower binder contiguity, with occasional agglomerations of WC grains. The second generation, B, was cleaner, with the cobalt binder more uniformly separating the WC grains.

  13. Fracture toughness of a nanoscale WC-Co tool steel

    International Nuclear Information System (INIS)

    Tungsten carbide tool steels, comprising WC particles with 6.7--25wt% Co distributed in the interparticle regions as a quasi-continuous binder phase, can be considered as WC-Co composites. The fracture toughness of such WC-Co composites is dependent on the volume fraction, contiguity and thickness of the cobalt binder, and the size of the tungsten carbide grains. Research has shown that the ductile binder undergoes nearly all the plastic deformation during fracture, which provides the primary energy consuming process that enhances fracture resistance. Recent manufacturing developments have given rise to the production of a WC-6.7wt% Co cermet having an average WC grain size of 70 nm, with a corresponding binder mean thickness, h, of 9 nm calculated from d = h(1-Vf)/Vf where d = 70 nm and Vf = 0.114. This composite has shown a higher wear resistance than that of conventional cermets in proportion to their hardness. Such improvement has been attributed to the difficulty in forming dislocations in the very small grains. There are also indications that the Co binder in the nanoscale cermet contains higher contents of dissolved W and C than for conventional scale cermets. Because plastic deformation is initially confined to the binder phase, it was of interest to perform mode 1 and mixed mode toughness tests on the nanoscale cermet to determine whether flow localization influenced mixed mode toughness as in bulk materials. Two generations of this cermet were provided by Rogers Tool Works. The first generation, A, had lower binder contiguity, with occasional agglomerations of WC grains. The second generation, B, was cleaner, with the cobalt binder more uniformly separating the WC grains

  14. Design and fabrication of specific ceramic-metallic fuels and targets

    International Nuclear Information System (INIS)

    The fabrication of ceramic-metallic (cermet) composite fuel, containing (Y,An,Zr)O2-x spheres, by dust free processes has been studied. The influence of several process parameters, such as, ceramic volume fraction, compaction pressure and sintering temperature, on the microstructure of the final composite have been investigated and optimised using cerium as a stand for americium and two metal matrices namely molybdenum and stainless steel. In addition, a cermet fuel with (near) spherical (Y,Pu,Zr)O2-x particles, dispersed in stainless steel matrix, has been successfully fabricated and characterized

  15. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  16. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-04-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates in excess of 400 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was characterized by repeated thermal and pressure cycling. The effect of cermet grain size on permeation was determined. Finally, progress is summarized on thin film cermet fabrication, catalyst development, and H{sub 2} separation unit scale up.

  17. 3D-Simulation of Topology-Induced Changes of Effective Permeability and Permittivity in Composite Materials

    Directory of Open Access Journals (Sweden)

    B. Hallouet

    2007-08-01

    Full Text Available We have performed 3D simulations of complex effective permittivity and permeability for random binary mixtures of cubic particles below the percolation threshold. We compare two topological classes that correspond to different spatial particle arrangements: cermet topology and aggregate topology. At a low filling factor of f=10%, where most particles are surrounded by matrix material, the respective effective material parameters are indistinguishable. At higher concentrations, a systematic difference emerges: cermet topology is characterized by lower effective permittivity and permeability values. A distinction between topological classes might thus be a useful concept for the analysis of real systems, especially in cases where no exact effective-medium model is available.

  18. Pt–Al2O3 nanocoatings for high temperature concentrated solar thermal power applications

    International Nuclear Information System (INIS)

    Nano-phased structures based on metal–dielectric composites, also called cermets (ceramic–metal), are considered among the most effective spectral selective solar absorbers. For high temperature applications (stable up to 650 °C) noble metal nanoparticles and refractory oxide host matrices are ideal as per their high temperature chemical inertness and stability: Pt/Al2O3 cermet nano-composites are a representative family. This contribution reports on the optical properties of Pt/Al2O3 cermet nano-composites deposited in a multilayered tandem structure. The radio-frequency sputtering optimized Pt/Al2O3 solar absorbers consist of stainless steel substrate/ Mo coating layer/ Pt–Al2O3/ protective Al2O3 layer and stainless steel substrate/ Mo coating layer /Pt–Al2O3 for different composition and thickness of the Pt–Al2O3 cermet coatings. The microstructure, morphology, theoretical modeling and optical properties of the coatings were analyzed by the x-ray diffraction, atomic force, microscopy, effective medium approximation and UV–vis specular and diffuse reflectance.

  19. Reaction of uranium dioxide with copper-containing chloride melts

    International Nuclear Information System (INIS)

    Cermet composition materials consisting of metallic copper and uranium dioxide can be used for manufacturing fuel rods of nuclear power reactors. Reprocessing of such irradiated fuel of dispersive type can be done employing non-aqueous pyrochemical methods and developing such technology requires information on interaction of uranium dioxide with chloride melts containing copper ions

  20. Plasma Spraying and Characterization of Tungsten Carbide-Cobalt Coatings by the Water-Stabilized System WSP

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kašparová, M.; Bellin, J.; Le Guen, E.; Zahálka, F.

    2009-01-01

    Roč. 2009, - (2009), s. 1-11. ISSN 1687-8434 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tungsten karbide – cobalt, cermet * wear resistance * abrasion * plasma spraying Subject RIV: JG - Metallurgy http://www.hindawi.com/journals/amse/2009/254848.html

  1. Ni/YSZ microstructure optimization for long-term stability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Karas, Filip; Chen, Ming

    keeping the Ni particles in their required positions in the porous Ni/YSZ cermet close to the electrolyte. In this work we report cell tests and microstructures from reference and long-term tested SOEC with varied initial Ni/YSZ ratio with the aim of investigating the effect of changed Ni/YSZ ratio on...

  2. Electrical and Piezoresistive Properties of Thick Film Resistors (Propiedades Eléctricas y Piezorresistivas de Resistores de Película Gruesa)

    OpenAIRE

    Bofelli, Daniel; Broitman, Esteban; Zimmerman, Rosa

    1997-01-01

    Thick film cermet resistors, adjusted by conventional trimming methods, undergo irreversible changes in successive deformation cycles. In this work the stability of resistors adjusted by laser irradiation is evaluated. Resistance, thermal coefficient of resistance, and strain gauge factor in resistors with and without surface treatment are studied. The irradiated surface was characterized by Auger spectroscopy.

  3. Biogas Upgrading Using SOEC with a Ni-ScYSZ Electrode

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Bøgild Hansen, John; Mogensen, Mogens Bjerg

    2013-01-01

    Biogas consists mainly of CH4, CO2 and small amounts of H2S. The value of biogas will increase significantly if it is upgraded to pipeline quality by converting CO2 and H2O in the biogas to CO and H2 using a Solid Oxide Electrolysis Cell (SOEC) followed by methanation. The Ni-ScYSZ-cermet electrode...

  4. Proceedings of the twentieth DAE-BRNS symposium on thermal analysis: book of abstracts

    International Nuclear Information System (INIS)

    The topics covered in this symposium are: thermodynamics and phase diagram studies, thermochemical and thermophysical properties of materials, solid-state reactions and kinetics, thermal properties of ceramics and cermets, thermal behaviour of nanomaterials and coated particles and thermal analysis of materials. Papers relevant to INIS are indexed separately

  5. Manufacturing and characterization of metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine;

    2011-01-01

    A metal-supported solid oxide fuel cell design offers competitive advantages, for example reduced material costs and improved robustness. This paper reports the performance and stability of a recently developed metal-supported cell design, based on a novel cermet anode, on a 25cm2 (1cm2/16cm2...

  6. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy;

    2014-01-01

    Todays’ solid oxide fuels cells based on composite Ni-cermet anodes have been developed up to reasonable levels of performance and durability. However, especially for small combined heat and power supply systems, known failure mechanisms e.g. re-oxidation, sulfur tolerance and coking have...

  7. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates; Influencia del Contenido en silicio sobre la corrosion acuosa de los nucleos de placas combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, C.; Saenz de Tejada, L. M.; Diaz Diaz, J.

    1969-07-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI{sub 3} and AI{sub 2}O{sub 3} according to the reaction. (Author)

  8. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  9. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    the ion conducting electrolyte. Some reasons for this choice are: I)to increase the three-phase-boundary (TPB) length (key reactants must pass the TPB) and 2) to assure good adherence of the electrodes to the electrolyte. In the case of Ni-YSZ cermet anode it is also clear that the electrochemical...

  10. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti (

  11. TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Norrman, Kion; Chatzichristodoulou, Christodoulos; Chen, Ming; Sun, Xiufu; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg; Hendriksen, Peter Vang

    2014-01-01

    TOF-SIMS analyses of state-of-the-art high temperature solid oxide electrolysis cells before and after testing under different operating conditions were performed. The investigated cells consist of an yttria stabilized zirconia (YSZ) electrolyte, a La1-xSrxMnO3-δ composite anode and a Ni-YSZ cermet...

  12. 挤压模

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A survey of manifold designs for flat die extrusion;Cermet Dies for Hot Extrusion of Hard Aluminium;Cluster computing in numerical simulation of extrusion flow;Computer aided design and manufacture of streamlined extrusion dies;Deposition of hard films on hot-working steel dies for aluminium;Development of a remote quick CAE system on sculptured metal extrusion die surface;

  13. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.; Kuhn, Luise Theil; Lu, L.Y.; Ma, Q.; Malzbender, J.; Mai, A.; Ramos, Tania; Rass-Hansen, J.; Reddy Sudireddy, Bhaskar; Tietz, F.; Vasechko, V.; Veltzé, Sune; Verbraeken, M.C.

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three dif...

  14. Reaktivní plazmová depozice karbidu boru s titanem

    Czech Academy of Sciences Publication Activity Database

    Stejskal, J.; Brožek, Vlastimil; Ctibor, Pavel; Neufuss, Karel; Novák, M.

    2009-01-01

    Roč. 5, č. 9 (2009), s. 173-174. ISSN 1336-7242. [Zjazd chemikov/61./. Tatranské Matliare, 07.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * boron carbide * titanium diboride * titanium cermets Subject RIV: BL - Plasma and Gas Discharge Physics

  15. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  16. Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin;

    2014-01-01

    We report the durability of a solid oxide electrolysis cell (SOEC) with a record low initial area specific resistance (ASR) and a record low degradation rate. The cell consists of a Ni-yttria stabilized zirconia (YSZ) cermet as support and active fuel electrode, a YSZ electrolyte, a gadolinia doped...

  17. 切削温度

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Economical Cryogenic Machining,Effect of Si content and hardness on the machinability of hot working die steels, Measuring of temperature cutting by research heat physics ultra-high speed edge machining of metal,Mechanical and Physical Properties of Cermets Based on Titanium Carbide,On the cutting temperatures generated high speed hard machining.

  18. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose; Thydén, Karl Tor Sune; Kiebach, Wolff-Ragnar; Küngas, Rainer

    stabilised zirconia (YSZ) backbone air electrode and Ni/YSZ cermet fuel electrode. The SOC was tested at electrolysis conditions under high current (up to -1 A/cm2). The porous YSZ electrodes was infiltrated with gadolinium-doped ceria oxide (CGO), to act as a barrier layer between the catalyst and the...

  19. Break down of losses in thin electrolyte SOFCs

    DEFF Research Database (Denmark)

    Barfod, Rasmus; Hagen, Anke; Ramousse, S.; Hendriksen, P.V.; Mogensen, Mogens Bjerg

    2006-01-01

    /YSZ cermet anode, and a LSM composite cathode. Additional, qualitative information was obtained using symmetric cells with LSM composite electrodes. The investigations were carried out in the temperature interval from 700 to 850 degrees C. The electrolyte and anode activation energies obtained were 0.9 and 1...

  20. Effects of impurities of microstructure in Ni/YSZ-YSZ half-cells for SOFC

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Primdahl, S.; Mogensen, Mogens Bjerg

    Long-term properties of Ni/yttria-stabilized zirconia (YSZ) cermet anode+YSZ electrolyte pellet (d=7.4 mm) half-cells were evaluated experimentally. Two commercial NiO powders containing different levels of impurities were used for the anodes. The durability was evaluated at temperatures of 850...

  1. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor; Mogensen, Mogens Bjerg

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...

  2. Structure Formation in Ti-C-Ni-Mo Composites during Reactive Sintering

    Directory of Open Access Journals (Sweden)

    Mart VILJUS

    2012-03-01

    Full Text Available Reactive sintering is a novel process where synthesis reaction of the carbide phase is combined with solid and liquid phase sintering of the cermet during a single heating cycle. Ti-C-Ni-Mo composites were synthesized in situ from elemental powders of Ti, Ni, Mo and C by high energy milling, followed by reactive sintering. The milled powders with the grain size in nano-scale were pressed to compacts and sintered. During the sintering that was performed after pressing, the titanium carbide was formed first and then the TiC-NiMo cermet was sintered in the presence of liquid phase in one cycle. The interface between the binder phase and the carbide grains of the in situ composite has a good bonding strength because it is not contaminated with oxidation film or other detrimental surface reactions. The microstructure of such cermet is fine-grained and more homogeneous than that of cermets produced by conventional method. In the paper the phase evolution, microstructure formation and carbide grain growth during reactive sintering are explained.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1343

  3. Electrochemical Characterization of Ni/(Sc)YSZ Electrodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Thydén, Karl Tor Sune; Mogensen, Mogens Bjerg

    2010-01-01

    Investigations of Ni/(Sc)YSZ cermets for solid oxide cells (SOCs) were performed by electrochemical impedance spectroscopy (EIS), under varying experimental conditions and upon redox cycling, using three different designs of symmetric cells. The deconvolution and fitting of the obtained impedance...

  4. A Critical Review of Models of the H-2/H2O/Ni/SZ Electrode Kinetics

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Høgh, Jens Valdemar Thorvald; Hansen, Karin Vels; Jacobsen, Torben

    2007-01-01

    experimental findings that a useful model must be able to explain such as difference in sensitivity to poisoning by H2S due to differences in the detailed composition of the SZ and large change in apparent activation energy by change in cermet preparation. Finally, we will point out some elements, which seem...

  5. Sintering behavior, microstructure and properties of TiC-FeCr hard alloy

    Institute of Scientific and Technical Information of China (English)

    Farid Akhtar; Shiju Guo; Jawid Askari; Jianjun Tian

    2007-01-01

    TiC based cermets were produced with FeCr,as a binder,by conventional P/M (powder metallurgy) to near >97% of the theoretical density.Sintering temperature significantly affects the mechanical properties of the composite.The sintering temperature of>1360 ℃ caused severe chemical reaction between TiC particles and the binder phase.In the TiC-FeCr cermets,the mechanical properties did not vary linearly with the carbide content.Optimum mechanical properties were found in the composite containing 57wt%TiC reinforcement,when sintered at 1360 ℃ for 1 h.Use of carbon as an additive enhanced the mechanical properties of the composites.Cermets containing carbon as an additive with 49wt% TiC exhibited attractive mechanical properties.The microstructure of the developed composite contained less or no debonding,representing good wettability of the binder with TiC particles.Homogeneous distribution of the TiC particles ensured the presence of isotropic mechanical properties and homogeneous distribution of stresses in the composite.Preliminary experiments for evaluation of the oxidation resistance of FeCr bonded TiC cermets indicate that they are more resistant than WC-Co hardmetals.

  6. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  7. Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options

    Science.gov (United States)

    Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn

    2007-01-01

    The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.

  8. NOVEL DENSE MEMBRANE FOR HYDROGEN SEPARATION FOR ENERGY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bandopadhyay, Sukumar [University of Alaska Fairbanks; Balachandran, Uthamalingam (Balu) [ANL; Nag, Nagendra [SURMET CORP.

    2013-10-24

    The main objectives of this project are: (1) Characterization of the thermo mechanical properties of the novel dense HTM bulk sample; (2) Development of a correlation among the intrinsic factors (such as grain size and phase distribution), and the extrinsic factors (such as temperature and atmosphere) and the thermo-mechanical properties (such as strengths and stress) to predict the performance of a HTM system (HTM membrane and porous substrate) ; and (3) Evaluation of the stability of the novel HTM membrane and its property correlations after thermal cycling. Based on all results and analysis of the thermo mechanical properties for the HTM cermet bulk samples, several important conclusions were made. The mean σfs at room temperature is approximately 356 MPa for the HTM cermet. The mean σfs value decreases to 284 MPa as the temperature increases to 850?C. The Difference difference in atmosphere, such as air or N2, had an insignificant effect on the flexural strength values at 850?C for the HTM cermet. The HTM cermet samples at room temperature and at 500?C fractured without any significant plastic deformation. Whereas, at 850?C, the HTM cermet samples fractured, preceded by an extensive plastic deformation. It seems that the HTM cermet behaves more like an elastic material such as a nonmetal ceramic at the room temperature, and more like a ductile material at increased temperature (850?C). The exothermic peak during the TG/DTA tests centered at 600?C is most likely associated with both the enthalpy change of transformation from the amorphous phase into crystalline zirconia and the oxidation of Pd phase in HTM cermet in air. The endothermic peak centered at 800?C is associated with the dissociation of PdO to Pd for the HTM cermet sample in both inert N2 environment and air. There is a corresponding weight gain as oxidation occurs for palladium (Pd) phase to form palladium oxide (PdO) and there is a weight loss as the unstable PdO is dissociated back to Pd and

  9. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-01-28

    During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

  10. Development of hardfacing materials for the use in hydrostatic bearings of sodium pumps

    International Nuclear Information System (INIS)

    This is a review of the work done on the development of hard facing materials for application in the hydrostatic bearing of the sodium pumps developed in the Netherlands for the joint German-Dutch-Belgian breeder reactor project (SNR). For various reasons cladding with Stellite 6 was chosen as the surface treatment for the bearings of the first generation of SNR pumps. Should the need arise, other -less conventional- materials are available for application. These include flame sprayed 'Stoody 90', a Stellite type material without nickel and with a relatively high cobalt content, two binary cobalt alloys, produced by an electroslag remelting technique, a stainless steel - tungsten carbide cermet and a cermet, consisting of tungsten carbide in a nickel-chromium matrix, both applied by flame spraying

  11. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation. PMID:26642379

  12. Development of high-activity 252Cf sources for neutron brachytherapy

    International Nuclear Information System (INIS)

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using 252Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing ≤ 30 microg 252Cf in the form of a cermet wire of Cf2O3 in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity 252Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that 252Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC

  13. Effects of some parameters on corrosion behaviour of plasma-sprayed coatings

    International Nuclear Information System (INIS)

    The corrosion behaviour of ceramics and cermet coatings on AISI 304L steel substrates was investigated in several aquaeous solutions. Plasma spray process was employed on substrates with the deposition of ceramic and cermet powders such as Al2O3, Al2O3+TiO2 and Cr2C3+NiCr. The porosity of coatings was measured by an electrochemical technique. Potentiodynamic polarization measurements and corrosion tests were employed to determine the corrosion behaviour of plasma-sprayed coatings. The microstructures of powders and coatings were investigated by means of an optical microscope, SEM, and X-ray diffractometry. The obtained results show that the protection against corrosion depends strongly on the porosity, thickness, surface roughness of the coatings, corrosion media and rotating speed of samples. (orig.)

  14. Review of options and neutronic characterization of experimental ADS

    International Nuclear Information System (INIS)

    The irradiation capability of various helium-cooled 100 MWt experimental ADS is studied, quantifying the flux levels and gradients in the sub-critical core. Neutronic characteristics are presented and thermal-hydraulic and fuel evaluations are presented for several concepts. The performance of pins, particles and CERMET fuels are compared and the effect of a pulsed proton beam is also evaluated. From a neutronics point of view, all studied configurations have similar performances. The thermal-hydraulic constraints are strongest for the MOX pin concept. Consequently, the tolerable volumetric power must be smaller than for particle or CERMET pin concepts. The decay heat removal in case of depressurization for this small core with large volumetric power can be achieved by convection (natural with a passive system or forced) and at minimum pressure (0.5 MPa). The use of a pulsed proton beam has no significant macroscopic consequence for the fuel. (author)

  15. Electron-beam treatment of tungsten-free metal-ceramics. 1. Effect on the surface microstructure and resistance in metal cutting mode

    International Nuclear Information System (INIS)

    Effects of a pulsed electron beam treatment on the surface layers microstructure of TiC-based metal-ceramics with Ni-Cr alloy binder as well as on the ceramics stability under the cutting of metal conditions have been experimentally investigated. An increase of electron beam fluence or the quantity of irradiation pulses results in an increase of the strength of the cermet up to 652 m (5,0 J/cm2, 30 pulses), it is likely to be due to melting of a metallic binder in a subsurface layer and filling of microcracks in carbide particles with the melt. An increase of electron radiation fluence up to 180-200 J/cm2 results in a noticeable decrease of cermet stability

  16. Solid state processing of massive uranium mononitride, using uranium and uranium higher nitride powders as starting materials (1962)

    International Nuclear Information System (INIS)

    The mechanism and the optimum conditions for preparing uranium mononitride have been studied. The results have been used for hot pressing (250 kg/cm2, 1000 deg. C, under vacuum) a mixture of powders of uranium and uranium higher nitrides. The products obtained have been identified by X-ray measurements and may be - at will and depending upon the stoichiometry - either UN, or a cermet a Uα-UN. As revealed by the curved shape of grain boundaries, the sinters obtained here do not easily evolve towards physico-chemical equilibrium when submitted to heat treatment. This behaviour is quite different from the one observed with uranium monocarbide prepared by a similar method. This fact may be ascribed to the insolubility in the matrix UN of particles of UO2 being present as impurities. The density, hardness and thermal conductivity of these products are higher than those measured on uranium nitride or cermets U-UN obtained by other methods. (author)

  17. In-situ Raman spectroscopy analysis of the interfaces between Ni-based SOFC anodes and stabilized zirconia electrolyte

    CERN Document Server

    Agarkov, D A; Tsybrov, F M; Tartakovskii, I I; Kharton, V V; Bredikhin, S I

    2016-01-01

    A new experimental approach for in-situ Raman spectroscopy of the electrode | solid electrolyte interfaces in controlled atmospheres, based on the use of optically transparent single-crystal membranes of stabilized cubic zirconia, has been proposed and validated. This technique makes it possible to directly access the electrochemical reaction zone in SOFCs by passing the laser beam through single-crystal electrolyte onto the interface, in combination with simultaneous electrochemical measurements. The case study centered on the analysis of NiO reduction in standard cermet anodes under open-circuit conditions, demonstrated an excellent agreement between the observed kinetic parameters and literature data on nickel oxide. The porous cermet reduction kinetics at 400-600C in flowing H2-N2 gas mixture can be described by the classical Avrami model, suggesting that the reaction rate is determined by the metal nuclei growth limited by Ni diffusion. The advantages and limitations of the new experimental approach were...

  18. Ag as an alternative for Ni in direct hydrocarbon SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cantos-Gomez, A.; Van Duijn, J. [Instituto de Energias Renovables, Universidad de Castilla La Mancha, Paseo de la Investigacion 1, 02006 Albacete (Spain); Ruiz-Bustos, R. [Instituto de Energias Renovables, Parque Cientifico y Tecnologico de Albacete, Paseo de la Investigacion 1, 02006 Albacete (Spain)

    2011-02-15

    Ag has been shown to be a good metal for SOFC anode cermets using CO fuel. Here we have expanded on the work reported by testing Ag-YSZ cermets against different hydrocarbon based fuel (H{sub 2} and CH{sub 4}). This study shows that while Ag is a good current collector, it alone does not have the required catalytic activity for the direct oxidation of hydrocarbon based fuels needed to be used in SOFC anodes. As such an additional catalytic material (e.g. CeO{sub 2}) needs to be present when using fuels other then CO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Rapid Diamond Deposition on Ni and Co Coatings by Using Twin Acetylene/Oxygen Gas Welding Torches

    Science.gov (United States)

    Ando, Yasutaka; Noda, Yoshimasa; Adachi, Shin-ichiro

    2015-12-01

    Cermet coatings have been widely used because of their high hardness and excellent wear resistance even under high-temperature conditions. However, since cermet coatings include expensive materials such as WC, TiC, TiN and so on, low-cost hard particles as a dispersing agent need to be developed. In this study, in order to develop a low-cost diamond dispersion system for the creation of diamond/thermal sprayed metal hybrid coatings, diamond deposition on thermal sprayed Ni and Co coatings and Mo and Ni metal substrates by the combustion flame method using twin acetylene/oxygen gas welding torches was carried out. Consequently, even in cases of thermal sprayed Ni and Co coatings, diamond particles could be deposited within only 5 min. From these results, this technique is proved to have a high potential for rapid diamond deposition in order to create diamond/thermal sprayed metal hybrid coatings.

  20. Study of performance of high speed turning using the volumetric dimension coefficient of resultant cutting force; Estudio del rendimiento del torneado de alta velocidad utilizando el coeficiente de dimension volumetrica de la fuerza de corte resultante

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P. C.; Siller-Carrillo, H. R.; Toscano-Reyes, H.

    2013-07-01

    This work deals with the experimental study of the resultant cutting force evolution of two coating carbide and a cermet inserts, during the dry turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. A new criterion for machinability study, the coefficient of volumetric dimension of cutting force, it is introduced. The investigation showed a better performance of cermet for moderate and intermediate cutting speeds, while at high cutting speed and final machining time, the three layers coated carbide achieved the best result. The factorial analysis of variance demonstrated a significant effect of machining time on the coefficient of volumetric dimension of resultant cutting force, while the material insert factor and their interaction, for intermediate cutting speed was just significant. (Author)

  1. RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718

    Directory of Open Access Journals (Sweden)

    M. Aruna,

    2010-09-01

    Full Text Available Machining of hard materials used in aerospace applications require hard and tough cutting tools. Ceramic tools and cermets are used in machining of nickel alloys for such applications. In this study finish turning of Inconel 718 is carried out with cermet tools. Cutting parameters are designed using Taguchi’s DOE and the experiments are conducted for the designed parameters. The surface finish measurement is carried for the various conditions and data obtained are used to build up the mathematical surface model using response surface methodology. The adequacy of the developed mathematical model is proved by ANOVA. The findings of this study show new results and the second order model was quite adequate.

  2. Sliding wear behavior of nanostructured WC-Co-Cr coatings

    Science.gov (United States)

    Wang, Haibin; Wang, Xuezheng; Song, Xiaoyan; Liu, Xuemei; Liu, Xingwei

    2015-11-01

    The nanostructured WC-10Co-4Cr coatings were fabricated by high velocity oxy-fuel spraying using the in situ synthesized WC-Co nanocomposite powder with size of 70-200 nm and Cr addition. Through optimization of the processing conditions, the nanostructured WC-Co-Cr coating has only a small amount of decarburized phase, a dense microstructure and an excellent combination of hardness, fracture toughness and wear resistance. A series of sliding wear tests were performed to investigate the wear behavior of the nanostructured cermet coating. The evolution of the friction coefficient, wear characteristics and their mechanisms were studied for the nanostructured WC-Co-Cr coating with the change of the load. The present study proposes a new understanding of the occurrence and the related mechanisms of the wear of the cermet coatings.

  3. 热喷涂

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A proposal for methods for decreasing thermal spraying noise acoustic characteristic of various materials;A stochastic model to simulate the formation of a thermal spray coating;Abrasive wear behavior of Ni(Cr)-TiB { sub } 2 co atings deposited by HVOF spraying of SHS-derived cermet powders;Adhesion of sealers on thermal spray coatings;An experimental study of the wear performance of NiCrBSi thermal spray coatings

  4. Gradient tool WC/HS6-5-2 materials produced using the powder metallurgy method

    OpenAIRE

    L.A. Dobrzański; A. Kloc-Ptaszna; G. Matula

    2008-01-01

    Purpose: The goal of this work is development of the new group of the gradient cermets with the high-speed steelmatrix, reinforced with the hard carbides phases of the WC types.Design/methodology/approach: The materials were fabricated using the conventional powder metallurgymethod, consisting in compacting the powder in a closed die, and subsequent sintering. All the sintered test pieces weresubjected to examination of density and hardness; observations were also made using the scanning elec...

  5. Properties of the multicomponent and gradient PVD coatings

    OpenAIRE

    L.W. Żukowska; L.A. Dobrzański

    2007-01-01

    Purpose: This paper presents investigation results of the properties of the multicomponent (Ti,Al)N and gradient Ti(C,N) wear resistant coatings, deposited with the PVD process onto the substrate from the cemented carbides, cermets and Al2O3+TiC type oxide tool ceramics.Design/methodology/approach: The methodology includes analysis of the mechanical and functional properties. The Ra parameter was assumed to be the value describing surface roughness. The microhardness tests using the Vickers m...

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-07-29

    During this quarter catalyst stability studies were performed on Eltron's composite layered membranes. In addition, permeation experiments were performed to determine the effect of crystallographic orientation on membrane performance. Sintering conditions were optimized for preparation of new cermets containing high permeability metals. Theoretical calculations were performed to determine potential sulfur tolerant catalysts. Finally, work was continued on mechanical and process & control documentation for a hydrogen separation unit.

  7. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley; Zhang, Wei; Kuhn, Luise Theil; Holtappels, Peter; Ramos, Tania

    2013-01-01

    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests unde...

  8. Self-sustained high-temperature reactions: initiation, propagation and synthesis

    OpenAIRE

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing technique without the need of complex furnaces. However, one of the drawbacks of this route is the high porosity of the final product (typically 50%). This implies the need for a subsequent densificat...

  9. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    Science.gov (United States)

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  10. Production and study of mixed Al-Al2O3 thin films for passive electronic circuits

    International Nuclear Information System (INIS)

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al2O3 cermet resistors (R□ = 10000 Ω□, CTR 2O3 capacitors (C□ = 60000 pf/cm2, tg δ < 0.5 per cent). These thin film components present good electrical behaviour and should find interesting applications in integrated circuits. (author)

  11. Structure and properties of plasma sprayed BaTiO3 coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Sedláček, J.; Čtvrtlík, Radim

    2010-01-01

    Roč. 36, č. 7 (2010), s. 2155-2162. ISSN 0272-8842 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100522 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.471, year: 2010

  12. Development of UO2-Stainless Steel Fuel Plates Containing 30-50 Vol. % Oxide

    International Nuclear Information System (INIS)

    This paper describes developments associated with the fabrication of UO2-stainless steel plate type fuel elements containing up to 50 vol.% UO2. The preparation of high-density spherical UO2 sintered particles in the 100- to 500-μm size range and the compacting and sintering of cermet plate cores with the particles uniformly distributed in the stainless steel matrix are described together with procedures for hot roll-bonding the fuel plates. Rolling at temperatures up to 1300oC using total deformations in the 40% to 90% range were studied to establish optimum conditions for the production of high-density cores and to achieve good bonding between the plate components with minimum fragmentation and stringering of the UO2 particles. The manufacture of large fuel plates utilizing multi-core plates which are bonded together during hot rolling is also described. Data are presented on the mechanical properties of 30, 40 and 50 vol.% UO2-stainless steel cermets, prepared as described above, and tested in the as ''rolled'' and annealed condition at various temperatures up to 700oC, using specimens taken laterally and longitudinally to the direction of rolling. The influence of size and uniformity of distribution of the UO2 spheres on consistency of mechanical properties are discussed. The strength of bonding between core and cladding for similar cermets in the same temperature range was also assessed. Results are also included of thermal cycling tests between 50 and 800oC, which was done to study the effects on bond stability and cermet structure after 100, 500 and 1000 cycles. (author)

  13. CALPHAD study of cubic carbide systems with Cr

    OpenAIRE

    He, Zhangting

    2015-01-01

    Cubic carbides (titanium, tantalum, niobium, and zirconium carbides) can constitute a significant proportion of so-called cubic and cermet grades, where it is added to substitute a portion of tungsten carbide. It is thus critical to understand and be able to thermodynamically model the cubic carbide systems. In order to do this, the thermodynamic descriptions of lower order systems, such as the Ti-Cr-C system, need to be well studied. To approach this goal, an extensive literature survey of t...

  14. Qualification under irradiation of the U3 O8-Al MTR fuels fabricated at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    The specifications of U3 O8 cermet fuel, utilized in the Research Reactor IEA-R1, and fabricated by IPEN/CNEN-SP, are presented. The history of the specification development is followed through descriptions of the world experience in research and material test reactor fuel utilization and post-irradiation examination in hot cells. An inspection program has been carried out for fuel qualification. (author)

  15. Thermal properties of minor actinide targets

    OpenAIRE

    Staicu, Dragos; Somers, Joseph; FERNANDEZ CARRETERO Asuncion; KONINGS Rudy

    2014-01-01

    The thermal properties of minor actinides targets for the management of high level and long lived radioactive waste are investigated. The microstructure, thermal diffusivity and specific heat of (Pu,Am)O2, (Zr,Pu,Am)O2, (Zr,Y,Am)O2, (Zr,Y,Pu,Am)O2 and CERMETS with Mo matrix are characterised in order to assess the safety limits of these materials.

  16. In situ surface reduction of a NiO-YSZ-alumina composite using scanning probe microscopy

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Thydén, Karl Tor Sune; Wu, Yuehua; Mogensen, Mogens Bjerg

    2014-01-01

    In situ surface reductions of NiO-YSZ-Al2O3 composites into Ni-YSZ-Al2O3 cermets were carried out at 312–525 °C in a controlled atmosphere high-temperature scanning probe microscope (CAHT-SPM) in dry and humidified 9 % H2 in N2. The reduction of NiO was followed by contact mode scanning of topogr...

  17. Wolframové cermety s karbidem zirkonia a hafnia

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matušek, M.; Sedláček, J.

    Ostrava: Tanger s.r.o, 2010, s. 112-117. ISBN 978-80-87294-15-4. [International Conference on Metallurgy and Materials METAL 2010 /19th./. Rožnov pod Radhoštěm (CZ), 18.05.2010-20.05.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spray ing * cermets * tungsten * zirconium carbide * hafnium carbide Subject RIV: CA - Inorganic Chemistry www.metal2010.com

  18. Flicker noise near the percolation threshold

    OpenAIRE

    Rammal, R.

    1985-01-01

    An effective-medium theory, for the flicker (1/f) noise amplitude, is formulated for random resistor networks. Close to the percolation threshold pc, the magnitude of the noise is shown to diverge as ( p - pc)-κ, with κ = 1 for both site and bond percolation models. The exponent κ is also calculated in the framework of two different renormalization group transformations. The possible observation of the predicted behaviour in metal-insulator mixtures and cermets is discussed.

  19. Babcock and Wilcox assessment of the Pratt and Whitney XNR2000

    Science.gov (United States)

    Westerman, Kurt O.; Scoles, Stephen W.; Jensen, R. R.; Rodes, J. R.; Ales, M. W.

    1993-01-01

    Babcock & Wilcox performed four subtasks related to the assessment of the Pratt & Whitney XNR2000 nuclear reactor as follows: (1) cermet fuel element fabricability assessment; (2) mechanical design review of the reactor system; (3) neutronic analysis review; and (4) safety assessment. The results of the mechanical and physics reviews have been integrated into the reactor design. The results of the fuel and safety assessments are presented.

  20. Improvement of tool materials by deposition of gradient and multilayers coatings

    OpenAIRE

    L.A. Dobrzański; K. Gołombek; J. Mikuła; D. Pakuła

    2006-01-01

    Purpose: Investigation of the functional properties of cermets, Si3N4 and Al2O3 based ceramics, coated with the PVD andCVD multilayer and gradient coatings and comparison them with the commercial uncoated and coated tool materials.Design/methodology/approach: TEM, SEM, confocal microscopy, scratch test, microhardness tests, roughnesstests, cutting tests.Findings: Employment of the hard wear resistant coatings deposited onto the sintered ceramic tool materials withthe physical deposition from ...