WorldWideScience

Sample records for cermet solar coatings

  1. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  2. Nickel-Magnesia Cermet Coatings

    Science.gov (United States)

    1952-06-01

    alumin " oxide cermet. To develop a bond between these tw components it in first necessary to produce a controlled film of Cr 203 on the Cr grains...somewhat more refractory. A cobalt - magnesia cermet may be made in the same way as the nickel - magnesia cermet, the bond being through the agency...of the oxide CoO. However, cobalt is not as oxidation resistant as nickel and is more strategic. Iron will wet probably all oxides and silicates and

  3. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  4. Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrO{sub x} cermet coatings on aluminium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gaouyat, Lucie, E-mail: lucie.gaouyat@fundp.ac.be [Solid State Physics Laboratory, Research Center in Physics of Matter and Radiation (PMR), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur (Belgium); Mirabella, Frédéric [CRM Group – AC and CS, 57b boulevard de Colonster, B-4000 Liège (Belgium); Deparis, Olivier [Solid State Physics Laboratory, Research Center in Physics of Matter and Radiation (PMR), Facultés Universitaires Notre-Dame de la Paix (FUNDP), 61 rue de Bruxelles, B-5000 Namur (Belgium)

    2013-04-15

    NiCrO{sub x} ceramic–metal composites (i.e. cermets) exhibit not only oxidation and moisture resistances, which are very important for industrial applications, but also remarkable solar selective absorption properties. In order to reach the best optical performances with only one coating layer, tuning of the magnetron sputtering process parameters (O{sub 2} flow rate, pressure and deposition time) was performed systematically. The process window turned out to be very narrow implying a critical tuning of the parameters. The optimal operating point was determined for a single layer coating of NiCrO{sub x} on an aluminium substrate, leading to a spectrally integrated solar absorption as high as 78%. Among various material properties, the focus was put on the optical reflectance of the coating/substrate system, which was measured by UV–vis–NIR spectrophotometry. Using complex refractive index data from the literature, the theoretical reflectance spectra were calculated and found to be in good agreement with the measurements. Chemical analysis combined with scanning electronic and atomic force microscopies suggested a cermet structure consisting of metallic Ni particles and a compound matrix made of a mixture of chromium oxide, nickel oxide and nickel hydroxide.

  5. Stochastic Computer Simulation of Cermet Coatings Formation

    Directory of Open Access Journals (Sweden)

    Oleg P. Solonenko

    2015-01-01

    Full Text Available An approach to the modeling of the process of the formation of thermal coatings lamellar structure, including plasma coatings, at the spraying of cermet powders is proposed. The approach based on the theoretical fundamentals developed which could be used for rapid and sufficiently accurate prediction of thickness and diameter of cermet splats as well as temperature at interface “flattening quasi-liquid cermet particle-substrate” depending on the key physical parameters (KPPs: temperature, velocity and size of particle, substrate temperature, and concentration of finely dispersed solid inclusions uniformly distributed in liquid metal binder. The results are presented, which concern the development of the computational algorithm and the program complex for modeling the process of laying the splats in the coating with regard to the topology of its surface, which varies dynamically at the spraying, as well as the formation of lamellar structure and porosity of the coating. The results of numerical experiments are presented through the example of thermal spraying the cermet TiC-30 vol.% NiCr powder, illustrating the performance of the developed computational technology.

  6. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  7. Tribological properties of TiA1N-coated cermets

    Institute of Scientific and Technical Information of China (English)

    ZHENG Liyun; ZHAO Lixin; XIONG Weihao

    2009-01-01

    Ti(C,N)-based cermets were coated with TiAlN using multi-arc ion plating technology. Sliding wear tests were performed on the coated cermets. The microstructure and morphologies oftbe coated cermets before and after friction and wear tests were characterized. The results show that the TiAlN coating surface was smooth and its root mean square roughness was 16.6 nm. The hardness (HK) of TiAlN coating lay-ers reached approximately 3200 and the critical load (Lc) under which the coating failure occurred was 59 N. The sliding wear test results show that the friction coefficients of the TiAlN-coated cermets were lower than that of the cermets without any coating. Under the same load, the adhesion phenomenon of the counterpart materials on the specimens was improved and the mean friction coefficient increased with in-average friction coefficient of the TiAlN-coated cermets was lower under a higher load. The wear mechanisms of the TiAIN-coated cermets were mainly adhesive and abrasive wear.

  8. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  9. TiC/Fe cermet coating by plasma cladding using asphalt as a carbonaceous precursor

    Institute of Scientific and Technical Information of China (English)

    Junbo Liu

    2008-01-01

    A new Ti-Fe-C compound powder for plasma cladding was prepared by heating a mixture powder of ferrotitanium and asphalt pyro-lyzed as a carbonaceous precursor. The carbon by the pyrolysis of the asphalt acts as a reactive constituent as well as a binder in the compound powder. The TiC/Fe cermet coatings were prepared by plasma cladding with the compound powder. Results show that the Ti-Fe-C compound powder has a very tight structure, which can avoid the problem of the reactive constituent particles being separated during cladding. The TiC/Fe cermet coating presents a typical morphology of plasma cladding coatings with two different laminated layers: one is the composite layer in which the round fine TiC particles (<500 nm) are dispersed within a Fe matrix, the other is the paragentic layer of TiC and Ti2O3. The coating shows high hardness and excellent wear resistance. The surface hardness of the coating is 68 ± 5(HR30N). In the same fretting conditions, the wear area of Ni60 coating is about 11 times as much as the TiC/Fe cermet coating.

  10. Microstructure and mechanical properties of hot isostatically pressed cermets with TiN coatings

    Institute of Scientific and Technical Information of China (English)

    ZHENG Liyun; XIONG Weihao; YAN Xianmei; LI Guo'an

    2006-01-01

    To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPing) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that after the HIPing process, there was a higher increase in critical load in the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also found that the HIPing posttreatment process is well suited for increasing the adhesion strength between the coating and the substrate.

  11. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning. Final report, August 1990--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  12. Characterization and High-Temperature Erosion Behaviour of HVOF Thermal Spray Cermet Coatings

    Science.gov (United States)

    Kumar, Pardeep; Sidhu, Buta Singh

    2016-01-01

    High-velocity oxygen fuel (HVOF) thermal spray, carbide-cermet-based coatings are usually employed in high-temperature erosive and erosive-corrosive environments. Extensive literature is available on high-temperature erosion performance of HVOF coatings under moderate to low particle flux and velocities for application in boiler tubes. This research work presents the characterization and high-temperature erosion behaviour of Cr3C2-25NiCr and WC-10Co-4Cr HVOF-sprayed coatings. Coatings were formulated on the substrate steel of type AISI 304, commonly used for the fabrication of pulverized coal burner nozzles (PCBN). Erosion testing was carried out in high-temperature air-jet erosion tester after simulating the conditions akin to that prevailing in PCBN in the boiler furnace. The coatings were tested for erosion behaviour at different angles and temperatures by freezing other test parameters. Brittle erosion behaviour was depicted in erosion testing, and the coatings couldn't restrain the erodent attacks to protect the substrate. High particle velocity and high particle flux were attributed to be the reasons of extensive erosive weight loss of the coatings. The surface morphology of the eroded specimens was analysed from back-scattered electron images to depict the probable mechanism of material removal. The coatings were characterized with optical microscopy, SEM-EDS analysis, XRD analysis, micro-hardness testing, porosity measurements, surface roughness testing and bond strength testing. The work was undertaken to investigate the performance of the selected coatings in highly erosive environment, so as to envisage their application in PCBNs for protection against material degradation. The coatings could only sustain in oblique impact erosion at room temperature and depleted fully under all other conditions.

  13. Interfacial engineering of solution-processed Ni nanochain-SiOx (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    Science.gov (United States)

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; Liu, Jifeng

    2016-04-01

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiOx cermet system compared to conventional Ni-Al2O3 system when annealed in air at 450-600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, we demonstrate that pre-operation annealing of Ni nanochain-SiOx cermets at 900 °C in N2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiOx interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450-600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiOx interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiOx saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal

  14. Laser nanostructured Co nanocylinders-Al{sub 2}O{sub 3} cermets for enhanced & flexible solar selective absorbers applications

    Energy Technology Data Exchange (ETDEWEB)

    Karoro, A., E-mail: angela@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Nuru, Z.Y.; Kotsedi, L.; Bouziane, Kh. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Mothudi, B.M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Physics Dept., University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa)

    2015-08-30

    Highlights: • Co-Al{sub 2}O{sub 3} was synthesized by electrodeposition & femtosecond laser structuring. • The ultrafast laser structuring significantly increases the solar absorption. • Co-Al{sub 2}O{sub 3} exhibited 0.98 solar absorptance and 0.03 thermal emittance. - Abstract: We report on the structural and optical properties of laser surface structured Co nanocylinders-Al{sub 2}O{sub 3} cermets on flexible Aluminium substrate for enhanced solar selective absorbers applications. This new family of solar selective absorbers coating consisting of Co nanocylinders embedded into nanoporous alumina template which were produced by standard electrodeposition and thereafter submitted to femtosecond laser surface structuring. While their structural and chemical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and atomic force microscopy, their optical characteristics were investigated by specular & diffuse reflectance. The optimized samples exhibit an elevated optical absorptance α(λ) above 98% and an emittance ε(λ) ∼0.03 in the spectral range of 200–1100 nm. This set of values was suggested to be related to several surface and volume phenomena such as light trapping, plasmon surface effect as well as angular dependence of light reflection induced by the ultrafast laser multi-scale structuring.

  15. The Hot Corrosion Performance of NiCr-Cr3 C2 Cermet Coating to Boiler Tube

    Institute of Scientific and Technical Information of China (English)

    DINGZhang-xiong; TUGuo-fu

    2004-01-01

    Three kinds of NiCr-Cr3 C2 cermet coatings were designed and deposited by the subsonic velocity flame spraying, and their performances of hot corrosion performance were evaluated in comt)arison with 102G,20G boiler tube steel, FeCrAl, NiCrTi, Ni5OCr and NiCrAIMoFe-Cr3 C2 coatings, which are widely used at present for protection of boiler tubes. Meanwhile, the influence of sealer on the hot corrosion resistance of warious coatings and the mechanisms of coating corrosion were explored.

  16. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  17. 高性能SS-AlN金属陶瓷真空太阳集热管的制备%Preparation of high performance evacuated SS-AlN cermet solar collector tubes

    Institute of Scientific and Technical Information of China (English)

    池华敬; 郭帅; 熊凯; 王双; 周旭; 苗建朋; 陈革; 章其初

    2012-01-01

    采用真空磁控溅射沉积SS-AlN金属陶瓷太阳选择性吸收涂层.涂层光学功能层的制备,先采用铜靶溅射Cu红外反射层;再采用不锈钢(SS)和铝两金属靶在Ar和N2的混合气体中同时溅射沉积SS-AlN金属陶瓷吸收层;最后采用Al靶在Ar和N2中反应溅射沉积AlN减反射层.金属陶瓷吸收层由高、低SS体积份额的两吸收子层组成.优化溅射镀膜工艺参数获得高性能吸收涂层,太阳吸收比α(AM1.5)高达0.956±0.003(国标GB:α≥0.86),比GB高10%;红外发射比ε仅为0.043±0.003(GB:ε≤0.08).制备成φ58×2100 mm全玻璃真空太阳集热管,80℃平均热损系数ULT仅为0.47±0.01 W/m2℃ (GB:ULT≤0.85 W/m2℃),比GB低0.38W/m2℃,性能提高45%.制备的真空集热管具有良好的真空品质,集热管内管加热350℃恒温480 h后,吸气镜面轴向长度平均消失率仅为2~3%,集热管真空品质优于GB高达100倍以上(GB:350℃恒温48 h,镜面消失率≤50%).%Stainless steel-aluminium nitride (SS-AHV) cermet solar selective coatings were deposited by vacuum magnetron sputtering. The depositing process of the SS-A1N solar coatings is described as follows. Firstly, a Cu inferred reflection layer was deposited with Cu target. Secondly, a SS-A1N cermet absorber layer was deposited by sputtering simultaneously with Al and SS two metallic targets in the gas mixture of Ar and N2. Finally, an A1N anti-reflection layer was deposited with Al target in the gas mixture of Ar and N2. The SS-A1N cermet absorber layer is composed of a double cermet layer film structure incorporating two distinct cermet layers, a high SS volume fraction absorbing layer and a low SS volume fraction absorbing layer. A solar absorptance a of 0.956±0.003, and emittance e of 0.043±0.003 were achieved with optimized sputtering deposition parameters. The optical performance of the SS-A1N solar absorber coatings were unchanged after baking-evacuating the solar collector tubes at 450

  18. Reactively Sputtered Al2O3 Coating and Its Applications in Fabrication of Cermet Solar Collector Tubes%直流反应溅射沉积Al2O3薄膜及其在SS-AlN金属陶瓷太阳吸收涂层的应用

    Institute of Scientific and Technical Information of China (English)

    池华敬; 郭帅; 熊凯; 王双; 陈革; 章其初

    2012-01-01

    在沉积不锈钢-氮化铝(SS-AlN)金属陶瓷太阳吸收集热管的磁控溅射三靶镀膜机上,安装了UPS03反应溅射闭环控制单元,实现反应溅射Al2O3稳定反馈控制.采用国产直流电源在Al靶表面处于过渡态下,成功制备了吸收几乎为零的Al2O3薄膜.溅射功率在14 kW时,反应溅射沉积Al2O3的靶电压波动可长时间稳定控制在±3V范围内,沉积速率为5.4 nm/(min·kW),约为Al靶在无反应气体溅射下沉积Al薄膜速率的74%.采用Al2O3代替AlN作为减反射层,应用到SS-AlN太阳选择性吸收涂层中,进一步提高了复合膜的太阳光学性能,太阳吸收比由AlN作为减反射层的0.956提高到0.965,红外发射比不变,仍为0.044.%The Al2Q3 coatings were deposited by DC reactive magnetron sputtering on the outer wall surfaces of the inner tube of the ceimet solar collector,coated with Cu, stainless steel and aluminum nitride ceramics layers. Various factors influencing the Al2O3 deposition, such as the sputtering power, pressure, deposition rate, and ratio of the gas flow rates. The results show that the Al2Q3 films outperforms AlN films when used as the anti-reflection layer in stainless steel aluminum nitride (SS-A1N) metal ceramic solar absorbing coatings. The solar absorptance of the Al2O3 coatings, grown under optimized conditions,was found to be close to zero,resulting in an absorptance of 0.965,0.009 higher than that of A1N coatings, with no change in the infrared emission rate (0.044).

  19. Selective optical coatings for solar collectors

    Science.gov (United States)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  20. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  1. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  2. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  3. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  4. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-08-31

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  5. Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN coating cermet tools

    Directory of Open Access Journals (Sweden)

    Ouahid Keblouti

    2017-01-01

    Full Text Available The present work concerns an experimental study of turning with coated cermet tools with TiCN-TiN coating layer of AISI 52100 bearing steel. The main objectives are firstly focused on the effect of cutting parameters and coating material on the performances of cutting tools. Secondly, to perform a Multi-objective optimization for minimizing surface roughness (Ra and maximizing material removal rate by desirability approach. A mathematical model was developed based on the Response Surface Methodology (RSM. ANOVA method was used to quantify the cutting parameters effects on the machining surface quality and the material removal rate. The results analysis shows that the feed rate has the most effect on the surface quality. The effect of coating layers on the surface quality is also studied. It is observed that a lower surface roughness is obtained when using PVD (TiCN-TiN coated insert when compared with uncoated tool. The values of root mean square deviation and coefficient of correlation between the theoretical and experimental data are also given in this work where the maximum calculated error is 2.65 %.

  6. Coating, Titanium Dioxide and Solar Cell

    OpenAIRE

    Yang, Aohan

    2011-01-01

    The objective of this bachelor’s thesis is to get basic ideas about coating and a deep understanding of properties of titanium dioxide pigments as well as their application and performance in solar electricity energy technology. This thesis consists of three main parts, eight chapters. The first part is about basic knowledge of coating and tests of coated paper. Coating pigments are generally introduced in the part. In the second part, coating additives are introduced in details from ...

  7. Natural-oxide solar-collector coatings

    Science.gov (United States)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  8. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  9. Processing on high efficiency solar collector coatings

    Science.gov (United States)

    Roberts, M.

    1977-01-01

    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  10. Survey of coatings for solar collectors

    Science.gov (United States)

    Mcdonald, G. E.

    1975-01-01

    Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel.

  11. Influence of Fracture Toughness and Microhardness on the Erosive Wear of Cermet Coatings Deposited by Thermal Spray

    Science.gov (United States)

    Mojena, Miguel Reyes; Orozco, Mario Sánchez; Fals, Hipólito Carvajal; Ferraresi, Valtair Antonio; Lima, Carlos Roberto Camello

    2017-02-01

    An evaluation of the relationship between the microhardness and fracture toughness with resistance to erosive wear of WC10Co4Cr, WC-12Co, and Cr3C2-25NiCr coatings was conducted. Powder and flexible cored wire feedstock materials were applied by high-velocity oxygen fuel (HVOF) and flame spray (FS), respectively. The erosive wear mechanism prevailing in the coatings was found to be brittle, which also explains the higher erosion rate for the experimental condition using the particle impact angle of 90 deg and impact velocity of 9.33 m/s. The best wear performance was for the coatings applied by HVOF that attains 1.83 mm3/kg for the 90 deg/3.61 m/s test condition. The coating obtained with the WC-10Co4Cr material using the FSFC method showed tungsten carbide decarburization, justifying its poor mechanical properties and poor performance in the erosive wear test. Flame-sprayed flexicords proved to be a promising alternative to HVOF in obtaining coatings with low porosity and acceptable mechanical properties, especially in applications where the use of the HVOF technique is inadequate because of inaccessibility or excessively high cost. Values of K c for the coatings obtained by HVOF (7.35 to 10.83 MPa.m1/2) were between two and three times greater than the values obtained for the coatings resulting from FSFC (2.39 to 3.59 MPa.m1/2), in a similar manner as with the microhardness.

  12. Flank wear study of coating carbides and cermet inserts during the dry high speed turning of AISI 1045 steel; Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P.; Guerrero-Mata, M.; Dumitrescu, L.

    2011-07-01

    This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds. (Author) 19 refs.

  13. 激光熔覆MoB/CoCr金属陶瓷涂层的微观组织%Microstructure of MoB/CoCr cermet coating by laser cladding

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌; 王洪涛; 白小波; 林厚勤; 温雨

    2012-01-01

    MoB/CoCr cermet coating was prepared on 45 steel surface by using 5 kW CO2 laser. Microstructure, composition analysis and microhardness were studied. The results show that MoB/CoCr cermet coating is metallurgically bonded with substrate. The main elements of cladding layer are Mo, Cr and Co, the content of Fe ( wt% ) are increased obviously for diffusing among the alloyed zone. The hardness of the cladding layer is obviously higher than that of the substrate, which achieves the effect of surface strengthening.%采用5 kW CO2激光器在45钢表面激光熔覆制备MoB/CoCr金属陶瓷涂层,对涂层的微观组织、成分分布和显微硬度进行研究。结果表明,MoB/CoCr金属陶瓷涂层组织致密,与基体呈冶金结合。激光熔覆的熔覆区中的主要元素是Mo、Cr和Co,合金化区由于元素互扩散,Fe元素含量明显增加。激光熔覆后MoB/CoCr金属陶瓷涂层的硬度远远大于基体的硬度,起到了表面强化的作用。

  14. Inexpensive Antireflection Coating for Solar Cells

    Science.gov (United States)

    Tracy, C. E.; Kern, W.; Vibronek, R. D.

    1982-01-01

    Continuous method for applying antireflection coating to solar cells increases efficiency of devices by preventing energy from being reflected away, but adds little to manufacturing cost. Method consists of spraying solution on cells or glass collector plates, drying sprayed layer, and curing it. Solution is formulated to spread evenly over surfaces.

  15. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  16. Effect of a titanium nitride interlayer on the densification, properties and microstructure of cermets based on alumina and nickel. Part 1: Densification and properties

    NARCIS (Netherlands)

    Li, Shujie; Khosrovabadi, Paul Babayan; Kolster, Ben H.

    1992-01-01

    In order to manufacture cermets based on Al2O3 and Ni, Al2O3 particles were first coated with TiN by CVD and then mixed with pure Ni powder. The cermets were produced from the mixed powders by powder metallurgy processes. The relative density and the mechanical properties of the cermets are improved

  17. 汽车刹车片用复合型金属陶瓷涂层制备及性能研究%Preparation and Property Study of Composite Cermet Coating Used in Automobile Brake Shoes

    Institute of Scientific and Technical Information of China (English)

    侯占祥; 靳清

    2012-01-01

    The Preparation process and application property of composite cermet coating used in automobile brake shoes were studied in this paper. A new type of WC-CoCr10/4 cermet powder that joint R&D with a domestic research institute were selected and the optimized HVOF spraying process were uesd to made coating directly on the braking disc. The study found that, using the composite cermet coating as a braking disc can make its tensile strength up to 75 Mpa above with brake pads, Microhardness can reach 1300 (HV0.3), at the same time, the coating has compact structure and low porosity, which not only improving the wearing resistance and significant extending the life of brake shoes, but also reduce the cost of production,. And the coatings fully meet the practical use requirements and have a broad application prospect.%本文进行了将复合型金属陶瓷涂层用于汽车刹车片的制备工艺与应用性能的初步研究。选用与国内某研究机构联合研制的新型WC—CoCr10/4金属陶瓷粉体作为刹车片材料并采用优化后的HVOF超音速火焰喷涂工艺直接在制动盘上制备,经研究发现,采用该复合涂层作为刹车片可以使其与制动盘之间的拉伸结合强度达到75Mpa以上,显微硬度可达HV0.31300,同时该涂层具有组织致密、孔隙率低等特点,在提高刹车片耐磨性、显著延长使用寿命的同时也降低了生产成本,完全满足实际使用需求,具有广阔的应用前景。

  18. Study on Abrasive Wear Properties of MoB/CoCr Cermet Coating%MoB/CoCr金属陶瓷涂层的磨粒磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌

    2012-01-01

    在310S基体表面采用低压等离子喷涂(LPPS)技术制备MoB/CoCr金属陶瓷涂层.用扫描电镜观察涂层的组织结构:测试了MoB/CoCr涂层的显微硬度和结合强度;用湿式橡胶轮磨粒磨损试验机测试涂层的磨损性能.结果显示:MoB/CoCr涂层组织为层状结构,涂层与310S基体之间、表面涂层与过渡涂层之间结合良好.MoB/CoCr涂层具有较高的硬度值和结合强度,且具有良好的抗磨粒磨损性能.%MoB/CoCr cermet coating was deposited by low pressure plasma spraying (LPPS) on 310S steel. The microstructure of the MoB/CoCr coating was observed by SEM. The microhardness and bonding strength of the MoB/CoCr coating were tested. The abrasive wear properties were evaluated by wet sand rubber wheel tester. The results show that MoB/CoCr coating is dense and has excellent combination with 310S steel substrate. MoB/CoCr coating has high hardness and excellent wear properties.

  19. Low Earth Orbit Environmental Durability of Recently Developed Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.

    2015-01-01

    The Materials International Space Station Experiment provided a means to expose materials and devices to the low Earth orbit environment on the exterior of the International Space Station. By returning the specimens to Earth after flight, the specimens could be evaluated by comparison with pre-flight measurements. One area of continuing interest is thermal control paints and coatings that are applied to exterior surfaces of spacecraft. Though traditional radiator coatings have been available for decades, recent work has focused on new coatings that offer custom deposition or custom optical properties. The custom deposition of interest is plasma spraying and one type of coating recently developed as part of a Small Business Innovative Research effort was designed to be plasma sprayed onto radiator surfaces. The custom optical properties of interest are opposite to those of a typical radiator coating, having a combination of high solar absorptance and low infrared emittance for solar absorber applications, and achieved in practice via a cermet coating. Selected specimens of the plasma sprayed coatings and the solar absorber coating were flown on Materials International Space Station Experiment 7, and were recently returned to Earth for post-flight analyses. For the plasma sprayed coatings in the ram direction, one specimen increased in solar absorptance and one specimen decreased in solar absorptance, while the plasma sprayed coatings in the wake direction changed very little in solar absorptance. For the cermet coating deployed in both the ram and wake directions, the solar absorptance increased. Interestingly, all coatings showed little change in infrared emittance.

  20. Spray pyrolytically grown NiAlOx cermets for solar thermal selective absorbers: spectral properties and thermal stability

    Indian Academy of Sciences (India)

    A Bagheri Khatibani; S M Rozati

    2016-02-01

    After deposition of NiAlOx thin films on stainless-steel substrates by the spray pyrolysis technique, various properties of the films were investigated using Fourier transform infrared spectroscopy, UV–visible reflectance spectrophotometry, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical quantities were determined using reflectance spectra in the relevant spectrum region. At first the optimal substrate temperature was selected and then different nickel to aluminium ratios were examined to find the efficient solar absorber. The SEM revealed changes in morphology due to different molar ratios. The XRD of the selected sample showed a mixture of nickel and nickel oxide phases with the strong presence of substrate peaks and without the presence of alumina phase while in the EDX test the peaks corresponding to O, Al and Ni appeared. Long-term thermal stability study was performed by means of performance criterion concept.

  1. High durability solar absorptive coating and methods for making same

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron C.; Adams, David P.

    2016-11-22

    The present invention relates to solar absorptive coatings including a ceramic material. In particular, the coatings of the invention are laser-treated to further enhance the solar absorptivity of the material. Methods of making and using such materials are also described.

  2. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kenendy, C. E.

    2007-10-10

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  3. New solar selective coating based on carbon nanotubes

    Science.gov (United States)

    Abendroth, Thomas; Leupolt, Beate; Mäder, Gerrit; Härtel, Paul; Grählert, Wulf; Althues, Holger; Kaskel, Stefan; Beyer, Eckhard

    2016-05-01

    Carbon nanotubes (CNTs) can be applied to assemble a new type of solar selective coating system for solar thermal applications. In this work the predominant absorption processes occurring by interaction with π-plasmon and Van Hove singularities (VHS) were investigated by UV-VIS-NIR spectroscopy and ellipsometry. Not only optical properties for as deposited SWCNT thin films itself, but also the potential for systematic tailoring will be presented. Besides low cost technologies required, the adjustability of optical properties, as well as their thermal stability render CNT based solar selective coatings as promising alternative to commercially available coating systems.

  4. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHULiu; LINGGuo-ping; LIJian; WANGYou-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al2O3 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.% Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt% ) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs, ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM. The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  5. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHU Liu; LING Guo-ping; LI Jian; WANG You-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al203 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.%Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt%) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs,ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM.The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  6. Influence of spraying powders on properties of cold-sprayed WC cermet coatings%粉末制备工艺对冷喷WC金属陶瓷涂层性能的影响

    Institute of Scientific and Technical Information of China (English)

    陈枭; 王洪涛; 纪岗昌; 白小波; 董增祥; 王芳

    2013-01-01

    采用包覆、机械混合与团聚烧结工艺制备了多尺度WC-17Ni和ZYT10001A(WC-17% Co),WCTN(WC-17% Co)金属陶瓷粉末.用3种粉末冷喷涂沉积涂层,运用扫描电镜分析了涂层的组织结构、X射线衍射表征粉末与涂层的物相结构,用压入法测定了涂层的显微硬度、弹性模量和断裂韧性.研究结果表明,3种粉末沉积的涂层均具呈现致密的组织结构,涂层中的相结构没有发生变化.3种涂层的显微硬度、弹性模量和断裂韧性分别在(650.8±40.4)~ (1350.0±115) HV0.3、(182.6±66.6) ~(309.9±52.9)GPa和(13.12±4.44)~ (24±1)MPa·m1/2之间变化,其中以ZYT10001A(WC-17% Co)涂层的硬度值最大及断裂韧性值最小.%WC-17Ni, ZYT10001A ( WC-17% Co) and WCTN ( WC-17% Co) powders fabricated by cladding, mechanical mixing, agglomerate-sintering method respectively were deposited on stainless steel substrate to obtain WC cermet coatings by cold spraying. Microstructure of the coatings was studied by scanning electron microscopy, phase composnent was investigated by means of X-ray diffraction, and the microhardness, elastic modulus and fracture toughness were measured by indentation method. The results show that the coatings depsited by using three kinds of powders exhibited dense microstructure. The phases of the feedstocks remained unchanged in the coatings. The microhardness, elastic modulus and fracture toughness of the coatings varied from (650.8±40.4) to (1350. 0 ± 115) HV0.3, (182. 6 ±66. 6) to (309. 9 ±52. 9) GPa and (13. 12+4.44) to (24±1) MPa-m1/2, respectively, and ZYT10001A( WC-17% Co) coating had the highest value of microhardness and the lowest value of fracture toughness in the three coatings.

  7. Manufacture of annular cermet articles

    Science.gov (United States)

    Forsberg, Charles W.; Sikka, Vinod K.

    2004-11-02

    A method to produce annular-shaped, metal-clad cermet components directly produces the form and avoids multiple fabrication steps such as rolling and welding. The method includes the steps of: providing an annular hollow form with inner and outer side walls; filling the form with a particulate mixture of ceramic and metal; closing, evacuating, and hermetically sealing the form; heating the form to an appropriate temperature; and applying force to consolidate the particulate mixture into solid cermet.

  8. Efficient spray-coated colloidal quantum dot solar cells

    KAUST Repository

    Kramer, Illan J.

    2014-11-10

    (Figure Presented). A colloidal quantum dot solar cell is fabricated by spray-coating under ambient conditions. By developing a room-temperature spray-coating technique and implementing a fully automated process with near monolayer control - an approach termed as sprayLD - an electronic defect is eliminated resulting in solar cell performance and statistical distribution superior to prior batch-processed methods along with a hero performance of 8.1%.

  9. Materials for solar-transmitting heat-reflecting coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, B.; Valkonen, E.; Karlsson, T.; Ribbing, C.G.

    1981-11-27

    A coating for solar energy applications which combines heat reflection with transparency to solar radiation may be of four different types: a metallic film which is sufficiently thin to be transparent; a metal-based multilayer coating; a wide band gap heavily doped semiconductor such as SnO/sub 2/ or In/sub 2/O/sub 3/; a conducting microgrid. We prepared such coatings on glass by evaporating thin films of silver, copper, gold, aluminium, cobalt, iron, chromium and nickel of various thicknesses and by spraying SnO/sub 2/ films. The spectral variations in the transmittance, and the front side and back side reflectances were measured in the wavelength range 0.4-15..mu..m. The properties of a three-layer coating of the dielectric/metal/dielectric type were calculated with a multilayer program using known bulk optical constants. The effect of these films when coated onto a domestic window was demonstrated with a heat transfer calculation using an equivalent thermal net. When a large transmittance over a broad range of the solar spectrum is required, gold is an equally good, or a slightly better, choice than silver as the metal in a three-layer coating. In general, an SnO/sub 2/ film exhibits a higher solar transmittance as well as a higher emittance than a coating containing metals. This implies that the oxide is to be preferred as a coating on a window when the maximum passive solar heating is sought. However, a metal-based coating could be better when a very low Usub(L) value is the most important requirement.

  10. Solar selective black nickel-cobalt coatings on aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shashikala, A.R.; Sharma, A.K.; Bhandari, D.R. [Thermal System Group, ISRO Satellite Centre, Bangalore 560 017 (India)

    2007-04-16

    Solar selective black nickel-cobalt plating on pre cleaned aluminum alloy substrates with nickel undercoat were investigated. Process optimization was carried out by the hull cell experiments investigating the influence of operating variables on the optical selectivity of the coating. The coatings were characterized with scanning electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopic and polarization studies. Evaluation of the coatings was carried out by adhesion, measurement of coating thickness and optical properties, humidity, thermal cycling, thermo-vacuum performance and thermal stability tests. (author)

  11. Comparison of additive amount used in spin-coated and roll-coated organic solar cells

    DEFF Research Database (Denmark)

    Cheng, Pei; Lin, Yuze; Zawacka, Natalia Klaudia

    2014-01-01

    All-polymer and polymer/fullerene inverted solar cells were fabricated by spin-coating and roll-coating processes. The spin-coated small-area (0.04 cm(2)) devices were fabricated on indium tin oxide (ITO) coated glass substrates in nitrogen. The roll-coated large-area (1.0 cm(2)) devices were...... prepared on ITO-free flexible substrates under ambient conditions. The use of a solvent additive, 1,8-diiodooctane (DIO), facilitated phase separation and enhanced power conversion efficiencies (PCEs). The PCE of polymer/fullerene solar cells increased from 4.58% to 8.12% with 2.5% (v/v) DIO when using...... the spin-coating process, and increased from 1.37% to 2.09% with 5% (v/v) DIO in the roll-coating process. The PCE of all-polymer solar cells increased from 1.44% to 3.51% with 4% (v/v) DIO when employing the spin-coating process. For the roll-coated large area devices the PCE increased from 0.15% to 0...

  12. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  13. Antireflection coatings for GaAs solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexieva, Z I; Nenova, Z S; Bakardjieva, V S; Dikov, Hr M; Milanova, M M, E-mail: alexieva@phys.bas.b [Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 59 St Petersrburg Blvd, 4000 Plovdiv (Bulgaria)

    2010-04-01

    A double-layer structure of Al{sub 2}O{sub 3} over ZrO{sub 2} film is studied. Minimization of the average weighted reflectance is carried out to optimize the thickness of the two layers in the antireflection coating. An optimal value of 2.17% for the weighted average reflection is estimated. The optimal thicknesses of the layers are 49 nm for the bottom and 45 nm for the top layer. Low temperature spin coating technique is used to deposit ZrO{sub 2} and Al{sub 2}O{sub 3} films from sol gel solutions on polished silicon wafers, GaAs multilayer heterostructures and AlGaAs/GaAs solar cells. The density of the short-circuit photocurrent increases from 25 mA.cm{sup -2} for solar cells without an antireflection coating to 36 mA.cm{sup -2} for those with a double layer coating.

  14. Antireflection coatings for GaAs solar cell applications

    Science.gov (United States)

    Alexieva, Z. I.; Nenova, Z. S.; Bakardjieva, V. S.; Milanova, M. M.; Dikov, Hr M.

    2010-04-01

    A double-layer structure of Al2O3 over ZrO2 film is studied. Minimization of the average weighted reflectance is carried out to optimize the thickness of the two layers in the antireflection coating. An optimal value of 2.17% for the weighted average reflection is estimated. The optimal thicknesses of the layers are 49 nm for the bottom and 45 nm for the top layer. Low temperature spin coating technique is used to deposit ZrO2 and Al2O3 films from sol gel solutions on polished silicon wafers, GaAs multilayer heterostructures and AlGaAs/GaAs solar cells. The density of the short-circuit photocurrent increases from 25 mA.cm-2 for solar cells without an antireflection coating to 36 mA.cm-2 for those with a double layer coating.

  15. Advanced Antireflection Coatings for High-Performance Solar Energy Applications

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.

  16. Coating Processes Boost Performance of Solar Cells

    Science.gov (United States)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  17. Multilayer reflective coating for solar energy concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Perla; Almanza, Rafael [Inst. de Ingenieria, Univ. Nacional Autonoma de Mexico, Mexico (Mexico); Cruz-Manjarrez, Hector [Inst. de Fisica, Univ. Nacional Autonoma de Mexico, Mexico (Mexico)

    2008-07-01

    The central objective of this work is determine the optimal parameters for the preparation of compound mirrors of first surface of high reflectance by the magnetron sputtering method that will have a direct application in parabolic trough solar concentrators to use in a hybrid solar-geothermal Geothermal Plant at Cerro Prieto, located to the South-eastern of Mexicali City at the Northwest of Mexico. (orig.)

  18. Solar absorption characteristics of several coatings and surface finishes. [for solar energy collectors

    Science.gov (United States)

    Lowery, J. R.

    1977-01-01

    Solar absorption characteristics are established for several films potentially favorable for use as receiving surfaces in solar energy collectors. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings. It was found that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

  19. Durability testing of antireflection coatings for solar applications

    Science.gov (United States)

    Jorgensen, Gary J.; Brunold, Stefan; Koehl, Michael; Nostell, Per; Oversloot, Henk; Roos, Arne

    1999-10-01

    Antireflection (AR) coatings can be incorporated into highly transmitting glazings that, depending upon their cost, performance, and durability of optical properties, can be economically viable in solar collectors, agricultural greenhouses, and PV systems. A number of AR-coated glazings have been prepared under the auspices of the International Energy Agency Working Group on Durability of Materials for Solar Thermal Collectors. The AR coatings are of two types, including (1) various sol-gels applied to glass and (2) an embossed treatment of sheet acrylic. Typically, for unweathered glazings, a 4 - 5% increase in solar-weighted transmittance has been achieved. For AR-coated glass, reflectance values as low as 0.5% - 0.7% at selected wavelengths (680 - 720 nm) were obtained. To determine the durability of the hemispherical transmittance, several collaborating countries are testing these materials both outdoors and in accelerated weathering chambers. All materials exposed outdoors are affixed to mini-collector boxes to simulate flat-plate collector conditions. Results for candidate AR coatings weathered at geographically disperse outdoor test sites exhibit changes in spectral transmittance primarily in the high visible range (600 - 700 nm). Accelerated testing at measured levels of simulated solar irradiance, and at different constant levels of temperature and relative humidity have been performed in different countries. Parallel testing with different levels of laboratory-controlled relevant stress factors permits the time-dependent performance of these materials to be compared with measured results from in-service outdoor exposure conditions. Coating adhesion and performance loss resulting from dirt and dust retention are also discussed.

  20. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    OpenAIRE

    Abdullah Uzum; Masashi Kuriyama; Hiroyuki Kanda; Yutaka Kimura; Kenji Tanimoto; Hidehito Fukui; Taichiro Izumi; Tomitaro Harada; Seigo Ito

    2017-01-01

    Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm) was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fa...

  1. Development and Testing of High-Temperature Solar Selective Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.; Price, H.

    2005-01-01

    The Solar Energy Technologies Program is working to reduce the cost of parabolic trough solar power technology. System studies show that increasing the operating temperature of the solar field from 390 to >450 C will result in improved performance and cost reductions. This requires the development of new more-efficient selective coatings that have both high solar absorptance (>0.96) and low thermal emittance (<0.07) and are thermally stable above 450 C, ideally in air. Potential selective coatings were modeled, identified for laboratory prototyping, and manufactured at NREL. Optimization of the samples and high-temperature durability testing will be performed. Development of spectrally selective materials depends on reliable characterization of their optical properties. Protocols for testing the thermal/optical properties of selective coatings were developed and a round-robin experiment was conducted to verify and document the reflectance and high-temperature emittance measurements. The development, performance, and durability of these materials and future work will be described.

  2. Optimization of broadband omnidirectional antireflection coatings for solar cells

    CERN Document Server

    Guo, Xia; Li, Chong; Zhou, Hongyi; Lv, Benshun; Feng, Yajie; Wang, Huaqiang; Liu, Wuming

    2015-01-01

    Broadband and omnidirectional antireflection coating is a generally effective way to improve solar cell efficiency, because the destructive interference between the reflected and input waves could maximize transmission light in the absorption layer. Several theoretical calculations have been developed to optimize the anti-reflective coating to maximize the average transmittance. However, the solar irradiances of the clear sky spectral direct beam on a receiver plane at different positions and times are variable greatly. Here we report a new theoretical calculation of anti-reflective coating with incident quantum efficiency {\\eta}in as evaluation function for practical application. The two-layer and three-layer anti-reflective coatings are optimized over {\\lambda} = [300, 1100] nm and {\\theta} = [0{\\deg}, 90{\\deg}] for cities of Quito, Beijing and Moscow. The {\\eta}in of two-layer anti-reflective coating increases by 0.26%, 1.37% and 4.24% for these 3 cities, respectively, compared with that other theoretical ...

  3. Microstructure and properties of MoB/CoCr cermet coating on 45 steel prepared by laser cladding%45钢表面激光熔覆MoB/CoCr金属陶瓷覆层的组织与性能

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌; 王洪涛; 白小波; 于福义

    2012-01-01

    采用激光熔覆技术在45钢基体表面熔覆MoB/CoCr金属陶瓷覆层,对MoB/CoCr覆层进行X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)的微观组织结构分析和对覆层的硬度进行测试。结果表明:熔覆层组织致密,与基体结合牢固且呈冶金结合;熔覆层的主要物相为CoMo2B2和CoMoB,主要的化学成分是Mo、Cr和Co,合金化区中Fe元素的含量明显增加。硬度测试表明熔覆层的硬度值是45钢硬度值的10倍以上。%MoB/CoCr cermet coating was prepared on 45 steel surface by laser cladding. Microstructure of MoB/CoCr coating was characterized by XRD, SEM and EDS,and mierohardness of the coating was also studied. The results show that MoB/CoCr cermet coating with metallurgical bonding to substrate is dense. The main phases of the cladding layer are CoMo2B2and CoMoB, and its main chemical composition is Mo, Cr and Co, the content of Fe increases obviously in the alloying zone of the cladding layer. The hardness of the cladding layer is much higher than that of the substrate.

  4. Silver nanoparticles-coated glass frits for silicon solar cells

    Science.gov (United States)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  5. Reflective solar coatings. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The bibliography contains citations concerning the research and development of solar reflective coatings. The use of reflective and antireflective coatings in solar mirrors, collectors, cells, and laser windows is discussed. Corrosion protection and protective coatings are emphasized. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Chemical vapor deposited silica coatings for solar mirror protection

    Science.gov (United States)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica films, and hence such films would be desirable for this application.

  7. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    OpenAIRE

    L.P. Steblenko; A.O. Podolyan; O.O. Korotchenkov; L.M. Yashchenko; S.M. Naumenko; D.V. Kalinichenko; Yu.L. Kobzar; A.M. Kuryliuk; V.M. Kravchenko

    2014-01-01

    Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  8. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    Directory of Open Access Journals (Sweden)

    L.P. Steblenko

    2014-11-01

    Full Text Available Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  9. Selective coatings for solar-to-thermal energy converters

    Science.gov (United States)

    Gukhman, G. A.; Koltun, M. M.

    1984-02-01

    A selective coating proposed for flat plate solar collectors consists of a thick Al2O3 layer with embedded metal particles and on it an infrared reflecting layer of electrically conducting vitreous ceramic material (PbO or In2O3). Both layers are deposited electromatically on collectors made of aluminum or an aluminum alloy. A double layer of 2 to 3 micron thick chromium on 9 to 10 micron thick nickel is effective in preventing oxidation on copper surfaces. Specimens of such coatings were tested in a laboratory humidity chamber and are now tested under the climatic conditions in the Crimea, 750,000 Wh/sq m of solar radiation at a mean-weekly intensity of 700 W/sq m having been accumulated in nine months. The ratio of heat absorbint to total surface area is or = 0.9 and emissivity is or = 0.2 were not degraded by holding in a furnace at 500 C for 50 h. The feasibility of producing multilayer coatings of this type was established on the basis of computer calculations for various combinations of collector material and protective interlayers.

  10. Fabrication and processing of polymer solar cells: A review of printing and coating techniques

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    -forming techniques such as slot-die coating, gravure coating, knife-over-edge coating, off-set coating, spray coating and printing techniques such as ink jet printing, pad printing and screen printing. The former are used almost exclusively and are not suited for high-volume production whereas the latter are highly...... suited, but little explored in the context of polymer solar cells. A further distinction is made between printing and coating when a film is formed. The entire process leading to polymer solar cells is broken down into the individual steps and the available techniques and materials for each step...

  11. Design Multilayer Antireflection Coatings for Terrestrial Solar Cells

    Directory of Open Access Journals (Sweden)

    Feng Zhan

    2014-01-01

    Full Text Available In order to analyze the influence of methods to design antireflection coatings (ARCs on reflectivity of broadband solar cells, we provide detailed analyses about the ARC coupled with a window layer and the refractive index dispersion effect of each layer. By multidimensional matrix data simulation, two methods were employed to measure the composite reflection of a SiO2/ZnS double-layer ARC within the spectral ranges of 300–870 nm (dual junction and 300–1850 nm (triple junction under AM1.5 solar radiation. A comparison study, between the results obtained from the commonly used weighted average reflectance method (WAR and that from the introduced effective average reflectance method (EAR, shows that the optimization of ARC by EAR method is convenient and feasible.

  12. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  13. Research on Microstructure and Performance of MoB/CoCr Cermet Coatings Sprayed on 20G Steel Surface%20G钢表面喷涂MoB/CoCr金属陶瓷涂层的组织性能研究

    Institute of Scientific and Technical Information of China (English)

    陈袅; 张仁元; 李风

    2011-01-01

    MoB/CoCr cermet coatings were deposited on 20G steel by low pressure plasma spraying (LPPS). The microstructure and phase composition of coatings were characterized by XRD, SEM and EDAX, and the bond strength and thermal shock resistance performance were studied. The results show that phase component of powder and coating had little change. The coatings are dense and have excellent combination with substrate. The main constituents of coatings remain invariant and the coatings have excellent performance of bond strength and thermal shock resistance. The MoB/CoCr coating has much higer durability after 1080 h immersion test in the molten Al-12.07% Si.%在20G钢换热管表面上利用低压等离子喷涂(UPS)制备MoB/CoCr金属陶瓷涂层.采用X射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDAX)对涂层的物相组成、微观组织和成分进行了表征,并对涂层的结合强度和抗热震性能进行研究.研究表明:喷涂前后涂层的物相相差不大,涂层为层状结构;涂层与20G基体之间、表面涂层与过渡涂层之间结合良好,涂层致密;涂层具有良好的结合强度和抗热震性能,在熔融AI-12.07% Si中经过1080h腐蚀后,涂层基本保持完好,具有很好的抗熔融铝硅腐蚀性能.

  14. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  15. Optical studies of multilayer dielectric-metal-dielectric coatings as applied to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Demichelis, F.; Minetti-Mezzetti, E.; Perotto, V.

    1982-09-01

    A study of antireflection coatings for solar cells which provide maximum transmittance in the range of the spectral response of the cell and maximum reflectance in the IR portion of the spectrum of normally incident radiation is reported. Dielectric-metal-dielectric filters with a relatively low number of dielectric layers are designed as coatings for silicon and GaAs solar cells.

  16. Sprayed and Spin-Coated Multilayer Antireflection Coating Films for Nonvacuum Processed Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2017-01-01

    Full Text Available Using the simple and cost-effective methods, spin-coated ZrO2-polymer composite/spray-deposited TiO2-compact multilayer antireflection coating film was introduced. With a single TiO2-compact film on the surface of a crystalline silicon wafer, 5.3% average reflectance (the reflectance average between the wavelengths of 300 nm and 1100 nm was observed. Reflectance decreased further down to 3.3% after forming spin-coated ZrO2 on the spray-deposited TiO2-compact film. Silicon solar cells were fabricated using CZ-Si p-type wafers in three sets: (1 without antireflection coating (ARC layer, (2 with TiO2-compact ARC film, and (3 with ZrO2-polymer composite/TiO2-compact multilayer ARC film. Conversion efficiency of the cells improved by a factor of 0.8% (from 15.19% to 15.88% owing to the multilayer ARC. Jsc was improved further by 2 mA cm−2 (from 35.3 mA cm−2 to 37.2 mA cm−2 when compared with a single TiO2-compact ARC.

  17. Orbital dynamics of a solar sail accelerated by thermal desorption of coatings

    OpenAIRE

    2016-01-01

    In this study we considered a solar sail coated with materials that undergo thermal desorption at a specific temperature, as a result of heating by solar radiation at a particular heliocentric distance. Three different scenarios, that only differ in the way the sail approaches the Sun, were analyzed and compared. In every case once the perihelion is reached, the sail coat undergoes thermal desorption. When the desorption process ends, the sail then escapes the Solar System having the conventi...

  18. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  19. Multilayer Antireflection Coating for Triple Junction Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHAN Feng; WANG Hai-Li; HE Ji-Fang; WANG Juan; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan

    2011-01-01

    @@ According to the theory of optical films, we simulate the reflectivity of antireflection coatings(ARCS)for solar cells of Gao.51no.5P/GaAs/Ge based on an optical transfer matrix.In order to provide sufficient consideration of the refractive index dispersion effect of multilayer ARCS, we use multi-dimensional matrix data for reliable simulation.After the reflection curves are obtained, the effective average reflectance Re is introduced to optimize the film system by minimizing Re.Optimization of single layer(A1203), double layer(MgF2/ZnS)and triple layer(MgF2/A12O3/ZnS)ARCS is realized by using this method for space and terrestrial applications.Effects of these ARCS are compared after optimization.These theoretical parameters can be used to guide experiments.%According to the theory of optical films, we simulate the reflectivity of antireflection coatings (ARCs) for solar cells of Ga0.5In0.5P/GaAs/Ge based on an optical transfer matrix. In order to provide sufficient consideration of the refractive index dispersion effect of multilayer ARCs, we use multi-dimensional matrix data for reliable simulation. After the reflection curves are obtained, the effective average reflectance Re is introduced to optimize the film system by minimizing Re. Optimization of single layer (Al2O3), double layer (MgF2/ZnS) and triple layer (MgF2/Al2O3/ZnS) ARCs is realized by using this method for space and terrestrial applications. Effects of these ARCs are compared after optimization. These theoretical parameters can be used to guide experiments.

  20. Preparation of solar selective absorbing CuO coating for medium temperature application

    Institute of Scientific and Technical Information of China (English)

    HUANG Qunwu; WANG Yiping; LI Jinhua

    2007-01-01

    A new method of preparing CuO solar selective absorbing coating for medium temperature is presented.After pretreatment,brass was overlaid with CuO by chemical plating.The effects of reactant concentration,reaction temperature and reaction time on the absorptivity of CuO coating were investigated.The optimized condition of preparing CuO coating was obtained.The CuO coating was analyzed with X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM).In order to prolong the period of use,the CuO coating was protected by TiO2.The experiment shows that the TiO2/CuO coating is more heat-resistant,acid-resistant,and wear resistant than CuO coating,without Iosing absorptivity markedly.The TiO2 coating can reduce emissivity and protect the CuO coating.

  1. Improvement of black nickel coatings. [product development for use in solar collectors

    Science.gov (United States)

    Peterson, R. E.; Lin, J. H.

    1976-01-01

    Selectively absorbing black nickel coatings are among the most optically efficient low cost coatings for use on flat plate solar collectors. However, a current Ni-Zn-S-O coating in use is quite susceptible to a humid environment, degrading badly in less than ten days at 38 C (100 F) at 95 percent relative humidity. Therefore, a black nickel formula was developed which can withstand such exposures with no loss of optical efficiency, solar absorption of 0.92 and an infrared emittance (at 100 C) of 1.00 were still present after 14 days of humidity exposure. This compares to a solar absorptance of only 0.72 for the previous formula after a similar time period. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, spectral optical properties and durability were investigated systematically.

  2. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink and its subcontractor Magnolia Solar will develop and demonstrate advanced anti-reflection coating (ARC) designs that will provide a better broadband and...

  3. Development of Advanced Anti-Reflection Coatings for High Performance Solar Energy Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MicroLink Devices will increase the efficiency of multi-junction solar cells by designing and demonstrating advanced anti-reflection coatings (ARCs) that will...

  4. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    Science.gov (United States)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  5. Toughening behavior in ceramics and cermets

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Sun, E.Y.; Hsueh, C.H.; Plucknett, K.P. [Oak Ridge National Lab., TN (United States); Kim, H.D. [Korean Inst. of Machinery and Materials, Changwon (Korea, Republic of); Hirao, K.; Brito, M. [National Industrial Research Inst., Nagoya (Japan)

    1998-10-01

    The development of high strength ({ge} 1 GPa), high toughness ({ge} 10 MPa {radical}m) ceramic systems is being examined using two approaches. In silicon nitride, toughening is achieved by the introduction of large prismatic shaped grains dispersed in a fine grain matrix. For the system examined herein, both the microstructure and the composition must be controlled. A distinctly bimodal distribution of grain diameters combined with controlled yttria to alumina ratio in additives to promote interfacial debonding is required. Using a cermet approach, ductile Ni{sub 3}Al-bonded TiC exhibited toughening due to plastic deformation within the Ni{sub 3}Al binder phase assisted by interfacial debonding and cleavage of TiC grains. The TiC-Ni{sub 3}Al cermets have toughness values equal to those of the WC-Co cermets. Furthermore, the TiC-Ni{sub 3}Al cermets exhibit high strengths that are retained in air to temperatures of {approximately} 1,000 C.

  6. Optical and Structural Characterization of Nickel Coatings for Solar Collector Receivers

    Directory of Open Access Journals (Sweden)

    Stefano Pratesi

    2014-01-01

    Full Text Available The development of spectrally selective materials is gaining an increasing role in solar thermal technology. The ideal spectrally selective solar absorber requires high absorbance at the solar spectrum wavelengths and low emittance at the wavelengths of thermal spectrum. Selective coating represents a promising route to improve the receiver efficiency for parabolic trough collectors (PTCs. In this work, we describe an intermediate step in the fabrication of black-chrome based solar absorbers, namely, the fabrication and characterization of nickel coatings on stainless steel substrates. Microstructural characteristics of nickel surfaces are known to favorably affect further black chrome deposition. Moreover, the high reflectivity of nickel in the thermal infrared wavelength region can be advantageously exploited for reducing thermal emission losses. Thus, this report investigates structural features and optical properties of the nickel surfaces, correlating them to coating thickness and deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  7. Simple roll coater with variable coating and temperature control for printed polymer solar cells

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    A simple and low cost thin film solution processing system comprising a single roll coating machine has been developed to allow direct investigation of variable parameter effects in roll-to-roll processing. We present roll coating of the active layers in polymer solar cells and validate...

  8. The Influence of Different Absorbed Coatings on Thermal Effect of Prefabricated Solar Collector Panels

    OpenAIRE

    Wang Qi; Yang Liquan; Yu Miao; Li Song

    2016-01-01

    Prefabricated solar collector panels is a kind of new permeability structure of collector panels. For this test, we adopt a certain proportion of copper oxide, magnesium oxide and iron oxide to enamel paint as absorbed panel coating and make two kinds of collector panels for different forms of color by dark green coating and black coating. By the methods of comparison, the two kinds of panel collector efficiency and heat loss coefficient UL were tested. The results showed that there was a sli...

  9. Edge coating apparatus with movable roller applicator for solar cell substrates

    Science.gov (United States)

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  10. Utilization of transparent heat-reflecting coatings in solar-energy converters. [ZnS--Ag--ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Koltun, M.N.; Faiziev, Sh.A.

    1977-01-01

    The optical characteristics of dielectric-metal-dielectric coatings developed by the authors on glass and polymer films are described. The possibility of using ZnS--Ag--ZnS coatings in solar-energy converters is considered.

  11. Influence of solvents on properties of solar selective coatings obtained by spray pyrolysis

    Indian Academy of Sciences (India)

    Mihaela Dudita; Luminita Isac; Anca Duta

    2012-11-01

    Solar selective coatings for solar thermal flat-plate collectors consisting of crystalline copper oxides and amorphous nickel oxide composites were obtained by robotic spray pyrolyzed deposition. The parameters were optimized for increased spectral selectivity (): high solar absorptance and low thermal emittance. The coatings were deposited using nickel and copper acetate, dissolved in mixed solvents with various water: ethanol ratios. The coatings’ properties were characterized in terms of crystalline composition (XRD), surface morphology (AFM, contact angle) and optical properties (solar absorptance, thermal emittance and spectral selectivity). Considering the precursor solutions composition (solvent, wetting behaviour), the growth processes were modelled for two different systems: predominant hydrophilic and predominant hydrophobic. The high selectivity values ( > 30) of the optimized composite coatings were explained based on two parallel mechanisms: intrinsic absorption and multiple reflections generated when absorbers with controlled roughness are deposited.

  12. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    Science.gov (United States)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings were deposited on thin layers of silver or gold which had been deposited on oxidized stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt oxide for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values before and after exposure in air at 650 C for 1000 hours. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  13. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells......A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...

  14. Orbital dynamics of a solar sail accelerated by thermal desorption of coatings

    CERN Document Server

    Ancona, Elena

    2016-01-01

    In this study we considered a solar sail coated with materials that undergo thermal desorption at a specific temperature, as a result of heating by solar radiation at a particular heliocentric distance. Three different scenarios, that only differ in the way the sail approaches the Sun, were analyzed and compared. In every case once the perihelion is reached, the sail coat undergoes thermal desorption. When the desorption process ends, the sail then escapes the Solar System having the conventional acceleration due to solar radiation pressure. Thermal desorption here comes as an additional source of solar sail acceleration beside traditional propulsion systems for extrasolar space exploration. The compared scenarios are the following: i. Hohmann transfer plus thermal desorption. In this scenario the sail would be carried as a payload to the perihelion with a conventional propulsion system by an Hohmann transfer from Earth's orbit to an orbit very close to the Sun (almost at 0.1 AU) and then be deployed there. i...

  15. Solution-Processed Nanowire Coating for Light Management in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Tsuboi

    2012-01-01

    Full Text Available We report a novel light management approach based on solution-processed nanowire (NW coating for enhancing organic solar cell efficiency. A titanium dioxide (TiO2 NW dispersion was produced by electrospinning. The coatings with various coverage fractions were fabricated by a simple solution casting of a TiO2 NW dispersion. Reduced reflectivity was observed for the NW-coated glass slide. The bulk-heterojunction organic solar cells with the NW coating showed improved power conversion efficiencies (PCEs due to their antireflection and light trapping effects in the active layer. In addition, the PCE of the cell with the NW coating was improved compared with that without the NW coating for incident angles above 70° (increased by a maximum of 51.6% at an incident angle of 85°. These results indicate that solution-processed NW coating is a promising light management approach easily scalable and applicable to a wide range of devices, including solar cells.

  16. Optical properties of CeO2/Fe3O4 solar control glass coating

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongsheng; LIU Bing; HU Hongpo; LI Ziqiang; SHAO Youlin

    2006-01-01

    A cerium-iron oxide solar control coating on glass was prepared by citric acid sol-gel method, dip-coating techniques and proper heat treatment process. Results show that the cerium-iron glass coating is composed of nanocrystalline CeO2, Fe2O3, and nano holes. The cerium-iron glass coating has high transmittance in visible light, low UV and near IR transmittance. The wavelength of absorption edge for most glass coating has an obvious redshift to about 375 nm. There exist a wide absorption band at the range of 800-1600 nm and high transmittance at the wavelength from 400 nm to 800 nm, and the solar energy and visible transmittances are 50% and 65%, respectively. It ascribes to the high content of trivalence cerium and bivalence iron ions in the cerium/iron coating. It is indicated that this kind of glass coating has very good UV-sheering and heat-insulating property, can be used as an effective solar control glass in automobile and architecture.

  17. Electrospark deposition coatings

    Science.gov (United States)

    Sheely, W. F.

    1986-11-01

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life.

  18. Metal-Matrix Hardmetal/Cermet Reinforced Composite Powders for Thermal Spray

    Directory of Open Access Journals (Sweden)

    Dmitri GOLJANDIN

    2012-03-01

    Full Text Available Recycling of materials is becoming increasingly important as industry response to public demands, that resources must be preserved and environment protected. To produce materials competitive in cost with primary product, secondary producers have to pursue new technologies and other innovations. For these purposes different recycling technologies for composite materials (oxidation, milling, remelting etc are widely used. The current paper studies hardmetal/cermet powders produced by mechanical milling technology. The following composite materials were studied: Cr3C2-Ni cermets and WC-Co hardmetal. Different disintegrator milling systems for production of powders with determined size and shape were used. Chemical composition of produced powders was analysed.  To estimate the properties of recycled hardmetal/cermet powders, sieving analysis, laser granulometry and angularity study were conducted. To describe the angularity of milled powders, spike parameter–quadric fit (SPQ was used and experiments for determination of SPQ sensitivity and precision to characterize particles angularity were performed. Images used for calculating SPQ were taken by SEM processed with Omnimet Image Analyser 22. The graphs of grindability and angularity were composed. Composite powders based on Fe- and Ni-self-fluxing alloys for thermal spray (plasma and HVOF were produced. Technological properties of powders and properties of thermal sprayed coatings from studied powders were investigated. The properties of spray powders reinforced with recycled hardmetal and cermet particles as alternatives for cost-sensitive applications were demonstrated.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1348

  19. Influence of characteristics of stabilized zirconia electrolyte on performance of cermet supported tubular SOFCs

    Institute of Scientific and Technical Information of China (English)

    LI Changjiu; LI Chengxin; XING Yazhe; XIE Yingxin; LONG Huiguo

    2006-01-01

    Ni-Al2O3 cermet supported tubular SOFC was fabricated by thermal spraying. Flame-sprayed Al2O3-Ni cermet coating plays dual roles of a support tube and an anode current collector. 4.5mol.% yttria-stabilized zirconia (YSZ) and 10mol.% scandia-stabilized zirconia (ScSZ) coatings were deposited by atmospheric plasma spraying (APS) as the electrolyte in present study. The electrical conductivity of electrolyte was measured using DC method. The post treatment was employed using nitrate solution infiltration to densify APS electrolyte layer for improvement of gas permeability. The electrical conductivity of electrolyte and the performance of single cell were investigated to optimize SOFC performance. The electrical conductivity of the as-sprayed YSZ and ScSZ coating is about 0.03 and 0.07 S·cm-1 at 1000 ℃, respectively. The ohmic polarization significantly influences the performance of SOFC. The maximum output power density at 1000 ℃ increases from 0.47 to 0.76 W·cm-2 as the YSZ electrolyte thickness reduces from 100 μm to 40 μm. Using APS ScSZ coating of about 40 μm as the electrolyte, the test cell presents a maximum power output density of over 0.89 W·m-2 at 1000 ℃.

  20. The Influence of Different Absorbed Coatings on Thermal Effect of Prefabricated Solar Collector Panels

    Directory of Open Access Journals (Sweden)

    Wang Qi

    2016-01-01

    Full Text Available Prefabricated solar collector panels is a kind of new permeability structure of collector panels. For this test, we adopt a certain proportion of copper oxide, magnesium oxide and iron oxide to enamel paint as absorbed panel coating and make two kinds of collector panels for different forms of color by dark green coating and black coating. By the methods of comparison, the two kinds of panel collector efficiency and heat loss coefficient UL were tested. The results showed that there was a slight difference between the heat loss coefficient of prefabricated solar collector panels, using the panel with dark green coating’s comprehensive thermal effect is well than the panel with black coating. The beautiful appearance color is more suitable for building requirements.

  1. Titanium Carbide-Nickel Cermets: Processing and Joing

    Science.gov (United States)

    1952-03-01

    Titanium carbide -nickel cermets can be sintered to have transverse rupture strengths over 250,000 pounds per square inch. To do so, four principal...enough to allow thorough degassing. Joining titanium - carbide cermets to high-temperature alloys has been accomplished by vacuum diffusion, and gives

  2. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    Energy Technology Data Exchange (ETDEWEB)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  3. Optical materials technology for energy efficiency and solar energy conversion VII; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19-21, 1988

    Science.gov (United States)

    Granqvist, Claes G.; Lampert, Carl M.

    Various papers on optical materials technology for energy efficiency and solar energy conversion are presented. Individual topics addressed include: nonlinear optical effects in organic molecules and polymers, optical and electrical properties of amorphous Li(x)WO3 films, electrochromism in sputtered vanadium pentoxide, characterization of nickel oxide electrochromic films, radiative cooling with pigmented polyethylene foils, plasma-film interactions in RF sputtered a-Si:H and a-Ge:H, metal oxyfluoride coatings for energy-efficient windows, fatigue-resistant photochromic plastics, evaporated VO(x) thin films, electrochromism in nickel oxide films, system design for high-rate deposition of indium oxide solar coatings, performance and bandwidth analysis of holographic solar reflectors, laser and spectroscopic characterization of thin films, high-efficiency collectors for solar energy applications, influence of surface roughness on the optical properties of cermet coatings, and sputtered aluminum composite selective absorbing surfaces.

  4. Progress Toward Developing a Durable High-Temperature Solar Selective Coating (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.; Price, H. W.

    2007-03-01

    Increasing the operating temperature of parabolic trough solar fields from 400 C to >450 C will increase their efficiency and reduce the cost of electricity. Current coatings do not have the stability and performance necessary to move to higher operating temperatures. The objective is to develop new, more efficient selective coatings with both high solar absoprtance ({alpha} > 0.96) and low thermal emittance ({var_epsilon} < 0.07) that are thermally stable above 450 C, ideally in air, with improved durability and manufacturability, and reduced cost.

  5. Sputtered solar absorber coatings with high-spectral selectivity and good durability

    Science.gov (United States)

    Graf, Wolfgang; Brucker, Franz; Koehl, Michael; Troescher, Thomas; Wittwer, Volker; Blessing, Rolf; Herlitze, Lothar

    1995-08-01

    Sputtering is a well established coating technology for glass panes. This technology is also interesting for the production of selective solar absorber coatings because the environmental impact is much less than for electroplating. There are already several sputtered absorber coatings for evacuated tubular collectors existing on the market. The application in ventilated collectors requires better durability of the absorbers and a technology which can be applied to planar substrates. The coatings presented here are produced by dc-magnetron sputtering. The maximum sample size was 2 m multiplied by 3 m. A thermal emittance (at 373 K) below 5% was achieved together with a solar absorptance (AM 1.5) above 90%. The coating is deposited directly onto copper sheets without the commonly used anti-corrosion nickel coating in between. The durability of the absorbers was found to be sufficient for the application in ventilated flat-plate collectors containing moisture according to the tests and requirements proposed by Task X of the Solar Heating and Cooling Programme of the International Energy Agency.

  6. Evaluation of fatigue strength of WC cermet- and 13Cr steel-sprayed materials; WC cermet oyobi 13Cr ko yosha hifukuzai no hiro kyodo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, T.; Tokaji, K.; Ejima, T. [Gifu University, Gifu (Japan); Kobayashi, Y.; Harada, Y. [Tocalo Co. Ltd., Kobe (Japan)

    1997-10-15

    Rotating bending fatigue tests have been conducted at room temperature in air using the specimens of medium carbon steel (S45C), low alloy steel (SCM435) and titanium alloy (Ti-6Al-4V) with HVOF sprayed coating of a cermet (WC-12%Co) and S45C with WFS sprayed coating of a 13Cr steel (SUS420 J2). The fatigue strength and fracture mechanisms were studied. The fatigue strength evaluated by nominal stress was strongly influenced by substrate materials and the thickness of sprayed coatings. Detailed observation of crack initiation on the coating surface and fracture surface revealed that microcracks initiated at the WC grain boundary coalesced, and then the crack grew rapidly in the coating. Cracks in the substrate were initiated by the stress concentration of the crack in the coating, which was modeled by finite element analysis. For the specimens tested in this study, the fatigue strength of sprayed specimens was dominated by that of sprayed coating. Thus, the fatigue strength could be evaluated uniquely by the true stress on the coating surface. 9 refs., 12 figs., 2 tabs.

  7. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  8. Broad-Band EUV Multilayer Coatings For Solar Physics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and commercialize a new class of aperiodic multilayer coating that is designed to provide high normal-incidence reflectance over a wide...

  9. Design of broadband multilayer dichroic coating for a high-efficiency solar energy harvesting system.

    Science.gov (United States)

    Jiachen, Wang; Lee, Sang Bae; Lee, Kwanil

    2015-05-20

    We report on the design and performance of a broadband dichroic coating for a solar energy conversion system. As a spectral beam splitter, the coating facilitates a hybrid system that combines a photovoltaic cell with a thermal collector. When positioned at a 45° angle with respect to incident light, the coating provides high reflectance in the 40-1100 nm and high transmission in the 1200-2000 nm ranges for a photovoltaic cell and a thermal collector, respectively. Numerical simulations show that our design leads to a sharp transition between the reflection and transmission bands, low ripples in both bands, and slight polarization dependence.

  10. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  11. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Science.gov (United States)

    Razza, Stefano; Castro-Hermosa, Sergio; Di Carlo, Aldo; Brown, Thomas M.

    2016-09-01

    To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating), as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  12. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, K.

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  13. The anomalous behaviour of Ag-Al sub 2 O sub 3 Cermet electroformed devices

    CERN Document Server

    Khan, M S R

    2003-01-01

    Cermet coating consisting of silver particles in an aluminium oxide matrix were prepared on glass substrates by vacuum deposition. Variation of the circulating current with potential difference was obtained in evaporated Al/Ag-Al sub 2 O sub 3 /Cu sandwich structures, 100 to 200 nm thick containing 10 wt % Ag. It was observed that the investigated sandwich structures exhibit anomalous behaviour such as electroforming with Voltage-Controlled-Negative Resistance (VCNR) in vacuo of approx 4 x 10 sup - sup 6 torr. The formed characteristics were explained on the basis of filamentary model.

  14. Laser processing of solar cells with anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D.; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2016-02-16

    Contact holes of solar cells are formed by laser ablation to accommodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thicknesses.

  15. Preparation of silver-coated glass frit and its application in silicon solar cells

    Science.gov (United States)

    Feng, Xiang; Biyuan, Li; Yingfen, Li; Jian, Zhou; Weiping, Gan

    2016-07-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  16. Preparation of silver-coated glass frit and its application in silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    向锋; 李碧渊; 黎应芬; 周健; 甘卫平

    2016-01-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  17. Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo.

    Science.gov (United States)

    Dawson, Terence J; Maloney, Shane K

    2016-11-01

    Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s(-1)) and high (6 m s(-1)) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased

  18. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    The challenges associated with obtaining the desired nanomorphology of the active layer in polymer solar cells were addressed through preparation of conjugated polymer chains grown from the surface of seed nanoparticles with a well-defined size. Poly-3-hexylthiophene (P3HT) was thus polymerized......, a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...... from single cells to two, three, and eight serially connected cells. The power conversion efficiency for the polymer solar cell modules were in the range of 0.8%-1.2% with an active area of up to 120 cm....

  19. Passivating Window/First Layer AR Coating for Space Solar Cells

    Science.gov (United States)

    Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.

    2004-01-01

    Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.

  20. Final report on cermet high-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  1. Investigation of Impact Resistance of Protective Barriers Made from Cermets

    Science.gov (United States)

    Ischenko, A. N.; Tabachenko, A. N.; Afanasieva, S. A.; Belov, N. N.; Burkin, V. V.; Martsunova, L. S.; Rogaev, K. S.; Yugov, N. T.

    2016-01-01

    Ceramic-metal materials (cermets) based on titanium diboride and boron carbide are designed and produced by the method of self-propagating high-temperature synthesis, with the pressure applied to the combustion products. The data, obtained by an experimental-theoretical investigation of impact resistance of protective barriers containing the above-mentioned materials in collisions with a spherical steel projectile, are presented. A better impact resistance of TiB2 + B4C cermets compared to that of Al2O3- ceramics is demonstrated. A possibility of prediction calculations of impact resistance of the specimens containing cermets in the range of collision rates under study is shown.

  2. Development of boron carbide-copper cermets. Status report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The status of a program to develop a B/sub 4/C-Cu cermet for Breeder Reactor spent-fuel shipping cask neutron shields is presented. It is shown that inspectable 6 to 7 cm thick 60 to 70 volume percent B/sub 4/C cermets can be fabricated using hot isostatic powder processing procedures. An alternative manufacturing method, rheocasting, also appears to be a promising, perhaps more cost-effective method for producing these cermets. Recommendations for further development of these manufacturing processes are given.

  3. Performance of "Moth Eye" Anti-Reflective Coatings for Solar Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.; Kane, M.; Jiang, P.

    2011-03-14

    An inexpensive, effective anti-reflective coating (ARC) has been developed at the University of Florida to significantly enhance the absorption of light by silicon in solar cells. This coating has nano-scale features, and its microstructure mimics that of various night active insects (e.g. a moth's eye). It is a square array of pillars, each about 700 nm high and having a diameter of about 300 nm. Samples of silicon having this coating were exposed either to various combinations of either elevated temperature and humidity or to gamma irradiation ({sup 60}Co) at the Savannah River National Laboratory, or to a broad spectrum ultraviolet light and to a 532 nm laser light at the University of Florida. The anti-reflective properties of the coatings were unaffected by any of these environmental stresses, and the microstructure of the coating was also unaffected. In fact, the reflectivity of the gamma irradiated ARC became lower (advantageous for solar cell applications) at wavelengths between 400 and 1000 nm. These results show that this coating is robust and should be tested in actual systems exposed to either weather or a space environment. Structural details of the ARCs were studied to optimize their performance. Square arrays performed better than hexagonal arrays - the natural moth-eye coating is indeed a square array. The optimal depth of the templated nanopillars in the ARC was investigated. A wet etching technology for ARC formation was developed that would be less expensive and much faster than dry etching. Theoretical modeling revealed that dimple arrays should perform better than nipple arrays. A method of fabricating both dimple and nipple arrays having the same length was developed, and the dimple arrays performed better than the nipple arrays, in agreement with the modeling. The commercial viability of the technology is quite feasible, since the technology is scalable and inexpensive. This technology is also compatible with current industrial

  4. Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2015-11-01

    Full Text Available This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.

  5. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  6. Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II)

    Energy Technology Data Exchange (ETDEWEB)

    Orel, B.; Spreizer, H.; Surca Vuk, A.; Fir, M. [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Merlini, D.; Vodlan, M. [Color d.d., Cesta komandanta Staneta 4, SI-1230 Medvode (Slovenia); Koehl, M. [Fraunhofer-Institute for Solar Energy Systems ISE, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2007-01-23

    Red, green and blue paints were prepared for use as thickness insensitive spectrally selective (TISS) paint coatings for solar facade absorbers. The paints were composed of a polyurethane resin binder in which various pigments were incorporated in such a way that they formed stable paint dispersions, satisfying stability criteria for facade coatings. A low emittance of the paints was achieved by using low-emittance aluminium flake pigments combined with iron oxide (red coloured paints). Black pigment was added to adjust solar absorptance. Blue and green paints were made by the addition of coloured aluminium flake pigment and the solar absorptance was also adjusted by the addition of black pigment. Efficiency for photo-thermal conversion of solar radiation was assessed by evaluation of the corresponding performance criteria, which enabled the selection of paints whose performance criteria values were higher than 0 (spectrally non-selective black coating). The results confirmed that blue and green paints and to minor extent red ones, combined selectivity with colour. The morphology of the paints was assessed, revealing that the colours originated from the deposition of finely dispersed colour and/or black pigment on the surface of the aluminium flakes during paint preparation. (author)

  7. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  8. Effect of an absorptive coating on solar energy storage in a Trombe wall system

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, N.P. [Nigeria Univ., Nsukka (Nigeria). Dept. of Mechanical Engineering; Okonkwo, W.I. [National Center for Energy Research and Development, Nsukka (Nigeria)

    2008-07-01

    An analysis is undertaken to show the effects of a range of coating absorptivity values on the improvement of heat transfer across a Trombe wall (which is used for passive solar heating) and to its enclosure. The analysis shows that enhanced heat delivery to the enclosure of a Trombe wall system is feasible with the application of an absorptive coating of a superior nature - characterized by high absorptivity and very low emissivity - on the heat-receiving surface of the wall and thus can be seen as a heat transfer enhancement technique. (author)

  9. Effect of an Absorptive Coating on Solar Energy Storage in a Thrombe wall system

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, Nwosu P. [Department of Mechanical Engineering, University of Nigeria, Nsukka (Nigeria); Okonkwo, Wilfred I. [National Center for Energy Research and Development (NCERD), Nsukka (Nigeria)

    2008-07-01

    An analysis is undertaken to show the effects of a range of coating absorptivity values on the improvement of heat transfer across a Trombe wall (which is used for passive solar heating) and to its enclosure. The analysis shows that enhanced heat delivery to the enclosure of a Trombe wall system is feasible with the application of an absorptive coating of a superior nature - characterized by high absorptivity and very low emissivity - on the heat-receiving surface of the wall and thus can be seen as a heat transfer enhancement technique. (author)

  10. Optimization of textured-dielectric coatings for crystalline-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept.; Gordon, R.; Liang, H. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry

    1996-07-01

    The authors report on the optimization of textured-dielectric coatings for reflectance control in crystalline-silicon (c-Si) photovoltaic modules. Textured-dielectric coatings reduce encapsulated-cell reflectance by promoting optical confinement in the module encapsulation; i.e., the textured-dielectric coating randomizes the direction of rays reflected from the dielectric and from the c-Si cell so that many of these reflected rays experience total internal reflection at the glass-air interface. Some important results of this work include the following: the authors demonstrated textured-dielectric coatings (ZnO) deposited by a high-throughput low-cost deposition process; they identified factors important for achieving necessary texture dimensions; they achieved solar-weighted extrinsic reflectances as low as 6% for encapsulated c-Si wafers with optimized textured-ZnO coatings; and they demonstrated improvements in encapsulated cell performance of up to 0.5% absolute compared to encapsulated planar cells with single-layer antireflection coatings.

  11. Airbrush Spray Coating of Amorphous Titanium Dioxide for Inverted Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Luca La Notte

    2012-01-01

    Full Text Available One of the main topics of organic photovoltaics manufacturing is the need for simple, low cost, and large area compatible techniques. Solution-based processes are the best candidates to achieve this aim. Among these, airbrush spray coating has successfully applied to deposit both active and PEDOT layers of bulk-heterojunction solar cells. However, this technique is not yet sufficiently studied for interfacial layers (electron and hole transporting layers or optical spacers. In this paper, we show that amorphous titanium dioxide ( films, obtained with an airbrush from a solution of titanium (IV isopropoxide diluted in isopropanol, are successfully deposited on glass and PET substrates. Good surface covering results from the coalescence of droplets after optimizing the spray coating system. Simple inverted polymer solar cells are fabricated using as electron transporting layer obtaining encouraging electrical performances (% on glass/FTO and 0.7% on PET/ITO substrates.

  12. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang;

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...... solution processibility and R2R coated and printed large area (4.2 cm 2) solar cells exhibited a PCE of 0.20%. © 2013 Elsevier B.V....

  13. Preparation and thermal stability on non-vacuum high temperature solar selective absorbing coatings

    Institute of Scientific and Technical Information of China (English)

    HAO Lei; WANG ShuMao; JIANG LiJun; LIU XiaoPeng; LI HuaLing; LI ZhiNian

    2009-01-01

    Spectrally selective TiAI/TiAIN/TiAION/TiAIO coating was deposited on stainless steel and copper sub-strates using a multi-arc ion plating system.The structure,morphology,optical reflectance and elec-trical resistivity were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),spectrophotometer and four-point probe meter,respectively.The results show that the coating exhibits high absorptance (-0.9) and low emittance (0.09-0.19).The coating remains stable in air up to 650℃ for 1h.These properties are of extraordinary interest in solar thermal power generations and energy saving buildings.

  14. Combined Effects of Pyramid-Like Structures and Antireflection Coating on Si Solar Cell Efficiency.

    Science.gov (United States)

    Cho, Chanseob; Oh, Junghwa; Lee, Byeungleul; Kim, Bonghwan

    2015-10-01

    We developed a novel process for synthesizing Si solar cells with improved efficiencies. The process involved the formation of pyramid-like structures on the Si substrate and the deposition and subsequent thermal annealing of an antireflection coating. The process consisted of three main stages. First, pyramid-like structures were textured on the Si substrate by reactive ion etching and subsequently etched using a mixture of HF, HNO3, and deionized water for 300 s. Next, an antireflection coating was deposited on the substrate and was subsequently thermally annealed in a furnace in a N2 atmosphere. After the annealing process, the minority carrier lifetime increased by approximately 40 μs. Further, because of the increase in the minority carrier lifetime and the uniform doping of the substrate, the leakage current decreased. As a result, the efficiency of resulting solar cell increased to 17.24%, in contrast to that of the reference cell, which was only 15.89%. Thus, uniform doping and the thermal annealing of the antireflective coating improved solar cell efficiency.

  15. Addition of a nickel aluminide coating to Inconel 600 using a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Rawers, J.C.; Alman, D.E.; Lewandowski, A.; Petty, A.V.; Pitts, J. (Bureau of Mines, Albany, OR (United States). Albany Research Center)

    1994-11-15

    Three different coating application techniques have been investigated for placing a nickel-aluminium coating onto an Inconel 600 substrate using a solar furnace. In the first, a sheet of pure aluminium was melted onto the substrate. A duplex sheet of pure aluminium was melted onto the substrate. A duplex surface coating resulted, the outer layer being a mixture of pure aluminium and NiAl[sub 3], the inner layer being pure NiAl[sub 3] firmly bonded to the substrate. The second method involved melting pre-alloyed NiAl powder onto the substrate and gave a firmly bonded composite mixture of NiAl and Ni[sub 2]Al[sub 3] intermetallics. The third method was less successful. Elemental Al and Ni powders did not wet the substrate when melted and resulted only in poorly bonded intermetallic balls. Given the right technique, however, it has been demonstrated that solar radiation can be very effective in rapidly heating and melting a surface coating onto a processed bulk material with minimal thermal damage. (5 figures, 7 references). (UK)

  16. Design of multi-layer anti-reflection coating for terrestrial solar panel glass

    Indian Academy of Sciences (India)

    B GEETHA PRIYADARSHINI; A K SHARMA

    2016-06-01

    To date, there is no ideal anti-reflection (AR) coating available on solar glass which can effectively transmit the incident light within the visible wavelength range. However, there is a need to develop multifunctional coatingwith superior anti-reflection properties and self-cleaning ability meant to be used for solar glass panels. In spite of self-cleaning ability of materials like TiO2 and ZnO, these coatings on glass substrate have tendency to reduce lighttransmission due to their high refractive indices than glass. Thus, to infuse the anti-reflective property, a low refractive index, SiO$_2$ layer needs to be used in conjunction with TiO$_2$ and ZnO layers. In such case, the optimization ofindividual layer thickness is crucial to achieve maximum transmittance of the visible light. In the present study, we propose an omni-directional anti-reflection coating design for the visible spectral wavelength range of 400–700 nm,where the maximum intensity of light is converted into electrical energy. Herein, we employ the quarter wavelength criteria using SiO$_2$, TiO$_2$ and ZnO to design the coating composed of single, double and triple layers. The thicknessof individual layers was optimized for maximum light transmittance using essential Mcleod simulation software to produce destructive interference between reflected waves and constructive interference between transmitted waves.

  17. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  18. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  19. Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells

    Science.gov (United States)

    Yavuz, S.; Kuru, C.; Choi, D.; Kargar, A.; Jin, S.; Bandaru, P. R.

    2016-03-01

    It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly.It is shown that coating graphene-silicon (Gr/Si) Schottky junction based solar cells with graphene oxide (GO) improves the power conversion efficiency (PCE) of the cells, while demonstrating unprecedented device stability. The PCE has been shown to be increased to 10.6% (at incident radiation of 100 mW cm-2) for the Gr/Si solar cell with an optimal GO coating thickness compared to 3.6% for a bare/uncoated Gr/Si solar cell. The p-doping of graphene by the GO, which also serves as an antireflection coating (ARC) has been shown to be a main contributing factor to the enhanced PCE. A simple spin coating process has been used to apply GO with thickness commensurate with an anti-refection coating (ARC) and indicates the suitability of the developed methodology for large-scale solar cell assembly. Electronic supplementary information (ESI) available: (i) Experimental methods, (ii) optical images of devices with and without graphene oxide (GO), (iii) comparison of the power conversion efficiency (PCE) due to the GO coating and nitric acid doping, (iv) specular and diffuse reflectance measurements, (v) stability data of pristine graphene/silicon (Gr/Si) solar cells. See DOI: 10.1039/c5

  20. Tungsten carbide coatings with different binders prepared by low power plasma spray system

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; M.F.Morks; FU Ying-qing

    2004-01-01

    Thermal spraying of cermet coatings is widely used for protection of machining parts against wear and corrosion. These coatings consist of WC particles in metal binders such as Co, Cr and Ni. Three kinds of WC powders with different metal binders (Co, NiCr and CoCr) were sprayed by low power plasma spray system on Al-Si-Cu alloy substrate. Fundamental aspects of sprayed cermet coatings, including (i) the effects of binder type on the coating structure, (ii) the hardness and (iii) the microstructure, were investigated. All cermet coatings have the same phase structure such as WC and W2 C. However, the intensities of these phases are different in each coating, mainly due to the difference in solidification rate in each case. Moreover, the hardness measurements are found to be different in each coating. The results show that, binder type has a significant effect on the physical and mechanical properties of the sprayed coatings.

  1. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis;

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...... of a small-signal electrical model. The model is able to predict the EQE spectrum of the non-ideal polymer tandem solar cell, using extracted values of shunt- and series resistance of the individual junction of the tandem cell. This finally enables LBIC mapping of the individual junctions of the tandem...... polymer solar cells, using a combination of light and voltage-biasing....

  2. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Directory of Open Access Journals (Sweden)

    Stefano Razza

    2016-09-01

    Full Text Available To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating, as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  3. Thermal shocks on an electrolytic chromium coating in a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Douale, Ph.; Serror, S.; Pradeilles Duval, R.M. [Centre Technique d' Arcueil, CTA, Dir. des Centres d' Essais, 94 - Arcueil (France); Serra, J.J. [Groupe Haut Flux Thermique d' Odeillo, GHF, 66 - Odeillo (France); Felder, E. [Groupe Surface and Tribologie, CEMEF, URA 1374 du CNRS, Ecole des Mines de Paris, 06 - Sophia Antipolis (France)

    1999-03-01

    The electrodeposited chromium coatings are currently used to protect surfaces in many industrial cases, such as rolling-mills, landing gear, jack rod or gun barrels. In the latter case, an important thermal effect is superimposed to the frictional one, bringing to the coating flake off. This paper presents a part of a more extended study of the damages induced in gun tubes. It deals with thermal shock resistance analysis of uncoated and chromium coated steel samples. Its aim is to reproduce and study the main damage types observed at the inner surface of gun tubes by using the DCE solar furnace in Odeillo (France). In a real weapon shooting, the thermal pulse can reach flux levels as high as 50 kW/cm{sup 2} in an extremely brief time (about 10 ms). These thermal conditions cannot be simulated at the focus of a solar furnace, so we have to determine the couple of parameters (flux level and duration) creating the same damage on the samples. (authors)

  4. Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating.

    Science.gov (United States)

    Jiang, Youyu; Luo, Bangwu; Jiang, Fangyuan; Jiang, Fuben; Fuentes-Hernandez, Canek; Liu, Tiefeng; Mao, Lin; Xiong, Sixing; Li, Zaifang; Wang, Tao; Kippelen, Bernard; Zhou, Yinhua

    2016-12-14

    Organometal halide perovskites have shown excellent optoelectronic properties and have been used to demonstrate a variety of semiconductor devices. Colorful solar cells are desirable for photovoltaic integration in buildings and other aesthetically appealing applications. However, the realization of colorful perovskite solar cells is challenging because of their broad and large absorption coefficient that commonly leads to cells with dark-brown colors. Herein, for the first time, we report a simple and efficient strategy to achieve colorful perovskite solar cells by using the transparent conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) as a top electrode and simultaneously as an spectrally selective antireflection coating. Vivid colors across the visible spectrum are attained by engineering optical interference effects among the transparent PEDOT:PSS polymer electrode, the hole-transporting layer and the perovskite layer. The colored perovskite solar cells display power conversion efficiency values from 12.8 to 15.1% (from red to blue) when illuminated from the FTO glass side and from 11.6 to 13.8% (from red to blue) when illuminated from the PEDOT:PSS side. The new approach provides an advanced solution for fabricating colorful perovskite solar cells with easy processing and high efficiency.

  5. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Science.gov (United States)

    Lee, Yan-Huei; Tsai, Pei-Ting; Chang, Chia-Ju; Meng, Hsin-Fei; Horng, Sheng-Fu; Zan, Hsiao-Wen; Lin, Hung-Cheng; Liu, Hung-Chuan; Tseng, Mei-Rurng; Yeh, Han-Cheng

    2016-11-01

    The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO) as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b')dithiophene)-2,6-diyl-alt- (4-(2-ethylhexanoyl)-thieno [3,4-b]thiophene-)-2-6-diyl)] (PBDTTT-C-T) and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM) as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  6. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Science.gov (United States)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2016-05-01

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  7. Organic Coatings on Primitive Grains in IDPs: Implications for the Formation of Solar System Organic Matter

    Science.gov (United States)

    Flynn, G. J.; Wirick, S.; Keller, L. P.; Sandford, S.

    2009-12-01

    Chondritic, porous interplanetary dust particles (CP IDPs) are the most primitive samples of extraterrestrial material available for laboratory analysis [1]. These ~10 micron CP IDPs are unequilibrated aggregates of mostly submicron, anhy-drous grains of a diverse variety, including olivine, pyroxene, glass, and sulfide. We previously reported that CP IDPs contain a significant amount of organic matter, and concluded that parent body aqueous processing, which these IDPs never experienced, was not the mechanism that produced much of the pre-biotic organic matter of the early Solar System [2]. However, we were not able to establish either the time or mechanism of its production. The individual grains in these CP IDPs are coated by layers of carbonaceous material [3], typically ~100 nm thick, which holds the grains together. We have analyzed these grain coatings by X-ray Absorption Near-Edge Structure (XANES) spectroscopy using the Scanning Transmission X-Ray Microscope (STXM) on beamline X1A of the National Synchrotron Light Source. We have obtained C-XANES maps, using a 35 nm probe spot, of ultramicrotome sections from CP IDPs. Cluster analysis, which compares spectra from each pixel in the map and identifies groups of pixels exhibiting similar spectra [4], was used to analyze the data. Cluster analysis indicates most carbonaceous grain coatings have very similar C-XANES spectra, demonstrating that carbonaceous coatings on the individual grains in CP IDPs are organic, with the two strongest absorption features from C=C and C=O. This organic matter coats the individual grains, implying an assembly sequence beginning with grain formation, followed by the emplacement of the organic coating, and finally the assembly of the primitive dust particles. The organic grain coatings in the primitive CP IDPs appear to have formed prior to the aggregation of the most primitive dust particles currently available for laboratory analysis, indicating that these grain coatings are the

  8. Cavitation Erosion of Cermet-Coated Aluminium Bronzes

    Directory of Open Access Journals (Sweden)

    Ion Mitelea

    2016-03-01

    Full Text Available The cavitation erosion resistance of CuAl10Ni5Fe2.5Mn1 following plasma spraying with Al2O3·30(Ni20Al powder and laser re-melting was analyzed in view of possible improvements of the lifetime of components used in hydraulic environments. The cavitation erosion resistance was substantially improved compared with the one of the base material. The thickness of the re-melted layer was in the range of several hundred micrometers, with a surface microhardness increasing from 250 to 420 HV 0.2. Compositional, structural, and microstructural explorations showed that the microstructure of the re-melted and homogenized layer, consisting of a cubic Al2O3 matrix with dispersed Ni-based solid solution is associated with the hardness increase and consequently with the improvement of the cavitation erosion resistance.

  9. Thermal expansion properties of metallic and cermet coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ilavsky, J.; Berndt, C.C. [State Univ. of New York, Stony Brook, NY (United States). Center for Thermal Spray Res.

    1998-04-01

    Free-standing deposits of NiCrAl, stainless steel, and 8 wt.% yttria-stabilized zirconia were prepared using atmospheric plasma spraying and high velocity oxygen fuel processing. Feedstock powders were blended, yielding mixtures (by weight) of 100%, 75%, and 50% of the metallic material. Porosity and composition (i.e. metal or ceramic constituents) of these deposits were measured by image analysis. The coefficient of thermal expansion (CTE) was measured in the 200-950 C interval for four thermal cycles. The first runs of these CTE measurements were not linear and differentiation of this curve established the CTE dependence with respect to temperature. Maximums in CTE behavior suggest that stress relaxation and/or oxidation may be occurring. Measurements of CTE from thermal cycles after the first cycle were constant and obeyed the law of mixtures in the measured temperature region, suggesting that stress relaxation and/or oxidation, evident in the first cycle, are no longer dominant. Microstructural analysis and microhardness measurements were used to confirm the findings from CTE measurements. (orig.) 13 refs.

  10. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    Science.gov (United States)

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

  11. 真空镀膜制备太阳能热吸收涂层%Preparation of solar heat absorption coatings by vacuum coating technology

    Institute of Scientific and Technical Information of China (English)

    眭凌杰; 尚心德

    2015-01-01

    本文介绍了选择性太阳能热吸收涂层的制备方法及发展状况,重点描述了真空镀膜在金属卷材上制备选择性太阳能热吸收涂层。该涂层用在平板太阳能集热器上,促进了太阳能集热器由单一的真空玻璃管型向金属平板型的转变。%This article introduces the preparation method and development state of the selective solar heat absorption coatings, mainly describes the selective solar heat absorption coatings preparation on the metal coil material by vacuum coating technology. The coatings are used on the flat-plate solar collectors, to promote the solar absorber type transfer from single vacuum glass tube to metal flat-plate.

  12. Wear Micro-Mechanisms of Composite WC-Co/Cr - NiCrFeBSiC Coatings. Part I: Dry Sliding

    Directory of Open Access Journals (Sweden)

    D. Kekes

    2014-12-01

    Full Text Available The influence of the cermet fraction in cermet/ metal composite coatings developed by High-Velocity Oxyfuel Flame (HVOF spraying on their tribological behaviour was studied. Five series of coatings, each one containing different proportion of cermet-metal components, prepared by premixing commercially available feedstocks of NiCrFeBSiC metallic and WC-Co/Cr cermet powders were deposited on AISI 304 stainless steel substrate. The microstructure of as-sprayed coatings was characterized by partial decomposition of the WC particles, lamellar morphology and micro-porosity among the solidified splats. Tribological behavior was studied under sliding friction conditions using a Si3N4 ball as counterbody and the friction coefficient and volume loss were determined as a function of the cermet fraction. Microscopic examinations of the wear tracks and relevant cross sections identified the wear mechanisms involved. Coatings containing only the metallic phase were worn out through a combination of ploughing, micro-cracking and splat exfoliation, whilst those containing only the cermet phase primarily by micro-cracking at the individual splat scale. The wear mechanisms of the composite coatings were strongly affected by their randomly stratified structure. In-depth cracks almost perpendicular to the coating/ substrate interface occurring at the wear track boundaries resulted in cermet trans-splat fracture.

  13. Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Miriam Israelowitz

    2014-01-01

    Full Text Available Nanoparticle (NP arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal’s free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost-effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage ϕ of 7% is observed. Scanning electron microscopy of interface morphologies revealed that for low ϕ, particles are well separated, resulting in broadband PE. At higher ϕ, formation of particle strings and clusters causes red-shifting of the PE peak and a narrower spectral response.

  14. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  15. A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Xu, Jie; Li, Meixia; Wu, Lei; Sun, Yongyuan; Zhu, Ligen; Gu, Shaojin; Liu, Li; Bai, Zikui; Fang, Dong; Xu, Weilin

    2014-07-01

    The current dye-sensitized solar cell (DSSC) technology is mostly based on fluorine doped tin oxide (FTO) coated glass substrate. The main problem with the FTO glass substrate is its rigidity, heavyweight and high cost. DSSCs with a fabric as substrate not only offer the advantages of flexibility, stretchability and light mass, but also provide the opportunities for easy implantation to wearable electronics. Herein, a novel fabric counter electrode (CE) for DSSCs has been reported employing a daily-used cotton fabric as substrate and polypyrrole (PPy) as catalytic material. Nickel (Ni) is deposited on the cotton fabric as metal contact by a simple electroless plating method to replace the expensive FTO. PPy is synthesized by in situ polymerization of pyrrole monomer on the Ni-coated fabric. The fabric CE shows sufficient catalytic activity towards the reduction of I3-. The DSSC fabricated using the fabric CE exhibits power conversion efficiency of ∼3.30% under AM 1.5.

  16. UV testing of solar cells: Effects of antireflective coating, prior irradiation, and UV source

    Science.gov (United States)

    Meulenberg, A.

    1993-01-01

    Short-circuit current degradation of electron irradiated double-layer antireflective-coated cells after 3000 hours ultraviolet (UV) exposure exceeds 3 percent; extrapolation of the data to 10(exp 5) hours (11.4 yrs.) gives a degradation that exceeds 10 percent. Significant qualitative and quantitative differences in degradation were observed in cells with double- and single-layer antireflective coatings. The effects of UV-source age were observed and corrections were made to the data. An additional degradation mechanism was identified that occurs only in previously electron-irradiated solar cells since identical unirradiated cells degrade to only 6 +/- 3 percent when extrapolated 10(exp 5) hours of UV illumination.

  17. UV testing of solar cells: Effects of antireflective coating, prior irradiation, and UV source

    Science.gov (United States)

    Meulenberg, A.

    1993-05-01

    Short-circuit current degradation of electron irradiated double-layer antireflective-coated cells after 3000 hours ultraviolet (UV) exposure exceeds 3 percent; extrapolation of the data to 10(exp 5) hours (11.4 yrs.) gives a degradation that exceeds 10 percent. Significant qualitative and quantitative differences in degradation were observed in cells with double- and single-layer antireflective coatings. The effects of UV-source age were observed and corrections were made to the data. An additional degradation mechanism was identified that occurs only in previously electron-irradiated solar cells since identical unirradiated cells degrade to only 6 +/- 3 percent when extrapolated 10(exp 5) hours of UV illumination.

  18. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  19. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhong; Robert C. O' Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  20. Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells

    Science.gov (United States)

    Lee, Youngseok; Gong, Daeyeong; Balaji, Nagarajan; Lee, Youn-Jung; Yi, Junsin

    2012-01-01

    Double stack antireflection coatings have significant advantages over single-layer antireflection coatings due to their broad-range coverage of the solar spectrum. A solar cell with 60-nm/20-nm SiNX:H double stack coatings has 17.8% efficiency, while that with a 80-nm SiNX:H single coating has 17.2% efficiency. The improvement of the efficiency is due to the effect of better passivation and better antireflection of the double stack antireflection coating. It is important that SiNX:H films have strong resistance against stress factors since they are used as antireflective coating for solar cells. However, the tolerance of SiNX:H films to external stresses has never been studied. In this paper, the stability of SiNX:H films prepared by a plasma-enhanced chemical vapor deposition system is studied. The stability tests are conducted using various forms of stress, such as prolonged thermal cycle, humidity, and UV exposure. The heat and damp test was conducted for 100 h, maintaining humidity at 85% and applying thermal cycles of rapidly changing temperatures from -20°C to 85°C over 5 h. UV exposure was conducted for 50 h using a 180-W UV lamp. This confirmed that the double stack antireflection coating is stable against external stress.

  1. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Zawacka, Natalia Klaudia; Dam, Henrik Friis

    2014-01-01

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording...... scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil...... as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find...

  2. Influence of window layer thickness on double layer antirefiection coating for triple junction solar cells*

    Institute of Scientific and Technical Information of China (English)

    Wang Lijuan; Zhan Feng; Yu Ying; Zhu Yan; Liu Shaoqing; Huang Shesong; Ni Haiqiao; Niu Zhichuan

    2011-01-01

    The optimization of a SiO2/TiO2, SiO2/ZnS double layer antireflection coating (ARC) on Ga0.5ln0.5P/ln0.02Ga0.98As/Ge solar cells for terrestrial application is discussed. The Al0.5In0.5P window layer thickness is also taken into consideration. It is shown that the optimal parameters of double layer ARC vary with the thickness of the window layer.

  3. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  4. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  5. Thermal stability of nitride solar selective absorbing coatings used in high temperature parabolic trough current

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports a new efficient solar selective surface in high temperature application.The influence of the monolayer’s microstructure and deposition rate was firstly discussed.Then the nitride nano-multilayer on the polished stainless steel (herein after referred as "SS") substrate was prepared with Ti and Al metal targets by DC.and R.F.magnetron co-sputtering.The samples were annealed in air at different temperatures ranging from 350 to 800°C for 2 h to evaluate their thermal stability.The samples’ surface and cross-section morphology,crystal structure,phase composition,optical properties were analyzed by scanning electron microscopy,X-ray diffraction,UV-VIS-NIR spectrophotometer and infrared emissivity tester.The results show that the coatings exhibit high solar selectivity (α/ε) of 0.943/0.08 even after heat-treatment up to 400°C for 2 h in air.After heat-treatment at 600°C in air,the solar selectivity decreases to 0.92/0.16.

  6. Basic research on cermet nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshi; Sto, Seichi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Takano, Masahide; Minato, Kazuo; Fukuda, Kosaku

    1998-01-01

    Production of cermet nuclear fuel having fine uranium dioxide (UO{sub 2}) particles dispersed in matrix metal requires basic property data on the compatibility of matrix metal with fission product compounds. It is thermodynamically suggested that, as burnup increases, cesium in oxide fuel reacts with the fuel, other fission products or cladding pipe and produces cesium uranates, cesium molybdate, or cesium chromate in stainless steel cladding pipe. Attempt was made to measure the thermal expansion coefficient and thermal conductivity of cesium uranates (Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}), cesium molybdate (Cs{sub 2}MoO{sub 4}) and cesium chromate (Cs{sub 2}CrO{sub 4}). Thermal expansion was measured by X-ray diffraction and determined by Cohen`s method. Thermal conductivity was obtained by measuring thermal diffusion by laser flash method. The thermal expansion of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} is as low as 1.2% for the former and 1.0% for the latter, up to 1000K. The thermal expansion of Cs{sub 2}MoO{sub 4} is as high as that of Cs{sub 2}CrO{sub 4}, 2.1% for the former and 2.5% for the latter at temperatures from room temperature to 873K. Average thermal expansion in this temperature range is 4.4 x 10{sup -5} K{sup -1} for Cs{sub 2}MoO{sub 4} and 4.2 x 10{sup -5} K{sup -1}. The thermal expansion of Cs{sub 2}CrO{sub 4} is four times higher than that of UO{sub 2} and five times higher than that of Cr{sub 2}O{sub 3}. The thermal conductivity of Cs{sub 2}UO{sub 4} is nearly equal to that of Cs{sub 2}U{sub 2}O{sub 7} in absolute value and temperature dependency. Cs{sub 2}U{sub 2}O{sub 7}, having different thermal conductivity between {alpha} and {beta} phases, shows higher conductivity with {beta} than with {alpha}, about 1/4 of that of UO{sub 2} at 1000K. The thermal conductivity of Cs{sub 2}CrO{sub 4} is nearly equal to that of Cs{sub 2}MoO{sub 4} in absolute value and temperature dependency. (N.H.)

  7. Investigation of the Corrosion Behaviors of HVOF-Sprayed Carbide Cernet Coatings in Molten Al-Zn-Si Alloy Bath

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhen-hua; TAN Xing-hai; ZHANG Yue-gang; SUN Jia-shu

    2004-01-01

    In continuous hot-dip galvanization process the corrosion and chemical stability of the sink roll in the galvanizing bath are important problem which effects on the quality and productivity. In order to protect the sink roll the carbide cermet and/or ceramic coatings were deposited on the surface of the sink roll. The WC-, Cr3 C2-cermet coatings were deposited by high velocity oxygen fuel (HVOF) spray, respectively. The coating samples were immersed in molten Zn-alloy containing 50 wt % aluminum at 833 K for 24 hr and 144 hr, respectively. The inter-diffusion and inter-reaction of Zn, Al and elements in coating and corrosion behaviors of these coatings were investigated by XRD, SEM and EPMA etc. The corrosion mechanisms of the carbide cermet coatings and ceramic coatings in molten High Al-Zn-alloy were approached.

  8. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze;

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...

  9. Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    complete polymer solar cell module prepared in the ambient atmosphere using all-solution processing with no vacuum steps and full roll-to-roll (R2R) processing is presented. The modules comprise five layers that were prepared on a 175-μm flexible polyethyleneterephthalate (PET) substrate with an 80......-nm layer of transparent conducting indium–tin oxide (ITO). The ITO layer was first patterned by screen printing an etch resist followed by etching. The second layer was applied by either knife-over-edge (KOE) coating or slot-die coating a solution of zinc oxide nanoparticles (ZnO-nps) followed...... was patterned into stripes and juxtaposed with the ITO layer. The fourth layer comprised screen-printed or slot-die-coated PEDOT:PSS and the fifth and the final layer comprised a screen-printed or slot-die-coated silver electrode. The final module dimensions were 28 cm×32 cm and presented four individual solar...

  10. Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability

    Science.gov (United States)

    Cui, Jin; Li, Pengfei; Chen, Zhifan; Cao, Kun; Li, Dan; Han, Junbo; Shen, Yan; Peng, Mingying; Fu, Yong Qing; Wang, Mingkui

    2016-10-01

    This work investigates non-rare-earth phosphor (Sr4Al14O25:Mn4+, 0.5%Mg) with intensively red luminescence as a luminescent down-shifting layer for perovskite solar cells. The power conversion efficiency of the fabricated device with a structure of NiO/CH3NH3PbI3/[6,6]-phenyl C61-butyric acid methyl ester/Au coated with phosphor layer shows a 10% increase as compared with that of the control devices. Importantly, the phosphor layer coating can realize UV-protection as well as waterproof capability, achieving a reduced moisture-degradation of CH3NH3PbI3 perovskite upon applying an UV irradiation. Therefore, perovskite devices using this luminescent coating show a combined enhancement in both UV down-shifting conversion and long term stability. This can be expanded as a promising encapsulation technique in the perovskite solar cell community.

  11. Modeling the absorption behavior of solar thermal collector coatings utilizing graded alpha-C:H/TiC layers.

    Science.gov (United States)

    Gruber, D P; Engel, G; Sormann, H; Schüler, A; Papousek, W

    2009-03-10

    Wavelength selective coatings are of common use in order to enhance the efficiency of devices heated by radiation such as solar thermal collectors. The use of suitable materials and the optimization of coating layer thicknesses are advisable ways to maximize the absorption. Further improvement is achievable by embedding particles in certain layers in order to modify material properties. We focus on optimizing the absorption behavior of a solar collector setup using copper as substrate, a layer of amorphous hydrogenated carbon with embedded titanium carbide particles (a-C:H/TiC), and an antireflection coating of amorphous silicon dioxide (aSiO(2)). For the setup utilizing homogeneous particle distribution, a relative absorption of 90.98% was found, while inhomogeneous particle embedding yielded 98.29%. These results are particularly interesting since until now, absorption of more than 95% was found only by using embedded Cr but not by using the more biocompatible Ti.

  12. Single-material multilayer ZnS as anti-reflective coating for solar cell applications

    Science.gov (United States)

    Salih, Ammar T.; Najim, Aus A.; Muhi, Malek A. H.; Gbashi, Kadhim R.

    2017-04-01

    Multilayer Zinc Sulfide (ZnS) is a promising low cost antireflective coating for solar cell applications, in this work; thin films with novel structure containing cubic and hexagonal phases were successfully deposited by thermal evaporation technique with three different layers. XRD analysis confirms the existence of both phases and high specific surface area. AFM analysis reveals that films with three layers have lower roughness and average grain size than other films. The optical measurements obtained by UV-vis, the calculated values of refractive index and reflectivity using some well known refractive index-band gap relations indicate that thin films with triple layer TL-ZnS have lower refractive index and reflectivity than other films, empirical equations were suggested and show the quantum confinement effects on band gap and reflectivity.

  13. Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process.

    Science.gov (United States)

    Park, Byoungchoo; Han, Mi-Young

    2009-08-03

    We present the results of a study of flat and uniform poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic (PV) layers that were produced by a simple pre-metered horizontal-dipping process for the fabrication of polymer solar cells (PSCs). It is shown that this process can produce high quality and thin films by utilizing the downstream meniscus of the solution, which can be controlled by adjusting experimental parameters of the gap height and the carrying speed. It is also shown that the produced PV film exhibits high power conversion efficiency of ca. 4.2% with a large active area. It was demonstrated that this pre-metered process for solution coating may be promising for achieving highly efficient, reliable, and large-area PSCs.

  14. Cocktails of paste coatings for performance enhancement of CuInGaS(2) thin-film solar cells.

    Science.gov (United States)

    An, Hee Sang; Cho, Yunae; Park, Se Jin; Jeon, Hyo Sang; Hwang, Yun Jeong; Kim, Dong-Wook; Min, Byoung Koun

    2014-01-22

    To fabricate low-cost and printable wide-bandgap CuInxGa1-xS2 (CIGS) thin-film solar cells, a method based on a precursor solution was developed. In particular, under this method, multiple coatings with two pastes with different properties (e.g., viscosity) because of the different binder materials added were applied. Paste A could form a thin, dense layer enabling a high-efficiency solar cell but required several coating and drying cycles for the desired film thickness. On the other hand, paste B could easily form one-micrometer-thick films by means of a one-time spin-coating process but the porous microstructure limited the solar cell performance. Three different configurations of the CIGS films (A + B, B + A, and A + B + A) were realized by multiple coatings with the two pastes to find the optimal stacking configuration for a combination of the advantages of each paste. Solar cell devices using these films showed a notable difference in their photovoltaic characteristics. The bottom dense layer increased the minority carrier diffusion length and enhanced the short-circuit current. The top dense layer could suppress interface recombination but exhibited a low optical absorption, thereby decreasing the photocurrent. As a result, the A + B configuration could be suggested as a desirable simple stacking structure. The solar cell with A + B coating showed a highly improved efficiency (4.66%) compared to the cell with a film prepared by paste B only (2.90%), achieved by simple insertion of a single thin (200 nm), dense layer between the Mo back contact and a thick porous CIGS layer.

  15. Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System.

    Science.gov (United States)

    Hong, Seung Chan; Lee, Gunhee; Ha, Kyungyeon; Yoon, Jungjin; Ahn, Namyoung; Cho, Woohyung; Park, Mincheol; Choi, Mansoo

    2017-03-08

    Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH3NH3PbI3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.

  16. Film properties of alumina passivation layer for silicon solar cells prepared by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Ryosuke, E-mail: rwatanabe@st.seikei.ac.jp; Kawashima, Mizuho; Saito, Yoji

    2015-09-01

    We prepared alumina passivation films deposited by a sol-gel wet process for silicon substrates. Aluminum acetylacetonate was used as a precursor, and the solution was spin-coated onto silicon substrates. Calcination temperature dependence of the passivation quality of the films was evaluated mainly by measuring effective lifetime using a photo conductance decay technique and capacitance–voltage measurements. Also, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were carried out to evaluate film properties. A large amount of negative fixed charge density (Q{sub f} = − 3.1 × 10{sup 12} cm{sup −2}) exists in the films calcined at 300 °C. On the other hand, a long effective lifetime of 400 μs was obtained for the sample calcined at 600 °C, and the passivation films had a large amount of positive fixed charge density (Q{sub f} = 3.6 × 10{sup 12} cm{sup −2}) with a low interface state density. - Highlights: • Alumina passivation films for silicon solar cells were prepared by spin-coating. • Electronic properties and the quality of passivation films were investigated. • Carrier lifetime was enhanced for the samples that were calcined above 400 °C. • The films calcined at 300 °C have high amount of negative fixed charge.

  17. The use of trivalent chromium bath to obtain a solar selective black chromium coating

    Science.gov (United States)

    Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.

    2014-06-01

    Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.

  18. Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    T.A. Nirmal Peiris

    2017-02-01

    Full Text Available Herein, we studied the effect of MgO coating thickness on the performance of printable perovskite solar cells (PSCs by varying the electrodeposition time of Mg(OH2 on the fluorine-doped tin oxide (FTO/TiO2 electrode. Electrodeposited Mg(OH2 in the electrode was confirmed by energy dispersive X-ray (EDX analysis and scanning electron microscopic (SEM images. The performance of printable PSC structures on different deposition times of Mg(OH2 was evaluated on the basis of their photocurrent density-voltage characteristics. The overall results confirmed that the insulating MgO coating has an adverse effect on the photovoltaic performance of the solid state printable PSCs. However, a marginal improvement in the device efficiency was obtained for the device made with the 30 s electrodeposited TiO2 electrode. We believe that this undesirable effect on the photovoltaic performance of the printable PSCs is due to the higher coverage of TiO2 by the insulating MgO layer attained by the electrodeposition technique.

  19. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    Science.gov (United States)

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found.

  20. Effect of Mo2C content on the properties of TiC/TiB2 base cermets

    Science.gov (United States)

    Takagi, Ken-ichi; Osada, Ken; Koike, Wataru; Fujima, Takuya

    2009-06-01

    The effects of Mo2C content on the microstructure and mechanical properties of TiC/TiB2 base cermets were studied using the model cermets with the compositions of TiC/TiB2-(11-17)Mo2C-24Ni (mass%). TiC and TiB2 ratio is set to molar ratio of 59:41 that is near quasi-eutectic composition. As a result, both transverse rupture strength and hardness of the cermets showed maxima for the cermet containing 13% Mo2C. The cermet achieved remarkable microstructural refinement and still maintained characteristic core-rim structure of the TiC base cermets. TiC/TiB2 cermets, in addition to TiCN base cermets, are a good alternative material to cemented carbides.

  1. A binder phase of TiO based cermets

    Institute of Scientific and Technical Information of China (English)

    LI Qing-kui; GUAN Shao-kang; ZHONH Hui; LI Jiang; ZHONG Hai-yun

    2005-01-01

    A binder phase of TiO based cermets, a kind of imitated gold materials, was developed by adding active element Si to Fe-Cr alloy, and the related mechanisms were studied. The wettability, matching in thermodynamics and interfacial strength were investigated by the high temperature sessile drop method and element area scanning. The linear expansion coefficients of the materials were measured using TAH100 thermal analyzer. The results show that the wettability of Fe-Cr alloy on TiO are small, with a wetting angle about 90°. After adding some Si in Fe-Cr alloy, its wetting angle can be decreased to about 25°, the interfacial reactions can be prevented effectively and high interface binding can be formed. Fe-25%Cr-1.5%Si matches the thermal expansion coefficient of TiO, so it is a kind of relatively perfect binder for TiO based cermets imitated gold.

  2. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  3. Investigation of Some Transparent Metal Oxides as Damp Heat Protective Coating for CIGS Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F. J.; Yan, F.; Zaaunbrecher, B.; To, B.; Perkins, J.; Noufi, R.

    2012-10-01

    We investigated the protective effectiveness of some transparent metal oxides (TMO) on CIGS solar cell coupons against damp heat (DH) exposure at 85oC and 85% relative humidity (RH). Sputter-deposited bilayer ZnO (BZO) with up to 0.5-um Al-doped ZnO (AZO) layer and 0.2-um bilayer InZnO were used as 'inherent' part of device structure on CdS/CIGS/Mo/SLG. Sputter-deposited 0.2-um ZnSnO and atomic layer deposited (ALD) 0.1-um Al2O3 were used as overcoat on typical BZO/CdS/CIGS/Mo/SLG solar cells. The results were all negative -- all TMO-coated CIGS cells exhibited substantial degradation in DH. Combining the optical photographs, PL and EL imaging, SEM surface micro-morphology, coupled with XRD, I-V and QE measurements, the causes of the device degradations are attributed to hydrolytic corrosion, flaking, micro-cracking, and delamination induced by the DH moisture. Mechanical stress and decrease in crystallinity (grain size effect) could be additional degrading factors for thicker AZO grown on CdS/CIGS.

  4. A Science-Based Understanding of Cermet Processing.

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, Joseph; Roach, Robert Allen; Kilgo, Alice C.; Susan, Donald Francis; Van Ornum, David J.; Stuecker, John N.

    2006-04-01

    AbstractThis report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter

  5. Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%

    DEFF Research Database (Denmark)

    Liu, Wenqing; Liu, Shiyong; Zawacka, Natalia Klaudia

    2014-01-01

    All solution-processed flexible large area small molecule bulk heterojunction solar cells were fabricated via roll-coating technology. Our devices were produced from slot-die coating on a lab-scale mini roll-coater under ambient conditions without the use of spin-coating or vacuum evaporation...... methods. Four diketopyrrolopyrrole based small molecules (SMs 1-4) were utilized as electron donors with (6,6)phenyl- C61-butyric acid methyl ester as an acceptor and their photovoltaic performances based on roll-coated devices were investigated. The best power conversion efficiency (PCE) of 1.......01%, combined with an open circuit voltage of 0.73 V, a short-circuit current density of 3.13 mA cm (2) and a fill factor of 44% were obtained for the device with SM1, which was the first example reported for efficient roll-coating fabrication of flexible large area small molecule solar cells with PCE exceeding...

  6. Slot-Die-Coated V2O5 as Hole Transport Layer for Flexible Organic Solar Cells and Optoelectronic Devices

    DEFF Research Database (Denmark)

    Beliatis, Michail; Helgesen, Martin; Garcia Valverde, Rafael;

    2016-01-01

    organic solar cells and photo-detectors with improved performance. The effect of different diluents on the electrical properties of the vanadium oxide films is investigated, and methodologies for efficient interfacing of the anode are studied. Furthermore, the lifetime of the cells with incorporated......Vanadium pentoxide has been proposed as a good alternative hole transport layer for improving device lifetime of organic photovoltaics. The article presents a study on the optimization of slot-die-coated vanadium oxide films produced with a roll coating machine with the aim of achieving scalable...

  7. Functionally graded TiC-based cermets via combustion synthesis and quasi-isostatic pressing

    NARCIS (Netherlands)

    Martinez Pacheco, M.; Stuivinga, M.E.C.; Carton, E.P.; Katgerman, L.

    2004-01-01

    Experimental results on the preparation of functionally graded TiC-based cermets obtained by combustion synthesis (also known as Self-Propagating High-Temperature Synthesis, SHS) followed by quasi-isostatic (QIP) pressing in a granulate medium are presented. Pellets of TiC-Fe graded cermets are prod

  8. Combustion synthesis of TiB2-based cermets: modeling and experimental results

    NARCIS (Netherlands)

    Martinez Pacheco, M.; Bouma, R.H.B.; Katgerman, L.

    2008-01-01

    TiB2-based cermets are prepared by combustion synthesis followed by a pressing stage in a granulate medium. Products obtained by combustion synthesis are characterized by a large remaining porosity (typically 50%). To produce dense cermets, a subsequent densification step is performed after the comb

  9. TiO{sub 2}-coated foams as a medium for solar catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Plantard, G., E-mail: plantard@univ-perp.fr [PROMES-CNRS, UPR 8521, PROcedes Materiaux et Energie Solaire, Rambla de la Thermodynamique, Technosud, 66100 Perpignan Cedex (France); Universite de Perpignan Via Domitia 52 Avenue Paul Alduy, 66860 Perpignan (France); Goetz, V. [PROMES-CNRS, UPR 8521, PROcedes Materiaux et Energie Solaire, Rambla de la Thermodynamique, Technosud, 66100 Perpignan Cedex (France); Sacco, D. [PROMES-CNRS, UPR 8521, PROcedes Materiaux et Energie Solaire, Rambla de la Thermodynamique, Technosud, 66100 Perpignan Cedex (France); Universite de Perpignan Via Domitia 52 Avenue Paul Alduy, 66860 Perpignan (France)

    2011-02-15

    Graphical abstract: Photographs taken at the Scanning Electron Microscope of (a) a surface coating of TiO{sub 2}, (b) a mesh of a foam (mesh diameter of 2 mm) and (c) a foam. Research highlights: {yields} Assess the efficiency of the foams as a photocatalytic media. {yields} Foam to improve the apparent quantum yield. {yields} Foam makes good use of the UV rays to break down molecules. -- Abstract: Sunlight irradiating the surface of the Earth represents a maximum input available for a solar catalytic process of 50 W{sub UV} m{sup -2}. We propose using high-porosity, metallic, reticulated foams as the support medium for the photocatalyst in order to improve the apparent quantum yield. The layer of TiO{sub 2} was applied by dip-coating. The measurement of the degradation kinetics was carried out on a model target molecule, 2,4 dichlorophenol, at an initial concentration of 10 mg l{sup -1}. The aim was to assess the efficiency of the foams as a photocatalytic media compared to that of a suspension of catalytic powder (Degussa P25) and the flat 2D support (Ahlstrom cellulose media). The apparent quantum yield of the foam scaffold carrying the TiO{sub 2} was high, showing that, as with the powder suspension, foam makes good use of the UV rays to break down molecules. It is noteworthy that the apparent quantum yield of the foam tended towards that observed for suspensions which form the ideal support thanks to their optimal ability to harness the light.

  10. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    Energy Technology Data Exchange (ETDEWEB)

    Rossander, Lea H.; Zawacka, Natalia K.; Dam, Henrik F.; Krebs, Frederik C.; Andreasen, Jens W., E-mail: jewa@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 (Denmark)

    2014-08-15

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  11. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    Directory of Open Access Journals (Sweden)

    Lea H. Rossander

    2014-08-01

    Full Text Available The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  12. Roll-coating fabrication of ITO-free flexible solar cells based on a non-fullerene small molecule acceptor

    DEFF Research Database (Denmark)

    Liu, Wenqing; Shi, Hangqi; Andersen, Thomas Rieks;

    2015-01-01

    We report organic solar cells (OSCs) with non-fullerene small molecule acceptors (SMAs) prepared in large area via a roll coating process. We employ all solution-processed indium tin oxide (ITO)-free flexible substrates for inverted solar cells with a new SMA of F(DPP)(2)B-2. By utilizing poly(3......-hexylthiophene) as donor blended with F(DPP)(2)B-2 as acceptor, ITO-free large-area flexible SMA based OSCs were produced under ambient conditions with the use of slot-die coating and flexographic printing methods on a lab-scale compact roll-coater that is readily transferrable to roll-to-roll processing...

  13. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells

    Science.gov (United States)

    Morgenstern, Frederik S. F.; Kabra, Dinesh; Massip, Sylvain; Brenner, Thomas J. K.; Lyons, Philip E.; Coleman, Jonathan N.; Friend, Richard H.

    2011-10-01

    We demonstrate that solution-processible silver-nanowire films coated with zinc-oxide-nanoparticles (ZnO-NPs) can be used as transparent electrodes in organic photovoltaic devices. The ZnO-NP coating acts as electron extraction layer and as encapsulating agent, protecting the wires from oxidation and improving their mechanical stability. Scanning photocurrent microscopy showed photocurrent generation to be more efficient at the active material surrounding the wires. Ultra-violet illumination as present in the solar spectrum was found to enhance photocurrent by improving the ZnO in-layer conductivity through the photoconductive effect. Inverted polythiophene:fullerene devices using ZnO-NP coated silver-nanowires or indium-tin-oxide as transparent electrode reached power conversion efficiencies of 2.4%.

  14. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  15. New Low-Bandgap Materials with Good Stabilities and Efficiencies Comparable to P3HT in R2R-Coated Solar Cells

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Manceau, Matthieu; Jørgensen, Mikkel;

    2012-01-01

    Roll-to-roll coated organic solar cells of two new polymers processed in ambient conditions show good photochemical stabilities, and their efficiencies are comparable to similar roll-to-roll coated P3HT cells. Optimal blend compositions are achieved by the use of differentially pumped slot die...

  16. Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: Optimization and synchrotron radiation XPS studies

    Energy Technology Data Exchange (ETDEWEB)

    Amri, Amun [School of Engineering and Energy, Murdoch University, Murdoch, 6150 WA (Australia); Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Duan, XiaoFei [School of Chemistry, The University of Melbourne, VIC 3010 (Australia); Yin, Chun-Yang, E-mail: c.yin@murdoch.edu.au [School of Chemical and Mathematical Sciences, Murdoch University, Murdoch, 6150 WA (Australia); Jiang, Zhong-Tao, E-mail: z.jiang@murdoch.edu.au [School of Engineering and Energy, Murdoch University, Murdoch, 6150 WA (Australia); Rahman, M. Mahbubur; Pryor, Trevor [School of Engineering and Energy, Murdoch University, Murdoch, 6150 WA (Australia)

    2013-06-15

    Copper–cobalt oxides thin films had been successfully coated on reflective aluminium substrates via a facile sol–gel dip-coating method for solar absorptance study. The optimum absorptance in the range of solar radiation is needed for further optimum design of this material for selective solar absorber application. Field emission scanning electron microscopy was used to characterize the surface morphology of the coating whereby nano-size, grain-like morphology was observed. Synchrotron radiation X-ray photoelectron spectroscopy was employed to analyze the electronic structure of the coated surface showing that the (i) oxygen consisted of lattice, surface and subsurface oxygen, (ii) copper consisted of octahedral and tetrahedral Cu{sup +}, as well as octahedral and paramagnetic Cu{sup 2+} oxidation states, and (iii) cobalt consisted of tetrahedral and paramagnetic Co(II), octahedral Co(III) as well as mixed Co(II,III) oxidation states. In order to optimize the solar absorptance of the coatings, relevant parameters such as concentrations of cobalt and copper, copper/cobalt concentration ratios and dip-speed were investigated. The optimal coating with α = 83.4% was produced using 0.25 M copper acetate and 0.25 M cobalt chloride (Cu/Co ratio = 1) with dip-speed 120 mm/min (four cycles). The operational simplicity of the dip-coating system indicated that it could be extended for coating of other mixed metal oxides as well.

  17. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers.

    Science.gov (United States)

    Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang

    2016-12-27

    This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm(-1) , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production.

  18. Performance measurements of new silicon carbide coated reflectors for concentrated solar power applications

    Science.gov (United States)

    Belasri, Djawed; Nakamura, Kazuki; Armstrong, Peter; Calvet, Nicolas

    2016-05-01

    The new silicon carbide coated mirrors (SiC-mirrors) developed by Ibiden Co., Ltd. and tested at the Masdar Institute of Science and Technology offer several advantages in concentrated solar power (CSP) structure and operation. The purpose of this paper is to present the results of the reflectance and durability of the SiC-mirrors compared to high quality CSP glass mirrors in conjunction with two different applied cleaning methods. SiC-mirrors are 40 % lighter than high quality CSP glass mirrors, which leads to reduce costs of heliostat, parabolic trough or linear Fresnel structures, including assembly and installation time, lower drive power requirements, and stress during tracking operation. Lab and field tests show the SiC mirrors' reflectance is as high as the high quality CSP glass mirrors. Indeed, after 32 weeks of exposure, the high quality CSP glass mirrors' reflectance has decreased by 19 %, while the SiC mirrors' reflectance has decreased by 20 % when the brushing with water cleaning was applied. Using the brushing without water cleaning, the reflectance has decreased by 13 % and 2 % for the high quality CSP glass mirrors and the SiC-mirrors, respectively.

  19. Dip coated nanocrystalline CdZnS thin films for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Dongre, J. K., E-mail: jk-dongre@yahoo.com; Chaturvedi, Mahim; Patil, Yuvraj; Sharma, Sandhya; Jain, U. K. [Government Autonomous Post Graduate College Chhindwara, 480001 (India)

    2015-07-31

    Nanocrystalline cadmium sulfide (CdS) and zinc cadmium sulfide (ZnCdS) thin films have been grown via simple and low cost dip coating technique. The prepared films are characterized by X-ray diffraction (XRD), atomic force microscopic (AFM) and UV-VIS spectrophotometer techniques to reveal their structural, morphological and optical properties. XRD shows that both samples grown have zinc blende structure. The grain size is calculated as 6.2 and 8 nm using Scherrer’s formula. The band gap value of CdS and CdZnS film is estimated to be 2.58 and 2.69 eV respectively by UV-vis spectroscopy. Photoelectrochemical (PEC) investigations are carried out using cell configuration as n-CdZnS/(1M NaOH + 1M Na2S + 1M S)/C. The photovoltaic output characteristic is used to calculate fill-factor (FF) and solar conversion efficiency (η)

  20. Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting

    Science.gov (United States)

    Lee, Jin-Won; Na, Seok-In; Kim, Seok-Soon

    2017-01-01

    To demonstrate fully brush-painted planar heterojunction perovskite solar cells (PeSCs), poly (3,4-ethylendioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL), CH3NH3PbI3 perovskite photoactive layer, and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) electron acceptor layer are successively brush-painted. In particular, correlation between morphology of perovskites and overall performance of PeSCs are investigated depending on the perovskites precursor. Devices with brush-painted perovskite using generally used N,N-dimethylformamide (DMF) solvent show poor performance and large deviation in cell-performance. However, PeSCs with brush-painted perovskite employing protic 2-Methoxyethanol (2-M) as DMF-alternative solvent exhibit comparable power conversion efficiency (PCE) of 9.08% to conventional spin-coated device and excellent reproducibility in device performance is observed as well. Furthermore, a fully brush-painted PeSC based on flexible substrates, showing PCE of 7.75%, is successfully demonstrated.

  1. Slot-die Coating of a High Performance Copolymer in a Readily Scalable Roll Process for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Krebs, Frederik C

    2013-01-01

    Copolymers based on dithieno[3,2-b:2',3'-d]silole (DTS) and dithienylthiazolo[5,4-d]thiazole (TTz) are synthesized and tested in an all-solution roll process for polymer solar cells (PSCs). Fabrication of polymer:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells is done on a previously...... above 200 nm. Power conversion efficiencies of up to 3.5% can be reached with the roll-coated PDTSTTz-4:PCBM solar cells that, together with good process control and high device yield, designate PDTSTTz-4 as a convincing candidate for high-throughput roll-to-roll production of PSCs....

  2. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  3. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    Science.gov (United States)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  4. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  5. Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells

    DEFF Research Database (Denmark)

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel;

    2012-01-01

    The 3-dimensional imaging of complete polymer solar cells prepared by roll-to-roll coating was carried out using high-resolution 1322 nm optical coherence tomography (OCT) system. We found it possible to image the 3-dimensional structure of the entire solar cell that comprises UV-barrier, barrier...

  6. The Influence of Nanofilled Polymer Coatings and Magnetic Field on the Decay Kinetics of Photovoltage in Silicon Crystals Used in Solar Energy

    Directory of Open Access Journals (Sweden)

    L.P. Steblenko

    2015-06-01

    Full Text Available The influence of a weak stationary magnetic field on the kinetics of photovoltage decay in "solar" silicon crystals (solar-Si with nanofilled polymer coatings is studied. The characteristic features of magnetostimulated change of carrier lifetime depending on the concentration and the method of forming the nanofillers in the polymer matrix are established.

  7. Mechanism of Combustion Synthesis of TiC-Ti Cermet

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to investigate the mechanism of combustion synthesis of TiC-Ti cermet, a mixture of Ti and C was used for a combustion front quenching test, and the microstructural evolution in the quenched sample was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Also,a temperature-time profile of the combustion reaction was measured. Based on the experimental results, a reaction-dissolution-precipitation mechanism of the combustion synthesis of TiC-Ti was proposed.

  8. Roll coated large area ITO- and vacuum-free all organic solar cells from diketopyrrolopyrrole based non-fullerene acceptors with molecular geometry effects

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbaek; Zhang, Fei; Andersen, Thomas Rieks

    2016-01-01

    In this paper, we investigate three diketopyrrolopyrrole (DPP) based small molecular non-fullerene acceptors, namely Ph(DPP)3, Ph(DPP)2, and PhDMe(DPP)2, focusing on molecular geometry effects on the frontier orbital level, light absorption, molecular configuration, electron mobility, thin film...... morphology, and photovoltaic performance of both spin-coated ITO based and roll coated large area, ITO- and vacuum-free organic solar cells (OSCs). For spin-coated devices based on P3HT as the donor polymer the solar cells gave power conversion efficiencies (PCEs) in the following order for (P3HT:PhDMe(DPP)2...

  9. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance.

    Science.gov (United States)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-28

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm(2). The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.

  10. Characterization of TiC-FeCrMn Cermets Produced by Powder Metallurgy Method

    Directory of Open Access Journals (Sweden)

    Märt Kolnes

    2015-09-01

    Full Text Available TiC-NiMo cermets combine relatively low density with high hardness. Because nickel is known as a toxin and allergen and allergy to nickel is a phenomenon which has assumed growing importance in recent years there has been a flurry of activity to find alternatives to the nickel binder in cermets. It is also the global research and technical development trend in the powder metallurgy cermets industry. In present research TiC-based cermets with FeCrMn binder system were fabricated. Three different sintering conditions were used (vacuum sintering, sinter/HIP and sintering under low Ar pressure. Because of high vapor pressure of manganese different sintering conditions and technologies were investigated to depress the Mn-loss during sintering. Chemical composition of TiC-FeCrMn cermets after different sintering conditions were analyzed by energy-dispersive X-ray spectroscopy (EDS and mechanical properties – hardness and fracture toughness were evaluated on the samples. Results of research showed that Ni-free TiC-based CrMn-steels bonded cermets compare unfavorably with cermets bonded with CrNi austenitic steels in terms of fracture toughness and corrosion resistance. Noticeable Mn-loss during vacuum sintering can be avoided when sintering under low Ar gas pressure.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7364

  11. Effect of magnesium oxide content on oxidation behavior of some superalloy-base cermets

    Science.gov (United States)

    Zaplatynsky, I.

    1975-01-01

    The effect of increasing magnesium oxide (MgO) content on the cyclic oxidation resistance of hot-pressed cermets of MgO in NiCrAlY, MgO in Hoskins-875, MgO in Inconel-702, and MgO in Hastelloy-X was investigated. The cermets with magnesium oxide levels of 5, 10, 20, and 40 vol percent were examined. The cyclic oxidation behavior of these cermets at 1100 and 1200 C in still air was determined by a thermogravimetric method supplemented by X-ray diffraction analysis and light and electron microscopy. In all instances, MgO prevented grain growth in the metallic phase. No evidence of oxidation along interphase boundaries was detected. Cermets of MgO in NiCrAlY and MgO in Hoskins-875 were superior to cermets of MgO in Inconel-702 and MgO in Hastelloy-X. Their oxidation resistance was degraded only when the MgO content was 40 vol percent. The oxidation behavior of MgO-in-Inconel-702 powder cermets containing 5- and 10-vol percent MgO was approximately similar to that of pure Inconel-702 compacts. The 20- and 40-vol percent MgO content reduced the oxidation resistance of MgO-in-Inconel-702 powder cermets relative to that of pure Inconel-702.

  12. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    Science.gov (United States)

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements.

  13. Characteristics and fabrication of cermet spent nuclear fuel casks: ceramic particles embedded in steel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Swaney, P.M.; Tiegs, T.N. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    Cermets are being investigated as an advanced material of construction for casks that can be used for storage, transport, or disposal of spent nuclear fuel (SNF). Cermets, which consist of ceramic particles embedded in steel, are a method to incorporate brittle ceramics with highly desirable properties into a strong ductile metal matrix with a high thermal conductivity, thus combining the best properties of both materials. Traditional applications of cermets include tank armor, vault armor, drill bits, and nuclear test-reactor fuel. Cermets with different ceramics (DUO{sub 2}, Al{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, etc.) are being investigated for the manufacture of SNF casks. Cermet casks offer four potential benefits: greater capacity (more SNF assemblies) for the same gross weight cask, greater capacity (more SNF assemblies) for the same external dimensions, improved resistance to assault, and superior repository performance. These benefits are achieved by varying the composition, volume fraction, and particulate size of the ceramic particles in the cermet with position in the cask body. Addition of depleted uranium dioxide (DUO{sub 2}) to the cermet increases shielding density, improves shielding effectiveness, and increases cask capacity for a given cask weight or size. Addition of low-density aluminium oxide (Al{sub 2}O{sub 3}) to the outer top and bottom sections of the cermet cask, where the radiation levels are lower, can lower cask weight without compromising shielding. The use of Al2O3 and other oxides, in appropriate locations, can increase resistance to assault. Repository performance may be improved by compositional control of the cask body to (1) create a local geochemical environment that slows the long-term degradation of the SNF and (2) enables the use of DUO{sub 2} for longterm criticality control. While the benefits of using cermets follow directly from their known properties, the primary challenge is to develop low-cost methods to fabricate

  14. The design of broad band anti-reflection coatings for solar cell applications

    Science.gov (United States)

    Siva Rama Krishna, Angirekula; Sabat, Samrat Lagnajeet; Ghanashyam Krishna, Mamidipudi

    2017-01-01

    The design of broadband anti-reflection coatings (ARCs) for solar cell applications using multiobjective differential evolutionary (MODE) algorithms is reported. The effect of thickness and refractive index contrast within the layers of the ARC on the bandwidth of reflectance is investigated in detail. In the case of the hybrid plasmonic ARC structures the effect of size, shape and filling fraction of silver (Ag) nanoparticles on the reflectance is studied. Bandwidth is defined as the spectral region of wavelengths over which the reflectance is below 2%. Single, two and three layers ARCs (consisting of MgF2, Al2O3, Si3N4, TiO2 and ZnS or combinations of these materials) were simulated for performance evaluation on an a-Si photovoltaic cell. It is observed that the three layer ARC consisting of MgF2/Si3N4/TiO2(ZnTe) of 81/42/36 nm thicknesses, respectively, exhibited a weighted reflectance of 1.9% with a bandwidth of 450 nm over the wavelength range of 300-900 nm. The ARC bandwidth could be further improved by embedding randomly distributed Ag nanoparticles of size between 100 and 120 nm on a two layer ARC consisting of Al2O3/TiO2 with thickness of 42 nm and 56 nm respectively. This plasmon-dielectric hybrid ARC design exhibited a weighted reflectance of 0.6% with a bandwidth of 560 nm over the wavelength range of 300-900 nm.

  15. Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2017-02-01

    Full Text Available Flexible electronics have attracted great interest in applications for the wearable devices. Flexible solar cells can be integrated into the flexible electronics as the power source for the wearable devices. In this work, an ultrasonic spray-coating method was employed to deposit TiO2 nanoparticles on polymer substrates for the fabrication of flexible perovskite solar cells (PSCs. Pre-synthesized TiO2 nanoparticles were first dispersed in ethanol to prepare the precursor solutions with different concentrations (0.5 mg/mL, 1.0 mg/mL, 2.0 mg/mL and then sprayed onto the conductive substrates to produce compact TiO2 films with different thicknesses (from 30 nm to 150 nm. The effect of the different drying processes on the quality of the compact TiO2 film was studied. In order to further improve the film quality, titanium diisopropoxide bis(acetylacetonate (TAA was added into the TiO2-ethanol solution at a mole ratio of 1.0 mol % with respect to the TiO2 content. The final prepared PSC devices showed a power conversion efficiency (PCE of 14.32% based on the indium doped tin oxide coated glass (ITO-glass substrate and 10.87% on the indium doped tin oxide coated polyethylene naphthalate (ITO-PEN flexible substrate.

  16. A Study on the Efficiency Improvement of Dye-Sensitized Solar Cell (DSSC) by Repeated Dye Coating.

    Science.gov (United States)

    Seo, Young Ho; Choi, Eun Chang; Hong, Byungyou

    2015-10-01

    Dye-sensitized solar cell (DSSC) is being extensively investigated as the next generation energy source. Despite of the attractive features like simple fabrication process and its economic efficiency, there are some problems such as low efficiency, long fabrication time and low long-term stability. Conventionally, the dye adsorption on TiO2 photo-electrode film needs long time in the solvent with low concentration of dye to get the high efficiency. In this work, the dye coating process was considerably shortened, albeit plenty of dye was used comparing with the conventional way. Our needs were met for the best result in our working environment and the relevant conditions to our work were obtained, which were the coating temperature of 70 °C, the dye concentration of 10 mM and the coating time of 3 min. And this coating process was successively repeated several times to maximize the dye adsorption and to improve the cell efficiency. Therefore, the efficiency increased by 13% in the proper condition.

  17. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    Science.gov (United States)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results

  18. Investigation of a Cermet Gas-turbine-blade Material of Titanium Carbide Infiltrated with Hastalloy C

    Science.gov (United States)

    Hoffman, Charles A

    1955-01-01

    A cermet composition was investigated as a potential material for gas-turbine blades. Blades of HS-21 alloy were also operated in the engine simultaneously to provide a basis of comparison. The cermet blades survived as long as approximately 312-1/2 hours at about 1500 degrees F with an average midspan centrifugal stress of approximately 11,500 psi. The alloy blade midspan stress was about 15,300 psi. Because of extensive damage to both types of blade due to external causes, a reliable comparison of operating lives could not be made. The cermet blades tended to fail in the airfoil rather than in the base, although the base was the usual location of failure in a prior study of cold-pressed and sintered cermets of other compositions with the same blade shape.

  19. Structural state scale-dependent physical characteristics and endurance of cermet composite for cutting metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, V. E., E-mail: ovcharenko.ove45@mail.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Ivanov, Yu. F., E-mail: ivanov.yufi55@mail.ru [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mohovikov, A. A., E-mail: mohovikov.maa28@rambler.ru [Institute of Heavy-Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Baohai, Yu, E-mail: baohai.bhyu@imr.ac.cn, E-mail: yanhui.yhzhao@imr.ac.cn; Zhao, Yanhui, E-mail: baohai.bhyu@imr.ac.cn, E-mail: yanhui.yhzhao@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 (China)

    2014-11-14

    A structural-phase state developed on the surface of a TiC/Ni–Cr–Al cermet alloy under superfast heating and cooling produced by pulse electron beam melting has been presented. The effect of the surface’s structural state multimodality on the temperature dependencies of the friction and endurance of the cermet tool in cutting metal has been investigated. The high-energy flux treatment of subsurface layers by electron beam pulses in argon-containing gas discharge plasma serves to improve the endurance of metal cutting tools manifold (by a factor of 6), to reduce the friction via precipitation of secondary 200 nm carbides in binder interlayers. It is possible to improve the cermet tool endurance for cutting metal by a factor of 10–12 by irradiating the cermet in a reactive nitrogen-containing atmosphere with the ensuing precipitation of nanosize 50 nm AlN particles in the binder interlayers.

  20. Microstructure and Raman spectra of Ag-MgF2 cermet films

    Institute of Scientific and Technical Information of China (English)

    Shouhua Shi(史守华); Zhuoliang Cao(曹卓良); Zhaoqi Sun(孙兆奇)

    2003-01-01

    Ag-MgF2 cermet films with different Ag fractions were prepared by vacuum evaporation. The microstruc-ture of the films was examined by Raman scattering technique. The surface-enhanced Raman spectrumfor MgF2 molecules in the cermet film strongly suggests the existence of Ag nanoparticles dispersed inMgF2 matrix. The intensities of the Raman spectra of Ag-MgF2 cermet films increase with Ag fraction.The enhancement of Raman scattering disappears when Ag content reaches wt.20%. The analyses withthe transmission electron microscopy showed that Ag-MgF2 cermet films are mainly composed of amor-phous MgF2 matrix with embedded faced-center-cubic Ag nanoparticles. It suggests that the percolationthreshold should be around wt.20% of Ag content.

  1. The Influence of Sintering Temperature of Reactive Sintered (Ti, MoC-Ni Cermets

    Directory of Open Access Journals (Sweden)

    Marek Jõeleht

    2015-09-01

    Full Text Available Titanium-molybdenum carbide nickel cermets ((Ti, MoC-Ni were produced using high energy milling and reactive sintering process. Compared to conventional TiC-NiMo cermet sintering the parameters for reactive sintered cermets vary since additional processes are present such as carbide synthesis. Therefore, it is essential to acquire information about the suitable sintering regime for reactive sintered cermets. One of the key parameters is the final sintering temperature when the liquid binder Ni forms the final matrix and vacancies inside the material are removed. The influence of the final sintering temperature is analyzed by scanning electron microscopy. Mechanical properties of the material are characterized by transverse rupture strength, hardness and fracture toughness.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7179

  2. Optimization of Multi-layer AR Coatings for GaInP/GaAs Tandem Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Cheng; ZHANG Yong-gang; LI Ai-zhen

    2004-01-01

    The AR coatings for GaInP/GaAs tandem solar cell are simulated. Results show that, under the condition of the lack of suitable encapsulation, a very low energy loss could be reached on MgF2/ZnS system;in the case of glass encapsulation,the Al2O3/ZrO2 and Al2 O3/TiO2 systems are appropriate choice; for AlInP window layer,the thickness of 30 nm is suitable.

  3. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2009-01-01

    A roll-to-roll process enabling fabrication of polymer solar cells comprising five layers on flexible substrates is presented. The device geometry is inverted and allow for fabrication on both transparent and non-transparent flexible substrates. The process is illustrated in this work by formation......:PSS. These first four layers were applied by slot-die coating. The final electrode was applied by screen printing a grid structure that allowed for transmission of 80% of the light. The materials were patterned into stripes allowing for formation of a single cell device and serially connected modules comprising 2...

  4. Low-temperature grown indium oxide nanowire-based antireflection coatings for multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Cian; Chen, Chih-Yao; Chen, I Chen [Institute of Materials Science and Engineering, National Central University, Taoyuan (China); Kuo, Cheng-Wen; Kuan, Ta-Ming; Yu, Cheng-Yeh [TSEC Corporation, Hsinchu (China)

    2016-08-15

    Light harvesting by indium oxide nanowires (InO NWs) as an antireflection layer on multi-crystalline silicon (mc-Si) solar cells has been investigated. The low-temperature growth of InO NWs was performed in electron cyclotron resonance (ECR) plasma with an O{sub 2}-Ar system using indium nanocrystals as seed particles via the self-catalyzed growth mechanism. The size-dependence of antireflection properties of InO NWs was studied. A considerable enhancement in short-circuit current (from 35.39 to 38.33 mA cm{sup -2}) without deterioration of other performance parameters is observed for mc-Si solar cells coated with InO NWs. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.

    Science.gov (United States)

    Chang, Hyo Sik; Jung, Hyun-Chul

    2011-04-01

    The effect of two-step surface treatment on monocrystalline silicon solar cells was investigated. We changed the nanostructure on pyramidal surfaces by wet nano-texturing so that less light is reflected. The two-step nano-texturing process reduces the average reflectance to about 4% in the 300-1100 nm wavelength region. The use of an antireflection coating resulted in an effective reflectance of 1%. We found that the reflectance obtained by wet nano-texturing was lower than that obtained by conventional alkaline texturing. Thus, we can expect a further increase in the efficiency of silicon solar cells with two-step nano-texturing by a wet chemical process.

  6. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    OpenAIRE

    Matus K.; Pawlyta M.; Matula G.; Gołombek K.

    2016-01-01

    The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary ...

  7. Numerical Simulation of Brazing TiC Cermet to Iron with TiZrNiCu Filler Metal

    Institute of Scientific and Technical Information of China (English)

    Lixia ZHANG; Jicai FENG

    2004-01-01

    The maximum thermal stress and stress concentration zones of iron/TiC cermet joint during cooling were studied in this paper. The results showed that the shear stress on iron/TiC cermet joint concentrates on the interface tip and the maximum shear stress appears on the left tip of iron/TiZrNiCu interlace. Positive tensile stress on TiC cermet undersurface concentrates on both sides of TiC cermet and its value decreases during cooling. Negative tensile stress on TiC cermet undersurface concentrates on the center of TiC cermet and its value increases during cooling. Brazing temperature has little effect on the development and maximum thermal stress.

  8. Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating

    Science.gov (United States)

    Call, R. L.

    1976-01-01

    Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.

  9. High-temperature stable absorber coatings for linear concentrating solar thermal power plants; Hochtemperaturstabile Absorberschichten fuer linear konzentrierende solarthermische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Christina

    2009-03-23

    This work describes the development of new absorber coatings for different applications - para-bolic trough and linear Fresnel collectors - and operating conditions - absorber in vacuum or in air. The demand for higher efficiencies of solar thermal power plants using parabolic trough technology results in higher temperatures in the collectors and on the absorber tubes. As heat losses increase strongly with increasing temperatures, the need for a lower emissivity of the absorber coating at constant absorptivity arises. The linear Fresnel application envisions ab-sorber tubes stable in air at high temperatures of about 450 C, which are to date commercially not available. This work comprises the theoretical background, the modeling and the fabrication of absorber tubes including the technology transfer to a production-size inline sputter coater. In annealing tests and accompanying optical measurements, degradation processes have been observed and specified more precisely by material characterization techniques. The simulations provided the capability of different materials used as potential IR-reflector. The highest selectivity can be achieved by applying silver which consequently has been chosen for the application in absorber coatings of the parabolic trough technology. Thin silver films how-ever need to be stabilized when used at high temperatures. Appropriate barrier layers as well as process and layer parameters were identified. A high selectivity was achieved and stability of the absorber coating for 1200 h at 500 C in vacuum has been demonstrated. For the application in air, silver was also analyzed as a potential IR-reflector. Even though the stability could be increased considerably, it nevertheless proved to be insufficient. The main factors influencing stability in a positive way are the use of higher quality polishing, additional barrier layers and adequate process parameters. This knowledge was applied for developing coatings which are stable in air at

  10. Evolution of Ti(C,N)-based cermet microstructures

    Institute of Scientific and Technical Information of China (English)

    李晨辉; 熊惟皓; 余立新

    2002-01-01

    Two series of Ti(C,N)-based cermet materials originating from the same chemical composition but with different grain size distribution and sintered to different stages of the sintering cycle have been studied using SEM,TEM,EDX,and XRD.Much of the surrounding structure is formed during solid state sintering.During the solid state sintering,at first,the Mo and W rich (Ti,Mo,W)C inner rim is formed by the interaction among TiC,WC,and Mo2C;then the Mo and W lean (Ti,Mo,W)(C,N)outer rim is formed.During the liquid phase sintering,the outer rim of coarse grains grows rapidly throw a solution-reprecipitation process;also coarse grains grow by particle coalescence.The interface between coarse grain outer rim and binder is flat (crystal surface).

  11. Measuring of the transmission properties, related to solar heat, of window glass and its surface coatings. Maaling af vinduesglas og daeklags transmissionsegenskaber over for solvarme

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, E.

    1992-03-01

    Heat loss through double glazed windows is 10 times greater than through a solid, well-insulated wall. The use of various glass surface coatings can hinder the transmission of the solar heat. The aim was to establish a measuring method with a related computer programme for the measurement and calculation of the optical properties of glass and surface coatings with regard to solar radiation in order to compile the data from which a window's effective U-value can be reckoned out. A type of monochronomator was used for measuring spectral transmittance of a number of commercial products in this line. It was found that two simple planes of glass with a 15 mm distance between them and a low-emission coating has the same standard of passive solar heat use as more layers of glass or panes with more coatings, because of the greater transmission of the solar heat. Windows with a layer of reflecting film between the panes are not so satisfactory because they shut out too much of the solar heat in relation to the dark U-value. The absorbed heat remains in the middle of the pane and thus is prevented from entering the room itself. The pane is very selective in the relation between light and infrared radiation and it transmits a great amount of daylight. Generally speaking, low emission coatings are very selective and transmit much of the visible radiation. This property makes it difficult to evaluate the pane's ability to transmit solar heat. The effective U-value could be greatly improved if the emission-coating would allow more of the longwave radiation (700-2000 nm) to pass through. (AB).

  12. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    Science.gov (United States)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  13. Improved power conversion efficiency for dye-sensitized solar cells using a subwavelength-structured antireflective coating

    Science.gov (United States)

    Chou, Chun-Chi; Tsao, Kuan-Yi; Wu, Chih-Chung; Yang, Hongta; Chen, Chih-Ming

    2015-02-01

    Large-scale, subwavelength-structured nanodome arrays were successfully fabricated using simple, scalable bottom-up colloidal (nanosphere) lithography on a glass substrate as an efficient antireflective photoanode for dye-sensitized solar cells (DSSCs). A self-assembled monolayer of close-packed colloidal crystals (silica) was used as a structural template to pattern the two-dimensional subwavelength-structured nanodome arrays, which function as an efficient antireflective coating due to the graded refractive index across the interface between the air and specific nanodome array structure. The light harvesting for a DSSC with a subwavelength-structured antireflective coating was enhanced due to the improved broadband antireflectivity. Adjusting the nanodome size yielded a short-circuit current density (JSC) of 15.88 mA/cm2 with a power conversion efficiency (PCE) of 8.82%, which were both better than the reference cell without a subwavelength-structured antireflective coating (JSC = 15.26 mA/cm2 and PCE = 8.45%).

  14. Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording)

    Science.gov (United States)

    Stryckers, Jeroen; D'Olieslaeger, Lien; Manca, Jean; Ethirajan, Anitha; Deferme, Wim

    2015-09-01

    Ultrasonic spray coating is currently proven to be a reliable, flexible and cost efficient fabrication method for printed electronics [1-2]. Ultrasonic nozzles are by design especially well-suited to deposit nano-suspension dispersions. Due to the ultrasonic vibration of the nozzle, droplets having a median diameter of 20 μm are created in a homogeneous droplet cloud and directed towards the substrate. When one prepares an ink having the right wetting properties, thin and homogeneous layers, fully covering the surface, can be achieved. Together with conjugated polymer nanoparticles (NPs), emerging as a new class of nanomaterials, [3] it opens possibilities towards eco-friendly roll-to-roll processing of state-of-the-art organic bulk heterojunction solar cells. A ultrasonic spray coater was used to print the conjugated polymer NP layers under different conditions. A first optimization of the spray coater settings (flow rate, spray speed and temperature) and the ink formulation (water and co-solvent mixture and NP content) was performed for polystyrene particles dissolved in a water-ethanol mixture. As a next step, the low bandgap donor polymer poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl] (PCDTBT) [4] and the fullerene acceptor phenyl-C71-butyric acid methyl ester (PCBM[70]) were combined in a water-based blend NP dispersion which was prepared using the mini-emulsion technique. [5,6] Optical Microscopy, profilometry and Scanning Electron Microscopy (SEM) are performed to study the roughness, surface structure, thickness and coverage of the spray coated layers. Finally the printed NP layers are integrated in organic bulk heterojunction solar cells and compared to spin coated reference devices.

  15. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  16. Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.

    2012-06-01

    A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

  17. Photocatalytic degradation of formaldehyde by diffuser of solar light pipe coated with nanometer titanium dioxide thin films

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The even and transparent nanometer TiO2 thin films named DegussaP25 as photocatalysis deposited on the surface of diffusers of solar light pipe were prepared by sol-gel processing.The rugged side of the diffusers of solar light pipe was coated evenly with DegussaP25 solution for the quality of 1.75 g.The experiments had showed that when the coated side was away from the sun the lighting degree may be reduced compared with that facing the sun.The average reduction was only 3.03%,which would not have a significant impact on lighting.Diffusers are important parts of a light pipe which can diffuse light evenly to the place needed to be illuminated.The experiments showed that in a sunny summer day under the direct sunlight,the solar light pipe combined with photocatalysis could reduce the formaldehyde volume fraction in a box of 0.1 m3 from 1.0×10-6 to 0.16×10-6.After 1 h of photodegradation the formaldehyde volume changed from 1.0×10-6 down to 0.1×10-6 with faster and more complete degradation of formaldehyde.The rate of degradation under cloudy and partly cloudy conditions was slower than that under sunny conditions.It was slower in winter than in summer under sunny conditions.The experimental results also showed that the performance of photocatalysis combined with diffusers of light pipe had better effect in a small space.The performance in large space,such as open space,will be the next work in the future,which will be a great challenge.

  18. Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Blankenburg, Lars; Schultheis, Karin; Schache, Hannes; Sensfuss, Steffi; Schroedner, Mario [Thueringisches Institut fuer Textil- und Kunststoff-Forschung e.V., An-Institut der Technischen Universitaet Ilmenau, Breitscheidstrasse 97, D-07407 Rudolstadt (Germany)

    2009-04-15

    In this paper we report for the first time very promising results in up-scaling coating processes for thin flexible polymer solar cell (PSC) application. Two functional layers for PSC devices, the conducting poly- (3,4-ethylene-dioxythiophene):polystyrenesulfonate and the photoactive one (poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester), could be successfully prepared by continuous reel-to-reel (R2R) wet coating of low-viscosity solutions and dispersions on ITO-coated PET substrates. A laboratory coating machine (LBA-200) was used for R2R slot die coating (1-4 m/min). Out of this R2R-produced bilayer-system PSCs were accomplished and tested. Light power conversion efficiencies up to 1.7% under AM 1.5 illumination (100 mW/cm{sup 2}) could be obtained. (author)

  19. Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings?

    Science.gov (United States)

    Zhao, Yongxiang; Chen, Fei; Shen, Qiang; Zhang, Lianmeng

    2014-08-10

    Recent research has found an alternative way to enhance light trapping of thin-film solar cells by using dielectric nanoparticles deposited on the cell surface. To improve the performance of light trapping, a systematic study on the influence of dielectric nanoparticles on enhancement efficiency is performed in this paper. We prove that the optimal dielectric nanoparticles are substantially equivalent to the multilayer antireflection coatings (ARCs) with a "low-high-low" dielectric constant profile. Moreover, it is demonstrated that the use of a simple two-layer SiO2/SiC ARC can reach 34.15% enhancement, which has exceeded the ideal limit of 32% of nanoparticles structure including plasmonic Ag nanoparticles, dielectric SiC, and TiO2 nanoparticles. That means the optimal multilayer ARCs structure is obviously superior to the optimal dielectric nanoparticles structure, and the deposition of a simple two-layer SiO2/SiC structure on top of a thin-film silicon solar cell can significantly enhance photoelectron generation and hence, result in superior performance of thin-film solar cells.

  20. Correlation between structure and optical properties in low emissivity coatings for solar thermal collectors

    Energy Technology Data Exchange (ETDEWEB)

    Yuste, M. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Fundacion Rafael Escola, E-28001 Madrid (Spain); Galindo, R. Escobar [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Sanchez, O., E-mail: olgas@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain); Cano, D. [Fundacion Rafael Escola, E-28001 Madrid (Spain); Casasola, R. [Isofoton, E-29590, Malaga (Spain); Albella, J.M. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain)

    2010-08-02

    We have investigated the relation between the structure and morphology of TiN coatings with their optical properties. Samples were deposited by magnetron sputtering and, by changing the deposition parameters, different textures and chemical compositions can be obtained as measured by X-ray diffraction and glow discharge optical emission spectroscopy respectively. The transmittance in the visible range, measured by spectroscopic ellipsometry, and the emittance, derived from reflectance in the far infrared range as measured by Fourier Transform Infrared Spectroscopy have been related to the nitrogen atomic content and the preferred crystalline orientations present in the TiN coatings. The visible transmittance of the coatings was found not to be dependent on the preferential orientation, while the emittance clearly improves with increasing the film thickness and the presence of both (111) and (200) crystal orientations.

  1. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  2. Influence of WC addition on the microstructure and mechanical properties of NbC-Co cermets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.G. [Department of Metallurgy and Materials Engineering (MTM), Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Li, L. [School of Material Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Van der Biest, O. [Department of Metallurgy and Materials Engineering (MTM), Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Vleugels, J. [Department of Metallurgy and Materials Engineering (MTM), Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)]. E-mail: Jozef.Vleugels@mtm.kuleuven.be

    2007-03-14

    NbC-24.5 wt.% Co cermets with up to 30 wt.% WC were obtained by solid state hot pressing at 1300 {sup o}C under a pressure of 45 MPa for 10 min and pressureless liquid phase sintering at 1360 {sup o}C for 60 min. The effect of WC addition on the microstructure and mechanical properties of NbC-Co based cermets was investigated. The hot pressed cermets exhibited interconnected and irregular niobium carbide (NbC) or (Nb,W)C grains, whereas the shape of the NbC grains changed from faceted with rounded corners to spherical, as the WC content increased in the pressureless sintered cermets. The undissolved WC increased with increasing WC addition. A clear core/rim structure was observed in the hot pressed cermets with 10-30 wt.% WC additions, whereas this structure was gradually eliminated when pressureless sintering. The hardness remains nearly constant whereas the fracture toughness slightly increases with increasing WC addition. The dissolution of WC in the Co binder and NbC grains, as well as the formation of a solid solution (Nb,W)C phase were supported by thermodynamic calculations.

  3. Phase evolution, microstructure and properties of Y2O3-doped TiCN-based cermets

    Institute of Scientific and Technical Information of China (English)

    孙万昌; 张佩; 李攀; 佘晓林; 赵坤

    2015-01-01

    Y2O3-doped TiCN-based cermets were prepared by pressureless sintering with powders TiC, TiN, Ni, etc. as main starting materials. The influence of sintering processes and Y2O3on properties of TiCN-based cermets were investigated. The phase composi-tion of TiCN-based cermets almost had no change with Y2O3 addition. The fullly densified TiCN-based cermets were achieved by P-2 sitering process. The fracture surface showed lots of small dimples caused by hard phase particles pulling-off, and the left hard phase particles were attached to the arborous dendritic matrix. The Vickers hardness, fracture toughness and bending strength of TiCN-based cermets increased firstly and then decreased with the increment of Y2O3 content. When Y2O3 contents were both 0.8 wt.%, compared with the P-1 sintered samples, the Vickers hardness, fracture toughness and bending strength of the P-2 sintered sam-ples reached 14.84 GPa, 8.66 MPa·m1/2 and 660.4 MPa, which were increased by 7.9%, 6.1% and 45.8%, respectively.

  4. Mo-Al{sub 2}O{sub 3} cermet research and development

    Energy Technology Data Exchange (ETDEWEB)

    Glass, S.J.; Monroe, S.L.; Stephens, J.J.; Moore, R.H. [and others

    1997-08-01

    This report describes the results to date of a program that was initiated to predict and measure residual stresses in Mo-Al{sub 2}O{sub 3} cermet-containing components and to develop new materials and processes that would lead to the reduction or elimination of the thermal mismatch stresses. The period of performance includes work performed CY95-97. Excessive thermal mismatch stresses had produced cracking in some cermet-containing neutron tube components. This cracking could lead to a loss of hermeticity or decreased tube reliability. Stress predictions were conducted using finite element models of the various components, along with the thermal coefficient of expansion (CTE), Young`s modulus, and strength properties. A significant portion of the program focused on the property measurements for the existing cermet materials, processing conditions, and the measurement technique. The effects of differences in the properties on the predicted residual stresses were calculated for existing designs. Several potential approaches were evaluated for reducing the residual stresses and cracking in cermet-containing parts including reducing the Mo content of the cermet, substituting a ternary alloy with a better CTE match with alumina, and substituting Nb for Mo. Processing modifications were also investigated for minimizing warpage that occurs during sintering due to differential sintering. These modifications include changing the pressing of the 94ND2 alumina and changing to a 96% alumina powder from AlSiMag.

  5. Preparation and preliminary testing of cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    李劼; 赖延清; 周科朝; 李志友; 刘业翔

    2003-01-01

    Recent development of inert anodes for the primary aluminium industry was reviewed. The preparation method of functionally gradient material was introduced into inert anode research area, and a research flow sheet of functionally gradient cermet inert anode was set down. In order to carry out the preparation and optimization of composite oxides as the ceramic matrix of cermet inert anode, the following problems: solid state reaction synthesis of complex oxides, corrosion mechanism of complex oxides in Na3AlF6-Al2O3 melts, effects of NiO content on the corrosion rate and resistivity at high temperature of NiFe2O4-NiO ceramics were studied. The preparation and sintering mechanism of NiFe2O4 based cermets were deeply studied to properly control the sintering atmosphere and temperature system. By efficaciously controlling the sintering atmosphere, the oxidization of metallic phase and the decomposition or deoxidization of ceramic phase are avoided effectively during the sintering process of cermets at various temperatures. By optimizing the composition recipe and sintering temperature system, cermets of relatively high density are prepared without the spillage or asymmetric distribution of metallic phase.

  6. One step spray-coated TiO2 electron-transport layers for decent perovskite solar cells on large and flexible substrates.

    Science.gov (United States)

    Huang, Aibin; Zhu, Jingting; Zhou, Yijie; Yu, Yu; Liu, Yan; Yang, Songwang; Ji, Shidong; Lei, Lei; Jin, Ping

    2017-01-06

    Spray-coating as a facile and quantitative method was introduced to prepare thin and continuous TiO2 compact layers on different substrates for perovskite solar cells. The as-prepared film is highly transparent and smooth, which is of significance in perovskite solar cells to decrease incident light loss and facilitate the film cast and electric contact. The compact TiO2 layer shows excellent performance when coated with perovskite and assembled into a device. Since it provides unlimited substrate size, patterning function and the TiO2 used for spray-coating is well crystallized, this method has huge potential for mass production and great adaptability for a variety of applications.

  7. One step spray-coated TiO2 electron-transport layers for decent perovskite solar cells on large and flexible substrates

    Science.gov (United States)

    Huang, Aibin; Zhu, Jingting; Zhou, Yijie; Yu, Yu; Liu, Yan; Yang, Songwang; Ji, Shidong; Lei, Lei; Jin, Ping

    2017-01-01

    Spray-coating as a facile and quantitative method was introduced to prepare thin and continuous TiO2 compact layers on different substrates for perovskite solar cells. The as-prepared film is highly transparent and smooth, which is of significance in perovskite solar cells to decrease incident light loss and facilitate the film cast and electric contact. The compact TiO2 layer shows excellent performance when coated with perovskite and assembled into a device. Since it provides unlimited substrate size, patterning function and the TiO2 used for spray-coating is well crystallized, this method has huge potential for mass production and great adaptability for a variety of applications.

  8. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  9. Carbon nanotubes film preparation on 3D structured silicon substrates by spray coating technique for application in solar cells

    Science.gov (United States)

    Xiang, Y.; Li, M.; Lin, C.; Liu, P.; Zhang, J.

    2014-11-01

    This paper firstly reports the preparation of carbon nanotubes (CNTs) film on silicon substrate of three-dimensional (3D) inverted pyramid structure (IPS) by spray coating. The effect of different substrate temperatures, spraying times and opening sizes on CNTs sidewall covering properties were investigated. The results show that the CNTs covering ratio of sidewall is much lower than that of flat surface and gradually decrease with depth. 40μm×40μm opening obtained the best sidewall covering by CNTs suspension of 40μg/ml at 120°C after 30min spraying so that the CNTs can reach the bottom of IPS and cover about 68.9% sidewall area. At last, it is demonstrated that the output power of the CNTs film-Si solar cell can be enhanced 5.7 times by this method compared to that of the plane structure.

  10. Multiwall Carbon Nanotube Coated with Conducting Polyaniline Nanocomposites for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2013-01-01

    Full Text Available Multiwalled carbon nanotube (MWNT coated with conducting polyaniline (PAni nanocomposites has been enforced as for quasi-solid-state electrolyte layer in the dye-sensitized solar cells (DSSCs, and the incorporation of MWNT-PAni nanoparticles on the cell performance has been examined. The MWNT-PAni nanoparticles exploited as the extended electron transfer materials, which can reduce charge diffusion length and serve simultaneously as catalyst for the electrochemical reduction of I3-. An ionic liquid of 1-methyl-3-propyl-imidazolium iodide (PMII together with the hybrid MWNT-PAni nanocomposites was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and achieved a moderately higher cell efficiency (3.15%, as compared to that containing bare PMII (0.26%.

  11. Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process.

    Science.gov (United States)

    Li, Nan; Li, Haoyuan; Li, Yu; Wang, Shufeng; Wang, Liduo

    2015-10-07

    In meso-superstructured solar cells (MSSCs), the state-of-the-art perovskite acts as both the light harvester and electron transporter due to its ambipolar properties. The inefficient pore filling and infiltration of perovskite directly affect the continuous distribution of perovskite in mesoporous Al2O3, resulting in discontinuous carrier transport in the mesoporous structure and insufficient electron injection to the compact TiO2 layer. Herein, we introduce a simple pre-spin-coating process to improve the infiltration and pore filling of perovskite, which results in higher light absorption and enhanced electron injection, as seen in UV-vis spectra and photoluminescence (PL) spectra, respectively. We first apply time of flight (TOF) experiments to characterize charge transport in MSSCs, and the results reveal that more continuous charge transport pathways are formed with the pre-spin-coating process. This effective method, with ease of processing, demonstrates obviously improved photocurrents, reaching an efficiency as high as 14%, and promotes the application of lead halide perovskite materials in the photovoltaics field.

  12. Microstructural Characterization of Cermet Cladding Developed Through Microwave Irradiation

    Science.gov (United States)

    Gupta, Dheeraj; Sharma, Apurbba Kumar

    2012-10-01

    In the present work, cladding of hardfacing WC10Co2Ni powder on austenitic stainless steel has been developed through a novel processing technique. The clads were developed using microwave hybrid heating. The clad of average thickness ~2 mm has been developed through the exposure of microwave radiation at frequency 2.45 GHz and power 900 W for the duration of 360 s. The developed clads were characterized using field emission scanning electron microscope, X-ray elemental analysis, X-ray diffraction, and measurement of Vicker's microhardness. The microstructure study of the clad showed good metallurgical bonding with substrate and revealed that clads are free from any visible interface cracking. Clads were formed with partial dilution of a thin layer of the substrate. The cermet microstructure mainly consists of relatively soft metallic matrix phase and uniformly distributed hard carbide phase with skeleton-like structure. The developed clads exhibit an average microhardness of 1064 ± 99 Hv. The porosity of developed clad has been significantly less at approximately 0.89%.

  13. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  14. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  15. Spark Plasma Sintering Properties of Ultrafine Ti ( C,N)-based Cermet

    Institute of Scientific and Technical Information of China (English)

    FENG Ping; XIONG Wei-hao; ZHENG Yong; YU Li-xin; XIA Yang-hua

    2004-01-01

    Ultrafine Ti( C, N )-based cermet was sintered by SPS from 1050℃ to 1450℃ and its sintering properties, such as porosity, mechanical properties and phase transformation, were investigated by optical mi-croscopy (OM), scanning electron microscopy (SEM), X- ray diffraction (XRD), and differential scanning calo-rimeter (DSC). It is found that the spark plasma sintering properties of Ti( C, N )-based cermet differ from thoseof conventional vacuum sintering. The liquid phase appearance is at least lower by 150℃ than that in vacuum sin-tering. The porosity decreases sharply below 1 200℃ and reaches minimum at 1 200℃ , and afterwards it almostkeeps invariable and no longer increases. SPS remarkably accelerates the phase transformation of Ti( C, N )-basedcermet and it has a powerful ability to remove oxides in Ti( C, N )-based cermets. Above 1 3502 ,denitrificationoccurred. Fresh graphite phase formed above 1 430℃ . Both the porosity and graphite are responsible for the poor TRS.

  16. Preparation of ultrafine Ti (C, N)-based cermet using oxygen-rich powders

    Institute of Scientific and Technical Information of China (English)

    FENG Ping; HE Yue-hui; XIONG Wei-hao; XIAO Yi-feng

    2005-01-01

    The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0. 30 μm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.

  17. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andreasen, Birgitta; Andersen, Thomas Rieks

    2012-01-01

    Double slot-die coating using aqueous inks was employed for the simultaneous coating of the active layer and the hole transport layer (HTL) in fully roll-to-roll (R2R) processed polymer solar cells. The double layer film was coated directly onto an electron transport layer (ETL) comprising doped...... zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission...... electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry...

  18. Ultra Fast and Parsimonious Materials Screening for Polymer Solar Cells Using Differentially Pumped Slot-Die Coating

    DEFF Research Database (Denmark)

    Alstrup, Jan; Jørgensen, Mikkel; Medford, Andrew James;

    2010-01-01

    the optimum donor−acceptor ratio and device film thickness can be determined with improved accuracy by varying the composition in small steps. We give as an example P3HT-PCBM devices and vary the composition between P3HT and PCBM in steps of 0.5−1% giving 100−200 individual solar cells. The coating experiment...... and materials usage by variation of the layer thickness in small steps of 1.5−4 nm. Contrary to expectation we did not find oscillatory variation of the device performance with device thickness because of optical interference. We ascribe this to the nature of the solar cell type explored in this example...... itself takes less than 4−8 min and requires 15−30 mg each of donor and acceptor material. The optimum donor−acceptor composition of P3HT and PCBM was found to be a broad maximum centered on a 1:1 ratio. We demonstrate how the optimal thickness of the active layer can be found by the same method...

  19. Solar Photocatalytic Removal of Chemical and Bacterial Pollutants from Water Using Pt/TiO2-Coated Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    S. P. Devipriya

    2012-01-01

    Full Text Available Semiconductor photocatalysis has become an increasingly promising technology in environmental wastewater treatment. The present work reports a simple technique for the preparation of platinum-deposited TiO2 catalysts and its immobilization on ordinary ceramic tiles. The Pt/TiO2 is characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDAX, and diffuse reflectance spectroscopy (DRS. Deposition of Pt on TiO2 extends the optical absorption of the latter to the visible region which makes it attractive for solar energy application. Optimum loading of Pt on TiO2 was found to be 0.5%. The Pt/TiO2 is coated on ceramic tiles and immobilized. This catalyst was found effective for the solar photocatalytic removal of chemical and bacterial pollutants from water. Once the parameters are optimized, the Pt/TiO2/tile can find application in swimming pools, hospitals, water theme parks, and even industries for the decontamination of water.

  20. Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating.

    Science.gov (United States)

    Lai, Yi-Chun; Chang, Yu-Fan; Tsai, Pei-Ting; Chang, Jan-kai; Tseng, Wei-Hsuan; Lin, Yi-Cheng; Hsiao, Chu-Yen; Zan, Hsiao-Wen; Wu, Chih-I; Chi, Gou-Chung; Meng, Hsin-Fei; Yu, Peichen

    2016-01-25

    In this work, we investigate blade-coated organic interlayers at the rear surface of hybrid organic-silicon photovoltaics based on two small molecules: Tris(8-hydroxyquinolinato) aluminium (Alq(3)) and 1,3-bis(2-(4-tert-butylphenyl)-1,3,4-oxadiazol-5-yl) benzene (OXD-7). In particular, soluble Alq(3) resulting in a uniform thin film with a root-mean-square roughness organic-silicon photovoltaics.

  1. Sol gel TiO2 antireflection coatings for silicon solar cells

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2012-05-01

    Full Text Available Purpose: The aim of this paper was to investigate changes in surface morphology and optical reflection of thin films of titanium dioxide. Thin films were prepared using sol gel spin coating method.Design/methodology/approach: The microanalysis have been investigated by the Energy-dispersive X-ray spectroscopy EDS. The changes in surface topography was observed by the atomic force microscope AFM and scanning electron microscope SEM. The results of roughness have been prepared in the software XEI Park Systems and optical reflection by the spectrometer UV/VIS.Findings: Results and their analysis allow to conclude that the titanium isopropoxide concentration in solution and spin speed, which is an important factor in spin coating technology has a significant influence on surface morphology and optical reflection of thin films titanium dioxide.Practical implications: Known sol gel titanium dioxide optical parameters and the possibility of obtaining a uniform thin films show that it can be good material for photovoltaic application.Originality/value: The paper presents some researches of titanium dioxide thin films deposited by sol gel spin coating method on monocrystalline silicon.

  2. Preparation and electrical properties of dense micro-cermets made of nickel ferrite and metallic copper

    Science.gov (United States)

    Baco-Carles, Valérie; Pasquet, Isabelle; Laurent, Véronique; Gabriel, Armand; Tailhades, Philippe

    2009-08-01

    Dense micro-cermets made of nickel ferrites and copper micrometric particles were obtained from partial reduction under hydrogenated atmosphere at 350 °C of mixed copper nickel ferrites, and sintering in nitrogen at 980 °C. The small copper particles are homogeneous in size and well dispersed in the spinel oxide matrix. No exudation of copper metal was observed after sintering. The micro-cermets prepared are semi-conducting materials with electrical conductivity lying from 44 to 130 S/cm at 980 °C. Their overall characteristics make them interesting for inert anodes dedicated to aluminium electrolysis in melted cryolite.

  3. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    Science.gov (United States)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  4. Silica-Copper Oxide Composite Thin Films as Solar Selective Coatings Prepared by Dipping Sol Gel

    Directory of Open Access Journals (Sweden)

    E. Barrera-Calva

    2008-01-01

    Full Text Available Silica-copper oxide (silica-CuO composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses. The gel thermal analysis revealed that the prepared material might be stable up to 400°C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (α, and emittance (ε were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of the SiO2-CuO film. Interestingly, the best solar parameters (α = 0.92 and ε = 0.2 were associated to the thinnest films, which comprised a CuO-Cu2O mixture immersed in the silica matrix, as indicated by XPS.

  5. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  6. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  7. Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Directory of Open Access Journals (Sweden)

    Hernández-González, L. W.

    2011-06-01

    Full Text Available This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds.

    El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco respecto al tiempo de dos insertos de carburo recubiertos y un cermet durante el torneado de acabado en seco del acero AISI 1045 con velocidades de corte de 400, 500 y 600 m/min. Los resultados fueron comparados utilizando el análisis de varianza y el análisis de regresión lineal para describir la relación entre el desgaste del flanco y el tiempo de maquinado, obteniéndose la ecuación del modelo ajustado. La investigación demostró un efecto significativo de la velocidad de corte y del tiempo de maquinado en el desgaste del flanco en el maquinado de alta velocidad. El mejor desempeño se obtuvo para el carburo recubierto con tres capas, mientras que el carburo con dos capas sufrió el mayor desgaste a elevadas velocidades de corte.

  8. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    Science.gov (United States)

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  9. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu3+,Tb3+ coated TiO2 film

    OpenAIRE

    Nannan Yao; Jinzhao Huang; Ke Fu; Xiaolong Deng; Meng Ding; Shouwei Zhang; Xijin Xu; Lin Li

    2016-01-01

    Eu3+,Tb3+ doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu3+,Tb3+ as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascribed to acting as a barrier for the charge recombination from the fluorine doped tin oxide (FTO) to electrolyt...

  10. Application of TiO2 nanoparticles coated multi-wall carbon nanotube to dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Ho; Kao, Mu-Jung; Huang, Kuohsiu-David; Hsieh, Tung-Jung; Chien, Shu-Hua

    2010-11-01

    This study uses the sol-gel method to prepare TiO2 nanoparticle, and further applies TiO2 nanoparticle coating on the surface of the multi-wall carbon nanotube (MWCNT). As a result, TiO2-CNT composite nanoparticles are prepared to serve as photoelectrode material in dye-sensitized solar cell (DSSC). First, after acid treatment of MWCNT is used to remove impurities. Then, the sol-gel method is employed to prepare TiO2-CNT composite nanopowder. X-ray diffraction (XRD) pattern shows that after the TiO2 in TiO2-CNT composite nanopowder has been thermally treated at 450 degrees C, it can be completely changed to anatase phase. Furthermore, as shown from the SEM image, TiO2 has been successfully coated on CNT. The photoelectrode of DSSC is prepared using the electrophoretic deposition method (EPD) to mix the Degassa P25 TiO2 nanoparticles with TiO2-CNT powder for deposition on the indium tin oxide (ITO) conductive glass. After secondary EPD, a thin film of TiO2/CNTs with thickness 17 microm can be acquired. For the prepared TiO2-CNT composite nanoparticles, since MWCNT can increase the short-circuit current density of DSSC, the light-to-electricity conversion efficiency of DSSC can be effectively increased. Experimental results show that the photoelectric conversion efficiency of DSSC using CNT/TiO2 photoelectrode and N719 dye is increased by 41% from the original 3.45% to 4.87%.

  11. An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Medford, Andrew James; Bundgaard, Eva

    2011-01-01

    O (nanoparticulate, thin film) were employed as electron transport layers. The devices were all tested at Risø DTU and the functional devices were subjected to an inter-laboratory study involving the performance and the stability of modules over time in the dark, under light soaking and outdoor conditions. 24......A large number of flexible polymer solar modules comprising 16 serially connected individual cells was prepared at the experimental workshop at Risø DTU. The photoactive layer was prepared from several varieties of P3HT (Merck, Plextronics, BASF and Risø DTU) and two varieties of Zn...

  12. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  13. Evaluation of Tests for Cermets as Components of Heat-Resistant Materials.

    Science.gov (United States)

    Specimens of one cermet composition for flexural tests were received. These specimens K 152B (nominal composition of 70% titanium carbide - 30...nickel) were substituted for K 162B (nominal composition of 62% titanium carbide - 8% columbium - 25% nickel - 5% molybdenum). Equipment was designed for

  14. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  15. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  16. Ti(C,N) and (Ti,Al)N hard wear resistant coatings

    OpenAIRE

    K. Gołombek; J. Mikuła; W. Kwaśny; L.W. Żukowska; L.A. Dobrzański

    2010-01-01

    Purpose: Investigation the influence of kind of PVD coatings structure (homogenous or gradient) on properties of deposited tool materials: cemented carbides and cermets.Design/methodology/approach: Analysis of the structure, analysis of the mechanical and functional properties: surface roughness, microhardness tests, scratch tests, cutting tests. The Ti(C,N) gradient coating was investigated by XPS method with multifunctional PHI 5700/660 spectrometer. The characteristic of surface region coa...

  17. A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoating

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Andersen, Thomas Rieks; Helgesen, Martin

    2013-01-01

    Printing of the silver back electrode under ambient conditions using simple laboratory equipment has been the missing link to fully replace evaporated metal electrodes. Here we demonstrate how a recently developed roll coater is further developed into a single machine that enables processing of a......–tin-oxide (ITO) or vacuum evaporation steps making it a significant step beyond the traditional laboratory polymer solar cell processing methods involving spin coating and metal evaporation....

  18. 黑镍太阳能选择性吸收涂层的研制%Study on Black-nickel Solar Selective Absorbing Coatings

    Institute of Scientific and Technical Information of China (English)

    王涛; 叶卫平; 程旭东; 黄伟; 马涛; 王辉

    2011-01-01

    采用电镀方法在预镀银H85铜合金表面电化学沉积黑镍涂层,制备出了太阳能选择性吸收涂层.研究了电镀时间、电流密度以及光亮银底层等参数对涂层整体的太阳能吸收率α、发射率ε的影响,采用SEM、EDS、XRD以及光谱选择性(α/ε)等方法对涂层进行了表征,得到了制备黑镍太阳能选择性吸收涂层的优化工艺.实验结果表明,黑镍涂层主要相结构为N-Diamond C、NiO、NiC、NiZn;添加光亮银红外反射层能较为明显地改善涂层的选择性吸收性能;获得了α=090,ε=0.06,α/ε=15的太阳能选择性吸收涂层.%The black nickel solar selective coating was prepared on the pre-silver-plated H85 copper alloy by plating method. The effect of plating time, current density and bright silver bottom-coating 's presence or absence were studied on the coating's solar absorptance. This coating was characterized by surface SEM & EDS, XRD phase structure and the solar selectivity (α/ε) and a reasonable process parameters of black nickel selective absorbing coating was proposed. The result shows that the structure of the coating consists of N-Diamond C, NiO, NiC, NiZn3 ; the addition of the bright infrared reflection layer of silver got a significant improvement on the coating's selectivity and finally a fine selective coating was obtained (α= 0. 90,ε=0. 06, α/ε=15).

  19. Investigation of mechanically hard, chemically inert antireflection coatings for photovoltaic solar modules. Final technical report, April 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moravec, T.J.

    1981-03-31

    The overall objective of this program is to determine the optical properties of i-Carbon (diamond-like) films and determine if these films can be developed into antireflecting (AR) coatings for silicon solar cells. The i-C films have been produced on glass, silicon, and KCl by radio frequency (RF) plasma decomposition of the alkane gases. Films were also produced on silicon solar cells by low-energy ion beam techniques. These coatings did not perform as well as those made from hydrocarbon gases. Significant progress has been made in understanding the deposition parameters that affect the optical properties of the films. The optical constants n and k have been determined over a large range of process parameters and source gas. The degree of hydrogen incorporation in these films has been studied by SIMS analysis. It was found that the lower optically absorbing films contain more hydrogen. This hydrogen does not, however, manifest itself in fundamental C-H absorption bands in the infrared. Very efficient single-layer quarter-wave i-C AR coatings have been produced on single-crystal and SOC Si solar cells. An increase in cell efficiency of 40% over uncoated cells has been achieved.

  20. Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Alvaredo, P. [Department of Materials Science and Engineering, IQMAAB, University Carlos III Madrid, Avda. de la Universidad, 30, 28911 Leganes (Spain); Gordo, E., E-mail: elena.gordo@uc3m.es [Department of Materials Science and Engineering, IQMAAB, University Carlos III Madrid, Avda. de la Universidad, 30, 28911 Leganes (Spain); Van der Biest, O.; Vanmeensel, K. [Katholieke Universiteit Leuven, Kasteelpark Arenberg, 44 3001 Heverlee (Belgium)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Processing of Fe-based cermets by pressureless sintering and spark plasma sintering. Black-Right-Pointing-Pointer Influence of carbon content on the sintering mechanism and hardness. Black-Right-Pointing-Pointer The cermet phase diagram was calculated and permits to explain the microstructure. Black-Right-Pointing-Pointer SPS provides ferritic matrix and different carbide distribution than CPS samples. Black-Right-Pointing-Pointer Pressureless sintered samples contain retained austenite at room temperature. - Abstract: Iron-based cermets are an interesting class of metal-ceramic composites in which properties and the factors influencing them are to be explored. In this work the metal matrix contains Cr, W, Mo and V as alloying elements, and the hard phase is constituted by 50 vol% of titanium carbonitride (TiCN) particles. The work studies the influence of the C content and the processing method on the sinterability, microstructure and hardness of the developed cermet materials. For that purpose, cermet samples with different C content in the matrix (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%) were prepared by conventional pressureless sintering (CPS) and, in order to achieve finer microstructures and to reduce the sintering time, by spark plasma sintering (SPS). The density and hardness (HV30) of the processed materials was evaluated, while their phase composition and microstructure was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The equilibrium phase diagram of the composite material was calculated by ThermoCalc software in order to elucidate the influence of the carbon content on the obtained phases and developed microstructures.

  1. TiO2/Ni composite as antireflection coating for solar cell application

    Science.gov (United States)

    Haider, Adawiya J.; Najim, Aus A.; Muhi, Malik A. H.

    2016-07-01

    Titanium dioxide (TiO2) considered as one of the best material already used as a window in solar cells due to its antireflection capability. In this work, pure and Ni-doped (1, 3 and 5 wt%) TiO2 thin films were deposited using pulsed laser deposition (PLD) method. The optical measurements obtained by UV-vis indicate that the highest optical band gap was found with (5%) doping level (Eg=3.82 eV), corresponding to a lower reflectance and higher transmittance. Empirical equations between energy band gap and concentration level, reflectance with energy band gap, refractive index and concentration have been determined; a perfect fit with the experimental data was obtained.

  2. SiC/Tb and Si/Tb multilayer coatings for extreme ultraviolet solar imaging.

    Science.gov (United States)

    Kjornrattanawanich, Benjawan; Windt, David L; Seely, John F; Uspenskii, Yurii A

    2006-03-10

    Narrowband SiC/Tb and Si/Tb multilayers are fabricated with as much as a 23% normal-incidence reflectance near a 60 nm wavelength and spectral bandpass (FWHM) values of 9.4 and 6.5 nm, respectively. The structural properties of the films are investigated using extreme ultraviolet and x-ray reflectometry and transmission electron microscopy. Thermal stability is investigated in films annealed to as high as 300 degrees C. Because of their superior thermal stability, relatively high reflectance, and narrower spectral bandpass, Si/Tb multilayers are identified as optimal candidates for solar physics imaging applications, where the peak response can be tuned to important emission lines such as O v near 63.0 nm and Mg x near 61.0 nm. We describe our experimental procedures and results, discuss the implications of our findings, and outline prospects for improved performance.

  3. Efficiency Enhancement in Organic Solar Cells by Incorporating Silica-coated Gold Nanorods at the Buffer/Active interface

    CERN Document Server

    Zhao, Haoyang; Tong, Peiqian; Cui, Yanxia; Hao, Yuying; Sun, Qinjun; Shi, Fang; Zhan, Qiuqiang; Wang, Hua; Zhu, Furong

    2015-01-01

    The performance of organic solar cells (OSCs) can be greatly improved by incorporating silica-coated gold nanorods (Au@SiO2 NRs) at the interface between the hole transporting layer and the active layer due to the plasmonic effect. The silica shell impedes the aggregation effect of the Au NRs in ethanol solution as well as the server charge recombination on the surface of the Au NRs otherwise they would bring forward serious reduction in open circuit voltage when incorporating the Au NRs at the positions in contact with the active materials. As a result, while the high open circuit voltage being maintained, the optimized plasmonic OSCs possess an increased short circuit current, and correspondingly an elevated power conversion efficiency with the enhancement factor of ~11%. The origin of performance improvement in OSCs with the Au@SiO2 NRs was analyzed systematically using morphological, electrical, optical characterizations along with theoretical simulation. It is found that the broadband enhancement in abso...

  4. Spin-coating deposition of PbS and CdS thin films for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jayesh; Mighri, Frej [Laval University, CREPEC, Department of Chemical Engineering, Quebec, QC (Canada); Ajji, Abdellah [Ecole Polytechnique, CREPEC, Chemical Engineering Department, Montreal, QC (Canada); Tiwari, Devendra; Chaudhuri, Tapas K. [Charotar University of Science and Technology (CHARUSAT), Dr. K.C. Patel Research and Development Centre, Anand District, Gujarat (India)

    2014-12-15

    In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal-thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 x 10{sup 18} cm{sup -3} and 2.16 x 10{sup -3} cm{sup 2}/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm{sup 2} and 0.32, respectively. (orig.)

  5. a-SiCxNy:H thin films for applications in solar cells as passivation and antireflective coatings

    Science.gov (United States)

    Swatowska, Barbara; Kluska, Stanisława; Lewińska, Gabriela; Golańska, Julia; Stapiński, Tomasz

    2016-12-01

    Amorphous a-SiCxNy:H thin films may be an alternative to a-Si:N:H coatings which are commonly used in silicon solar cells. This material was obtained by PECVD (13.56 MHz) method. The reaction gases used: silane, methane, nitrogen and ammonia. The structure of the layers were investigated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). IR absorption spectra of a-SiCxNy:H layers confirmed the presence of various hydrogen bonds - it is important for passivation of Si structural defects. The ellipsometric measurements were implemented to determine the thickness of layers d, refractive index n, extinction coefficient k and energy gap Eg. The values of the energy gap of a-SiCxNy:H layers are in the range from 1.89 to 4.34 eV. The correlation between energy gap of materials and refractive index was found. Generally the introduction of N and/or C into the amorphous silicon network rapidly increases the Eg values.

  6. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-07-01

    Textile fabric based electrodes due to their lightweight, flexibility and cost effectiveness, coupled with the ease of fabrication are recently given a huge attention as wearable energy sources. The current dye sensitized solar cells (DSSCs) are based on Platinized-Fluorinated Tin oxide (Pt-FTO) glass electrode, which is not only expensive, but also rigid and heavyweight. In this work, a highly conductive-graphene coated cotton fabric (HC-GCF) is fabricated with a surface resistance of only 7 Ω sq-1. HC-GCF is used as an efficient counter electrode (CE) in DSSC and the results are examined using photovoltaic and electrochemical analysis. HC-GCF counter electrode shows a negligible change of resistance to bending at various bending positions and is also found extremely resistant to electrolyte solution and washing with water. Cyclic voltammogram, Nyquist and the Tafel plots suggest an excellent electro catalytic activity (ECA) for the reduction of tri-iodide (I3-) ions. Symmetrical cells prepared using HC-GCF, indicate a very low charge transfer resistance (RCT) of only 1.2 Ω, which is nearly same to that of the Pt with 1.04 Ω. Furthermore, a high photovoltaic conversion efficiency (PCE) of 6.93% is achieved using HC-GCF counter electrode using polymer electrolyte.

  7. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing

    Energy Technology Data Exchange (ETDEWEB)

    Sanjib, Das [University of Tennessee, Knoxville (UTK); Yang, Bin [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK); Joshi, Pooran C [ORNL; Ivanov, Ilia N [ORNL; Rouleau, Christopher [ORNL; Aytug, Tolga [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2015-01-01

    Realizing the commercialization of high-performance and robust perovskite solar cells urgently requires the development of economically scalable processing techniques. Here we report a high-throughput ultrasonic spray-coating (USC) process capable of fabricating perovskite film-based solar cells on glass substrates with power conversion efficiency (PCE) as high as 13.04%. Perovskite films with high uniformity, crystallinity, and surface coverage are obtained in a single step. Moreover, we report USC processing on TiOx/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible perovskite solar cells with PCE as high as 8.02% that are robust under mechanical stress. In this case, an optical curing technique was used to achieve a highly-conductive TiOx layer on flexible PET substrates for the first time. The high device performance and reliability obtained by this combination of USC processing with optical curing appears very promising for roll-to-roll manufacturing of high-efficiency, flexible perovskite solar cells.

  8. A High-Temperature Solar Selective Absorber Based upon Periodic Shallow Microstructures Coated by Multi-Layers Using Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Makoto Shimizu

    2016-03-01

    Full Text Available Regarding the fabrication of solar selective absorbers, the ability to create microstructures on top of metal surfaces is a promising technology. Typically, these materials are able to possess spectrally-selective absorption properties for high-temperature usage. Solar-selective absorbers that function at temperatures up to 700 °C and possess shallow honeycomb cylindrical microcavities coated with a metal-dielectric multi-layer have been investigated. Honeycomb array cylindrical microcavities were fabricated on W substrate with interference lithography and multi-layers consisting of Pt nano-film sandwiched by Al2O3 layers were created for a uniform coating via atomic layer deposition. The absorbance spectrum of fabricated samples reveals results consistent with a simulation based on a rigorous coupled-wave analysis method. A solar absorbance value of 0.92 and a hemispherical total emittance value of 0.18 at 700 °C was determined from the fabricated solar-selective absorber. Additionally, thermal stability of up to 700 °C was confirmed in vacuum.

  9. Photocatalytic degradation of organic dyes by Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar irradiation

    Science.gov (United States)

    Chen, Yang; Lu, Chunxiao; Tang, Liang; Song, Yahui; Wei, Shengnan; Rong, Yang; Zhang, Zhaohong; Wang, Jun

    2016-12-01

    In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.

  10. Solar collectors. Technical progress report No. 1, September 5, 1978-March 5, 1979. [Listing of glazings, housing materials, acrylic coatings, etching processes and AR coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baum, B.; Gage, M.

    1979-04-27

    A broad information search was carried out in four areas: glazings, housing materials, acrylic coatings, etching processes and AR coatings. An extensive list of all (known) US transparent polymers was developed as well as tables of plastic, ceramic and metallic materials that could conceivably function as a housing. In addition, a compilation was made of commercially available solvent and water-base acrylic coatings for use as a uv protective coating for the glazing. Eighteen transparent polymers were chosen as possible glazings and twelve materials (plastic and wood) as possible housings and exposed in the Weather-Ometer as tensile bars and for the glazings as disks for optical transmission. These same materials were also exposed on our roof to monitor soiling. A variety of solvent and water-base acrylics were selected as protective coatings and ordered. Two commercial films - Tedlar 20 and Halar 500 - with strong absorption in the uv and two commercial films containing uv absorbers - Tedlar UT and Korad 201R - were laminated by several different processes to four promising glazing materials: polyvinyl fluoride (Tedlar), polymethyl methacrylate (Plexiglass), crosslinked ethylene/vinyl acetate and thermoplastic polyester (Llumar). A variety of etching processes were briefly explored and AR coating studies started on the above four glazing films.

  11. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    Science.gov (United States)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or

  12. Compatibility study between U-UO2 cermet fuel and T91 cladding

    Science.gov (United States)

    Mishra, Sudhir; Kaity, Santu; Khan, K. B.; Sengupta, Pranesh; Dey, G. K.

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO2 cermet fuel and T91 cladding material. These diffusion couples were annealed at 923-1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U6(Fe,Cr) and U(Fe,Cr)2 intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  13. Microwave Sintering of A12O3-ZrO2-WC-Co Cermets

    Institute of Scientific and Technical Information of China (English)

    GU Tianben; LU hongzhi

    2011-01-01

    Composite powders of nanocrystalline WC-10Co (15wt%), Y2O3 (8mo1%) stabilized nanocrystalline ZrO2 (30wt%), industrial cobalt powder (4.5wt%) and submicron A12O3 (55wt%)composite powders were fabricated by high-energy ball-milling process. The nanocomposite powders were consolidated by microwave sintering process at temperature ranged 1300 ℃-1550 ℃ for 15 min,respectively. The optimum consolidation conditions, such as temperature, were researched during microwave sintering process. Vickers Hardness of the consolidated cermets was measured by using a Vickers indentation test, and density of specimens was also determined by Archimedes' principle.Microwave sintering process could not only increase the density of A12O3-ZrO2-WC-Co cermets and reduce the porosity, but also inhibit abnormal grain growth.

  14. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  15. Microstructural and Optical Absorption Properties of Cu-MgF2 Nanoparticle Cermet Film

    Institute of Scientific and Technical Information of China (English)

    孙兆奇; 孙大明; 阮图南

    2002-01-01

    We examine the microstructural and optical absorption spectra of 10-30 vol% Cu-MgF2 nanoparticle cermet films prepared by co-evaporation in vacuum. The results show that the Cu-MgF2 cermet films are mainly composed of the amorphous MgF2 matrix with embedded fcc Cu nanoparticles of average size 12-24 nm. The results also show that the optical absorption of the films decreases as the wavelength increases in the range of 200-800nm. The surface plasmon resonance absorption peaks of Cu nanoparticles in 10, 20 and 30 vo1% Cu-MgF2 films appear at 578, 588 and 606nm, respectively. The interband transition absorption of Cu starts from 590nm downwards.Based on the Maxwell-Garnett theory, the experimental optical absorption properties of the films have been quantitatively evaluated.

  16. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  17. Chronic TiO{sub 2} nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, Lindsay K. [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States); Diamond, Stephen A. [Nanosafe Inc., Blacksburg, VA, 24060 (United States); Ma, Hongbo [University of Wisconsin-Milwaukee, Zilber School of Public Health, Milwaukee, WI, 53211 (United States); Hoff, Dale J. [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); Li, Shibin, E-mail: lishibinepa@gmail.com [Office of Research and Development, Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN, 55804 (United States)

    2014-11-15

    There is limited information on the chronic effects of nanomaterials to benthic organisms, as well as environmental mitigating factors that might influence this toxicity. The present study aimed to fill these data gaps by examining various growth endpoints (weight gain, instantaneous growth rate, and total protein content) for up to a 21 d sediment exposure of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) to a representative benthic species, Hyalella azteca. An uncoated standard, P25, and an Al(OH){sub 3} coated nano-TiO{sub 2} used in commercial products were added to sediment at 20 mg/L or 100 mg/L Under test conditions, UV exposure alone was shown to be a greater cause of toxicity than even these high levels of nano-TiO{sub 2} exposure, indicating that different hazards need to be addressed in toxicity testing scenarios. In addition, this study showed the effectiveness of a surface coating on the decreased photoactivity of the material, as the addition of an Al(OH){sub 3} coating showed a dramatic decrease in reactive oxygen species (ROS) production. However, this reduced photoactivity was found to be partially restored when the coating had been degraded, leading to the need for future toxicity tests which examine the implications of weathering events on particle surface coatings. - Highlights: • Chronic toxicity of nano-TiO{sub 2} to a benthic organism (Hyalella azteca) was examined. • Phototoxicity was investigated through exposure of solar simulated radiation (SSR). • The degradation of a surface coating resulted in an increase in photoactivity. • In this testing scenario, UV had a larger impact than chemical exposure in toxicity.

  18. Enhanced conversion efficiency and surface hydrophobicity of nano-roughened Teflon-like film coated poly-crystalline Si solar cells.

    Science.gov (United States)

    Lin, Gong-Ru; Meng, Fan-Shuen; Pai, Yi-Hao; Lin, Yung-Hsiang

    2012-03-21

    Nano-roughened Teflon-like film coated poly-crystalline Si photovoltaic solar cells (PVSCs) with enhanced surface hydrophobicity and conversion efficiency (η) are characterized and compared with those coated by a Si nanorod array or a standard SiN anti-reflection layer. The Teflon-like film coated PVSC surface reveals a water contact angle increasing from 89.3° to 96.2° as its thickness enlarges from 22 to 640 nm, which is much larger than those of the standard and Si nanorod array coated PVSC surfaces (with angles of 55.6° and 32.8°, respectively). After nano-roughened Teflon-like film passivation, the PVSC shows a comparable η(10.89%) with the standard SiN coated PVSC (η = 11.39%), while the short-circuit current (I(SC)) is slightly reduced by 2% owing to the slightly decreased UV transmittance and unchanged diode performance. In contrast, the Si nanorod array may offer an improved surface anti-reflection with surface reflectance decreasing from 30% to 5% at a cost of optical scattering and randomized deflection, which simultaneously decrease the optical transmittance from 15% to 3% in the visible region without improving hydrophobicity and conversion efficiency. The Si nanorod array covered PVSC with numerous surface dangling bonds induced by 1 min wet-etching, which greatly reduces the open-circuit voltage (V(OC)) by 10-15% and I(SC) by 30% due to the reduced shunt resistance from 3 to 0.24 kΩ. The nano-scale roughened Teflon-like film coated on PVSC has provided better hydrophobicity and conversion efficiency than the Si nanorod array covered PVSC, which exhibits superior water repellant performance and comparable conversion efficiency to be one alternative approach for self-cleaning PVSC applications.

  19. A modular gas-cooled cermet reactor system for planetary base power

    Science.gov (United States)

    Jahshan, Salim N.; Borkowski, Jeffrey A.

    1993-01-01

    Fission nuclear power is foreseen as the source for electricity in planetary colonization and exploration. A six module gas-cooled, cermet-fueled reactor is proposed that can meet the design objectives. The highly enriched core is compact and can operate at high temperature for a long life. The helium coolant powers six modular Brayton cycles that compare favorably with the SP-100-based Brayton cycle.

  20. Grain size stabilization of tetragonal phase of zirconia in sputtered Zr- O cermet films

    Directory of Open Access Journals (Sweden)

    M. S. Hadavi

    2005-06-01

    Full Text Available  In this research, thin films of Zr/ZrO2 composites were deposited by reactive magnetron sputtering technique on Si and fused Silica substrates, and their structures were investigated by XRD method. During the deposition of the cermet layers, a Zr metallic target was sputtered in a gas mixture of Ar and O2. By controlling of O2 flow rate, the different metal volume fractions in the cermet layers were achieved. The optical response of the samples was studied using spectroscopy methods. Also the effect of vacuum annealing on the structures and the optical properties were studied. XRD results indicated that the prepared samples were amorphous and vacuum annealing induced crystallization in the cermet films. This research also showed that without doping, the tetragonal phase of zirconia can be stabilized at a temperature lower than the normal transition temperature. This is “grain size stabilization” and relates to the small size of the crystallites. In order to study the electron diffraction in the selected area patterns (SAD, the samples were analyzed by a high-resolution transmission microscope. The SAD results showed that all of the as prepared samples were amorphous showing evidence of very small Zr crystallites immersed in a dielectric medium.The SAD results are in close agreement with those obtained by XRD analysis.

  1. Investigation on microstructures of NiO-YSZ composite and Ni-YSZ cermet for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Tahereh; Sarrafi, Mohammad Hassan; Haji, Mohsen; Raissi, Babak; Maghsoudipour, Amir [Materials and Energy Research Center, Karaj, Tehran 14155-4777 (Iran)

    2010-09-15

    NiO-YSZ composites and Ni-YSZ cermets were successfully performed for solid oxide fuel cell applications. These composites must have enough porosity and appropriate microstructure for transferring the fuel gases. In this study, ball-milling was used as a simple, cost-effective method for the purpose of mixing the raw materials. The homogeneity of NiO-YSZ composites was examined by Map mode of SEM. NiO-YSZ composites were reduced at the high temperature under the controlled atmosphere to fabricate Ni-YSZ cermet. Variations in the anode phases were investigated by XRD and microstructure and porosity of composites were observed by SEM. Effective parameters like temperatures and the amount of pore former were investigated on open porosity, bulk density, electrical conductivity as well as electrochemical impedance of NiO-YSZ composites and Ni-YSZ cermet. A thin layer of YSZ was deposited by EPD as an electrolyte on NiO-YSZ composites which had various amount of open porosity, to study its effect on the performance of semi-cells by electrochemical impedance. (author)

  2. Development of mixed conducting dense nickel/Ca-doped lanthanum zirconate cermet for gas separation application

    Energy Technology Data Exchange (ETDEWEB)

    Nag, S. [CSIR - Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata - 700 032 (India); Mukhopadhyay, S. [Department of Chemical Technology, Calcutta University, 92 A. P. C. Road, Kolkata - 700 009 (India); Basu, R.N., E-mail: rajenbasu54@gmail.com [CSIR - Central Glass and Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata - 700 032 (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Phase pure La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) material is prepared by combustion synthesis. Black-Right-Pointing-Pointer LCZ and Ni-LCZ bulk samples are prepared with theoretical density close to 100%. Black-Right-Pointing-Pointer Bulk electrical conductivity {approx}400 S/cm is obtained for Ni-LCZ cermet at 750 Degree-Sign C. -- Abstract: La{sub 1.95}Ca{sub 0.05}Zr{sub 2}O{sub 7-{delta}} (LCZ) and Ni-LCZ cermet have been prepared by combustion synthesis and conventional solid state mixing methods respectively. Both the materials are sintered in air and controlled atmosphere (5% H{sub 2} in Ar). The density obtained for the material sintered at 1400 Degree-Sign C in controlled atmosphere is found to be more than 99.5%. This sintering temperature (1400 Degree-Sign C) is considered to be much lower compared to the conventional sintering temperature. The corresponding total conductivity for such Ni-LCZ cermet materials is {approx}400 S/cm measured at 750 Degree-Sign C having 40 vol% of Ni and 60 vol% LCZ.

  3. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    Science.gov (United States)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  4. Characterizations of Cuprous Oxide Thin Films Prepared by Sol-Gel Spin Coating Technique with Different Additives for the Photoelectrochemical Solar Cell

    Directory of Open Access Journals (Sweden)

    D. S. C. Halin

    2014-01-01

    Full Text Available Cuprous oxide (Cu2O thin films were deposited onto indium tin oxide (ITO coated glass substrate by sol-gel spin coating technique using different additives, namely, polyethylene glycol and ethylene glycol. It was found that the organic additives added had a significant influence on the formation of Cu2O films and lead to different microstructures and optical properties. The films were characterized by X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and ultraviolet-visible spectroscopy (UV-Vis. Based on the FESEM micrographs, the grain size of film prepared using polyethylene glycol additive has smaller grains of about 83 nm with irregular shapes. The highest optical absorbance film was obtained by the addition of polyethylene glycol. The Cu2O thin films were used as a working electrode in the application of photoelectrochemical solar cell (PESC.

  5. Silicon-on-ceramic coating process. Silicon sheet growth development for the Large-Area Silicon Sheet and Cell Development Tasks of the Low-Cost Silicon Solar Array Project. Quarterly report No. 8, December 28, 1977--March 28, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, P.W. Zook, J.D.; Heaps, J D; Maclolek, R B; Koepke, B; Butter, C D; Schult, S B

    1978-04-20

    A research program to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is described. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 12 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A dip-coating method for putting silicon on ceramic (SOC) has been shown to produce solar-cell-quality sheet silicon. This method and a continuous coating process also being investigated have excellent scale-up potential which offers an outstanding cost-effective way to manufacture large-area solar cells. A variety of ceramic materials have been dip-coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material withas-grown surface. Recently, an antireflection (AR) coating has been applied to SOC cells. Conversion efficiencies greater than 9% have been achieved without optimizing series resistance characteristics. Such cells typically have open-circuit voltages and short-circuit current densities of 0.51 V and 20 mA/cm/sup 2/, respectively.

  6. Influence of TiCl4 treatment on performance of dye-sensitized solar cell assembled with nano-TiO2 coating deposited by vacuum cold spraying

    Institute of Scientific and Technical Information of China (English)

    FAN Shengqiang; LI Changjiu; YANG Guanjun; ZHANG Lingzi

    2006-01-01

    Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC).The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2.Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCSTiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITOsubstrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosionof the conducting layer on the ITO glass by TiCl4.

  7. Influence of dye loading time and electrolytes ratio on the performance spin coated ZnO photoanode based dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Amrik Singh

    2016-05-01

    Full Text Available ZnO photoanode for dye sensitized solar cell sythesized by sol-gel spin coating method. XRD pattern confirmed the film is crystalline in nature and crystallite size calculated was 45.8 nm. The grain size from SEM image of ZnO is 66.3nm. Trnsmission of ZnO thin film was observed 75-92% in wavelength range from 400-800nm. The effieciency for for dye loaded 6 and 12 hours time were 0.38 and 0.44 respectively. In case of electrolytes ratio the maximum effieciency and fill factor were 0.44 and 0.49 respectively.

  8. 彩色热反射隔热涂料的研制与性能研究%Preparation and Performance of Color Solar Reflective Thermal Insulation Coatings

    Institute of Scientific and Technical Information of China (English)

    孙顺杰; 杨文颐; 冯晓杰; 于立冲

    2013-01-01

    为了获得较高的热反射性能,大多数热反射隔热涂料为白色或浅色.单调的颜色很难满足现代建筑对不同色彩的需求.文章研究了彩色热反射涂料制备过程中原材料对性能的影响.通过测试发现,添加冷颜料的彩色热反射涂料与普通外墙涂料相比,除了具备同样的色彩装饰效果,更重要的是具有优异的热反射性能,能有效节省能源.实验中,普通深灰外墙涂料的太阳光反射比为0.092,而相同颜色的热反射涂料太阳光反射比为0.297,两者1h、1.5h隔热温差达到8.5℃和8.7℃.%Most of solar reflective thermal insulation coatings have white or light color to provide higher heat reflective performance. But white or light color is difficult to meet the demand of modern decoration. This article has discussed the influence of raw materials on the performance of color solar reflective thermal insulation coatings. Color solar reflective thermal insulation coatings with cool pigments could give excellent heat reflection properties, the same decorative effect as that of the normal exterior wall paints, showing effective energy saving advantage. In this experiment, the total reflectance of ordinary dark gray exterior paint was 0. 092, while the total reflectance of solar reflective thermal insulation coatings with the same color was 0. 297. The thermal insulation temperature difference between them after 1 h and 1.5 h could be 8. 5 ℃ and 8. 7 ℃.

  9. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    Directory of Open Access Journals (Sweden)

    D. Hernández-Pinilla

    2016-06-01

    Full Text Available Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]. Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here.

  10. Silicon/Organic Hybrid Solar Cells with 16.2% Efficiency and Improved Stability by Formation of Conformal Heterojunction Coating and Moisture-Resistant Capping Layer.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Yang, Zhenhai; Yu, Jing; Yu, Wei; Zhang, Yu; Sheng, Jiang; Ye, Jichun; Amine, Joseph Chen; Cui, Yi

    2017-02-02

    Silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) heterojunction solar cells with 16.2% efficiency and excellent stability are fabricated on pyramid-textured silicon substrates by applying a water-insoluble ester as capping layer. It shows that conformal coating of PEDOT:PSS on textured silicon can greatly improve the junction quality with the main stability failure routes related to the moisture-induced poly(3,4-ethylenedioxythiophene) aggregations and the tunneling silicon oxide autothickening.

  11. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    Science.gov (United States)

    Hernández-Pinilla, D.; Rodríguez-Palomo, A.; Álvarez-Fraga, L.; Céspedes, E.; Prieto, J.E.; Muñoz-Martín, A.; Prieto, C.

    2016-01-01

    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here. PMID:27182544

  12. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2 -Si3N4.

    Science.gov (United States)

    Hernández-Pinilla, D; Rodríguez-Palomo, A; Álvarez-Fraga, L; Céspedes, E; Prieto, J E; Muñoz-Martín, A; Prieto, C

    2016-06-01

    Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC) based on a novel MoSi2-Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]). Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating-cooling cycles are shown here.

  13. Investigation of the laser engineered net shaping process for nanostructured cermets

    Science.gov (United States)

    Xiong, Yuhong

    Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder

  14. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu(3+),Tb(3+) coated TiO2 film.

    Science.gov (United States)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Deng, Xiaolong; Ding, Meng; Zhang, Shouwei; Xu, Xijin; Li, Lin

    2016-08-10

    Eu(3+),Tb(3+) doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu(3+),Tb(3+) as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascribed to acting as a barrier for the charge recombination from the fluorine doped tin oxide (FTO) to electrolyte and forming a p-n junction (NiO/TiO2). Moreover, Eu(3+), Tb(3+) co-doped NiO could accelerate the electron transfer at TiO2/dye/electrolyte interface, which further benefited the performance of solar cells. The solar cells assembled with the photoelectrodes consisting of NiO:Eu(3+),Tb(3+) and TiO2 exhibited short-circuit current density (JSC) of 17.4 mA cm(-2), open-circuit voltage (VOC) of 780 mV and conversion efficiency of 8.8%, which were higher than that with TiO2/NiO and pure TiO2. The mechanisms of the influence of NiO and NiO:Eu(3+),Tb(3+) on the photovoltaic performance of DSSCs were discussed.

  15. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu3+,Tb3+ coated TiO2 film

    Science.gov (United States)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Deng, Xiaolong; Ding, Meng; Zhang, Shouwei; Xu, Xijin; Li, Lin

    2016-08-01

    Eu3+,Tb3+ doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu3+,Tb3+ as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascribed to acting as a barrier for the charge recombination from the fluorine doped tin oxide (FTO) to electrolyte and forming a p-n junction (NiO/TiO2). Moreover, Eu3+, Tb3+ co-doped NiO could accelerate the electron transfer at TiO2/dye/electrolyte interface, which further benefited the performance of solar cells. The solar cells assembled with the photoelectrodes consisting of NiO:Eu3+,Tb3+ and TiO2 exhibited short-circuit current density (JSC) of 17.4 mA cm‑2, open-circuit voltage (VOC) of 780 mV and conversion efficiency of 8.8%, which were higher than that with TiO2/NiO and pure TiO2. The mechanisms of the influence of NiO and NiO:Eu3+,Tb3+ on the photovoltaic performance of DSSCs were discussed.

  16. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Primdahl, S.

    1999-08-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700 deg. C to 1000 deg. C, and the most important technological parameters are the polarization resistance and the long-term stability. The polarization resistance can be measured by a number of techniques, in the present work impedance spectroscopy has been used extensively. By impedance spectroscopy limiting processes in the anode polarization resistance may often be separated and characterized individually, provided they have a reasonable separation in time constants. Three limiting processes are recognized in impedance spectra obtained on technological Ni/YSZ cermet anodes characterized against a stable reference electrode atmosphere. By parameter studies and illustrative experiments, the two contributions at low and medium frequency have been identified as gas conversion and diffusion limitations, respectively. Both of these effects are concentration limitations relating to the inefficient exchange of fuel gas in the test setup outside the porous cermet. A test setup geometry where these concentration effects are avoided for high-performance electrodes is recommended. The high frequency limitation is demonstrated to relate to the cermet structure. The dependence on gas composition, temperature, adsorbed species (sulfur), isotopes (H/D), sintering temperature and cermet thickness is investigated. Despite these studies and several similar studies by others, the exact chemical or physical nature of the limiting step has not been incontestably identified. However, these is a general consensus in literature about the hydrogen oxidation process taking place on or near to the triple phase boundary (TPB) line, where open gas-filled pores, the continuous electrolyte phase (oxide ion cunductor) and the continuous Ni phase (electronic conductor) meet. The physical thickness

  17. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    Science.gov (United States)

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  18. Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb2O5 coated hierarchical TiO2 nanowire-nanosheet arrays

    Science.gov (United States)

    Liu, Wenwu; Hong, Chengxun; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2016-02-01

    Nb2O5 coated hierarchical TiO2 nanowire-sheet arrays photoanode was synthesized on flexible Ti-mesh substrate by using a hydrothermal approach. The effect of TiO2 morphology and Nb2O5 coating layer on the photovoltaic performance of the flexible dye sensitized solar cells (DSSCs) based on Ti-mesh supported nanostructures were systematically investigated. Compared to the TiO2 nanowire arrays (NWAs), hierarchical TiO2 nanowire arrays (HNWAs) with enlarged internal surface area and strong light scattering properties exhibited higher overall conversion efficiency. The introduction of thin Nb2O5 coating layers on the surface of the TiO2 HNWAs played a key role in improving the photovoltaic performance of the flexible DSSC. By separating the TiO2 and electrolyte (I-/I3-), the Nb2O5 energy barrier decreased the electron recombination rate and increased electron collection efficiency and injection efficiency, resulting in improved Jsc and Voc. Furthermore, the influence of Nb2O5 coating amounts on the power conversion efficiency were discussed in detail. The fully flexible DSSC based on Nb2O5 coated TiO2 HNWAs films with a thickness of 14 μm displayed a well photovoltaic property of 4.55% (Jsc = 10.50 mA cm-2, Voc = 0.75 V, FF = 0.58). The performance enhancement of the flexible DSSC is largely attributed to the reduced electron recombination, enlarged internal surface area and superior light scattering ability of the formed hierarchical nanostructures.

  19. Performance comparison of dye-sensitized solar cells by using different metal oxide- coated TiO2 as the photoanode

    Directory of Open Access Journals (Sweden)

    Sun Xuhui

    2014-01-01

    Full Text Available In order to increase the conversion efficiency of dye-sensitized solar cells, TiO2 photoanode surface is often covered with a metal oxide layer to form a core-shell composite structure. Different metal oxide coating on TiO2 as composite photoanodes can affect the cell efficiency variously. However, there still lacks the crosswise comparison among the effects of different metal oxides on TiO2 photoanode. In this study, TiO2 was coated with Al2O3, CaO, ZnO, MgO, Fe2O3 or Bi2O3 separately by liquid phase deposition method. The results indicated that cells with TiO2/Al2O3, TiO2/ZnO, TiO2/CaO, or TiO2/MgO composite film as a photoanode had higher conversion efficiency than those with un-coated TiO2 films. TiO2/Al2O3 showed the highest efficiency and TiO2/CaO ranked second. On the contrary, cells with TiO2/Bi2O3 or TiO2/Fe2O3 composite film as a photoanode had lower conversion efficiency than those with un-coated TiO2 films. The mechanism of the cell efficiency change was also investigated. To get higher conversion efficiency, matched energy level of the metal oxide with TiO2 is the first prerequisite, and then the optimum coating thickness is also a necessary condition.

  20. Research on the cutting performance and the wear mechanism of the cermet cutter in high speed turn-milling

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-de; HUANG Shu-tiao; JIANG Zeng-hui; ZHANG Zhi-jun; SHI Li

    2005-01-01

    When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble cooling fluid, the wear performance of the cermet cutter is bad, and does not adapt to the requirements of machining. However, when machining D60 by high speed turn-milling is under dry conditions, the wearing performance of the cermet cutter is very good and the cutting time lasts almost 3 hours. The wear mechanism of the cermet cutter under the water soluble cooling fluid is different from the dry condition. With the water soluble cooling fluid, a great deal of little chap units are formed since high frequency alternates heat stress. The crash and desquamate of these chap units is the main cause of the cutter wearing. Under dry cutting conditions, it is the main cause of cermet cutter wear in the felting phase intenerating causing rigid phase grains to fall.

  1. Room Temperature Synthesis of Highly Compact TiO2 Coatings by Vacuum Kinetic Spraying to Serve as a Blocking Layer in Polymer Electrolyte-Based Dye-Sensitized Solar Cells

    Science.gov (United States)

    Heo, Jeeae; Sudhagar, P.; Park, Hyungkwon; Cho, Woohyung; Kang, Yong Soo; Lee, Changhee

    2015-02-01

    Vacuum kinetic spraying (VKS) was used to form a blocking layer (BL) in order to increase the efficiency of dye-sensitized solar cells. Nano-sized TiO2 powders were deposited on fluorine-doped tin oxide (FTO) glass while varying the coating parameters including the mass flow, substrate transverse speed, and number of coating passes in order to control the thickness of the BL. Compared to the cell without a BL, the open-circuit voltage and short-circuit current density of the solar cell with a VKS-coated BL were noticeably improved. Consequently, the photoconversion efficiency increased up to 5.6%, which is significantly higher than that of a spin-coated BL.

  2. Working of Mo-TiC cermets for 'future nuclear systems'; Mise en forme de cermets Mo-TiC pour les 'Systemes Nucleaires du futur'

    Energy Technology Data Exchange (ETDEWEB)

    Allemand, Alexandre [CEA-Saclay, DRT/LITEN/LTMEx, 91191 Gif-sur-Yvette (France); Le Flem, Marion [CEA-Saclay, DEN/DMN/SRMA, 91191 Gif-sur-Yvette (France); Rousselet, Jerome [UTT Troyes, 10010 Troyes (France)

    2006-07-01

    The nuclear reactor cores (generation IV) will form an extremely severe environment (high temperature, severe and long irradiation...). These drastic criteria and the preoccupation to ensure a higher and higher safety level lead, beyond the preoccupations due to the feasibility of such reactors, to harsh choices in materials able to be used. Innovating materials such as Mo-TiC cermet are the subject of intense researches in the CEA. This study presents and compares two modes of Mo-TiC cermet working: the hot isostatic compression and the extrusion. Different compositions of Mo-TiC cermets are prepared by hot isostatic compression and extrusion, and then characterized in term of microstructural properties. At last, this study concludes to a very satisfying working by hot isostatic compression, nevertheless the extrusion has still to be improved. (O.M.)

  3. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

    Science.gov (United States)

    2015-07-01

    of light into power is more efficient than silicon. This gives GaAs solar cells the advantage in low-light conditions. Further, with their multi...of the solar cell actually end up in the active region able to convert photon energy into electrical energy . Several mechanisms contribute to energy ...and therefore, generate more photocurrent in the solar cell. As the photon having energy equal to or greater than the bandgap travels into the

  4. Mechanical properties testing and results for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, T.A.; Johnsen, B.P.; Nagy, A.

    1995-10-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  5. Mechanical properties testing and results for thermal barrier coatings

    Science.gov (United States)

    Cruse, Thomas A.; Johnsen, B. P.; Nagy, Andrew

    1995-01-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  6. Research Progress on Antireflection Coating for Silicon Solar Cells%硅太阳能电池减反射膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    王彦青; 王秀峰; 江红涛; 门永

    2012-01-01

    综述了国内外对硅太阳能电池减反射膜的研究进展,包括减反射膜的种类、膜层结构、减反射原理以及减反射膜的制备方法,重点介绍了硅太阳能电池减反射膜的主要制备方法,并对比了各种制备方法的优缺点,指出新型制备技术和新膜系的选取是目前硅太阳能电池减反射膜的研究重点.最后讨论了硅太阳能电池减反射膜存在的问题,并提出进一步发展的方向.%The research progress of antireflection at home and abroad is summarized, including in antireflection materials, the structure of film, principle of antireflective and preparing technology, and the focus is placed on the preparing technology, advantages and disadvantages of each preparation methods is contrasted, new preparing technology and new film system are pointed out. At last, the existing problem of antireflection coating for silicon solar cells are discussed and the development trends of antireflection coating for silicon solar cells are forecasted.

  7. Al{sub 2}O{sub 3}-coated nanoporous TiO{sub 2} electrode for solid-state dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin-tong; Sutanto, Irwan; Taguchi, Taketo; Tokuhiro, Kenichi; Meng, Qing-bo; Rao, Tata N.; Fujishima, Akira [Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Watanabe, Hiroko; Nakamori, Toshie; Uragami, Masayuki [Research Insititute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto 619-0292 (Japan)

    2003-11-01

    This paper reports the preparation of a core-shell nanoporous electrode consisting of an inner TiO{sub 2} porous matrix and a thin overlayer of Al{sub 2}O{sub 3}, and its application for solid-state dye-sensitized solar cell using p-CuI as hole conductor. Al{sub 2}O{sub 3} overlayer was coated onto TiO{sub 2} porous film by the surface sol-gel process. The role of Al{sub 2}O{sub 3} layer thickness on the cell performance was investigated. The solar cells fabricated from Al{sub 2}O{sub 3}-coated electrodes showed superior performance to the bare TiO{sub 2} electrode. Under illumination of AM 1.5 simulated sunlight (89mW/cm{sup 2}), a ca. 0.19nm Al{sub 2}O{sub 3} overlayer increased the photo-to-electric conversion efficiency from 1.94% to 2.59%.

  8. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Science.gov (United States)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime

    2016-07-01

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated Cα = Cβ configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO3 groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, Iqui/Iben. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for Iqui/Iben = 9-10 without employing any light harvesting methods.

  9. A New-type of Cermets Cutter with Nano-TiN Addition: Microstructure, Mechanical and Cutting Properties

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and mechanical properties of a new- type of cermets cutter ( tool A ) with nano- TiN modification and its cutting properties in cutting gray cast iron are investigated.SEM and TEM observations of the microstructure of the above material reveal that nano- TiN modified cermets possess a finer microstructure than conventional cermets .In the cutting tests, for comparison, cemented carbide cutter ( YG8 , tool B) was also utilized.The cutting results show that the cutting properties of tool A are superior to those of tool B.It is also found that the predominant failure mode of tool A is normal wear and micro-spalling under lower cutting quantities, and that chipping occurs under higher cutting quantities.SEM analysis reveals that cohesion, oxidation and diffusion wear become very apparent at a higher cutting speed.On the contrary, grain wear also exists but is not apparent.

  10. EFFECT OF BRAZING TIME ON TiC CERMET/IRON JOINT BRAZED WITH Ag-Cu-Zn FILLER METAL

    Institute of Scientific and Technical Information of China (English)

    L.X. Zhang; J.C. Feng; Z.R. Li; H.J. Liu

    2004-01-01

    The brazing of TiC cermet to iron was carried out at 1223K for 5-20min using Ag-Cu-Zn filler metal. The formation phase and interface structure of the joints were investigated by electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the joint strength was tested by shearing method. The results showed: there occurred three new formation phases, Cu(s.s), FeNi and Ag(s.s) in TiC cermet/iron joint. The interface structure was expressed as TiC cermet/Cu(s.s)+FeNi/Ag(s.s)+a little Cu(s.s)+a little FeNi/Cu(s.s)+ FeNi/iron. With brazing time increasing, there appeared highest shear strength of the joints, the value of which was up to 252.2MPa when brazing time was 10min.

  11. Optically optimal wavelength-scale patterned ITO/ZnO composite coatings for thin film solar cells

    CERN Document Server

    Moreau, Antoine; Centeno, Emmanuel; Seassal, Christian

    2012-01-01

    A new methodology is proposed for finding structures that are, optically speaking, locally optimal : a physical analysis of much simpler structures is used to constrain the optimization process. The obtained designs are based on a flat amorphous silicon layer (to minimize recombination) with a patterned anti-reflective coating made of ITO or ZnO, or a composite ITO/ZnO coating. These latter structures are realistic and present good performances despite very thin active layers.

  12. Spark Plasma Sintering of Load-Bearing Iron-Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications

    Science.gov (United States)

    Montufar, Edgar B.; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastián; Celko, Ladislav; Klakurková, Lenka; Spotz, Zdenek; Diéguez-Trejo, Guillermo; Fohlerová, Zdenka; Dvorak, Karel; Zikmund, Tomáš; Kaiser, Jozef

    2016-04-01

    Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. The process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron with consolidation through spark plasma sintering (SPS). The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, x-ray diffraction and diametral tensile strength tests, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although a short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion tests show that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

  13. Coating and curing apparatus and methods

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze' ev R.

    2016-04-19

    Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.

  14. The Dry Sliding Wear Behavior of HVOF-Sprayed WC: Metal Composite Coatings

    Science.gov (United States)

    Ward, Liam P.; Pilkington, Antony

    2014-09-01

    WC-based cermet coatings containing various metallic binders such as Ni, Co, and Cr are known for their superior tribological properties, particularly abrasion resistance and enhanced surface hardness. Consequently, these systems are considered as replacements for traditional hard chrome coatings in critical aircraft components such as landing gear. The purpose of this investigation was to conduct a comparative study on the dry sliding wear behavior of three WC-based cermet coatings (WC-12Ni, WC-20Cr2C3-7Ni, and WC-10Co-4Cr), when deposited on carbon steel substrates. Ball on disk wear tests were performed on the coatings using a CSEM Tribometer (pin-on-disk) with a 6-mm ruby ball at 20 N applied load, 0.2 m/s sliding velocity, and sliding distances up to 2000 m. Analysis of both the coating wear track and worn ruby ball was performed using optical microscopy and an Alphastep-250 profilometer. The results of the study revealed both wear of the ruby ball and coated disks allowed for a comparison of both the ball wear and coating wear for the systems considered. Generally, the use of Co and Cr as a binder significantly improved the sliding wear resistance of the coating compared to Ni and/or Cr2C3.

  15. Methods of three-dimensional electrophoretic deposition for ceramic and cermet applications and systems thereof

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Klint Aaron; Kuntz, Joshua D.; Worsley, Marcus

    2016-09-27

    A ceramic, metal, or cermet according to one embodiment includes a first layer having a gradient in composition, microstructure and/or density in an x-y plane oriented parallel to a plane of deposition of the first layer. A ceramic according to another embodiment includes a plurality of layers comprising particles of a non-cubic material, wherein each layer is characterized by the particles of the non-cubic material being aligned in a common direction. Additional products and methods are also disclosed.

  16. Microstructure and optical absorption of Au-MgF2 nanoparticle cermet films

    Institute of Scientific and Technical Information of China (English)

    Sun Zhao-Qi; Cai Qi; Song Xue-Ping

    2006-01-01

    The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied.The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm.Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm.With increasing Au content,absorption peak intensity increases,profile narrows and location redshifts.Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.

  17. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells.

  18. The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency.

    Science.gov (United States)

    Wang, Yusheng; Xia, Zhouhui; Liu, Lijia; Xu, Weidong; Yuan, Zhongcheng; Zhang, Yupeng; Sirringhaus, Henning; Lifshitz, Yeshayahu; Lee, Shui-Tong; Bao, Qiaoliang; Sun, Baoquan

    2017-03-03

    Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell.

  19. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... of all the polymers corresponding to all combinations of donor and acceptor units is followed by characterization of all the materials with respect to molecular weight, electrochemical energy levels, band gaps, photochemical stability, carrier mobility, and photovoltaic parameters. The photovoltaic...... included in the merit factor, it is found that 13 out of the 104 synthesized polymers outperformed poly(3-hexylthiophene) under the chosen processing conditions and thus can be suitable for further development....

  20. Sol-gel spin coated well adhered MoO3 thin films as an alternative counter electrode for dye sensitized solar cells

    Science.gov (United States)

    Mutta, Geeta R.; Popuri, Srinivasa R.; Wilson, John I. B.; Bennett, Nick S.

    2016-11-01

    In this work, we aim to develop a viable, inexpensive and non-toxic material for counter electrodes in dye sensitized solar cells (DSSCs). We employed an ultra-simple synthesis process to deposit MoO3 thin films at low temperature by sol-gel spin coating technique. These MoO3 films showed good transparency. It is predicted that there will be 150 times reduction of precursors cost by realizing MoO3 thin films as a counter electrode in DSSCs compared to commercial Pt. We achieved a device efficiency of about 20 times higher than that of the previous reported values. In summary we develop a simple low cost preparation of MoO3 films with an easily scaled up process along with good device efficiency. This work encourages the development of novel and relatively new materials and paves the way for massive reduction of industrial costs which is a prime step for commercialization of DSSCs.

  1. Medium area, flexible single and tandem junction solar cells based on roll coated semi-random copolymers

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Burkhart, Beate;

    2014-01-01

    We report on medium area (1 cm2) slot-die coated organic photovoltaic devices (OPVs) of a recently developed semi-random copolymer of poly-3-hexylthiophene and diketopyrrolopyrrole (P3HTT–DPP- 10%) mixed with phenyl-C61-butyric acid methyl ester ([60]PCBM). The devices were prepared using a compa...

  2. TiC0.5N0.5-Based Cermets with Varied Amounts of Si3N4 Nanopowders Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Changchun Lv

    2015-01-01

    Full Text Available TiCN-based cermets with varied fractions of Si3N4 nanopowder (0–5 wt.% were prepared by spark plasma sintering. The microstructural and mechanical properties of these cermets were investigated. In general, with increasing addition amount of Si3N4 nanopowder the relative density as well as mechanical properties of the as-prepared TiCN cermets increased first and then decreased. The samples containing 2 wt.% Si3N4 nanopowder presented the best performance with the relative density of about 98%, bending strength of 1000 MPa, and Vickers microhardness of about 1810 HV10.

  3. Formation of layer-shaped pores in TiC-Fe cermet by combustion synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the formation of layer-shaped pores in TiC-Fe cermet, two Ti-C-Fe powder compacts containing Ti powders with two size ranges (<44?μm and 135~154?μm) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion-synthesized products were inspected by X-ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC-Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer-shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly.

  4. Electrical resistivity of NiFe2O4 ceramic and NiFe2O4 based cermets

    Institute of Scientific and Technical Information of China (English)

    田忠良; 赖延清; 李劼; 张刚; 刘业翔

    2004-01-01

    NiFe2O4 ceramic and NiFe2O4 based cermets, expected to be used as the inert anodes in aluminum electrolysis, were prepared and their electrical resistivities were measured at different temperatures. The effects of temperature and composition on their electrical resistivities were investigated. The results indicate that the electrical resistivities of NiFe2O4 based cermets mainly depend on temperature, resistivity of ceramic matrix, composition and dispersion of the metal phase among ceramic matrix. The electrical resistivity of NiFe2O4 ceramic decreases from 10. 094 Ω · cm to 0. 475 Ω · em with increasing temperature from 573 K to 1 233 K. The electrical resistivities of NiFe2O4 based cermets are greatly lowered, but decrease with increasing the temperature with similar trend compared to that of NiFe2O4 ceramic. The resistivities of NiFe2O4 based cermets containing 5 % Ni, 5 % Cu and 5 % CuNi alloy are 0. 046 8, 0.066 8 and 0. 0532 Ω · cm at 1 233 K, respectively, which are all acceptable as inert anode materials compared to that of the current carbon anode used for aluminum electrolysis.

  5. Electrical conductivity of Cu/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.

  6. Impact of Reduction Parameters on the Initial Performance and Stability of Ni/(Sc)YSZ Cermet Anodes for SOFCs

    DEFF Research Database (Denmark)

    Ebbehøj, Søren Lyng; Ramos, Tania; Mogensen, Mogens Bjerg

    2012-01-01

    In-situ reduction of Ni cermet anodes produces the porosity and influences the microstructure, performance and stability of the anodes. The impact on initial performance, stability and microstructure of two different reduction procedures currently in use at DTU Energy Conversion with reduction te...

  7. Advanced WC-Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B. [Centre for Advanced Materials Processing, Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, West Bengal (India)], E-mail: bnmondal@rediffmail.com; Das, P.K. [Central Glass and Ceramic Research Institute, Kolkata (India); Singh, S.K. [Institute of Minerals and Materials Technology (IIMT), Bhubeneswar (India)

    2008-12-20

    The synthesis of titanium carbonitride (TiCN) powders by thermal plasma using extended arc thermal plasma reactor and the effect of TiCN reinforcement for the development of advanced WC-Co cermets has been studied with respect to hardness and fracture toughness. These classes of materials are being investigated for future application in wear-resistant seals, cutting tools, etc. Metallurgical reactions and microstructural developments during sintering of cermets and functionally graded cemented carbonitrides are being investigated by analytical methods such as differential thermal analysis/thermo-gravimetric analysis, X-ray diffraction and analytical Scanning electron microscopy with energy dispersive X-ray spectroscopy. By an in-depth understanding of the complex phase reactions and the mechanisms that govern the sintering process and metallurgical reactions, new cermets and different types of functionally graded cemented carbonitrides with desired microstructures and properties have been attempted to develop. The significant improvement of micro-hardness was observed with optimal concentration of TiCN reinforcement addition in WC-Co system without sacrificing much fracture toughness value of the composite cermets.

  8. Enhanced Photocurrent Density by Spin-Coated NiO Photocathodes for N-Annulated Perylene-Based p-Type Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Li, Xing; Yu, Fengtao; Stappert, Sebastian; Li, Chen; Zhou, Ying; Yu, Ying; Li, Xin; Ågren, Hans; Hua, Jianli; Tian, He

    2016-08-03

    The low photocurrent density of p-type dye-sensitized solar cells (p-DSSCs) has limited the development of high-efficiency tandem cells due to the inadequate light-harvesting ability of sensitizers and the low hole mobility of semiconductors. Hereby, two new "push-pull" type organic dyes (PQ-1 and PQ-2) containing N-annulated perylene as electron donor have been synthesized, where the PQ-2-based p-DSSCs show higher photoelectric conversion efficiency (PCE) of 0.316% owing to the higher molar extinction compared to of that PQ-1. Additionally, the photocurrent densities were remarkably increased from 2.20 to 5.85 mA cm(-2) for PQ-1 and 2.45 to 6.69 mA cm(-2) for PQ-2 by spin-coated NiO photocathode based-p-DSSCs, respectively. This results are ascribed to the enhancement of hole transport rate, dye-loading amounts and transparency of NiO films in comparison to that prepared by screen-printing method. Electrochemical impedance spectroscopy and theoretical calculations studies indicate that the molecular dipole moment approaching closer to the NiO surface shifts the quasi-Fermi level to more positive levels, improving open-circuit voltage (Voc). Intensity-modulated photocurrent spectroscopy illustrates that the hole transit time in NiO films prepared in spin-coating is shorter than that prepared by screen-printing method.

  9. MEH-PPV and PCBM Solution Concentration Dependence of Inverted-Type Organic Solar Cells Based on Eosin-Y-Coated ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Riski Titian Ginting

    2013-01-01

    Full Text Available The influence of polymer solution concentration on the performance of chlorobenzene- (CB- and chloroform- (CF- based inverted-type organic solar cells has been investigated. The organic photoactive layers consisted of poly(2-methoxy-5-(2-ethyl hexyloxy-1,4-phenylenevinylene (MEH-PPV and (6,6-phenyl C61 butyric acid methyl ester (PCBM were spin coated from CF with concentrations of 4, 6, and 8 mg/mL and from CB with concentrations of 6, 8, and 10 mg/mL onto Eosin-Y-coated ZnO nanorod arrays (NRAs. Fluorine doped tin oxide (FTO and silver (Ag were used as electron collecting electrode and hole collecting electrode, respectively. Experimental results showed that the short circuit current density and power conversion efficiency increased with decrease of solution concentration for both CB and CF devices, which could be attributed to reducing charge recombination in thinner photoactive layer and larger contact area between the rougher photoactive layer and Ag contact. However, the open circuit voltage decreased with decreasing solution concentration due to increase of leakage current from ZnO NRAs to Ag as the ZnO NRAs were not fully covered by the polymer blend. The highest power conversion efficiencies of 0.54 ± 0.10% and 0.87 ± 0.15% were achieved at the respective lowest solution concentrations of CB and CF.

  10. Facile synthesis of SnO2 coated urchin-like TiO2 hollow microspheres as efficient scattering layer for dye-sensitized solar cells

    Science.gov (United States)

    Xie, Fengyan; Li, Yafeng; Dou, Jie; Wu, Junxiu; Wei, Mingdeng

    2016-12-01

    SnO2 coated urchin-like TiO2 hollow microspheres are prepared via a facile one-step hydrothermal method by using titanium tetrabutoxide (TBOT) as titanium source. The synthesized products are characterized by XRD, SEM and TEM measurements. It's found that the as-prepared microspheres with a diameter of 500-800 nm are consisted of densely interconnected nanowires and possessed a high specific surface area of 134.92 m2 g-1. Moreover, HRTEM and element mapping results show that the surface of urchin-like microsphere is coated by lots of SnO2 nanoparticles. When used as scattering layer for dye-sensitized solar cells, the microspheres show good dye adsorption capability, superior light scattering and electron diffusibility, leading to a higher photovoltaic conversion efficiency of 8.33%, which is a 28.4% enhancement comparable to that of bare nanocrystalline TiO2 (Dyesol 18NR-T, 6.49%).

  11. Adhesion, resistivity and structural, optical properties of molybdenum on steel sheet coated with barrier layer done by sol–gel for CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Dumont, Jacques [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur (Belgium)

    2013-03-01

    Molybdenum films are investigated on stainless steel substrates coated with polysilazane based sol–gel and SiO{sub x} layers for flexible CIGS solar cell applications. Thermal stability of the multilayer has been studied. The thickness of polysilazane films are significantly reduced (17%) after heat treatment suggesting a thermal degradation. Four different microstructures were found for Mo films by varying argon total pressure from 2.6 × 10{sup −1} Pa to 2.6 Pa. It was shown that continuous films, low sheet resistance (0.5 Ω/□) and well facetted grains can be achieved when Mo films are deposited on heated substrates at homologous temperature, T of 0.2. - Highlights: ► Steel sheet is functionalized for Cu[Inx,Ga(1 − x)Se2] solar cells. ► Varying deposition pressure impacts the microstructure of Mo films. ► High thermal stability of the sol gel based barrier layer has been investigated. ► Low sheet resistance and continuous Mo films have been obtained at 550°C. ► Thermal stability of functionalized steel sheets at 550°C has been investigated.

  12. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer.

    Science.gov (United States)

    Baek, Seong-Ho; Noh, Bum-Young; Park, Il-Kyu; Kim, Jae Hyun

    2012-01-05

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it.

  13. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation.

    Science.gov (United States)

    An, Ye; de Ridder, David Johannes; Zhao, Chun; Schoutteten, Klaas; Bussche, Julie Vanden; Zheng, Huaili; Chen, Gang; Vanhaecke, Lynn

    2016-01-01

    To evaluate the performance of zeolite-supported carbon-doped TiO(2) composite catalysts toward target pollutants under solar light irradiation, the adsorption and photocatalytic degradation of 18 pharmaceuticals and pesticides with distinguishing features (molecular size and volume, and photolysis) were investigated using mordenite zeolites with SiO(2)/Al(2)O(3) ratios of 18 and 240. Different quantities of carbon-doped TiO(2) were coated on the zeolites, and then the finished composite catalysts were tested in demineralized, surface, and hospital wastewater samples, respectively. The composite photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, and surface area and porosity analyses. Results showed that a dispersed layer of carbon-doped TiO(2) is formed on the zeolite surface; this layer blocks the micropores of zeolites and reduces their surface area. However, these reductions did not significantly affect adsorption onto the zeolites. Our results demonstrated that zeolite-supported carbon-doped TiO(2) systems can effectively degrade 18 pharmaceuticals and pesticides in demineralized water under natural and simulated solar light irradiation. In surface and hospital wastewaters, zeolite-supported carbon-doped TiO(2) systems present excellent anti-interference capability against radical scavengers and competitive organics for pollutants removal, and higher pollutants adsorption on zeolites evidently enhances the removal rate of target pollutants in surface and hospital wastewater samples with a complicated matrix.

  14. Ni-CeO2 Cermets Synthesis by Solid State Sintering of Ni/CeO2 Multilayer

    Directory of Open Access Journals (Sweden)

    Aleksandras ILJINAS

    2013-12-01

    Full Text Available Nickel and gadolinium doped cerium oxide (GDC cermet is intensively investigated for an application as an anode material for solid oxide fuel cells based on various electrolytes. The purpose of the present investigation is to analyze morphology, microstructure, and optical properties of deposited and annealed for one hour in the temperatures from 500 ºC to 900 ºC Ni/CeO2 multilayer thin films deposited by sputtering. The crystallographic structure of thin films was investigated by X-ray diffraction. The morphology of the film cross-section was investigated with scanning electron microscope. The elemental analysis of samples was investigated by energy-dispersive X-ray spectroscopy. The fitting of the optical reflectance data was made using Abeles matrix method that is used for the design of interference coatings. The film cross-section of the post-annealed samples consisted of four layers. The first CeO2 layer (on Si had the same fine columnar structure with no features of Ni intermixing. The part of Ni (middle-layer after annealing was converted to NiO with grain size exceeding 100 nm. The CeO2 layer deposited on Ni was divided into two layers. Lower layer had small grains not exceeding 25 nm and consisting of NiO and CeO2 mixture. Upper layer consisted of CeO2 columns with approximate thickness of 50 nm. Ni sample annealed at 600 ºC was fully oxidized. The NiO thickness and refraction index were almost steady after annealing in various temperatures. The approximation of experimental reflectance data was successful only for the samples with one transparent homogeneous layer. The reflectance of the Ni/CeO2 samples annealed at intermediate temperatures could not be fitted using one-layer or three-layer model. That may show that a simplified model could not be implemented.  The real system has complicated distribution of refraction index. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3073

  15. Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation.

    Science.gov (United States)

    Bokare, Anuja; Sanap, Avinash; Pai, Mrinal; Sabharwal, Sushma; Athawale, Anjali A

    2013-02-01

    Nanosized (8-9 nm) Nd doped and Ag coated TiO(2) nanoparticles have been synthesized by sol-gel method. The physicochemical properties of these particles were investigated by X-ray diffraction (XRD), diffuse reflectance UV-visible (DRUV) spectra and Brunauer-Emmett-Teller (BET) surface area analysis. The antibacterial activities of the samples were studied for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) both, under the light and dark conditions. The results reveal that the extent of activity shows the order as undoped TiO(2)doped TiO(2)coated TiO(2). The mechanism of bactericidal action of the nanoparticles, in presence of sunlight has been explained with the help of microscopic analyses. The bacterial damage is observed to proceed through initial perforation of the cell, damage of cell wall and finally the bacterial death.

  16. Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Vidal, Judith C.; Noel, John; Weber, Jacob

    2016-12-01

    Stainless steels (SS) 310, 321, 347, Incoloy 800H (In800H), alumina-forming austenitic (AFA-OC6), Ni superalloy Inconel 625 (IN625), and MCrAlX (M: Ni, and/or Co; X: Y, Hf, Si, and/or Ta) coatings were corroded in molten carbonates in N2 and bone-dry CO2 atmospheres. Electrochemical tests in molten eutectics K2CO3-Na2CO3 and Na2CO3-K2CO3-Li2CO3 at temperatures higher than 600 degrees C were evaluated using an open-circuit potential followed by a potentiodynamic polarization sweep to determine the corrosion rates. Because the best-performing alloys at 750 degrees C were In800H followed by SS310, these two alloys were selected as the substrate material for the MCrAlX coatings. The coatings were able to mitigate corrosion in molten carbonates environments. The corrosion of substrates SS310 and In800H was reduced from ~2500 um/year to 34 um/year when coated with high-velocity oxyfuel (HVOF) NiCoCrAlHfSiY and pre-oxidized (air, 900 degrees C, 24 h, 0.5 degrees C/min) before molten carbonate exposure at 700 degrees C in bone-dry CO2 atmosphere. Metallographic characterization of the corroded surfaces showed that the formation of a uniform alumina scale during the pre-oxidation seems to protect the alloy from the molten carbonate attack.

  17. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 6, March 22, 1977--June 24, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-06-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in silicon on ceramic (SOC) solar cell performance. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open circuit voltages (V/sub oc/) and short circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/ respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. It is significant that single-crystal comparison cells, also measured without benefit of an AR coating, had efficiencies in the 8.5 percent range with typical V/sub oc/'s and J/sub sc/'s of 0.54 volt and 23 mA/cm/sup 2/, respectively. Therefore, improvement in cell design and junction diffusion techniques should increase the efficiency of both the SOC and single-crystal cells. During this quarter the dip coating facility was inadvertently contaminated, but has since been restored to a purity level exceeding its original state. With this facility, silicon coatings were grown with a single-crystal seed attached to the substrate. Single-crystal silicon was not forthcoming, but the results were nonetheless encouraging. Several of the carbon coating types tried appear promising, including one which has high purity and can be applied uniformly by swab or airbrush.

  18. Effects of surface treatments on high mobility ITiO coated glass substrates for dye sensitized solar cells and their tandem solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.W.; Upadhyaya, H.M. [Centre for Renewable Energy Systems Technology, Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Nakada, T. [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Setagaya-ku, Tokyo 157-8572 (Japan); Tiwari, A.N. [Laboratory for Thin Films and Photovoltaics, EMPA (Swiss Federal Laboratories for Material Testing and Research), Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2010-04-15

    Dye sensitized solar cells (DSCs) have the potential to be used as a top device in a tandem solar cell structure with a bottom Cu(In,Ga)Se{sub 2} (CIGS) cell. Optical losses, however, within the fluorine doped tin oxide (FTO) conducting electrode used with DSCs limit the light available for the bottom cell for photocurrent generation, and therefore the whole device. High mobility transparent conducting oxides have the potential to reduce these optical losses, since the transmission in the near infrared of these substrates is high compared to standard conducting oxides. Attempts have in the past been made to use these conducting oxide substrates as the electrodes in DSCs; however delamination of the deposited TiO{sub 2} layer and an increase in sheet resistance of the high mobility material have caused problems. Here we present alternative surface treatments to ensure that delamination is significantly reduced, as well as a method to recover lost conductivity of heated indium oxide films, which result in transparent cells of over 7% efficiency, which is close to that reached on standard FTO substrates. (author)

  19. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    Science.gov (United States)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  20. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    Science.gov (United States)

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production.

  1. In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Larsen-Olsen, Thue T.; Dam, Henrik Friis

    2016-01-01

    and crystallographic development. Using our in situ slot-die micro roll-to-roll coater setup, we measured small and wide angle X-ray scattering in grazing incidence while the material dried, enabling us to follow the crystallization from just after the deposition and up to 25 minutes later. The data showed differing......In an effort to understand recent results showing differences between the power conversion efficiencies of lead halide (CH3NH3PbI3-xClx) solar cells on glass versus flexible substrates, this study investigates the influence that substrate and processing methods have on morphological...... that the flexible substrates absorb part of the solvent, thereby delaying evaporation and changing the solvent environment around the perovskite. As a further test, we produced solar cells with the same substrates and confirmed that the ones made on flexible substrates performed worse than those made on glass...

  2. Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C(61)-butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells.

    Science.gov (United States)

    Valentini, L; Bagnis, D; Kenny, J M

    2009-03-04

    In this paper the dip-coating technique has been investigated as a method for the production of regioregular poly(3-hexylthiophene) (RR-P3HT):[6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)-based solar cells. We found that the utilization of the dip-coating technique for the RR-P3HT:PCBM system can facilitate its self-assembly into a nanofibrillar lamellar structure after evaporation of the solvent. The condition for the formation of the nanofibrillar structures leads to a power conversion efficiency of 3.6% by using only this approach without thermal treatment.

  3. Antireflective porous-silicon coatings for multicrystalline solar cells: the effects of chemical etching and rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Palma, R.J.; Martinez-Duart, J.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Aplicada; Instituto de Ciencia des Materiales de Madrid (CSIC) (Spain); Vazquez, L. [Instituto de Ciencia des Materiales de Madrid (CSIC) (Spain); Schnell, M.; Schaefer, S. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany)

    2001-08-01

    In this paper, the emitter of multicrystalline silicon solar cells has been chemically etched in order to form porous silicon (PS) layers, usually known as stain-etched PS, to be used at the same time as a selective emitter and as an effective antireflective layer. The optical behaviour of the solar cells in the 250-850 nm wavelength range (5-1.45 eV range) was determined before and after PS formation, resulting in a notable reduction of reflectance after PS formation and a corresponding increase in cell efficiency. The different morphologies of the silicon emitter and metallic contacts, before and after PS formation were analysed by scanning electron microscopy and atomic force microscopy. Furthermore, the electrical properties of both the emitter region and the contacts were investigated, as well as the most significant solar cell parameters before and after PS formation. Finally, the effect of rapid thermal processing in nitrogen and oxygen atmospheres on both the surface morphology and the optical behaviour of PS was studied. (Author)

  4. Faradaic current in different mullite materials. Single crystal, ceramic and cermets

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Osoro, Gustavo; Moya, Jose S.; Pecharroman, Carlos [Instituto de Ciencia de Materiales de Madrid (CSIC) (Spain); Morales, Miguel [Universidad de Santiago de Compostela (Spain). LabCaF; Diaz, L. Antonio [Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN-CSIC), Llanera (Spain); Schneider, Hartmut [Koeln Univ. (Germany). Inst. fuer Kristallographie

    2012-04-15

    Faradaic current measurements have been carried out on three different types of mullite: 2: 1 mullite single crystals (E perpendicular to c), 3: 2 ceramics and 11 % mullite/Mo composites. Measurements were carried out on very thin samples (60 {mu}m) at high voltages (500 to 1 000 V). Under these conditions, measurable currents were recorded even at room temperature. Results indicate notable differences between these three samples, which suggest that, although they share the same name and similar crystalline structure, binding energies and defect distributions seem to be very different. Finally, it has been seen that the excellent behaviour against dielectric breakdown of ceramic mullite does not hold for single crystals or mullite based cermets. (orig.)

  5. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Robert T [ORNL; Collins, Jack Lee [ORNL; Hunt, Rodney Dale [ORNL; Ladd-Lively, Jennifer L [ORNL; Patton, Kaara K [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  6. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  7. Combustion Synthesis of TiC-TiB2-Based Cermets from Elemental Powders

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2011-01-01

    Full Text Available TiC-TiB2-based cermets with Ni binder were fabricated using combustion synthesis assisted by pseudohot isostatic pressing by heating the compacted powder mixture to approximately 700°C. The effects of composition on microstructure and hardness of the synthesized samples were investigated. The samples exhibited finer microstructure and higher hardness as TiC/TiB2 volume ratio increased and as Ni increased up to 30 vol%. A relatively high hardness value of 1950 HV was obtained for TiC-TiB2-Ni(52.5/17.5/30 vol%. However, the transverse rupture strength and the modulus of elasticity values were not very high. This may be due to weak bonding strength of the interface between hard phases and Ni binder and/or insufficient densification of the samples.

  8. Corrosion resistant solar mirror

    Energy Technology Data Exchange (ETDEWEB)

    Medwick, Paul A.; Abbott, Edward E.

    2016-07-19

    A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.

  9. Effects of High Temperature on Collector Coatings

    Science.gov (United States)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  10. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  11. Plasma Spraying Black Chrome for Solar Selective Absorbing Coatings%等离子喷涂法制备黑铬太阳能选择性吸收涂层

    Institute of Scientific and Technical Information of China (English)

    马涛; 叶卫平; 程旭东; 王辉; 黄伟; 王涛; 万倩; 王坷; 李光磊

    2012-01-01

    Black chrome solar selective absorbing coatings were prepared by plasma spraying, the coatings composition, microstructure, solar absorption properties were characterized with several analysis methods (XRD, SEM). The coalings were polished and deposited SnO2 films by sol-gel process. Researches indicate that the solar ab-sorptance(a) and thermal emittance(ε) of the coatings are α=0. 93 and ε=0. 88. After being polished , the thermal emittance of the coatings decrease to 0. 76. The absorptance changes little but the emittance decreases to 0. 50 after SnO2 films are fabricated. The thermal shock test shows the coatings have excellent thermal stability and thermal erosion resistance.%采用等离子喷涂法制备了黑铬太阳能选择性吸收涂层,采用XRD、SEM等测试方法对涂层的物相、微观结构、太阳能吸收性能进行了表征.对涂层进行了打磨,并在涂层表面制备SnO2选择性透过薄膜.研究表明,采用等离子喷涂方法制备的黑铬涂层吸收率为0.93,发射率为0.88,经打磨处理后,发射率降至0.76.添加SnO2薄膜后,涂层吸收率变化小,发射率降至0.50.热震实验表明该涂层具备良好的抗热震性能.

  12. Effect of Reaction Layers on the Residual Stress of the Brazed TiC Cermets/Steel Joints

    Institute of Scientific and Technical Information of China (English)

    Lixia Zhang; Jicai Feng

    2009-01-01

    For the first time, considering the effect of reaction layers, numerical simulation calculation of residual stress on brazed TiC cermets/steel joint was studied by finite element method (FEM). The calculation results show that, when the joint is brazed at 1123 K for 300 s (low brazing parameters), the maximum shear stress value occurs on (Cu, Ni) layer near TiC cermets, which is 92.16 MPa as the temperature is 300 K. When the joint is brazed at 1273 K for 900 s (high brazing parameters), the maximum shear stress value occurs on (Cu,Ni)+(Fe, Ni) layer, which is 39.18 MPa as the temperature is 300 K. The fracture sites of the joints obtained from numerical simulation calculation accord with experimental results.

  13. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    Science.gov (United States)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  14. Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC).

    Science.gov (United States)

    Zabihi, Fatemeh; Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2016-12-01

    In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3-x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vibration-assisted spray coating (2S-SVASC). The gentle imposed ultrasonic vibration on the substrate promotes droplet spreading and coalescence, surface wetting, evaporation, mixing of reagents, and uniform growth of perovskite nanocrystals. The role of the substrate temperature, substrate vibration intensity, and the time interval between the two sequential sprays are studied on the roughness, coverage, and crystalline structure of perovskite thin films. We demonstrate that a combination of a long time interval between spraying of precursor solutions (15 min), a high substrate temperature (120 °C), and a mild substrate vibration power (5 W) results in a favorable morphology and surface quality. The characteristics and performance of prepared perovskite thin films made via the 2S-SVASC technique are compared with those of the co-sprayed perovskite thin films. The maximum power conversion efficiency of 5.08 % on a 0.3-cm(2) active area is obtained for the device made via the scalable 2S-SVASC technique.

  15. Preparation of silver nanowires coated with TiO2 using chemical binder and their applications as photoanodes in dye sensitized solar cell

    Science.gov (United States)

    Jang, Inseok; Kang, Taeho; Cho, Woohyung; Kang, Yong Soo; Oh, Seong-Geun; Im, Seung Soon

    2015-11-01

    In this study, the core-shell structured Ag@TiO2 wire was prepared for application to dye-sensitized solar cell (DSSC). The Ag nanowire, having an excellent electrical conductivity, was synthesized by using the facile microwave-assisted polyol reduction process. The diameter and length of Ag wires were 40-50 nm and 20-30 μm, respectively, and the face-centered cubic silver crystal structure was obtained. In the presence of 2-mercaptoethanol as a chemical binder, the entire surface of Ag wire was coated with the TiO2 shell, which has thickness of 20 nm, through solvothermal method. The crystalline structure of TiO2 shell was the anatase phase possessing an advantage to achieve the high efficiency in DSSC. The core-shell structured Ag@TiO2 wire exhibited the high thermal stability. The high conversion efficiency (5.56%) in fabricated device with Ag@TiO2 electrode, which is about 10% higher than reference cell, was achieved by enhancement of short-current density (Jsc) value. The core-shell structured Ag@TiO2 wire could effectively reduce the charge recombination through the contribution to electron shortcut for improvement in the electron transfer rate and lifetime.

  16. Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC)

    Science.gov (United States)

    Zabihi, Fatemeh; Ahmadian-Yazdi, Mohammad-Reza; Eslamian, Morteza

    2016-02-01

    In this paper, a scalable and fast process is developed and employed for the fabrication of the perovskite light harvesting layer in inverted planar heterojunction solar cell (FTO/PEDOT:PSS/CH3NH3PbI3- x Cl x /PCBM/Al). Perovskite precursor solutions are sprayed onto an ultrasonically vibrating substrate in two sequential steps via a process herein termed as the two-step sequential substrate vibration-assisted spray coating (2S-SVASC). The gentle imposed ultrasonic vibration on the substrate promotes droplet spreading and coalescence, surface wetting, evaporation, mixing of reagents, and uniform growth of perovskite nanocrystals. The role of the substrate temperature, substrate vibration intensity, and the time interval between the two sequential sprays are studied on the roughness, coverage, and crystalline structure of perovskite thin films. We demonstrate that a combination of a long time interval between spraying of precursor solutions (15 min), a high substrate temperature (120 °C), and a mild substrate vibration power (5 W) results in a favorable morphology and surface quality. The characteristics and performance of prepared perovskite thin films made via the 2S-SVASC technique are compared with those of the co-sprayed perovskite thin films. The maximum power conversion efficiency of 5.08 % on a 0.3-cm2 active area is obtained for the device made via the scalable 2S-SVASC technique.

  17. Enhancement of photovoltaic performance in dye-sensitized solar cells with the spin-coated TiO2 blocking layer.

    Science.gov (United States)

    Lee, Jeong Gwan; Cheon, Jong Hun; Yang, Hyeon Seok; Lee, Do Kyung; Kim, Jae Hong

    2012-07-01

    The TiO2 thin film layers were introduced with the spin-coating method between FTO electrode and TiO2 photoanode in dye sensitized solar cell (DSSC) to prevent electron back migration from the FTO electrode to electrolyte. The DSSC containg different thickness of TiO2 thin film (10-30, 40-60 and 120-150 nm) were prepared and photovoltaic performances were analysed with /-Vcurves and electrochemical impedance spectroscopy. The maximum cell performance was observed in DSSC with 10-30 nm of TiO2 thin film thickness (11.92 mA/cm2, 0.74 V, 64%, and 5.62%) to compare with that of pristine DSSC (11.09 mA/cm2, 0.65 V, 62%, and 4.43%). The variation of photoelectric conversion efficiency of the DSSCs with different TiO2 thin film thickness was discussed with the analysis of crystallographic and microstructural properties of TiO2 thin films.

  18. Influence of preparation process on sintering behavior and mechanical properties of ultrafine grained Ti(C, N)-based cermets

    Institute of Scientific and Technical Information of China (English)

    FENG Ping; HE Yue-hui; XIAO Yi-feng; LIU Wen-jun; XIONG Wei-hao

    2007-01-01

    The influences of forming and sintering processes on distortion, cracking as well as mechanical properties of sintered bodies of ultrafine grained Ti(C, N)-based cermets were investigated. The results show that lubricant is indispensable to fabrication of ultrafine Ti(C, N)-based cermets, however, with low binder content in powder mixture, the lubrication action of paraffin is attenuated. A appropriate level of 2% (mass fraction) paraffin is determined for a cermet with binder content of 36% (mass fraction). It is also found that the influence of compaction pressure on distortion and cracking of sintered bodies presents a complex relationship. A relatively lower or higher compaction pressure, less than 100 MPa and more than 400 MPa respectively, favors uniform density distribution in green compact. The heating rate of sintering should be strictly controlled. Too fast heating rate results in enclosed pores to burst and forms large size pores in sintering body. A heating rate of 3 ℃/min is recommended.

  19. Effect of metallic content on mechanical property of Ni/(10NiO-NiFe2O4) cermets

    Institute of Scientific and Technical Information of China (English)

    LI Jie; ZHANG Gang; YE Shao-long; LAI Yan-qing; TIAN Zhong-liang; SUN Xiao-gang

    2006-01-01

    Ni/ (10NiO-NiFe2O4 ) cermets were fabricated by using cold pressing-sintering method. The phase composition and effect of metallic content on the mechanical properties such as bending strength, Vickers' hardness,fracture toughness and thermal shock resistance were studied. The results show that the cermets consist of Ni, NiO and NiFe2O4. Within the range of metallic content from 0 to 17% (mass fraction), the relative density decreases with the increase of metallic content and the decrease of sintering temperature, Vickers' hardness decreases from 7 097 MPa to 4 814 MPa and the bending strength increases from 110 MPa to 157 MPa, and the fracture toughness mal shock testing falls sharply as the thermal shock temperature difference is above 200℃. The cermets samples,whose metallic content is 10% and 15%, respectively, exhibit promising property of thermal shock resistance at 960 ℃ with six cycles of heating and quenching testing.

  20. The influence of high energy milling and sintering parameters on reactive sintered (Ti, Mo)C–Ni cermets

    Energy Technology Data Exchange (ETDEWEB)

    Jõeleht, Marek, E-mail: marek.joeleht@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia); Pirso, Jüri; Juhani, Kristjan [Department of Materials Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia); Viljus, Mart; Traksmaa, Rainer [Materials Research Centre, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia)

    2015-07-05

    Highlights: • High energy milling and reactive sintering was used to produce (Ti, Mo)C–Ni cermets. • A linear relationship between milling time and oxygen contamination was observed. • TiC grain cores were visible with shorter milling durations. • Optimal milling time was found to be 6 h. • Mechanical properties above 1500 HV10 and 1.1 GPa were obtained. - Abstract: Reactive sintering was used to produce titanium carbide cermets with molybdenum as an alloying element and nickel for binder. High energy attritor mill was used to mill the same composition of Ti, C, Ni and Mo powders with different durations. High energy milling significantly reduces the temperatures at which a series of reactions occurs between metal and carbon during the heating. A two-step sintering cycle was used with vacuum and argon gas isostatic pressure as sintering atmospheres. Dense (Ti, Mo)C–17 wt%Ni cermets were obtained with mechanical properties above 1500 HV10 and 1.1 GPa. The optimum milling duration was found to be 6 h of milling with the available attritor. The powders were investigated with SEM, XRD and by oxygen/nitrogen analysis. The materials were characterised by density, Vicker’s hardness and transverse rupture strength were studied.

  1. Structural Characteristics and Magnetic Properties of Al2O3 Matrix-Based Co-Cermet Nanogranular Films

    Directory of Open Access Journals (Sweden)

    Giap Van Cuong

    2015-01-01

    Full Text Available Magnetic micro- and nanogranular materials prepared by different methods have been used widely in studies of magnetooptical response. However, among them there seems to be nothing about magnetic nanogranular thin films prepared by a rf cosputtering technique for both metals and insulators till now. This paper presented and discussed preparation, structural characteristics, and magnetic properties of alumina (Al2O3 matrix-based granular Co-cermet thin films deposited by means of the cosputtering technique for both Co and Al2O3. By varying the ferromagnetic (Co atomic fraction, x, from 0.04 to 0.63, several dominant features of deposition for these thin films were shown. Structural characteristics by X-ray diffraction confirmed a cermet-type structure for these films. Furthermore, magnetic behaviours presented a transition from paramagnetic- to superparamagnetic- and then to ferromagnetic-like properties, indicating agglomeration and growth following Co components of Co clusters or nanoparticles. These results show a typical granular Co-cermet feature for the Co-Al2O3 thin films prepared, in which Co magnetic nanogranules are dispersed in a ceramic matrix. Such nanomaterials can be applied suitably for our investigations in future on the magnetooptical responses of spinplasmonics.

  2. Aid To Solar Collector Development

    Science.gov (United States)

    1979-01-01

    Solar heating and cooling systems employ coatings to increase efficiency. Designers want a coating which absorbs solar heat to the maximum extent possible with minimal emittance of infrared radiation, which occurs when the collector plate gets hot. The coating is important because too much coating causes energy loss by emittance, too little reduces the collector's ability to absorb heat. NASA's Lewis Research Center, which conducts solar energy research, saw a need for a simple means of testing coating samples for emittance. Such equipment is available to research laboratories, but it is complex and expensive

  3. Photosynthesis of Carbon Dioxide from Carbon Surfaces Coated with Oxygen: Implications for Interstellar Molecular Clouds and the Outer Solar System

    Science.gov (United States)

    Fulvio, D.; Raut, U.; Baragiola, R. A.

    2012-06-01

    We investigate via infrared spectroscopy the synthesis of CO2 by ultraviolet irradiation (6.41 eV) of amorphous carbon covered with solid O2 at 21 K. Oxidation occurs at the O2-carbon interface promoted by photon excitation or dissociation of O2 molecules. The CO2 production is linear with photon fluence with a yield of 3.3 ± 0.3 × 10-5 CO2 photon-1 the yield does not decrease at high fluences (at least up to 2 × 1019 photons cm-2) since CO2 is not photodissociated at this photon energy. Replacing oxygen with water ice did not produce CO2 since H2O does not dissociate at this photon energy. The CO2 synthesis process discussed in this Letter does not require H2O or CO and may be important in cold astrophysical environments where O2 could be locally segregated on carbonaceous grains, such as in molecular clouds and icy objects in the outer solar system.

  4. Development of New Solar Selective Absorbing Coating for Medium/High Temperature Application%新型中高温太阳能选择性吸收涂层的研制

    Institute of Scientific and Technical Information of China (English)

    李海亮; 孔祥永; 褚路轩; 李祥; 姚伯龙; 倪才华

    2011-01-01

    The medium/high temperature solar thermal utilization of solar energy is the development trend for the future. As the key technology, the high performance medium/high temperature solar selective absorbing coating is the priority in study. Using NaOH as precipitating agent, to synthesize FeCuMnOx, a functional powder oxide, the influence of various raw materials ratio and sintering temperature on the properties of the functional powders was discussed. With high temperature silicone resin, modified polyimide resin and home -made alumina sol as binders, FeCuMnOx as functional solar selective absorption powder, three different solar energy absorbing coatings were prepared, and their absorption performance and emission properties were compared. The results showed that the properties of coating with alumina sol as binder were better than the other two coatings. It showed a prospective applications in medium/high temperature solar thermal utilization.%中高温的太阳能热利用是今后太阳能利用的发展趋势,而作为关键技术的高性能中高温太阳能选择性吸收涂层是当前研究的重点.采用NaOH作为沉淀剂合成了FeCuMnOx氧化物功能粉体,重点考察了不同原料的配比和烧结温度对粉体性能的影响,并得到较好的制备工艺.以耐高温有机硅树脂、改性聚酰亚胺树脂及自制的氧化铝溶胶作为粘结剂,FeCuMnOx作为太阳能选择性吸收功能粉体,制备出3种不同的太阳能吸收涂层,比较分析了其吸收性能和发射性能.研究表明:以氧化铝溶胶为粘结剂时,得到的涂层各方面性能较好,在太阳能中高温热利用方面具有较好的应用前景.

  5. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the Low Cost Silicon Solar Array Project. Quarterly report No. 5, December 18, 1976--March 21, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-03-31

    Ceramic substrates can be coated with a thin layer of large-grain polycrystalline silicon by a dip-coating process. The silicon-on-ceramic (SOC) material appears to be quite promising as a low-cost cell material but requires somewhat special fabrication procedure since the contacts to both the n- and p-layers are now made on the front surface. Solar cells have been made on SOC material and on single-crystal control samples. Photodiodes 0.01 to 0.1 cm/sup 2/ made on substrates coated with vitreous carbon prior to dip coating with silicon showed the best efficiency of SOC material to date, namely over 6 percent uncorrected and about 12 percent inherent efficiency. Etching procedures have indicated that the dislocation density varies from almost 10/sup 7/ cm/sup -2/ to almost dislocation-free material, assuming that all etch pits are due to dislocations. EBIC measurements procedures were also improved, and it was found that diodes appear to be fairly uniform in EBIC response. A new SOC coating facility is being designed which will coat larger substrates in a continuous manner. The purpose is to minimize the contamination problem by reducing the contact area of the substrate with molten silicon. By having much larger throughput, it will also demonstrate the scale-up potential of the silicon-on-ceramic process. Portions of the new facility are under construction. An attempt has been made to model the economics of a large-scale facility for coating ceramic panels with silicon. A first iteration based on available parameters estimates showed that major cost items were poly Si ($2.90 per square meter), labor and burden ($2.50 per square meter), and the ceramic substrate ($2.50 per square meter), for a total price of about $11 per square meter.

  6. Microstructure and characteristics of high dimension brazed joints of cermets and steel

    Directory of Open Access Journals (Sweden)

    J. Nowacki

    2009-12-01

    Full Text Available Purpose: In the article a state of the question concerning stresses in brazing joints of different physical and mechanical properties was appraised as well as possibility of their decrease due to use of different techniques from technological experiments to numerical methods. Evaluation of microstructure and mechanical properties of large dimensional vacuum brazed joints of WC – Co and Ferro Titanit Nicro 128 sinters and precipitation hardened stainless steel of 14 –5 PH (X5CrNiMoCuNb14-5 using copper and silver – copper as the brazing filler metal.Design/methodology/approach: Microscopic examinations with the use of scanning electron microscope (SEM were performed to establish microstructure and diffusion influences on creation of intermetallic phases in the joint. Shear strength Rt and tensile strength Rm of the joints have been defined. It have been state, that the basic factors decreasing quality of the joint, which can occur during vacuum brazing of the WC - Co ISO K05 sinter – Cu or Ag - Cu brazing filler metal – 14 -5 PH steel joints are diffusive processes leading to exchange of the cermets and brazing filler metal elements and creation of intermetallic in the joint. It can have an unfavourable influence on ductility and quality of the joint.Findings: Results of numerical calculations of two-dimensional models of brazed joints for different sizes of surfaces brazed at a constant width of solder gap are presented. Particular attention was paid to stresses occurring in joints of large brazing surfaces.Results of the investigate proved that joints microstructure and mechanical properties depend on filler and parent materials, diffusion process during brazing, leading to exchange of the cermets components and filler metal as well as joint geometry (mainly gap thickness.Practical implications: The results have been applied in surfaces are used in large dimension spinning nozzles of a die for polyethylene granulation, in that

  7. EFFECT OF Mo AND Mo2C ON THE MICROSTRUCTURE AND PROPERTIES OF THE CERMETS BASED ON Ti(C,N)

    Institute of Scientific and Technical Information of China (English)

    S.Q.Zhou; W.Zhao; W.H.Xiong; Y.N.Zhou

    2008-01-01

    Effect of Mo and Mo2 C on the microstructure and properties of Ti(C,N)-based cermets was investigated in this article. The results have indicated that the weight percentage of Mo from 5 to 10 can reduce Ti(C,N) grain diameter and thickness of the rim,and Ti(C,N) grain can be wetted by Ni-Cu-Mo liquid so as to get small contiguity of Ti(C,N) grain. In that way, the transverse rupture strength of Ti(C,N)-based cermets has reached 1800-1900 MPa; the fracture toughness has been due to 16-18 MPa.m1/2.But 15 wt pct Mo was not more effective on Ti(C,N)-based cermets, because the thickness of the rim becomes larger. In the circumstance of Mo2C, 5 wt pct Mo2C was good for microstructure and properties of Ti(C,N)-based cermets, but 11 wt pct Mo2C has resulted in larger contiguity of Ti(C,N) grain and big Ti(C,N) grain diameter so as to reduce transverse rupture strength and fracture toughness. So that, the effect of Mo on Ti(C,N)-based cermets is better than Mo2C.

  8. Effect of Mo/B atomic ratio on the properties of Mo{sub 2}NiB{sub 2}-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Lang; Li, XiaoBo; Zhang, Dan; Yi, Li; Gao, XiaoQing [Xiangtan Univ. (China). School of Mechanical Engineering; Xiangtan Univ. (China). Key Laboratory of Materials Design and Preparation Technology of Hunan Province

    2015-05-15

    Using three elementary substances, Mo, Ni, and amorphous B as raw materials, four series of Mo{sub 2}NiB{sub 2}-based cermets with the Mo/B atomic ratio ranging from 0.9 to 1.2 were successfully prepared via reaction sintering. The effect of Mo/B atomic ratio on the microstructure and properties was studied for the cermets. The results indicate that there is a strong correlation between the Mo/B atomic ratio and properties. The transverse rupture strength of the cermets increases with an increase in Mo/B ratio and shows a maximum value of 1 872 MPa at an Mo/B atomic ratio of 1.1 and then decreases with increasing Mo/B atomic ratio. The hardness and the corrosion resistance of the cermets increase monotonically with an increase in Mo/B atomic ratio. In Mo-rich cermets with an atomic ratio of Mo/B above 1.1, a small amount Ni-Mo intermetallic compound is found precipitated at the interface of Mo{sub 2}NiB{sub 2} grains.

  9. Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells

    Directory of Open Access Journals (Sweden)

    Yimao Wan

    2013-03-01

    Full Text Available In this work, we investigate how the film properties of silicon nitride (SiNx depend on its deposition conditions when formed by plasma enhanced chemical vapour deposition (PECVD. The examination is conducted with a Roth & Rau AK400 PECVD reactor, where the varied parameters are deposition temperature, pressure, gas flow ratio, total gas flow, microwave plasma power and radio-frequency bias voltage. The films are evaluated by Fourier transform infrared spectroscopy to determine structural properties, by spectrophotometry to determine optical properties, and by capacitance–voltage and photoconductance measurements to determine electronic properties. After reporting on the dependence of SiNx properties on deposition parameters, we determine the optimized deposition conditions that attain low absorption and low recombination. On the basis of SiNx growth models proposed in the literature and of our experimental results, we discuss how each process parameter affects the deposition rate and chemical bond density. We then focus on the effective surface recombination velocity Seff, which is of primary importance to solar cells. We find that for the SiNx prepared in this work, 1 Seff does not correlate universally with the bulk structural and optical properties such as chemical bond densities and refractive index, and 2 Seff depends primarily on the defect density at the SiNx-Si interface rather than the insulator charge. Finally, employing the optimized deposition condition, we achieve a relatively constant and low Seff,UL on low-resistivity (≤1.1 Ωcm p- and n-type c-Si substrates over a broad range of n = 1.85–4.07. The results of this study demonstrate that the trade-off between optical transmission and surface passivation can be circumvented. Although we focus on photovoltaic applications, this study may be useful for any device for which it is desirable to maximize light transmission and surface passivation.

  10. Double-layer coating of SrCO3/TiO2 on nanoporous TiO2 for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Wang, Shutao; Zhang, Xi; Zhou, Gang; Wang, Zhong-Sheng

    2012-01-14

    Surface modification plays a crucial role in improving the efficiency of dye-sensitized solar cells (DSSCs), but the reported surface treatments are in general superior to the untreated TiO(2) but inferior to the typical TiCl(4)-treated TiO(2) in terms of solar cell performance. This work demonstrates a two-step treatment of the nanoporous titania surface with strontium acetate [Sr(OAc)(2)] and TiCl(4) in order, each step followed by sintering. An electronically insulating layer of SrCO(3) is formed on the TiO(2) surface via the Sr(OAc)(2) treatment and then a fresh TiO(2) layer is deposited on top of the SrCO(3) layer via the TiCl(4) treatment, corresponding to a double layer of Sr(OAc)(2)/TiO(2) coated on the TiO(2) surface. As compared to the typical TiCl(4)-treated DSSC, the Sr(OAc)(2)-TiCl(4) treated DSSC improves short-circuit photocurrent (J(sc)) by 17%, open-circuit photovoltage (V(oc)) by 2%, and power conversion efficiency by 20%. These results indicate that the Sr(OAc)(2)-TiCl(4) treatment is better than the often used TiCl(4) treatment for fabrication of efficient DSSCs. Charge density at open circuit and controlled intensity modulated photocurrent/photovoltage spectroscopy reveal that the two electrodes show almost same conduction band level but different electron diffusion coefficient and charge recombination rate constant. Owing to the blocking effect of the SrCO(3) layer on electron recombination with I(3)(-) ions, the charge recombination rate constant of the Sr(OAc)(2)-TiCl(4) treated DSSC is half that of the TiCl(4)-treated DSSC, accounting well for the difference of their V(oc). The improved J(sc) is also attributed to the middle SrCO(3) layer, which increases dye adsorption and may improve charge separation efficiency due to the blocking effect of SrCO(3) on charge recombination.

  11. Electro-spark deposited coatings for protection of materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The coating is fused (metallurgically bonded) to the substrate with such a low total heat input that the bulk substrate material remains at or near ambient temperature. Rapid solidification of the deposit typically results in an extremely fine-grained deposit that may be amorphous for some materials. Nearly any electrically conductive metal, alloy or cermet can be applied to metallic substrates. The ESD process allows multi-layer coatings to be built-up using different materials to create graded structures or surface compositions that would be difficult to achieve by other means. A series of iron-aluminide coatings based on Fe{sub 3}Al and FeAl in combination with refractory metal diffusion-barrier coatings and supplementary additions of other elements are in corrosion testing at ANL. The most recent FeAl coatings are showing a factor of three better corrosion performance than the best previous coatings. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, major new applications in gas turbine engines and steam turbine blade coatings, and in military, medical, metal-working, and recreational equipment applications.

  12. Electrochemical Characterization of CdSe-Coated ZnO Nanowire Extremely-Thin-Absorber Solar Cells

    Science.gov (United States)

    Jones, Treavor Zachary

    Four different CdSe-coated nanostructured ZnO ETA configurations as photoelectrochemical cells with polysulfide electrolyte were studied using both conventional and electrochemical characterization techniques. ETA configurations with different ZnO nanowire lengths of 500 nm and 1000 nm were varied with different CdSe absorber-layer thicknesses of 15 nm and 45 nm to examine the effects on PV performance, carrier transport, and carrier recombination. Linear-sweep voltammetry (J-V) measurements showed that longer ZnO nanowires with thinner CdSe absorber layers gave better PV performance with the 1000 nm length/15 nm CdSe thickness samples having the highest JSC ˜4.4 mA/cm2, VOC ˜0.38 V, Pmax ˜0.52 mW/cm2, and second-highest FF ˜0.32. Mott-Schottky (MS) analysis was performed on individual ETA-layer materials to obtain estimates of their ND and VFB for insight into how individual layers in an ETA cell can assist in carrier separation. MS results were shown to be irrespective of illumination, exposed area, or the electrolyte used. Annealed ZnO nanowires had an ND ˜2x10 19 cm-3, a VFB ˜(-0.4) V. versus Ag/AgCl, and were observed to be n-type. MS analysis of planar CdSe showed it to be slightly n-type and gave parameter estimates of ND ˜3x10 17 cm-3 and VFB ˜-1.1 V v. Ag/AgCl, which were also used to calculate its VBI to be ˜0.4 V, and its depletion width, W to be ˜44 nm. Carrier transport studies were performed using IMPS and photocurrent decay measurements to estimate the time constant for carrier transport, with the fastest observed for shorter nanowires and thicker CdSe absorber layers at ˜10 micros. Carrier recombination studies were also performed using IMVS, photovoltage decay, and EIS measurements to estimate the time constant for carrier recombination, with the slowest estimated for the samples with 45 nm CdSe thickness samples at ˜100 ms. Therefore, shorter nanowires with thicker CdSe absorber layers showed the best potential for improving carrier

  13. Beijing Tsinghua Solar Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Beijing Tsinghua Solar Ltd. is backed by Tsinghua University, one of the most prestigious universities in China. Tsinghua Solar invented "graded Al-N/Al selective coating," which is the key technology of all-glass evacuated solar collector tubes. The company owns the independent intellectual property rights over the key technology of all-glass vacuum solar water heaters. The registered capital of the company is 153.5 mil-

  14. Phase Evolution in Boride-Based Cermets and Reaction Bonding onto Plain Low Carbon Steel Substrate

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2012-04-01

    Reaction sinter bonding is a process that aims to bond two materials for improvement in properties through reactive sintering technique. The process has been effectively used to sinter hard materials like borides in situ which not only possess excellent oxidation resistance, good corrosion resistance but also resistant to abrasive wear. Sinter bonding is a unique surface modification process achieved through powder metallurgy and is competent with other techniques like boronizing sintering and sinter-brazing since it eliminates the additional operations of heat treatment and assembly and removes the inherent setbacks with these processes. This study focuses on identifying the phase evolution mechanism using characterization tools like x-ray diffractometry and energy dispersive spectroscopy and study of sinter bonding of the boron containing precursors (Mo-Cr-Fe-Ni-FeB-MoB) onto plain carbon steel. A microstructure containing Fe-based matrix dispersed with complex borides develops with temperature in the tape cast sheets. A fivefold increase in hardness between plain carbon steel in wrought condition and sinter bonded steel was observed. The multilayer consisted of a reaction zone adjacent to the interface and was investigated with the composition profile and hardness measurements. A model of sinter bonding between the cermet and the steel has also been proposed.

  15. Sintering behaviour and mechanical properties of Cr3C2–NiCr cermets

    Indian Academy of Sciences (India)

    A Özer; Y K Tür

    2013-10-01

    Cr3C2–NiCr cermets are used as metal cutting tools due to their relatively high hardness and low sintering temperatures. In this study, a powder mixture consisting of 75 wt% Cr3C2–25 wt% NiCr was sintered at four different temperatures and characterized for itsmicrostructure and mechanical properties. The highest relative density obtained was 97% when sintered at 1350 °C. As the relative density increased, elastic modulus, transverse rupture strength, fracture toughness and hardness of the samples reached to a maximum of 314 GPa, 810 MPa, 10.4 MPa.m1/2 and 11.3 GPa, respectively. However, sintering at 1400 °C caused further grain growth and pore coalescence which resulted in decreasing density and degradation of all mechanical properties. Fracture surface investigation showed that the main failure mechanism was the intergranular fracture of ceramic phase accompanied by the ductile fracture of the metal phase which deformed plastically during crack propagation and enhanced the fracture toughness.

  16. Conceptual Design of a CERMET NTR Fission Core Using Multiphysics Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian J. Gross; William T. Taitano

    2011-08-01

    An initial pre-conceptual CERMET Nuclear Thermal Propulsion reactor system is investigated within this paper. Reactor configurations are investigated where the fuel consists of 60 vol.% UO2 and 40 vol.% W where the UO2 consists of Gd2O3 concentrations of 5 and 10 mol.%.Gd2O3. The fuel configuration consisting of 5 mol.% UO2 was found to have a total mass of 2761 kg and a thrust to weight ratio of 4.10 and required a coolant channel surface area to fueled volume ratio of approximately 15.0 in order to keep the centerline temperature below 3000 K. The configuration consisting of 10 mol.% Gd2O3 required a surface area to volume ratio of approximately 12.2 to cool the reactor to a peak temperature of 3000 K and had a total mass of 3200 kg and a thrust to weight ratio of 3.54. It is not known yet what concentration of Gd2O3 is required to maintain fuel stability at 3000 K; however, both reactors offer the potential for operations at 25,000 lb, and at a specific impulse which may range from 900 to 950 seconds.

  17. A Combined Neutronic-Thermal Hydraulic Model of CERMET NTR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian Gross; William T. Taitano

    2011-02-01

    Abstract. Two different CERMET fueled Nuclear Thermal Propulsion reactors were modeled to determine the optimum coolant channel surface area to volume ratio required to cool a 25,000 lbf rocket engine operating at a specific impulse of 940 seconds. Both reactor concepts were computationally fueled with hexagonal cross section fuel elements having a flat-to-flat distance of 3.51 cm and containing 60 vol.% UO2 enriched to 93wt.%U235 and 40 vol.% tungsten. Coolant channel configuration consisted of a 37 coolant channel fuel element and a 61 coolant channel model representing 0.3 and 0.6 surface area to volume ratios respectively. The energy deposition from decelerating fission products and scattered neutrons and photons was determined using the MCNP monte carlo code and then imported into the STAR-CCM+ computational fluid dynamics code. The 37 coolant channel case was shown to be insufficient in cooling the core to a peak temperature of 3000 K; however, the 61 coolant channel model shows promise for maintaining a peak core temperature of 3000 K, with no more refinements to the surface area to volume ratio. The core was modeled to have a power density of 9.34 GW/m3 with a thrust to weight ratio of 5.7.

  18. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  19. Environmental standards for thermal solar collectors with particular regard to the selective coatings of the absorber surfaces. Final report; Umweltstandards fuer thermische Solarkollektoren unter besonderer Beruecksichtigung der selektiven Beschichtung ihrer Absorberoberflaechen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Handke, Volker; Kamburow, Christian

    2008-07-15

    There are only out-dated research results on the environmental impact of solar thermal collectors which do not show the state of the art at the moment in this field. Particularly with regard to the long-term resistance and the ageing there are no current scientific findings. There are controversial findings on the different coating technologies with regard to their energy demand, optical performance, environmental impact and long-term resistance. The research project aims on the development of ambitious technical environmental standards to update the ''Marktanreizprogramm'' (market stimulating programme) in accordance with the European laws and regulations on grants and taking into account the technological and market development. The following methods were used: empirical market analysis with manufacturers interviews, investigation of the cumulated energy demand and EcoIndicator 99 values of different collectors, life cycle analysis of different coating technologies in accordance with ISO 14040-42 and examination of the resistance according to Task 10 of the IEA SHC. The following environmental standards are being proposed: the solar thermal generated heat quantity, compliance with the Task 10 resistance requirements, compliance with EN 12975-12977 and Solar Keymark respectively, compliance with RAL UZ 73 as well as a minimum return of 525 kWh/ m2/ year at a solar coverage ratio of more than 40%. To apply these environmental standards it is being proposed to divide the funding within the ''Marktanreizprogramm'' into a basic funding and a funding based on the performance of the collectors. Prerequisite for receiving the basic funding is the compliance with the environmental standards. The basic funding should be differentiated taking into account the different technologies and applications as well as the competitiveness. Furthermore the basic funding should be a precondition for receiving the performance funding. The

  20. Effect of adding methods of metallic phase on microstructure and thermal shock resistance of Ni/(90NiFe2O4-10NiO) cermets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ball mixing and electroless plating were respectively used as the adding methods of metallic phase to prepare Ni/(90NiFe2O4-10NiO) cermets for the inert anode in aluminum electrolysis. The microstructure and thermal shock resistance of cermet samples were studied. The results show that, for the samples prepared by ball mixing method, aggregation of metallic phase is found in either the green blocks or sintered samples and the extent of aggregation increases with the increase of metal content. For 6.5Ni/(90NiFe2O4-10NiO) cermets prepared with electroless plating method, the homogeneous and fine metallic particles are found in either the green compacts or sintered samples, but the relative density and thermal shock residual strength decrease by 3% and 28%-58% respectively, compared with samples prepared with ball mixing method.

  1. Tribological study of hard coatings without cobalt intended to isolation components of PWR primary cooling system; Etude tribologique de revetements durs sans cobalt destines aux organes d`isolement du circuit primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Cachon, L.

    1995-10-18

    The objective is to qualify coatings without cobalt to replace ``Stellites`` coatings in isolation valves of PWR primary cooling system, as Co is activated when passing in the reactor core and contaminated the cooling loop. Three families of coatings were tested: PVD thin films from 1 to 8 {mu}m monolayers of Cr/C{sub x} with x varying between 1.6 and 9.5 at% or multilayers of pure chromium and Cr/C{sub 1.6} at%, coatings with a thickness between 100 and 200 {mu}m of cermets NiCr{sub y} (y varying from 5 to 35 at%) matrix binding chromium or tungsten carbides, and thick coatings 2 mm thickness of cermets Nitronic 60 or Inconel 625 matrix binding 10, 20 or 30% titanium or niobium carbides. Stellite 6 (2 mm) is the reference coating for tribology. Coatings were qualified and selected by thermal shocks, corrosion and plane friction. The thin film and the thick families were disqualified by their destruction or by their high friction coefficient. Then coatings between 100 and 200 {mu}m were used in a valve mock-up working in PWR primary cooling system pressure and temperature conditions. Tests show that these coatings have better wear or tightness performances than stellite 6, except for a slightly higher friction coefficient. (A.B.).

  2. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    Science.gov (United States)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  3. Optical coherence tomography (OCT) as a 3-dimensional imaging technique for non-destructive testing of roll-to-roll coated polymer solar cells

    DEFF Research Database (Denmark)

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel

    2013-01-01

    We have recently demonstrated the first application of optical coherence tomography (OCT) as a 3-dimensional (3D) imaging technique to visualize the internal structure of complete multilayered polymer solar cell modules (Thrane et al., Solar Energy Materials & Solar Cells 97, 181-185 (2012)). The...

  4. Tribological performance evaluation of tungsten carbide-based cermets and development of a fracture mechanics wear model

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, R.B. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Conway, J.C. Jr. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Amateau, M.F. [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.; Brezler, R.A. III [Pennsylvania State Univ., State College, PA (United States). Applied Research Lab.

    1996-12-15

    Tungsten carbide tools may exhibit sudden brittle fracture at high stresses such as are encountered in shear and slitter knives. This has limited the use of tungsten carbide tools to certain applications in spite of their high hardness and wear resistance. The objective of this investigation is to evaluate the tribological performance of selected cermets and develop a fracture mechanics wear model. Six compositions of WC-Co materials (Co ranging from 4 to 30% by weight) with or without TiC, NbC, TaC, or Mo{sub 2}C were selected for relating wear modes of these tool materials to pertinent mechanical properties such as fracture toughness and hardness. The influence of mechanical properties such as Young`s modulus, hardness, fracture toughness, modulus of rupture, and Weibull modulus on wear rates and wear modes of the selected materials is presented and discussed. The major mechanisms of wear in WC-Co materials are discussed as they apply to the development of suitable relationships between wear and mechanical properties. The wear process is by the transfer of steel from the ring to the cemented carbide block specimens, initiation of mode I cracks normal to the mating surface, propagation of mode II cracks parallel to the wear surfaces and the subsequent separation of platelets with adhered WC and Co particles through adhesive forces with the steel ring. The wear rates of the cermets do not show a consistent relationship with mode I or mode II fracture toughness, but a general trend of decreasing wear rate with hardness is seen. This suggests that the tribological performance of these cermets depends on certain specific functions of pertinent parameters including fracture toughness, hardness, applied load, coefficient of friction and microstructural characteristics. A fracture mechanics-based wear model has been developed to relate the steady state wear rate (W{sub ss}) to hardness, mode II fracture toughness, coefficient of friction, and applied load. (orig./MM)

  5. Prognosis and comparison of performances of composite CERCER and CERMET fuels dedicated to transmutation of TRU in an EFIT ADS

    Science.gov (United States)

    Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.

    2011-07-01

    The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.

  6. Degradation of conductivity and microstructure under thermal and current load in Ni-YSZ cermets for SOFC anodes

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune; Barfod, R.; Liu, Yuliang

    2006-01-01

    The degradation of electrical conductivity in porous nickel-yttria stabilized zirconia composite cermets in a H2/H2O atmosphere under high temperature treatments has been investigated. The parameters varied were: temperature, water partial pressure, and electrical current load. The microstructure...... was analyzed before and after the treatment by optical microscopy and field emission scanning electron microscopy (FE-SEM). From the optical images the particle size and total amount of Ni, as area fraction, in the sample were measured. By the use of charge contrast (CC) in the FE-SEM particle size and area...

  7. Preliminary Investigation of the Effect of Surface Treatment on the Strength of a Titanium Carbide - 30 Percent Nickel Base Cermet

    Science.gov (United States)

    Robins, Leonard; Grala, Edward M

    1957-01-01

    Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.

  8. A Study of the "toss Factor" in the Impact Testing of Cermets by the Izod Pendulum Test

    Science.gov (United States)

    Probst, H B; Mchenry, Howard T

    1957-01-01

    The test method presented shows that the "toss energy" contributed by the apparatus for brittle materials is negligible. The total toss energy is considered to consist of two components. (a) recovered stored elastic energy and (b) kinetic energy contributed directly by the apparatus. The results were verified by high-speed motion pictures of the test in operation. From these photographs, velocities of tossed specimens were obtained and toss energy computed. In addition, impact energies of some titanium carbide base cermets and high-temperature alloys, as measured by the low-capacity Izod pendulum test, compare well with impact energies measured by the NACA drop test.

  9. Enhanced stability of Zr-doped Ba(CeTb)O(3-δ)-Ni cermet membrane for hydrogen separation.

    Science.gov (United States)

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-07-25

    A mixed protonic and electronic conductor material BaCe(0.85)Tb(0.05)Zr(0.1)O(3-δ) (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe(0.95)Tb(0.05)O(3-δ) membrane due to the Zr doping.

  10. In-pile and out-of-pile testing of a molybdenum-uranium dioxide cermet fueled themionic diode

    Science.gov (United States)

    Diianni, D. C.

    1972-01-01

    The behavior of Mo-UO2 cermet fuel in a diode for thermionic reactor application was studied. The diode had a Mo-0.5 Ti emitter and niobium collector. Output power ranged from 1.4 to 2.8 W/cm squared at emitter and collector temperatures of 1500 deg and 540 C. Thermionic performance was stable within the limits of the instrumentation sensitivity. Through 1000 hours of in-pile operation the emitter was dimensionally stable. However, some fission gases (15 percent) leaked through an inner clad imperfection that occurred during fuel fabrication.

  11. Acoustic emission study on flexural behaviour of WC-Co coatings obtained by atmospheric plasma spray; Estudio por emision acustica del comportamiento a flexion de recubrimientos WC-Co obtenidos por plasma atomosferico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, F.; Klyatskina, E.; Bonache, V.; Salvador, M. D.; Sanchez, E.; Cantavella, V.; Bloem, C.

    2007-07-01

    Plasma spayed cermet coatings WC-Co are used in a wide range of industrial applications, mainly due to their wear resistance even in corrosive environments. the objective of this work is to analyze mechanical response of hard metal coatings by means of three-and four-points bend tests applying acoustic emission technique to determine failure critical strength. It has been observed the effect of supported charge level in structural damage by means of optical microscopy and scanning electron microscopy. Acoustic emission has allowed us to relate damage level to stresses level and then to understand coatings failure mechanism. (Author) 29 refs.

  12. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  13. High Temperature Oxidation Behavior of HVOF-sprayed Coatings for Use in Thixoextrusion Processes

    Science.gov (United States)

    Picas, J. A.; Punset, M.; Menargues, S.; Campillo, M.; Baile, M. T.; Forn, A.

    2011-05-01

    The dies used for the thixoextrusion of steels have to be capable of withstanding complex thermal and mechanical loads, while giving a sufficient wear resistance against abrasion and adhesion at very high temperatures. In order to improve the wear resistance and reduce the heating of the extrusion die it can be protected with a hard cermet coating. The purpose of this work is to study the high-temperature performance of CrC-CoNiCrAlY coating and explore the potential application of this coating to improve dies used in thixoextrusion processes. A two-layer 75CrC-25CoNiCrAlY coating with a CoNiCrAlY bond-coating was fabricated by the HVOF thermal spray process on a steel substrate. Coatings were heat-treated at a range of temperatures between 900 °C and 1100 °C. The microstructural characterization of the coatings before and after heat treatment was conducted by scanning electron microscopy (SEM) and an X-ray diffractometer (XRD). The mechanical properties of coatings were determined as a function of the temperature of heat treatment. The bond coat effect on the thermal shock resistance of CrC-CoNiCrAlY coating was analyzed.

  14. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A., E-mail: poulon@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Faure, C.; Teulé-Gay, L.; Manaud, J.P. [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2015-03-15

    Highlights: • Improvement of the NCD adhesion on WC-12%Co substrates for tooling applications using a multi-interlayer additional system. • Reduction of the graphite layer thickness and continuity at the interface with the diamond. • Transmission electron microscopy study for a better understanding of the diffusion phenomena occurring at the interfaces. - Abstract: Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  15. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  16. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  17. Structurally Integrated, Damage Tolerant Thermal Spray Coatings: Processing Effects on Surface and System Functionalities

    Science.gov (United States)

    Vackel, Andrew

    Thermal Spray (TS) coatings have seen extensive application as protective surfaces to enhance the service life of substrates prone to damage in their operating environment (wear, corrosion, heat etc.). With the advent of high velocity TS processes, the ability to deposit highly dense (>99%) metallic and cermet coatings has further enhanced the protective ability of these coatings. In addition to surface functionality, the influence of the coating application on the mechanical performance of a coated component is of great concern when such a component will experience either static or cyclic loading during service. Using a process mapping methodology, the processing-property interplay between coating materials meant to provide damage tolerant surface or for structural restoration are explored in terms of relevant mechanical properties. Most importantly, the residual stresses inherent in TS deposited coatings are shown to play a significant role in the integrated mechanical performance of these coatings. Unique to high velocity TS processes is the ability to produce compressive stresses within the deposit from the cold working induced by the high kinetic energy particles upon impact. The extent of these formation stresses are explored with different coating materials, as well as processing influence. The ability of dense TS coatings to carry significant structural load and synergistically strengthen coated tensile specimens is demonstrated as a function of coating material, processing, and thickness. The sharing of load between the substrate and otherwise brittle coating enables higher loads before yield for the bi-material specimens, offering a methodology to improve the tensile performance of coated components for structural repair or multi-functionality (surface and structure). The concern of cyclic fatigue damage in coated components is explored, since the majority of service application are designed for loading to be well below the yield point. The role of

  18. Characterization of phase transformation and microstructure of nano hard phase Ti(C,N)-based cermet by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    丰平; 熊惟皓; 李鹏; 余新; 夏阳华

    2004-01-01

    By means of optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C,N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick.When being sintered at 1 200 ℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1 200 ℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resulting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1 350 ℃ covers a wide range of 90 - 500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2.Graphite exists in band-like shape.

  19. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Science.gov (United States)

    D'Agata, E.; Knol, S.; Fedorov, A. V.; Fernandez, A.; Somers, J.; Klaassen, F.

    2015-10-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like 241Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using 10B to "produce" helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  20. Effect of a titanium nitride interlayer on the densification, properties and microstructure of cermets based on alumina and nickel. Part 2: Microstructures

    NARCIS (Netherlands)

    Li, Shujie; Khosrovabadi, Paul Babayan; Kolster, Ben H.

    1992-01-01

    SEM microstructural analyses in conjunction with EDX and TEM microstructural analyses have been conducted with cermets based on nickel and alumina, the latter as such and with a chemical-vapour-deposited titanium nitride layer. It has been proved that there is excellent bonding at both the Al2O3/TiN

  1. Effect of Yb2O3 doping on the grain boundary of NiFe2O4-10NiO-based cermets after sintering

    Institute of Scientific and Technical Information of China (English)

    Han-bing He

    2015-01-01

    xYb2O3–15(20Ni–Cu)/(85−x)(NiFe2O4–10NiO) (x=0, 0.25, 0.5, 0.75, 1.0, 2.0, and 10.0) cermets for aluminum electrolysis were prepared to investigate the effect of Yb2O3 doping on the grain boundary of the cermets after sintering. The results showed that each interface was very clear and that with increasing Yb2O3 content, most of the Yb was evenly distributed at the grain boundary. Moreover, according to the phase composition and microstructural analysis by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), and electron probe microanalysis (EPMA), YbFeO3 was produced along the grain boundary. The YbFeO3 was concluded to not only have formed from the interaction between the NiFe2O4 or Fe2O3 component and Yb2O3 at the grain boundary of the cermets, but also from the decomposition of NiFe2O4 into NiO and Fe2O3 and the subsequent reaction of Fe2O3 with Yb2O3. Thus, the pro-duction of YbFeO3 resulted in a cermet with high relative density, good electrical conductivity, and good corrosion resistance.

  2. The optimization of triple layer anti-reflection coatings and its application on solar cells%三层减反射膜的模拟及其在太阳电池中的应用

    Institute of Scientific and Technical Information of China (English)

    宫臣; 张静全; 冯良桓; 武莉莉; 李卫; 黎兵; 曾广根; 王文武

    2013-01-01

    The anti-reflection coatings with the structure of Al2O3/H4/MgF2 triple layer were prepared with electron beam evaporation technology on the glass substrate. The transmittance and surface morphology of the films were examined. The anti-reflection coating structure was optimized considering AMI. 5 spectrum and the spectroscopy response band of CdS/CdTe thin film solar cells through TFCALC software simulation. Then the optimized anti-reflection coatings were prepared on the CdTe thin film solar cells. It was found that the quantum efficiency of solar cells with anti-reflection coatings increase by 7. 3% than without, and the photoelectric conversion efficiency increased from 12. 5% to 13. 3%.%使用减反射膜层是提高太阳电池短路电流密度进而提高电池转换效率的有效手段之一.针对CdTe薄膜太阳电池的光谱响应范围,基于AM1.5辐照光谱,优化设计了MgF2/H4/Al2O3结构的减反射薄膜,使用电子束蒸发技术制备了该减反射膜,使用椭圆偏振仪、紫外/可见分光光度计、原子力显微镜分别测量了所制备薄膜的光学性质和表面形貌,对比分析了膜系结构理论模拟与实验测量结果.结果表明,使用该减反射薄膜后,电池的量子效率提高了7.3%;光电转换效率从12.5%提高到13.3%.

  3. Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2006-01-01

    The voltage-current properties during plasma electrolytic discharge were determined by measuring the current density and cell voltage as functions of processing time and then by mathematical transformation. Correlation between discharge I-V property and the coatings microstructure on aluminum alloy during plasma electrolytic oxidation was determined by comparing the voltage-current properties at different process stages with SEM results of the corresponding coatings. The results show that the uniform passive film corresponds to a I-V property with one critical voltage, and a compound of porous layer and sintered ceramic particles corresponds to a I-V property with two critical voltages. The growth regularity of PEO cermet coatings was also studied.

  4. Development of wear-resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. (Cummins Engine Co., Inc., Columbus, IN (United States))

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  5. Preparation and Characterization of TiO2/TiN/TiO2 Multi-layer Solar Control Coatings Deposited by D.C. Reactive Magnetron Sputtering at Different Substrate Temperature

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Transparent TiO2/TiN/TiO2 multi-layer solar control coatings were prepared on normal soda-lime-silica float glass substrate by using d.c. reactive magnetron sputtering at substrate temperature ranging from room temperature to 620℃. The dependence of optical properties of the coatings and the coating composition, on the substrate temperature was studied. The results of the optical properties show that as the substrate temperature increases, a visible transmittance as high as 65% can be obtained. When the substrate temperature is higher than 570℃, the infrared reflectance decreases. The results of X-ray photoelectron spectroscopy (XPS) show that when the substrate temperature is higher than 520℃ in oxygen atmosphere, the formation of thin surface over-layers (TiNxOy) on top of the TiN films can be observed. When the substrate temperature is at 620℃, the oxynitride become TiO2, which results in the optical degradation of TiN layer in infrared reflectance.

  6. Suppressing lossy-film-induced angular mismatches between reflectance and transmittance extrema: optimum optical designs of interlayers and AR coating for maximum transmittance into active layers of CIGS solar cells.

    Science.gov (United States)

    Chang, Yin-Jung

    2014-01-13

    The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (T(ave)) into the CuIn(1-x)Ga(x)Se2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (R(ave)) from the cell surface or maximum T(ave) into the CIGS absorber. In the presence of one MgF2 coating, difference in R(ave) associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding T(ave) values could be up to 14.34% apart. Significant T(ave) improvements associated with the maximum-T(ave)-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-T(ave)-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-R(ave)-based counterparts, to be highly robust to omnidirectional incidence.

  7. Dip-coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-12-30

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the past quarter, significant progress was demonstrated in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite received from Coors were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L/sub n/, from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which is believed to be due to an unidentified source of impurities. Also, operation of the new coating system fell behind schedule but is expected to improve in the coming quarter, since construction has now been completed.

  8. 不同旋涂速率对聚合物太阳电池性能的影响%Effect of different spin-coated rates on performance of polymer solar cell

    Institute of Scientific and Technical Information of China (English)

    郭颖; 朱冰洁; 刘桂林; 严慧敏

    2014-01-01

    以聚3己基噻吩(P3HT)和[6,6]⁃phenyl⁃C61⁃butyric acid methyl ester(PCBM)为活性层材料制成聚合物太阳电池,通过控制活性层旋涂速率控制活性层厚度。从不同活性层厚度器件的吸收光谱、原子力及器件各项性能参数详细分析了不同活性层旋涂速率对太阳电池性能的影响。结果表明:旋涂速率为1000 r/min时,电池具有最佳性能,光电转换效率最高为1.54%。%The polymer solar cell(PSC)taking poly 3⁃hexylthiophene(P3HT)and [6,6]⁃phenyl⁃C61⁃butyric acid methyl ester(PCBM)as its active layer materials was made by controlling spin⁃coating rate of active layer. The influence of the spin⁃coating rate of different active layers on performance of the polymer solar cell is analyzed on the basis of absorbance spectrum, atomic force and other parameters of components with different thickness active layers. The results show that PSCs can achieve the best performance(power conversion efficiency(PCE)=1.54%)when the spin⁃coating rate is 1000 r/min.

  9. Study of the Ni-NiAl{sub 2}O{sub 4}-YSZ cermet for its possible application as an anode in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rojas, A [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Toluca (Mexico); Esparza-Ponce, H E [Centro de Investigacion en Materiales Avanzados SC, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Reyes-Gasga, J [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico DF (Mexico)

    2006-05-17

    Nanocrystalline Ni-NiAl{sub 2}O{sub 4}-YSZ cermet with a possible application as anode in solid oxide fuel cells (SOFCs) has been developed. The powders were prepared by using an alternative solid-state method that includes the use of nickel acetylacetonate as an inorganic precursor to obtain a highly porous material after sintering at 1400 {sup o}C and oxide reduction (NiO -Al{sub 2}O{sub 3}-YSZ {yields} Ni-NiAl{sub 2}O{sub 4}-YSZ) at 800 {sup o}C for 8 h in a tubular reactor furnace using 10% H{sub 2}/N{sub 2}. Eight samples with 45% Ni and 55% Al{sub 2}O{sub 3}-YSZ in concentrations of Al{sub 2}O{sub 3} oxides from 10 to 80 wt% of were mixed to obtain the cermets. The obtained material was compressed using unidirectional axial pressing and calcinations from room temperature to 800 {sup o}C. Good results were registered using a heating rate of 1 {sup o}C min{sup -1} and a special ramp to avoid anode cracking. Thermal expansion, electrical conductivity, and structural characterization by thermo-mechanical analyser (TMA) techniques/methods, the four-point probe method for conductivity, scanning electron microscopy (SEM), x-ray energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and the Rietveld method were carried out. Cermets in the range 5.5 to 11% Al{sub 2}O{sub 3} present a crystal size around 200 nm. An inversion degree (I) in the NiAl{sub 2}O{sub 4} spinel structure of the cermets Ni-NiAl{sub 2}O{sub 4}-YSZ was found after the sintering and reduction processes. Good electrical conductivity and thermal expansion coefficient were obtained for the cermet with 12 wt% of spinel structure formation.

  10. Porcelain enamel passive thermal control coatings

    Science.gov (United States)

    Leggett, H.; King, H. M.

    1978-01-01

    This paper discusses the development and evaluation of a highly adherent, low solar absorptance, porcelain enamel thermal control coating applied to 6061 and 1100 aluminum for space vehicle use. The coating consists of a low index of refraction, transparent host frit and a high volume fraction of titania as rutile, crystallized in-situ, as the scattering medium. Solar absorptance is 0.21 at a coating thickness of 0.013 cm. Hemispherical emittance is 0.88. The change in solar absorptance is 0.03, as measured in-situ, after an exposure of 1000 equivalent sun hours in vacuum.

  11. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    Science.gov (United States)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2017-01-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  12. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    Science.gov (United States)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2016-12-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  13. WC基涂层材料和制备工艺对其组织结构与性能的影响%Effect of WC Based Coating Materials and Fabrication Technology on the Structures and Properties

    Institute of Scientific and Technical Information of China (English)

    石琎; 丁翔; 胡一鸣; 丁彰雄; 肖俊钧; 王韶毅

    2015-01-01

    本文采用超音速火焰(HVOF)喷涂工艺制备了二种微米结构WC-10Co-4Cr及一种纳米结构WC-12Co金属陶瓷复合涂层;采用SEM、XRD等分析了涂层的组织结构;测量了涂层的显微硬度、孔隙率及开裂韧性;采用超声振动空蚀装置研究了涂层的抗空蚀性能,探讨了涂层空蚀机理。结果表明:由燃油型HVOF工艺制备的纳米WC-12Co涂层孔隙率最低,组织最细小,开裂韧性明显高于燃油型和燃气型HVOF工艺制备的微米WC-10Co-4Cr涂层;燃油型HVOF工艺制备的微米结构WC-10Co-4Cr涂层显示了最优异的抗空蚀性能,空蚀率仅为纳米WC-12Co涂层的1/3左右。%Two micro-structured WC-10Co-4Cr cermet coatings and a nano-structured WC-12Co cermet coating were deposited by High Velocity Oxy-Fuel spray(HVOF),and the morphologies and structures of the coatings were analyzed by SEM and XRD. Porosity, microhardness and fracture toughness of the coatings were measured. Resistance of coatings to cavitation erosion was studied by ultrasonic vibration cavitation equipment and the cavitation mechanisms were explored. Results show that the nano-structured WC-12Co coating deposited by High Velocity Fuel spray had lowest porosity and the densest microstructure and fracture toughness was significantly higher than that of micron-structured WC-10Co-4Cr coatings. Although the micron-structured WC-10Co-4Cr cermet coating deposited by HVOF had more coarser particles than the nano-structured, it exhibited the most excellent resistance to cavitation erosion, and the cavitation erosion rate was approximately one third that of the nano-structured WC-12Co cermet coating.

  14. Chronic TiO₂ nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity.

    Science.gov (United States)

    Wallis, Lindsay K; Diamond, Stephen A; Ma, Hongbo; Hoff, Dale J; Al-Abed, Souhail R; Li, Shibin

    2014-11-15

    There is limited information on the chronic effects of nanomaterials to benthic organisms, as well as environmental mitigating factors that might influence this toxicity. The present study aimed to fill these data gaps by examining various growth endpoints (weight gain, instantaneous growth rate, and total protein content) for up to a 21 d sediment exposure of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca. An uncoated standard, P25, and an Al(OH)3 coated nano-TiO2 used in commercial products were added to sediment at 20 mg/L or 100 mg/L Under test conditions, UV exposure alone was shown to be a greater cause of toxicity than even these high levels of nano-TiO2 exposure, indicating that different hazards need to be addressed in toxicity testing scenarios. In addition, this study showed the effectiveness of a surface coating on the decreased photoactivity of the material, as the addition of an Al(OH)3 coating showed a dramatic decrease in reactive oxygen species (ROS) production. However, this reduced photoactivity was found to be partially restored when the coating had been degraded, leading to the need for future toxicity tests which examine the implications of weathering events on particle surface coatings.

  15. CuCr2O4 Spinel Ceramic Pigments Synthesized by Sol-Gel Self-Combustion Method for Solar Absorber Coatings

    Science.gov (United States)

    Ma, Pengjun; Geng, Qingfen; Gao, Xianghu; Yang, Shengrong; Liu, Gang

    2016-07-01

    A series of CuCr2O4 spinel ceramic pigments have been successfully synthesized via a facile and cost-effective sol-gel self-combustion method. The reaction mechanism was systematically studied using the corresponding characterization technologies. The results suggested that CuCr2O4 spinel ceramic pigments could be obtained at annealing temperature of 600 °C for 1 h, and the size, morphology, and crystallinity of CuCr2O4 spinel were greatly influenced by the annealing temperature. The as-burnt powder and CuCr2O4 spinel ceramic pigment were then employed to fabricate thickness sensitive spectrally selective (TSSS) paint coatings by a convenient spray-coating technique. The results revealed that spectral selectivity of TSSS paint coatings based on CuCr2O4 spinel ceramic pigments was much better than that of paint coatings based on the as-burnt powders. Furthermore, the effect of surface features of TSSS paint coatings on its optical property and hydrophobicity was investigated in detailed.

  16. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  17. Chemically grown vertically aligned 1D ZnO nanorods with CdS coating for efficient quantum dot sensitized solar cells (QDSSC): a controlled synthesis route.

    Science.gov (United States)

    Mali, Sawanta S; Kim, Hyungjin; Patil, Pramod S; Hong, Chang Kook

    2013-12-28

    In the present article, vertically aligned ZnO nanorod arrays were synthesized by an aqueous chemical growth (ACG) route on a fluoride doped tin oxide (FTO) coated glass substrate. These nanorods were further sensitized with cadmium sulfide (CdS) quantum dots (QDs) by a successive ionic layer adsorption and reaction (SILAR) technique. The synthesized CdS coated ZnO nanorods were characterized for their structural and morphological properties with X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). Finally, prepared CdS coated 1D ZnO photoelectrodes were tested for their photoelectrochemical performance. Our results show that the sample deposited after 40 SILAR cycles shows 5.61 mA cm(-2) short current density (JSC) with η = 1.61% power conversion efficiency.

  18. P-doped TiO2 nanoparticles film coated on ground glass substrate and the repeated photodegradation of dye under solar light irradiation

    Science.gov (United States)

    Lv, Yingying; Yu, Leshu; Zhang, Xiaolan; Yao, Jinyan; Zou, Ruyi; Dai, Zheng

    2011-04-01

    The convenient reuse of photocatalysts is essential to the practical application in the degradation of organic pollutant. In this study, compact P-doped TiO2 film coated on ground glass substrate was easily achieved by layer-by-layer assembly technique. Thus such an elaborate complex system exhibited very convenient in recycling photocatalyst in the degradation of dye with high catalytic activity. The excellent performance of P-TiO2 film coated on ground glass substrates endows the assembled route potential in purifying waste water.

  19. Combustion Synthesis of Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni Bilayered Cermets

    Institute of Scientific and Technical Information of China (English)

    Weiping SHEN; Wenbin CAO; Changchun GE; E.H.Grigoryan; A.E.Sytschev; A.S.Rogachev

    2003-01-01

    The effects of Cu and Ni (x=0, 10, 20 and 40 wt pct) and compaction pressures (12, 24, 84 and 108 MPa)on combustion wave velocity and wave front shape for Ti-2B-Cu/Ni and 3Ti-2BN-Cu/Ni bilayered cermets were investigated by a video camera. Since the boiling point of Cu is lower, the wave velocities of specimens are slower.Due to the higher specific heat of Ni than that of Cu, the wave velocities of specimens was slowed down a lot with increasing the Ni diluent. The wave velocity differences of the specimens containing Ni are more than that of the bilayered specimens containing Cu. Wave velocities of the specimens containing Ni increased more than that of the specimens containing Cu when higher pressure was employed for green mixture. The more the wave velocity difference of the bilayer, the more curved the specimen.

  20. Microstructure and strength of brazed joints of TiB2 cermet to TiAl-based alloys

    Institute of Scientific and Technical Information of China (English)

    李卓然; 冯吉才; 曹健

    2003-01-01

    In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal. The microstructural analyses indicate that two reaction products, Ti(Cu, Al)2 and Ag based solid solution (Ag(s.s)), are present in the brazing seam, and the interface structure of the brazed joint is TiB2/TiB2+ Ag(s.s) /Ag(s.s)+Ti(Cu, Al)2/Ti(Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases as the brazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.

  1. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Cu cermets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism,namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.

  2. Machinability of Hastelloy C-276 Using Hot-pressed Sintered Ti(C7N3)-based Cermet Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    XU Kaitao; ZOU Bin; HUANG Chuanzhen; YAO Yang; ZHOU Huijun; LIU Zhanqiang

    2015-01-01

    C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent fallure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59mm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.

  3. 磁控溅射制备 Ti-O-N 选择性太阳能吸收涂层%Magnetron Sputtering of Ti-O-N Selective Solar Absorbing Coating

    Institute of Scientific and Technical Information of China (English)

    梁枫; 谢伟; 唐晓山; 邹长伟; 邵乐喜

    2014-01-01

    太阳能集热器是太阳能热水器的核心部件,平板集热器可以作为建筑材料与建筑完美融合,满足城市对太阳能的利用与建筑一体化的要求.本论文用中频磁控溅射技术制备用于平板集热器的 Ti-O-N 选择性吸收涂层.用 XRD、SEM 及红外反射测试研究工艺参数对吸收涂层结晶质量、形貌及反射率的影响.设置镀膜过程中气压分别为0.8 Pa、1.2 Pa 和2.0 Pa 而其他参数不变,制备出不同气压条件下的 Ti-O-N 选择性吸收涂层,通过分析样品的表面形貌及红外反射率来研究镀膜过程中气压对涂层质量的影响.实验表明,气压越低,所镀的薄膜颗粒越致密均匀,薄膜表面越光滑,薄膜的集热效率越高,即涂层的质量越好.%Abstracts:Solar collector is the core component of the solar water heater.China's vacuum tube collec-tor has the advantages of high efficiency and low price,however,has disadvantage of detrimental to the appearance of the building.China's flat-plate collector has shortcomings of backward technology and low efficiency,but it can be used as building material to build the perfect fusion,can meet the requirements of the city on the use of solar energy and building integrated.This paper is to study the production technolo-gy of the flat-plate collector Ti-O-N selective absorption coating.Doing three experiments by Medium Frequency Magnetron sputtering system,with coating process air pressure of 0.8 Pa,1.2 Pa and 2.0 Pa, while the other parameters unchanged,produce three Ti-O-N selective absorbing coating.How the air pressure affects the quality of the coating can be knew by analyzing the samples'surface morphology and in-frared reflectivity.The experiments show that with the decreasing of total gas pressure,the film particles became more compact and surface is more smooth,and therefore the higher the collection efficiency of the film,that is,the better the quality of the

  4. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: Impact of solar UV radiation and material surface coatings on toxicity

    Science.gov (United States)

    The present study examined the chronic toxicity of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca, using an industry standard, P25, and a coated nano-TiO2 used in commercial products. There is limited information on the chronic effects of nano...

  5. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  6. 真空管式太阳能集热器研究最新进展%Latest Development of Vacuum Tube Solar Collectors

    Institute of Scientific and Technical Information of China (English)

    李建昌; 侯雪艳; 王紫瑄; 吴隽稚; 巴德纯

    2012-01-01

    The latest development of the vacuum tube solar collectors was reviewed. The discussions centered on three aspects: the advanced materials, structures, and thermal stabilities of the selective absorption coatings in vacuum. The stainless steel,Ti, Al and Ni are good materials for applications at low and medium temperatures;whereas Mo and W do well at high temperatures. The absorption coatings are mainly divided into two types: the absorber layer/anti-reflection dielectric layer, based on light interference;the metal infrared reflection layer/metal dielectric absorber layer/anti-reflection dielectric layer, named as the cermet absorber coating. Three main factors influencing the thermal stability include cracks,oxidation,and atomic inter-diffusion at high temperatures. Besides,the thermal stability also depends on its thickness and microstructures.The scenarios possibly focus on,I) .growth of multilayer and gradient structured layers by electrochemical route and/or by magnetron sputtering,and hopefully with some nano-materials or nano-structures;ii). Development of the Mo-based cermet coatings with high efficiency at high temperatures; iii) . Realization of the devices with high intelligence,automation,and integration in buildings.%从选择性吸收涂层的材料、结构、热稳定性及真空环境等方面综述了真空管式太阳能集热器的研究进展.不锈钢、Ti、Al、Ni类材料适于制备中低温选择性吸收涂层;而Mo和W类等高熔点材料,适于高温涂层.涂层结构方面,主要有吸收层/介质减反层的光干涉类、金属红外反射层/金属介质吸收层/介质减反层的金属陶瓷类.影响涂层热稳定性的主要因素是高温下涂层的破裂、氧化及元素扩散,涂层厚度与结构也能影响热稳定性.结果表明:①选择性吸收涂层制备,应采用电化学或磁控溅射技术并结合纳米材料对涂层进行多层化、梯度化研究;②应着重发展Mo类金属

  7. Low absorptance porcelain-on-aluminum coating

    Science.gov (United States)

    Leggett, H.

    1979-01-01

    Porcelain thermal-control coating for aluminum sheet and foil has solar absorptance of 0.22. Specially formulated coating absorptance is highly stable, changing only 0.03 after 1,000 hours of exposure to simulated sunlight and can be applied by standard commercial methods.

  8. Theoretical research on the propagation of the crack normal to and dwelling on the interface of the cermet cladding material structure

    Energy Technology Data Exchange (ETDEWEB)

    Junru, Yang; Chuanjuan, Song; Minglan, Wang; Yeukan, Zhang; Jing, Sun [College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao (China)

    2016-01-15

    The interface crack propagation problem in the cermet cladding material structure was studied. A comparative propagation property parameter (CP) suitable to judge the propagation direction of the interface crack in the cermet cladding material structure was proposed. The interface crack propagation criterion was established. Theoretical models of the CPs for the crack normal to and dwelling on the interface deflecting separately into the clad, the interface and the substrate were built, and the relations between the CPs and the load action angle, the clad thickness ratio and the load were investigated with an example. The research results show that, under the research conditions, the interface crack will more easily propagate into the clad layer than into the substrate.

  9. Identification of nickel sulfides on Ni-YSZ cermet exposed to H 2 fuel containing H 2S using Raman spectroscopy

    Science.gov (United States)

    Dong, Jian; Cheng, Zhe; Zha, Shaowu; Liu, Meilin

    Ni-YSZ cermet was exposed to hydrogen containing different concentrations of H 2S to identify the phases formed under various conditions using Raman spectroscopy and X-ray diffraction (XRD). For Ni-YSZ samples exposed to hydrogen containing 100 ppm H 2S at 727 °C for 5 days, thermodynamic calculations indicate that Ni-YSZ would be stable and XRD analysis was unable to detect any changes. However, the vibration modes of Ni 3S 2 were detected using Raman spectroscopy, suggesting that Raman spectroscopy could be a powerful tool for in situ study of sulfur poisoning of SOFC anodes. For Ni-YSZ cermet exposed to hydrogen containing 10% H 2S at 950 °C for 5 days, Ni was converted to nickel sulfide, and vibration modes of NiS were detected using Raman spectroscopy.

  10. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks;

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT......-effective in comparison to other reported metal films applied in polymer solar cells. Such properties result in high fill factors exceeding 50% in both single and tandem structures on large-area devices (1 cm2) and the corresponding efficiencies exceed 2%....

  11. Coating Si{sub 3}N{sub 4} with mullite in the NRW solar furnace; Beschichtung von Si{sub 3}N{sub 4} mit Mullit im NRW Sonnenofen

    Energy Technology Data Exchange (ETDEWEB)

    Mikitisin, P.; Schmeink, H.; Schneider, H.; Nowack, H. [Duisburg Univ. (Germany)

    1997-12-31

    Due to its high mechanical strength in conjunction with high wear and temperature resistance silicium nitride is becoming ever more popular as a heavy duty ceramic material. One serious limitation of this material in high-temperature applications is its insufficient oxidation stability. The purpose of the present study was to alleviate this drawback by mullite coating using solar thermal energy. Mullite was applied as slip and then melted on in NRW solar furnace. The goal was to obtain a firmly adhering antioxidising layer upon cooling. (orig./MM) [Deutsch] Die Hochleistungskeramik Siliziumnitrid gewinnt wegen ihrer hohen mechanischen Festigkeit in Verbindung mit einer hohen Verschleiss- und Temperaturfestigkeit immer mehr an Bedeutung. Eine deutliche Begrenzung ihres Einsatzbereiches im Hinblick auf hohe Temperaturen ist jedoch ihre eingeschraenkte Oxidationsbestaendigkeit. Diese soll durch eine Beschichtung mit Mullit verbessert werden. Im Rahmen der vorliegenden Arbeit soll die Mullitbeschichtung solarthermisch vorgenommen werden. Der Mullit wird dazu in Form eines Schlickers aufgebracht und anschliessend im NRW Sonnenofen aufgeschmolzen. Das Ziel ist erreicht, wenn sich bei der Abkuehlung eine fest anhaftende Oxidationsschutzschicht bildet. (orig./MM)

  12. Slurry Erosion Performance Study of Detonation Gun-Sprayed WC-10Co-4Cr Coatings on CF8M Steel Under Hydro-Accelerated Conditions

    Science.gov (United States)

    Bhandari, Sanjeev; Singh, Harpreet; Kumar, Harmesh; Rastogi, Vikas

    2012-09-01

    In the current investigation, cermet coatings (WC-10Co-4Cr) were deposited on CF8M steel by detonation gun (D-gun) thermal spraying process. Subsequently, the slurry erosion behaviors of the coated and bare steels were investigated using a high-speed erosion test rig. Slurry collected from an actual hydro power plant was used as the abrasive media. Effects of concentration (ppm), average particle sizes and rotational speed on the slurry erosion behaviors of coated and bare steels under different experimental conditions were studied. The analysis of eroded samples was done using SEM and stylus profilometry. Signatures of microcutting, fracture of well-bonded WC grains, and fragmentations were observed on the eroded surface of WC-10Co-4Cr coating, while signatures of formation of plowing, lips, shearing of platelet, formation of crater, and micro-cutting were observed on the eroded surface of CF8M steel.

  13. Physical chemistry of WC-12 %Co coatings deposited by thermal spraying at different standoff distances

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad; Ahmed, Furqan; Anwar, Muhammad Yousaf; Ali, Liaqat; Ajmal, Muhammad [Univ. of Engineering and Technology, Metallurgical and Materials Engineering, Lahore (Pakistan); Khan, Aamer Nusair [Institute of Industrial and Control System, Rawalpindi (Pakistan)

    2015-09-15

    In the present research, WC-12 %Co cermet coatings were deposited on AISI-321 stainless steel substrate using air plasma spraying. During the deposition process, the standoff distance was varied from 80 to 130 mm with 10 mm increments. Other parameters such as current, voltage, time, carrier gas flow rate and powder feed rate etc. were kept constant. The objective was to study the effects of spraying distance on the microstructure of as-sprayed coatings. The microscopic analyses revealed that the band of spraying distance ranging from 90 to 100 mm was the threshold distance for optimum results, provided that all the other spraying parameters were kept constant. In this range of threshold distance, minimum percentages of porosity and defects were observed. Further, the formation of different phases, at six spraying distances, was studied using X-ray diffraction, and the phase analysis was correlated with hardness results.

  14. A Comparative Study on SiC-B4C-Si Cermet Prepared by Pressureless Sintering and Spark Plasma Sintering Methods

    Science.gov (United States)

    Sahani, P.; Karak, S. K.; Mishra, B.; Chakravarty, D.; Chaira, D.

    2016-06-01

    Silicon carbide (SiC)-boron carbide (B4C) based cermets were doped with 5, 10, and 20 wt pct Silicon (Si) and their sinterability and properties were investigated for conventional sintering at 2223 K (1950 °C) and spark plasma sintering (SPS) at 1623 K (1350 °C). An average particle size of ~3 µm was obtained after 10 hours of milling. There is an enhancement of Vickers microhardness in the 10 wt pct Si sample from 18.10 in conventional sintering to 27.80 GPa for SPS. The relative density, microhardness, and indentation fracture toughness of the composition SiC60(B4C)30Si10 fabricated by SPS are 98 pct, 27.80 GPa, and 3.8 MPa m1/2, respectively. The novelty of the present study is to tailor the wettability and ductility of the cermet by addition of Si into the SiC-B4C matrix. Better densification with improved properties is achieved for cermets consolidated by SPS at lower temperatures than conventional sintering.

  15. Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad Reza; Zabihi, Fatemeh; Habibi, Mehran; Eslamian, Morteza

    2016-12-01

    In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

  16. Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad Reza; Zabihi, Fatemeh; Habibi, Mehran; Eslamian, Morteza

    2016-09-01

    In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

  17. Multispectral Coatings

    Science.gov (United States)

    2010-01-01

    nanowires. 2.2 Project Objectives  This project used spin coating technology, new and commercial nanoparticle composites, and ODC’s patented...of this project. The spin coating method to deposit polymers has been widely studied and allows for simple, low cost depositions of thin films...Figure 5). Spin coating controls the layer thickness by balancing the centrifugal forces of a developing thin film to the viscous forces that increase

  18. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  19. 晶体硅太阳电池减反射膜的研究%Research on Antireflection Coating of Crystalline Silicon Solar Cells

    Institute of Scientific and Technical Information of China (English)

    赵萍; 麻晓园; 邹美玲

    2011-01-01

    在太阳电池表面形成一层减反射薄膜是提高太阳电池的光电转换效率比较可行且降低成本的方法.应用PECVD(等离子体增强化学气相沉积)系统,采用SiH4和NH3气源以制备氮化硅薄膜.研究探索了PECVD生长氮化硅薄膜的基本物化性质以及在沉积过程中反应压强、反应温度、硅烷氨气流量比和微波功率对薄膜性质的影响.通过大量实验,分析了氮化硅薄膜的相对最佳沉积参数,并得出制作减反射膜的优化工艺.%Depositing antireflection films on solar cells is the most doable way to improve conversion efficiency of solar cells, which can also debase the cost of solar cells. The PECVD (Plasma Enhanced Chemical Vapor Deposition) system and the reactants of silane and ammonia are applied to fabricating SiN thin film. The effects of reaction temperature, the flow ratio of silane over ammoma and the microwave power on the film character are researched. The effects of post deposition annealing on solar cell materials are also discussed primarily. The optimal relative deposition parameters are investigated and the optimized processes of antireflection fabrication are attained with plenty of experienments.

  20. Tunable, Highly Ordered TiO2 Nanotube Arrays on Indium Tin Oxide Coated PET for Flexible Bio-sensitized Solar Cells

    Science.gov (United States)

    2011-08-01

    free electron conduction pathway versus TiO2 nanoparticles in dye sensitized solar cell ( DSSC ) designs. TNT arrays prepared by electrochemical...Overview The classic DSSC is composed of a layer of nanocrystalline TiO2 particles on a conducting substrate, a platinum counter electrode, an...with the goal of optimizing key components of DSSCs , such as the TiO2 structures, the dye, and the electrolyte used. However, it is beyond the scope of

  1. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  2. Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps

    Science.gov (United States)

    Varis, T.; Suhonen, T.; Ghabchi, A.; Valarezo, A.; Sampath, S.; Liu, X.; Hannula, S.-P.

    2014-08-01

    Our study focuses on understanding the damage tolerance and performance reliability of WC-CoCr coatings. In this paper, the formation of HVOF-sprayed tungsten carbide-based cermet coatings is studied through an integrated strategy: First-order process maps are created by using online-diagnostics to assess particle states in relation to process conditions. Coating properties such as hardness, wear resistance, elastic modulus, residual stress, and fracture toughness are discussed with a goal to establish a linkage between properties and particle characteristics via second-order process maps. A strong influence of particle state on the mechanical properties, wear resistance, and residual stress stage of the coating was observed. Within the used processing window (particle temperature ranged from 1687 to 1831 °C and particle velocity from 577 to 621 m/s), the coating hardness varied from 1021 to 1507 HV and modulus from 257 to 322 GPa. The variation in coating mechanical state is suggested to relate to the microstructural changes arising from carbide dissolution, which affects the properties of the matrix and, on the other hand, cohesive properties of the lamella. The complete tracking of the coating particle state and its linking to mechanical properties and residual stresses enables coating design with desired properties.

  3. Innovative Solar Optical Materials

    Science.gov (United States)

    Lampert, Carl M.

    1984-02-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well-known coatings such as transparent conductors (heat mirrors), selective absorbers, and reflective films are surveyed briefly. Emphasis is placed on the materials' limitations and on use of lesser-known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, cold mirrors, fluorescent concentrator materials, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials, research has only recently been considered, so various design and durability issues need to be addressed.

  4. HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application

    Science.gov (United States)

    Tarasi, F.; Mahdipoor, M. S.; Dolatabadi, A.; Medraj, M.; Moreau, C.

    2016-12-01

    Water droplet erosion (WDE) is a phenomenon caused by impingement of water droplets of several hundred microns to a few millimeters diameter at velocities of hundreds of meters per second on the edges and surfaces of the parts used in such services. The solution to this problem is sought especially for the moving compressor blades in gas turbines and those operating at the low-pressure end of steam turbines. Thermal-sprayed tungsten carbide-based coatings have been the focus of many studies and are industrially accepted for a multitude of wear and erosion resistance applications. In the present work, the microstructure, phase analysis and mechanical properties (micro-hardness and fracture toughness) of WC-Co coatings are studied in relation with their influence on the WDE resistance of such coatings. The coatings are deposited by high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes. The agglomerated tungsten carbide-cobalt powders were in either sintered or non-sintered conditions. The WDE tests were performed using 0.4 mm water droplets at 300 m/s impact velocity. The study shows promising results for this cermet as WDE-resistant coating when the coating can reach its optimum quality using the right thermal spray process and parameters.

  5. Determining the coating speed limitations for organic photovoltaic inks

    DEFF Research Database (Denmark)

    Jakubka, Florian; Heyder, Madeleine; Machui, Florian;

    2013-01-01

    To determine the output capability of present organic photovoltaic (OPV) materials, it is important to know the theoretical maximum coating speeds of the used semiconductor formulations. Here, we present a comprehensive investigation of the coating stability window of several prototype organic...... semiconductor inks relevant for organic solar cells. The coating stability window was first determined experimentally by a sheet to sheet coater at velocities of up to 10 m/min. A numerical simulation model based on the Coating Window Suite 2010 software was established to give insight into the coating......-xylene and tetrahydronaphthalene showed the possibility of coating speeds up to 60 m/min. The simulation further revealed the maximum coating head distances for a given wet film thickness. Finally, we show a solar-cell with slot-die coated PEDOT:PSS and P3HT:PCBM-layer based on the parameters obtained by the simulated data, which...

  6. Carbon Coating Of Copper By Arc-Discharge Pyrolysis

    Science.gov (United States)

    Ebihara, Ben T.; Jopek, Stanley

    1988-01-01

    Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.

  7. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  8. Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether

    Science.gov (United States)

    Liu, Yu; Guo, Youmin; Wang, Wei; Su, Chao; Ran, Ran; Wang, Huanting; Shao, Zongping

    This study investigates dimethyl ether (DME) as a potential fuel for proton-conducting SOFCs with a conventional nickel cermet anode and a BaZr 0.4Ce 0.4Y 0.2O 3-δ (BZCY4) electrolyte. A catalytic test demonstrates that the sintered Ni + BZCY4 anode has an acceptable catalytic activity for the decomposition and steam reforming of DME with CO, CH 4 and CO 2 as the only gaseous carbon-containing products. An O 2-TPO analysis demonstrates the presence of a large amount of coke formation over the anode catalyst when operating on pure DME, which is effectively suppressed by introducing steam into the fuel gas. The selectivity towards CH 4 is also obviously reduced. Peak power densities of 252, 280 and 374 mW cm -2 are achieved for the cells operating on pure DME, a DME + H 2O gas mixture (1:3) and hydrogen at 700 °C, respectively. After the test, the cell operating on pure DME is seriously cracked whereas the cell operating on DME + H 2O maintains its original integrity. A lower power output is obtained for the cell operating on DME + H 2O than on H 2 at low temperature, which is mainly due to the increased electrode polarization resistance. The selection of a better proton-conducting phase in the anode is critical to further increase the cell power output.

  9. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display.

    Science.gov (United States)

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-03-09

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times.

  10. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

    Science.gov (United States)

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-03-01

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times.

  11. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  12. Effects of the metallic target compositions on the absorber properties and the performance of Cu{sub 2}ZnSnSe{sub 4} solar cell devices fabricated on TiN-coated Mo/glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw; Hsu, Jin-Tung; Saragih, Albert Daniel

    2014-08-01

    Graphical abstract: - Highlights: • Cu{sub 2}ZnSnSe{sub 4} films were prepared by metallic-target sputtering and post-selenization. • Target composition determines film characteristics and device performance. • CZTSe of the 2.6% efficient cell had n{sub p} of 7.06 × 10{sup 17} cm{sup −3} and μ of 80 cm{sup 2} V{sup −1} s{sup −1}. • Dense CZTSe films with large CZTSe grains of 2.5–5.0 μm were obtained. • Our devices had the microstructure similar to those of top devices in efficiency. - Abstract: Cu{sub 2}ZnSnSe{sub 4} (CZTSe) films have been fabricated by sputtering of Cu–Zn–Sn metallic targets on the TiN-coated Mo/glass substrates, followed by selenization at 500–600 °C for 1 h under a compensation disk. Three targets of A, B, and C, with different ratios of Cu, Zn, and Sn elements were fabricated by hot pressing the constitutive powder mixture. The effects of the target's compositions on the growth behavior, microstructural characteristics, and electrical properties of CZTSe films have been investigated. Influence of the target's composition outshined the CZTSe films in grain growth, film composition, electrical properties, and solar cell performance. The CZTSe films deposited from target B of [Cu]/[Zn]/[Sn] at 2/1/1 had a [Cu]/([Zn] + [Sn]) ratio of 1.01, large grains of 2.5–5.0 μm, and high mobility of ∼80 cm{sup 2} V{sup −1} s{sup −1} and its fabricated solar cell device had the efficiency of 2.6%, as compared to the TiN-free device with 0.58% efficiency.

  13. Corrosion-protective coatings from electrically conducting polymers

    Science.gov (United States)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  14. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell

    Science.gov (United States)

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO3) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO2) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO3 as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff = 56%) compared to ZnO working electrode (ff = 40%) under the same condition.

  15. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell.

    Science.gov (United States)

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO(3)) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO(2)) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)(3)](PF(6))(2), [Co(pby)(3)](PF(6))(3), LiClO(4), and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO(3) as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff=56%) compared to ZnO working electrode (ff=40%) under the same condition.

  16. Effect of Accelerated Thermal Ageing on the Selective Solar Thermal Harvesting Properties of Multiwall Carbon Nanotube/Nickel Oxide Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Kittessa T. Roro

    2012-01-01

    Full Text Available Varying amounts of dispersed multiwalled carbon nanotubes in NiO have been used to develop composites that absorb the solar energy very well but lose very little through emission. Determination of absorptance, αsol, and emissivity, εther, from such selective solar absorbers shows that the optimum efficiency of 71% can be attained when about 10 mg of MWCNTs are composited with NiO. One such absorber was subjected to thermal ageing tests. The performance criterion (PC limit for passing the test when simulated for 25 years is (−Δα+0.25Δε≤0.05. It was found that the typical absorber had a PC value of −0.01. This value is much better than the passing limit. Raman spectra of the typical absorber before and after the thermal ageing test showed a reduced intensity in the D and G bands of disordered and graphitic carbon, respectively but an enhancement of the NiO bands indicating loss of carbon atoms due to thermal ageing tests. Simple equations are derived determining the proportion of carbon atoms that are lost and the proportion of carbon atoms that remains in the absorber; both of these are in agreement with the original carbon composition before the thermal ageing test. It is reported that the typical absorber will retain 63% of the carbon after 25 years.

  17. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Fyenbo, Jan; Jørgensen, Mikkel

    2010-01-01

    -filter with a cut-off at 390 nm, oxygen and water vapor transmission rates of respectively 0.01 cm3 m−2 bar−1 day−1 and 0.04 g m−2 day−1. The final modules comprised 16 serially connected cells. The technical yield was 89% based on the criterion that the Voc had to be larger than 7.2 V. This set of modules gave...... respectively a voltage, current, fill factor and power conversion efficiency of 8.47 ± 0.41 V, −23.20 ± 4.10 mA, 35.4 ± 2.8% and 1.96 ± 0.34% in the case of modules based on P3HT:[60]PCBM. A total of 1960 modules were prepared for each run and the best power conversion reached was 2.75% for devices based on P3......HT:[70]PCBM. The solar cell modules were used to demonstrate the complete manufacture of a small lamp entirely using techniques of flexible electronics. The solar cell module was used to charge a polymer lithium ion battery through a blocking diode. The entire process was fully automated...

  18. Preliminary testing of NiFe2O4-NiO-Ni cermet as inert anode in Na3AlF6-AlF3 melts

    Institute of Scientific and Technical Information of China (English)

    LAI Yan-qing; TIAN Zhong-liang; LI Jie; YE Shao-long; LIU Ye-xiang

    2006-01-01

    The electrical conductivity of cermet 83(90NiFe2O4-10NiO)-17Ni at different temperatures was measured in air, the operating performance of inert anode was evaluated in a laboratory electrolysis cell with various electrolyte compositions. The results indicate that the electrical resistivity of cermet studied has negative temperature coefficient, which is the characteristic of semi-conducting material. The proper addition of AlF3 in the bath can improve the corrosion resistance of cermet inert anode, but excess adding amount will cause the catastrophic corrosion. Post-examination of anodes shows that metal Ni leaches preferentially on the anode surface. Chemical dissolution, electrolyte penetration as well as electrochemical dissolution serve as major corrosion mechanisms.

  19. Quasi Solid-State Dye-Sensitized Solar Cell Incorporating Highly Conducting Polythiophene-Coated Carbon Nanotube Composites in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2011-01-01

    Full Text Available Conducting polythiophene (PTh composites with the host filler multiwalled carbon nanotube (MWNT have been used, for the first time, in the dye-sensitized solar cells (DSCs. A quasi solid-state DSCs with the hybrid MWNT-PTh composites, an ionic liquid of 1-methyl-3-propyl imidazolium iodide (PMII, was placed between the dye-sensitized porous TiO2 and the Pt counter electrode without adding iodine and higher cell efficiency (4.76% was achieved, as compared to that containing bare PMII (0.29%. The MWNT-PTh nanoparticles are exploited as the extended electron transfer materials and serve simultaneously as catalyst for the electrochemical reduction of I−3.

  20. Extended Functionality of Environmentally-Resistant Mo-Si-B-Based Coatings

    Science.gov (United States)

    Perepezko, J. H.; Sakidja, R.

    2013-02-01

    Multiphase Mo-Si-B alloys with compositions which yield the ternary intermetallic Mo5SiB2 (T2) phase as a key microstructure constituent together with the Mo and Mo3Si phases, offer an attractive balance of high melting temperature, oxidation resistance, and mechanical properties. The investigation of reaction kinetics involving the T2 phase enables the analysis of oxidation in terms of diffusion pathways and the design of effective coatings. From this basis, kinetic biasing is used together with pack cementation to develop Mo-Si-B-based multilayered coatings with an aluminoborosilica surface and in situ diffusion barriers with self-healing characteristics for enhanced oxidation resistance. While a combustion environment contains water vapor that can accelerate an attack of silica-based coatings, the Mo-Si-B-based coatings provide oxidation resistance in water vapor up to at least 1,500°C. An exposure to hot ionized gas species generated in an arc jet confirms the robust coating performance in extreme environments. To extend the application beyond Mo-based systems, a two-stage process has been implemented to provide effective oxidation resistance for refractory metal cermets, SiC and ZrB2 ultra-high-temperature composites.

  1. Synthesis and Deposition of TiC-Fe Coatings by Oxygen-acetylene Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simpler and more convenient method for producing wear-resistant, TiC-reinforced coatings were investigated in this study. It consists of the simultaneous synthesis and deposition of TiC-Fe materials by oxyacetylene flame spraying.Solid reagents bound together to form a single particle are injected into the flame stream where an in-situ reaction occurs. The reaction products are propelled onto a substrate to form a coating. Microstructural analyses reveal that TiC and Fe are the dominant phases in the coatings. The reaction between Ti and C happens step by step along with the reactive spray powder flight, and TiC-Fe materials were mainly synthesized where the spray distance is 125~170 mm. The TiC-Fe coatings are composed of alternate TiC-rich and TiC-poor lamellae with different microhardness of 11.9~13.7 and 3.0~6.0 Gpa, respectively. Submicron and round TiC particles are dispersed within a ductile metal matrix. The peculiar microstructure is thought to be responsible for its good wear resistance, which is better nearly five times than WC-reinforced cermet coatings obtained by traditional oxyacetylene flame spray.

  2. Efficient hybrid mesoscopic solar cells with morphology-controlled CH3NH3PbI3-xClx derived from two-step spin coating method.

    Science.gov (United States)

    Xu, Yuzhuan; Zhu, Lifeng; Shi, Jiangjian; Lv, Songtao; Xu, Xin; Xiao, Junyan; Dong, Juan; Wu, Huijue; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-02-04

    A morphology-controlled CH3NH3PbI3-xClx film is synthesized via two-step solution deposition by spin-coating a mixture solution of CH3NH3Cl and CH3NH3I onto the TiO2/PbI2 film for the first time. It is revealed that the existence of CH3NH3Cl is supposed to result in a preferential growth along the [110] direction of perovskite, which can improve both the crystallinity and surface coverage of perovskite and reduce the pinholes. Furthermore, the formation process of CH3NH3PbI3-xClx perovskite is explored, in which intermediates containing chlorine are suggested to exist. 13.12% of power conversion efficiency has been achieved for the mesoscopic cell, higher than 12.08% of power conversion efficiency of the devices fabricated without CH3NH3Cl via the same process. The improvement mainly lies in the increasing open-circuit photovoltage which is ascribed to the reduction of reverse saturation current density.

  3. Photocatalytic Degradation of Eosin Yellow Using Poly(pyrrole-co-aniline-Coated TiO2/Nanocellulose Composite under Solar Light Irradiation

    Directory of Open Access Journals (Sweden)

    T. S. Anirudhan

    2015-01-01

    Full Text Available The present study describes the feasibility of a novel adsorbent cum photocatalyst, poly(pyrrole-co-aniline-coated TiO2/nanocellulose composite (P(Py-co-An-TiO2/NCC, to remove eosin yellow (EY from aqueous solutions. The removal of EY was investigated by batch adsorption followed by photocatalysis. The effect of various adsorption parameters like adsorbent dose, pH, contact time, initial concentration, and ionic strength has been optimized for treating effluents from the dye industry. Adsorption of EY reached maximum at pH 4.5 and complete removal of dye was achieved using 3.5 g/L of P(Py-co-An-TiO2/NCC. Adsorption equilibrium data were fitted with Langmuir and Fritz-Schlunder isotherm models and the kinetics of adsorption follows a second-order mechanism. The adsorption capacity of P(Py-co-An-TiO2/NCC was found to be 3.39 × 10−5 mol/g and reached equilibrium within 90 min. The photocatalytic degradation of adsorbed dye under sunlight was possible and about 92.3% of dye was degraded within 90 min. The reusability of P(Py-co-An-TiO2/NCC was also investigated. The results indicate that P(Py-co-An-TiO2/NCC is the best material for the wiping out of EY from aqueous solutions.

  4. EXPERIMENTAL STUDY ON SOLAR RADIATION OF COATINGS AND INFLUENCING ON ENERGY-SAVING OF BUILDINGS%涂料外饰面的太阳辐射性能及对建筑节能影响的试验研究

    Institute of Scientific and Technical Information of China (English)

    董海荣; 祁少明; 麻建锁; 张晓云

    2011-01-01

    外饰面材料的太阳辐射性能直接影响围护结构的热工性能,实际应用中掌握建筑外饰面材料的太阳辐射性能至关重要.通过介绍一种测试涂料外饰面太阳辐射吸收系数的间接方法,以及测试数据的分析和总结,说明涂料外饰面的太阳辐射性能对建筑节能的影响,为今后新型涂料的太阳辐射吸收系数的测试以及建筑外饰面材料的选择提供参考和指导.%The solar radiation of surface decoration materials affect the thermal performance of envelope of buildings directly.It is very important to master the solar radiation of surface decoration materials.This paper introduces a indirect method that can test solar radiation absorption coefficient of coatings, and explain influencing on energy-saving of buildings through the analysis and conclusion of the test data, which provides the reference for testing absorption coefficient of solar radiation of new coatings and the selection of external decorative materials in architectural design.

  5. Investigation on hole manufacture in 42CrMo4 steel using 3-flute carbide drills and 6-flute cermet reamers

    DEFF Research Database (Denmark)

    Müller, Pavel; De Chiffre, Leonardo

    2009-01-01

    An investigation on cutting forces and hole quality using carbide 3-flute self-centering drills and 6-flute cermet reamers was performed on 42CrMo4 alloy steel. Different depths of cuts were analyzed with respect to cutting thrust and cutting torque, hole diameter, form and surface integrity. Good...... reproducibility in cutting forces was obtained for all drilled holes with coefficients of variation less than 6% for thrust and 8% for torque respectively. Good reproducibility for all depths of cuts was obtained in reaming, reaching coefficient of variation in the range 7-13% for thrust and 9-23% for torque...

  6. Enhanced stability of Zr-doped Ba(CeTb)O3−δ-Ni cermet membrane for hydrogen separation

    OpenAIRE

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-01-01

    A mixed protonic and electronic conductor material BaCe0.85Tb0.05Zr0.1O3−δ (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe0.95Tb0.05O3−δ membrane due to the Zr doping.

  7. Post-assembly atomic layer deposition of ultrathin metal-oxide coatings enhances the performance of an organic dye-sensitized solar cell by suppressing dye aggregation.

    Science.gov (United States)

    Son, Ho-Jin; Kim, Chul Hoon; Kim, Dong Wook; Jeong, Nak Cheon; Prasittichai, Chaiya; Luo, Langli; Wu, Jinsong; Farha, Omar K; Wasielewski, Michael R; Hupp, Joseph T

    2015-03-11

    Dye aggregation and concomitant reduction of dye excited-state lifetimes and electron-injection yields constitute a significant mechanism for diminution of light-to-electrical energy conversion efficiencies in many dye-sensitized solar cells (DSCs). For TiO2-based DSCs prepared with an archetypal donor-acceptor organic dye, (E)-2-cyano-3-(5'-(5''-(p-(diphenylamino)phenyl)-thiophen-2''-yl)thiophen-2'-yl)acrylic acid (OrgD), we find, in part via ultrafast spectroscopy measurements, that postdye-adsorption atomic layer deposition (ALD) of ultrathin layers of either TiO2 or Al2O3 effectively reverses residual aggregation. Notably, the ALD treatment is significantly more effective than the widely used aggregation-inhibiting coadsorbent, chenodeoxycholic acid. Primarily because of reversal of OrgD aggregation, and resulting improved injection yields, ALD post-treatment engenders a 30+% increase in overall energy conversion efficiency. A secondary contributor to increased currents and efficiencies is an ALD-induced attenuation of the rate of interception of injected electrons, resulting in slightly more efficient charge collection.

  8. High Consistency Perovskite Solar Cell with a Consecutive Compact and Mesoporous TiO2 Film by One-Step Spin-Coating.

    Science.gov (United States)

    Zhang, Xu-Hui; Ye, Jia-Jiu; Zhu, Liang-Zheng; Zheng, Hai-Ying; Liu, Xue-Peng; Pan, Xu; Dai, Song-Yuan

    2016-12-28

    Generally, in classic mesoscopic perovskite solar cells (PSCs), the compact blocking layer and mesoporous scaffold layer prepared by two steps or more will inevitably form an interface between them. It is undoubted that the interface contact is not conducive to electron transport and would increase the recombination in the device, resulting in the inferior performance of PSCs. In this work, we constructed a consecutive compact and mesoporous (CCM) TiO2 film to substitute the compact blocking layer and scaffold layer for mesoscopic PSCs. The bottom of the CCM TiO2 film was dense and the top was mesoporous with large uniform macropores. The two parts of the film were consecutive, which could promote the electron transport rate and decrease the charge recombination effectively. Moreover, due to the existence of macropores in the CCM TiO2 film, it was propitious to the deposition of perovskite and charge separation for the perovskite layer. Over 15.0% of average power conversion efficiency (PCE) with high consistency photovoltaic performances was achieved for the CCM TiO2 film based mesoscopic PSCs, which is higher than that with a classic mesoporous structure.

  9. Photoelectrode thin film of dye-sensitized solar cell fabricated by anodizing method and spin coating and electrochemical impedance properties of DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho, E-mail: f10381@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chen, Chih-Hao [Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei 10419, Taiwan (China); Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Kao, Mu-Jung [Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chien, Shu-Hua [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Chou, Cheng-Yi [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan (China)

    2013-06-15

    The paper studies the photoelectrode thin film of dye-sensitized solar cell (DSSC) fabricated by anodizing method, explores the structure and properties of the fabricated photoelectrode thin film, measures the photoelectric conversion efficiency of DSSC, and finds the electrochemical impedance properties of DSSCs assembled by photoelectrode thin films in different thicknesses. Besides, in order to increase the specific surface area of nanotubes, this paper deposits TiO{sub 2} nanoparticles (TNP) on the surface of titanium oxide nanotube (TNT). As shown in experimental results, the photoelectric conversion efficiency of the DSSC fabricated by the study rises to 6.5% from the original 5.43% without TnB treatment, with an increase of photoelectric conversion efficiency by 19.7%. In addition, when the photoelectrode thin film is fabricated with mixture of TNTs and TNP in an optimal proportion of 2:8 and the photoelectrode thin film thickness is 15.5 μm, the photoelectric conversion efficiency can reach 7.4%, with an increase of 36.7% from the original photoelectric conversion efficiency at 5.43%. Besides, as found in the results of electrochemical impedance analysis, the DSSC with photoelectrode thin film thickness at 15.5 μm has the lowest charge-conduction resistance (R{sub k}) value 9.276 Ω of recombined electron and conduction resistance (R{sub w}) value 3.25 Ω of electrons in TiO{sub 2}.

  10. Anti-reflective and anti-soiling coatings for self-cleaning properties

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor L.; Nair, Vinod; Dave, Bakul Champaklal

    2016-05-31

    The disclosure discloses abrasion resistant, persistently hydrophobic and oleophobic, anti-reflective and anti-soiling coatings for glass. The coatings described herein have wide application, including for example the front cover glass of solar modules. Methods of applying the coatings using various apparatus are disclosed. Methods for using the coatings in solar energy generation plants to achieve greater energy yield and reduced operations costs are disclosed. Coating materials are formed by combinations of hydrolyzed silane-base precursors through sol-gel processes. Several methods of synthesis and formulation of coating materials are disclosed.

  11. Electronic structures, elastic properties, and minimum thermal conductivities of cermet M{sub 3}AlN

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Key Laboratory of Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Chen, ZhiQian, E-mail: chen_zq@swu.edu.cn [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Li, ChunMei; Li, Feng; Nie, ChaoYin [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2014-08-15

    The electronic structures and elastic anisotropies of cubic Ti{sub 3}AlN, Zr{sub 3}AlN, and Hf{sub 3}AlN are investigated by pseudopotential plane-wave method based on density functional theory. At the Fermi level, the electronic structures of these compounds are successive with no energy gap between conduct and valence bands, and exhibit metallicity in ground states. In valence band of each partial density of states, the different orbital electrons indicate interaction of corresponding atoms. In addition, the anisotropy of Hf{sub 3}AlN is found to be significantly different from that of Ti{sub 3}AlN and Zr{sub 3}AlN, which involve the differences in the bonding strength. It is notable that Hf{sub 3}AlN is a desired thermal barrier material with the lowest thermal conductivity at high temperature among the three compounds. - Graphical abstract: 1.Young's moduli of anti-perovskite Ti{sub 3}AlN, Zr{sub 3}AlN, and Hf{sub 3}AlN in full space. 2.Electron density differences on crystal planes (1 0 0), (2 0 0), and (1 1 0) of anti-perovskite Zr{sub 3}AlN. - Highlights: • We calculated three anti-perovskite cermets with first-principles theory. • We illustrated 3D Young modulus and found the anomalous anisotropy. • We explained the anomaly and calculated the minimum thermal conductivities.

  12. Angular solar absorptance of absorbers used in solar thermal collectors.

    Science.gov (United States)

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  13. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  14. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  15. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    Science.gov (United States)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  18. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  19. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... that graphene can still be a relevant candidate for thin coatings....

  20. Comparative study of the fabrication of ultrafine Ti(C,N)-based cermets by spark plasma sintering and conventional vacuum sintering

    Institute of Scientific and Technical Information of China (English)

    LEI Yan; XIONG Weihao; LIANG Zaiguo; FENG Ping; WANG Zhiwu

    2005-01-01

    Spark plasma sintering (SPS) and conventional vacuum sintering (VS) were employed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstructure, and porosity and mechanical properties of the samples fabricated by SPS were compared with those of the samples sintered by VS using optical microscopy, scanning electron microscopy, universal testing machine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainly in the range of 1000-1300℃ during the VS process, and only a 0.2% linear shrinkage ratio appeared below 800℃;during the SPS process, a 60% dimensional change occurred below 800℃ as a result of pressure action. (2) By utilizing the SPS technique, it is difficult for obtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and uncombined carbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones by VS. (3) grain size of the samples sintered by SPS is still below 0.5 μm, but not by VS; because of low sintering temperature, there are no typical core/rim structures formed in the sintered samples by SPS 1; the main microstructures of the sintered samples by SPS2 are a white core/grey shell structure, whereas by VS show a typical black core/grey shell structure.