Sample records for cerium-gadolinium oxide cgo

  1. Characteristics of cerium-gadolinium oxide (CGO) suspensions as a function of dispersant and powder properties

    DEFF Research Database (Denmark)

    Phair, John; Lönnroth, Nadja; Lundberg, Mats;


    A series of concentrated suspensions ( = 0.18–0.34) of cerium-gadolinium oxide (CGO) in terpineol were prepared as a function of dispersant, powder surface area and solids concentration. The stability of the suspensions was assessed by rheological measurements including viscosity and oscillatory...

  2. Rheological analysis of stabilized cerium-gadolinium oxide (CGO) dispersions

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie


    The objective of the present work is to generate general rheological criteria to investigate high solid loading dispersions suitable for the shaping of homogeneous ceramic bodies. Systematic analysis of the rheological properties of moderately low specific surface area (SSA) Ce0.9Gd0.1O3-δ (CGO10...

  3. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan;


    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders...

  4. Poly(vinylpyrrolidone) as dispersing agent for cerium-gadolinium oxide (CGO) suspensions

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Nielsen, Lotte


    The behaviour of selected poly(vinylpyrrolidone) grades to act as dispersant for ethanol-based ceriumgadolinium oxide suspensions was investigated and related to the molecular weight characteristics. The number, weight, and z-average molecular weights Mn, Mw, and Mz were determined by gel...

  5. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jason Dale [Univ. of California, Berkeley, CA (United States)


    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  6. Rheology of stabilized cerium-gadolinium oxide (CGO) colloidal system

    DEFF Research Database (Denmark)

    Marani, Debora; Hjelm, Johan; Wandel, Marie

    performed to study the inorganic loading impact on the suspension rheology. To identify a realistic load limit, the parameter h was proposed. It defines the highest volume fraction to meet the processing requirements. A simple method for its determination was also proposed. The maximum solid volume...

  7. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells (United States)

    Mariño, Mariana; Rieu, Mathilde; Viricelle, Jean-Paul; Garrelie, Florence


    In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce0.9Gd0.1O1.95 (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  8. Colloidal stabilization of cerium-gadolinium oxide (CGO) suspensions via rheology

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Bentzen, Janet Jonna


    A rheological method based on the analysis of the flow index is proposed for the optimization of ceramic suspensions with respect to dispersant-ceramic affinity, dispersant concentration, and ceramic loading. The single-flow index (SFI) feature was identified as the criterion defining the optimiz...

  9. Production of a half cell with a LSM/CGO support for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Kammer Hansen, Kent


    Described herein is the production of a half cell with a strontium-substituted lanthanum manganite/cerium gadolinium oxide support and dense cerium gadolinium oxide electrolyte for electrochemical flue gas purification. The half cells were constructed through tape casting a strontium......-substituted lanthanum manganite/cerium gadolinium oxide support and cerium gadolinium oxide electrolyte. The half cells were produced by laminating the support and electrolyte layers followed by sintering. Perfectly flat half cells were constructed with a porous strontium-substituted lanthanum manganite....../cerium gadolinium oxide support layer and dense cerium gadolinium oxide electrolyte by adjusting sintering shrinkage at the electrolyte layer and altering the sintering aid....

  10. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells (United States)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A.; Aricò, A. S.; Gullo, L. R.; Rosa, D. La; Antonucci, V.

    A La 0.6Sr 0.4Fe 0.8Co 0.2O 3-Ce 0.8Gd 0.2O 1.9 (LSFCO-CGO) composite anode material was investigated for the direct electrochemical oxidation of methane in intermediate temperature solid oxide fuel cells (IT-SOFCs). A maximum power density of 0.17 W cm -2 at 800 °C was obtained with a methane-fed ceria electrolyte-supported SOFC. A progressive increase of performance was recorded during 140 h operation with dry methane. The anode did not show any structure degradation after the electrochemical testing. Furthermore, no formation of carbon deposits was detected by electron microscopy and elemental analysis. Alternatively, this perovskite material showed significant chemical and structural modifications after high temperature treatment in a dry methane stream in a packed-bed reactor. It is derived that the continuous supply of mobile oxygen anions from the electrolyte to the LSFCO anode, promoted by the mixed conductivity of CGO electrolyte at 800 °C, stabilises the perovskite structure near the surface under SOFC operation and open circuit conditions.

  11. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent


    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  12. Co-sintering of CGO/NIO-CGO bilayers for solid oxide fuel cell; Co-sinterizacao de bi-camadas anodo/eletrolito para celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Neto, P.P.B.; Grilo, J.P.F.; Souza, G.L.; Macedo, D.A.; Paskocimas, C.A.; Nascimento, R.M., E-mail: [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)


    Reducing the operating temperature of solid oxide fuel cells (SOFC) for the range between 500 and 700°C is one of the challenges which more has aroused the interest of research in SOFC in recent years. In this context, the bilayer anode/electrolyte composed of a porous support based on Ni-doped ceria (anode) and a ceria doped gadolinia (CGO) electrolyte, presents itself as one of the half-cell configurations of the most interest towards the production of electricity in the operating logic of a SOFC. In this work, CGO films were successfully prepared on NiO-CGO substrates using the resources of the screen-printing technique. The bi-layers were co-sintered between 1350 and 1450 ° C for 4 h and then characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS). The results showed good adhesion at the film/substrate interface and no cracks in the films. (author)

  13. Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurries

    DEFF Research Database (Denmark)

    Marani, Debora; Esposito, Vincenzo; Sudireddy, Bhaskar Reddy;


    Optimized CGO-based slurries are formulated and shaped into thin dense layers via a tape-casting process. The formulation is adjusted with respect to the rheological behaviour. The internal structure and flow properties of slurries are explored with the aim of identifying the required conditions...... to obtain thin dense CGO layers at reduced sintering temperatures (1200 °C). We demonstrate a correlation between the rheological properties of the slurries, the sintering behaviour and the microstructure of the resulting tapes. Remarkably, a dense CGO layer less than 20 μm thick is obtained with a non......-congested slurry, having optimized ceramic loading and liquid-like behaviour....

  14. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, F; Baque, L; Troiani, H; Granada, M; Serquis, A, E-mail: [Instituto Balseiro-Centro Atomico Bariloche and CONICET, San Carlos de Bariloche (Argentina)


    La{sub 1-x}Sr{sub x}Co{sub 1-y}FeyO{sub 3-d}elta oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d}elta (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  15. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  16. Electrochemical oxidation of propene by use of LSM15/CGO10 electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Andersen, Kjeld Bøhm; Kammer Hansen, Kent


    The propene catalytic oxidation was studied over an 11-layers porous electrochemical reactor made by La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 with the objective to simulate the abatement of exhaust gases emitted from Diesel engines. This work shows the possibility to enhance the catalytic activity...... through infiltration of Ce0.9Gd0.1O1.95 using the porous electrochemical reactor as a catalyst support. The infiltration of an oxygen ion conductor as Ce0.9Gd0.1O1.95 showed an increased activity either at open circuit voltage (OCV) or under polarization with respect to the non infiltrated cell. The use...

  17. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC (United States)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.


    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  18. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter


    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...... as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...... of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode....

  19. Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hjelm, Johan; Menon, Mohan


    Electron microscopy characterization across the cathode–electrolyte interface of two different types of intermediate temperature solid oxide fuel cells (IT-SOFC) is performed to understand the origin of the cell performance disparity. One IT-SOFC cell had a sprayed-cosintered Ce0.90Gd0.01O1.95 (CGO......10) barrier layer, the other had a barrier layer deposited by pulsed laser deposition (PLD) CGO10. Scanning electron microscopy, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD) investigations conclude that the major source of the cell performance difference...... is attributed to CGO–YSZ interdiffusion in the sprayed-cosintered barrier layer. From TEM and EBSD work, a dense CGO10 PLD layer is found to be deposited epitaxially on the 8YSZ electrolyte substrate—permitting a small amount of SrZrO3 formation and minimizing CGO–YSZ interdiffusion....

  20. Improved Modeling Approaches for Constrained Sintering of Bi-Layered Porous Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Esposito, Vincenzo;


    Shape instabilities during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been analyzed. An analytical and a numerical model based on the continuum theory of sintering has been implemented to describe the evolution of bow and densificat......Shape instabilities during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been analyzed. An analytical and a numerical model based on the continuum theory of sintering has been implemented to describe the evolution of bow...

  1. Effect of Infiltration Material on a LSM15/CGO10 Electrochemical Reactor in the Electrochemical Oxidation of Propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent


    The effect of infiltrating on a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 11-layer electrochemical reactor with CeO2 and Ce0.8Pr0.2O2−δ was studied in propene oxidation at open-circuit voltage and under polarization as a function of reaction temperature. This work outlined the importance of catalytic...... conductor, like Ce0.8Pr0.2O2−δ , increased the electrode performance at low temperature but decreased the lifetime of the oxygen ion promoters on the catalyst/electrode surface, reducing the faradaic efficiency of the reaction. The infiltration of CeO2 provided high propene conversion at open circuit...

  2. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus;


    An electrochemical study of SOFC cathode degradation, due to poisoning by chromium oxide vapours, was performed applying 3-electrode set-ups. The cathode materials comprised LSM/YSZ and LSCF/CGO composites, whereas the electrolyte material was 8YSZ. The degradation of the cathode performance...... from 300 to 2,970 h. Both LSM/YSZ and LSCF/CGO cathodes were sensitive to chromium poisoning; LSCF/CGO cathodes to a lesser extent than LSM/YSZ. Humid air aggravated the degradation of the cathode performance. Post-mortem electron microscopic investigations revealed several Cr-containing compounds...

  3. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs (United States)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A.; Aricò, A. S.; La Rosa, D.; Gullo, L. R.; Antonucci, V.

    An anodic cermet of NiCu alloy and gadolinia doped ceria has been investigated for CH 4 electro-oxidation in IT-SOFCs. Polarization curves have been recorded in the temperature range from 650 to 800 °C. A maximum power density of 320 mW cm -2 at 800 °C has been obtained in the presence of dry methane in an electrolyte-supported cell. The electrochemical behaviour during 1300 h operation in dry methane and in the presence of redox-cycles has been investigated at 750 °C; variation of the electrochemical properties during these experiments have been interpreted in terms of anode morphology modifications. The methane cracking process at the anode catalyst has been investigated by analysing the oxidative stripping of deposited carbon species.

  4. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A. [Pirelli Labs S.p.A., Viale Sarca 222, I-20126 Milan (Italy); Arico, A.S.; La Rosa, D.; Gullo, L.R.; Antonucci, V. [CNR-ITAE, Via Salita Santa Lucia Sopra Contesse 5, I-98125 Messina (Italy)


    An anodic cermet of NiCu alloy and gadolinia doped ceria has been investigated for CH{sub 4} electro-oxidation in IT-SOFCs. Polarization curves have been recorded in the temperature range from 650 to 800{sup o}C. A maximum power density of 320mWcm{sup -2} at 800{sup o}C has been obtained in the presence of dry methane in an electrolyte-supported cell. The electrochemical behaviour during 1300h operation in dry methane and in the presence of redox-cycles has been investigated at 750{sup o}C; variation of the electrochemical properties during these experiments have been interpreted in terms of anode morphology modifications. The methane cracking process at the anode catalyst has been investigated by analysing the oxidative stripping of deposited carbon species. (author)

  5. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent


    /CGO electrode by selectively trapping NO2 in the form of nitrate over the BaO sites and provided availability for a direct reduction of the stored nitrate. The BaO-Pt-Al2O3 layer enhanced the NOx adsorption and promoted the formation of NO2 due to the NO oxidation ability of the Pt catalyst, but hindered......This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a Ba...

  6. Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Bernuy-Lopez, Carlos; Reddy Sudireddy, Bhaskar;


    Nb-doped SrTiO3 solid oxide fuel cell (SOFC) anodes, infiltrated with CGO/Ni, were investigated by electrochemical impedance spectroscopy (EIS) and high resolution microscopy techniques, upon varying production and testing parameters. The electrochemical analysis involved a combination...

  7. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent


    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  8. Analysis of the sintering stresses and shape distortion produced in co-firing of CGO-LSM/CGO bi-layer porous structures

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings;

    electrochemical flue gas purification devices, multilayer structures with alternating porous layers of CGO and a LSM/CGO mixture are used to achieve specific functional requirements. In a manufacturing process of such ceramic multilayer devices, co-firing is one of the critical steps as many defects...... such as cracks, de-lamination and shape distortion can result as a consequence of sintering mismatch stresses caused by the strain rate difference between layers. This work seeks to understand the underlying mechanisms that occur during the co-firing of porous CGO-LSM/CGO bi-layer laminates, by evaluating...

  9. Effects of co-sintering in self-standing CGO/YSZ and CGO/ ScYSZ dense bi-layers

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Brodersen, Karen;


    -standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi...

  10. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn;


    The sintering of asymmetric CGO bi-layers (thin dense membrane on a porous support; Ce0.9Gd0.1O1.95-delta = CGO) with Co3O4 as sintering additive has been optimized by combination of two in situ techniques. Optical dilatometry revealed that bi-layer shape and microstructure are dramatically chang...

  11. Effect of Co3O4 and Co3O4/CeO2 infiltration on the catalytic and electro-catalytic activity of LSM15/CGO10 porous cells stacks for oxidation of propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent


    The objective of this work was to study the effect of Co3O4 and Co3O4/CeO2 infiltration on the propene oxidation catalytic activity of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 electrochemical porous cell stack (11 layers, 5 single cells in series). The effect of the infiltration of Co3O4 and Co3O4/CeO2...... on the electrochemical properties of the porous cell stack was also investigated by electrochemical impedance spectroscopy (EIS). Co3O4 and Co3O4/CeO2 exhibited high catalytic activity for propene oxidation. The increase of propene oxidation rate with +4 V (0.8 V/cell) polarization reached 10% for the Co3O4 infiltrated...... reactor and 48% of efficiency at 300 °C. The Co3O4/CeO2 co-infiltration decreased the reactor polarization resistance, while Co3O4 infiltration had negligible effect on reactor electrochemical performance. The beneficial effect of CeO2 on the electrode activity was attributed to the increased...

  12. Effect of Ru/CGO versus Ni/CGO Co- Infiltration on the Performance and Stability of STN-Based SOFCs

    DEFF Research Database (Denmark)

    Ramos, Tania; Veltzé, Sune; Sudireddy, Bhaskar Reddy;


    Electrolyte supported cells (ESC), with Sc2O3-stabilized ZrO2 (ScSZ) electrolytes, Gd-doped ceria (CGO) or M/CGO (M = Ni, Ru) infiltrated Sr0.94Ti0.9Nb0.1O3 (STN94) anodes and LSM/YSZ cathodes, were evaluated for their initial performance and long-term stability. Power density for the Ru...

  13. Nanostructured Cu-CGO anodes fabricated using a microwave-assisted glycine-nitrate process (United States)

    Shaikh, Shabana P. S.; Somalu, Mahendra R.; Muchtar, Andanastuti


    This work reports a study of nanostructured copper-doped gadolinium cermet (Cu-CGO) composite anodes prepared via conventional synthesis (CS) and microwave-synthesis (MS) involving the glycine-nitrate process (GNP). A detailed investigation on the mechanical properties, electrical conductivity and electrochemical performance of prepared Cu0.5(Ce0.9Gd0.1)0.5O2-δ anodes is included. The prepared samples were characterized by techniques, such as XRD, EDX, SEM and electrical characterizations. After reduction in 10% H2 and 90% N2, the DC conductivities of the Cu-CGO anodes prepared via CS-GNP and MS-GNP are found to be 5.43×103 and 1.09×104 S cm-1 at 700 °C, respectively. The electrochemical performances of the spin-coated anode symmetrical cells sintered at 700 °C are evaluated at cell operating temperatures of 600, 700 and 800 °C. The lowest area specific resistance (ASR) values for the Cu-CGO/CGO/Cu-CGO symmetrical cells prepared via the MS-GNP route at operating temperatures of 600, 700 and 800 °C are found to be 0.34, 0.71 and 1.10 Ω cm2, respectively. The as-prepared (via MS-GNP) Cu-CGO anode exhibits excellent electrical and electrochemical performance consistent with the uniform nanostructured morphology compared with the anode prepared via CS-GNP.

  14. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei


    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm...

  15. Electrochemical NOx reduction on an LSM/CGO symmetric cell modified by NOx adsorbents

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent


    nitrate reduction. The cell with the BaO/Pt/Al2O3 layer exhibited a preferable performance at low temperatures (350 and 400 °C) and low voltages (1.5 to 2 V) due to the NO oxidation ability of the Pt catalyst, although its performance was relatively poor at elevated temperatures and voltages due......This study investigated the effect of modifying a (La0.85Sr0.15)0.99MnO3 (LSM)/Ce0.9Gd0.1O1.95 (CGO) symmetric cell by NOx adsorbents on the electrochemical reduction of NOx under O2-rich conditions. The modification was based on a full ceramic cell structure without any noble metals. Three cells...... were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a BaO/Pt/Al2O3 layer. The electrochemical reduction of NOx on the three cells was studied by conversion measurement, degradation testing, and microstructure characterization. The modification, either...

  16. Impedance and Stability of M/CGO (M: Ni, Pd, Ru) Co-infiltrated Nb-doped SrTiO3 SOFC Anodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Veltzé, Sune; Reddy Sudireddy, Bhaskar;


    at 850°C, 50% H2O/H2 decreased in the order Ni/CGO≫Pd/CGO > Ru/CGO. After 200h of exposure Ru/CGO not only continued to exhibit low impedance, with final total Rp ≅ 0.02 Ωcm2, but also negligible degradation. For comparison, Ni/CGO degraded close to a factor of 3 to ca. 0.25 Ωcm2 in an equivalent period...

  17. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin


    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer...

  18. The Effect of a CGO Barrier Layer on the Performance of LSM/YSZ SOFC Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Menon, Mohan; Knudsen, Jesper


    by spin coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the performance of the LSM/YSZ composite electrodes. It was shown that the CGO barrier layer affects both the performance of the LSM/YSZ composite electrodes and the series resistance of the cells. This indicates...

  19. A versatile salt evaporation reactor system for SOFC operando studies on anode contamination and degradation with impedance spectroscopy (United States)

    Nurk, Gunnar; Holtappels, Peter; Figi, Renato; Wochele, Jörg; Wellinger, Marco; Braun, Artur; Graule, Thomas


    The dependence of the degradation kinetics in Ni-CGO (cerium-gadolinium oxide) solid oxide fuel cell (SOFC) anodes upon salt evaporation is demonstrated operando with a custom built versatile reactor system. The system is based on evaporation and subsequent condensation of low concentration salt vapor aerosol mixtures representative of salt vapors typically present in biomass gasification processes. Fast changes in the charge transfer and ohmic resistance are observed in the anodes fuelled with a gas mixture containing a high KCl vapor concentration. Rapid condensation of salt vapors into the porous anode and partial delamination of the anode from the electrolyte surface because of salt deposits inside the porous anode is observed. The flexibility to produce vapor-aerosol mixtures with different concentrations and particle size distributions is proved, and suitability of these aerosols for anode testing in long term fuel cell test is evaluated.

  20. Modeling Kinetics of Distortion in Porous Bi-layered Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus;


    Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential shrinkage...... because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...

  1. Autothermal reforming of dimethyl ether with CGO-based precious metal catalysts (United States)

    Choi, Seunghyeon; Bae, Joongmyeon


    In this paper, we investigated the DME ATR reaction with different types of precious metal (Pt, Rh, Ru)-supported CGO catalysts. We also evaluated the reaction characteristics of DME ATR reaction by modifying certain reforming conditions, including the temperature, the amount of air and water, and the flow rate. The Ru-added CGO catalyst showed the best performance in DME ATR. The operating condition that produced the greatest effect on conversion efficiency was temperature; however the amounts of steam and air were also important with regard to conversion efficiency and the reaction heat. In case higher GHSV conditions the methane yields are increased. To maximize conversion efficiency with thermal neutral operating conditions, we suggest an SCR of 1.5, OCR of 0.45, over temperature of 700 °C, and a GHSV of less than 20,000/h. Under harsh conditions, such as low temperature and high GHSV, the methane yield increases. Therefore, the high temperature DME ATR reaction seems to consist of two main steps: the DME decomposition to methane and the methane autothermal reforming reaction.

  2. Modeling sintering of multilayers under influence of gravity

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Olevsky, Eugene; Tadesse Molla, Tesfaye


    , which describes the combined effect of sintering and gravity of thin multilayers, is derived and later compared with experimental results. It allows for consideration of both uniaxial and biaxial stress states. The model is based on the Skorohod-Olevsky viscous sintering framework, the classical...... laminate theory and the elastic-viscoelastic correspondence principle. The modeling approach is then applied to illustrate the effect of gravity during sintering of thin layers of cerium gadolinium oxide (CGO), and it is found to be significant. © 2012 The American Ceramic Society.......There is a tendency for multiple functional ceramic layers used in various applications to have increasing surface areas and decreasing thicknesses. Sintering samples with such geometry is challenging, as differential shrinkage of the layers causes undesired distortions. In this work, a model...

  3. Electrochemical Impedance Spectroscopy Investigation of the Anodic Functionalities and Processes in LSCM-CGO-Ni Systems

    KAUST Repository

    Boulfrad, Samir


    Electrochemical impedance spectroscopy was used to characterize anode compositions made of (La0.75Sr0.25)0.97Cr0.5Mn0.5O3 (LSCM) and gadolinia doped ceria (CGO) with and without additional submicron Ni, or exsoluted Ni nanoparticles. In addition, the effects of the anode gas flow rate and the working temperature were investigated. Higher content of the ionic conductor leads to a decrease of the impedance in the frequency range from 100 Hz to 10 Hz. The effect of the catalyst component was investigated while keeping the electronic conductivity unchanged in the tested materials. Enhanced catalytic activity was demonstrated to considerably decrease the impedance especially in the frequency range between 100 Hz to 1 Hz. The change in the gas flow rate affects mainly the impedance bellow 1 Hz. © The Electrochemical Society.

  4. Synthesis and characterization of 2D layered gadolinium-doped cerium oxide (CGO) nanomaterials

    DEFF Research Database (Denmark)

    Poras Reis de Moraes, Leticia; Marani, Debora; Esposito, Vincenzo;


    for the design andfabrication of nanomaterials in many applications. Indeed, the interlayer gallery provides a flexible space toaccommodate various sized molecules (e.g. pollutants) and tune specific active sites at the atomic space (e.g.catalyst materials). The interest for 2D layered nanomaterials is also...... associated with the possibility ofobtaining via exfoliation ultra-thin nanosheets with lateral dimensions of hundreds of nanometres andthickness of few nanometres. This unique class of nanomaterials has shown many unprecedented propertiesmainly originating from the dimensional anisotropy and nano...

  5. Diffuse Reflectance Infrared Fourier Transform Study of NOx Adsorption on CGO10 Impregnated with K2O or BaO

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Härelind Ingelsten, H.; Kammer Hansen, Kent


    In the present work Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is applied to study the adsorption of NOx at 300-500 °C in different atmospheres on gadolinium doped ceria (CGO), an important material in electrodes investigated for electrochemical NOx removal. Furthermore......, the effect on the NOx adsorption when adding K2O or BaO to the CGO is investigated. The DRIFT study shows mainly the presence of nitrate species at 500 °C, while at lower temperature a diversity of adsorbed NOx species exists on the CGO. Presence of O2 is shown to have a strong effect on the adsorption of NO......, but no effect on the adsorption of NO2. Addition of K2O and BaO dramatically affects the NOx adsorption and the results also show that the adsorbed NOx species are mobile and capable of changing adsorption state in the investigated temperature range....

  6. Oxidation in ceria infiltrated metal supported SOFCs – A TEM investigation

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Wang, Hsiang-Jen; Blennow Tullmar, Peter


    The oxidation resistance of the Fe–Cr alloy backbone structure of metal supported solid oxide fuel cells is significantly improved when infiltrated with gadolinium doped ceria (CGO) particles. The mechanism for the improved oxidation behaviour is elucidated using various analytical transmission...

  7. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.


    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...

  8. Influence of Temperature on Typical Texture Distribution in Primary Recrystallization Matrix of 3% Si CGO Silicon Steel

    Directory of Open Access Journals (Sweden)

    Zhi-chao Li


    Full Text Available OM (optical microscopy and EBSD (electron backscatter diffraction techniques were used to study microstructure and texture distribution during primary recrystallization under different intermediate annealing temperatures in CGO silicon steels. The effect of intermediate annealing temperature on texture distribution in 3% Si electrical steel was analyzed. The results indicate that the microstructure in primary recrystallization matrix of CGO silicon steel is comprised of equiaxed ferrite grains. Mean grain size of primary recrystallization increases with the rising of intermediate annealing temperature. γ-fiber texture is the dominant component in primary recrystallization matrix. With higher intermediate annealing temperature, 111121 texture and 111110 texture increase and 111121 texture is stronger than 111110 texture. Goss texture was observed to be decreased firstly and then increased. The content of high angle grain boundaries in primary recrystallization matrix are affected by intermediate annealing temperature. When intermediate annealing temperature is increased, high angle grain boundaries are increased firstly and then decreased. Misorientation distribution in primary recrystallized matrix is affected by primary recrystallization annealing temperature either. The content of high angle grain boundaries are increased owing to higher primary recrystallization annealing temperature, which can be a benefit to the abnormal growth of Goss grains in secondary recrystallization.

  9. Low temperature oxidation of hydrocarbons using an electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide

    This study investigated the use of a ceramic porous electrochemical reactor for the deep oxidation of propene. Two electrode composites, La0.85Sr0.15MnO3±d/Ce0.9Gd0.1O1.95 (LSM/CGO) and La0.85Sr0.15FeMnO3/Ce0.9Gd0.1O1.95 (LSF/CGO), were produced in a 5 single cells stacked configuration and used ...

  10. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode (United States)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin; Hjelm, Johan; Bonanos, Nikolaos


    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3-δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell, consisting of a Ni-yttria stabilized zirconia (YSZ) anode support, a Ni-scandia-doped yttria-stabilized zirconia (ScYSZ) anode, a ScYSZ electrolyte, and a CGO barrier layer. LSC was introduced into the CGO backbone by multiple infiltrations of an aqueous nitrate solution followed by firing. The cell was tested at 700 °C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current-voltage relationships. No measurable degradation in the cell voltage or increase in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79 W cm-2 at a cell voltage of 0.6 V at 750 °C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference to that of a nominally identical untested counterpart.

  11. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin


    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell...... in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79Wcm-2 at a cell voltage of 0.6 V at 750 deg. C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference...

  12. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;


    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming....... Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming....

  13. Break‐down of Losses in High Performing Metal‐Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, A.; Nielsen, Jimmi; Blennow Tullmar, Peter;


    in the metal support, the electrochemical fuel oxidation at the anode and the oxygen reduction in the mixed ionic electronic conducting cathode. An additional process with a rather high relaxation frequency was attributed to the formation of insulating interlayers at the cathode/electrolyte‐interface. Based...... on these results, selective measures to improve performance and stability, such as (i) PVD‐deposited CGO buffer layer preventing solid state reaction between cathode and the zirconia‐based electrolyte, (ii) LSC‐CGO based in‐situ sintered cathodes and (iii) reduced corrosion of the metal support, were adopted...

  14. Strontium Titanate-based Composite Anodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.;


    Surfactant-assisted infiltration of Gd-doped ceria (CGO) in Nb-doped SrTiO3 (STN) was investigated as a potential fuel electrode for solid oxide fuel cells (SOFC). An electronically conductive backbone structure of STN was first fabricated at high temperatures and then combined with the mixed con...

  15. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy;


    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  16. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg


    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  17. Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Van Nong, Ngo;


    This paper reports on the electrochemical performance of an SOFC cathode for potential use in intermediate-temperature solid oxide fuel cells (IT-SOFCs) using the oxygen non-stoichiometric misfit-layered cobaltite Ca3Co4O9+δ or composites of Ca3Co4O9+δ with Ce0.9Gd0.1O1.95 (CGO/Ca3Co4O9+δ......). Electrochemical impedance spectroscopy revealed that symmetric cells with an electrode of pure Ca3Co4O9+δ exhibit a cathode polarization resistance (Rp) of 12.4 Ω cm2, at 600 °C in air. Strikingly, Rp of the composite CGO/Ca3Co4O9+δ with 50 vol.% CGO was reduced by a factor of 19 (i.e. Rp = 0.64 Ω cm2...

  18. Sintering and grain growth kinetics in La0.85Sr0.15MnO3–Ce0.9Gd0.1O1.95 (LSM–CGO) porous composite

    DEFF Research Database (Denmark)

    Ni, De Wei; Andersen, Kjeld Bøhm; Esposito, Vincenzo


    The sintering kinetics in La0.85Sr0.15MnO3–Ce0.9Gd0.1O1.95 (LSM–CGO) porous composite was studied by applying a two-stage master sintering curve (MSC) approach and comparing with LSM and CGO single-phase materials. In the two-stage MSC, sintering mechanisms occurring at different stages were...... separated with respect of density, giving a typical apparent activation energy values for each sintering stage of the LSM–CGO system. Compared with the single-phase materials, retardant effect of the different phases on mass diffusion leads to much higher apparent activation energy for densification...

  19. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells (United States)

    Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.


    One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.

  20. Lan+1NinO3n+1 (n = 2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties (United States)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Bassat, Jean-Marc; Djurado, Elisabeth


    In this work we present a modified citrate-nitrate route using citric acid as a chelating agent as an effective and facile strategy to obtain nanocrystalline La3Ni2O7+δ (L3N2) and La4Ni3O10-δ (L4N3) powders for the preparation of solid oxide fuel cell cathodes. Both samples crystallize in a Fmmm orthorhombic layered Lan+1NinO3n+1 Ruddlesden-Popper structure, with n = 2 and 3, respectively. The oxygen non-stoichiometry, determined by TGA is equal to 0.05 and 0.06 for L3N2 and L4N3, respectively. The thermal expansion coefficient values of L3N2 and L4N3 are 11.0 × 10-6 K-1 and 11.5 × 10-6 K-1, respectively. This study focused on L3N2, L4N3 and on novel composite electrodes with CGO (Ce0.9Gd0.1O2-δ): L3N2-CGO and L4N3-CGO with a view to taking advantage of their complimentary properties, i.e. high ionic conductivity of CGO and high electronic conductivity of Lan+1NinO3n+1 (n = 2 and 3). A significant improvement of the polarization resistance, from 1.0 to 0.03 Ω cm2 and from 1.5 to 0.52 Ω cm2 at 700 °C, is obtained when 50 wt% CGO is added to L3N2 and L4N3, respectively. In addition, the L3N2-CGO composite shows good long-term stability at 900 °C for 2 weeks in air, confirming its suitability as a SOFC cathode.

  1. A simple MOD method to grow a single buffer layer of Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (CGO) for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Shi Dongqi, E-mail: [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Suo Hongli; Ye Shuai; Zhao Yue; Zhu Yonghua [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Li Qi; Wang Lin; Jihyun Ahn [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Zhou Meiling [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China)


    A single Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (CGO) buffer layer was successfully grown on the home-made textured Ni-5 at.%W (Ni-5W) substrates for YBCO coated conductors by a simple metal-organic deposition (MOD) technique. The precursor solution was prepared using a newly developed process and only contained common metal-organic salts of both Ce and Gd dissolved into a propionic acid solvent. The precursor solution at 0.4 M concentration was spin coated on short samples of Ni-5W substrates and heat-treated at 1100 deg. C in a mixture gas of 5% H{sub 2} in Ar for an hour. X-ray studies indicated that the CGO films had good out-of-plane and in-plane textures with full-width-half-maximum values of 4.18 deg. and 6.19 deg., respectively. Atomic force microscope (AFM) investigations of the CGO films revealed that most of the grain boundary grooves on the Ni-5W surface were found to be well covered by CGO layers, which had a fairly dense and smooth microstructure without cracks and porosity. These results indicate that our MOD technique is very promising for further development of single buffer layer architecture for YBCO coated conductors, due to its low cost and simple process.

  2. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail:


    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  3. Densification of Highly Defective Ceria by High Temperature Controlled Re-Oxidation

    DEFF Research Database (Denmark)

    Ni, De Wei; Glasscock, Julie; Pons, Aénor;


    Highly enhanced densification and grain growth of Ce0.9Gd0.1O1.95-δ (CGO, gadolinium-doped ceria, with 10 mol% Gd) is achieved in low oxygen activity atmospheres. However, the material can suffer mechanical failures during cooling when the re-oxidation process is not controlled due to the large v...... by the chemical history of the material. © 2014 The Electrochemical Society....

  4. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin


    is needed. Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas (mixture of H2 and CO) using excess electricity from renewable energy sources. For SOECs to become commercially interesting, performance, durability......, a YSZ electrolyte, a gadolinia doped ceria (CGO) barrier layer and a LSCF/CGO (LSCF: strontium and cobalt co-doped lanthanum ferrite) composite oxygen electrode. The cells were exposed to long-term galvanostatic electrolysis tests at different current densities from 0 (i.e. under open circuit voltage...... generation SOEC cells produced at DTU are able to be operated at current density up to ~-0.9 A/cm2, in order to achieve a commercialization target of 5 years lifetime (for continuous electrolysis operation of hydrogen production). The cells can be operated at even higher current density, if the hydrogen...

  5. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones......degreeC. The most promising cathode was integrated onto an anode supported cell and it was found that the cell exhibits electrochemical stability with no measureable degradation during 1500 h operation at 700degreeC. LaCoO3 and Co3O4 infiltrated - CGO cathodes were also investigated and revealed...

  6. Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. (United States)

    Zakaria, Mohamed B; Li, Cuiling; Ji, Qingmin; Jiang, Bo; Tominaka, Satoshi; Ide, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Yamauchi, Yusuke


    Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction.

  7. Durable solid oxide electrolysis cells for hydrogen production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Hendriksen, Peter Vang


    Solid oxide cell (SOC) for electrolysis application has attracted great interest in recent years due to its high power-to-gas efficiency and capability of co-electrolysis of H2O and CO2 for syngas (H2 + CO) production. The demonstration of durable solid oxide electrolysis cell operation for fuel...... production is required for promoting commercialization of the SOEC technology. In this work, we report a recent 4400 hours test of a state-of-the-art Ni-YSZ electrode supported SOEC cell. The cell consists of a Ni-YSZ (YSZ: yttria stabilized zirconia) support and active fuel electrode, an YSZ electrolyte...... layer, a CGO (Gd doped ceria) inter-diffusion barrier layer and a LSCF-CGO (LSCF: lanthanum ferrite doped with strontium and cobalt) oxygen electrode layer. The electrolysis test was carried out at 800 °C under 1 A/cm2 with 90 % H2O + 10 % H2 supplied to Ni-YSZ electrode compartment. The results show...

  8. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage (United States)

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo


    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes

  9. NOx Conversion of Porous LSF15-CGO10 Cell Stacks

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah; Kammer Hansen, Kent


    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 as electrode and Ce0.9Gd0.1O1.95 as electrolyte, was studied for the electrochemical reduction of NO with Propene. In order to enhance the effect of polarization, the reactor was impregnated with Ce0.9Gd0.1O1.95, CeO2 or Ce0.8Pr0.2O2-d...... nanoparticles. The HC-SCR on the cells was increased on the impregnated cells, but no electrochemical enhancement of this was observed. The applied overpotential on the impregnated cells changed the oxidation reaction of NO into NO2 which is considered an intermediate in the NO reduction to nitrogen....

  10. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg


    A solid electrolyte will always possess a finite electronic conductivity, in particular electrolytes like doped ceria that easily get reduced and become mixed ionic and electronic conductors. This given rise too high leak currents through the solid oxide cell (SOC). Especially, problems have been...... observed for ceria based electrolytes, but also in case of solid oxide electrolyser cells (SOEC) with yttria stabilized zirconia (YSZ) big electronic leak currents have been observed for very high overvoltages on one or both electrodes. Furthermore, it is important to realize that the potential gradient...... at various temperatures and operation conditions. Furthermore, the situation within cells based on gadolinia doped ceria (CGO) and on YSZ electrolytes are compared. Finally, it is discussed how the Fermi potential and electron conductivity will be affected by the various parameters including operation...

  11. Carboxylated graphene oxide/polyvinyl chloride as solid-phase extraction sorbent combined with ion chromatography for the determination of sulfonamides in cosmetics. (United States)

    Zhong, Zhixiong; Li, Gongke; Luo, Zhibin; Liu, Zhe; Shao, Yijuan; He, Wanwen; Deng, Jianchao; Luo, Xingling


    A carboxylated graphene oxide/polyvinyl chloride (CGO/PVC) material was prepared as a sorbent for the selective extraction of sulphonamides from complex sample. After being dispersed in buffer solution, sample was transferred into the prefabricated solid-phase extraction (SPE) column, which integrated extraction and cleanup into one single-step. A multi-response optimization based on the Box-Behnken design was used to optimize factors affecting extraction efficiency. Compared with the commonly commercial sorbents including MCX, WCX and C18, CGO/PVC hybrid material had higher extraction selectivity and capacity to sulphonamides. The limits of detection and quantification for seven target compounds were in the range of 3.4-7.1 μg/L and 11.4-23.7 μg/L, respectively. The self-assembly SPE cartridge was successfully used to enrich seven analytes in anti-acne cosmetics prior to ion chromatography detection with good recoveries of 87.8-102.0% and relative standard deviations of 1.2-6.4%, implying that this method was suitable for routine analysis of cosmetics.

  12. An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications (United States)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Martin, Vincent; Bassat, Jean-Marc; Djurado, Elisabeth


    An architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2-δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.

  13. Sintering effect on material properties of electrochemical reactors used for removal of nitrogen oxides and soot particles emitted from diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Andersen, K.B.; Keel, L.; Nygaard, F.B.; Bonanos, N.; Menon, M.; Hansen, K.K. [Fuel Cells and Solid State Chemistry Division, Risoe National Laboratory for Sustainable Energy, Technical University of Denmark (DTU), DK-4000 Roskilde (Denmark)


    In the present work, 12-layered electrochemical reactors (comprising five cells) with a novel configuration including supporting layer lanthanum strontium manganate (LSM)-yttria stabilised zirconia (YSZ), electrode layer LSM-gadolinia-doped cerium oxide (CGO) and electrolyte layer CGO were fabricated via the processes of slurry preparation, tape casting and lamination and sintering. The parameters of porosity, pore size, pore size distribution, shrinkage, flow rate of the sintered reactors and the electrical conductivities of the supporting layer and the electrode in the sintered reactors were characterised. The effect of sintering temperature on microstructures and properties of the sintered samples was discussed, and 1,250 C was determined as the appropriate sintering temperature for reactor production based on the performance requirements for applications. Using the present ceramic processing route, porous, flat and crack-free electrochemical reactors were successfully achieved. The produced electrochemical reactors have the potential application in the removal of NO{sub x} and soot particles emitted from the diesel engines. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin;


    Globally the amount of electricity generated from renewable energy sources such as wind or solar energy is increasing. To integrate high amount of fluctuating renewable energy into the existing energy grid, efficient and cost competitive conversion of electricity into other kinds of energy carriers...... is needed. Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas (mixture of H2 and CO) using excess electricity from renewable energy sources. For SOECs to become commercially interesting, performance, durability...... the cells at -1.25 A/cm2 causes severe and accelerated degradation, which is associated with both the Ni/YSZ fuel electrode and the LSCF/CGO oxygen electrode. Assuming an end-of-life cell voltage of 1.5 V, the cell life time is then predicted as a function of electrolysis current density. The current...

  15. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub


    of elements. The parameters of the fabrication process are linked to the measured area specific resistances of the symmetrical cells and the efficiency of the fuel cells. Results show, that application of 800 nm thick barrier effectively hinder negative reactions, while 400 nm thick layer is sufficient......Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  16. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allan J. Jacobson


    the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity

  17. Sintering of bi-layered porous structures: Stress development and shape evolution

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Ramousse, Severine;

    Ce0.9Gd0.1O1.95 (CGO) and (La, Sr)MnO3 (LSM) are electro-ceramics materials with high potential for several electrochemical applications such as solid Oxide Fuel Cell (SOFC), gas separation membranes, and flue gas purification application. In the latter case, these materials are shaped as thick...... porous layers and sintered by co-firing process. In this work, porous CGO and LSM/CGO single layers were prepared by tape casting, and CGO-LSM/CGO bi-layer structures were obtained by lamination. The shrinkage characteristics of individual layers were measured by optical dilatometry and the uniaxial...

  18. Investigation of novel solid oxide fuel cell cathodes based on impregnation of SrTixFe1-xO3-δ into ceria-based backbones

    DEFF Research Database (Denmark)

    Brinch-Larsen, Mathias; Søgaard, Martin; Hjelm, Johan;


    and electrochemical stability as a thin film electrode have been reported for these materials. XRD measurements showed a high degree of secondary phase formation in the infiltrate as well as reaction with the CGO backbone. Microstructural analysis showed that the STF infiltrate had formed a coating on the CGO...

  19. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, Santiago; Davyt, Sebastián [Laboratorio de Cristalografía, Estado Sólido y Materiales, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay); Basbus, Juan F.; Soldati, Analía L. [Grupo Caracterización de Materiales, CAB-CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Amaya, Alejandro [Laboratorio de Fisicoquímica de Superficies, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay); Serquis, Adriana [Grupo Caracterización de Materiales, CAB-CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Faccio, Ricardo [Laboratorio de Cristalografía, Estado Sólido y Materiales, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay); Suescun, Leopoldo, E-mail: [Laboratorio de Cristalografía, Estado Sólido y Materiales, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay)


    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275 °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.

  20. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid. (United States)

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M


    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.

  1. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)


    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  2. Cultuur- en Gebruikswaardenonderzoek (CGO) appel en peer 1e fase

    NARCIS (Netherlands)

    Heijerman, G.; Dieren, van M.C.A.; Kemp, H.


    Verzamelen van nieuwe rassen appel en peer en eerste screening op geschiktheid omstandigheden Nederland. Nieuwe appel- en perenrassen zijn nodig voor aansluiting bij de veranderende marktvraag en voor innovatie in de sector. Een toenemend aandeel van de collectie zijn resistente rassen, inmiddels zi

  3. Instability and growth of nanoscale Ce0.8Gd0.2O1.9/NiO infiltrate in Sr0.94Ti0.9Nb0.1O3-Zr0.84Y0.16O1.92 anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley;


    were subjected to varying atmospheres of H2O/H2 between 650 and 850 C and characterized by electrochemical impedance spectroscopy. Analytical high resolution transmission electron microscopy showed that the CGO/NiO infiltrate was found to coalesce and grow from an indistinguishable CGO/NiO fluorite...

  4. Processing and characterization of porous electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    He, Zeming; Andersen, Kjeld Bøhm; Keel, Li;


    In the present work, porous electrode materials lanthanum strontium manganate (LSM)-gadolinium-doped cerium oxide (CGO) and electrochemical cells LSM-CGO + CGO were fabricated via the processes of slurry preparation, tape casting and lamination, and sintering. Graphite, wheat starch, and polyamide...

  5. Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h (United States)

    Morales, M.; Miguel-Pérez, V.; Tarancón, A.; Slodczyk, A.; Torrell, M.; Ballesteros, B.; Ouweltjes, J. P.; Bassat, J. M.; Montinaro, D.; Morata, A.


    The state-of-the-art materials for SOFCs are yttria-stabilized zirconia as electrolyte and lanthanum strontium cobalt ferrite as cathode. However, the formation of insulating phases between them requires the use of diffusion barriers, typically made of gadolinia doped ceria. The study of the stability of this layer during the fabrication and in operando is currently one of the major goals of the SOFC industry. In this work, the cation inter-diffusion at the cathode/barrier layer/electrolyte region is analysed for an anode-supported cell industrially fabricated by conventional techniques, assembled in a short-stack and tested under real operation conditions for 3000 h. A comprehensive study of this cell, and an equivalent non-operated one, is performed in order to understand the inter-diffusion mechanisms with possible effects on the final performance. The analyses evidence that the cation diffusion is occurring during the fabrication process. Despite the significant diffusion of Ce,Gd, Zr, Y and Sr cations, the formation of typically reported CGO-YSZ solid solution is not observed while the presence of isolated grains of SrZrO3 is proved. All in all, this study presents new insights into the stability of the typically employed diffusion barriers for solid oxide cells that will guide future strategies to improve their performance and durability.

  6. Magnetron-sputtered La0.6Sr0.4Co0.2Fe0.8O3 nanocomposite interlayer for solid oxide fuel cells (United States)

    Solovyev, A. A.; Ionov, I. V.; Shipilova, A. V.; Kovalchuk, A. N.; Syrtanov, M. S.


    A thin layer of a La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) is deposited between the electrolyte and the La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode layer of a solid oxide fuel cell (SOFC) by pulsed magnetron sputtering using an oxide target of LSCF. The films were completely dense and well adherent to the substrate. The effects of annealing in temperature range from 200 to 1000 °C on the crystalline structure of the LSCF films have been studied. The films of nominal thickness, 250-500 nm, are crystalline when annealed at temperatures above 600 °C. The crystalline structure, surface topology, and morphology of the films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. To study the electrochemical characteristics of the deposited-film, solid oxide fuel cells using 325-nm LSCF films as interlayer between the electrolyte and the cathode have been fabricated. The LSCF interlayer improves the overall performance of the SOFC by increasing the interfacial area between the electrolyte and cathode. The electrolyte-supported cells with the interlayer have 30% greater, overall power output compared to that achieved with the cells without interlayer. The LSCF interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte. Our results demonstrate that pulsed magnetron sputtering provides a low-temperature synthesis route for realizing ultrathin nanocrystalline LSCF film layers for intermediate- or low-temperature solid oxide fuel cells.

  7. Magnesium Oxide (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some ... to relieve heartburn, sour stomach, or acid indigestion. Magnesium oxide also may be used as a laxative ...

  8. Model for solid oxide fuel cell cathodes prepared by infiltration

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang


    A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC......, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed...... parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration....

  9. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.


    RNA modification has attracted increasing interest as it is realized that epitranscriptomics is important in disease development. In type 2 diabetes we have suggested that high urinary excretion of 8-oxo-2'-Guanosine (8oxoGuo), as a measure of global RNA oxidation, is associated with poor survival.......9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  10. [Nitric oxide]. (United States)

    Rovira, I


    Nitric oxide was identified as the relaxing factor derived from the endothelium in 1987. Nitric oxide synthesis allows the vascular system to maintain a state of vasodilation, thereby regulating arterial pressure. Nitric oxide is also found in platelets, where it inhibits adhesion and aggregation; in the immune system, where it is responsible for the cytotoxic action of macrophages; and in the nervous system, where it acts as neurotransmitter. A deficit in endogenous synthesis of nitric oxide contributes to such conditions as essential arterial hypertension, pulmonary hypertension and heart disease. An excess of nitrous oxide induced by endotoxins and cytokinins, meanwhile, is believed to be responsible for hypotension in septic shock and for hyperdynamic circulatory state in cirrhosis of the liver. Nitric oxide has also been implicated in the rejection of transplanted organs and in cell damage after reperfusion. Inhaled nitrous oxide gas reduces pulmonary hypertension without triggering systemic hypotension in both experimental and clinical conditions. It also produces selective vasodilation when used to ventilate specific pulmonary areas, thereby improving the ventilation/perfusion ratio and, hence, oxygenation. Nitric oxide inhalation is effective in pulmonary hypertension-coincident with chronic obstructive lung disease, in persistent neonatal pulmonary hypertension and in pulmonary hypertension with congenital or acquired heart disease. Likewise, it reduces intrapulmonary shunt in acute respiratory failure and improves gas exchange. Under experimental conditions nitric oxide acts as a bronchodilator, although it seems to be less effective for this purpose in clinical use.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. The interaction of biomass gasification syngas components with tar in a solid oxide fuel cell and operational conditions to mitigate carbon deposition on nickel-gadolinium doped ceria anodes (United States)

    Mermelstein, J.; Millan, M.; Brandon, N. P.

    The combination of biomass gasification with solid oxide fuel cells (SOFCs) is gaining increasing interest as an efficient and environmentally benign method of producing electricity and heat. However, tars in the gas stream arising from the gasification of biomass material can deposit carbon on the SOFC anode, having detrimental effects to the life cycle and operational characteristics of the fuel cell. This work examines the impact of biomass gasification syngas components combined with benzene as a model tar, on carbon formation on Ni/CGO (gadolinium-doped ceria) SOFC anodes. Thermodynamic calculations suggest that SOFCs operating at temperatures > 750 °C are not susceptible to carbon deposition from a typical biomass gasification syngas containing 15 g m -3 benzene. However, intermediate temperature SOFCs operating at temperatures tar levels of 2-15 g m -3 benzene at 765 °C for 3 h at a current density of 300 mA cm -2, with negligible impact on the electrochemical performance of the anode. Furthermore, no carbon could be detected on the anode at this current density when benzene levels were <5 g m -3.

  12. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell (United States)

    Jeong, Jihoon; Azad, Abul K.; Schlegl, Harald; Kim, Byungjun; Baek, Seung-Wook; Kim, Keunsoo; Kang, Hyunil; Kim, Jung Hyun


    The Ti and Mn replaced complex perovskites, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln0.5Sr0.5Ti0.5Mn0.5O3±d complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln0.5Sr0.5Ti0.5Mn0.5O3±d oxide systems synthesized as single phases did not react with 8 mol% yttria stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La0.5Sr0.5Ti0.5Mn0.5O3±d (LSTM), Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions.

  13. Functionally graded doped lanthanum cobalt ferrite and ceria-based composite interlayers for advancing the performance stability in solid oxide fuel cell (United States)

    Ghosh, Koyel Banerjee; Mukhopadhyay, Jayanta; Basu, Rajendra N.


    Functionally graded composite interlayer based on 50% of La0.54Sr0.4Co0.2Fe0.8O3-δ and 50% of La0.54Sr0.4Fe0.2Co0.8O3-δ (CF-1) and cobalt and gadolinium doped ceria (CoCGO) is synthesized varying the mass ratio as CF-1:CoCGO = 80:20(L80-C20), 50:50(L50-C50) and 20:80(L20-C80). Detail study using impedance spectroscopy of symmetrical cell fabricated with CoCGO as electrolyte reveals the lowest electrode polarization 0.04 Ω cm2 at 800 °C for L80-C20 composite. Electrode and ohmic polarization is also evaluated configuring the symmetric cell as CF-1/L80-C20||CoCGO||L80-C20/CF-1. Symmetric cell with varying composition of the composite interlayer (L80-C20/L50-C50/L20-C80||CoCGO||L20-C80/L50-C50/L80-C20) shows considerably low electrode polarization of 0.067 Ω cm2 at 800 °C with activation energy 1.19 eV. Electrochemical performances evaluated using single cell configuration Ni-YSZ||YSZ||CoCGO/L20-C80/L50-C50/L80-C20/CF-1 shows power density as high as 2.03 W cm-2 at 800 °C at 0.7 V. Addition of composite interlayers increases the stability significantly and the voltage degradation is found negligible (0.9%) for first 300 h at a constant load of 0.5 A cm-2 which is further increased to 2.9% for next 300 h. The cell stability is clinically correlated with layer wise elemental 'Sr' mapping in the applied quad interlayers.

  14. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H


    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  15. Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Amonette, James E.


    Abstract: Fe oxides are common clay-sized oxide, oxyhydroxide and hydroxide soil minerals. They are compounds of Fe, O, and H that have structures based on close-packed arrays of O. The octahedral and tetrahedral cavities within these arrays are filled with either Fe3+ or Fe2+ to form Fe(O/OH)6, FeO6, or FeO4 structural units. All of the naturally occurring Fe oxide minerals usually undergo some degree of isomorphous substitution of other metal ions for Fe in their structures. Relatively simple techniques may be used to identify Fe oxides in the field based on their typical colors and magnetic properties. In the laboratory, a variety of instrumental techniques can be used to confirm phase identity and to quantify amount. Of these, X-ray diffraction, infrared spectroscopy, electron microscopy, thermal analysis, and Mössbauer spectroscopy are the most commonly used techniques. As oxides, the functional groups on their surfaces may have positive, negative, or no charge depending on pH and on the concentration and nature of other ions in the contact solution. A net positive surface charge usually is observed in soils because Fe oxides have a point-of-zero-charge in the neutral or slightly basic pHs. The functional groups on the surface form complexes with cations and anions from the aqueous phase. Their sorption and electron-buffering properties significantly affect the geochemical cycles of almost all elements having agronomic or environmental significance.

  16. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation

    DEFF Research Database (Denmark)

    Kiebach, Ragnar; Zhang, Weiwei; Zhang, Wei;


    -SIMS were used to investigate inter-diffusion across the barrier layer - electrolyte interface and the barrier layer - cathode interface. In addition, TOF-SIMS data were employed to investigate impurity distribution before and after testing. HR-TEM-EDS was used to investigate possible phase segregation......Degradation phenomena of La0.58Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes were investigated via post-mortem analyses of an experimental solid oxide fuel cell (SOFC) stack tested at 700 °C for 2000 h using advanced electron microscopy (SEM-EDS, HR-TEM-EDS) and time-of-flight secondary ion...... in the LSCF and to look for reaction between the phases. The results show that phase separation and inter-diffusion across the cathode-barrier layer interface and the barrier layer-electrolyte interface happened mainly during sintering and cathode firing, and to a very little degree during the test period....

  17. Oxidation catalyst (United States)

    Ceyer, Sylvia T.; Lahr, David L.


    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  18. Structural, thermal and electrical conductivity characteristics of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jihoon [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-Ro 14-Gil, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Azad, Abul K. [Faculty of Integrated Technologies, University Brunei Darussalam, Jalan Tunku Link, Gadong, BE 1410 (Brunei Darussalam); Schlegl, Harald [School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST (United Kingdom); Kim, Byungjun [Department of Applied Materials Science and Engineering, Hanbat National University, 125, Dongseo-Daero, Yuseong-Gu, Daejeon 305-719 (Korea, Republic of); Baek, Seung-Wook [Center for Energy Materials Metrology, Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kim, Keunsoo [Department of Engine Research, Korea Institute of Machinery and Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Hyunil [Department of Electrical Engineering, Hanbat National University, 125, Dongseo-Daero, Yuseong-Gu, Daejeon 305-719 (Korea, Republic of); Kim, Jung Hyun, E-mail: [Department of Applied Materials Science and Engineering, Hanbat National University, 125, Dongseo-Daero, Yuseong-Gu, Daejeon 305-719 (Korea, Republic of)


    The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttria stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti

  19. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka


    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  20. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter;


    present the results of performance and stability improvements for a metal supported cell developed within the European project METSOFC and the Danish National Advanced Technology Foundation. The cells consist of a porous metal backbone, a metal / zirconia cermet anode and a 10ScYSZ electrolyte, cofired...... in hydrogen. The electrochemically active parts were applied by infiltrating CGO-Ni precursor solution into the porous metal and anode backbone and screenprinting (La,Sr)(Co,Fe)O3-based cathodes. To prevent a solid state reaction between cathode and zirconia electrolyte, CGO buffer layers were applied...... in between cathode and electrolyte. The detailed electrochemical characterization by means of impedance spectroscopy and a subsequent data analysis by the distribution of relaxation times enabled us to separate the different loss contributions in the cell. Based on an appropriate equivalent circuit model...

  1. Nanostructured gadolinium-doped ceria microsphere synthesis from ion exchange resin: Multi-scale in-situ studies of solid solution formation

    Energy Technology Data Exchange (ETDEWEB)

    Caisso, Marie [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Institut Européen des Membranes, UMR 5635 CNRS-ENSCM-UM2, CC047, Université Montpellier 2, F-34095 Montpellier Cedex 5 (France); Lebreton, Florent; Horlait, Denis [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Picart, Sébastien [CEA, DEN, DRCP/SERA/LCAR, F-30207 Bagnols-sur-Cèze Cedex (France); Martin, Philippe M.; Bès, René [CEA, DEN, DEC/SESC/LLCC, F-13108 Saint-Paul-Lez-Durance Cedex (France); Renard, Catherine; Roussel, Pascal [Unité de Catalyse et Chimie du Solide, UMR 8012 CNRS, Ecole Nationale Supérieure de Chimie de Lille BP 90108, 59652 Villeneuve d’Ascq Cedex (France); Neuville, Daniel R. [Institut de Physique du Globe de Paris-CNRS, Géochimie and Cosmochimie, 1 rue Jussieu, 75005 Paris (France); Dardenne, Kathy; Rothe, Jörg [Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal (KIT-INE), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Delahaye, Thibaud, E-mail: [CEA, DEN, DTEC/SDTC/LEMA, F-30207 Bagnols-sur-Cèze Cedex (France); Ayral, André [Institut Européen des Membranes, UMR 5635 CNRS-ENSCM-UM2, CC047, Université Montpellier 2, F-34095 Montpellier Cedex 5 (France)


    In the current nano-sized material revolution, the main limitations to a large-scale deployment of nanomaterials involve health concerns related to nano-dissemination via air. Developing new chemical routes benefiting from nano-size advantages while avoiding their hazards could overcome these limitations. Addressing this need, a chemical route leading to soft nano-particle agglomerates, i.e., macroscopic precursors presenting the ability to be decomposed into nano-sized materials, was developed and applied to Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ}. Using cerium/gadolinium-loaded ion exchange resin, the Ce{sub 0.8}Gd{sub 0.2}O{sub 2−δ} solid solution formation as a function of temperature was studied in-situ through X-ray diffraction, X-ray absorption spectroscopy and Raman spectroscopy. Temperatures corresponding to the organic skeleton decomposition and to the mixed oxide crystallization were identified. An optimal heat treatment, leading to nanostructured soft agglomerates, was established. Microsphere processing capabilities were evaluated and particle size distribution measurements were recorded. A very low fracture strength was calculated, and a nanometric particle size distribution (170 nm) was determined. - Graphical abstract: The elaboration of micro-spherical precursors leading to the formation of nano-oxide soft agglomerates was studied and approved through the use of ion exchange resin loaded with cerium and gadolinium. The formation of the solid solution was followed through in-situ measurements such as XAS, XRD, Raman, TGA and DSC. Key temperatures were identified for the formation of the mixed-oxide. Following this study, the microstructure and particle size of oxide microspheres formed highlight the formation of soft nano-arrangments. - Highlights: • Soft microspherical agglomerates able to be decomposed into nano-sized materials. • In situ study of cerium/gadolinium-loaded ion exchange resin conversion in oxide. • In situ multi-scale study

  2. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine (United States)

    Briault, Pauline; Rieu, Mathilde; Laucournet, Richard; Morel, Bertrand; Viricelle, Jean-Paul


    This project deals with the development and the electrochemical characterization of anode supported single chamber SOFC in a simulated environment of thermal engine exhaust gas. In the present work, a gas mixture representative of exhaust conditions is selected. It is composed of hydrocarbons (HC: propane and propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water. Only oxygen content is varied leading to different gas mixtures characterized by three ratios R = HC/O2. Concerning the cell components, a cermet made of nickel and an electrolyte material, Ce0.9Gd0.1O1.95 (CGO) is used as anode and two cathode materials, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Pr2NiO4+δ (PNO), are evaluated. The prepared cells are investigated in the various gas mixtures for temperatures ranging from 450 °C to 600 °C. Ni-CGO/CGO/LSCF-CGO cell has delivered a maximum power density of 15 mW cm-2 at 500 °C with R = HC/O2 = 0.21, while lower power densities are obtained for the other ratios, R = 0.44 and R = 0.67. Afterwards, LSCF and PNO cathode materials are compared and LSCF is found to deliver the highest power densities. Finally, by improving the electrolyte microstructure, some cells presenting a maximum power density of 25 mW cm-2 at 550 °C are produced. Moreover, up to 17% of initial HC are eliminated in the gas mixture.

  3. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley


    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  4. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming;


    ) in a one-atmosphere set-up. For the oxygen electrode, nano-structured La0.75Sr0.25MnO3 (LSM25) is impregnated into a LSM25/yttria stabilised zirconia (YSZ) composite, whereas for the steam electrode, nano-structured Ni and Ce0.8Gd0.2O2−δ (CGO) is impregnated into a Sr0.94Ti0.9Nb0.10O3−δ (STN) backbone...

  5. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas;


    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  6. Enhanced reducibility and electronic conductivity of Nb or W doped Ce0.9Gd0.1O1.95 - δ

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Ricote, Sandrine; Foghmoes, Søren Preben Vagn;


    are decreased relative to that of CGO10. Charge compensation of the donor dopants takes place primarily by annihilation of oxide ion vacancies, and a sharp decrease in ionic mobility is observed upon Nb or W doping of CGO10. On the other hand, the n-type electronic conductivity, associated with the reduction...... of Ce4+, increases upon doping with Nb or W, due to enhanced reducibility of cerium. This is beneficial for applications where electronic conductivity is also required, like oxygen permeation membranes. Modeling shows that 4 at.% Nb or W doped CGO10 will deliver higher oxygen fluxes than CGO10, due...... to the enhanced electronic conductivity and despite the reduced ionic conductivity....

  7. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan


    A multiple spin-coating deposition procedure of Ce0.9Gd0.1O1.95 (CGO) for application in solid oxide fuel cells (SOFCs) was developed. The thin and dense CGO layer can be employed as a barrier layer between yttria stabilised zirconia (YSZ) electrolyte and a (La, Sr)(Co, Fe)O3 based cathode....... The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained....... The successive steps of dense layer production was investigated by scanning electron microscopy. X-ray diffraction was employed to monitor the crystal structure of the CGO layer sintered at different temperatures. The described spin coated barrier layer was evaluated using an anode supported cell...

  8. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings;


    Camber evolution and stress development during co-firing of asymmetric bilayer laminates, consisting of porous Ce0.9Gd0.1O1.95 gadolinium-doped cerium oxide (CGO) and La0.85Sr0.15MnO3 lanthanum strontium manganate (LSM)-CGO were investigated. Individual layer shrinkage was measured by optical...... dilatometer, and the uniaxial viscosities were determined as a function of layer density using a vertical sintering approach. The camber evolution in the bilayer laminates was recorded in situ during co-firing and it was found to correspond well with the one predicted by the theoretical model. The estimated...... sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  9. PREFACE: Semiconducting oxides Semiconducting oxides (United States)

    Catlow, Richard; Walsh, Aron


    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  10. Electrochemical characterization of Pr{sub 2}CuO{sub 4}–Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} composite cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kolchina, L.M. [Department of Chemistry, Moscow State University, Moscow 119992 (Russian Federation); Lyskov, N.V. [Institute of Problems of Chemical Physics RAS, Acad. Semenov Av. 1, Chernogolovka 142432 (Russian Federation); Petukhov, D.I. [Department of Chemistry, Moscow State University, Moscow 119992 (Russian Federation); Mazo, G.N., E-mail: [Department of Chemistry, Moscow State University, Moscow 119992 (Russian Federation)


    Highlights: • PCO–GDC composites are studied as a cathode for SOFCs. • The rate-determined step of the overall electrode process vs. temperature was defined. • PCO–GDC33 composite gave the lowest area surface resistance of 0.41 Ω cm{sup 2} at 700 °C. • PCO–GDC33 is preferred to use as a cathode material for IT-SOFCs. - Abstract: Pr{sub 2}CuO{sub 4}–Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (PCO–GDC) composites screen printed on Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (GDC) electrolyte were considered as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). Phase composition, microstructure and electrochemical properties were investigated by X-ray powder diffraction (XRD), scanning electron microscopy and AC impedance spectroscopy, respectively. The oxygen reduction on porous PCO–GDC electrode applied on CGO electrolyte was studied in a symmetrical cell configuration by AC impedance spectroscopy at OCV conditions at 670–730 °C and p{sub O{sub 2}}=10{sup -2}-0.21atm. The charge transfer process and the dissociation of adsorbed molecular oxygen were found to be rate-determining steps of the oxygen reduction reaction. Results reveal that both GDC addition and electrode morphology have strong influence on area specific resistance (ASR) of the electrode/electrolyte interface. The lowest ASR value of 0.41 Ω cm{sup 2} was achieved for the composition containing 33 wt.% GDC at 700 °S in air. The data obtained allow to consider the PCO–GDC33 composite as a promising cathode material for IT-SOFCs.

  11. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie


    performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  12. Thermally exfoliated graphite oxide (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)


    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  13. Photo-oxidation catalysts (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis


    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  14. Oxidative stress and myocarditis. (United States)

    Tada, Yuko; Suzuki, Jun-Ichi


    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  15. Zinc oxide overdose (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  16. Bridged graphite oxide materials (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)


    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  17. Nitrous Oxide Flux (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  18. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla


    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  19. Electrolytic oxidation of anthracite (United States)

    Senftle, F.E.; Patton, K.M.; Heard, I.


    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  20. Electrochemical characterization of infiltrated Bi2V0.9Cu0.1O5.35 cathodes for use in low temperature solid oxide fuel cells

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Bonanos, Nikolaos


    nitrate solutions followed by firing. The polarization resistance at 500 °C in air, measured using electrochemical impedance spectroscopy on symmetrical cells of BICUVOX backbones infiltrated with LSC, was approximately 100 times higher than the one obtained for a CGO backbone subjected to the same LSC......The electrochemical performance of porous Bi2V0.9Cu0.1O5.35 (BICUVOX) and BICUVOX-Ce0.9Gd0.1O1.95 (CGO) composite backbones infiltrated with La0.6Sr0.4Co1.05O3-δ (LSC) has been evaluated. LSC was introduced into the screen printed and sintered porous backbones by multiple infiltrations of aqueous...

  1. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas


    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  2. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment

    Directory of Open Access Journals (Sweden)

    Takehito Hiraki, Osamu Takeda, Kenichi Nakajima, Kazuyo Matsubae, Shinichiro Nakamura and Tetsuya Nagasaka


    Full Text Available In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.

  3. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    for operation in the different fuels, operation temperature and operation modes it is important to understand the kinetics of the SOC electrodes. This thesis was aimed at understanding the kinetics of the SOC under different operation conditions of temperature, polarization, and fuel mixture. For investigations...... conditions of temperature and current density nano particles were also found on Ni particles, identified as ZrO2 and attributed the major cause of fuel electrode ageing. In cyclic operation these enhancing conditions were not maintained long-enough for severe nickel precipitation. It is known...... compared well with those reported in literature and their evolution with temperature was similar to that reported in literature based on porous Ni/YSZ fuel electrodes. From the two investigated oxygen electrodes, the higher performing (La0.6Sr0.4)0.99CoO3/Ce0.9Gd0.1O1.95 (LSC/CGO) oxygen electrode showed...

  4. All-Oxide Photovoltaics. (United States)

    Rühle, Sven; Anderson, Assaf Y; Barad, Hannah-Noa; Kupfer, Benjamin; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Zaban, Arie


    Recently, a new field in photovoltaics (PV) has emerged, focusing on solar cells that are entirely based on metal oxide semiconductors. The all-oxide PV approach is very attractive due to the chemical stability, nontoxicity, and abundance of many metal oxides that potentially allow manufacturing under ambient conditions. Already today, metal oxides (MOs) are widely used as components in PV cells such as transparent conducting front electrodes or electron-transport layers, while only very few MOs have been used as light absorbers. In this Perspective, we review recent developments of all-oxide PV systems, which until today were mostly based on Cu2O as an absorber. Furthermore, ferroelectric BiFeO3-based PV systems are discussed, which have recently attracted considerable attention. The performance of all-oxide PV cells is discussed in terms of general PV principles, and directions for progress are proposed, pointing toward the development of novel metal oxide semiconductors using combinatorial methods.

  5. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.


    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  6. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith


    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.


    DEFF Research Database (Denmark)


    firing. The high temperature firing allows the Pr ions to diffuse into the CGO backbone. The resulting backbone would then have a co-doped subsurface exhibiting electronic conductivity having improved performance when used as electrode in, e.g. a fuel cell. Remaining particles of praseodymium oxide......The present invention relates to electrodes having Gd and Pr -doped cerium oxide (CGPO)backbones infiltrated with Sr -doped LaCoO3 (LSC) and a method to manufacture them. Pr ions have been introduced into a prefabricated CGO backbone by infiltrating Pr nitrate solution followed by high temperature...

  8. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar


    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  9. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  10. Metal oxides as photocatalysts

    Directory of Open Access Journals (Sweden)

    Mohammad Mansoob Khan


    Full Text Available Metal oxides are of great technological importance in environmental remediation and electronics because of their capability to generate charge carriers when stimulated with required amount of energy. The promising arrangement of electronic structure, light absorption properties, and charge transport characteristics of most of the metal oxides has made possible its application as photocatalyst. In this article definition of metal oxides as photocatalyst, structural characteristics, requirements of the photocatalyst, classification of photocatalysts and the mechanism of the photocatalytic process are discussed.


    Energy Technology Data Exchange (ETDEWEB)



    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  12. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni


    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  13. Pyrite oxidation by microbial consortia (United States)

    Bostick, B. C.; Revill, K. L.; Doyle, C.; Kendelewicz, T.; Brown, G. E.; Spormann, A. M.; Fendorf, S.


    Acid mine drainage (AMD) is formed through pyrite oxidation, which produces acidity and releases toxic metals associated with pyrite and other sulfide minerals. Microbes accelerate pyrite oxidation markedly, thereby playing a major role in the production of AMD. Here, we probe pyrite oxidation by consortia of Thiobacillus ferrooxidans and thiooxidans using surface-sensitive photoelectron spectroscopy and X-ray absorption spectroscopy and compare them with surfaces oxidized through chemical and single species cultures. Microbial oxidation resulted in the formation of distinct oxidized surface species distributed non-uniformly over the pyrite surface; consortia produced a surface both more heterogeneous and more oxidized. In contrast, chemical oxidation proceeds without the build-up of passivating oxidation products. Surface morphology was not correlated with sites of nucleation or oxidation in any obvious manner. These results demonstrate that microbial oxidation occurs through a similar mechanism to chemical oxidation, but that the presence of complex microbial communities may impact the manner by which pyrite oxidation proceeds.

  14. Catalytic process for formaldehyde oxidation (United States)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)


    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  15. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan


    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed on...

  16. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)


    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  17. Reducible oxide based catalysts (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.


    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  18. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper


    The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found...... to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  19. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.


    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout, and the sec......The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...... may not only induce quality losses but may be desirable in some type of foods, such as salted herring....

  20. Highly oxidized graphene oxide and methods for production thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Kosynkin, Dmitry V.


    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  1. Lignite oxidative desulphurization

    Institute of Scientific and Technical Information of China (English)

    Volodymyr Gunka; Serhiy Pyshyev


    The process of lignite desulphurization via its treatment by an oxidant (air or air–steam mixture) has been studied. The research objective was useful determination of steam application in oxidative lignite desulphurization. It has been proved that the water steam should be included in the oxidant composition to increase the hydrogen sulphide and combustible constituent content in the gases obtained during the processes under research. The impact of factors which affect the reactions between solid (in our case–lignite) and gaseous reagent (oxidant, i.e. air and or air–steam mixture) upon the research process has been investigated, if these reactions occur in the kinetic area. Such factors are linear rate of oxidant movement and coal grain size. The values of oxidant movement linear rate and coal grain size, which the reaction transfer from pyrite sulphur and organic content of lignite from diffusion into kinetic area occurs by, have been determined. Under these‘‘transfer’’ conditions, the values of coefficients of oxidant mass transfer (b, m/s) as well as Sherwood criteria and boiling layer differences have been calculated.

  2. Paraffin Oxidation Studies

    Directory of Open Access Journals (Sweden)

    Mrs. S. J. Purohit


    Full Text Available The oxidation of paraffin has been studied with keen interest by several workers from all over the world; as oxidation leads to the introduction of various functional groups in hydrocarbon chains. Processes involving the Oxidation of Paraffin’s in the liquid phase, using air or oxygen are of great importance to industrialized economies because of their role in converting petroleum hydrocarbon feed stocks such as alkanes, olefins and aromatics into industrial organic chemicals important in the polymer, petrochemicals ,cosmetics and detergent industries. The oxidation leads predominantly to the formation of secondary alcohols consisting of a mixture of all possible isomers with the same number of carbon atoms in the molecules as the initial hydrocarbons. The secondary alcohols which are oxidation products of paraffin exhibit excellent hydrolytic, oxidative and color stability, because of the nature of their branching. These alcohols have lower melting points than straight chain alcohols of corresponding length, while retaining their high temperature stability. The oxidation of paraffin wax to fatty acids is carried out in temperature range 110 0C- 140 0C. Paraffin oxidation which is carried out by ALFOL, Oxo-processes, are high temperature, high pressure processes which utilize expensive catalysts, making them energy intensive as well as expensive. The maximum conversion achieved yet by existing processes is 15�0for a batch time of 4 hours. A cheaper alternative in this article has been studied, in which paraffin Oxidation has been carried out in a foam reactor at moderate temperature and pressure with suitable catalyst , the output of the products is increased up to 62%.

  3. Mercuric oxide poisoning (United States)

    ... of mercury salt. There are different types of mercury poisonings . This article discusses poisoning from swallowing mercuric oxide. ... Disinfectants Fungicides There have been reports of inorganic mercury poisoning from the use of skin-lightening creams. Note: ...


    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard


    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.

  5. Cathodoluminescence of uranium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Winer, K.; Colmenares, C.; Wooten, F.


    The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

  6. Fatty Acid Oxidation Disorders (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  7. Periodontal treatment decreases plasma oxidized LDL level and oxidative stress. (United States)

    Tamaki, Naofumi; Tomofuji, Takaaki; Ekuni, Daisuke; Yamanaka, Reiko; Morita, Manabu


    Periodontitis induces excessive production of reactive oxygen species in periodontal lesions. This may impair circulating pro-oxidant/anti-oxidant balance and induce the oxidation of low-density lipoprotein (LDL) in blood. The purpose of this study was to monitor circulating oxidized LDL and oxidative stress in subjects with chronic periodontitis following non-surgical periodontal treatment. Plasma levels of oxidized LDL and oxidative stress in 22 otherwise healthy non-smokers with chronic periodontitis (mean age 44.0 years) were measured at baseline and at 1 and 2 months after non-surgical periodontal treatment. At baseline, chronic periodontitis patients had higher plasma levels of oxidized LDL and oxidative stress than healthy subjects (p surgical periodontal treatment were effective in decreasing oxLDL, which was positively associated with a reduction in circulating oxidative stress.

  8. Reduction property of rare earth oxide doped molybdenum oxide

    Institute of Scientific and Technical Information of China (English)


    Rare earth oxide doped molybdenum powders were prepared by the reduction of rare earth nitrites doped MoO3. The effect of rare earth oxide on the reduction behavior of molybdenum oxide had been studied by means of Temperature Programmed Reduction (TPR), thermal analysis, X-ray diffraction. Doping rare earth oxide in the powder could lower the reduction temperature of molybdenum oxide and decrease the particle size of molybdenum. The mechanism for the effects had been discussed in this paper.

  9. Silver(II) Oxide or Silver(I,III) Oxide? (United States)

    Tudela, David


    The often called silver peroxide and silver(II) oxide, AgO or Ag[subscript 2]O[subscript 2], is actually a mixed oxidation state silver(I,III) oxide. A thermochemical cycle, with lattice energies calculated within the "volume-based" thermodynamic approach, explain why the silver(I,III) oxide is more stable than the hypothetical silver(II) oxide.…

  10. Pyrite oxidation by sulfolobus acidocaldarius

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, M.; Yokozeki, M.; Nishikawa, N.; Kawakami, Y. (Institute of Research and Innovation, Kashiwa (Japan). Dept. of Biotechnology)


    Two strains of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium, were examined for their pyrite-oxidizing ability. S. acidocaldarius ATCC 33909 was shown to possess iron-oxidizing activity by ferrous sulfate oxidizing experiments, but S. acidocaldarius No. 7 did not have it. Pyrite-oxidizing rate of S. acidocaldarius ATCC 33909 was 1.6-fold higher than that of strain 7 though they had a similar level of self-oxidizing ability. These results show that the iron-oxidizing activity accelerates pyrite oxidation.

  11. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp


    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  12. Enargite oxidation: A review (United States)

    Lattanzi, Pierfranco; Da Pelo, Stefania; Musu, Elodia; Atzei, Davide; Elsener, Bernhard; Fantauzzi, Marzia; Rossi, Antonella


    Enargite, Cu 3AsS 4, is common in some deposit types, e.g. porphyry systems and high sulphidation epithermal deposits. It is of environmental concern as a potential source of arsenic. In this communication, we review the current knowledge of enargite oxidation, based on the existing literature and our own original data. Explicit descriptions of enargite oxidation in natural environments are scarce. The most common oxidized alteration mineral of enargite is probably scorodite, FeAsO 4.2H 2O, with iron provided most likely by pyrite, a phase almost ubiquitously associated with enargite. Other secondary minerals after enargite include arsenates such as chenevixite, Cu 2Fe 2(AsO 4) 2(OH) 4.H 2O, and ceruleite, Cu 2Al 7(AsO 4) 4.11.5H 2O, and sulphates such as brochantite, Cu 4(SO 4)(OH) 6, and posnjakite, Cu 4(SO 4)(OH) 6·H 2O. Detailed studies of enargite field alteration at Furtei, Sardinia, suggest that most alteration occurs through dissolution, as testified by the appearance of etch pits at the surface of enargite crystals. However, apparent replacement by scorodite and cuprian melanterite was observed. Bulk oxidation of enargite in air is a very slow process. However, X-ray photoelectron spectroscopy (XPS) reveals subtle surface changes. From synchrotron-based XPS it was suggested that surface As atoms react very fast, presumably by forming bonds with oxygen. Conventional XPS shows the formation, on aged samples, of a nanometer-size alteration layer with an appreciably distinct composition with respect to the bulk. Mechanical activation considerably increases enargite reactivity. In laboratory experiments at acidic to neutral pH, enargite oxidation/dissolution is slow, although it is accelerated by the presence of ferric iron and/or bacteria such as Acidithiobacillus ferrooxidans and Sulfolobus BC. In the presence of sulphuric acid and ferric iron, the reaction involves dissolution of Cu and formation of native sulphur, subsequently partly oxidized to sulphate

  13. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. (United States)

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan


    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  14. The oxidative coupling of methane

    Energy Technology Data Exchange (ETDEWEB)

    Helton, T.; Anthony, R.G.; Gadalla, A.M. (Texas A and M Univ., College Park, TX (US))


    In this paper the spinel phase of cobalt oxide is evaluated as a potential coupling catalyst for converting methane to C/sub 2/+ hydrocarbons. Thermodynamic calculations indicate that the Gibbs free energies for forming higher hydrocarbons using the spinel form of cobalt oxide are similar to the free energies obtained for manganese (III) oxide. The oxidative coupling of methane was performed in an oxidation-reduction cycle.

  15. Stabilized tin-oxide-based oxidation/reduction catalysts (United States)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony Neal (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor)


    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  16. Erythropoietin and oxidative stress. (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen


    Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.

  17. Rheological properties of poly(vinylpiyrrolidone) as a function of molecular weight

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Kiebach, Wolff-Ragnar


    Different grades of poly (vinylpyrrolidone) (PVP) were studied as dispersant for gadolinium doped cerium oxide (CGO) in ethanol-based colloidal dispersions. The average molecular weights Mw, Mn, and Mz were determined by gel permeation chromatography (GPC), and then used in a numerical method...

  18. Methanol partial oxidation reformer (United States)

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael


    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  19. Low thermal conductivity oxides

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Phillpot, Simon R.; Wan, Chunlei; Chernatynskiy, Aleksandr; Qu, Zhixue


    Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

  20. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L


    in a double blind design to 17 migraine patients, 17 age and sex matched healthy controls and 9 subjects with tension-type headache. The nitroglycerin-induced headache was significantly more severe in migraine sufferers, lasted longer and fulfilled diagnostic criteria for migraine more often. We have...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...

  1. Crystalline mesoporous metal oxide

    Institute of Scientific and Technical Information of China (English)

    Wenbo Yue; Wuzong Zhou


    Since the discovery of many types of mesoporous silicas, such as SBA-15, KIT-6, FDU-12 and SBA-16, porous crystalline transition metal oxides, such as Cr2O3, Co3O4, In2O3, NiO, CeO2, WO3, Fe2O3 and MnO2, have been synthesized using the mesoporous silicas as hard templates. Several synthetic methods have been developed. These new porous materials have high potential applications in catalysis, Li-ion rechargeable batteries and gas sensors. This article gives a brief review of the research of porous crystals of metal oxides in the last four years.

  2. Copolymerization Kinetics of Ethylene Oxide and Propylene Oxide

    Institute of Scientific and Technical Information of China (English)

    尹红; 陈志荣


    The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticparameters are obtained by numerical optimization of the kinetic model.

  3. Effect of Oxide Layer in Metal-Oxide-Semiconductor Systems

    Directory of Open Access Journals (Sweden)

    Fan Jung-Chuan


    Full Text Available In this work, we investigate the electrical properties of oxide layer in the metal-oxide semiconductor field effect transistor (MOSFET. The thickness of oxide layer is proportional to square root of oxidation time. The feature of oxide layer thickness on the growth time is consistent with the Deal-Grove model effect. From the current-voltage measurement, it is found that the threshold voltages (Vt for MOSFETs with different oxide layer thicknesses are proportional to the square root of the gate-source voltages (Vgs. It is also noted that threshold voltage of MOSFET increases with the thickness of oxide layer. It indicates that the bulk effect of oxide dominates in this MOSFET structure.

  4. Doped zinc oxide microspheres (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.


    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  5. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)


    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  6. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz


    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  7. Oxidative stress in myopia. (United States)

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea


    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  8. Highly oxidized superconductors (United States)

    Morris, Donald E.


    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  9. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco


    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  10. Characterization of a well performing and durable Ni:CGO-infiltrated anode for metal-supported SOFC

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Graves, Christopher R.;

    . These performance and durability characteristics are very encouraging but despite several papers on metal supported SOFC with this type of infiltrated anode [1-3], the performance and the factors controlling the performance and durability is not yet well understood. Only some initial data on symmetrical cells...

  11. Improvement of LSM15-CGO10 electrodes for electrochemical removal of NOx by KNO3 and MnOx impregnation

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Kammer Hansen, Kent


    in 1000 ppm NO, 10% O2 and 1000 ppm NO + 10% O2 in the temperature range 300-500 °C and the electrodes were investigated by scanning electron microscopy before and after testing. At 400-450 °C a NOx-storage process was observed on the KNO3-impregnated electrodes, this process appeared to be dependent...

  12. Promoting Sound Ethical Decisions in the Air Force: CGO Solutions to Air Force Moral and Ethical Lapses (United States)


    Beliefs and the Impact of Moral Distress on Conscientious Objection,” Nursing Ethics 19, no. 6 (2012): 739 25Air Force Instruction (AFI) 1-1, Air Force... Ethical Beliefs and the Impact of Moral Distress on Conscientious Objection." Nursing Ethics 19, no. 6 (2012). Department of Defense, Office of...Recent ethical and moral lapses, defined as decisions or actions not in line with the Air Force Core Values, are not isolated occurrences. Rather

  13. Nanostructured transition metal oxides useful for water oxidation catalysis (United States)

    Frei, Heinz M; Jiao, Feng


    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  14. Staged membrane oxidation reactor system (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh


    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  15. Nitrous Oxide Micro Engines Project (United States)

    National Aeronautics and Space Administration — Nitrous Oxide Micro Engines (NOME) are a new type of nitrous oxide dissociation thruster designed to generate low levels of thrust that can be used for RCS control...

  16. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram


    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.


    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.


    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for

  18. Oxidants and antioxidants in disease

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Svendsen, Ove


    Important infectious diseases in farm animals, such as pneumonia and enteritis, are thought to be associated with the so-called oxidative stress, i.e. a chemical phenomenon involving an imbalance in the redox status of the individual animal. The specifics of oxidative stress and how it may result...... theoretically, oxidative stress should be easily prevented with antioxidants yet the use of antioxidants as therapy remains controversial. The present knowledge on oxidative stress in farm animals is the topic of this review....

  19. Molybdenum oxide nanowires: synthesis & properties

    Directory of Open Access Journals (Sweden)

    Liqiang Mai


    Full Text Available Molybdenum oxide nanowires have been found to show promise in a diverse range of applications, ranging from electronics to energy storage and micromechanics. This review focuses on recent research on molybdenum oxide nanowires: from synthesis and device assembly to fundamental properties. The synthesis of molybdenum oxide nanowires will be reviewed, followed by a discussion of recent progress on molybdenum oxide nanowire based devices and an examination of their properties. Finally, we conclude by considering future developments.

  20. Oxidative Stress and Antioxidant Defense



    Abstract Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state i...

  1. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.


    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  2. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao


    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  3. Catalytic oxidation of dimethyl ether (United States)

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing


    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  4. Riboflavin photosensitized oxidation of myoglobin

    DEFF Research Database (Denmark)

    Grippa, Juliana M.; de Zawadzki, Andressa; Grossi, Alberto Blak;


    The reaction of the fresh meat pigment oxymyoglobin, MbFe(II)O, and its oxidized form metmyoglobin, MbFe(III), with triplet-state riboflavin involves the pigment protein, which is oxidatively cleaved or dimerized as shown by SDS-PAGE and Western blotting. The overall rate constant for oxidation o...

  5. Oxidation of Quercetin by Myeloperoxidase


    Tatjana Momić; Jasmina Savić; Vesna Vasić


    Study of effect of myeloperoxidase on quercetin at pH 6.0 indicated quercetin oxidation via the formation of the oxidation product. The stability of quercetin and oxidation product was investigated as a function of time by using spectrophotometric and HPLC techniques. The apparent pseudo first-order rate constants were calculated and discussed.

  6. Oxide fiber targets at ISOLDE

    DEFF Research Database (Denmark)

    Köster, U.; Bergmann, U.C.; Carminati, D.


    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxide fiber targets are less critical since they may maintain their open structure even when starting to fuse together at so...

  7. Oxidation kinetics of aluminum nitride at different oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinmei [Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Chou, K.-C. [Metallurgical and Ecological Engineering School, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail:; Zhong Xiangchong [High Temperature Ceramics Institute, Zhengzhou University, Henan Province 450052 (China); Seetharaman, Seshadri [Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden)


    In the present work, the oxidation kinetics of AlN powder was investigated by using thermogravimetric analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experiments were carried out both in isothermal as well as non-isothermal modes under two different oxidizing atmospheres. The results showed that the oxidation reaction started at around 1100 K and the rate increased significantly beyond 1273 K forming porous aluminum oxide as the reaction product. The oxidation rate was affected by temperature and oxygen partial pressure. A distinct change in the oxidation mechanism was noticed in the temperature range 1533-1543 K which is attributed to the phase transformation in oxidation product, viz. alumina. Diffusion is the controlling step during the oxidation process. Based on the experimental data, a new model for predicting the oxidation process of AlN powder had been developed, which offered an analytic form expressing the oxidation weight increment as a function of time, temperature and oxygen partial pressure. The application of this new model to this system demonstrated that this model could be used to describe the oxidation behavior of AlN powder.

  8. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.


    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  9. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. (United States)

    Chen, Xuxing; Li, Yunpeng; Pan, Xiaoyang; Cortie, David; Huang, Xintang; Yi, Zhiguo


    The search for active catalysts that efficiently oxidize methane under ambient conditions remains a challenging task for both C1 utilization and atmospheric cleansing. Here, we show that when the particle size of zinc oxide is reduced down to the nanoscale, it exhibits high activity for methane oxidation under simulated sunlight illumination, and nano silver decoration further enhances the photo-activity via the surface plasmon resonance. The high quantum yield of 8% at wavelengths oxide nanostructures shows great promise for atmospheric methane oxidation. Moreover, the nano-particulate composites can efficiently photo-oxidize other small molecular hydrocarbons such as ethane, propane and ethylene, and in particular, can dehydrogenize methane to generate ethane, ethylene and so on. On the basis of the experimental results, a two-step photocatalytic reaction process is suggested to account for the methane photo-oxidation.

  10. Factors Affection Cr(Ⅲ) Oxidation by Manganese Oxides

    Institute of Scientific and Technical Information of China (English)



    The high oxidation ability of manganese oxides or soils was used to study effects of PH and coating on Cr(Ⅲ) oxidation,The results indicated that Cr(Ⅲ) oxidation peaked in PH 4.0-6.5,The amount and rate of Cr(Ⅲ) being oxidized by uncoated δ-MnO2 were larger than those by Fe oxide- of CaCo3-coated one.Inorganic Cr(Ⅲ) wa more easily oxidzed by MnO2 than organic complex Cr(Ⅲ) due to different surface affinities. Precipitated Cr(Ⅲ) and adsorbed Cr(Ⅲ) might be transferred onto MnO2 surface and then oxidized to Cr(Ⅵ)

  11. Iron oxide surfaces (United States)

    Parkinson, Gareth S.


    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  12. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  13. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff


    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  14. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)


    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  15. Oxidative stress & male infertility. (United States)

    Makker, Kartikeya; Agarwal, Ashok; Sharma, Rakesh


    The male factor is considered a major contributory factor to infertility. Apart from the conventional causes for male infertility such as varicocoele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumours, a new and important cause has been identified: oxidative stress. Oxidative stress is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body. It is a powerful mechanism that can lead to sperm damage, deformity and eventually, male infertility. This review discusses the physiological need for ROS and their role in normal sperm function. It also highlights the mechanism of production and the pathophysiology of ROS in relation to the male reproductive system and enumerate the benefits of incorporating antioxidants in clinical and experimental settings.

  16. Oxidation of visbreaker bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Saporito, S.


    A series of oxidation tests was carried out on a small-scale blowing unit fed with two different visbreaker (VB) bitumens, and with two straight-run (SR) soft bitumens for reference. The purpose was to study the possibility of applying the blowing process to VB feeds, and to evaluate process kinetics and product characteristics. The results showed that industrial blowing of VB bitumens is feasible and that the rate of reaction can be expressed by a first order equation with respect to change in softening point. Production of distillate oils was quite high, especially when iron trichloride was used as a catalyst; in industrial application it is suggested that VB bitumens may be oxidized without any catalyst, the kinetics of the non-catalytic process being satisfactory. Air consumption was unsteady compared with the SR operation, and plugging of the air coil was more frequent. 20 refs., 3 figs., 3 tabs.

  17. Hemoglobin oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Croci, S.; Ortalli, I.; Pedrazzi, G. [University of Parma, Istituto di Scienze Fisiche, INFM-Udr Parma (Italy); Passeri, G. [University of Parma, Dipartimento di Medicina Interna e Scienze Biomediche (Italy); Piccolo, P. [University of Parma, Istituto di Clinica chirurgica Generale, Toracica e Vascolare (Italy)


    Venous blood obtained from healthy donors and from patients suffering from breast cancer have been treated with acetylphenylhydrazine (APH) for different time. Moessbauer spectra of the packed red cells have been recorded and compared. The largest difference occurs after 50 min of treatment with APH where the patient samples show a broad spectral pattern indicating an advanced hemoglobin oxidation. These results may have some relevance in early cancer diagnosis.

  18. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.


    of carbon deposition. The outlet gas composition at each current step was estimated based on the inlet gas composition and the reactant conversion using Faraday's law. The increase in voltage was observed at lower pCO/pCO2 ratios than that corresponding to the thermodynamic threshold for carbon formation......, the carbon formation threshold in an operating cell was investigated during electrolysis of an idealized reactant atmosphere of CO and CO2. The electrolysis current was gradually increased in steps until the cell voltage spontaneously increased, thereby indicating cell degradation and possibly the onset...... conditions for commercial systems. The effect would be even more severe on stack level, where the gas diffusion and temperature gradients are more pronounced. Initial results of the mitigation strategy of infiltrating CGO are negative, but increased performance prior to coking was observed....

  19. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg


    Two kinds of electrochemical relevant potentials are important in order to describe several observed phenomena in operating electrochemical cells with solid electrolytes. This paper gives illustrative examples of how the profiles of the two potential types, the Galvani potential, φ......, and the electromotive – also called the Fermi potential, π, will vary across the electrolyte, and of how the electron leak current density though the electrolyte, which is related to π, will be affected by temperature and cell voltage across the electrolyte in cells based on gadolinia doped ceria (CGO) and on yttria...... stabilized zirconia (YSZ) electrolytes. The nature of the two potential types and the importance of each of them for the cell operation are explained....

  20. Lipid oxidation induced oxidative degradation of cereal beta-glucan. (United States)

    Wang, Yu-Jie; Mäkelä, Noora; Maina, Ndegwa Henry; Lampi, Anna-Maija; Sontag-Strohm, Tuula


    In food systems, lipid oxidation can cause oxidation of other molecules. This research for the first time investigated oxidative degradation of β-glucan induced by lipid oxidation using an oil-in-water emulsion system which simulated a multi-phased aqueous food system containing oil and β-glucan. Lipid oxidation was monitored using peroxide value and hexanal production while β-glucan degradation was evaluated by viscosity and molecular weight measurements. The study showed that while lipid oxidation proceeded, β-glucan degradation occurred. Emulsions containing β-glucan, oil and ferrous ion showed significant viscosity and molecular weight decrease after 1 week of oxidation at room temperature. Elevated temperature (40°C) enhanced the oxidation reactions causing higher viscosity drop. In addition, the presence of β-glucan appeared to retard the hexanal production in lipid oxidation. The study revealed that lipid oxidation may induce the degradation of β-glucan in aqueous food systems where β-glucan and lipids co-exist.

  1. Autotrophic Biofilters for Oxidation of Nitric Oxide

    Institute of Scientific and Technical Information of China (English)

    陈建孟; 陈浚; LanceHershman; 王家德; DanielP.Y.Chang


    Carbon foam—a kind of new engineering material as packing material was adopted in three biofilters with different pore dimensions and adapted autotrophic nitrite nitrobacteria to investigate the purification of nitric oxide (NO) in a gas stream. The biofilm was developed on the surface of carbon foams using nitrite as its only nitric source. The moisture in the filter was maintained by ultrasonic aerosol equipment which can minimize the thickness of the liquid film. The liquid phase nitrification test was conducted to determine the variability and the potential of performance among the three carbon foam biofilters. The investigation showed that during the NO2-—N inlet concentration of 200 g·L-1·min-1 to 800 g·L-1·min-1, the 24PPC (pores per centimeter) carbon foam biofilter had the greatest potential, achieving the NO2-—N removal efficiency of 94% to 98%. The 8PPC and 18PPC carbon foam biofilters achieved the NO2-—N removal efficiency of 15% to 21% and of 30% to 40%, respectively. The potential for this system to remove NO from a gas stream was shown on the basis of a steady removal efficiency of 41% to 50% which was attained for the 24PPC carbon foam biofilter at specified NO inlet concentration of 66.97 mg·m-3 to 267.86mg·m-3 and an empty-bed residence time of 3.5 min.

  2. Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells (United States)

    Çelikbilek, Ӧzden; Jauffrès, David; Siebert, Elisabeth; Dessemond, Laurent; Burriel, Mónica; Martin, Christophe L.; Djurado, Elisabeth


    Understanding, controlling and optimizing the mechanisms of electrode reactions need to be addressed for high performance energy and storage conversion devices. Hierarchically structured porous films of mixed ionic electronic conductors (MIECs) and their composites with ionic conductors offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. Here, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ: Ce0.9Gd0.1O2-δ (LSCF:CGO) composite cathodes with hierarchical porosity from nano to micro range are fabricated. The LSCF film exhibits exceptional electrode performance with area specific resistance values of 0.021 and 0.065 Ω cm2 at 650 and 600 °C respectively, whereas LSCF:CGO composite is only slightly superior than pure LSCF below 450 °C. We report for the first time a numerical 3D Finite Element Model (FEM) comprising real micro/nanostructural parameters from 3D reconstructions into a simple geometry similar to experimentally observed columnar features. The model demonstrates that heterogeneities in porosity within the film thickness and percolation of the ionically conducting phase significantly impact bulk transport at low temperatures. Design guidelines relating performance to microstructure and bulk material properties in relation to experimental results are proposed. Our model has potential to be extended for rational design of larger, regular and heterogeneous microstructures.

  3. Fuel reforming and electrical performance studies in intermediate temperature ceria - gadolinia-based SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Livermore, S.J.A. [CERAM Research, Stoke-on-Trent (United Kingdom); Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele Univ. (United Kingdom); Cotton, J.W. [CERAM Research, Stoke-on-Trent (United Kingdom); Ormerod, R.M. [Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele Univ. (United Kingdom)


    The methane reforming and carbon deposition characteristics of two nickel/ceria-gadolinia cermet anodes have been studied over the temperature range 550-700 C, for use in intermediate temperature ceria-gadolinia (CGO)-based solid oxide fuel cells (SOFCs), using conventional catalytic methods and temperature-programmed spectroscopy. The electrical performance and durability of planar CGO-based SOFCs with a 280-{mu}m-thick CGO electrolyte, screen printed cathode and different screen printed nickel/CGO cermet anodes have been studied over the temperature range 500-650 C. Temperature-programmed reduction has been used to study the reduction characteristics of the anodes, and indicates the presence of 'bulk' NiO particles and smaller NiO particles in intimate contact with the ceria. Both anodes show good activity towards methane steam reforming with methane activation occurring at temperatures as low as 210 C; steady-state steam reforming of methane was observed using a methane-rich mixture at 650 C, with 20% methane conversion. Post-reaction temperature-programmed oxidation has been used to determine the amount of carbon deposited during reforming and the strength of its interaction with the anode. (orig.)

  4. Arsenite oxidation by three types of manganese oxides

    Institute of Scientific and Technical Information of China (English)


    Oxidation of As(Ⅲ) by three types of manganese oxides and the effects of pH, ion strength and tartaric acid on the oxidation were investigated by means of chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals, birnessite, cryptomelane, and hausmarnite, which widely occur in soil and sediments, could actively oxidize As(Ⅲ) to As(Ⅴ). However, their ability in As(Ⅲ)-oxidation varied greatly depending on their structure, composition and surface properties. Tunnel structured cryptomelane exhibited the highest ability of As (Ⅲ) oxidation, followed by the layer structured birnessite and the lower oxide hausmannite. The maximum amount of As (Ⅴ) produced by the oxidation was in the order (mmol/kg) ofcryptomelane (824.2) > birnessite (480.4) > hausmannite (117.9). As pH increased from the very low value(pH 2.5), the amount of As(Ⅲ) oxidized by the tested Mn oxides was firstly decreased, then negatively peaked in pH 3.0-6.5,and eventually increased remarkably. Oxidation of As(Ⅲ) by the Mn oxides had a buffering effects on the pH variation in the solution.It is proposed that the oxidative reaction processes between As( Ⅲ ) and birnessite(or cryptomelane) are as follows: (1) at lower pH condition: (MnO2)x + H3AsO3 + 0.5H+=0.5H2AsO4- + 0.5HAsO42- +Mn2++ (MnO2)x-1 + H2O; (2) at higher pH condition: (MnO2)x +cryptomelane decreased and was negatively correlated with ion strength. However, ion strength had little influence on As (Ⅲ) oxidation by the hausmannite. The presence of tartaric acid promoted oxidation of As(Ⅲ) by birnessite. As for cryptomelane and hausmannite, the same effect was observed when the concentration of tartaric acid was below 4 mmol/L, otherwise the oxidized As(Ⅲ)decreased. These findings are of great significance in improving our understanding of As geochemical cycling and controlling As contamination.

  5. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Patrick; Bierwagen, Oliver [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)


    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  6. The 2016 oxide electronic materials and oxide interfaces roadmap

    DEFF Research Database (Denmark)

    Lorenz, M.; Rao, M. S. Ramachandra; Venkatesan, T.


    Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale...... form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics...... of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap...

  7. Partial Oxidation of Methane Over the Perovskite Oxides

    Institute of Scientific and Technical Information of China (English)


    Ba0.sSr0.5Co0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Ti0.2O3-δ oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.

  8. The oxidative hypothesis of senescence

    Directory of Open Access Journals (Sweden)

    Gilca M


    Full Text Available The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g., those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc. This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal β -oxidation and respiratory burst of phagocytic cells, antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol, alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  9. The oxidative hypothesis of senescence. (United States)

    Gilca, M; Stoian, I; Atanasiu, V; Virgolici, B


    The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g, those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc). This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal beta -oxidation and respiratory burst of phagocytic cells), antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol), alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.

  10. Fabrication of titanium oxide nanotube arrays by anodic oxidation (United States)

    Zhao, Jianling; Wang, Xiaohui; Chen, Renzheng; Li, Longtu


    The formation of titanium oxide nanotube arrays on titanium substrates was investigated in HF electrolytes. Under optimized electrolyte and oxidation conditions, well-ordered nanotubes of titania were fabricated. Topologies of the anodized titanium change remarkably along with the changing of applied voltages, electrolyte concentration and oxidation time. Electrochemical determination and scanning electron microscope indicate the nanotubes are formed due to the competition of titania formation and dissolution under the assistance of electric field. A possible growth mechanism has also been presented.

  11. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants. (United States)

    Eng, Alex Yong Sheng; Ambrosi, Adriano; Chua, Chun Kiang; Saněk, Filip; Sofer, Zdeněk; Pumera, Martin


    Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate-based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen-containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy-storage and sensing devices.

  12. The 2016 oxide electronic materials and oxide interfaces roadmap (United States)

    Lorenz, M.; Ramachandra Rao, M. S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; Shan, F. K.; Grundmann, M.; Boschker, H.; Mukherjee, J.; Priyadarshini, M.; DasGupta, N.; Rogers, D. J.; Teherani, F. H.; Sandana, E. V.; Bove, P.; Rietwyk, K.; Zaban, A.; Veziridis, A.; Weidenkaff, A.; Muralidhar, M.; Murakami, M.; Abel, S.; Fompeyrine, J.; Zuniga-Perez, J.; Ramesh, R.; Spaldin, N. A.; Ostanin, S.; Borisov, V.; Mertig, I.; Lazenka, V.; Srinivasan, G.; Prellier, W.; Uchida, M.; Kawasaki, M.; Pentcheva, R.; Gegenwart, P.; Miletto Granozio, F.; Fontcuberta, J.; Pryds, N.


    Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by

  13. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T


    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target....... If the argument that the impact of ROS increases with age is true, then proteins would be expected to accumulate oxidised materials with age, and the rate of such accumulation should increase with time, reflecting impaired inefficiency of homeostasis. Here we review the evidence for the accumulation of oxidised......, or modified, extra- and intra-cellular proteins in vivo....

  14. Semiconductor Oxide Interface States. (United States)


    0C for 30 minutes. B 9 7 and B17 curves were taken before forming gas annealing and A297 and A77 were taken after annealing in forming gas... A297 and A77’ AL .show a substantial reduction of interface states and a slight increase of positive oxide charges. The reduction of the interface...states is deduced from the voltage differences between A297 and the A77 C-V curves both above and below the cross-over point which are smaller than the

  15. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang


    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  16. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan


    and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function....... Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides...

  17. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika


    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  18. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco


    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  19. Pyrite oxidation by thermophilic archaebacteria

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L.; Olsson, G.; Holst, O.; Karlsson, H.T. (Lund Univ. (Sweden))


    Three species of thermophilic archaebacteria of the genera Sulfolobus (Sulfolobus acidocaldarius and S. solfataricus) and Acidianus (Acidianus brierleyi) were tested for their ability to oxidize pyrite and to grow autotropbically on pyrite, to explore their potential for use in coal desulfurization. Only A. brierleyi was able to oxidize and grow autotrophically on pyrite. Jarosite was formed during the pyrite oxidation, resulting in the precipitation of sulfate and iron. The medium composition affected the extent of jarosite formation.

  20. Nanoporous silicon oxide memory. (United States)

    Wang, Gunuk; Yang, Yang; Lee, Jae-Hwang; Abramova, Vera; Fei, Huilong; Ruan, Gedeng; Thomas, Edwin L; Tour, James M


    Oxide-based two-terminal resistive random access memory (RRAM) is considered one of the most promising candidates for next-generation nonvolatile memory. We introduce here a new RRAM memory structure employing a nanoporous (NP) silicon oxide (SiOx) material which enables unipolar switching through its internal vertical nanogap. Through the control of the stochastic filament formation at low voltage, the NP SiOx memory exhibited an extremely low electroforming voltage (∼ 1.6 V) and outstanding performance metrics. These include multibit storage ability (up to 9-bits), a high ON-OFF ratio (up to 10(7) A), a long high-temperature lifetime (≥ 10(4) s at 100 °C), excellent cycling endurance (≥ 10(5)), sub-50 ns switching speeds, and low power consumption (∼ 6 × 10(-5) W/bit). Also provided is the room temperature processability for versatile fabrication without any compliance current being needed during electroforming or switching operations. Taken together, these metrics in NP SiOx RRAM provide a route toward easily accessed nonvolatile memory applications.

  1. Magnetoexcitons in cuprous oxide (United States)

    Schweiner, Frank; Main, Jörg; Wunner, Günter; Freitag, Marcel; Heckötter, Julian; Uihlein, Christoph; Aßmann, Marc; Fröhlich, Dietmar; Bayer, Manfred


    Two of the most striking experimental findings when investigating exciton spectra in cuprous oxide using high-resolution spectroscopy are the observability and the fine structure splitting of F excitons reported by J. Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015), 10.1103/PhysRevLett.115.027402]. These findings show that it is indispensable to account for the complex valence band structure and the cubic symmetry of the solid in the theory of excitons. This is all the more important for magnetoexcitons, where the external magnetic field reduces the symmetry of the system even further. We present the theory of excitons in Cu2O in an external magnetic field and especially discuss the dependence of the spectra on the direction of the external magnetic field, which cannot be understood from a simple hydrogenlike model. Using high-resolution spectroscopy, we also present the corresponding experimental spectra for cuprous oxide in Faraday configuration. The theoretical results and experimental spectra are in excellent agreement as regards not only the energies but also the relative oscillator strengths. Furthermore, this comparison allows for the determination of the fourth Luttinger parameter κ of this semiconductor.

  2. Magnetic frustration of graphite oxide (United States)

    Lee, Dongwook; Seo, Jiwon


    Delocalized π electrons in aromatic ring structures generally induce diamagnetism. In graphite oxide, however, π electrons develop ferromagnetism due to the unique structure of the material. The π electrons are only mobile in the graphitic regions of graphite oxide, which are dispersed and surrounded by sp3-hybridized carbon atoms. The spin-glass behavior of graphite oxide is corroborated by the frequency dependence of its AC susceptibility. The magnetic susceptibility data exhibit a negative Curie temperature, field irreversibility, and slow relaxation. The overall results indicate that magnetic moments in graphite oxide slowly interact and develop magnetic frustration. PMID:28327606

  3. Continuous lengths of oxide superconductors (United States)

    Kroeger, Donald M.; List, III, Frederick A.


    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  4. The chemistry of graphene oxide. (United States)

    Dreyer, Daniel R; Park, Sungjin; Bielawski, Christopher W; Ruoff, Rodney S


    The chemistry of graphene oxide is discussed in this critical review. Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure. Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed. This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references).

  5. Trends in reactivity of oxides

    DEFF Research Database (Denmark)

    Toftelund, Anja

    , and I) and OH on a wide range of rutile oxide surfaces. Furthermore, Brønsted-Evans-Polanyi (BEP) relations are found for the adsorption of a large number of molecules (including Cl, Br and I) on transition metal oxides. In these relations the activation energies scale linearly with the dissociative...... chemisorption energies. It turns out that the BEP relation for rutile oxides is almost coinciding with the dissociation line, i.e. no barrier exists for the reactive surfaces. The heterogeneous catalytic oxidation of hydrogen halides (HCl, HBr, and HI) is investigated. A micro-kinetic model is solved...

  6. Low Temperature Oxidation of Methane: The Influence of Nitrogen Oxides

    DEFF Research Database (Denmark)

    Bendtsen, Anders Broe; Glarborg, Peter; Dam-Johansen, Kim


    An experimental investigation of methane oxidation in the presence of NO and NO2 has been made in an isothermal plug-flow reactor at 750-1250K. The temperature for on-set of oxidation was lowered by 250 K in the presence of NO or NO2 at residence times of 200 ms. At shorter residence times (140 ms...

  7. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide;


    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s...

  8. Heterogeneous oxidation of carbonyl sulfide on mineral oxides

    Institute of Scientific and Technical Information of China (English)

    LIU YongChun; LIU JunFeng; HE Hong; YU YunBo; XUE Li


    Heterogeneous oxidation of carbonyl sulfide (OCS) on mineral oxides including SiO2, Fe2O3, CaO, MgO, ZnO and TiO2, which are the main components of atmospheric particles, were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), ion chromatography (IC), temperature-programmed desorption (TPD), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) methods. The main products and intermediates of the heterogeneous oxidation of OCS on these oxides were identified with in situ DRIFTS and IC. The reaction mechanism and kinetics were also discussed. It is found that the reaction mechanism on these mineral oxides is the same as that on Al2O3 for the same final products and the intermediates at room temperature. Namely, OCS can be catalytically oxidized to produce surface SO42- species and gaseous CO2 through the surface hydrogen thiocarbonate (HSCO2-) and HSO3- species. The activity series for heterogeneous oxidation of OCS follows: Al2O3 ≈ CaO>MgO>TiO2 ≈ ZnO>Fe2O3>SiO2. The specific area, basic hydroxyl and surface basicity of these oxides have effect on the reactivity. This study suggests that heterogeneous reactions of OCS on mineral dust may be an unneglectable sink of OCS.

  9. Semiconductor-oxide heterostructured nanowires using postgrowth oxidation. (United States)

    Wallentin, Jesper; Ek, Martin; Vainorious, Neimantas; Mergenthaler, Kilian; Samuelson, Lars; Pistol, Mats-Erik; Reine Wallenberg, L; Borgström, Magnus T


    Semiconductor-oxide heterointerfaces have several electron volts high-charge carrier potential barriers, which may enable devices utilizing quantum confinement at room temperature. While a single heterointerface is easily formed by oxide deposition on a crystalline semiconductor, as in MOS transistors, the amorphous structure of most oxides inhibits epitaxy of a second semiconductor layer. Here, we overcome this limitation by separating epitaxy from oxidation, using postgrowth oxidation of AlP segments to create axial and core-shell semiconductor-oxide heterostructured nanowires. Complete epitaxial AlP-InP nanowire structures were first grown in an oxygen-free environment. Subsequent exposure to air converted the AlP segments into amorphous aluminum oxide segments, leaving isolated InP segments in an oxide matrix. InP quantum dots formed on the nanowire sidewalls exhibit room temperature photoluminescence with small line widths (down to 15 meV) and high intensity. This optical performance, together with the control of heterostructure segment length, diameter, and position, opens up for optoelectrical applications at room temperature.

  10. EDITORIAL: Oxide semiconductors (United States)

    Kawasaki, M.; Makino, T.


    non-equilibrium growth has rekindled the recent extensive investigation and progress in the field of ZnO epitaxy. In this special issue, Ohtomo and Tsukazaki, Cho et al, and Yi et al, respectively, describe the various fabrication processes such as pulsed laser deposition, molecular-beam epitaxy and metal-organic chemical vapour deposition. It should be noted that the last work among the above-mentioned papers has the potential to pave the way to nano-technology based on ZnO. This material has found other important applications as well, such as transparent conducting oxides (TCO). This field has a long research history, as is reviewed by Minami. Relatively speaking, ZnO was one of the earliest crystals (after Si, Ge, and InSb) to be prepared in a pure form, and the resultant long research history has given rise to the availability of large-area substrates. Recent progress in this topic is explained by two representative groups of authors in this field: Nause and Nemeth at Cermet Inc., and Maeda et al at Tokyo Denpa Co. Ltd. In order to overcome the bottleneck of p-type conduction and control the material's properties, a clear understanding of the physical processes in ZnO is necessary. Look et al are known as the first group to report on the growth and properties of p-type ZnO layers with a valid and reasonable set of experimental data (2002 Appl. Phys. Lett. 81 1830). Here, Look contributes a more comprehensive review to this issue. Optical studies on single crystals were conducted and are reviewed here by Meyer et al and Chichibu et al. Band-gap engineering and fabrication of heterojunction or quantum structures are important technological issues. It should be emphasized that by choosing an appropriate set of concentrations (x and y), perfect lattice-matching between MgxZn1-xO and CdyZn1-yO can be attained (Makino T et al 2001 Appl. Phys. Lett. 78 1237). Exciton properties of multiple quantum well structures are reported by Makino et al in this issue. Other than

  11. Ferromagnet / superconductor oxide superlattices (United States)

    Santamaria, Jacobo


    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  12. Room Temperature Chemical Oxidation of Delafossite-Type Oxides (United States)

    Trari, M.; Töpfer, J.; Doumerc, J. P.; Pouchard, M.; Ammar, A.; Hagenmuller, P.


    Examination of the delafossite-type structure of CuLaO 2 and CuYO 2 suggests that there is room enough to accomodate intercalated oxide ions and the charge compensation resulting simply from the oxidation of an equivalent amount of Cu + into Cu 2+. Reaction with hypohalites in an aqueous solution leads to color change. Evidence of the formation of Cu 2+ is given by TGA, iodometric titration, and magnetic (static and EPR) measurements. The obtained La and Y compounds seem to behave in a different way: whereas CuLaO 2+ x appears as a single phase, CuYO 2+ x corresponds to a two-phase mixture, with respectively low and high x values, the latter being isostructural with the thermally oxidized compound recently reported by Cava et al. Comparison is stressed between the oxides obtained by oxidation at room and those obtained at higher temperatures.

  13. Oxide anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)


    A major advantage of solid oxide fuel cells (SOFCs) over polymer electrolyte membrane (PEM) fuel cells is their tolerance for the type and purity of fuel. This fuel flexibility is due in large part to the high operating temperature of SOFCs, but also relies on the selection and development of appropriate materials - particularly for the anode where the fuel reaction occurs. This paper reviews the oxide materials being investigated as alternatives to the most commonly used nickel-YSZ cermet anodes for SOFCs. The majority of these oxides form the perovskite structure, which provides good flexibility in doping for control of the transport properties. However, oxides that form other crystal structures, such as the cubic fluorite structure, have also shown promise for use as SOFC anodes. In this paper, oxides are compared primarily in terms of their transport properties, but other properties relative to SOFC anode performance are also discussed. (author)

  14. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina;


    After oxidative stress proteins which are oxidatively modified are degraded by the 20S proteasome. However, several studies documented an enhanced ubiquitination of yet unknown proteins. Since ubiqutination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner......, we were able to confirm an increase of ubiquitinated proteins 16h upon oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide treated cells, as well as from control and lactacystin, an irreversible proteasome inhibitor, treated cells, and identified some......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  15. Hydrogen oxidation in Azospirillum brasilense

    Energy Technology Data Exchange (ETDEWEB)

    Tibelius, K.


    Hydrogen oxidation by Azospirillum brasilense Sp7 was studied in N/sub 2/-fixing and NH/sub 4//sup +/-grown batch cultures. The K/sub m/ for H/sub 2/ of O/sub 2/-dependent H/sup 3/H oxidation in whole cells was 9 uM. The rates of H/sup 3/H and H/sub 2/ oxidation were very similar, indicating that the initial H/sub 2/ activation step in the overall H/sub 2/ oxidation reaction was not rate-limiting and that H/sup 3/H oxidation was a valid measure of H/sub 2/-oxidation activity. Hydrogen-oxidation activity was inhibited irreversibly by air. In N-free cultures the O/sub 2/ optima for O/sub 2/-dependent H/sub 2/ oxidation, ranging from 0.5-1.25% O/sub 2/ depending on the phase of growth, were significantly higher than those of C/sub 2/H/sub 2/ reduction, 0.15-0.35%, suggesting that the H/sub 2/-oxidation system may have a limited ability to aid in the protection of nitrogenase against inactivation by O/sub 2/. Oxygen-dependent H/sub 2/ oxidation was inhibited by NO/sub 2//sup +/, NO, CO, and C/sub 2/H/sub 2/ with apparent K/sub 1/ values of 20, 0.4, 28, and 88 uM, respectively. Hydrogen-oxidation activity was 50 to 100 times higher in denitrifying cultures when the terminal electron acceptor for growth was N/sub 2/O rather than NO/sub 3//sup -/, possibly due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO in NO/sub 3//sup -/-grown cultures.

  16. Oxidation pathways underlying the pro-oxidant effects of apigenin. (United States)

    Andueza, Aitor; García-Garzón, Antonia; Ruiz de Galarreta, Marina; Ansorena, Eduardo; Iraburu, María J; López-Zabalza, María J; Martínez-Irujo, Juan J


    Apigenin, a natural flavone, is emerging as a promising compound for the treatment of several diseases. One of the hallmarks of apigenin is the generation of intracellular reactive oxygen species (ROS), as judged by the oxidation of reduced dichlorofluorescein derivatives seen in many cell types. This study aimed to reveal some mechanisms by which apigenin can be oxidized and how apigenin-derived radicals affect the oxidation of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (H(2)DCF), a probe usually employed to detect intracellular ROS. Apigenin induced a rapid oxidation of H(2)DCF in two different immortalized cell lines derived from rat and human hepatic stellate cells. However, apigenin did not generate ROS in these cells, as judged by dihydroethidium oxidation and extracellular hydrogen peroxide production. In cell-free experiments we found that oxidation of apigenin leads to the generation of a phenoxyl radical, which directly oxidizes H(2)DCF with catalytic amounts of hydrogen peroxide. The net balance of the reaction was the oxidation of the probe by molecular oxygen due to redox cycling of apigenin. This flavonoid was also able to deplete NADH and glutathione by a similar mechanism. Interestingly, H(2)DCF oxidation was significantly accelerated by apigenin in the presence of horseradish peroxidase and xanthine oxidase, but not with other enzymes showing peroxidase-like activity, such as cytochrome c or catalase. We conclude that in cells treated with apigenin oxidation of reduced dichlorofluorescein derivatives does not measure intracellular ROS and that pro- and antioxidant effects of flavonoids deduced from these experiments are inconclusive and must be confirmed by other techniques.

  17. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  18. Solid Oxide Electrolyser Cell

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard

    Solid oxide fuel cells (SOFCs) produced at Risø National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 °C and a cell voltage of 1.48V the current density was -3.6A/cm2 with app. 30% H2 + 70% H2O in the inlet...... it is possible to achieve a production price of 0.7 US$/kg H2 with an electricity price of 1.3 US¢/kWh. The cell voltage was measured as function of time. In test ofabout two month of duration a long-term degradation was observed. At 850 °C, -0.5 A/cm2 with 50 vol% H2 the degradation rate was app. 20 mV/1000h...

  19. Phosphine oxide surfactants revisited. (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G


    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  20. Main Oxidizer Valve Design (United States)

    Addona, Brad; Eddleman, David


    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  1. Zinc Oxide Nanoparticle Photodetector

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang


    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  2. Wet oxidation of a spacecraft model waste (United States)

    Johnson, C. C.; Wydeven, T.


    Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.

  3. Bilirubin oxidation in brain. (United States)

    Hansen, T W


    Bilirubin is a product of heme catabolism which by virtue of its lipid solubility can cross the blood-brain barrier and enter the brain. Neonatal jaundice is a common transitional phenomenon which is due to the combination of increased heme catabolism and rate limitations as far as hepatic conjugation and biliary excretion of bilirubin. In the great majority of cases this is an innocuous condition, which is even posited to have some beneficial effects due to the ability of bilirubin to quench free oxygen radicals. However, because bilirubin is neurotoxic, hyperbilirubinemia in the newborn may exceptionally result in death in the neonatal period, or survival with severe neurological sequelae (kernicterus). Bilirubin enters the brain through an intact blood-brain barrier. Clearance of bilirubin from brain partly involves retro-transfer through the blood-brain barrier, and possibly also through the brain-CSF barrier into CSF. Work in our lab during the past 5 years has substantiated earlier work which had suggested that bilirubin may also be metabolized in brain. The responsible enzyme is found on the inner mitochondrial membrane, and oxidizes bilirubin at a rate of 100-300 pmol bilirubin/mg protein/minute. The enzyme activity is lower in the newborn compared with the mature animal, and is also lower in neurons compared with glia. Studies of different rat strains have documented genetic variability. The enzyme is cytochrome-c-dependent, but has as yet not been unequivocally identified. The rate of oxidation of bilirubin is such that this enzyme probably contributes meaningfully to the clearance of bilirubin from brain.

  4. Oxidative stress in Parkinson's disease. (United States)

    Nikam, Shashikant; Nikam, Padmaja; Ahaley, S K; Sontakke, Ajit V


    Oxidative stress contributes to the cascade, leading to dopamine cell degeneration in Parkinson's disease. However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to or is a consequence of, these events. Oxidative stress was assessed by estimating lipid peroxidation product in the form of thiobarbituric acid reactive substances, nitric oxide in the form of nitrite & nitrate. Enzymatic antioxidants in the form of superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin and non enzymatic antioxidant vitamins e.g. vitamin E and C in either serum or plasma or erythrocyte in 40 patients of Parkinson's disease in the age group 40-80 years. Trace elements e.g. copper, zinc and selenium were also estimated. Plasma thiobarbituric acid reactive substances and nitric oxide levels were Significantly high but superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin, vitamin-E, vitamin-C, copper, zinc and selenium levels were significantly low in Parkinson's disease when compared with control subjects. Present study showed that elevated oxidative stress may be playing a role in dopaminergic neuronal loss in substentia nigra pars compacta and involved in pathogenesis of the Parkinson's disease.

  5. Inhibiting Wet Oxidation of Ammonia (United States)

    Onisko, D. B. L.


    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  6. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal (United States)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.


    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  7. Leaching effect in gadolinia-doped ceria aqueous suspensions for ceramic processes (United States)

    Caldarelli, A.; Mercadelli, E.; Presto, S.; Viviani, M.; Sanson, A.


    Gadolinium doped ceria (CGO) is a commonly used electrolytic material for Solid Oxide Fuel Cells (SOFCs) and for this reason different shaping methods for its deposition are reported in literature. Most of these processes are based on the use of organic-based CGO suspensions, but water-based processes are acquiring increasingly interest for their economical and environmental friendly properties. In this paper we reported how the components of water-based suspension and some unexpected process parameters can deeply affect the functional properties of the final powder. In particular, we observed that CGO powders are strongly affected by ionic leaching induced by furoic acid used as dispersant: the extent of this leaching was related to the dispersant concentration and suspension's ball-milling-time; the phenomenon was confirmed by ICP-AES analyses on suspensions surnatant. Most importantly, ionic leaching affected the electrical properties of CGO: leached powder showed a higher ionic conductivity as a consequence of a partial removal of Gd ions at the grain boundaries. This work is therefore pointing out that when considering water-based suspensions, it is extremely important to carefully consider all the process parameters, including the organic components of the ceramic suspension, as these could lead to unexpected effects on the properties of the powder, affecting the performance of the final shaped material.

  8. Stabilization of elusive silicon oxides. (United States)

    Wang, Yuzhong; Chen, Mingwei; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Schleyer, Paul von R; Robinson, Gregory H


    Molecular SiO2 and other simple silicon oxides have remained elusive despite the indispensable use of silicon dioxide materials in advanced electronic devices. Owing to the great reactivity of silicon-oxygen double bonds, as well as the low oxidation state of silicon atoms, the chemistry of simple silicon oxides is essentially unknown. We now report that the soluble disilicon compound, L:Si=Si:L (where L: = :C{N(2,6-(i)Pr2C6H3)CH}2), can be directly oxidized by N2O and O2 to give the carbene-stabilized Si2O3 and Si2O4 moieties, respectively. The nature of the silicon oxide units in these compounds is probed by spectroscopic methods, complementary computations and single-crystal X-ray diffraction.

  9. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)


    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  10. Nanotoxicology of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amedea B. Seabra


    Full Text Available This review discusses recent advances in the synthesis, characterization and toxicity of metal oxide nanoparticles obtained mainly through biogenic (green processes. The in vitro and in vivo toxicities of these oxides are discussed including a consideration of the factors important for safe use of these nanomaterials. The toxicities of different metal oxide nanoparticles are compared. The importance of biogenic synthesized metal oxide nanoparticles has been increasing in recent years; however, more studies aimed at better characterizing the potent toxicity of these nanoparticles are still necessary for nanosafely considerations and environmental perspectives. In this context, this review aims to inspire new research in the design of green approaches to obtain metal oxide nanoparticles for biomedical and technological applications and to highlight the critical need to fully investigate the nanotoxicity of these particles.

  11. BRCA1 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yong Weon Yi


    Full Text Available The breast cancer susceptibility gene 1 (BRCA1 has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  12. Ethylene oxide removal by sorption on aluminium oxide

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.


    Full Text Available The dynamics of ethylene oxide sorption and desorption on Al2O3 sorbent were investigated. The investigations of ethylene oxide sorption on Al2O3 show that significant sorption appeared above 125°C. The removal of sorbed ethylene oxide from Al2O3 was achieved by continuous increasing of the temperature up to 450°C in air stream. The analysis of desorbed products show that 90% of adsorbed ethylene oxide is converted to CO2 and the rest consists of the three derivatives of ethylene oxide. The exact composition of desorbed organic products will be determined in further investigation. The desorption temperature profiles point out the presence of two exothermic picks, as was confirmed by detection of CO2 and derivates of ethylene oxide at these temperatures. Investigation of textural characteristics and thermal stability of Al2O3 sorbent show that there are no changes of any characteristics of Al2O3 in sorption/desorption operating temperatures regimes. Only at 700°C the specific surface area of Al2O3 decreases of about 10%. This indicates that the investigated Al2O3 is convenient material for removal of ethylene oxide by sorption.

  13. Periodate Oxidation of Methylcellulose: Characterization and Properties of Oxidized Derivatives

    Directory of Open Access Journals (Sweden)

    Marguerite Rinaudo


    Full Text Available In this paper, the behavior of oxidized methylcelluloses is compared with that of the initial methylcellulose, an amphiphilic cellulose derivative. Methylcelluloses are important for many applications in the cosmetic and food industries. The mechanism of thermo-gelation of methylcellulose is briefly explained as well as the method of oxidation of polysaccharides. Then, our experiments involve the preparation of oxidized methylcelluloses: three degrees of oxidation are prepared and the new polymers are characterized by NMR, IR, SEC and rheology. Oxidation with periodate theoretically allows introduction of two aldehydic groups on C2–C3 glycol positions of anhydroglucose units. This reaction not only enhances the flexibility of the cellulosic backbone, but also causes a decrease in the molecular weight. In particular, the rheological behavior of methylcellulose and oxidized methylcellulose as a function of temperature is examined. The oxidized methylcelluloses prepared, being rich in aldehyde functions, become interesting intermediaries to prepare new cellulose derivatives. In this paper, three examples of reductive amination based on the reaction of modified methylcelluloses and −NH2 groups of different molecules are described: β-alanine produces a polyelectrolyte; chitosan and hyaluronan-ADH (derivative obtained with adipic dihydrazide allowing introduction of −NH2 functions on HA backbone are crosslinked and give new biocompatible hydrogels.

  14. Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions

    DEFF Research Database (Denmark)

    Kleis, Jesper; Jones, Glenn; Abild-Pedersen, Frank;


    the Ni surfaces to other metals of interest. This allows the reactivity over the different metals to be understood in terms of two reactivity descriptors, namely, the carbon and oxygen adsorption energies. By combining a simple free-energy analysis with microkinetic modeling, activity landscapes of anode......First-principles calculations are used to predict a plausible reaction pathway for the methane oxidation reaction. In turn, this pathway is used to obtain trends in methane oxidation activity at solid oxide fuel cell (SOFC) anode materials. Reaction energetics and barriers for the elementary...

  15. Oxidants, antioxidants and carcinogenesis. (United States)

    Ray, Gibanananda; Husain, Syed Akhtar


    Reactive oxygen metabolites (ROMs), such as superoxide anions (O2*-) hydrogen peroxide (H2O2), and hydroxyl radical (*OH), malondialdehyde (MDA) and nitric oxide (NO) are directly or indirectly involved in multistage process of carcinogenesis. They are mainly involved in DNA damage leading sometimes to mutations in tumour suppressor genes. They also act as initiator and/or promotor in carcinogenesis. Some of them are mutagenic in mammalian systems. O2*-, H2O2 and *OH are reported to be involved in higher frequencies of sister chromatid exchanges (SCEs) and chromosome breaks and gaps (CBGs). MDA, a bi-product of lipid peroxidation (LPO), is said to be involved in DNA adduct formations, which are believed to be responsible for carcinogenesis. NO, on the other hand, plays a duel role in cancer. At high concentration it kills tumour cells, but at low concentration it promotes tumour growth and metastasis. It causes DNA single and double strand breaks. The metabolites of NO such as peroxynitrite (OONO-) is a potent mutagen that can induce transversion mutations. NO can stimulate O2*-/H2O2/*OH-induced LPO. These deleterious actions of oxidants can be countered by antioxidant defence system in humans. There are first line defense antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). SOD converts O2*- to H2O2, which is further converted to H2O with the help of GPx and CAT. SOD inhibits *OH production. SOD also act as antipoliferative agent, anticarcinogens, and inhibitor at initiation and promotion/transformation stage in carcinogenesis. GPx is another antioxidative enzyme which catalyses to convert H2O2, to H2O. The most potent enzyme is CAT. GPx and CAT are important in the inactivation of many environmental mutagens. CAT is also found to reduce the SCE levels and chromosomal aberrations. Antioxidative vitamins such as vitamin A, E, and C have a number of biological activities such as immune stimulation, inhibition of

  16. The oxidation and corrosion of ODS alloys (United States)

    Lowell, Carl E.; Barrett, Charles A.


    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  17. Oxidation And Hot Corrosion Of ODS Alloy (United States)

    Lowell, Carl E.; Barrett, Charles A.


    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  18. Bio-oxidation of arsenopyrite

    Institute of Scientific and Technical Information of China (English)

    JIANG Tao; LI Qian; YANG Yong-bin; LI Guang-hui; QIU Guan-zhou


    Oxidation of arsenopyrite with Acidithiobacillus ferrooxidans was studied.The electrochemical results show that arsenopyrite is firstly oxidized to As2S2 at the potential of 0.2-0.3 V (vs SHE) and As2S2 covers the electrode and retards the process continuously.While at higher potential over 0.3 V (vs SHE),As2S2 is oxidized to H3AsO3,and H3AsO3 is then oxidized to H3AsO4 at 0.8 V (vs SHE).The leaching results show that the addition of FeS2 can promote the oxidation of As3+ to As5+ and increase the activity of the bacteria.The best bio-oxidation technical parameters are the initial pH of 1.8-2.0,particle sizes less than 0.074 mm,temperature in the range of 25-30 ℃ and rotating speed of the orbital incubator of 100-160 r/min.The results provide theoretical and technological supports of bio-oxidation arsenopyrite for pretreating refractory arsenic gold ores.

  19. Room temperature chemical oxidation of delafossite-type oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trari, M.; Toepfer, J.; Doumerc, J.P.; Pouchard, M.; Hagenmuller, P. (Laboratoire de Chimie du Solide du CNRS, Talence (France)); Ammar, A. (Universite Cadi Ayyad, Marrakech (Morocco))


    Examination of the delafossite-type structure of CuLaO[sub 2] and CuYO[sub 2] suggests that there is room enough to accommodate intercalated oxide ions and the charge compensation resulting simply from the oxidation of an equivalent amount of Cu[sup +] into Cu[sup 2+]. Reaction with hypohalites in an aqueous solution leads to color change. Evidence of the formation of Cu[sup 2+] is given by TGA, iodometric titration, and magnetic (static and EPR) measurements. The obtained La and Y compounds seem to behave in a different way: Whereas CuLaO[sub 2+x] appears as a single phase, CuYO[sub 2+x] corresponds to a two-phase mixture, with respectively low and high x values, the latter being isostructural with the thermally oxidized compound recently reported. Comparison is stressed between the oxides obtained at higher temperatures.

  20. Selective propene oxidation on mixed metal oxide catalysts

    CERN Document Server

    James, D W


    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including coba...

  1. Oxidative desulfurization: kinetic modelling. (United States)

    Dhir, S; Uppaluri, R; Purkait, M K


    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  2. Nitric oxide and cardiovascular system. (United States)

    Cengel, Atiye; Sahinarslan, Asife


    Endothelium has many important functions including the control of blood-tissue permeability and vascular tonus, regulation of vascular surface properties for homeostasis and inflammation. Nitric oxide is the chief molecule in regulation of endothelial functions. Nitric oxide deficiency, which is also known as endothelial dysfunction, is the first step for the occurrence of many disease states in cardiovascular system including heart failure, hypertension, dyslipidemia, insulin resistance, diabetes mellitus, hyperhomocysteinemia and smoking. This review deals with the importance of nitric oxide for cardiovascular system. It also includes the latest improvements in the diagnosis and treatment of endothelial dysfunction.

  3. Abiotic oxidation of catechol by soil metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Colarieti, Maria Letizia [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Naples (Italy); Toscano, Giuseppe [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Naples (Italy)]. E-mail:; Ardi, Maria Raffaella [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Naples (Italy); Greco, Guido [Dipartimento di Ingegneria Chimica, Universita di Napoli Federico II, Naples (Italy)


    The mechanism of catechol oxidation by soil metal oxides is investigated in a slurry reactor. This abiotic transformation is shown to consist in a three-step process. The first step is a heterogeneous reaction. Catechol undergoes fast, partial oxidation at the expenses of Fe and Mn oxides contained in the soil. In the second step, reduced Fe and Mn are released into the aqueous solution and immediately complexed by catechol. Metal-catecholate complexes are stable at the very low dissolved-oxygen concentration levels attained under nitrogen sparging. The third step is a homogenous reaction. The highly reactive intermediate produced by catechol partial oxidation initiates catechol polymerisation. Under nitrogen sparging, the polymerisation process ends rather rapidly, thus yielding only partial conversion of the phenol and producing low-molecular weight, water-soluble polymers. Further oxidation of the metal-catecholate complexes formed in the second step only occurs under air sparging. Thus, reactive intermediates are formed at much higher concentration levels than those attained when nearly no oxygen is present in solution. The polymerisation proceeds at a much faster rate until, under the experimental conditions adopted, complete catechol conversion is attained and high-molecular-weight, insoluble polymers are produced.

  4. Nanometer bismuth oxide produced by resistance heating vapor oxidation

    Institute of Scientific and Technical Information of China (English)

    HU Han-xiang; QIU Ke-qiang


    Bismuth oxide has wide applications in superconductive material, photoelectric material, electronic ceramic, electrolyte, and catalysts. To produce ultrafine bismuth oxide powders, some costly heating sources, such as plasma, high frequency induction, electron beam or laser, have to be used in the conventional vapor oxidation methods. The vapor oxidation method was improved by adding a reducing agent in the reaction system, where heating source was resistance tubular oven, instead of special heat source requirement. Nanometer bismuth oxide was prepared at 1 000-1 140 ℃, and the particle characteristics were investigated by XRD, SEM, DTA, laser sedimentograph. With low oxygen concentration (less than 20%) in the carrier gas, the bismuth oxide particle was near-sphere β-Bi2O3 with uniform and fine particle size (d0.5=65 nm, GSD=1.42); while with higher oxygen content (more than 50%), the powders were mixture of Bi2O2CO3 and β-Bi2O3.

  5. La0.99Co0.4Ni0.6O3−δ–Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Mogensen, Mogens Bjerg


    We have studied a new composite SOFC cathode consisting of LaCo0.4Ni0.6O3−δ (LCN60) and Ce0.9Gd0.1O1.95 (CGO). The polarisation resistance (RP) at 750°C and OCV was measured to 0.05±0.01Ωcm2 and the activation energy was determined to be about 1eV. The impedance spectra were modelled with an EQC ...

  6. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.


    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  7. Catastrophic Oxidation of Copper: A Brief Review (United States)

    Belousov, V. V.; Klimashin, A. A.


    A brief review of the current understanding of copper accelerated oxidation in the presence of low-melting oxides (Bi2O3, MoO3, and V2O5) is given. Special attention is paid to the kinetics, thermodynamics, and mechanisms of accelerated oxidation of copper. The mechanisms of two stages (fast and superfast) of the copper accelerated oxidation are considered. It is shown that the fast oxidation of copper occurs by a diffusion mechanism. Oxygen diffusion along the liquid channels in the oxide scale is the rate-limiting step in the overall mechanism. The superfast oxidation of copper occurs by a fluxing mechanism. Realization of the particular mechanism depends on the mass ratio of low-melting oxide to the metal. The mass ratios of low-melting oxide to the metal and the oxygen partial pressures for superfast oxidation of copper are established. A model of the fast oxidation of copper is discussed.

  8. Non-conventional halide oxidation pathways : oxidation by imidazole triplet and surface specific oxidation by ozone (United States)

    Ammann, Markus; Corral-Arroyo, Pablo; Aellig, Raphael; Orlando, Fabrizio; Lee, Ming-Tao; Artiglia, Luca


    Oxidation of halide ions (chloride, bromide, iodide) are the starting point of halogen release mechanisms out of sea water, marine aerosol or other halide containing continental aerosols. Slow oxidation of chloride and bromide by ozone in the bulk aqueous phase is of limited relevance. Faster surface specific oxidation has been suggested based on heterogeneous kinetics experiments. We provide first insight into very efficient bromide oxidation by ozone at the aqueous solution - air interface by surface sensitive X-ray photoelectron spectroscopy indicating significant build-up of an oxidized intermediate at the surface within millisecond time scales. The second source of oxidants in the condensed we have considered is the absorption of light by triplet forming photosensitizers at wavelengths longer than needed for direct photolysis and radical formation. We have performed coated wall flow tube experiments with mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) to represent secondary organic material rich marine aerosol. The halide ions bromide and iodide have been observed to act as efficient electron donors leading to their oxidation, HO2 formation and finally release of molecular halogen compounds. The photosensitization of imidazole-2-carboxaldehyde (IC) involves a well-known mechanism where the triplet excited state of IC is reduced by citric acid to a reduced ketyl radical that reacts with halide ions. A competition kinetics approach has been used to evaluate the rate limiting steps and to assess the significance of this source of halogens to the gas phase.

  9. Resonating Nitrous Oxide Thruster Project (United States)

    National Aeronautics and Space Administration — AeroAstro proposes decomposing nitrous oxide (N2O) as an alternative propellant to existing spacecraft propellants. Decomposing N2O can be used as either a high Isp,...


    This engineering bulletin presents a description and status of supercritical water oxidation technology, a summary of recent performance tests, and the current applicability of this emerging technology. This information is provided to assist remedial project managers, contractors...

  11. Oxidative stability of marine phospholipids

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    Many studies have shown that marine phospholipids (MPL) provide more advantages than fish oil. They have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil). The objective...

  12. Inorganic chemistry: Deconstructing water oxidation (United States)

    Cook, Sarah A.; Borovik, A. S.


    During photosynthesis, the oxygen-evolving complex oxidizes water to produce molecular oxygen. Now, a possible role for the calcium ion in this complex has been proposed based on the electrochemical properties of a series of synthetic heterometallic clusters.

  13. Millisecond Oxidation of Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Scott Han


    This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

  14. Oxidative stress and hypertension. (United States)

    Harrison, David G; Gongora, Maria Carolina


    This review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues. A major clinical challenge is that the routinely used antioxidants are ineffective in preventing or treating cardiovascular disease and hypertension. This is likely because these drugs are either ineffective or act in a non-targeted fashion, such that they remove not only injurious ROS Fig. 5. Proposed role of T cells in the genesis of hypertension and the role of the NADPH oxidase in multiple cells/organs in modulating this effect. In this scenario, angiotensin II stimulates an NADPH oxidase in the CVOs of the brain, increasing sympathetic outflow. Sympathetic nerve terminals in lymph nodes activate T cells, and angiotensin II also directly activates T cells. These stimuli also activate expression of homing signals in the vessel and likely the kidney, which attract T cells to these organs. T cells release cytokines that stimulate the vessel and kidney NADPH oxidases, promoting vasoconstriction and sodium retention. SFO, subfornical organ. 630 Harrison & Gongora but also those involved in normal cell signaling. A potentially important and relatively new direction is the concept that inflammatory cells such as T cells contribute to hypertension. Future studies are needed to understand the interaction of T cells with the CNS, the kidney, and the vasculature and how this might be interrupted to provide therapeutic benefit.

  15. Environmentally Friendly Zirconium Oxide Pretreatment (United States)


    chemistries and is intended to coat interstitial spaces between crystals, and to provide a more insoluble layer at the crystal surface.12 Because...distinct layers (metal/metal oxide and organic coatings), it must have functional groups that interact with both layers. In general, organometallic ...fluorides. In sol-gel chemistry , the applied coating must progress through condensation reactions to transform from a mixed oxide/hydroxide state to

  16. In-Situ Chemical Oxidation (United States)


    desirable in ISFO; therefore, pretreatment via acid injection or acidification of the injected H2O2 solution is common. The overall Fenton-driven...catalyzed by several substances including solid alkalis , metals, metal oxides, carbon, and moisture in the gas phase. Depending on the reactivity...biostimulation with sodium lactate, and at the other two sites, a significant increase in the post-oxidation microbial biomass , and the post-oxi- dation

  17. Functional Hybrid Nano-Oxides (United States)


    ABSTRACT This project was dedicated to investigate and engineer novel properties of oxide based materials , nanostructures and devices with properties that...mechanism for the metal-insulator transition and it also opens up the possibility for the preparation of unique nanostructured materials . A second major...spare time since the funding ended before. Development of novel synthesis and characterization methods in area of Nano-Oxides paved the way to

  18. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.


    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square-root relati......-root relationship between the rate of change of resistivity and the resistivity change. The saturation defect density at room temperature is estimated on the basis of a model for defect creation in cuprous oxide....

  19. Catalytic Chemistry on Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.


    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  20. 21 CFR 186.1300 - Ferric oxide. (United States)


    ... iron hydroxide oxide. The product is red-brown to black trigonal crystals. (b) In accordance with § 186... Substances Affirmed as GRAS § 186.1300 Ferric oxide. (a) Ferric oxide (iron (III) oxide, Fe2O3, CAS Reg....

  1. Metal oxide nanostructures with hierarchical morphology (United States)

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish


    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  2. 49 CFR 173.337 - Nitric oxide. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric oxide. 173.337 Section 173.337... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.337 Nitric oxide. (a) Nitric oxide must be... valve and valve seat that will not deteriorate in contact with nitric oxide. Cylinders or valves may...

  3. Solid oxide electrolyser cell

    Energy Technology Data Exchange (ETDEWEB)

    Hoejgaard Jensen, S.


    Solid oxide fuel cells (SOFCs) produced at Riso National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 deg. C and a cell voltage of 1.48V the current density was -3.6 A/cm{sup 2} with app. 30% H{sub 2} + 70% H{sub 2}O in the inlet gas and a H{sub 2}O utilization of app. 40%. The tested SOECs were also used for CO{sub 2} electrolysis. Economy studies of CO and H2 production show that especially H{sub 2} production can be competitive in areas with cheap electricity. Assuming the above described initial performance and a lifetime of 10 years it is possible to achieve a production price of 0.7 US dollar/kg H{sub 2} with an electricity price of 1.3 US cent/kWh. The cell voltage was measured as function of time. In test of about two month of duration a long-term degradation was observed. At 850 deg. C, -0.5 A/cm{sup 2} with 50 vol% H{sub 2} the degradation rate was app. 20 mV/1000h. It was shown that the degradation happens at Ni/YSZ-electrode. The long term degradation is probably caused by coarsening of the Ni-particles. After onset of electrolysis operation a transient passivation/reactivation phenomena with duration of several days was observed. It was shown that the phenomenon is attributed to the SiO{sub 2} contamination at the Ni/YSZ electrode-electrolyte interface. The SiO{sub 2} arises from the albite glass sealing (NaAlSi{sub 3}O{sub 8}) that surrounds the electrode. Si may enter the Ni/YSZ electrode via the reaction Si(OH){sub 4}(g) {r_reversible} SiO{sub 2}(l)+H{sub 2}O(g). At the active sites of the Ni/YSZ electrode steam is reduced via the reaction H{sub 2}O - 2e {yields} H{sub 2}+O{sup 2-} . This shifts the equilibrium of the first reaction to form SiO{sub 2}(l) at the active sites. After a certain time the sealing crystallizes and the SiO{sub 2}(l) evaporates from the active sites and the cell reactivates. The passivation is shown to relate to a build up of a

  4. Protein oxidation in muscle foods: A review

    DEFF Research Database (Denmark)

    Lund, Marianne; Heinonen, Marina; Baron, Caroline P.


    insight into the reactions involved in the oxidative modifications undergone by muscle proteins. Moreover, a variety of products derived from oxidized muscle proteins, including cross-links and carbonyls, have been identified. The impact of oxidation on protein functionality and on specific meat quality...... and consequences of Pox in muscle foods. The efficiency of different anti-oxidant strategies against the oxidation of muscle proteins is also reported.......Protein oxidation in living tissues is known to play an essential role in the pathogenesis of relevant degenerative diseases, whereas the occurrence and impact of protein oxidation (Pox) in food systems have been ignored for decades. Currently, the increasing interest among food scientists...

  5. Size of oxide vacancies in fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Norby, Poul; Hendriksen, Peter Vang


    An analysis of the effective radii of vacancies and the stoichiometric expansion coefficient is performed on metal oxides with fluorite and perovskite structures. Using the hard sphere model with Shannon ion radii we find that the effective radius of the oxide vacancy in fluorites increases...... with increasing ion radius of the host cation and that it is significantly smaller than the radius of the oxide ion in all cases, from 37% smaller for HfO2 to 13 % smaller for ThO2. The perovskite structured LaGaO3 doped with Sr or Mg or both is analyzed in some detail. The results show that the effective radius...... of an oxide vacancy in doped LaGaO3 is only about 6 % smaller than the oxide ion. In spite of this the stoichiometric expansion coefficient (a kind of chemical expansion coefficient) of the similar perovskite, LaCrO3, is significantly smaller than the stoichiometric expansion coefficient of the fluorite...

  6. Oxidative stress and anti-oxidative mobilization in burn injury. (United States)

    Parihar, Arti; Parihar, Mordhwaj S; Milner, Stephen; Bhat, Satyanarayan


    A severe burn is associated with release of inflammatory mediators which ultimately cause local and distant pathophysiological effects. Mediators including Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are increased in affected tissue, which are implicated in pathophysiological events observed in burn patients. The purpose of this article is to understand the role of oxidative stress in burns, in order to develop therapeutic strategies. All peer-reviewed, original and review articles published in the English language literature relevant to the topic of oxidative stress in burns in animals and human subjects were selected for this review and the possible roles of ROS and RNS in the pathophysiology of burns are discussed. Both increased xanthine oxidase and neutrophil activation appear to be the oxidant sources in burns. Free radicals have been found to have beneficial effects on antimicrobial action and wound healing. However following a burn, there is an enormous production of ROS which is harmful and implicated in inflammation, systemic inflammatory response syndrome, immunosuppression, infection and sepsis, tissue damage and multiple organ failure. Thus clinical response to burn is dependent on the balance between production of free radicals and its detoxification. Supplementation of antioxidants in human and animal models has proven benefit in decreasing distant organ failure suggesting a cause and effect relationship. We conclude that oxidative damage is one of the mechanisms responsible for the local and distant pathophysiological events observed after burn, and therefore anti-oxidant therapy might be beneficial in minimizing injury in burned patients.

  7. Graphene-supported metal oxide monolith

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah


    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  8. A Study of Adherent Oxide Formation (United States)


    improve oxide scale adherence to NiCrAl were investigated. Laser-processed materials were isothermally and cyclically oxidized and oxide scale...modified NiCrAl altered the morphology of the alumina scale and promoted the formation of a thinner, dense protective layer. • Thin aluminum oxide films...6 A. Materials. ........................... 6 B. Oxidation Studies. ....................... 7 1. NiCrAl .. .......................... 7a2

  9. Mesoporous metal oxide graphene nanocomposite materials (United States)

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai


    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  10. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings (United States)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is

  11. Oxidation of Octopus vulgaris hemocyanin by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Salvato, B.; Giacometti, G.M.; Beltramini, M.; Zilio, F.; Giacometti, G.; Magliozzo, R.S.; Peisach, J.


    The reaction of Octopus vulgaris hemocyanin with nitrite was studied under a variety of conditions in which the green half-met derivative is formed. Analytical evidence shows that the amount of chemically detectable nitrite in various samples of the derivative is not proportional to the cupric copper detected by EPR. The kinetics of oxidation of hemocyanin as a function of protein concentration and pH, in the presence of nitrite and ascorbate, is consistent with a scheme in which NO/sub 2/ is the reactive oxidant. We suggest that the green half-methemocyanin contains a metal center with one cuprous and one cupric copper without an exogenous nitrogen oxide ligand.

  12. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine


    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  13. Nanoelectronics in oxides and semiconductors (United States)

    Cheng, Guanglei

    The success of silicon industry lies on three major properties of silicon, an easily formed oxide layer to allow field effect operation, tunability of carrier density and high device scalability. All these features exist in oxides, together with some novel properties such as ferroelectricity, magnetic effects and metal-insulator transition. With the recent development in material growth method including molecular beam epitaxy (MBE), pulsed laser deposition (PLD) and reflection high energy electron diffraction (REED), atomically engineered oxide interfaces become available, thus opening the door to the novel oxide nanoelectronics. In this dissertation we create and study nanoelectronics in oxides, semiconductors and hybrid of these two. We used a conductive atomic force microscope tip to write single electron transistors in the 3-unit-cell-LaAlO 3/SrTiO3 heterostructure and observed ferroelectric tunneling behaviors. We also fabricated ferroelectric field transistors directly on silicon using strained SrTiO3 ferroelectric film and further confirmed the ferroelectric properties of this device. Meanwhile, we developed an ultrasensitive microwave capacitance sensor to study the electronic properties of self-assembled quantum dots and the switching mechanism of memristive devices. The integration of this sensor to a home made atomic force microscope provides an important tool to study the dielectric properties at nanoscale.

  14. Oxidation of low cobalt alloys (United States)

    Barrett, C. A.


    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  15. Integrating functional oxides with graphene (United States)

    Hong, X.; Zou, K.; DaSilva, A. M.; Ahn, C. H.; Zhu, J.


    Graphene-oxide hybrid structures offer the opportunity to combine the versatile functionalities of oxides with the excellent electronic transport in graphene. Understanding and controlling how the dielectric environment affects the intrinsic properties of graphene is also critical to fundamental studies and technological development of graphene. Here we review our recent effort on understanding the transport properties of graphene interfaced with ferroelectric Pb(Zr,Ti)O3 (PZT) and high-κ HfO2. Graphene field effect devices prepared on high-quality single crystal PZT substrates exhibit up to tenfold increases in mobility compared to SiO2-gated devices. An unusual and robust resistance hysteresis is observed in these samples, which is attributed to the complex surface chemistry of the ferroelectric. Surface polar optical phonons of oxides in graphene transistors play an important role in the device performance. We review their effects on mobility and the high source-drain bias saturation current of graphene, which are crucial for developing graphene-based room temperature high-speed amplifiers. Oxides also introduce scattering sources that limit the low temperature electron mobility in graphene. We present a comprehensive study of the transport and quantum scattering times to differentiate various scattering scenarios and quantitatively evaluate the density and distribution of charged impurities and the effect of dielectric screening. Our results can facilitate the design of multifunctional nano-devices utilizing graphene-oxide hybrid structures.

  16. Oxide fiber targets at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. E-mail:; Bergmann, U.C.; Carminati, D.; Catherall, R.; Cederkaell, J.; Correia, J.G.; Crepieux, B.; Dietrich, M.; Elder, K.; Fedoseyev, V.N.; Fraile, L.; Franchoo, S.; Fynbo, H.; Georg, U.; Giles, T.; Joinet, A.; Jonsson, O.C.; Kirchner, R.; Lau, Ch.; Lettry, J.; Maier, H.J.; Mishin, V.I.; Oinonen, M.; Peraejaervi, K.; Ravn, H.L.; Rinaldi, T.; Santana-Leitner, M.; Wahl, U.; Weissman, L


    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxide fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxide fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce very intense {sup 6}He beams (order of 10{sup 13} ions per second) via the {sup 9}Be(n,{alpha}) reaction using spallation neutrons.

  17. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)


    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  18. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders;


    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  19. Atomistic stimulation of defective oxides

    CERN Document Server

    Minervini, L


    defect processes. The predominant intrinsic disorder reaction and the mechanism by which excess oxygen is accommodated are established. Furthermore, the most favourable migration mechanism and pathway for oxygen ions is predicted. Chapters 7 and 8 investigate pyrochlore oxides. These materials are candidates for solid oxide fuel cell components and as actinide host phases. Such applications require a detailed understanding of the defect processes. The defect energies, displayed as contour maps, are able to account for structure stability and, given an appropriate partial charge potential model, to accurately determine the oxygen positional parameter. In particular, the dependence of the positional parameter on intrinsic disorder is predicted. It is demonstrated, by radiation damage experiments, that these results are able to predict the radiation performance of pyrochlore oxides. Atomistic simulation calculations based on energy minimization techniques and classical pair potentials are used to study several i...

  20. Magnetic disorder in cupric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, S.J.; Borzi, R.A.; Mercader, R.C. [Universidad Nacional de La Plata, C.C. 67, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)


    Investigations of the abnormal magnetic properties of cupric oxide reveal discrepancies between both experimental results and theoretical explanations. Through iron-doping cupric oxide by ball-milling and thermal treatments we have been able to obtain Moessbauer results that are an experimental evidence of semi-disorder. The magnetic hyperfine field of the Cu{sub 0.995}Fe{sub 0.005}O solid solution displays a spin-glass-like thermal dependence that undergoes two transitions, one at about 150 K, that can be assigned to the long-range ordering of the cupric oxide spins, and the second one at some temperature between 4.2 and 15 K, that exposes either the freezing of the Fe{sup 3+} spins into a local canted state or of magnetic clusters in the CuO matrix.

  1. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia


    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  2. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.


    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)


    Directory of Open Access Journals (Sweden)

    Maria Dimarogona


    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  4. Oxide Fiber Targets at ISOLDE

    CERN Document Server

    Köster, U; Carminati, D; Catherall, R; Cederkäll, J; Correia, J G; Crepieux, B; Dietrich, M; Elder, K; Fedosseev, V; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Georg, U; Giles, T; Joinet, A; Jonsson, O C; Kirchner, R; Lau, C; Lettry, Jacques; Maier, H J; Mishin, V I; Oinonen, M; Peräjärvi, K; Ravn, H L; Rinaldi, T; Santana-Leitner, M; Wahl, U; Weissman, L


    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxyde fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxyde fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce...

  5. Bismuth(V) oxide and silver bismuthate as oxidizing agents for gas-chromatographic elemental microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Shvykin, A.Y.; Platonov, V.V.; Proskuryakov, V.P.; Chilachava, K.B.; Khmarin, E.M.; Kovtun, I.V. [Tolstoy State Pedag University, Tula (Russian Federation)


    Bismuth(V) oxide, silver bismuthate, and a mixture of bismuth(V) oxide with fine silver powder were studied as oxidizing additives in gas-chromatographic elemental microanalysis of readily combustible organic substances and coal.

  6. Gas sensitivity of indium oxide

    Institute of Scientific and Technical Information of China (English)

    HUANG Shi-zhen; LIN Wei; CHEN Wen-zhe


    The yellow indium oxide nanoparticles were prepared by sintering the white deposition at 500 ℃. The crystalline indium chloride and ammonia were used as the starting material. The results show that, by analyzing the particles through X-ray diffraction and TEM, the particles are very small, spherical, and the particle size is about 40 nm. The direct-heat components made from indium oxide in Cl2 and NO2 was tested respectively, the component is far more sensitive to NO2 than to Cl2 at low heating temperature, and the status is reversed at high heating temperature.

  7. Superconducting interfaces between insulating oxides. (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J


    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  8. Study of Adherent Oxide Scales (United States)


    The bond between alumina and NiCrAl substrate is intrinsically strong. The segregation of sulfur to the interface reduces bond strength, sulfur is...which laser-processing and minor element additions improve oxide scale adherence of a NiCrAl turbine coating composition. However, it was shown at the...adherence. However, significant observations were made with respect to the morphology of the oxide scale that forms on NiCrAl and NiCrAlY and these are

  9. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)


    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  10. Zinc oxide doped graphene oxide films for gas sensing applications (United States)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.


    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  11. Graphene oxide and H2 production from bioelectrochemical graphite oxidation. (United States)

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong


    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  12. Facile Access to Graphene Oxide from Ferro-Induced Oxidation (United States)

    Yu, Chao; Wang, Cai-Feng; Chen, Su


    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  13. Oxidative stress inhibition and oxidant activity by fibrous clays. (United States)

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia


    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays.

  14. Oxidation mechanisms for alloys in single-oxidant gases

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, D.P.


    Scales formed on alloys invariably contain the alloy constituents in a ratio different from that in the alloy, owing to the differing thermodynamic tendencies of the alloy components to react with the oxidant and to differences in diffusion rates in scale and alloy phases. This complex interrelationship between transport rates and the thermodynamics of the alloy-oxidant system can be analyzed using multicomponent diffusion theory when transport-controlled growth of single or multi-layered scales occurs. In particular, the superimposition of the diffusion data on an isothermal section of the appropriate phase diagram indicates the likely morphologies of the reaction products, including the sequence of phases found in the scale, the occurrence of internal oxidation and the development of an irregular metal/scale interface. The scale morphologies on alloys are also time-dependent: there is an initial transient stage, a steady state period, and a final breakdown, the latter often related to mechanical influences such as scale adherence, spallation, thermal or mechanical stresses and void formation. Mechanical influences have a more devastating effect in alloy oxidation due to the changes in alloy surface composition during the steady state period.

  15. Oxidative removal of aqueous steroid estrogens by manganese oxides. (United States)

    Xu, Lei; Xu, Chao; Zhao, Meirong; Qiu, Yuping; Sheng, G Daniel


    This study investigated the oxidative removal of steroid estrogens from water by synthetic manganese oxide (MnO2) and the factors influencing the reactions. Using 1 x 10(-5)M MnO2 at pH 4, estrone (E1), 17beta-estradiol (E2), estriol (E3) and 17alpha-ethinylestradiol (EE2), all at 4 x 10(-6)M, were rapidly removed within 220 min, indicating the effectiveness of MnO2 as an oxidizing agent towards estrogens. E2 removal increased with decreasing pH over the tested range of 4-8, due most likely to increased oxidizing power of MnO2 and a cleaner reactive surface in acidic solutions. Coexisting metal ions of 0.01 M (Cu(II), Zn(II), Fe(III) and Mn(II)) and Mn(II) released from MnO2 reduction competed with E2 for reactive sites leading to reduced E2 removal. Observed differential suppression on E2 removal may be related to different speciations of metals, as suggested by the MINTEQ calculations, and hence their different adsorptivities on MnO2. By suppressing the metal effect, humic acid substantially enhanced E2 removal. This was attributed to complexation of humic acid with metal ions. With 0.01 M ZnCl2 in solutions containing 1 mg l(-1) humic acid, the binding of humic acid for Zn(II) was determined at 251 mmol g(-1). An in vitro assay using human breast carcinoma MCF-7 cells indicated a near elimination of estrogenic activities without secondary risk of estrogen solutions treated with MnO2. Synthetic MnO2 is therefore a promising chemical agent under optimized conditions for estrogen removal from water. Metal chelators recalcitrant to MnO2 oxidation may be properly used to further enhance the MnO2 performance.

  16. [Solidification of volatile oil with graphene oxide]. (United States)

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao


    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  17. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt


    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  18. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gurunathan S


    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Ahmed Abdal Dayem, Vasuki Eppakayala, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, South KoreaBackground: Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO and reduced graphene oxide (rGO in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME, for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared.Methods: The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation.Results: Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of

  19. Oxidation Mechanism of Copper Selenide (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri


    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  20. Oxidative Stress and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Jie Li


    Full Text Available Living cells continually generate reactive oxygen species (ROS through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.

  1. Riboflavin photosensitized oxidation of myoglobin. (United States)

    Grippa, Juliana M; de Zawadzki, Andressa; Grossi, Alberto B; Skibsted, Leif H; Cardoso, Daniel R


    The reaction of the fresh meat pigment oxymyoglobin, MbFe(II)O₂, and its oxidized form metmyoglobin, MbFe(III), with triplet-state riboflavin involves the pigment protein, which is oxidatively cleaved or dimerized as shown by SDS-PAGE and Western blotting. The overall rate constant for oxidation of MbFe(II)O₂ by ³Rib is (3.0 ± 0.5) × 10⁹ L·mol⁻¹·s⁻¹ and (3.1 ± 0.4) × 10⁹ L·mol⁻¹·s⁻¹ for MbFe(III) in phosphate buffer of pH 7.4 at 25 °C as determined by laser flash photolysis. The high rates are rationalized by ground state hydrophobic interactions as detected as static quenching of fluorescence from singlet-excited state riboflavin by myoglobins using time-resolved fluorescence spectroscopy and a Stern-Volmer approach. Binding of riboflavin to MbFe(III) has K(a) = (1.2 ± 0.2) × 10⁴ mol·L⁻¹ with ΔH° = -112 ± 22 kJ·mol⁻¹ and ΔS° = -296 ± 75 J·mol⁻¹·K⁻¹. For meat, riboflavin is concluded to be a photosensitizer for protein oxidation but not for discoloration.

  2. Perovskite catalysts for oxidative coupling (United States)

    Campbell, Kenneth D.


    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  3. Durability of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hauch, Anne; Hjelm, Johan


    In recent years extended focus has been placed on monitoring and understanding degradation mechanisms in both solid oxide fuel cells and solid oxide electrolysis cells. The time-consuming nature of degradation experiments and the disparate conclusions from experiment reproductions indicates that ...... behaviour and mechanisms are discussed. For ease of navigation, the review is separated into the various cell components – fuel electrode, electrolyte and oxygen electrode. Finally, nano-particle impregnate stability is discussed.......In recent years extended focus has been placed on monitoring and understanding degradation mechanisms in both solid oxide fuel cells and solid oxide electrolysis cells. The time-consuming nature of degradation experiments and the disparate conclusions from experiment reproductions indicates...... that not all degradation mechanisms are fully understood. Traditionally, cell degradation has been attributed to the materials, processing and cell operating conditions. More recently, focus has been placed on the effect of raw material and gas impurities and their long-term effect on cell degradation. Minor...

  4. Method of oxidizing an alcohol

    NARCIS (Netherlands)

    Dijksman, A.; Arends, I.W.C.E.; Sheldon, R.A.


    The invention relates to a method of oxidizing an alcohol to form an aldehyde or ketone using a ruthenium ion and oxygen in the presence of a substantially stable N-O free radical compound, wherein two atoms bound to the nitrogen atom are not themselves hydrogen carriers. It has been found that with

  5. Hemoglobin oxidative stress in cancer. (United States)

    Della Rovere, F; Granata, A; Broccio, M; Zirilli, A; Broccio, G


    The role played by free radicals in carcinogenesis and their relationships with antioxidant pool and cancer have already been shown. Free radicals induce increased membrane permeability through membrane lipid peroxidation, protein oxidation and histamine release from mast cells. Free radicals also cause oxyhemoglobin oxidative stress which increases methemoglobin and hemichromes. For this reason, we studied the in vitro formation of methemoglobin at 0' and 90', dosed following the HPLC method, after oxidative stress of blood by means of acetylphenylhydrazine in 40 subjects with cancer and 40 healthy donors. The results showed that methemoglobin formation was highly significant in tumors as compared to controls (P < 0.0001). The statistical analyses we carried out showed that metHb formation is not affected by age, sex, smoking habit, red blood cell number, Hb, Ht or tumor staging. This makes us believe that free radicals alter erythrocyte membrane permeability and predenaturate oxyhemoglobin so that erythrocyte membrane becomes more susceptible to new oxidative stress. This caused the abnormal response we found. Our results clearly underline the role played by free radicals in tumorous disease and provide a successful and easy method to detect early, even in a pre-clinical stage, the presence of tumorous alterations in the human body.

  6. Ediacaran oxidation and biotic evolution. (United States)

    Grey, Kathleen; Calver, Clive R


    The link between the radiation of various lineages of eukaryotes in the latest Proterozoic and massive environmental changes--oxygenation, global ice ages and bolide impact--is the focus of much research interest. Fike et al. use carbon and sulphur isotope-chemostratigraphic data from Oman to propose three stages of oxidation in the Ediacaran oceans, and link the second and third stages to eukaryote diversification. The second stage, signalled by strongly 13C-depleted sedimentary carbonates (the 'Shuram excursion'), is believed to result from oxidation of a large, deep-ocean reservoir of organic carbon. Fike et al. use our data to assert that a correlative carbon isotope excursion in Australia coincided with the initial diversification of acanthomorphic acritarchs. Peak diversity is claimed to have coincided with subsequent deposition of 13C-enriched carbonate and the third oxidation stage. However, the authors seem to have misinterpreted our data, which instead indicate that diversification significantly preceded the Shuram excursion; this weakens their argument for a link between the inferred oxidation events and eukaryote evolution.

  7. Plasma electrolytic oxidation of metals

    Directory of Open Access Journals (Sweden)

    Stojadinović Stevan


    Full Text Available In this lecture results of the investigation of plasma electrolytic oxidation (PEO process on some metals (aluminum, titanium, tantalum, magnesium, and zirconium were presented. Whole process involves anodizing metals above the dielectric breakdown voltage where numerous micro-discharges are generated continuously over the coating surface. For the characterization of PEO process optical emission spectroscopy and real-time imaging were used. These investigations enabled the determination of electron temperature, electron number density, spatial density of micro-discharges, the active surface covered by micro-discharges, and dimensional distribution of micro-discharges at various stages of PEO process. Special attention was focused on the results of the study of the morphology, chemical, and phase composition of oxide layers obtained by PEO process on aluminum, tantalum, and titanium in electrolytes containing tungsten. Physicochemical methodes: atomic force microscopy (AFM, scanning electron microscopy (SEM-EDS, x-ray diffraction (XRD, x-ray photoelectron spectroscopy (XPS, and Raman spectroscopy served as tools for examining obtained oxide coatings. Also, the application of the obtained oxide coatings, especially the application of TiO2/WO3 coatings in photocatalysis, were discussed.

  8. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.


    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  9. Oxidation kinetics of aluminum diboride

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L., E-mail: [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)


    The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time

  10. Inflammation, Oxidative Stress, and Obesity

    Directory of Open Access Journals (Sweden)

    José A. Morales-González


    Full Text Available Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6; other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS, generating a process known as oxidative stress (OS. Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO, and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease.

  11. Evolution of Oxidative Continental Weathering (United States)

    Konhauser, Kurt; Lalonde, Stefan


    The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen levels increased above 10-5 times the present atmospheric level. This value is based on the loss of sulphur isotope mass independent fractionation (S-MIF) from the rock record, beginning at 2.45 Ga and disappearing by 2.32 Ga. However, a number of recent papers have pushed back the timing for oxidative continental weathering, and by extension, the onset of atmospheric oxygenation several hundreds of million years earlier despite the presence of S-MIF (e.g., Crowe et al., 2013). This apparent discrepancy can, in part, be resolved by the suggestion that recycling of older sedimentary sulphur bearing S-MIF might have led to this signal's persistence in the rock record for some time after atmospheric oxygenation (Reinhard et al., 2013). Here we suggest another possibility, that the earliest oxidative weathering reactions occurred in environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts, riverbed and estuarine sediments, and lacustrine microbial mats. We calculate that the rate of O2 production via oxygenic photosynthesis in these terrestrial microbial ecosystems provides largely sufficient oxidizing potential to mobilise sulphate and a number of redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. These findings reconcile geochemical signatures in the rock record for the earliest oxidative continental weathering with the history of atmospheric sulphur chemistry, and demonstrate the plausible antiquity of a terrestrial biosphere populated by cyanobacteria. Crowe, S.A., Dossing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R. & Canfield, D.E. Atmospheric oxygenation three billion years ago. Nature 501, 535-539 (2013). Reinhard, C.T., Planavsky, N.J. & Lyons, T.W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497

  12. The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Fransen, T.; Geerdink, B.; Gellings, P.J.; Stroosnijder, M.F.


    The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence

  13. Solid Oxide Fuel Cell Experimental Laboratory (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  14. Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

    NARCIS (Netherlands)

    Blankert, B.; Hayen, H.; Leeuwen, van S.M.; Karst, U.; Bodoki, E.; Lotrean, S.; Sandulescu, R.; Mora Diaz, N.; Dominguez, O.; Arcos, J.; Kauffmann, J.-M.


    The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was pe

  15. Complex oxides useful for thermoelectric energy conversion (United States)

    Majumdar, Arunava [Orinda, CA; Ramesh, Ramamoorthy [Moraga, CA; Yu, Choongho [College Station, TX; Scullin, Matthew L [Berkeley, CA; Huijben, Mark [Enschede, NL


    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  16. Methods for synthesizing metal oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee


    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  17. Summary of emissions associated with propylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hume, G.


    This summary describes the industrial production and uses of propylene oxide, documents the methods of calculation used to estimate emissions, and lists the major facilities emitting propylene oxide, along with their estimated emissions.

  18. 46 CFR 153.1010 - Alkylene oxides. (United States)


    ... alkylene oxides are onboard the vessel, the master shall make sure that the oxygen content of the vapor...% by volume. (d) Tankships with independent piping for alkylene oxides must have onboard: (1)...

  19. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain


    Natural rubber (NR) latex particles were oxidized using KMnO4 as oxidant to promote the insertion of hydroxyl groups in the surface polyisoprene chains. Different degrees of oxidation were investigated. Both unoxidized and oxidized NR (ONR) latex were used to prepare nanocomposite films reinforced with cellulose nanocrystals (CNCs) by casting/evaporation. The oxidation of NR was carried out to promote chemical interactions between the hydroxyl groups of ONR with those of CNCs through hydrogen bonding. The effect of the degree of oxidation of the NR latex on the rheological behavior of CNC/NR and CNC/ONR suspensions, as well as on the mechanical, swelling and thermal properties of ensuing nanocomposites was investigated. Improved properties were observed for intermediate degrees of oxidation but they were found to degrade for higher oxidation levels.

  20. Ellipsometric investigation of anodic zirconium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Patrito, E.M.; Macagno, V.A. (Univ. Nacional de Cordoba, Cordoba (Argentina). Dept. de Fisicoquimica)


    The anodic oxidation of zirconium was studied by in situ ellipsometry together with capacity measurements. The oxides were grown under potentiodynamic, galvanostatic, and potentiostatic conditions up to final potentials of 100 V in 0.5M H[sub 2]SO[sub 4] solution. The refractive index of the oxides changes depending on the growth current. The films were slightly absorbing but their absorption coefficient was independent of the oxide growth conditions. Different methods of surface preparation including etching in hydrofluoric acid-based mixtures, electropolishing and mechanical polishing were used. The surfaces and oxides were characterized by SEM examination and XPS measurements. The surface pretreatment affects both the substrate and the oxide optical constants as well as the rate of oxide growth. The density and dielectric constant of the oxides were calculated performing simultaneous ellipsometric, coulometric, and capacity measurements.

  1. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel


    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  2. Fabrication and performance of a tubular ceria based oxygen transport membrane on a low cost MgO support

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.;


    A 30 μm thin-film tubular CGO (Ce0.9Gd0.1O1.95−δ) membrane with catalytic layers on both sides has been prepared by dip-coating on a low cost, porous magnesium oxide (MgO) support. The MgO support was fabricated through a thermoplastic extrusion process. Support, thin membrane and catalytic layers...

  3. Beneficial Effect of Surface Decorations on the Surface Exchange of Lanthanum Strontium Ferrite and Dual Phase Composites

    DEFF Research Database (Denmark)

    Ovtar, Simona; Søgaard, Martin; Song, Jia


    stable in both mildly reducing and oxidizing atmosphere. The electronic conductivity is excellent (283 S/cm at 800 °C) but the ionic conductivity especially at low temperature is limited (0.014 S/cm, 800 °C). Due to these properties the material is a candidate for use in composite membranes...... in combination with a better ionic conducting material like CGO. Such systems are also excellent model systems for fundamental studies of the oxygen exchange process...

  4. Empirical Criteria of Superconductivity for Some Oxides

    Institute of Scientific and Technical Information of China (English)


    The properties of superconductivity of some oxides were investigated by structural parametricdiagrams or pattern recognition with structural chemical parameters. The essential criteria ofsuperconductivity for some oxides have been obtained by using 109 oxides as the training setand seven parameters as features; the results illustrated that the electronegativity difference isthe most important factor among seven parameters. Moreover, the regularity of superconductivetransition temperature Tc for complex oxides is discussed by partial least squares (PL5) method.

  5. Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors


    Ansari, Anees A.; Alhoshan, M.; M. S. AlSalhi; Aldwayyan, A.S.


    The unique electrocatalytic properties of the metal oxides and the ease of metal oxide nanostructured fabrication make them extremely interesting materials for electrochemical enzymatic biosensor applications. The application of nanostructured metal oxides in such sensing devices has taken off rapidly and will surely continue to expand. This article provides a review on current research status of electrochemical enzymatic biosensors based on various new types of nanostructured metal oxides su...

  6. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. (United States)

    Herzberger, Jana; Niederer, Kerstin; Pohlit, Hannah; Seiwert, Jan; Worm, Matthias; Wurm, Frederik R; Frey, Holger


    The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.

  7. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants (United States)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.


    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  8. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.


    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  9. The initial oxidation of magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, M.


    Pure Magnesium samples have been oxidised in an UHV chamber under controlled conditions. Pressure range was 10{sup -10} Torr to 10{sup -7} Torr, temperature range was 273 K to 435 K. The samples have then been investigated with XPS, Ellipsometry and HERDA. Additionally, furnace oxidations at 750 Torr and 673 K have been carried out and investigated with XPS. From the XPS measurements data concerning layer thickness, composition, oxidation state and binding state have been gained. The ellipsometrie measurements yielded additional data concerning layer thickness as well as the size of the band gap of the developing oxide. With the HERDA measurements, the oxygen content within the oxide layer has been determined yielding additional information about composition and layer thickness. The layer thickness as a function of time have then been modelled with a kinetic growth model of Fromhold and Cook. For the refinement of the XPS data concerning layer thickness and composition, the pronounced plasmon excitations that occur in magnesium have been determined with two different procedures which have been developed in the methodical part of this work. The layer thickness and composition values have thus been corrected. Results: Two oxidation stages could be identified: a strong increase for the first few Langmuirs (1L = 1s x 10{sup -6} Torr), followed by a saturation'' region which was about 1.2 nm to 1.5 nm in magnitude. XPS and ellipsometry results have thereby been in very good agreement. The composition of the developing oxide showed a clear deviation from stoichiometric MgO, mainly caused by an oxygen deficiency; this deficiency has also been confirmed with the HERDA measurements. The Mg/O ratio as a function of layer thickness showed a continous decay starting from very high values for the thinnest layers (>{proportional_to}2.5) down to a saturation value of about 1.4, even for larger layer thicknesses gained with the furnace oxidations. The determination of

  10. Oxidation of phenolic acids by soil iron and manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90, and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.

  11. Photopromoted and Thermal Decomposition of Nitric Oxide by Metal Oxides (United States)


    Photocatalysis (U) n nMetal Oxides (U) NOx Removal (U) 9. ABSTRACT (Continue on reverse if necessary and identify by block number) This technical...for Photocatalysis and Photosynthesis: An Overview," in Energy Resources through Photochemistry and Catalysis, Graetzel, W., Ed., Academic Press, NY...1983, pp.217-260. 16. Courbon, H., and Pichat, P., "Room-temperature Interaction of N180 with Ultraviolet- illuminated TiO2 ," J. Chem. Soc., Faraday

  12. 21 CFR 582.5431 - Magnesium oxide. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  13. 21 CFR 184.1431 - Magnesium oxide. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...

  14. 21 CFR 582.1431 - Magnesium oxide. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  15. Separation medium containing thermally exfoliated graphite oxide (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)


    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  16. Er-doped aluminium oxide waveguide amplifiers

    NARCIS (Netherlands)

    Pollnau, M.


    Within the EU STREP project "Photonic integrated devices in activated amorphous and crystalline oxides" (PI-OXIDE,, 6 partners are developing integrated optical devices based on erbium-doped layers of amorphous $Al_2O_3$ and crystalline $Y_2O_3)$. In $Al_2O_3$:Er chan

  17. Physiology of Haloalkaliphilic Sulfur-oxidizing Bacteria

    NARCIS (Netherlands)

    Banciu, H.L.


    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  18. Methane oxidation needs less stressed plants. (United States)

    Zhou, Xiaoqi; Smaill, Simeon J; Clinton, Peter W


    Methane oxidation rates in soil are liable to be reduced by plant stress responses to climate change. Stressed plants exude ethylene into soil, which inhibits methane oxidation when present in the soil atmosphere. Here we discuss opportunities to use 1-aminocyclopropane-1-carboxylate deaminase to manage methane oxidation by regulating plant stress responses.

  19. Myoglobin-induced lipid oxidation : A review

    DEFF Research Database (Denmark)

    Baron, Caroline; Andersen, H.J.


    An overview of myoglobin-initiated lipid oxidation in simple model systems, muscle, and muscle-based foods is presented. The potential role of myoglobin spin and redox states in initiating lipid oxidation is reviewed. Proposed mechanisms for myoglobin- initiated lipid oxidation in muscle tissue (p...

  20. 21 CFR 582.5991 - Zinc oxide. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  1. 21 CFR 182.8991 - Zinc oxide. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used...

  2. 21 CFR 73.2991 - Zinc oxide. (United States)


    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  3. 21 CFR 73.1991 - Zinc oxide. (United States)


    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide...

  4. Dense high temperature ceramic oxide superconductors (United States)

    Landingham, Richard L.


    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  5. Graphene oxide reduction recipes, spectroscopy, and applications

    CERN Document Server

    Gao, Wei


    This book focuses on a group of new materials labeled ""graphene oxides."" It provides a comprehensive overview of graphene oxide-based nanomaterials in terms of their synthesis, structures, properties, and extensive applications in catalysis, separation, filtration, energy storage and conversion. The book also covers emerging research on graphite oxides and the impact of the research on fundamental and applied sciences.

  6. Oxidation and Reduction Reactions in Organic Chemistry (United States)

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.


    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  7. Laser Photoacoustic Technique Detects Photo-Oxidation (United States)

    Liange, R. H.; Coulter, D. R.; Gupta, A.


    Laser photoacoustic instrument detects small amounts of oxidation in polymers. Instrument used to evaluate resistance to oxidation in Sunlight of polymer encapsulants for solar-cell arrays. With instrument, researchers monitor samples for early stages of photooxidation and study primary mechanisms of oxidation and degradation. Effects of these mechanisms masked during later stages.

  8. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim


    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  9. Nitrous oxide sedation and sexual phenomena. (United States)

    Jastak, J T; Malamed, S F


    Nine cases of sexual phenomena that occurred with use of nitrous oxide and oxygen sedation are described. Dentists involved routinely used concentrations of nitrous oxide greater than 50% and did not have assistants in the room during dental procedures. Recommendations on the concentrations of nitrous oxide and the presence of an assistant are made.

  10. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)


    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  11. Complete Maps for the Internal Oxidation of Ideal Ternary Alloys Forming Insoluble Oxides under High Oxidant Pressures

    Institute of Scientific and Technical Information of China (English)



    This paper presents an analysis of the conditions of stability of the different forms of internal oxidation of ideal ternary A-B-C alloys, where A is the most noble and C the most reactive component, forming insoluble oxide and exposed to high pressures of a single oxidant. The treatment, based on an extension to ternary alloys of Wagner's criterion for the transition from internal to external oxidation in binary alloys, allows to predict the existence of three different forms of internal oxidation. In fact, in addition to the most common kinds of internal attack, involving the coupled internal oxidation of B+C beneath external AO scales and the internal oxidation of C beneath external BO scales, a third mode, involving the internal oxidation of C beneath external scales composed of mixtures of AO+BO, becomes also possible under special conditions. A combination of the boundary conditions for the existence of these different types of internal oxidation allows to predict three different kinds of complete maps for the internal oxidation in these systems, one of which involves only two modes, while the other two involve all the three possible modes of internal oxidation.

  12. Microstructural characterization and field emission properties of tungsten oxide and titanium-oxide-doped tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chia-Hsiang [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Su, Cherng-Yuh, E-mail: [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China); Lin, Yan-Fu [Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan (China)


    Tungsten oxide and titanium-oxide-doped tungsten oxide nanowires were synthesized by using the DC magnetron sputtering and infrared furnace annealing processes. Scanning election microscopy (SEM) and transmission electron microscopy (TEM) were utilized to evaluate the topography and sizes. X-ray diffraction (XRD), grazing incidence X-ray diffraction (GI-XRD), and high-resolution transmission electron microscopy (HRTEM) were used to analyze the composition and structure. From the results of HRTEM, it was discovered that the prepared nanowires have a monoclinic single-crystal phase of W{sub 18}O{sub 49} with lattice growth along the (010) lattice plane, and the lattice spacing is 0.378 nm, which agrees with XRD and GI-XRD results. The prepared tungsten oxide and titanium-oxide-doped tungsten oxide nanowires have turn-on voltage of 3.06 V/μm and 1.46 V/μm respectively. They also possess superior field enhancement factors of 5103 and 10667 respectively. Their behavior thus follows the Fowler-Nordheim expression for tunneling. - Highlights: • A simple method to prepare tungsten oxide nanowires by annealing tungsten film. • High aspect ratio of the 1D titanium-oxide-doped tungsten oxide nanowires. • High field enhancement factor of titanium-oxide-doped tungsten oxide nanowires.

  13. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher


    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  14. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Loescher


    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA and Eastern Tropical South Pacific Oceans (ETSP. Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen

  15. [Research on synergy of combining electrochemical oxidation and catalytic wet oxidation]. (United States)

    Wang, Hua; Li, Guang-Ming; Zhang, Fang; Huang, Ju-Wen


    A new catalytic wet oxidation fixed-bed reactor combined with three-dimensional electric-field was developed to investigate catalytic wet oxidation, electrochemical oxidation and electroassisted catalytic wet oxidation of the solution containing phenol in the presence of a catalyst Mn-Sn-Sb-3/gamma-Al2O3. Good electroassisted catalytic wet oxidation efficiency was obtained in the setup for the combination system even at mild conditions (T = 130 degrees C, po2 = 1.0 MPa) that the phenol conversion and TOC reduction were up to 94.0% and 88.4% after 27 min treatment, respectively. The result also shows that the rate constants of electroassisted catalytic wet oxidation are much higher than that of not only both catalytic wet oxidation and electrochemical oxidation process alone but also additive efficiencies of catalytic wet oxidation and electrochemical oxidation processes, which indicates an apparent synergetic effect between CWO and ECO processes.

  16. Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality? (United States)

    Sofer, Zdeněk; Luxa, Jan; Jankovský, Ondřej; Sedmidubský, David; Bystroň, Tomáš; Pumera, Martin


    It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments.

  17. Oxidation of Elemental Sulfur to Sulfite by Thiobacillus thiooxidans Cells


    Suzuki, Isamu; Chan, C. W.; Takeuchi, T. L.


    Thiobacillus thiooxidans cells oxidized elemental sulfur to sulfite, with 1 mol of O2 consumption per mol of sulfur oxidized to sulfite, when the oxidation of sulfite was inhibited with 2-n-heptyl-4-hydroxyquinoline N-oxide.

  18. Biochemistry of Dissimilatory Sulfur Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Blake II, R.


    The long term goals of this research were to define the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during the dissimilatory oxidation of sulfur practiced by various species of the thiobacilli. Specific adhesion of the thiobacilli to elemental sulfur was studied by electrical impedance, dynamic light scattering, laser Doppler velocimetry, and optical trapping methods. The conclusion is that the thiobacilli appear to express specific receptors that enable the bacteria to recognize and adhere to insoluble sulfur. The enzyme tetrathionate oxidase was purified from two species of the thiobacilli. Extensive structural and functional studies were conducted on adenosine 5'-phosphosulfate reductase purified from cell-free extracts of Thiobacillus denitrificans. The kinetic mechanism of rhodanese was studied.

  19. Graphene Oxides Show Angiogenic Properties. (United States)

    Mukherjee, Sudip; Sriram, Pavithra; Barui, Ayan Kumar; Nethi, Susheel Kumar; Veeriah, Vimal; Chatterjee, Suvro; Suresh, Kattimuttathu Ittara; Patra, Chitta Ranjan


    Angiogenesis, a process resulting in the formation of new capillaries from the pre-existing vasculature plays vital role for the development of therapeutic approaches for cancer, atherosclerosis, wound healing, and cardiovascular diseases. In this report, the synthesis, characterization, and angiogenic properties of graphene oxide (GO) and reduced graphene oxide (rGO) have been demonstrated, observed through several in vitro and in vivo angiogenesis assays. The results here demonstrate that the intracellular formation of reactive oxygen species and reactive nitrogen species as well as activation of phospho-eNOS and phospho-Akt might be the plausible mechanisms for GO and rGO induced angiogenesis. The results altogether suggest the possibilities for the development of alternative angiogenic therapeutic approach for the treatment of cardiovascular related diseases where angiogenesis plays a significant role.

  20. Oxidative Stress and HPV Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Federico De Marco


    Full Text Available Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV, represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide and iNOS (inducible nitric oxide synthase will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis

  1. Oxidative stress in neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Chunyan Guo; Jiming Kong


    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2-) and hydroxyl radical (OH-), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  2. Graphene oxide physics and applications

    CERN Document Server

    Zhao, Jijun; Li, Fen


    This book gives a comprehensive overview of graphene oxides (GO)  from atomic structures and fundamental properties to technological applications. Atomic structural models, electronic properties, mechanical properties, optical properties, and functionalizing and compositing of GO are illustrated. Moreover, the excellent physical and chemical properties offer GO promising applications in electronic nanodevices, chemical sensors and catalyst, energy storage, and biotechnology, which are also presented in this book. Therefore, this book is of interest to researchers in physics, chemistry, materials science, and nanoscience.

  3. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  4. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;


    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  5. Skin aging and oxidative stress


    Sayeeda Ahsanuddin; Minh Lam; Baron, Elma D.


    Skin aging occurs through two main pathways, intrinsic and extrinsic. These pathways have significant interaction in contributing to the aging phenotype, which includes skin laxity, wrinkling, pigmentation irregularities, and the appearance of neoplastic skin lesions. Here, we review the critical role that oxidative stress plays in skin aging, including its effects on signaling pathways involved in skin matrix formation and degradation, proteasome activity, as well as DNA structure. Furthermo...

  6. Oxidation of AsⅢ by Several Manganese Oxide Minerals in Absence and Presence of Goethite

    Institute of Scientific and Technical Information of China (English)

    FENG Xionghan; TAN Wenfeng; LIU Fan; Huada Daniel RUAN; HE Jizheng


    Oxidation of AsⅢ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite,todorokite, and hausmannite, could actively oxidize AsⅢ to AsⅤ, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of AsⅢ oxidation, followed by the tunnel structured todorokite. Lower oxide hausmannite possessed much low capacity of AsⅢ oxidation,and released more Mn2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of AsⅢ by Mn oxide minerals was in the order: birnessite (480.4mmol/kg) > todorokite (279.6 mmol/kg) > hausmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of AsⅢ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hausmannite. Goethite promoted AsⅢ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the AsⅢ toxicity in the environments.

  7. Tissue damage and oxidant/antioxidant balance. (United States)

    Kisaoglu, Abdullah; Borekci, Bunyamin; Yapca, O Erkan; Bilen, Habib; Suleyman, Halis


    The oxidant/antioxidant balance in healthy tissues is maintained with a predominance of antioxidants. Various factors that can lead to tissue damage disrupt the oxidant/antioxidant balance in favor of oxidants. In this study, disruptions of the oxidant/antioxidant balance in favor of oxidants were found to be a consequence of the over-consumption of antioxidants. For this reason, antioxidants are considered to be of importance in the prevention and treatment of various types of tissue damage that are aggravated by stress.

  8. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)


    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  9. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco


    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin FilmsCharacterization Tools of Oxide Ultrathin FilmsOrdered Oxide Nanostructures on Metal SurfacesUnusual Properties of Oxides and Other Insulators in the Ultrathin Li

  10. Oxidized Form of Creatine Kinase

    Institute of Scientific and Technical Information of China (English)

    王希成; 王帆; 邹晓明; 周海梦


    The purified rabbit muscle creatine kinase (R-CK) was previously considered homogeneousand without disulfide bonds.By the method of NR/R two-dimensional diagonal SDS-PAGE,two forms of R-CK,designated respectively "oxidized form" of creatine kinase which contained intrachain disulfide bondsand "reduced form" of creatine kinase which did not have any —S—S— bridges,were for the first time sepa-rated.They were found to be the same in amino acid composition,in subunit molecular Weight and in isoelec-tric point,and were almost identical in enzyme activities.Thus it is hard to isolate one from the other bycommon biochemical methods.More extensive studies show that the oxidized form of CK also contains a pair of reactive thiol groupswhich are essential to the enzyme activity,and it has one intrachain disulfide bond per subunit.In the nativestate,this —S—S— bond cannot be reduced by DTT,but by treating the reduced form of CK with some ox-idants,these —S—S— bonds can be formed in vitro.Thus it is presumed that the disulfide bonds are cross-linked through the oxidization of two shallowly buried —SH groups.

  11. Oxidative stress and glycemic regulation. (United States)

    Ceriello, A


    Oxidative stress is an acknowledged pathogenetic mechanism in diabetic complications. Hyperglycemia is a widely known cause of enhanced free radical concentration, whereas oxidative stress involvement in glycemic regulation is still debated. Glucose transport is a cascade of events starting from the interaction of insulin with its own receptor at the plasma membrane and ending with intracellular glucose metabolism. In this complex series of events, each step plays an important role and can be inhibited by a negative effect of oxidative stress. Several studies show that an acute increase in the blood glucose level may impair the physiological homeostasis of many systems in living organisms. The mechanisms through which acute hyperglycemia exerts these effects may be identified in the production of free radicals. It has been suggested that insulin resistance may be accompanied by intracellular production of free radicals. In adipocytes cultured in vitro, insulin increases the production of hydrogen peroxide, which has been shown to mimic the action of insulin. These data allow us to hypothesize that a vicious circle between hyperinsulinemia and free radicals could be operating: insulin resistance might cause elevated plasma free radical concentrations, which, in turn, might be responsible for a deterioration of insulin action, with hyperglycemia being a contributory factor. Data supporting this hypothesis are available. Vitamin E improves insulin action in healthy, elderly, and non-insulin-dependent diabetic subjects. Similar results can be obtained by vitamin C administration.

  12. Metal oxides for optoelectronic applications. (United States)

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio


    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  13. Metal oxides for optoelectronic applications (United States)

    Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio


    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  14. Oxidation process of lanthanum hexaboride ceramics

    Institute of Scientific and Technical Information of China (English)


    Oxidation process of lanthanum hexaboride (LaB6) ceramic powder was investigated . The LaB6 powder samples were heated continually from room temperature to 1 473 K at a heating rate of 10 K/min by differential scanning calorimetry. The oxidation tests were conducted at different exposure temperatures. The phases and morphologies of the samples before and after exposure were analyzed by XRD and SEM. It was pointed out that before 1 273 K, LaB6 has high oxidation resistant ability, which was due to that the oxide layer hinders the oxygen diffusion from outer to the surface of LaB6 grains. The oxide layer was composed of the transition phases, which were composed of La2O3 and B2O3 formed from the initial oxidation; when the oxidation temperature exceeded 1 273 K, protective layer was destroyed due to the vaporization of liquid B2O3. Based on the results of X-ray diffraction analysis, oxidation process of LaB6 ceramic powder can be described as follows: Before 1 273 K, lanthanum borate,La(BO2)3 was formed on the surface of samples, then lanthanum oxide (La2O3) and boron oxide (B2O3) were present on the surface of samples oxidized when the temperature reached to 1 473 K.

  15. Electro-catalytic reduction of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    McLarnon, C.R.


    Nitrogen oxides have been linked to a broad range of air pollution problems including acid rain and the atmospheric production of photochemical ozone. Over twenty million tons of nitrogen oxides are emitted into the atmosphere each year as a result of the high temperature combustion of fossil fuels. Efforts to control nitrogen oxides emissions have lagged because of the generally low discharge concentrations of nitrogen oxides in combustion exhaust and because nitrogen oxides are more difficult to remove due to their lower reactivity. No catalyst has yet been found that will achieve significant reduction of nitrogen oxides in an oxidizing environment. Oxygen in the exhaust stream competes with nitrogen oxides for the active catalyst sites. Also, the dissociated oxygen atoms produced by decomposition of nitrogen oxides deactivate the surface of the catalyst. Externally applied electric fields have been used to control oxygen adsorption on metal and semi-conductor surfaces. In this investigation, a stream containing nitric oxide has been subjected to intense electric fields in the presence of catalyst materials including steel, stainless steel, and gold plated stainless steel wools and glass wool. The electric fields have been generated using DC, AC and rectified AC potentials in the range of 0--20 KV. The effect of parameters such as inlet nitric oxide concentration, oxygen and water content, gas residence time and temperature have also been studied.

  16. Accelerated evaporation of water on graphene oxide. (United States)

    Wan, Rongzheng; Shi, Guosheng


    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  17. Measurement of oxide adherence to PFM alloys. (United States)

    Mackert, J R; Parry, E E; Hashinger, D T; Fairhurst, C W


    A method has been reported for evaluating adherence of an oxide to its substrate metal to a maximum value of about 40 MPa. Oxidized alloy plates were cemented between two aluminum cylinders with a high-strength cyanoacrylate cement and loaded in tension until failure occurred either at the oxide/metal interface, within the oxide layer, or in the cement itself. Significant differences were found among the oxide adherence values obtained from different PFM alloys. The oxides formed on five of the alloys exhibited adherence strengths in excess of the published value for cohesive strength of dental opaque porcelain, indicating that they possess sufficient adherence to act as the transition zone between the porcelain and the alloy. In addition, a correspondence was found between the quality of porcelain bond for a given alloy and its oxide adherence strength. These results remove the principal objection to the oxide-layer theory of porcelain bonding in dental alloy systems and emphasize the importance of oxide adherence in the establishment of a bond. It is therefore suggested that future work devoted to porcelain-metal bonding should seek to elucidate the mechanism of oxide adherence to PFM alloys and explore the development of new alloys which form adherent oxides.

  18. Nylon/Graphene Oxide Electrospun Composite Coating

    Directory of Open Access Journals (Sweden)

    Carmina Menchaca-Campos


    Full Text Available Graphite oxide is obtained by treating graphite with strong oxidizers. The bulk material disperses in basic solutions yielding graphene oxide. Starting from exfoliated graphite, different treatments were tested to obtain the best graphite oxide conditions, including calcination for two hours at 700°C and ultrasonic agitation in acidic, basic, or peroxide solutions. Bulk particles floating in the solution were filtered, rinsed, and dried. The graphene oxide obtained was characterized under SEM and FTIR techniques. On the other hand, nylon 6-6 has excellent mechanical resistance due to the mutual attraction of its long chains. To take advantage of the properties of both materials, they were combined as a hybrid material. Electrochemical cells were prepared using porous silica as supporting electrode of the electrospun nylon/graphene oxide films for electrochemical testing. Polarization curves were performed to determine the oxidation/reduction potentials under different acidic, alkaline, and peroxide solutions. The oxidation condition was obtained in KOH and the reduction in H2SO4 solutions. Potentiostatic oxidation and reduction curves were applied to further oxidize carbon species and then reduced them, forming the nylon 6-6/functionalized graphene oxide composite coating. Electrochemical impedance measurements were performed to evaluate the coating electrochemical resistance and compared to the silica or nylon samples.

  19. Oxidative stress in neonatology: a review. (United States)

    Mutinati, M; Pantaleo, M; Roncetti, M; Piccinno, M; Rizzo, A; Sciorsci, R L


    Free radicals are highly reactive oxidizing agents containing one or more unpaired electrons. Both in human and veterinary neonathology, it is generally accepted that oxidative stress functions as an important catalysator of neonatal disease. Soon after birth, many sudden physiological and environmental conditions make the newborn vulnerable for the negative effects of oxidative stress, which potentially can impair neonatal vitality. As a clinician, it is important to have in depth knowledge about factors affecting maternal/neonatal oxidative status and the cascades of events that enrol when the neonate is subjected to oxidative stress. This report aims at providing clinicians with an up-to-date review about oxidative stress in neonates across animal species. It will be emphasized which handlings and treatments that are applied during neonatal care or resuscitation can actually impose oxidative stress upon the neonate. Views and opinions about maternal and/or neonatal antioxydative therapy will be shared.

  20. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang


    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  1. Nanowire-based All Oxide Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong


    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  2. Oxidation-reduction catalyst and its process of use (United States)

    Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor)


    This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.

  3. Oxidation behaviour and electrical properties of cobalt/cerium oxide composite coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Møller, Per


    This work evaluates the performance of cobalt/cerium oxide (Co/CeO2) composite coatings and pure Co coatings to be used for solid oxide fuel cell (SOFC) interconnects. The coatings are electroplated on the ferritic stainless steels Crofer 22 APU and Crofer 22H. Coated and uncoated samples......, Mn, Fe and Cr oxide and the inner layer consisted of Cr oxide. The CeO2 was present as discrete particles in the outer oxide layer after exposure. The Cr oxide layer thicknesses and oxidations rates were significantly reduced for Co/CeO2 coated samples compared to for Co coated and uncoated samples...... are exposed in air at 800 °C for 3000 h and oxidation rates are measured and oxide scale microstructures are investigated. Area-specific resistances (ASR) in air at 850 °C of coated and uncoated samples are also measured. A dual layered oxide scale formed on all coated samples. The outer layer consisted of Co...

  4. Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation


    Uematsu, Masashi; Kageshima, Hiroyuki; Shiraishi, Kenji


    Silicon oxidation in wet ambients is simulated based on the interfacial silicon emission model and is compared with dry oxidation in terms of the silicon-atom emission. The silicon emission model enables the simulation of wet oxidation to be done using the oxidant self-diffusivity in the oxide with a single activation energy. The amount of silicon emission from the interface during wet oxidation is smaller than that during dry oxidation. The small emission rate for wet oxidation is responsibl...

  5. High-temperature processing of oxide superconductors and superconducting oxide-silver oxide composite (United States)

    Wu, M. K.; Loo, B. H.; Peters, P. N.; Huang, C. Y.


    High temperature processing was found to partially convert the green 211 phase oxide to 123 phase. High Tc superconductivity was observed in Bi-Sr-Cu-O and Y-Sr-Cu-O systems prepared using the same heat treatment process. High temperature processing presents an alternative synthetic route in the search for new high Tc superconductors. An unusual magnetic suspension with enhancement in critical current density was observed in the 123 and AgO composite.

  6. Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics (United States)


    bond. Evidence for the latter is strong, with many SO4•−-radical adducts having been identified during reactions of SO4•− with alkenes by electron...Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and...oxidation of alkenes and dienes by SO4-·, Cl2-·, and ·OH in acidic aqueous solution. J. Chem. Soc., Perkin Trans. 2, 1809-1815. 21. De Heredia, J.B

  7. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts (United States)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor)


    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  8. A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness

    Directory of Open Access Journals (Sweden)

    Gerald Gerlach


    Full Text Available Thermal oxidation of silicon belongs to the most decisive steps in microelectronic fabrication because it allows creating electrically insulating areas which enclose electrically conductive devices and device areas, respectively. Deal and Grove developed the first model (DG-model for the thermal oxidation of silicon describing the oxide thickness versus oxidation time relationship with very good agreement for oxide thicknesses of more than 23 nm. Their approach named as general relationship is the basis of many similar investigations. However, measurement results show that the DG-model does not apply to very thin oxides in the range of a few nm. Additionally, it is inherently not self-consistent. The aim of this paper is to develop a self-consistent model that is based on the continuity equation instead of Fick’s law as the DG-model is. As literature data show, the relationship between silicon oxide thickness and oxidation time is governed—down to oxide thicknesses of just a few nm—by a power-of-time law. Given by the time-independent surface concentration of oxidants at the oxide surface, Fickian diffusion seems to be neglectable for oxidant migration. The oxidant flux has been revealed to be carried by non-Fickian flux processes depending on sites being able to lodge dopants (oxidants, the so-called DOCC-sites, as well as on the dopant jump rate.

  9. New developments in oxidation catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosowski, F. [BASF SE, Ludwigshafen (Germany)


    The impact of heterogeneous catalysis on the economy can be depicted by the global revenue of the chemical industry in 2006, which accounted for 2200 billion Euros with a share of all chemical products produced applying heterogeneous catalysis of about two thirds. [1] The range of products is enormous and they contribute greatly to the quality of our lifes. The advancement in the development of basic and intermediate chemical products is crucially dependent on either the further development of existing catalyst systems or the development of new catalysts and key to success for the chemical industry. Within the context of oxidation catalysis, the following driving forces are guiding research activities: There is a continuous desire to increase the selectivity of a given process in response to both economic as well as ecological needs and taking advantage of higher efficiencies in terms of cost savings and a better utilization of raw materials. A second motivation focuses on raw material change to all abundant and competitive feedstocks requiring both new developments in catalyst design as well as process technology. A more recent motivation refers to the use of metal oxide redox systems which are key to success for the development of novel technologies allowing for the separation of carbon dioxide and the use of carbon dioxide as a feedstock molecule as well as storing renewable energy in a chemical. To date, general ab initio approaches are known for the design of novel catalytic materials only for a few chemical reactions, whereas most industrial catalytic processes have been developed by empirical methods. [2] The development of catalytic materials are either based on the targeted synthesis of catalytic lead structures as well as high throughput methods that allow for the screening of a large range of parameters. [3 - 5] The successful development of catalysts together with reactor technology has led to both significant savings in raw materials and emissions. The

  10. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes (United States)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  11. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.C.; Peper, S.M.; Douglas, M.; Ziegelgruber, K.L. [PNNL, PO Box 999, MS P8-08, Richland, WA 99352 (United States)


    Understanding the dissolution of uranium oxides is critical for designing and optimizing next-generation spent nuclear fuel (SNF) reprocessing methods. Bench scale experiments were conducted to determine the optimal dissolution parameters for size-fractionated aliquots of UO{sub 2}, UO{sub 3}, and U{sub 3}O{sub 8} powders in aqueous peroxide-carbonate solutions. Experimental parameters included; peroxide and carbonate concentrations, and temperature. Solution pH was varied with ammonium hydroxide. We will present details of the dissolution experiment set-up as well as information on the kinetics of dissolution of the various U-oxides as a function of the above variables. We will also discuss efforts to characterize solution and solid-state complexes in peroxide-carbonate systems. This study will demonstrate the applicability of peroxide-containing alkaline solutions for effectively dissolving SNF, and will enhance the current level of understanding of actinide behavior in peroxide-containing alkaline solutions. (authors)

  12. Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles

    KAUST Repository

    Boulfrad, S.


    In this work (La0.75Sr0.25)0.97Cr0.5Mn0.5O3 (LSCM) perovskite powders were pre-coated with 5 wt% nickel and mixed with different amounts of CGO for testing as anode materials under 3% wet H2. By using scanning transmission electron microscopy (STEM) with X-ray energy dispersive spectroscopy (EDS), we demonstrated that Ni forms a solid solution in the perovkite phase under oxidizing atmosphere and exsolves in form of nanoparticles under reducing atmospheres. The presence of the catalyst nanoparticles led to a decrease in the anodic activation energy by half and thus the polarization resistance was dropped by 60% at 800¢ªC. The effect of CGO amount will be also discussed.

  13. Pulsed laser deposition of gadolinia doped ceria layers at moderate temperature – a seeding approach

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, Sebastian; Pryds, Nini;

    Ceria-based thin films are often applied as key functional components in miniaturized electroceramic devices such as solid oxide fuel cells or gas sensors. Processing routes that prevent thermal degradation and yield access to the optimum microstructures are sought. Multi-step growth, involving......), to the growth of dense, gas impermeable 10 mol% gadolinia-doped ceria (CGO10) solid electrolyte can be overcome by the seeding process. In order to evaluate the seed layer preparation, the effects of different thermal annealing treatments on the morphology, microstructure and surface roughness of ultrathin CGO......10 layers with a thickness of 4 nm, 13 nm and 22 nm, respectively, grown on Mg(100), were studied by atomic force microscopy and X-ray reflectometry....

  14. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen;

    Ceria-based thin films are often applied as key functional components in miniaturized electroceramic devices such as solid oxide fuel cells or gas sensors. Processing routes that prevent thermal degradation and yield access to the optimum microstructures are sought. Multi-step growth, involving......), to the growth of dense, gas impermeable 10 mol% gadolinia-doped ceria (CGO10) solid electrolyte can be overcome by the seeding process. In order to evaluate the seed layer preparation, the effects of different thermal annealing treatments on the morphology, microstructure and surface roughness of ultrathin CGO......10 layers with a thickness of 4 nm, 13 nm and 22 nm, respectively, grown on Mg(100), were studied by atomic force microscopy and X-ray reflectometry....

  15. Oxidant pollution - Effects on health

    Energy Technology Data Exchange (ETDEWEB)

    Bignon, J.

    Oxidizing pollution consists of air-borne gaseous, liquid and particle pollutants acting like reducing agents that can react with oxygen to produce toxic derivatives: superoxide anion, hydrogen peroxide, hydroxyl radicles and other free radicles. The major oxidizing gaseous pollutants are NO/sub x,/ particularly NO/sub 2/, ozone and photo-oxidizing agents as derivatives. Epidemiological studies have generally failed to show any significant relation between NO/sub 2/ concentration and respiratory disorders. Correlations are better with SO/sub 2/ and total suspended particles. In certain very sunny areas with high ozone levels, there is a link between O/sub 3/ concentration and respiratory disorders. Controlled trials comparing healthy and asthmatic volunteers have given variable results with highly raised bronchoreactivity at concentrations of 0.1 to 0.2 ppm NO/sub 2/ and 0.25 ppm O/sub 3/ for 1 to 2 hours in about half the studies. Using this data, the World Health Organisation (WHO) has established maximum exposure levels. Numerous investigations on exposure of animals to NO/sub 2/ and ozone have been performed using rodents, the dog, the cat and the primate. At concentrations close to peak urban air pollution levels various biochemical and cellular changes in the respiratory apparatus are generally observed. The areas most affected by NO/sub 2/ and ozone are the peripheral airways with distal stenosal bronchiolitis. NO/sub 2/ led to emphysematous lesions and O/sub 3/ to fibrosal hyperplasic lesions in alveolar tissue. Short bursts at high levels were generally more toxic than long exposure at low levels. There is an additive effect between NO/sub 2/ and ozone and with other pollutants. Exposure to nitrogen dioxide and ozone is conducive to bacterial and viral infection. Results for genitotoxicity and carcinogenic effects produced by NO/sub 2/ and ozone have hitherto been inconclusive.

  16. Charge transfer in multicomponent oxides (United States)

    Kohan, A. F.; Ceder, G.


    The transfer of charge between different ions in an oxide plays an essential role in the stability of these compounds. Since small variations in charge can introduce large changes in the total energy, a correct description of this phenomenon is critical. In this work, we show that the ionic charge in oxides can strongly depend on its atomic environment. A model to assign point charges to atoms as a function of their atomic environment has recently been proposed for binary alloys [C. Wolverton, A. Zunger, S. Froyen, and S.-H. Wei, Phys. Rev. B 54, 7843 (1996)] and proven to be very successful in screened solids such as semiconductors and metals. Here, we extend this formalism to multicomponent oxides and we assess its applicability. The simple point-charge model predicts a linear relation between the charge on an atom and the number of unlike neighbors, and between the net value of the charge and the Coulomb field at a given site. The applicability of this approach is tested in a large-supercell self-consistent tight-binding calculation for a random Zr-Ca-O alloy. The observed fluctuations of the ionic charge about the average linear behavior (as a function of the number of unlike neighbors) was larger than 0.25 electrons even when many shells of atomic neighbors were considered in the fit. This variation is significant since it can introduce large errors in the electrostatic energy. On the other hand, for small absolute values of the charge, the ionic charge varied linearly with the Coulomb field, in agreement with previous findings. However, for large Coulomb fields, this function saturates at the formal chemical charge.

  17. Oxidative Stress in Cystinosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Helena Vaisbich


    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  18. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory

    NARCIS (Netherlands)

    van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM


    We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for Ga

  19. Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates

    Institute of Scientific and Technical Information of China (English)


    Selective oxidation or oxidative functionalization of methane and ethane by both homogeneous and heterogeneous catalysis is presented concerning: (1) selective oxidation of methane and ethane to organic oxygenates by hydrogen peroxide in a water medium in the presence of homogeneous osmium catalysts, (2) selective oxidation of methane to formaldehyde over highly dispersed iron and copper heterogeneous catalysts, (3) selective oxidation of ethane to acetaldehyde and formaldehyde over supported molybdenum catalysts, and (4) oxidative carbonylation of methane to methyl acetate over heterogeneous catalysts containing dual sites of rhodium and iron.

  20. Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst

    DEFF Research Database (Denmark)

    Jogi, Indrek; Stamate, Eugen; Irimiea, Cornelia


    Direct and indirect plasma oxidation of NOx was tested in a medium-scale test-bench at gas flows of 50 slm (3 m(3)/h). For direct plasma oxidation the synthetic flue gas was directed through a stacked DBD reactor. For indirect plasma oxidation, a DBD reactor was used to generate ozone from pure O-2...... of the DBD reactor decreased the long-term efficiency of direct plasma oxidation. At the same time, the efficiency of indirect oxidation increased at elevated reactor temperatures. Additional experiments were carried out to investigate the improvement of indirect oxidation by the introduction of catalyst...

  1. Aqueous colloids of graphene oxide nanosheets by exfoliation of graphite oxide without ultrasonication

    Indian Academy of Sciences (India)

    Tian-You Zhang; Dong Zhang


    Aqueous colloids of graphene oxide nanosheets were produced from exfoliation of graphite oxide using a magnetic stirrer and heat treatment in the absence of ultrasonication. Laser particle measurements showed that the particle size distribution of graphite oxide dispersed in de-ionized water was significantly influenced by treatment time indicating an increasing exfoliation level of graphite oxide. Atomic force microscopy (AFM) confirmed that single-layer graphene oxide nanosheets with a thickness of ∼1 nm were obtained after 72 h of magnetic stirring and heat treatment. These findings provide a new methodology for preparation of single-layer graphene oxide nanosheet colloids.

  2. Interaction mechanisms between slurry coatings and solid oxide fuel cell interconnect alloys during high temperature oxidation

    DEFF Research Database (Denmark)

    Persson, Åsa Helen; Mikkelsen, L.; Hendriksen, P.V.;


    Six different coatings consisting of fluorite-, corundum-, spinel- or perovskite-type oxides were deposited on a Fe22Cr alloy (Crofer 22APU) and oxidized at 900°C in moisturized air.Five of the coatings prevented break-away oxidation otherwise observed for the uncoated alloy, and the parabolic...... oxidation rate constant was reduced with 50–90% of that for uncoated alloy. One coating consisting of MnCo2O4 did not significantly affect the oxidation rate of the alloy, and just as for uncoated samples break-away oxidation occurred for MnCo2O4 coated samples. The interaction mechanisms between...

  3. Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry

    CERN Document Server

    Houshia, Orwa Jaber


    The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

  4. Selective oxidation of isobutane on V–Mo–O mixed oxide catalysts

    Directory of Open Access Journals (Sweden)



    Full Text Available Four V–Mo–O mixed metal oxides were prepared, characterized and tested for the selective oxidation of isobutane in the temperature range 350–550 °C, at atmospheric pressure. Isobutane was mainly oxidized to iso-butene and carbon oxides. The systems with low vanadium contents showed low activities but high isobutene selectivities, while the systems with high vanadium contents showed high activities with high carbon oxides selectivities. The effects of temperature, contact time and the molar ratio iso-butane to oxygen on the conversion of isobutane and the selectivity of the oxidation were studied.

  5. Oxidative refolding from inclusion bodies. (United States)

    Nelson, Christopher A; Lee, Chung A; Fremont, Daved H


    This protocol describes the growth and purification of bacterial inclusion body proteins with an option to selenomethionine label the targeted protein through feedback inhibition of methionine biosynthesis in common (non-auxotrophic) strains of E. coli. The method includes solubilization of inclusion body proteins by chemical denaturation and disulfide reduction, renaturation of the solubilized material through rapid dilution by pulsed injection into refolding buffer containing arginine and a mixture of oxidized and reduced glutathione, recovery of the recombinant protein using a stirred cell concentrator, and removal of the aggregated or misfolded fraction by passage over size-exclusion chromatography. The quality of the resulting protein can be assessed by SDS-PAGE.

  6. Oxidative Stress in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Gábor Csányi


    Full Text Available In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine.

  7. Poly(ethylene oxide) functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Russell Clayton


    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.


    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E


    This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

  9. Bidirectional reflectance of zinc oxide (United States)

    Scott, R.


    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  10. [Nitric oxide and lipid peroxidation]. (United States)

    Cristol, J P; Maggi, M F; Guérin, M C; Torreilles, J; Descomps, B


    Nitric oxide (NO) is a free radical produced enzymatically in biological systems from the guanidino group of L-arginine. Its large spectrum of biological effects is achieved through chemical interactions with different targets including oxygen (O2), superoxide (O2o-) and other oxygen reactive species (ROS), transition metals and thiols. Superoxide anions and other ROS have been reported to react with NO to produce peroxynitrite anions that can decompose to form nitrogen dioxide (NO2) and hydroxyl radial (OHo). Thus, NO has been reported to have a dual effect on lipid peroxidation (prooxidant via the peroxynitrite or antioxydant via the chelation of ROS). In the present study we have investigated in different models the in vitro and in vivo action of NO on lipid peroxidation. Copper-induced LDL oxidation were used as an in vitro model. Human LDL (100 micrograms ApoB/ml) were incubated in oxygene-saturated PBS buffer in presence or absence of Cu2+ (2.5 microM) with increasing concentrations of NO donnors (sodium nitroprussiate or nitroso-glutathione). LDL oxidation was monitored continuously for conjugated diene formation (234 nm) and 4-hydroxynonenal (HNE) accumulation. Exogenous NO prevents in a dose dependent manner the progress of copper-induced oxidation. Ischaemia-reperfusion injury (I/R), characterized by an overproduction of ROS, is used as an in vivo model. Anaesthetized rats were submitted to 1 hour renal ischaemia following by 2 hours of reperfusion. Sham-operated rats (SOP) were used as control. Lipid peroxidation was evaluated by measuring the HNE accumulated in rats kidneys in presence or absence of L-arginine or D-arginine infusion. L-arginine, but not D-arginine, enhances HNE accumulation in I/R but not in SOP (< 0.050 pmol/g tissue in SOP versus 0.6 nmol/g tissue in I/R), showing that, in this experimental conditions, NO produced from L-arginine, enhances the toxicity of ROS. This study shows that the pro- or antioxydant effects of NO are different

  11. Microgravity Processing of Oxide Superconductors (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)


    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  12. Theory of Copper Oxide Superconductors

    CERN Document Server

    Kamimura, Hiroshi; Shunichi Matsuno; Tsuyoshi Hamada


    This is an advanced textbook for graduate students and researchers wishing to learn about high temperature superconductivity in copper oxides, in particular the Kamimura-Suwa (K-S) model. Because a number of models have been proposed since the discovery of high temperature superconductivity by Bednorz and Müller in 1986, the book first explains briefly the historical development that led to the K-S model. It then focuses on the physical background necessary to understand the K-S model and on the basic principles behind various physical phenomena such as electronic structures, electrical, thermal and optical properties, and the mechanism of high temperature superconductivity.

  13. Preparation of Manganese Oxide Nanobelts

    Institute of Scientific and Technical Information of China (English)

    Jisen WANG; Jinquan SUN; Ying BAO; Xiufang BIAN


    Oriented nanobelts of manganese oxide have been firstly and successfully prepared by a microemulsion techniqueunder controlled circumstances. The samples were characterized by X-ray diffraction (XRD), transmission electronmicroscope (TEM). Influences of sodium chloride and annealed temperature on the synthesis of Mn3O4 nanobeltswere investigated. It was found that NaCl is the key factor to synthesize oriented Mn3O4 nanobelts and 827 K isoptimum temperature to produce fine nanobelts. Oriented growth mechanism of Mn3O4 nanobelts was discussed.

  14. Nitrous oxide in emergency medicine. (United States)

    O'Sullivan, I; Benger, J


    Safe and predictable analgesia is required for the potentially painful or uncomfortable procedures often undertaken in an emergency department. The characteristics of an ideal analgesic agent are safety, predictability, non-invasive delivery, freedom from side effects, simplicity of use, and a rapid onset and offset. Newer approaches have threatened the widespread use of nitrous oxide, but despite its long history this simple gas still has much to offer. "I am sure the air in heaven must be this wonder-working gas of delight". Robert Southey, Poet (1774 to 1843)

  15. Equivalent oxide thickness scaling of Al2O3/Ge metal-oxide-semiconductor capacitors with ozone post oxidation

    Institute of Scientific and Technical Information of China (English)

    Sun Jia-Bao; Yang Zhou-Wei; Geng Yang; Lu Hong-Liang; Wu Wang-Ran; Ye Xiang-Dong; David Zhang Wei


    Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere.No additional interracial layer was detected by the high-resolution cross-sectional transmission electron microscopy and X-ray photoelectron spectroscopy measurements made after the ozone post oxidation (OPO) treatment.Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed.Furthermore,a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time.The results can be attributed to the film quality having been improved by the OPO treatment.

  16. Electrochemical reduction of NO with propene in the presence of oxygen on LSCoM/CGO porous cell stacks impregnated with BaO

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah; Kammer Hansen, Kent


    The electrochemical reduction of NO with propene in the presence of 10 % O2 was studied on a La0.85Sr0.15Co0.03Mn0.97O3-Ce0.9Gd0.1O1.95 11-layer electrochemical reactor. BaO was impregnated into the porous reactor, and electrochemical impedance spectroscopy was used for characterisation...

  17. Sulfur-oxidizing bacteria in environmental technology. (United States)

    Pokorna, Dana; Zabranska, Jana


    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed.

  18. Oxidative stability of krill oil (Euphausia superba)

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Jacobsen, Charlotte; Bruheim, I.;

    Krill oil has been reported in many studies to have high oxidative stability when evaluated by peroxide value (PV) and anisidine value (AV). However, recent studies have shown that other compounds than primary and secondary oxidation products are formed when krill oil is exposed to oxidative...... conditions. These compounds include Strecker degradation compounds and pyrroles. Some of these compounds may have antioxidative effect. Commercial scale processing of krill prior to extraction may affect the oxidative stability of krill oil. Therefore, the main objective of this study was to compare lipid...... oxidation in krill oil produced in a commercial process and krill oil carefully extracted from frozen krill in the laboratory. Krill oil was incubated at different temperatures (20, 30 and 40 oC) for 1, 2, 3, 4 and 6 weeks, under conditions of constant stirring while being exposed to air. The oxidative...

  19. Applications of Oxide Coatings in Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Sonya Calnan


    Full Text Available Metalloid and metal based oxides are an almost unavoidable component in the majority of solar cell technologies used at the time of writing this review. Numerous studies have shown increases of ≥1% absolute in solar cell efficiency by simply substituting a given layer in the material stack with an oxide. Depending on the stoichiometry and whether other elements are present, oxides can be used for the purpose of light management, passivation of electrical defects, photo-carrier generation, charge separation, and charge transport in a solar cell. In this review, the most commonly used oxides whose benefits for solar cells have been proven both in a laboratory and industrial environment are discussed. Additionally, developing trends in the use of oxides, as well as newer oxide materials, and deposition technologies for solar cells are reported.

  20. Primary atmospheric oxidation mechanism for toluene. (United States)

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J


    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  1. Antitumor Activities of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria Pilar Vinardell


    Full Text Available Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  2. Management of oxidative stress by microalgae. (United States)

    Cirulis, Judith T; Scott, J Ashley; Ross, Gregory M


    The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.

  3. Effect of inhomogeneous re-oxidation on Ni-based SOFC oxidation resistance (United States)

    Lou, Kang; Wang, Feng Hui; Lu, Yong Jun; Zhao, Xiang


    Inhomogeneous re-oxidation, which causes graded NiO content along anode thickness, has been confirmed to be a key reason for Ni-based cell cracking during redox progress. In this paper, an analytical model is developed to estimate the impact of inhomogeneous re-oxidation on Ni-based solid oxide fuel cell (SOFC) oxidation resistance. And experiments, in which the SOFC was partially re-oxidized, were implemented for model trial. Model results show that electrolyte internal stress can be significantly reduced (from 367 MPa to 135 MPa, when the oxidation degree is 60%), and the electrolyte can remain intact even when the oxidation degree reaches about 70%, if the anode was re-oxidized uniformly. This impact of inhomogeneous re-oxidation on stress in the electrolyte decreases as the anode thickness increases. Scanning electron microscopic (SEM) images of partially oxidized anode cross-sections confirmed that Ni oxidation was inhomogeneous, in which the outer regions of the anode became almost fully oxidized, while the inner regions remained metallic. And the inhomogeneity increases with the redox times. Consequently, it is important to avoid gradients in NiO content during oxidation progress to prevent cell cracking.

  4. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson


    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  5. Solid-oxide fuel cell electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, I.D.; Hash, M.C.; Krumpelt, M.


    This invention is comprised of a solid-oxide electrolyte operable at between 600{degrees}C and 800{degrees}C and a method of producing the solid-oxide electrolyte. The solid-oxide electrolyte comprises a combination of a compound having a weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  6. Applications of Oxide Coatings in Photovoltaic Devices


    Sonya Calnan


    Metalloid and metal based oxides are an almost unavoidable component in the majority of solar cell technologies used at the time of writing this review. Numerous studies have shown increases of ≥1% absolute in solar cell efficiency by simply substituting a given layer in the material stack with an oxide. Depending on the stoichiometry and whether other elements are present, oxides can be used for the purpose of light management, passivation of electrical defects, photo-carrier generation, cha...

  7. Oxidation catalysts on alkaline earth supports

    Energy Technology Data Exchange (ETDEWEB)

    Mohajeri, Nahid


    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  8. Biological Superoxide In Manganese Oxide Formation (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.


    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.


    Institute of Scientific and Technical Information of China (English)

    MAOMingfei; LIUZhifang; 等


    Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants.And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerized and modify once more.The system was applied in composites.Their properties wrer investigated and found that they met the requirements as a heat-resisting adhesive.

  10. Oxidative stress and hepatitis C virus



    The disproportionate imbalance between the systemic manifestation of reactive oxygen species and body’s ability to detoxify the reactive intermediates is referred to as oxidative stress. Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2-. The cells’ ...

  11. Radical-free biology of oxidative stress



    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thi...

  12. Lung Oxidative Damage by Hypoxia

    Directory of Open Access Journals (Sweden)

    O. F. Araneda


    Full Text Available One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.

  13. Chemically Assisted Photocatalytic Oxidation System (United States)

    Andino, Jean; Wu, Chang-Yu; Mazyck, David; Teixeira, Arthur A.


    The chemically assisted photocatalytic oxidation system (CAPOS) has been proposed for destroying microorganisms and organic chemicals that may be suspended in the air or present on surfaces of an air-handling system that ventilates an indoor environment. The CAPOS would comprise an upstream and a downstream stage that would implement a tandem combination of two partly redundant treatments. In the upstream stage, the air stream and, optionally, surfaces of the air-handling system would be treated with ozone, which would be generated from oxygen in the air by means of an electrical discharge or ultraviolet light. In the second stage, the air laden with ozone and oxidation products from the first stage would be made to flow in contact with a silica-titania photocatalyst exposed to ultraviolet light in the presence of water vapor. Hydroxyl radicals generated by the photocatalytic action would react with both carbon containing chemicals and microorganisms to eventually produce water and carbon dioxide, and ozone from the first stage would be photocatalytically degraded to O2. The net products of the two-stage treatment would be H2O, CO2, and O2.

  14. Preparation of nanometer yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    HUO; Cheng-zhang; LIU; Zhi-qiang; LIANG; Zhen-feng; LI; Xing-ying


    The nanometer yttrium oxides were obtained through precipitation in aqueous solution by reaction with ammonium bicarbonate. The reaction between yttrium chloride and ammonium bicarbonate, the effect of surfactants on particle size and the methods of controlling agglomeration were studied. Compared to other methods, the method of controlling the agglomeration by adding surfactant is one of the best methods for controlling the agglomeration of nanometer particles in wetchemical process. Increasing surfactants in process of precipitation deduced particle size, obtained narrow size distribution of primary particles. As for the concentration range studied, excess surfactants increased the particle size on the contrary. Characteristics of the thermal decomposition of yttrium carbonate were studied. It indicated that the approximate chemical composition of the precipi tate was Y(OH)Clx (CO3)(1-x/2) · 3H2O,the cubic Y2O3 was obtained above 600℃ , the specific surface and the remain chloride of nanometer Y2O3 was decreased with calcinating temperature rising. The spherical nanometer yttrium oxide was gained with primary particles<50 nm,agglomerate distribution D50 < 150 nm, BET> 35 m2/g, agglomerate constant (D50/DBET ) <6.

  15. Reversible Oxidative Addition at Carbon. (United States)

    Eichhorn, Antonius F; Fuchs, Sonja; Flock, Marco; Marder, Todd B; Radius, Udo


    The reactivity of N-heterocyclic carbenes (NHCs) and cyclic alkyl amino carbenes (cAACs) with arylboronate esters is reported. The reaction with NHCs leads to the reversible formation of thermally stable Lewis acid/base adducts Ar-B(OR)2 ⋅NHC (Add1-Add6). Addition of cAAC(Me) to the catecholboronate esters 4-R-C6 H4 -Bcat (R=Me, OMe) also afforded the adducts 4-R-C6 H4 Bcat⋅cAAC(Me) (Add7, R=Me and Add8, R=OMe), which react further at room temperature to give the cAAC(Me) ring-expanded products RER1 and RER2. The boronate esters Ar-B(OR)2 of pinacol, neopentylglycol, and ethyleneglycol react with cAAC at RT via reversible B-C oxidative addition to the carbene carbon atom to afford cAAC(Me) (B{OR}2 )(Ar) (BCA1-BCA6). NMR studies of cAAC(Me) (Bneop)(4-Me-C6 H4 ) (BCA4) demonstrate the reversible nature of this oxidative addition process.

  16. Advanced oxidation scanning probe lithography (United States)

    Ryu, Yu K.; Garcia, Ricardo


    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  17. Tape casting of magnesium oxide.

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.


    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  18. Catalytic polarographic currents of oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Zajtsev, P.M.; Zhdanov, S.I.; Nikolaeva, T.D. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow (USSR))


    The state of theory and practice of an important direction in polarography, i.e. catalytic currents of oxidizers-substrates that have found a wide application in the development of highly sensitive methods of determination of a large number of substrates, catalysts and polarographically nonactive ligands, is considered. Transition and some non-transition elements serve as catalysts of reactions that cause catalytic polarographic currents of substrates. Catalytic activity of an inorganic catalyst increases with the increase in the number of its d-orbit. Complex formation in most cases leads to the increase of catalyst activity, however, sometimes a reverse phenomenon takes place. For many catalysts the maximum activity is observed at pH values close to pK value of their hydrolysis. The properties of oxidizers-substrates is revealed by H/sub 2/O/sub 2/, ClO/sub 3//sup -/, BrO/sub 3//sup -/, IO/sub 3//sup -/, ClO/sub 4//sup -/, IO/sub 4//sup -/, NO/sub 2//sup -/, NO/sub 3//sup -/, NH/sub 2/OH, V(5), V(4), S/sub 2/O/sub 8//sup 2 -/, H/sub 2/SO/sub 4/, H/sub 2/C/sub 2/O/sub 4/, COHCOOH, alkenes compounds, organic halogen , sulfur- and amine-containing compounds.

  19. Plasma electrolytic oxidation of AMCs (United States)

    Morgenstern, R.; Sieber, M.; Lampke, T.


    Aluminum Matrix Composites (AMCs) consisting of high-strength alloys and ceramic reinforcement phases exhibit a high potential for security relevant lightweight components due to their high specific mechanical properties. However, their application as tribologically stressed components is limited because of their susceptibility against fatigue wear and delamination wear. Oxide ceramic protective coatings produced by plasma electrolytic oxidation (PEO) can solve these problems and extend the possible applications of AMCs. The substrate material was powder metallurgically processed using alloy EN AW 2017 and SiC or Al2O3 particles. The influence of material properties like particle type, size and volume fraction on coating characteristics is clarified within this work. An alkaline silicate electrolyte was used to produce PEO coatings with technically relevant thicknesses under bipolar-pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The particle type proved to have the most significant effect on the coating properties. Whereas compactness and thickness are not deteriorated by the incorporation of thermodynamically stable alumina particles, the decomposition of silica particles during the PEO processes causes an increase of the porosity. The higher silica particle content decreases also the coating thickness and hardness, which leads in particular to reduction of the wear resistance of the PEO coatings. Finally, different approaches for the reduction of the coating porosity of silica reinforced AMCs are discussed.

  20. Nitric oxide bioavailability in malaria. (United States)

    Sobolewski, Peter; Gramaglia, Irene; Frangos, John; Intaglietta, Marcos; van der Heyde, Henri C


    Rational development of adjunct or anti-disease therapy for severe Plasmodium falciparum malaria requires cellular and molecular definition of malarial pathogenesis. Nitric oxide (NO) is a potential target for such therapy but its role during malaria is controversial. It has been proposed that NO is produced at high levels to kill Plasmodium parasites, although the unfortunate consequence of elevated NO levels might be impaired neuronal signaling, oxidant damage and red blood cell damage that leads to anemia. In this case, inhibitors of NO production or NO scavengers might be an effective adjunct therapy. However, increasing amounts of evidence support the alternate hypothesis that NO production is limited during malaria. Furthermore, the well-documented NO scavenging by cell-free plasma hemoglobin and superoxide, the levels of which are elevated during malaria, has not been considered. Low NO bioavailability in the vasculature during malaria might contribute to pathologic activation of the immune system, the endothelium and the coagulation system: factors required for malarial pathogenesis. Therefore, restoring NO bioavailability might represent an effective anti-disease therapy.

  1. Water defluoridation by aluminium oxide-manganese oxide composite material. (United States)

    Alemu, Sheta; Mulugeta, Eyobel; Zewge, Feleke; Chandravanshi, Bhagwan Singh


    In this study, aluminium oxide-manganese oxide (AOMO) composite material was synthesized, characterized, and tested for fluoride removal in batch experiments. AOMO was prepared from manganese(II) chloride and aluminium hydroxide. The surface area of AOMO was found to be 30.7m2/g and its specific density was determined as 2.78 g/cm3. Detailed investigation of the adsorbent by inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and ion chromatography (for sulphate only) showed that it is composed of Al, Mn, SO4, and Na as major components and Fe, Si, Ca, and Mg as minor components. Thermogravimetric analysis was used to study the thermal behaviour of AOMO. X-ray diffraction analysis showed that the adsorbent is poorly crystalline. The point of zero charge was determined as 9.54. Batch experiments (by varying the proportion of MnO, adsorbent dose, contact time, initial F concentration, and raw water pH) showed that fluoride removal efficiency ofAOMO varied significantly with percentage of MnO with an optimum value of about I11% of manganese oxide in the adsorbent. The optimum dose of the adsorbent was 4 g/L which corresponds to the equilibrium adsorption capacity of 4.8 mg F-/g. Both the removal efficiency and adsorption capacity showed an increasing trend with an increase in initial fluoride concentration of the water. The pH for optimum fluoride removal was found to be in the range between 5 and 7. The adsorption data were analysed using the Freundlich, Langmuir, and Dubinirn-Radushkevich models. The minimum adsorption capacity obtained from the non-linear Freundlich isotherm model was 4.94 mg F-/g and the maximum capacity from the Langmuir isotherm method was 19.2mg F-/g. The experimental data of fluoride adsorption on AOMO fitted well to the Freundlich isotherm model. Kinetic studies showed that the adsorption is well described by a non-linear pseudo-second-order reaction model with an average rate constant of 3

  2. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.


    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  3. High Performance Photocatalytic Oxidation Reactor System Project (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  4. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet


    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.


    Institute of Scientific and Technical Information of China (English)



    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method.The sequence of 18O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows:spineloxides and water and between the uranium oxides and the other minerals have been obtained for 0-1200℃.The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.

  6. Perspective: Oxide molecular-beam epitaxy rocks!

    Directory of Open Access Journals (Sweden)

    Darrell G. Schlom


    Full Text Available Molecular-beam epitaxy (MBE is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  7. Perspective: Oxide molecular-beam epitaxy rocks!

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, Darrell G., E-mail: [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA and Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)


    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  8. Oxide driven strength evolution of silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T., E-mail: [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Milosevic, Erik [Department of Nanoengineering, SUNY Polytechnic University, Albany, New York 12203 (United States); Boyce, Brad L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0889 (United States)


    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  9. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi


    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  10. Advanced Wastewater Photo-oxidation System Project (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes an advanced photocatalytic oxidation reactor for enhancing the reliability and performance of Water Recovery Post Processing systems...

  11. Catalytic wet oxidation of black liquor


    Viader Riera, Gerard


    The major aspects of wet air oxidation and catalytic wet air oxidation have been reviewed in this work paying special attention to the reaction mechanisms, kinetics and the industrial process. In the experimental section a set of heterogeneous catalysts have been tested in the wet oxidation of non-wood black liquor. The oxidation runs were performed batchwise in a laboratory-scale mechanically stirred slurry reactor for 1 h at a temperature of 170°C and total pressure of 12 bar. Pure oxygen w...

  12. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋


    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  13. Zinc oxide varistor; Sanka aen barisuta

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.


    Characteristics of zinc oxide varistors, applications to electronic equipment protection and to power arrester are explained. Zinc oxide varistors were invented in Japan, which function by ceramics boundary phenomena and are applied to various fields from power plants to houses. Zinc oxide varistors protect electronic equipment from malfunctions and destructions by surge voltage, accordingly have spread rapidly. Protection performance of the power arresters has been improved by development of zinc oxide varistors for electric power, and power arresters came to be used to protect electric lines all over the world. (NEDO)

  14. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics (United States)


    identified during reactions of SO4•− with alkenes by electron spin resonance (Chawla and Fessenden, 1975; Koltzenburg et al., 1982; Davies and...constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513-886. 11...Addition versus overall one-electron abstraction in the oxidation of alkenes and dienes by SO4-·, Cl2-·, and ·OH in acidic aqueous solution. J. Chem

  15. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer (United States)

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.


    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  16. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. (United States)

    Jones, Christopher; Taylor, Stuart H; Burrows, Andrew; Crudace, Mandy J; Kiely, Christopher J; Hutchings, Graham J


    Low levels of cobalt doping (1 wt%) of copper manganese oxide enhances its activity for carbon monoxide oxidation under ambient conditions and the doped catalyst can display higher activity than current commercial catalysts.




    The regularities of phase conversions in metal-oxide compositions on the basis of aluminium and silicon oxide with the purpose of silumins synthesis by means of direct restoration of aluminium silicon are studied.

  18. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei


    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  19. Oxidative stress response in sugarcane

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Soares Netto


    Full Text Available Oxidative stress response in plants is still poorly understood in comparison with the correspondent phenomenon in bacteria, yeast and mammals. For instance, nitric oxide is assumed to play various roles in plants although no nitric oxide synthase gene has yet been isolated. This research reports the results of a search of the sugarcane expressed sequence tag (SUCEST database for homologous sequences involved in the oxidative stress response. I have not found any gene similar to nitric oxide synthase in the SUCEST database although an alternative pathway for nitric oxide synthesis was proposed. I have also found several genes involved in antioxidant defense, e.g. metal chelators, low molecular weight compounds, antioxidant enzymes and repair systems. Ascorbate (vitamin C is a key antioxidant in plants because it reaches high concentrations in cells and is a substrate for ascorbate peroxidase, an enzyme that I found in different isoforms in the SUCEST database. I also found many enzymes involved in the biosynthesis of low molecular weight antioxidants, which may be potential targets for genetic manipulation. The engineering of plants for increased vitamin C and E production may lead to improvements in the nutritional value and stress tolerance of sugarcane. The components of the antioxidant defense system interact and their synthesis is probably closely regulated. Transcription factors involved in regulation of the oxidative stress response in bacteria, yeast and mammals differ considerably among themselves and when I used them to search the SUCEST database only genes with weak similarities were found, suggesting that these transcription regulators are not very conserved. The involvement of reactive oxygen species and antioxidants in plant defense against pathogens is also discussed.A resposta ao estresse oxidativo não é bem conhecida em plantas como em bactérias, leveduras e humanos. Por exemplo, assume-se que óxido nítrico tem várias fun

  20. Development of the inner oxide zone upon steam oxidation of an austenitic stainless steel

    DEFF Research Database (Denmark)

    Hansson, Anette N.; Montgomery, Melanie; Somers, Marcel A. J.


    The oxidation behaviour of TP 347H FG in mixtures of water, oxygen, and hydrogen was investigated in the temperature range 500 – 700C for a fixed oxidation time of 336 h. The samples were characterised using reflective light and electron microscopy methods. Thin discontinuous double-layered oxide...

  1. Volcano Relations for Oxidation of Hydrogen Halides over Rutile Oxide Surfaces

    DEFF Research Database (Denmark)

    Toftelund, Anja; Man, Isabela C.; Hansen, Heine A.


    We investigate the heterogeneously catalysed oxidation of HX (X=Cl, Br and I) on the RuO2 (110) surface with DFT. We also solve a micro-kinetic model of HX oxidation and compare oxidation activity at different coverages. We further establish linear energy relations for the reaction intermediates ...

  2. On the formation of iron(III) oxides via oxidation of iron(II)

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, R.; Pelizzetti, E. [Torino Univ. (Italy). Dipt. di Chimica Analitica; Borgarello, E. [Eniricerche SpA, Milan (Italy); Meisel, D. [Argonne National Lab., IL (United States)


    Formation of iron oxides in aqueous salt solutions is reviewed. The discussion is focused on the oxidation of iron(II) and the following hydrolysis process that leads to the formation of a solid phase from homogeneous solutions. Results from our own studies on the kinetics of the oxidation reactions and the ensuing growth processes are presented.

  3. Electrochemical Oxidation by Square-Wave Potential Pulses in the Imitation of Oxidative Drug Metabolism

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.


    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of lido

  4. Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation

    Institute of Scientific and Technical Information of China (English)

    祝星; 杜云鹏; 王华; 魏永刚; 李孔斋; 孙令玥


    Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature pro-grammed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1-0.5 was able to produce syngas with high selectivity in high-temperature range (800-900 °C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation oc-curred at beginning following with selective oxidation later. Ce1-xFexO2-δ oxygen carriers (x≤0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selec-tivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe* activated CeO2 and Ce3+ activated iron oxides (FeOm), and those chemical interaction greatly enhanced the oxygen mobility and se-lectivity.

  5. Fundamentals of Mercury Oxidation in Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar


    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases

  6. Enzymatic oxidation of aqueous pentachlorophenol

    Institute of Scientific and Technical Information of China (English)


    The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied.The surfactant was tested at concentrations below and above its critical micelle concentration (CMC).Enhancement of PCP removal was observed at sub-CMCs.The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products.A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80.At supra-CMCs,the surfactant caused noticeable reductions in PCP removal.presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.

  7. Nitric oxide and chronic colitis

    Directory of Open Access Journals (Sweden)

    Matthew B Grisham


    Full Text Available Nitric oxide (NO is thought to play an important role in modulating the inflammatory response by virtue of its ability to affect bloodflow, leukocyte function and cell viability. The objective of this study was to assess the role that NO may play in mediating the mucosal injury and inflammation in a model of chronic granulomatous colitis using two pharmacologically different inhibitors of nitric oxide synthase (NOS. Chronic granulomatous colitis with liver and spleen inflammation was induced in female Lewis rats via the subserosal (intramural injection of peptidoglycan/polysaccharide (PG/PS derived from group A streptococci. Chronic NOS inhibition by oral administration of NG-nitro-L-arginine methyl ester (L-NAME (15 µmol/kg/day or amino-guanidine (AG (15 µmol/ kg/day was found to attenuate the PG/PS-induced increases in macroscopic colonic inflammation scores and colonic myeloperoxidase activity. Only AG -- not L-NAME – attenuated the PG/PS-induced increases in colon dry weight. Both L-NAME and AG significantly attenuated the PG/PS-induced increases in spleen weight whereas neither was effective at significantly attenuating the PG/PS-induced increases in liver weight. Although both L-NAME and AG inhibited NO production in vivo, as measured by decreases in plasma nitrite and nitrate levels, only AG produced significantly lower values (38±3 versus 83±8 µM, respectively, P<0.05. Finally, L-NAME, but not AG, administration significantly increased mean arterial pressure from 83 mmHg in colitic animals to 105 mmHg in the PG/PS+ L-NAME-treated animals (P<0.05. It is concluded that NO may play an important role in mediating some of the pathophysiology associated with this model of chronic granulomatous colitis.

  8. Sulfite oxidation in Sinorhizobium meliloti. (United States)

    Wilson, Jeremy J; Kappler, Ulrike


    Sulfite-oxidizing enzymes (SOEs) are crucial for the metabolism of many cells and are particularly important in bacteria oxidizing inorganic or organic sulfur compounds. However, little is known about SOE diversity and metabolic roles. Sinorhizobium meliloti contains four candidate genes encoding SOEs of three different types, and in this work we have investigated the role of SOEs in S. meliloti and their possible link to the metabolism of the organosulfonate taurine. Low level SOE activity (approximately 1.4 U/mg) was present under all conditions tested while growth on taurine and thiosulfate induced high activities (5.5-8.8 U/mg) although S. meliloti cannot metabolize thiosulfate. Protein purification showed that although expression of two candidate genes matched SOE activity patterns, only a single group 2 SOE, SorT (SMc04049), is responsible for this activity. SorT is a heme-free, periplasmic homodimer (78 kDa) that has low homology to other bacterial SOEs. SorT has an apparent k(cat) of 343 s(-1) and high affinities for both sulfite (K(Mapp_pH8) 15.5 microM) and ferricyanide (K(Mapp_pH8) 3.44 microM), but not cytochrome c, suggesting a need for a high redox potential natural electron acceptor. K(Mapp_sulfite) was nearly invariant with pH which is in contrast to all other well characterized SOEs. SorT is part of an operon (SMc04049-04047) also containing a gene for a cytochrome c and an azurin, and these might be the natural electron acceptors for the enzyme. Phylogenetic analysis of SorT-related SOEs and enzymes of taurine degradation indicate that there is no link between the two processes.

  9. Oxidative stress in the neonate. (United States)

    Robles, R; Palomino, N; Robles, A


    The aim of this study is to determine the oxidative state of term and preterm neonates at the moment of birth and during the first days of life, and the influence of exposure to oxygen on the premature neonates.A total of 20 neonates were selected. Group A: 10 healthy full-term neonates, and Group B: 10 preterm neonates with no other pathology associated, requiring oxygen therapy. Venous samples were taken in cord at 3 and 72 h in Group A, and in cord at 3, 24 and 72 h and 7 days in Group B.Hydroperoxides, Q10 coenzyme (Co Q10) and alpha-tocopherol were measured within the erythrocyte membrane. Levels of hydroperoxides present in erythrocyte membrane were higher than normal both in Group A and in Group B at birth. This increase was greater in the group of premature neonates. Levels of alpha-tocopherol at birth increase significantly at 72 h in term neonates. Among the premature newborns, alpha-tocopherol levels are two to three times lower at birth and do not rise to higher levels as in the term neonate group. Fall in levels of Co Q10 in erythrocyte membranes is observed, and perhaps is due to the role of Co Q10 in maintaining the pool of reduced tocopherol. At birth, the neonate presents an increase of markers of oxidative stress and a decrease of their antioxidant defenses. This difference is greater as gestational age decreases. The application of oxygen therapy resulted in these levels which remain low throughout the study period.

  10. Anticholinesterase Toxicity and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Dejan Milatovic


    Full Text Available Anticholinesterase compounds, organophosphates (OPs and carbamates (CMs are commonly used for a variety of purposes in agriculture and in human and veterinary medicine. They exert their toxicity in mammalian system primarily by virtue of acetylcholinesterase (AChE inhibition at the synapses and neuromuscular junctions, leading into the signs of hypercholinergic preponderance. However, the mechanism(s involved in brain/muscle damage appear to be linked with alteration in antioxidant and the scavenging system leading to free radical-mediated injury. OPs and CMs cause excessive formation of F2-isoprostanes and F4-neuroprostanes, in vivo biomarkers of lipid peroxidation and generation of reactive oxygen species (ROS, and of citrulline, a marker of NO/NOS and reactive nitrogen species (RNS generation. In addition, during the course of these excitatory processes and inhibition of AChE, a high rate of ATP consumption, coupled with the inhibition of oxidative phosphorylation, compromise the cell's ability to maintain its energy levels and excessive amounts of ROS and RNS may be generated. Pretreatment with N-methyl D-aspartate (NMDA receptor antagonist memantine, in combination with atropine sulfate, provides significant protection against inhibition of AChE, increases of ROS/RNS, and depletion of high-energy phosphates induced by DFP/carbofuran. Similar antioxidative effects are observed with a spin trapping agent, phenyl-N-tert-butylnitrone (PBN or chain breaking antioxidant vitamin E. This review describes the mechanisms involved in anticholinesterase-induced oxidative/nitrosative injury in target organs of OPs/CMs, and protection by various agents.

  11. Oxidation of carbon monoxide by perferrylmyoglobin

    DEFF Research Database (Denmark)

    Libardi, Silvia H; Skibsted, Leif Horsfelt; Cardoso, Daniel R


    Perferrylmyoglobin is found to oxidize CO in aerobic aqueous solution to CO2. Tryptophan hydroperoxide in the presence of tetra(4-sulfonatophenyl)-porphyrinate-iron(III) or simple iron(II)/(III) salts shows similar reactivity against CO. The oxidation of CO is for tryptophan hydroperoxide conclud...

  12. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, G.; Blank, D.H.A.


    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets t

  13. LDL oxidation and extent of coronary atherosclerosis

    NARCIS (Netherlands)

    Vijver, L.P.L. van de; Kardinaal, A.F.M.; Duyvenvoorde, W. van; Kruijssen, D.A.C.M.; Grobbee, D.E.; Poppel, G. van; Princen, H.M.G.


    Accumulated evidence indicates that oxidative modification of LDL plays an important role in the atherogenic process. Therefore, we investigated the relation between coronary atherosclerosis and susceptibility of LDL to oxidation in a case-control study in men between 45 and 80 years of age. Case su

  14. Mesoporous Transition Metal Oxides for Supercapacitors (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei


    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  15. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang


    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  16. Plutonium Oxide Process Capability Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  17. Review of oxidation of Nb-1Zr

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, J.R.


    A major objective of the SP-100 Program Nuclear Assembly Test is to demonstrate the performance of a full-scale nuclear subsystem of a 100-kWe space nuclear power supply. The test will be run in a large vacuum chamber to protect the Nb-1Zr components from oxidation during operation. Much information about the oxidation of niobium and Nb-1Zr alloy already exists, and previous work in this area is reviewed. Oxidation of Nb-1Zr can proceed by solution, internal oxidation, and/or film formation. At temperatures up to about 650 K (377/degree/C), oxidation generally follows a parabolic rate law because of the formation of protective oxide(s). At higher temperatures, oxidation becomes linear, but results are extremely sensitive to pressure and other system variables. Results obtained by several investigators could not be predicted using empirical equations developed by one investigator relating the increase in oxygen concentration to pressure, temperature, time, and specimen thickness. Additional data are required to provide more reliable guidelines for system operation that will protect against catastrophic effects. 20 refs., 12 figs., 7 tabs.

  18. Useful and harmful effects of nitric oxide

    Directory of Open Access Journals (Sweden)

    Jović Slavoljub


    Full Text Available In living sistems synthesis of nitric oxide occurs during metabolism from Larginin, nitrite and ascorbate. Being very significant carrier of information within numerous both physiological and pathological proceses in mammals' organisms, nitric oxid could possibly be useful as well as harmful. Nitric oxide synthesis is adjuvant in a healthy organism because it represents the basic molecule for understanding numerous processes in neurology, psychology, immunology and varios related fields. In other words, nitric oxide participate in number of physiological processes, such as: transmission of nerve signals (neurotransmitter role, regulation of smooth muscle tissue relaxation (eg. vasodilatation, peristaltic movements, immunomodulation, mastocyte activation, development of inflammatory response, apoptosis regulation, angiogenesis and glucose metabolism, normal heart functioning and antioxidation role. Besides being useful, nitric oxide can be harmful as well, because it has one unpaired electron, so consequently it is susceptible to oxidation becoming a stable free radical. Being such, it reacts quickly with superoxide-anion radical, givind at first an extremely reactive peroxinitrite anion, and subsequently peroxidnitrite acid. This acid is very dangerous causing thiol groups oxidation, tyrosine and phenylalanine nitrosylation, lipid oxidation, DNK chain splitting, nitrification and nucleic bases deamination. These damages of macromolecules can cause a series of undesirable changes which subsequently distub functions of molecules, and thus of cells, tissues and even organs. [Projekat Ministarstva nauke Republike Srbije, br. 173034 i br. 31085

  19. Magnesium Oxide Induced Metabolic Alkalosis in Cattle


    Ogilvie, T H; Butler, D G; Gartley, C J; Dohoo, I. R.


    A study was designed to compare the metabolic alkalosis produced in cattle from the use of an antacid (magnesium oxide) and a saline cathartic (magnesium sulphate). Six, mature, normal cattle were treated orally with a magnesium oxide (MgO) product and one week later given a comparable cathartic dose of magnesium sulphate (MgSO4).

  20. Size effects in epitaxial oxide thin films

    NARCIS (Netherlands)

    Kuiper, Bouwe


    The perovskite oxide material class comprises a vast range of interesting physical properties. The common oxygen backbone in such ABO3 perovskites and the similar lattice parameters allow for the creation of epitaxial oxide heterostructures. Materials with different intrinsic properties can be combi