WorldWideScience

Sample records for cerium nitrides

  1. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  2. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  3. Synergistic properties of graphitic carbon nitride/cerium molybdate nanocomposites for enhanced photocatalytic activity

    Science.gov (United States)

    Bhargava, V. S.; Singh, Gajendar; Sharma, Manu

    2018-05-01

    A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.

  4. Determination of cerium

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    Techniques of cerium determination in steels and alloys are developed. Amperometric method of determination which is based on Ce(4) titration by a solution of double salt of sulfuric Fe(2) and ammonium when cerium amount exceeds 0.01% is suggested. Cerium is oxidated to tetravalent state by KMnO 4 . The elements interfering with the determination (Cr, Ni etc.) are separated by means of deposition. When cerium content exceeds 0.005% in steels and alloys the determination is carried out using photometric method with arsenazo 3 in hydrochloric medium (pH 1.8-2.3). Optimum concentration is 5-50 μg [ru

  5. The use of cerium(IV) phosphate for the gravimetric determination and separation of cerium

    International Nuclear Information System (INIS)

    Masin, V.; Dolezal, J.

    1978-01-01

    A method for the gravimetric determination of cerium as Ce 3 (PO 4 ) 4 is described. Cerium can be separated from many metals in this form, as well as from permanganate and dichromate; the cerium separated can then be titrated with iron(II) solution. The method was verified for the determination of cerium in a rare earth concentrate. (Auth.)

  6. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  7. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  8. Preparation of high-purity cerium nitrate

    International Nuclear Information System (INIS)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos

    1995-01-01

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author)

  9. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Science.gov (United States)

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.

  10. A cerium(IV)-carbon multiple bond

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Matthew; Lu, Erli; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T. [Nottingham Univ. (United Kingdom). School of Chemistry

    2013-12-02

    Straightforward access to a cerium(IV)-carbene complex was provided by one-electron oxidation of an anionic ''ate'' cerium(III)-carbene precursor, thereby avoiding decomposition reactions that plague oxidations of neutral cerium(III) compounds. The cerium(IV)-carbene complex is the first lanthanide(IV)-element multiple bond and involves a twofold bonding interaction of two electron pairs between cerium and carbon. [German] Auf direktem Wege zu einem Cer(IV)-Carbenkomplex gelangt man durch die Einelektronenoxidation einer anionischen Carben-Cerat(III)-Vorstufe. So werden Zersetzungsprozesse vermieden, die die Oxidation neutraler Cer(III)-Verbindungen erschweren. Der Cer(IV)-Carbenkomplex enthaelt die erste Lanthanoid(IV)-Element-Mehrfachbindung; dabei binden Cer und Kohlenstoff ueber zwei Elektronenpaare.

  11. Calcination of the cerium concentrate to be cerium oxide

    International Nuclear Information System (INIS)

    Suyanti; MV Purwani

    2016-01-01

    Calcination of the cerium concentrate to be cerium oxide has done. The cerium concentrate were obtained from the Ce making process wear KBrO_3 and without using KBrO_3. The calcination were done with a variation of time 1, 2, 3 and 4 hours with the temperature variations of 700, 800 and 900°C. The easiest calcination of Ce concentrates to be CeO_2 containing majority of Ce(OH)_4 and contains least impurities as Th(OH)_4, (NH_4)_2Y(NO_3), H_4N_5O_1_2La, H_1_2N_3NdO_1_5 and N_3O_9Sm. On the calcination of Ce concentrates process results without using KBrO_3 1, the calcination temperature 900°C was obtained CeO_2 content of 73.53% for calcination time of 4 hours, has little difference when compared with the predictions and calculation result of complete calcination was equal 73.84%. (author)

  12. Cerium and jojoba in engines?; Cerium et jojoba dans les moteurs?

    Energy Technology Data Exchange (ETDEWEB)

    Massy-Delhotel, E.

    1996-10-01

    The Belgium company CreaTel proposes a new system, called Forac, which can lead to a 10% reduction of fuel consumption in thermal engines together with a quasi-complete reduction of CO, HC, NOx pollutants and CO{sub 2} particulates emission. The system comprises a steam production device and an admission pipe with a cerium alloy whorl inside. The steam produced is mixed with the admission air and tears cerium particles from the inside of the admission pipe to the combustion chamber. The cerium particles act as a catalyst which favours the complete combustion of the fuel. The same company proposes also lubricant additives made from liquid jojoba wax which allow the reduction of pollutant emissions, fuel consumption and noise emissions of diesel engines. (J.S.)

  13. Cerium and rare earth separation process

    International Nuclear Information System (INIS)

    Martin, M.; Rollat, M.

    1986-01-01

    An aqueous solution containing cerium III and rare earths is oxidized in the anodic compartment of an electrolytic cell, cerium IV is extracted by an organic solvent, the organic phase containing Ce IV is reduced in the catodic compartment of the same electrolytic cell and cerium III is extracted in a nitric aqueous phase [fr

  14. Multifunctional cerium-based nanomaterials and methods for producing the same

    Science.gov (United States)

    O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.

    2018-01-09

    Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.

  15. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    The luminescence properties of Ce3+, Li+ or Na+ co-doped alkaline-earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) are reported. The solubility of Ce3+ and optical properties of M2-2xCexLixSi5N8 (x0.1) materials have been investigated as function of the cerium concentration by X-ray powder diffraction

  16. Some Environmentally Relevant Reactions of Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Janoš Pavel

    2014-12-01

    Full Text Available Reactive forms of cerium oxide were prepared by a thermal decomposition of various precursors, namely carbonates, oxalates and citrates, commercially available nanocrystalline cerium oxide (nanoceria was involved in the study for comparison. Scanning electron microscopy (SEM and x-ray diffraction analysis (XRD were used to examine the morphology and crystallinity of the samples, respectively, whereas the Brunauer-Emmett-Teller (BET method of nitrogen adsorption was used to determine surface areas. Interactions of cerium oxide with some phosphorus-containing compounds were investigated. Some of the examined samples, especially those prepared by annealing from carbonate precursors, exhibited an outstanding ability to destroy highly toxic organophosphates, such as pesticides (parathion methyl, or nerve agents (soman, VX. There were identified some relations between the degradation efficiency of cerium oxides and their crystallinity. It was also shown that cerium oxide is able to destroy one of widely used flame retardants - triphenyl phosphate. A phosphatase-mimetic activity of various cerium oxides was examined with the aid of a standardized phosphatase test.

  17. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    International Nuclear Information System (INIS)

    Rygel, Jennifer L.; Chen, Yongsheng; Pantano, Carlo G.; Shibata, Tomohiro; Du, Jincheng; Kokou, Leopold; Woodman, Robert; Belcher, James

    2011-01-01

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP 3 O 9 -AlP 3 O 9 and CeP 3 O 9 -SiP 2 O 7 , was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, ≥95% of cerium ions are Ce 3+ . This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce 3+ . Near the metaphosphate composition, cerium was found to have an average cerium coordination number of ∼7.0 and an average cerium-oxygen bond length of 2.41 (angstrom). The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing ≥14 and ≥15 mol% Ce 2 O 3 for the aluminophosphate and silicophosphate series, respectively.

  18. Metabolism of cerium 144 in rat. Distribution - elimination - dosimetry; Metabolisme du cerium 144 chez le rat. Distribution - elimination - dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Remy, Jacques

    1959-07-01

    This academic report concerns a study during which cerium 144 has been intravenously injected to three-month old rats under the form of cerium chloride in aqueous solution with pH of 9,5. Rats have then been sacrificed at different times after the injection, and organ or tissue samplings have been performed to study the isotope distribution in their bodies. This allowed the calculation of internal irradiation doses locally received by the animal, and also to identify critical organs with respect to cerium 144. Thus, until the twentieth day after injection, liver is the critical organ. After, it is the skeleton, for the rest of the animal's life. The bone internal irradiation is the highest danger for an internal cerium 144 contamination, due to threats on body hematopoietic functions [French] Le Cerium 144 est injecte a des rats de trois mois par voie intraveineuse, sous forme de chlorure en solution aqueuse a pH = 9,5. Une telle solution est colloidale. Les rats sont sacrifies par groupe de 5 a des temps differents apres l'injection et des prelevements d'organes ou de tissus sont effectues qui permettent d'etudier la distribution de l'isotope dans l'organisme. Cette etude de la distribution du Cerium 144 dans l'organiqme du rat a permis egalement le calcul des doses d'irradiation interne recues localement par l'animal. Ces donnees permettent de definir les organes critiques de l'organisme pour le Cerium 144: Jusqu'au 20eme jour l'organe critique est le foie. Ce sera ensuite le squelette, et ce, pendant toute la vie de l'animal. L'irradiation interne de l'os constitue, en raison des menaces qu'elle comporte pour les fonctions hematopoietiques de l'organisme, le plus grand danger d'une contamination interne par le Cerium 144.

  19. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss; Sadaiyandi, Karuppasamy; Mahendran, Manickam; Sagadevan, Suresh

    2016-01-01

    Cerium oxide (CeO 2 ) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  20. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  1. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  2. Valence instabilities in cerium intermetallics

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1982-01-01

    The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn 3 . In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn 3 and Cesub(1-x)Ysub(x)Sn 3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn 3 , also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In 3 and Cesub(1-x)Ysub(x)In 3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi 2 , CeSi, and in CeGa 2 . (Auth.)

  3. Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate

    International Nuclear Information System (INIS)

    Hirakawa, Keiko

    1983-01-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because o f abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972 -- 73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. (author)

  4. Membrane assisted liquid-liquid extraction of cerium

    International Nuclear Information System (INIS)

    Soldenhoff, K.M.

    2000-02-01

    Membrane assisted liquid-liquid extraction of cerium was investigated, with emphasis placed on the study of the reaction chemistry and the kinetics of non-dispersive solvent extraction and stripping with microporous membranes. A bulk liquid membrane process was developed for the purification of cerium(IV) from sulfate solutions containing other rare earth elements. The cerium process was studied in both a flat sheet contained liquid membrane configuration and with hollow fibre contactors. Di-2-ethylhexyl phosphoric acid (DEHPA) was identified as a suitable extractant for cerium(IV) from sulfuric acid solution, with due consideration of factors such as extraction ability, resistance to degradation, solvent selectivity and potential for sulfate transfer into a strip solution. A detailed study of the extraction of cerium(IV) with DEHPA defined the extraction reaction chemistry. The Ce/DEHPA/sulfate system was also investigated with a flat sheet bulk liquid membrane configuration, using both sulfuric and hydrochloric acid as receiver solutions. These tests identified that hydrophobic membranes provide better mass transfer for extraction and hydrophilic membranes are better for stripping. The presence of an impurity, mono 2-ethylhexyl phosphoric acid (MEHPA), was found to have a dramatic accelerating effect on the rate of the chemical extraction reaction. This was attributed to its higher interfacial activity and population compared to DEHPA, and the fact that MEHPA was also found to be an active carrier for cerium(IV). The mass transfer rate of membrane assisted extraction and stripping of cerium, using hydrophobic and hydrophilic microporous membranes, respectively, was investigated using a modified Lewis-type cell. It was quantitatively demonstrated that the extraction process was mainly controlled by membrane diffusion and the stripping process was controlled by the chemical reaction rate, with membrane diffusion becoming important at low distribution coefficients

  5. Obtainment of cerium dioxide for use as spectrochemical standard

    International Nuclear Information System (INIS)

    Silva Queiroz, C.A. da; Hespanhol, E.C.B.; Abrao, A.

    1992-01-01

    This paper describes a simple method for cerium separation and purification. Cerium is previously precipitated with N H 3 /air/H 2 O 2 system in a mixed chlorides solution obtained from Brazilian monazite treatment. The cerium fraction as cerium chloride is run down throughout a strong cationic resin bed and then the rare earth impurities separation is done by elution of the resin with separation ammonium salt of EDTA. None retainer ion is used in the purification technique by ion exchange. (author)

  6. Selected cerium phase diagrams

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Verkade, M.E.

    1974-09-01

    A compilation of cerium alloy phase equilibria data based on the most reliable information available is presented. The binary systems selected are those of cerium with each of the following twenty nine elements which might be commonly found in steels: Al, Sb, As, Bi, Ca, C, Cr, Co, Nb, Cu, Fe, Pb, Mg, Mn, Mo, Ni, N, O, P, Se, Si, Ag, S, Te, Sn, Ti, W, and Zn. A brief discussion, a summary of crystal lattice parameters where applicable, and a list of references is included for each element surveyed. (U.S.)

  7. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    Han, Jianjun; Lu, Haifeng; Zhang, Jie; Feng, Shengyu

    2012-01-01

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  8. Two-phase titration of cerium(3) by permanganate

    International Nuclear Information System (INIS)

    Lazarev, A.I.; Lazareva, V.I.; Gerko, V.V.

    1986-01-01

    Reaction of cerium (3) and permanganate was investigated at a room temperature depending on PH, concentrations of pyrophosphate, cerium (3), tetraphenylphosphonium and foreign compounds. Selective method of two-phase titration determination of cerium (3) by permanganate without using silver compounds, preliminary separation of chlorides, nitrates, was developed. The method was tested using alloys based on iron, nickel, REE, copper, cobalt (S r ≤0.008). Correctness is proved with method of standard additives

  9. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jianjun [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Lu, Haifeng, E-mail: lhf@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Jie [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Feng, Shengyu, E-mail: fsy@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-09-14

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (-CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: Black-Right-Pointing-Pointer Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. Black-Right-Pointing-Pointer Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. Black-Right-Pointing-Pointer These materials show good irradiation resistance and mechanical properties at same time.

  10. Preparation of cerium oxide for lens polishing powder

    International Nuclear Information System (INIS)

    Injarean, Uthaiwan; Rodthongkom, Chouvana; Pichestapong, Pipat; Changkrurng, Kalaya

    2003-10-01

    Cerium is an element of rare earth group which is called lanthanide series. It is found in the ores like monazite and xenotime which are the tailings of tin mines in the south of Thailand. Cerium is used mostly as lens polishing powder besides the applications in other industries. In this study, cerium extracted from monazite ore breakdown by alkaline process was used for the preparation of lens polishing powder. Cerium hydroxide cake from the process was dissolved by hydrochloric acid and precipitated with oxalic acid. The oxalate precipitate then was calcined to oxide powder and its particle size was measured. Precipitation conditions being studied are concentration of feed cerium chloride solution, concentration of oxalic acid used for the precipitation, concentration of sulfuric acid used as precipitation control reagent and the precipitation temperature. It was found that the appropriate precipitation conditions yielded the fine oxide powder with particle size about 12μm. The oxide powder can be ground to the size of 1-3 μm which is suitable for making lens polishing powder

  11. Bordoni relaxation and magnetic transformation in cerium and cerium-lanthanum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Postnikov, V S; Polner, G L; Sharshakov, I M

    1975-11-01

    The internal friction in pure cerium and cerium-base alloys with 2.5 and 12 weight percent of lanthanum added at temperature ranging from 4.2 deg up to 77/sup 0/K is described. Amplitude-independent internal friction has been measured with an inverse torsion pendulum with a specimen oscillation frequency of 1-30 hz in vacuum not less than 1.10/sup -5/ torr. A temperature of the specimen has been determined with a capacitance-type sensor and a gas gage. A curve showing the dependence of internal friction upon a temperature of pure cerium has two distinct peaks; the first at 12.5/sup 0/K, the second at 45/sup 0/K. The 12.5/sup 0/K peak is accounted for by a transition of antiferromagnetic ..beta..-Ce into a paramagnetic state. The 45/sup 0/K peak is a Bordoni maximum. The paper describes an influence of additions, specimen oscillation frequency variations, deformation and annealing upon the peak behavor. Added lanthanum reduces not only a peak temperature but a height as well. Studies of the 45/sup 0/K peak have shown that its temperature location depends upon the specimen oscillation frequency. As the frequency increases the peak tends to a range of high temperatures which confirms its relaxation nature.

  12. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, van M.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp)3 scarcely dissolves

  13. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  14. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    Science.gov (United States)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  15. Electrochemical properties of lanthanum nitride with calcium nitride additions

    International Nuclear Information System (INIS)

    Lesunova, R.P.; Fishman, L.S.

    1986-01-01

    This paper reports on the electrochemical properties of lanthanum nitride with calcium nitride added. The lanthanum nitride was obtained by nitriding metallic lanthanum at 870 K in an ammonia stream. The product contained Cl, Pr, Nd, Sm, Fe, Ca, Cu, Mo, Mg, Al, Si, and Be. The calcium nitride was obtained by nitriding metallic calcium in a nitrogen stream. The conductivity on the LaN/C 3 N 2 system components are shown as a function of temperature. A table shows the solid solutions to be virtually electronic conductors and the lanthanum nitride a mixed conductor

  16. Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities

    International Nuclear Information System (INIS)

    Wang Chunming; Zhao Liang; Wang Jinfeng; Zheng Limei; Du Juan; Zhao Minglei; Wang Chunlei

    2009-01-01

    The electrical, piezoelectric and dielectric properties of cerium-modified Aurivillius-type sodium lanthanum bismuth titanate (Na 0.5 La 0.5 Bi 4 Ti 4 O 15 , NLBT) ceramics were investigated. It was found the piezoelectric activities of NLBT ceramics were significantly improved by cerium modification. The piezoelectric coefficient d 33 and Curie temperature T c for the 0.50 wt.% cerium-modified NLBT were found to be 29 pC/N and 573 deg. C, respectively. The reasons for piezoelectric activities improvement by cerium modification were given. A small dielectric abnormity was observed in NLBT ceramics, which can be suppressed by cerium modification.

  17. Specific Features of the Response of Cerium to Pulsed Actions

    Science.gov (United States)

    Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.

    2018-02-01

    Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.

  18. A contribution to the radiologic findings in cerium pneumoconiosis

    International Nuclear Information System (INIS)

    Hecht, F.M.; Wesch, H.; Deutsches Krebsforschungszentrum, Heidelberg

    1980-01-01

    Report on a 69 year old man, who had been employed as photographer in the printing industry and who had been exposed to Cerium for 40 years. The chest X-ray which was performed 9 years after the end of the exposure displayes striate densities of the lungs, which must be considered as a late stage of Cerium-pneumoconiosis. The changes which were found fulfill the code 't 1/0 RO, RM, RU, LO, LM, LU, p 0/1 RO, RM, LO, LM, em, tbu' according to the 'ILO U/C 1971 classification of pneumoconiosis'. The diagnosis could be substantiated by measureing Cerium in the lung parenchyma qualitatively and quantitatively using neutrone activating analysis. The radiolgic findings of the Cerium pneumoconiosis are discussed. (orig.) [de

  19. Electronic state of cerium-based catalysts studied by spectroscopic methods (XPS, XAS)

    International Nuclear Information System (INIS)

    Le Normand, F.; Bernhardt, P.; Hilaire, L.; Kili, K.; Maire, G.; Krill, G.

    1987-01-01

    X-ray Photoelectron Spectroscopy (XPS) of the 3d core level of cerium and X-ray Absorption Spectroscopy (XAS) of the L III absorption edge of cerium have been used to study Pd/CeO 2 , Pd-Ce/γAl 2 O 3 and Ce/γAl 2 O 3 catalysts. The oxidation state of cerium was found to decrease with decreasing amounts of cerium on the surface. It was quite close to III for very low contents of cerium (2-3%). For higher cerium contents the oxidation state was nearer to IV but differences between the two methods were found, owing to the fact that XAS is a volume sensitive probe. The oxidation state of cerium was also lower for Pd-Ce/γAl 2 O 3 than for Ce/γAl 2 O 3 , suggesting the formation of Ce III OCl, chlorine coming from the precursor salt of palladium. 15 refs.; 5 figs.; 1 table

  20. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  1. Adsorption of Some Hazardous Radionuclides on Cerium(IV) Antimonate

    International Nuclear Information System (INIS)

    Aly, H.F.; Zakaria, E.S.; Shady, S.A.; El-Naggar, I.M.

    1999-01-01

    Cerium(IV) antimonate had been prepared by the dropwise addition of 0.6 M antimony pentachloride and 0.6 M cerium ammonium nitrate solutions by a molar radio of Ce/Sb 0.75. Exchange isotherms for H +/ Co 2+ , H +/ Cs +, H +/ Zn 2+ , H +/ Sr 2+ and H +/ Eu 3+ have been determined at 25, 40 and 60 degree. Besides it was proved that europium is physically adsorbed while zinc, strontium, cobalt and cesium are chemically adsorbed. Moreover, the heat of adsorption of zinc, strontium, cobalt and cesium on cerium(IV) antimonate had been calculated and indicated that cerium(IV) antimonate is of endothermic behaviour towards these ions. Also the distribution coefficients of these ions were determined and it was found that the selectivity in the order: Eu 3+ >Sr 2+ > Cs +> Na +

  2. Metabolism of cerium 144 in rat. Distribution - elimination - dosimetry

    International Nuclear Information System (INIS)

    Remy, Jacques

    1959-01-01

    This academic report concerns a study during which cerium 144 has been intravenously injected to three-month old rats under the form of cerium chloride in aqueous solution with pH of 9,5. Rats have then been sacrificed at different times after the injection, and organ or tissue samplings have been performed to study the isotope distribution in their bodies. This allowed the calculation of internal irradiation doses locally received by the animal, and also to identify critical organs with respect to cerium 144. Thus, until the twentieth day after injection, liver is the critical organ. After, it is the skeleton, for the rest of the animal's life. The bone internal irradiation is the highest danger for an internal cerium 144 contamination, due to threats on body hematopoietic functions [fr

  3. Investigation of AA2024-T3 surfaces modified by cerium compounds: A localized approach

    International Nuclear Information System (INIS)

    Paussa, L.; Andreatta, F.; De Felicis, D.; Bemporad, E.; Fedrizzi, L.

    2014-01-01

    Highlights: •The precipitation of cerium compounds occurs on the entire AA2024-T3 surface. •The matrix is less involved in the cerium precipitation. •Cerium intensely precipitates on Mg-rich IM particles. •The electrochemical behavior of Mg-rich IM particles influences the mechanism of cerium precipitation. -- Abstract: The precipitation of cerium compounds on polished AA2024-T3 surfaces was investigated following an electrochemical and microstructural localized approach. It was found that cerium precipitation occurs on the entire surface covering intermetallic particles and the matrix as well. The matrix is the region where the precipitation of cerium is less favoured. The highest amount of cerium was observed on magnesium-rich intermetallic particles. The localized analyses suggest that precipitation of cerium on magnesium-rich intermetallic particles could happen following two mechanisms: the former based on a potential reversal of the intermetallic particles and the latter due to a partial magnesium dissolution

  4. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  5. Lattice dynamics of α-cerium

    International Nuclear Information System (INIS)

    Smith, G.S.

    1985-01-01

    The lattice dynamics of the fcc α-phase of cerium metal was investigated using inelastic neutron scattering techniques. This phase of cerium is an example of a mixed-valent system. Various physical properties of α-Ce suggest that there may be coupling between the phonons and the f d transitions associated with the mixed valence phenomenon. These measurements of the dispersion curves provide important information about the electron-phonon interaction in this phase of cerium. These studies were not performed in the past because single crystals of α-Ce were not available. We were able to prepare a single α-Ce crystal using a high temperature, high pressure technique. The sample was of sufficient size for inelastic neutron scattering experiments, but the measurements were complicated because of the large mosaic spread (approx.7.0 0 ) of the crystal. It was possible, however, to obtain a set of dispersion curves along the [00zeta], [zeta,zeta,0], and [zeta,zeta,zeta] symmetry directions. Comparison of the dispersion curves with those of fcc γ-Ce indicate that the branches exhibit anomalous features that may be related to the mixed-valence effects

  6. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  7. Method of cerium separation from other lanthanides and yttrium

    International Nuclear Information System (INIS)

    Tran, Duc Hiep; Mostecky, J.

    1988-01-01

    Cerium is separated from a suspension produced during the aerial oxidation process. The suspension is subject to a cyclic process of two-stage fractional dissolution. Following the first dissolution, almost all cerium remains undissolved while 95% of the other lanthanides pass into the solution. The filtrate of the second stage of dissolution containing about 5% of ceriumm is returned for oxidation with the next batch of hydroxide mixed concentrate. Following oxidation, the two-stage fractional dissolution is repeated. This cycling provides quantitative cerium separation from other rare earth elements. (E.S.)

  8. Characterization of platinized and unplatinized cerium dioxide and other cerium containing catalyst supports

    International Nuclear Information System (INIS)

    Daniel, D.W.

    1984-01-01

    The adsorption of CO on platinized cerium dioxide has been investigated by FTIR (Fourier Transform Infrared Spectroscopy). Four active surface sites and two adsorption geometries were found for the oxidized catalyst. Although the metallic sites and both geometries, linear and bridged, were retained upon reduction the two cationic sites were not. During stepwise desorption, CO dissociates leaving behind adsorbed carbon inhibiting readsorption. At elevated temperatures CeO 2 oxidizes Pt. The large decrease in CO adsorption resulting from high temperature reduction was reversed by reoxidation. XPS (X-ray Photoelectron Spectroscopy) data provided no evidence of encapsulation and XRD (X-ray Diffraction) showed the retention of a constant particle size. The results were interpreted as electronic metal-support interaction. The addition of H 2 or D 2 to adsorbed CO at 25 0 C caused spillover of the CO onto the support and a decrease in CO band frequency. When O 2 was added to preadsorbed CO a new band associated with oxygen and CO coadsorbed on a single Pt atom appeared. Carbon dioxide dissociation at room temperature is proposed to occur via a Langmuir-Hinshelwood mechanism. CO adsorption on platinized titania, silica, ceria/titania, ceria/silica, and cerium titanate has also been studied by the same techniques. The adsorption/desorption behavior of the cerium/titania and the single oxide systems paralleled that of Pt/CeO 2

  9. Stepwise hydrochloric acid extraction of monazite hydroxides for the recovery of cerium lean rare earths, cerium, uranium and thorium

    International Nuclear Information System (INIS)

    Swaminathan, T.V.; Nair, V.R.; John, C.V.

    1988-01-01

    Monazite sand is normally processed by the caustic soda route to produce mixed rare earth chloride, thorium hydroxide and trisodium phosphate. Bulk of the mixed rare earth chloride is used for the preparation of FC catalysts. Recently some of the catalyst producers have shown preference to cerium depleted (lanthanum enriched) rare earth chloride rather than the natural rare earth chloride obtained from monazite. Therefore, a process for producing cerium depleted rare earth chloride, cerium, thorium and uranium from rare earth + thorium hydroxide obtained by treating monazite, based on stepwise hydrochloric acid extraction, was developed in the authors laboratory. The process involves drying of the mixed rare earth-thorium hydroxide cake obtained by monazite-caustic soda process followed by stepwise extraction of the dried cake with hydrochloric acid under specified conditions

  10. Studies on the promotion of nickel—alumina coprecipitated catalysts: III. Cerium oxide

    NARCIS (Netherlands)

    Lansink Rotgerink, H.G.J.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.

    1988-01-01

    Three series of cerium-promoted nickel—alumina catalysts with different nickel-to-aluminium ratios each containing different amounts of cerium have been prepared and characterized. The calcination and reduction behaviour were found not to be altered by the presence of cerium. Part of the promoter

  11. Cerium-doped scintillating fused-silica fibers

    Science.gov (United States)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  12. Preparation of high-purity cerium nitrate; Preparacao de nitrato de cerio de alta pureza

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author) 2 tabs.

  13. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  14. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  15. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    International Nuclear Information System (INIS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-01-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO_2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  16. Thin film ionic conductors based on cerium oxide

    International Nuclear Information System (INIS)

    Haridoss, P.; Hellstrom, E.; Garzon, F.H.; Brown, D.R.; Hawley, M.

    1994-01-01

    Fluorite and perovskite structure cerium oxide based ceramics are a class of materials that may exhibit good oxygen ion and/or protonic conductivity. The authors have successfully deposited thin films of these materials on a variety of substrates. Interesting orientation relationships were noticed between cerium oxide films and strontium titanate bi-crystal substrates. Near lattice site coincidence theory has been used to study these relationships

  17. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing.

    Science.gov (United States)

    Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia

    2017-12-01

    Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  19. Actinide nitride ceramic transmutation fuels for the Futurix-FTA irradiation experiment

    International Nuclear Information System (INIS)

    Voit, St.; McClellan, K.; Stanek, Ch.; Maloy, St.

    2007-01-01

    Full text of publication follows. The transmutation of plutonium and other minor actinides is an important component of an advanced nuclear fuel cycle. The Advanced Fuel Cycle Initiative (AFCI) is currently considering mono-nitrides as potential transmutation fuel material on account of the mutual solubility of actinide mono-nitrides as well as their desirable thermal characteristics. The feedstock is most commonly produced by a carbothermic reduction/nitridisation process, as it is for this programme. Fuel pellet fabrication is accomplished via a cold press/sinter approach. In order to allow for easier investigation of the synthesis and fabrication processes, surrogate material studies are used to compliment the actinide activities. Fuel compositions of particular interest denoted as low fertile (i.e. containing uranium) and non-fertile (i.e. not containing uranium) are (PuAmNp) 0.5 U 0.5 N and (PuAm) 0.42 Zr 0.58 N, respectively. The AFCI programme is investigating the validity of these fuel forms via Advanced Test Reactor (ATR) and Phenix irradiations. Here, we report on the recent progress of actinide-nitride transmutation fuel development and production for the Futurix-FTA irradiation experiment. Furthermore, we highlight specific cases where the complimentary approach of surrogate studies and actinide development aid in the understanding complex material issues. In order to allow for easier investigation of the fundamental materials properties, surrogate materials have been used. The amount of surrogate in each compound was determined by comparing both molar concentration and lattice parameter mismatch via Vegard Law. Cerium was chosen to simultaneously substitute for Pu, Am and Np, while depleted U was chosen to substitute for enriched U. Another goal of this work was the optimisation of added graphite during carbothermic reduction in order to minimise the duration of the carbon removal step (i.e. heat treatment under H 2 containing gas). One proposed

  20. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  1. Effect of adduct formation on valent state of cerium in its ν-diketonates

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Martynenko, L.I.; Pechurova, N.I.; Snezhko, N.I.; Murav'eva, I.A.; Anufrieva, S.I.

    1982-01-01

    Physicochemical investigation of the system cerium (III, IV)-ν-diketone-additional ligand shows that ν-diketonate ability to adduct formation decreases in the series tenoyltrifluoro-acetonate > acetylacetonate > dibenzoylmethanate > benzoylmethanate. Adduct formation of the cerium (III, IV) ν-diketonates stabilizes cerium in trivalent condition, while oxidation degree 4+ is stable in tetrakis-ν-diketonates. The additional ligands are arranged in the series: tributhylphosphate < trioctyl-phosphineoxide < triphenylphosphineoxide < α, α'-dipyridyl < o-phenanthroline by the effect on cerium (III) stabilization in its ν-diketonates

  2. Effect of adduct formation on valent state of cerium in its. beta. -diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Spitsyn, V.I.; Martynenko, L.I.; Pechurova, N.I.; Snezhko, N.I.; Murav' eva, I.A.; Anufrieva, S.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1982-04-01

    Physicochemical investigation of the system cerium (III, IV)-..beta..-diketone-additional ligand shows that ..beta..-diketonate ability to adduct formation decreases in the series tenoyltrifluoro-acetonate > acetylacetonate > dibenzoylmethanate > benzoylmethanate. Adduct formation of the cerium (III, IV) ..beta..-diketonates stabilizes cerium in trivalent condition, while oxidation degree 4+ is stable in tetrakis-..beta..-diketonates. The additional ligands are arranged in the series: tributhylphosphate < trioctyl-phosphineoxide < triphenylphosphineoxide < ..cap alpha.., ..cap alpha..'-dipyridyl < o-phenanthroline by the effect on cerium (III) stabilization in its ..beta..-diketonates.

  3. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  4. Comparison of Titration ICP and XRF Spectrometry Methods in Determination of Cerium in Lens Polishing Powder

    International Nuclear Information System (INIS)

    Ninlaphruk, Sumalee; Pichestapong, Pipat; Mungpayabal, Harinate; Jiyavaranant, Thitima; Srisukho, Supapan; Chaisai, Prapassurn

    2004-10-01

    Three analytical methods in determination of cerium in cerium oxide separated from monazite ore for producing lens polishing powder were compared. These methods are titration ICP and XRF spectrometry techniques. The cerium oxide sample with estimated 45% cerium content needed to be digested and converted into solution before the analysis. The analytical results shown significantly no difference between each method. However, the titration method was found to be more convenient and suitable for quality control in the production of cerium oxide as it does not require standard cerium and the complicated analytical instruments

  5. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-01-01

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  6. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  7. Dielectric parameters of blood plasma of rats treated with cerium-144 and external irradiation

    International Nuclear Information System (INIS)

    Hadzhidekova, E.; Kiradzhiev, G.; Paskalev, Z.; Miloslavov, V.

    1988-01-01

    Investigation was carried out of the dielectric parameters of blood plasma of male Wistar rats treated with cerium 144 in doses of 370 kBq/animal and external gamma irradiation in doses of 200 cGy and 400 cGy. The radioactive cerium was introduced intraperitoneally 1 h after the external irradiation with dose rate of 1,6 cGy/sec. The permittivity ε, the time of relaxation τ and the coefficient of Debaye κ of plasma protein molecules were determined at the 1st, 3rd, 10th, 15th, and 30th days after treatement for frequence ranges of 1,4, 2,2, 3,6 and 6 MHz. At the same terms the content of cerium 144 was measured in the organs of predilectional accumulation of cerium. It was established that the treatment only with cerium lead to most essential changes of dielectric parameters at frequence of 3,6 MHz. The external irradiation didn't influence essentially the kinetics of absorbed cerium. In combination of both radiation factors the action of cerium was predominant

  8. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    Science.gov (United States)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  9. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  10. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  11. Berkelium (4) and cerium (4) extraction with tertiary amines

    International Nuclear Information System (INIS)

    Milyukova, M.S.; Malikov, D.A.; Myasoedov, B.V.

    1978-01-01

    Oxidation of indicator quantities of berkelium and cerium by a mixture of silver nitrate and ammonium persulfate in the solutions of nitric and sulfuric acid has been examined. The stability of the elements in a tetravalent state and their extraction by the solutions of ternary amines have been investigated. It has been established that berkelium and cerium oxidation under these conditions occurs under the effect of ions of divalent silver which is formed owing to oxidation of monovalent silver by peroxide sulfate ions. The following supposition has been put forward: a difference in the behaviour of tetravalent berkelium and cerium during their extraction by ternary amines is explained by their different stability in this state, but not by the formation of complex compounds with nitrate ions

  12. Separation of cerium and fractionation of rare earths from mixed chlorides

    International Nuclear Information System (INIS)

    Silva Queiroz, C.A. da; Sood, S.P.; Abrao, A.

    1982-01-01

    The separation of cerium from rare earths chlorides solutions by precipitation with hydrogen peroxide/air/dil. ammonium hydroxide; purification of cerium; fractionation by ion exchange and analytical control of the process are presented. (A.R.H.) [pt

  13. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  14. Two-phase titration of cerium(III) by permanganate

    International Nuclear Information System (INIS)

    Lazarev, A.I.; Lazareva, V.I.; Gerko, V.V.

    1987-01-01

    This paper presents a method for the two-phase titrimetric determination of cerium(III) with permanganate which does not require an expenditure of sugar and preliminary removal of chlorides and nitrates. The interaction of cerium(III) with permanganate at room temperature was studied as a function of the pH, the concentration of pyrophosphate, tetraphenylphosphonium (TPP), permanganate, and extraneous compounds, the rate of titration, and the time of stay of the solution in air before titration. The investigations were conducted according to the following methodology: water, solution of cerium(III) pyrophosphate, and TPP were introduced into an Erlenmeyer flask with a side branch near the bottom for clearer observation of the color of the chloroform phase. The authors established the given pH value, poured the water into a volume of 50 ml, and added chloroform. The result was titrated with permanganate solutions of various concentrations until a violet color appeared in the chloroform phase

  15. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  16. Cerium; crystal structure and position in the periodic table.

    Science.gov (United States)

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-09-17

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized [rlhar2 ] delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table.

  17. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  18. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  19. An Economic Model and Experiments to Understand Aluminum-Cerium Alloy Recycling

    Science.gov (United States)

    Iyer, Ananth V.; Lim, Heejong; Rios, Orlando; Sims, Zachary; Weiss, David

    2018-04-01

    We provide an economic model to understand the impact of adoption, sorting and pricing of scrap on the recycling of a new aluminum-cerium (AlCe) alloy for use in engine blocks in the automobile industry. The goal of the laboratory portion of this study is to investigate possible effects of cerium contamination on well-established aluminum recycling streams. Our methodology includes three components: (1) focused data gathering from industry supply chain participants, (2) experimental data through laboratory experiments to understand the impact of cerium on existing alloys and (3) an economic model to understand pricing incentives on a recycler's separation of AlCe engine blocks.

  20. Extraction-differential-photometric method to determine rare earths of cerium subgroup

    International Nuclear Information System (INIS)

    Askerov, D.N.; Gusejnov, I.K.; Melikov, A.A.

    1985-01-01

    The extraction - photometric method to determine great quantities of rare earths of the cerium subgroup as a complex with antipyrine A and diphenylguanidine is developed. Isobutyl and n-butyl alcohols are used as extractants. It is established that proportional dependence between relative optical density and concentration of rare earths of the cerium subgroup in the solution takes place in the concentration interval of 10.3-14.7 μg of rare earths in 1 ml of the solution. Determination error is+-1.12%. The technique is used to determine rare earths of the cerium subgroup in rare earth oxides of a mixed composition, as well as in monozite and loparite

  1. Spectrophotometric determination of cerium with methylthymol blue in the presence of oxalate and cyanide as masking agents

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Martin, A; Izquierdo-Hornillos, R; Quejido-Cabezas, A J; Peral-Fernandez, J L [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas

    1983-04-01

    The spectrophotometric determination of cerium can be carried out by several methods, which involve either the formation of complexes of cerium(III) and cerium(IV) or the oxidation of suitable reagents by cerium(IV) and further measuring the intensity of the colour of the oxidised matter. The latter methods show a lack of selectivity and low sensitivity owing to the nature of the redox reaction. The methods that involve the formation of complexes have also been shown to have low selectivity and sensitivity. However, the most useful methods are those based on the complexes of cerium(III) with Xylenol Orange and Methylthymol Blue (MTB), but they are affected by many interferences. In this work the reaction of cerium(III) with MTB in the presence of oxalate and cyanide ions was studied at pH 10.2, which improves the sensitivity and the selectivity of the determination of cerium.

  2. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  3. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  4. Solvent extraction of cerium (III) with high molecular weight amines

    International Nuclear Information System (INIS)

    Chatterjee, A.; Basu, S.

    1992-01-01

    The use of high molecular weight amines in the extraction of cerium (III) as EDTA complex from neutral aqueous medium is reported. The extraction condition was optimised from the study of effects of several variables like concentration of amine and EDTA pH nature of diluents etc. The method has been applied for the determination of cerium in few mineral samples. (author). 7 refs., 5 tabs

  5. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick’s second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  6. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    Science.gov (United States)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  7. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  8. Study of phase transitions in cerium in shock-wave experiments

    Directory of Open Access Journals (Sweden)

    Zhernokletov M.V.

    2015-01-01

    Full Text Available Cerium has a complex phase diagram that is explained by the presence of structure phase transitions. Planar gauges were used in various combinations in experiments for determination of sound velocity dependence on pressure in cerium by the technique of PVDF gauge. The data of time dependence on pressure profiles with use of x(t diagrams and the D(u relation for cerium allowed the definition of the Lagrangian velocity of the unloading wave CLagr and the Eulerian velocity CEul by taking into account the compression σ. These results accords with data obtained by using the technique of VISAR and a manganin-based gauge, and calculated pressure dependence of isentropic sound velocity according to the VNIITF EOS. Metallography analysis of post-experimental samples did not find any changes in a phase composition.

  9. The solvent extraction of cerium from sulphate solution - mini plant trials

    International Nuclear Information System (INIS)

    Soldenhoff, K.; Wilkins, D.; Ring, R.

    1998-01-01

    Full text: The Mt. Weld deposit in Western Australia has a complex rare earth mineralisation. The rare earth phosphate minerals, which include monazite, are amenable to conventional caustic cracking followed by hydrochloric acid dissolution of the trivalent rare earths. The presence of the mineral cerianite in the ore, which is unaffected by the alkali attack, results in rejection of a considerable proportion of the cerium to the acid leach residue. The recovery of cerium from a sulphate solution, resulting from the processing of such a residue, is the subject of the current paper. The liquor treated by solvent extraction contained 63 g L -1 rare earths and the cerium to total rare earth ratio was 75%. Other impurities, including Fe and Th, totalled 2000 ppm. A solvent mixture of commercially available extractants in a low aromatic content diluent was used to extract Ce 4+ selectively over the trivalent rare earths. Partial co-extraction of Fe and Th occurred but it was found that these elements were not easily stripped and therefore selective back extraction of cerium was possible. The cerium was stripped from the organic phase by hydrochloric acid and hydrogen peroxide. In continuous counter-current trials two extraction stages and three strip stages were used. In order to produce two grades of strip liquor, stripping was divided into two circuits. The first strip circuit consisting of a single stage, contained proportionally more of the trivalent rare earths. The second strip circuit, consisting of two stages, removed the remaining cerium with proportionally less of the rare earths. A bleed solvent stream was treated for removal of impurities to prevent build-up in the solvent. In the continuous counter current trials, 95% Ce 4+ extraction was achieved and the Ce to total rare earth ratio was upgraded to > 99%

  10. Spectrofluorimetric determination of cerium by flow injection analysis

    International Nuclear Information System (INIS)

    Liu Shaorong; Meng Jian; Liu Wenhua

    1990-01-01

    A spectrofluorimetric method for the determination of cerium (λ ex/em:251/365 nm) in hydrochloric acid solution by flow injection analysis is presented. It has well developed the normal spectrofluorimetric method for determination of cerium and has made: 1, the determination procedure shortened; 2, the determination speed increased to about 180 samples per hour; 3, the determination range widened to 0.05-100.0 ppm CeO 2 , abouot two times as wide as the normal spectrofluorimetric method; and 4, the relative standard deviation lessened (about 0.47% for 0.1 ppm CeO 2 , n = 13)

  11. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jessica T. Dahle

    2015-01-01

    Full Text Available Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydroxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent. This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  12. Electrorefining of Cerium in LiCl-KCl Molten Salts

    International Nuclear Information System (INIS)

    Campbell-Kelly, R.P.; Paget, T.J.

    2010-01-01

    Electrorefining of cerium from cerium-gallium alloys has been demonstrated in lithium chloride-potassium chloride salts at temperatures below 500 deg. C, with excellent current efficiencies and high product yields. These experiments are being carried out as non-active trials for a process for the purification of impure actinide metals. The results reported show anodic current efficiencies consistently close to 100%, and in several experiments complete oxidation of the cerium in the feed occurred. The cathodic product is hard and metallic, and incorporates a significant amount of salt into its structure. The product can be consolidated into a dense, pure metal by melting under calcium chloride at 850 deg. C. The yield of this consolidation step varies between 16 and 75%, seeming to depend on the total mass of metal being consolidated and the quality of inert atmosphere. A small-scale electrochemical cell has been demonstrated which will be used in initial active experiments. (authors)

  13. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  14. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    International Nuclear Information System (INIS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce 2 O 3 and CeO 2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  15. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Niroumandrad, S. [Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • Flaky aluminum pigments were modified with cerium nitrate salt. • pH value of 3.0 was chosen as the optimized pH for the cerium solution. • Corrosion resistance of the pigment significantly increased after modification. • Alkaline pre-treatment prior to modification affected the cerium layer performance. - Abstract: The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce{sub 2}O{sub 3} and CeO{sub 2} was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  16. The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage

    International Nuclear Information System (INIS)

    Xie, Zhipeng; Liu, Qingchao; Chang, Zhiwen; Zhang, Xinbo

    2013-01-01

    Zinc–cerium redox flow batteries (ZCBs) are emerging as a very promising new technology with the potential to store a large amount of energy economically and efficiently, thanking to its highest thermodynamic open-circuit cell voltage among all the currently studied aqueous redox flow batteries. However, there are numerous scientific and technical challenges that must be overcome if this alluring promise is to turn into reality, from designing the battery structure, to optimizing the electrolyte compositions and elucidating the complex chemical reactions that occur during charge and discharge. This review article is the first summary of the most significant developments and challenges of cerium half-cell and the current understanding of their chemistry. We are certain that this review will be of great interest to audience over a broad range, especially in fields of energy storage, electrochemistry, and chemical engineering

  17. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  18. Fabrication of vanadium nitride by carbothermal nitridation reaction

    International Nuclear Information System (INIS)

    Wang Xitang; Wang Zhuofu; Zhang Baoguo; Deng Chengji

    2005-01-01

    Vanadium nitride is produced from V 2 O 5 by carbon-thermal reduction and nitridation. When the sintered temperature is above 1273 K, VN can be formed, and the nitrogen content of the products increased with the firing temperature raised, and then is the largest when the sintered temperature is 1573 K. The C/V 2 O 5 mass ratio of the green samples is the other key factor affecting on the nitrogen contents of the products. The nitrogen content of the products reaches the most when the C/V 2 O 5 mass ratio is 0.33, which is the theoretical ratio of the carbothermal nitridation of V 2 O 5 . (orig.)

  19. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  20. Energy-dispersive X-ray fluorescence analysis of cerium in ferrosilicon

    International Nuclear Information System (INIS)

    Marbec, E.R.

    1987-01-01

    The cerium was determined in ferrosilicon samples by energy-dispersive X-ray fluorescence techniques (XRF) techniques, with a secondary target of gadolinium. The methods employed were: comparison and linear regression with reference materials with cerium concentration between 0.4 and 1.0%. The samples were prepared in the form of pellets and the analytical results are reported as an average of five determinations with a confidence limits at 95% probability. (Author) [es

  1. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  2. Analysis of the effects of cerium on calcium ion in the protoplasts of ...

    African Journals Online (AJOL)

    Administrator

    2011-09-12

    Sep 12, 2011 ... African Journal of Biotechnology Vol. 10(52), pp. ... Paper. Analysis of the effects of cerium on calcium ion in the .... plasma membrane (Zeng et al., 2003). Recently .... cerium on vegetable growth of wheat (Triticum aestivum L.).

  3. Study on the uranium-cerium extraction and his application to the treatment of irradiated uranium

    International Nuclear Information System (INIS)

    Lobao, Afonso dos Santos Tome

    1979-01-01

    It was made a study on the behavior of uranium and cerium(IV) extraction, using the latter element as a plutonium simulator in a flowsheet of the treatment of irradiated uranium. Cerium(IV) was used under the same conditions as a plutonium in the Purex process because the admitted similar properties. An experimental work was initiated to determine the equilibrium curves of uranium, under the following conditions: concentration of 1 to 20 g U/1 and acidity varying from 1 to 5M in HNO 3 . Other parameters studied were the volumetric ratio of the phases and the influence of the concentration of TBP (tri-n-butyl phosphate). To guarantee the cerium(IV) extraction, the diluent (varsol) was previously treated with 10% potassium dichromate in perchloric acid, potassium permanganate in 1M sulphuric acid and concentrated sulphuric acid at 70 deg to eliminate reducing compounds. The results obtained for cerium extraction, allowed a better understanding of its behavior in solution. The results permitted to conclude that the decontamination for cerium are very high in the first Purex extraction cycle. The easy as cerium(IV) is reduced to the trivalent state contributes a great deal to its decontamination. (author)

  4. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  5. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  6. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials.

    Science.gov (United States)

    Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B

    2017-11-01

    The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  8. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  9. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  10. Procedure for the separation of cerium from crude phosphates and rare earth concentrates

    International Nuclear Information System (INIS)

    Richter, H.; Koenig, O.; Schmitt, A.; Grauss, H.; Freitag, S.

    1986-01-01

    The invention has to do with a procedure for the separation of cerium from crude phosphates and rare earth phosphate concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions. It is aimed at the cerium separation from the raw material at an early stage of reprocessing without preceding elimination of other components and impurities. The rare earth phosphate concentrates or crude phosphates are dissolved in nitric acid, the Ce 3+ is oxidized with potassium permanganate or magnanese(IV) hydroxide, and cerium(IV) phosphate is precipitated as pure substance by decreasing the acidity of the solution

  11. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  12. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  13. Effect of correlation on the band structure of α-cerium

    International Nuclear Information System (INIS)

    Rao, R.S.; Singh, R.P.

    1975-01-01

    The electronic band structure of f.c.c. phase of the rare earth metal cerium (α-cerium) has been calculated using a formulation of the crystal potential where correlation also has been included in addition to exchange. The Green's function method of Korringa-Kohn and Rostoker has been used due to obvious advantages in calculation. The calculations indicate that the s-d bands are hybridized with the f-levels but the f-bands are fairly narrow and lie slightly above the Fermi level. The structure of the bands is qualitatively similar to those of calculations by others except for a general shift of the entire set of bands by about 0.1 Ryd. Thd density of states has also been calculated from the bands obtained. The spin susceptibility of α-cerium has also been calculated using the Kohn-Sham method. However, the calculated additional contributions to the band structure values cannot still explain the large experimental values reported in the literature. (author)

  14. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  15. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  16. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.

    2017-03-27

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide added to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO2 powders indicated that air-dried and sintered spheres were pure CeO2.

  17. Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst

    Science.gov (United States)

    Zhang, Wenjie; Tao, Yingjie; Li, Chuanguo

    2018-04-01

    Porous cerium titanate was synthesized by sol-gel method, using polyethylene glycol (PEG4000) as template agent. Brannerite structured CeTi2O6 in monoclinic system is the major substance formed in the materials. Formation of CeO2 and rutile TiO2 depends on the amount of PEG4000. The addition of PEG4000 leads to production of fine particles in the samples, but it does not apparently affect the band gap energy. Pore volume of the cerium titanate sample continuously increases with rising PEG4000 amount. The sample obtained using 3.5 g PEG4000 has BET surface area of 16.2 m2/g and pore volume of 0.0232 cm3/g. The addition of PEG4000 can obviously promote photocatalytic activity of cerium titanate, which can be proven by both enhanced production of hydroxyl radical and ofloxacin degradation efficiency. As much as 95.2% of the initial ofloxacin molecules are removed from the solution after 50 min of photocatalytic degradation on the cerium titanate obtained using 3.5 g PEG4000, while only 48.4% ofloxacin is removed on cerium titanate obtained without PEG4000.

  18. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  19. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-01-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl 11 O 18 and Ce 2 SiO 5 . The leaching rate of cerium over a period of 28 days was 10 −5 –10 −6 g/(m 2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products

  20. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Science.gov (United States)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  1. Synthesis of cerium oxide catalysts supported on MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Souza, E.L.S.; Barros, T.R.B.; Sousa, B.V. de

    2016-01-01

    Porous materials have been widely studied as catalysts and catalyst support. The MCM-41 structure is the one that has been most studied because of its application possibilities in chemical processes. This work aimed to obtain and characterize cerium oxide catalysts supported on MCM-41 molecular sieve. The molecular sieve was synthesized by the conventional method with the following molar composition: 1 SiO2: 0.30 CTABr: NH3 11: 144 H2O. Then, 25% w/w cerium was incorporated into the MCM-41 using the wet impregnation process and the material obtained was activated by calcination. From the XRD patterns was confirmed the structure of the molecular sieve, and were identified the cerium oxide phases in its structure. The textural catalysts characteristics were investigated by isotherms of N2 adsorption/desorption (BET method). (author)

  2. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions

    OpenAIRE

    Mehdi, Hasan; Bodor, Andrea; Lantos, Diana; Horváth, István T; De Vos, Dirk; Binnemans, Koen

    2007-01-01

    Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Ca...

  3. Procedure for the separation of cerium from rare earth phosphate mixtures

    International Nuclear Information System (INIS)

    Richter, H.; Grauss, H.; Schmitt, A.; Schade, H.; Lindeholz, M.; Lorenz, E.; Weickart, J.

    1986-01-01

    The invention is concerned with a procedure for the separation of cerium from rare earth concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions without preceding elimination of impurities from the raw material. The rare earth phosphates are treated with an excess of concentrated nitric acid through which the Ce 3+ , contained in the solution, is oxidized to Ce 4+ and precipitated as cerium(IV) phosphate by neutralization with alkalis

  4. Synthesis and structure of cerium nitrosocarbonylcyanmethanid complex

    International Nuclear Information System (INIS)

    Gerasimenko, H.; Scopenko, V.V.; Kapshuk, A.A.

    1998-01-01

    Full text: The complex compound [CeL 4 Dy 2 ]Na*2Ac (where L- nitrosocarbonylcyanmethanid, Dy -- dipyridile, Ac - acetone) were synthesised by interaction of cerium chloride and sodium nitrosocarbonylcyanmethanid from acetone solution. After two hours of mixing the dipyridil solution in acetone was added for complex stabilization. After filtration solution was put to desiccator for crystallisation. The complex was studied using IR- and UV-spectroscopy. The structure of the complex was determined using X-ray structure analysis. It was found that the structure of the complex belongs to orthorhombic Pna2(1) syngony with the unit cell parameters 17.010, 16.280 and 16.340Angstroms, respectively. It was found that cerium in the compound was eight co-ordinated. Four nitroso ligands were co-ordinated by bidentate bridge method and two dipyridiles by bidentate-cycle method

  5. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  6. Fixation of radioactive cerium-144 on white blood cells. Possibilities for use in physiopathology; Fixation du cerium radioactif ({sup 144}Ce) sur les globules blancs. Possibilites d'emploi en physiopathologie

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhardt, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    From the study of the means of transport of cerium in the blood of various laboratory animals, after intra-venous injection of {sup 144}Ce-{sup 144}Pr without carrier, we have been able to show up the part played by the white cells in the transport of this fission product during its passage in the blood. This observation has led to the study, in vitro, of the methods of cerium fixation on the white cells, with a view to determining the possibilities of using this property for white cell labelling, the methods used up to the present not being entirely satisfactory. Using the method for the separation of the known constituents of the blood proposed by us in 1956, we have studied the cerium fixation under various conditions: - on suspensions of white cells from the rabbit, - on a suspension of human white cells, - on the white cells in whole from the rabbit. (author) [French] L'etude du mode de transport du cerium dans le sang chez differents animaux de laboratoire, apres injection intra-veineuse de {sup 144}Ce-{sup 144}Pr sans entraineur, nous a permis de mettre en evidence le rale des globules blancs dans le transport de ce produit de fission au cours de son passage dans le sang. Cette constatation nous a conduit a etudier, in vitro, les modalites de la fixation du cerium sur les globules blancs afin de preciser les possibilites d'utilisation de cette propriete pour le marquage des globules blancs, les methodes employees jusqu'ici ne donnant pas entiere satisfaction. Disposant de la methode de separation des elements figures du sang que nous avons proposee en 1956, nous avons etudie la fixation du cerium, dans diverses conditions: - sur des suspensions de globules blancs de lapin, - sur une suspension de globules blancs humains, - sur les globules blancs dans le sang total de lapin. (auteur)

  7. Purification of cerium, neodymium and gadolinium for low background experiments

    Directory of Open Access Journals (Sweden)

    Boiko R.S.

    2014-01-01

    Full Text Available Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search, 136Ce (2β+ candidate with one of the highest Q2β. The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  8. Investigating the Influence of the Cerium loading in prepared Y zeolite from Iraqi kaolin on its Catalytic Performance

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2018-01-01

    Full Text Available In this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range from 6 to 24 h-1, and the temperature range from 450 to 510 oC. The activity of the catalyst with 1.06 wt% cerium has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the cerium causes an increase in the thermal stability of the zeolite.

  9. Characteristics of Au/PZT/TiO2/Nitride/Si structure capacitors with ICP nitride treatments

    International Nuclear Information System (INIS)

    Min, Hyung Seob; Kim, Tae Ho; Jeon, Chang Bae; Lee, Jae Gab; Kim, Ji Young

    2002-01-01

    In this study, the characteristics of PZT/TiO 2 ferroelectric gate stack capacitors with Inductively Coupled Plasma (ICP) nitridation were investigated for field effect transistor (FET)-type Ferroelectric Random Access Memory (FeRAM) applications. If a high accumulation capacitance is to be had, the ICP nitridation time needs to be optimized. While a short ICP treatment time results in thermal oxide growth due to lack of nitrogen, a long nitridation time causes a nitride layer which is too thick. Au/PZT(200 nm)/TiO 2 (40 nm)/Nitride/Si (MeFINS) structure capacitors show a memory window (ΔV) of 1.6 V under ±3-V operation while Au/PZT(200 nm)/TiO 2 (40 nm)/Si (MeFIS) capacitors without nitride treatment exhibit a small memory window of 0.6 V. At the same time, the capacitance of the MeFINS device is almost twice that of the MeFIS capacitor. This result implies that the ICP nitride treatment suppresses the formation of a low dielectric constant interfacial SiO x layer and alleviates the series capacitance problem

  10. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  11. Synthesis of cerium oxide (CeO{sub 2}) nanoparticles using simple CO-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P., E-mail: farahamndjou@iauvaramin.ac.ir [Islamis Azad University, Varamin-Phisva Branch, Department of Physics, Varamin (Iran, Islamic Republic of)

    2016-11-01

    Synthesis of cerium oxide (CeO{sub 2}) nanoparticles was studied by new and simple co-precipitation method. The cerium oxide nanoparticles were synthesized using cerium nitrate and potassium carbonate precursors. Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (Sem), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (Ftir) and UV-Vis spectrophotometer. XRD pattern showed the cubic structure of the cerium oxide nanoparticles. The average particle size of CeO{sub 2} was around 20 nm as estimated by XRD technique and direct HRTEM observations. The surface morphological studies from Sem and Tem depicted spherical particles with formation of clusters. The sharp peaks in Ftir spectrum determined the existence of CeO{sub 2} stretching mode and the absorbance peak of UV-Vis spectrum showed the bandgap energy of 3.26 eV. (Author)

  12. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  13. Study of the effect of cerium nitrate on AA2024-T3 by means of electrochemical micro-cell technique

    International Nuclear Information System (INIS)

    Paussa, L.; Andreatta, F.; Rosero Navarro, N.C.; Durán, A.; Fedrizzi, L.

    2012-01-01

    Highlights: ► We evaluate the cerium nitrate effect on the electrochemical behavior of AA2024-T3. ► We examine how AA2024-T3 microstructure affects cerium precipitation mechanism. ► The entire AA2024-T3 surface is involved in cerium precipitation. ► Anodic and cathodic inhibitions are both provided by cerium precipitation. ► Mg-rich intermetallics are preferential sites for cerium precipitation. - Abstract: This work evaluates the effect of cerium nitrate as corrosion inhibitor for AA2024-T3 in the view of its introduction in sol–gel coatings able to provide self-healing ability. Since it is well established that deposition of Ce species is activated by the local pH increase, the objective of this paper is to investigate the behavior of AA2024-T3 (open circuit potential and polarization curves) in the presence of Ce species in aggressive solutions by means of a local technique, the electrochemical micro-cell. This technique enables the investigation of small areas with resolution in the micrometer range by the use of glass capillaries to define the working electrode area. The micro-cell results clearly displayed that the entire AA2024-T3 area exposed to the cerium-containing electrolyte was involved in the cerium precipitation mechanism. The heterogeneous electrochemical behavior of the microstructure is minimized by the formation of a cerium-containing layer able to protect the metal substrate.

  14. Determination of trace amounts of cerium in silicate rocks based on its candoluminescence in a calcium oxide based matrix

    International Nuclear Information System (INIS)

    Belcher, R.; Nasser, T.A.K.; Polo-Diez, L.; Townshend, A.

    1977-01-01

    A very sensitive method for the determination of cerium (above 10 ng ml -1 ) has been developed (Belcher et al., Analyst;100:415(1975)), based on the measurement of the green candoluminescence produced by cerium in a calcium oxide-calcium sulphate matrix, with sulphuric acid as a coactivator, when the matrix is inserted into a hydrogen-nitrogen-air flame. This paper describes the application of this method to the determination of trace amounts of cerium in rocks. It involves the fusion of the sample with lithium metaborate, and does not require the isolation of cerium from other components of the rock, before measuring the candoluminescence intensity of the cerium. (author)

  15. Methods study of homogeneity and stability test from cerium oxide CRM candidate

    International Nuclear Information System (INIS)

    Samin; Susanna TS

    2016-01-01

    The methods study of homogeneity and stability test from cerium oxide CRM candidate has been studied based on ISO 13258 and KAN DP. 01. 34. The purpose of this study was to select the test method homogeneity and stability tough on making CRM cerium oxide. Prepared 10 sub samples of cerium oxide randomly selected types of analytes which represent two compounds, namely CeO_2 and La_2O_3. At 10 sub sample is analyzed CeO_2 and La_2O_3 contents in duplicate with the same analytical methods, by the same analyst, and in the same laboratory. Data analysis results calculated statistically based on ISO 13528 and KAN DP.01.34. According to ISO 13528 Cerium Oxide samples said to be homogeneous if Ss ≤ 0.3 σ and is stable if | Xr – Yr | ≤ 0.3 σ. In this study, the data of homogeneity test obtained CeO_2 is Ss = 2.073 x 10-4 smaller than 0.3 σ (0.5476) and the stability test obtained | Xr - Yr | = 0.225 and the price is < 0.3 σ. Whereas for La_2O_3, the price for homogeneity test obtained Ss = 1.649 x 10-4 smaller than 0.3 σ (0.4865) and test the stability of the price obtained | Xr - Yr | = 0.2185 where the price is < 0.3 σ. Compared with the method from KAN, a sample of cerium oxide has also been homogenized for Fcalc < Ftable and stable, because | Xi - Xhm | < 0.3 x n IQR. Provided that the results of the evaluation homogeneity and stability test from CeO_2 CRM candidate test data were processed using statistical methods ISO 13528 is not significantly different with statistical methods from KAN DP.01.34, which together meet the requirements of a homogeneous and stable. So the test method homogeneity and stability test based on ISO 13528 can be used to make CRM cerium oxide. (author)

  16. Phase segregation in cerium-lanthanum solid solutions

    NARCIS (Netherlands)

    Belliere, V.; Joorst, G; Stephan, O; de Groot, FMF; Weckhuysen, BM

    2006-01-01

    Electron energy-loss spectroscopy (EELS) in combination with scanning transmission electron microscopy ( STEM) reveals that the La enrichment at the surface of cerium-lanthanum solid solutions is an averaged effect and that segregation occurs in a mixed oxide phase. This separation occurs within a

  17. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior

    International Nuclear Information System (INIS)

    Cambon, Jean-Baptiste; Esteban, Julien; Ansart, Florence; Bonino, Jean-Pierre; Turq, Viviane; Santagneli, S.H.; Santilli, C.V.; Pulcinelli, S.H.

    2012-01-01

    Highlights: ► New sol–gel routes to replace chromates for corrosion protection of aluminum. ► Effect of cerium concentration on the microstructure of xerogel. ► Electrochemical and mechanical performances of hybrid coating with different cerium contents. ► Good correlation between the different results with an optimal cerium content of 0.01 M. -- Abstract: An organic–inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyl-trimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al(O s Bu) 3 , with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol–gel coating.

  18. Dry sliding wear behaviour of Al-12Si-4Mg alloy with cerium addition

    International Nuclear Information System (INIS)

    Anasyida, A.S.; Daud, A.R.; Ghazali, M.J.

    2010-01-01

    The purpose of this work is to understand the effect of cerium addition on wear resistance behaviour of as-cast alloys. Al-12Si-4 Mg alloys with 1-5 wt% cerium addition were prepared using the casting technique. A sliding wear test was carried out under applied loads of 10 N, 30 N and 50 N at a fixed sliding speed of 1 m/s using a pin-on-disc configuration. The wear test was conducted in dry conditions at room temperature of ∼25 o C. Detailed analysis of the microstructure, worn surface, collected debris and microhardness was undertaken in order to investigate the differences between the as-cast alloys with different levels of cerium addition. The addition of 1-5 wt% cerium was found to lead to the precipitation of intermetallic phases (Al-Ce), resulting a needle-like structures. Increasing cerium content up to 2 wt% improved both wear resistance and microhardness of as-cast alloys. Addition of more than 2 wt% cerium, however, led to a decrease in microhardness, resulting in lower wear resistance of the alloys. Moderate wear was observed at all loads, with specific wear rates (K') ranging from 6.82 x 10 -5 with 2 wt% Ce at applied load of 50 N to 21.48 x 10 -5 mm 3 /N m without added Ce at an applied load of 10 N. Based on K' ranges, the as-cast alloys exhibited moderate wear regimes, and the mechanism of wear is a combination of abrasion and adhesion. Alloy containing 2 wt% Ce, with the highest hardness and lowest K' value, showed the greatest wear resistance.

  19. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India)

    2016-02-01

    The current work presents the synthesis and properties of cerium doped magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized by standard chemical co-precipitation method using NH{sub 4}OH as co-precipitating agent. The effects of cerium ion substitution on structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles were reported. These materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The cerium content has a significant influence on structural and magnetic properties. The X-ray diffraction study confirmed the formation of single-phase magnetite with space group Fd3m and crystallite size ranging from 39 to 58 nm. The addition of cerium resulted in a reduction of crystallite size and an increase of cell parameters. FTIR measurements confirmed the formation of different samples and suggested that the reduction of Fe{sup +3} to Fe{sup +2} preferred on a site adjacent to Ce{sup +4}. Magnetic measurements revealed that the saturation magnetization (Ms) and remanence (M{sub r}) decreased while the coercivity (H{sub C}) and squareness (M{sub r}/M{sub S}) increased with increasing cerium content. - Highlights: • There is an increase in cell parameters and strain with Ce-content. • Samples show the presence of secondary phase after 1.0% doping level. • Ce-ions prefer octahedral sites and charge neutrality is accompanied by Fe{sup +3} → Fe{sup +2}. • Magnetization decreases due to weakening of the super exchange interactions. • Squareness and coercivity start to increase with Ce content.

  1. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian-Chih [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Chen, Wen-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Tien, Yin-Chun [Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Shih, Chi-Jen, E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-04-30

    Cerium oxide nanocrystallites were synthesized by a co-precipitation process at a relatively low temperature, using cerium (III) nitrate as the starting material in a water solution with pH in the range of 8-9. The effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K, by XRD analysis. When calcined at temperatures from 473 to 1273 K, face-centered cubic phase crystallization was observed by XRD. The crystallite size of the cerium oxide increased from 12.0 to 48 nm as the calcining temperature increased from 473 to 1273 K, in the pH range 8-9. The activation energy for the growth of cerium oxide nanoparticles was found to have very low values of 17.5 kJ/mol for pH = 8 and 16.0 kJ/mol for pH = 9.

  2. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  3. Assessement of the effect of Pyrimetin in combined injury with external irradiation and oral cerium-144 incorporation

    International Nuclear Information System (INIS)

    Kiradzhiev, G.; Khadzhidekova, E.

    1985-01-01

    The effect of the preparation Pyrimetin on rats, subjected to external irradiation combined with oral cerium 144 incorporation was studied. LD 50/30 of cerium-144 was used as biological criterion. It was shown that by this criterion Pyrimetin essentially abolished the potentiated by external radiation effect of cerium. Probably, the preparation leads to normalization of the gastro-intestinal motor function and the dose loading of the colon

  4. Obtainment of cerium dioxide for use as spectrochemical standard. Obtencao de dioxido de cerio para uso como padrao espectroquimico

    Energy Technology Data Exchange (ETDEWEB)

    Silva Queiroz, C.A. da; Hespanhol, E C.B.; Abrao, A [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1992-01-01

    This paper describes a simple method for cerium separation and purification. Cerium is previously precipitated with N H{sub 3}/air/H{sub 2} O{sub 2} system in a mixed chlorides solution obtained from Brazilian monazite treatment. The cerium fraction as cerium chloride is run down throughout a strong cationic resin bed and then the rare earth impurities separation is done by elution of the resin with separation ammonium salt of EDTA. None retainer ion is used in the purification technique by ion exchange. (author).

  5. First heats of cerium solution in liquid aluminium, gallium, indium, tin, lead and bismuth

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.; Raspopin, S.P.; Shein, V.G.

    1983-01-01

    Cerium solution heats in liquid alluminium, gallium, indium, tin, lead and bismuth are determined in high temperature mixing calorimeter with an isothermal shell. The statistical analysis carried out proves that values of cerium solution heat in fusible metals obtained by the methods of electric motive forces and calorimety give a satisfactory agreement

  6. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  7. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    International Nuclear Information System (INIS)

    Qi, F.; Leng, Y.X.; Huang, N.; Bai, B.; Zhang, P.Ch.

    2007-01-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film

  8. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  9. Enhanced hot ductility of a Cr–Mo low alloy steel by rare earth cerium

    International Nuclear Information System (INIS)

    Jiang, X.; Song, S.-H.

    2014-01-01

    The hot ductility of a 1Cr–0.5Mo low alloy steel is investigated over a temperature range of 700–1050 °C using a Gleeble thermomechanical simulator in conjunction with various characterization techniques. The steel samples undoped and doped with cerium are heated at 1300 °C for 3 min and then cooled with a rate of 5 K s −1 down to different test temperatures, followed by tensile deformation until fracture. The results show that the hot ductility of the steel, evaluated by the reduction in area, can be substantially enhanced by a minor addition of cerium, especially in the range 800–1000 °C. In the austenite–ferrite dual-phase region, cerium may delay the formation of proeutectoid ferrite layers along austenite grain boundaries, thereby increasing the hot ductility of the steel. In the single austenite region, grain boundary segregation of cerium may increase the grain boundary cohesion, toughening the steel and thus raising the resistance to grain boundary sliding as well as promoting dynamic recrystallization. Consequently, the hot ductility of the steel is enhanced

  10. Contribution to research on the metabolism of fission product. Studies on the physico-chemical state and the metabolic fate of radio-cerium solution

    International Nuclear Information System (INIS)

    Aeberhardt, A.

    1961-01-01

    This paper describes a study of the physico-chemical state of radio-cerium in dilute solutions on the tracer scale, as a function of the pH of the solution. The way in which this radioelement is transported in the blood is studied in vitro and in vivo, with reference to the ionic or colloidal state of the radio-cerium used. The distribution of cerium amongst the various components of the blood is studied by a new method of blood fractionation and by paper electrophoresis. Evidence of a cerium globulin connection is shown in the case of ionic cerium. A study of the initial distribution of radio-cerium in rats, after intravenous administration of ionic or colloidal solutions, shows considerable differences according to the physico-chemical state of the cerium injected. (author) [fr

  11. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    Energy Technology Data Exchange (ETDEWEB)

    Cardillo, Dean [Institute for Superconducting and Electronic Materials, AIIM Facility, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2500 (Australia); Konstantinov, Konstantin, E-mail: konstan@uow.edu.au [Institute for Superconducting and Electronic Materials, AIIM Facility, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2500 (Australia); Devers, Thierry [Centre de Recherche sur la Matière Divisée, Institut de Physique, site de Chartres, Université d’Orléans (France)

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  12. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  13. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  14. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  15. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    International Nuclear Information System (INIS)

    Barrios, Ana Cecilia; Rico, Cyren M.; Trujillo-Reyes, Jesica; Medina-Velo, Illya A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2016-01-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO_2, CA + nCeO_2) bulk cerium oxide (bCeO_2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO_2 increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO_2 and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO_2 at 250 mg/kg, but reduced by bCeO_2 at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO_2 increased Ce in roots by 10 and 7 times, compared to CA + nCeO_2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO_2 nor CA + nCeO_2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO_2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO_2 at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO_2 on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9%, respectively. • Coated NPs at 500 mg/kg increased CAT activity in

  16. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, Ana Cecilia [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Rico, Cyren M. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Medina-Velo, Illya A. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States)

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO{sub 2}, CA + nCeO{sub 2}) bulk cerium oxide (bCeO{sub 2}), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO{sub 2} increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO{sub 2} and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO{sub 2} at 250 mg/kg, but reduced by bCeO{sub 2} at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO{sub 2} increased Ce in roots by 10 and 7 times, compared to CA + nCeO{sub 2}, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO{sub 2} nor CA + nCeO{sub 2} affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO{sub 2} at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO{sub 2} at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO{sub 2} on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9

  17. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  18. Jet formation in cerium metal to examine material strength

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B. J., E-mail: bjjensen@lanl.gov; Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fezzaa, K. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Iverson, A. J.; Carlson, C. A. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  19. Investigation of cerium salt/sulfuric acid anodizing technology for 1420 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Di Li; Yue Peng Deng; Bao Lan Guo; Guo Qiang Li [Beijing Univ. of Aeronautics and Astronautics (China). Dept. of Mater. Sci. and Eng.

    2000-07-01

    In this paper, the effect of cerium addition agent on the property of anodized coating of 1420 Al alloy has been studied by corrosion experiment (immersion test and neutral salt spray test), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and measurement of polarization curves. The result show that only pitting could be observed in all corrosion tests while intergranular corrosion and exfoliation corrosion did not appear on 1420 Al-Li alloys. When organic carboxylic acid S or the cerium (IV) salt was added into sulfuric acid anodizing electrolyte separately, there was no significant improvement in corrosion resistance of anodized film. However, in the case of adding them into sulfuric acid anodizing electrolyte together, the corrosion resistance of anodized film increased greatly owing to synergistic effect. The synergistic effect may relate to the formation of cerium-organic carboxylic acid S complex compound and its effects on film growth and film structure. (orig.)

  20. Charge transfer cross sections for dysprosium and cerium

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Hajime; Tamura, Koji; Okazaki, Tetsuji; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    Symmetric resonant charge transfer cross sections between singly ionized ions and the parent atoms were measured for dysprosium and cerium in the impact energy of 200-2000eV. The cross sections were determined from the ratio between the number of ions produced by charge transfer and those in primary ion beam. The primary ion beam was produced by a laser ion source in which their atoms were ionized by laser resonant photo-ionization. The slow ions produced by charge transfer and fast primary ions were detected with Faraday cups. The obtained cross sections were (1.82{+-}0.14) x 10{sup -14} cm{sup 2} for dysprosium and (0.88{+-}0.12) x 10{sup -14} cm{sup 2} for cerium in the above energy range. The difference of these values can mostly be explained by considering the electron configurations of these atoms and ions. (author)

  1. Charge transfer cross sections for dysprosium and cerium

    International Nuclear Information System (INIS)

    Adachi, Hajime; Tamura, Koji; Okazaki, Tetsuji; Shibata, Takemasa

    1998-06-01

    Symmetric resonant charge transfer cross sections between singly ionized ions and the parent atoms were measured for dysprosium and cerium in the impact energy of 200-2000eV. The cross sections were determined from the ratio between the number of ions produced by charge transfer and those in primary ion beam. The primary ion beam was produced by a laser ion source in which their atoms were ionized by laser resonant photo-ionization. The slow ions produced by charge transfer and fast primary ions were detected with Faraday cups. The obtained cross sections were (1.82±0.14) x 10 -14 cm 2 for dysprosium and (0.88±0.12) x 10 -14 cm 2 for cerium in the above energy range. The difference of these values can mostly be explained by considering the electron configurations of these atoms and ions. (author)

  2. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    Medina F, A.; Naquid G, C.

    2000-01-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  3. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  4. Thermometric titrimetry Studies of the cerium(IV) oxidation of alpha-mercaptocarboxylic acids.

    Science.gov (United States)

    Alexander, W A; Mash, C J; McAuley, A

    1969-04-01

    The cerium(IV) oxidation of thioglycollic, thiolactic and thiomalic acids has been examined by thermometric titration. The titration curves indicate stoichiometries of more than 1 mole of cerium(IV) per mole of alpha-thiol, suggesting possible side-reactions. In the presence of methyl acrylate, however, the expected ratio is observed. The overall heat of each reaction has been derived. Only with a titration method of this kind where allowance can be made for side-reactions can the heats of reaction for these systems be measured.

  5. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating.

  6. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  7. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  8. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Castillo-Michel, Hiram [European Synchrotron Radiation Facility, B.P. 220-38043 Grenoble, Cedex (France); Hernandez-Viezcas, Jose-Angel [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Sahi, Shivendra [Department of Biology, Western Kentucky University, Bowling Green, KY 42101 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Kidney bean roots uptake nCeO{sub 2} primarily without biotransformation. • Cerium reached the root vascular tissues through gaps in the Casparian strip. • On longer exposure to high concentration, roots demonstrate stress response. • In leaves, guaiacol peroxidase plays a major role in ROS scavenging. - Abstract: Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO{sub 2}) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼8 ± 1 nm nCeO{sub 2} (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO{sub 2} exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO{sub 2}, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO{sub 2}/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO{sub 2} exposure in order to maintain cellular homeostasis.

  9. Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form

    International Nuclear Information System (INIS)

    Lewis, M. A.; Lexa, D.; Morss, L. R.; Richmann, M. K.

    1999-01-01

    Glass-bonded sodalite is being developed as a ceramic waste form (CWF) to immobilize radioactive fission products, actinides, and salt residues from electrometallurgical treatment of spent nuclear reactor fuel. The CWF consists of about 75 mass % sodalite, 25 mass % glass, and small amounts of other phases. This paper presents some results and interpretation of physical measurements to characterize the CWF structure, and dissolution tests to measure the release of matrix components and radionuclides from the waste form. Tests have been carried out with specimens of the CWF that contain rare earths at concentrations similar to those expected in the waste form. Parallel tests have been carried out on specimens that have uranium or plutonium as well as the rare earths at concentrations similar to those expected in the waste forms; in these specimens UCl 3 forms UO 2 and PuCl 3 forms PuO 2 . The normalized releases of rare earths in dissolution tests were found to be much lower than those of matrix elements (B, Si, Al, Na). When there is no uranium in the CWF, the release of cerium is two to ten times lower than the release of the other rare earths. The low release of cerium may be due to its tetravalent state in uranium-free CWF. However, when there is uranium in the CWF, the release of cerium is similar to that of the other rare earths. This trivalent behavior of cerium is attributed to charge transfer or covalent interactions among cerium, uranium, and oxygen in (U,Ce)O 2

  10. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  11. Separation of zirconium--hafnium by nitride precipitation

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.

    1977-01-01

    A method is described for the separation of a light reactive metal (e.g., zirconium) from a heavy reactive metal (e.g., hafnium) by forming insoluble nitrides of the metals in a molten metal solvent (e.g., copper) inert to nitrogen and having a suitable density for the light metal nitride to form a separate phase in the upper portion of the solvent and for the heavy metal nitride to form a separate phase in the lower portion of the solvent. Nitriding is performed by maintaining a nitrogen-containing atmosphere over the bath. The light and heavy metals may be an oxide mixture and carbothermically reduced to metal form in the same bath used for nitriding. The nitrides are then separately removed and decomposed to form the desired separate metals. 16 claims, 1 figure

  12. Nitride fuels irradiation performance data base

    International Nuclear Information System (INIS)

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  13. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  14. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  15. Cerium fluoride nanoparticles protect cells against oxidative stress

    International Nuclear Information System (INIS)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M.; Baranchikov, Alexander E.; Ryabova, Anastasia V.; Ivanov, Vladimir K.

    2015-01-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF 3 :Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF 3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF 3 and CeF 3 :Tb stable aqueous sols synthesis is proposed. • Naked CeF 3 nanoparticles are shown to be non-toxic and to protect cells from the action of H 2 O 2 . • CeF 3 and CeF 3 :Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus

  16. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  17. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  18. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Figueiredo, R.S. de.

    1991-07-01

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H 4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  19. Leachability of nitrided ilmenite in hydrochloric acid

    OpenAIRE

    Swanepoel, J.J.; van Vuuren, D.S.; Heydenrych, M.

    2011-01-01

    Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200°C) chlorination reaction will not react with chlorine. It is therefore necessary to remove as much iron as possible from the nitrided ilmenite. Hydrochloric acid leaching is a possible process route to remove metallic iron from nitrided ilmenite without excessive dissolution o...

  20. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu

    2016-12-30

    Highlights: • Microporous zirconium-cerium (hydr) oxides were synthetized. • Ce presence narrowed the band gap of the materials. • The samples showed a high efficiency for removal of CEES vapors. • 1,2-Bis (ethyl thio) ethane and ethyl vinyl sulfide were the main reaction products. • 5% (Ce/Zr mol) addition of cerium oxide results in the best performing material. - Abstract: Highly porous cerium oxide modified Zr(OH){sub 4} samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO{sub 2}) and hydroxide (Zr(OH){sub 4}) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  1. The study on preparation of high dispersion and pure cerium dioxide for producing automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Le Minh Tuan; Nguyen Trong Hung; Nguyen Thanh Chung

    2003-01-01

    The multi-stage counter-current solvent extraction process using TBP as the solvent has been carried out for purifying cerium and the ammonium carbonate precipitation method has been used to produce the cerium oxide of high dispersion and pure. The flow sheet of extraction system includes 3 extraction stages with O/A = 0.7,2 stripping stages and 4 scrubbing stages with O/A = 5. The condition for ammonium carbonate precipitation, drying and calcination have been investigated and a procedure that seem to be practically suitable to prepare cerium dioxide powder with great specific surface area for producing automotive exhaust catalyst has been proposed. (LMT)

  2. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  3. Complex formation of transferrin with tetravalent plutonium and cerium

    International Nuclear Information System (INIS)

    Subramanian, M.S.; Oomen, I.K.

    1981-01-01

    Gel filtration experiments with 239 Pu labelled In Vitro bovine serum showed that the metal ion is bound to the transferrin of the serum proteins as in the case of iron labelled serum. This was confirmed by polyacrylamide gel electrophoresis. The ovotransferrin prepared from chicken egg white which was devoid of hemopexin contaminant was found to complex both tetravalent plutonium and cerium giving visible absorption peak at 365 and 435 nm respectively. The binding capacity of ovotransferrin with tetravalent plutonium and cerium, determined by spectrophotometric titration indicates that two metal ions are bound to each protein molecule as in the case of iron. The average molecular weight computed from this binding capacity measurements was found to be 71,000-75,000. The number of protons liberated for each metal ion bound was found to be three as in the case of iron. (author)

  4. Synthesis and ion-exchange properties of cerium(IV) molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S K; Singh, Raj Pal; Agrawal, Sushma; Kumar, Satish [Roorkee Univ. (India). Dept. of Chemistry

    1977-01-01

    The synthesis, ion exchange properties, and the separation of a number of cation pairs on the columns of cerium (IV) molybdate is discussed. In order to obtain the product in gel form showing a high exchange capacity and suitable for column operation, preliminary experiments were performed to determine the optimum conditions of precipitation, i.e., the concentration of ceric and molybdate solutions, mixing ratio, pH of precipitation and the order of mixing. Cerium (IV) molybdate, prepared under the optimum conditions of concentration, acidity etc., shows exchange capacity of 0.96 meg per g of exchanger. The sorption of a large number of metal ions has been investigated and the compound shows promising behaviour as cation exchanger. Numerous separations of analytical and radiochemical interest have been performed on the column of this exchanger with great efficiency.

  5. Synthesis and ion-exchange properties of cerium(IV) molybdate

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Raj Pal Singh; Sushma Agrawal; Satish Kumar

    1977-01-01

    The synthesis, ion exchange properties, and the separation of a number of cation pairs on the columns of cerium (IV) molybdate is discussed. In order to obtain the product in gel form showing a high exchange capacity and suitable for column operation, preliminary experiments were performed to determine the optimum conditions of precipitation, i.e., the concentration of ceric and molybdate solutions, mixing ratio, pH of precipitation and the order of mixing. Cerium (IV) molybdate, prepared under the optimum conditions of concentration, acidity etc., shows exchange capacity of 0.96 meg per g of exchanger. The sorption of a large number of metal ions has been investigated and the compound shows promising behaviour as cation exchanger. Numerous separations of analytical and radiochemical interest have been performed on the column of this exchanger with great efficiency. (T.G.)

  6. Crystalline cerium(IV) phosphates

    International Nuclear Information System (INIS)

    Herman, R.G.; Clearfield, A.

    1976-01-01

    The ion exchange behaviour of seven crystalline cerium(IV) phosphates towards some of the alkali metal cations is described. Only two of the compounds (A and C) possess ion exchange properties in acidic solutions. Four others show some ion exchange characteristics in basic media with some of the alkali cations. Compound G does not behave as an ion exchanger in solutions of pH + , but show very little Na + uptake. Compound E undergoes ion exchange with Na + and Cs + , but not with Li+. Both Li + and Na + are sorbed by compounds A and C. The results are indicative of structures which show steric exclusion phenomena. (author)

  7. Appearance of minimum on the curve of cerium melting

    International Nuclear Information System (INIS)

    Boguslavskij, Yu.Ya.; Grigor'ev, S.B.

    1986-01-01

    It is shown by means of simple and obvious thermodynamical considerations that the reduced stability line continues up to the solid phase boundary. The existence of this line causes the appearance of minimum on the fcc cerium melting curve

  8. Study of cerium doped magnetite (Fe 3O 4:Ce)/PMMA nanocomposites

    Science.gov (United States)

    Padalia, Diwakar; Johri, U. C.; Zaidi, M. G. H.

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3O 4) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3O 4) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature ( Tg). The magnetic results suggest that coercivity ( HC) and squareness ( Mr/ Ms) of the loop increases with increasing doping percent of cerium.

  9. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  10. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  11. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  12. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1980-01-01

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author) [pt

  13. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    Yehezkel, O.

    1983-01-01

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  14. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  15. Citric complexes of trivalent cerium and berkelium

    International Nuclear Information System (INIS)

    Boulhassa, S.

    1977-01-01

    The extraction by thenoyltrifluoroacetone (TTA) in benzene of trivalent cerium, berkelium and californium, at the indicator scale, hydrolysis and complexation by citric acid of these cations are studied. The radionuclides used were 144 Ce, 249 Bk and 249 Cf respectively γ, β and α emitters. The solvent extraction technique of the elements by TTA in benzene from a perchloric medium at the ionic stength 0.1 was employed. The distribution coefficients D were measured by the γ, β or α radiometry. Cerium and berkelium, which have a comparable redox behavior, show in solution a relatively stable valency IV. Therefore the study by solvent extraction of their trivalent form required the standing up of complete reducing conditions of these elements and their stabilization in solution at the valency III. The thermodynamic data obtained for berkelium and californium contribute to understand the chemistry of these elements and permit to complete the third 'tetrad branch' of 5f elements from Cm 3+ to Es 3+ . This tetrad effect is a manifestation of thermodynamic consequence of the 'nephelauxetic effect'. As for Ce(III), the data confirm the pronounced acid property and may be show no neglected ligand effect for f 1 configuration [fr

  16. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro

    1993-01-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO 2 -rich and CeO 2 -lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO 2 content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl 3 , LaCl 3 , NdCl 3 , and PrCl 3 are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 μm

  17. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  18. Microstructure and mechanical properties of silicon nitride structural ceramics of silicon nitride

    International Nuclear Information System (INIS)

    Strohaecker, T.R.; Nobrega, M.C.S.

    1989-01-01

    The utilization of direct evaluation technic of tenacity for fracturing by hardness impact in silicon nitride ceramics is described. The microstructure were analysied, by Scanning Electron Microscopy, equiped with a microanalysis acessory by X ray energy dispersion. The difference between the values of K IC measure for two silicon nitride ceramics is discussed, in function of the microstructures and the fracture surfaces of the samples studied. (C.G.C.) [pt

  19. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  20. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  1. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  2. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  3. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Wang, Dapeng; Gao, Lixin; Zhang, Daquan, E-mail: zhdq@sh163.net

    2016-12-15

    Highlights: • Effectively prevent corrosion of AA5052 alloy by using the mixture of cerium nitrate and sodium dodecylbenzenesulfonate. • Synergistic mechanism of the combination of cerium nitrate and sodium dodecylbenzenesulfonate. • Structure of the complex formed between cerium ions and dodecylbenzenesulfonate. • The optimal adsorption model of dodecylbenzenesulfonate on the Al{sub 2}O{sub 3} and CeO{sub 2} surface. - Abstract: The synergistic inhibition effect of rare earth cerium nitrate and sodium dodecylbenzenesulfonate (DBS) on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that the single cerium nitrate or DBS has a limited inhibition effect against corrosion of AA5052 alloy. The combination cerium ions with DBS produced strong synergistic effect on corrosion inhibition for AA5052 alloy and rendered a negaitve shift of the corrosion potential. The formation of the complex of Al(DBS){sub 3} and Ce(DBS){sub 3} stabilized the passive film of Al{sub 2}O{sub 3} and CeO{sub 2}, retarding both the cathodic and anodic processes of AA5052 alloy corrosion reaction significantly.

  4. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3

    International Nuclear Information System (INIS)

    Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Yasakau, K.A.; Salvado, I.M. Miranda; Ferreira, M.G.S.

    2005-01-01

    Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles. The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements. The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3

  5. Effect of cerium oxide addition on electrical properties of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [National Research Center, Dokki, Giza (Egypt). Dept. of Ceramics; Mounir, M. [Dept. of Physics, Cairo Univ., Giza (Egypt); Mahgoub, A.S. [Cairo Univ., Giza (Egypt). Dept. of Chemistry; Turky, G. [Dept. of Physics, National Research Center, Dokki, Giza (Egypt); El-Desouky, O.A. [Cer. Cleopatra Co., Ramadan City (Egypt)

    2002-07-01

    Mixtures of ZnO and Ce{sub 6} O{sub 11} as additive were prepared by solid state reaction from the calcined oxides with the following proportions: 0.03, 0.08, 0.1, 0.2 and 0.4 mole. Disc specimens 1.2 cm 5 cm in diameter and 0.3 cm thickness were processed under a force of 70 kN and fired at 1150 C/ 30 minutes. XRD revealed the presence of limited solid solution of cerium in ZnO, as evident from the shift in the peaks [0.03-0.04 A ] up to 0.1 mole addition and remains constant. SEM revealed the presence of inter-granular phase. EDAX showed it to be a mixture of ZnO and Ce{sub 6}O{sub 11}. Also cerium was detected in the ZnO grains confirming the XRD results. RCL circuit was used to measure the capacitance and resistance at different frequencies at room temperature. The dielectric constant and conductivity were calculated. The change in resistivity with temperature was followed up to 523 K. The change in dielectric strength with temperature at spot frequency of 10 kHz is demonstrated. The electrical conductivity was found to increase with the proportion of cerium oxide up to 0.2 mole then decreased. (orig.)

  6. Cerium Modified Pillared Montmorillonite Supported Cobalt Catalysts for Fischer Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Ali, Z.; Abbas, S. M.; Hussain, F.

    2015-01-01

    Fischer-Tropsch (FT) synthesis was accomplished over Al-pillared Montmorillonite supported 20 wt% Co modified with different weight% of cerium catalysts. These catalysts were prepared by impregnation method while structural characterizations of the prepared samples were performed by XRD, TPR, NH/sub 3/TPD, TGA, BET, XRF and SEM techniques. The Fischer Tropsch reaction was studied in fixed bed micro catalytic reactor at temperature range of 220, 260 and 275 degree C and at different pressure (1, 5 and 10 bars). From the activity results, it was found that by pillaring NaMMT with Al higher catalytic activity and lower methane selectivity of NaMMT was achieved. Furthermore, the results of FT synthesis reaction revealed that cerium incorporation increased the dispersion of Co/sub 3/O/sub 4/ on the surface and consequently resulted in enhanced catalytic activity. Additionally, the C/sub 5/-C/sub 12/ hydrocarbons and methane selectivity increased while C/sub 22+/ hydrocarbons selectivity was decreased over cerium modified catalysts. Higher reaction temperature (>220 degree C) resulted in significant enhancement in CO conversion and methane selectivity. Though, increase in pressure from 1 to 10 bars eventually resulted in increase in C/sub 5+/ hydrocarbons and decrease in methane and C/sub 2/-C/sub 5/ hydrocarbons selectivity. (author)

  7. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  8. Extraction of Cerium (IV) Using Di–n-butylsulfoxide in Chloroform ...

    African Journals Online (AJOL)

    NICO

    2015-01-12

    Jan 12, 2015 ... Cerium is the most abundant among rare earth metals and is extracted from monazite, allanite and ... Variamine blue, 2,4, dihydroxy benzophenoe benzoic hydrazone, ... thoroughly for colour development. The reagent blank ...

  9. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  10. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    International Nuclear Information System (INIS)

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  11. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jack Lee [ORNL; Chi, Anthony [ORNL

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  12. Effect of cerium and thermomechanical processing on microstructure

    Indian Academy of Sciences (India)

    The effect of cerium content and thermomechanical processing on structure and properties of Fe–10.5 wt.%Al–0.8 wt%C alloy has been investigated. Alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot-forged and hotrolled at ...

  13. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  14. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    Science.gov (United States)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high dissolved oxygen (5 ppm) but the NH4 content is still high, which indicates a non-equilibrium condition. In this study, the cerium anomaly is alternatively utilized to evaluate the water redox state. The results demonstrate that the input water has the negative cerium anomaly of -0.16. Along the flow path, the cerium negative anomaly does not change in the first two cells and dramatically becomes -0.23 in cell 3. The trend of

  15. Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites

    International Nuclear Information System (INIS)

    Padalia, Diwakar; Johri, U.C.; Zaidi, M.G.H.

    2012-01-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe 3 O 4 ) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe 3 O 4 ) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO 2 ) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T g ). The magnetic results suggest that coercivity (H C ) and squareness (M r /M s ) of the loop increases with increasing doping percent of cerium.

  16. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  17. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically...

  18. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  19. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yen-Jui Bernie [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Wu, Haoran [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Kherani, Nazir P. [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Lian, Keryn, E-mail: keryn.lian@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada)

    2015-03-15

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N{sub 2} and NH{sub 3}, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N{sub 2}. However, the electrochemical analyses showed that the surface of the N{sub 2}-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH{sub 3}. Cycle life of the resultant N{sub 2}-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N){sub x} was developed by electrodeposition and nitridation in N{sub 2} or NH{sub 3}. • N{sub 2} treated Mo(O,N){sub x} showed a capacitive performance superior to that treated by NH{sub 3}. • The promising electrochemical performance was due to the formation of γ-Mo{sub 2}N.

  20. Thermal decomposition study of uranyl nitrate and cerium hydroxide in a spray dryer

    International Nuclear Information System (INIS)

    Silva Wildhagen, G.R. da.

    1993-05-01

    A study, in a spray dryer system based on drying and thermal decomposition of uranyl nitrate solutions aiming the production of uranium trioxide adequate for the use in posterior steps of reduction and hydro fluorination in nuclear fuel cycle; and cerium hydroxide suspensions for the production of cerium oxide with high surface area is presented. Thus, the project and construction of a countercurrent spray dryer was elaborated for capacity of 10 Kg U O 3 /h and 3,5 k Ce O 2 /h. The methodology used in these experiments consisted in the analysis of several parameters (concentration and flow rate of the feed, atomization pressure and inlet temperature of the dryer) over the physical and chemical properties of the products. Using the obtained results, with the help of a mathematical model, it was developed the project of a continuous pilot unity for the production of uranium trioxide or cerium oxide, with capacity of 20 Kg U O 3 /h or 10 Kg Ce O 2 /h, respectively. (author)

  1. Cerium valence change in the solid solutions Ce(Rh1-xRux)Sn

    International Nuclear Information System (INIS)

    Niehaus, Oliver; Riecken, Jan F.; Winter, Florian; Poettgen, Rainer; Muenster Univ.; Abdala, Paula M.; Chevalier, Bernard

    2013-01-01

    The solid solutions Ce(Rh 1-x Ru x )Sn were investigated by means of susceptibility measurements, specific heat, electrical resistivity, X-ray absorption spectroscopy (XAS), and 119 Sn Moessbauer spectroscopy. Magnetic measurements as well as XAS data show a cerium valence change in dependence on the ruthenium content. Higher ruthenium content causes an increase from 3.22 to 3.45 at 300 K. Furthermore χ and χ -1 data indicate valence fluctuation for cerium as a function of temperature. For example, Ce(Rh 0.8 Ru 0.2 )Sn exhibits valence fluctuations between 3.42 and 3.32 in the temperature range of 10 to 300 K. This could be proven by using the interconfiguration fluctuation (ICF) model introduced by Sales and Wohlleben. Cerium valence change does not influence the tin atoms as proven by 119 Sn Moessbauer spectroscopy, but it influences the electrical properties. Ce(Rh 0.9 Ru 0.1 )Sn behaves like a typical valence fluctuating compound, and higher ruthenium content causes an increase of the metallic behavior. (orig.)

  2. Fixation of radioactive cerium-144 on white blood cells. Possibilities for use in physiopathology

    International Nuclear Information System (INIS)

    Aeberhardt, A.

    1958-01-01

    From the study of the means of transport of cerium in the blood of various laboratory animals, after intra-venous injection of 144 Ce- 144 Pr without carrier, we have been able to show up the part played by the white cells in the transport of this fission product during its passage in the blood. This observation has led to the study, in vitro, of the methods of cerium fixation on the white cells, with a view to determining the possibilities of using this property for white cell labelling, the methods used up to the present not being entirely satisfactory. Using the method for the separation of the known constituents of the blood proposed by us in 1956, we have studied the cerium fixation under various conditions: - on suspensions of white cells from the rabbit, - on a suspension of human white cells, - on the white cells in whole from the rabbit. (author) [fr

  3. Indirect flow injection determination of N-acetyl-L-cysteine using cerium(IV) and ferroin

    International Nuclear Information System (INIS)

    Vieira, Heberth Juliano; Fatibello-Filho, Orlando

    2005-01-01

    An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen) 2 ] 2+ ) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen) 2 ] 3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10 -6 to 1.3x10 -4 mol L -1 . The detection limit was 5.0x10 -6 mol L -1 and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10 -5 mol L -1 N-acetyl-L-cysteine. (author)

  4. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  5. Cerium-loaded algae exoskeletons for active corrosion protection of coated AA2024-T3

    International Nuclear Information System (INIS)

    Denissen, Paul J.; Garcia, Santiago J.

    2017-01-01

    Highlights: •Nanoporous diatom algae exoskeletons allow for local inhibitor loading. •Cerium loaded exoskeletons show diffusion controlled release from coatings. •In-situ opto-electrochemical analysis allows for accurate corrosion evaluation. •Raman spectroscopy allows for precise identification of Ce at IMs in a scribe. •High levels of protection were obtained with the Ce-diatom coatings. -- Abstract: The use of micron sized nanoporous diatom algae exoskeletons for inhibitor storage and sustained corrosion protection of coated aluminium structures upon damage is presented. In this concept the algae exoskeleton allows local inhibitor loading, limits the interaction between the cerium and the epoxy/amine coating and allows for diffusion-controlled release of the inhibitor when needed. The inhibitor release and corrosion protection by loaded exoskeletons was evaluated by UV/Vis spectrometry, a home-built optical-electrochemical setup, and Raman spectroscopy. Although this concept has been proven for a cerium-epoxy-aluminium alloy system the main underlying principle can be extrapolated to other inhibitor-coating-metal systems.

  6. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    Science.gov (United States)

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Electrolytic technique for the chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    Wei, Tsong-Yang; Hsieh, Jung-Chun.

    1992-01-01

    An electrolyzer with an ion-exchange membrane as the separator has been used to study the electrolytic redox reaction of Ce 4+ / Ce 3+ in sulfuric acid solution, which is a reagent for predismantling system decontamination. Influencing factors such as current density, cerium concentration, acidity, electrolyte flow rate, membrane type and electrode material were studied experimentally. The results indicate that the redox can be achieved with high conversion even as the cerium concentration is below 0.005 M. However, the current efficiency strongly depends on the cerium concentration. In addition, the acid content and the electrolyte flow rate show little influence on the redox reaction. Both cation and anion membrane are feasible for this process. Therefore, the operation conditions are widely applicable. Moreover, two different electrode materials, platinized titanium meshes and graphite, were used. The results show that the platinized titanium meshes is preferable to the graphite for higher current efficiency. (author)

  8. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    International Nuclear Information System (INIS)

    Tomul, Fatma

    2011-01-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+ , Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  9. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  10. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  11. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  12. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  13. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  14. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Sun, Youping [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Barrios, Ana C. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Niu, Genhua [Texas AgriLife Research Center at El Paso, Texas A& M University System, 1380 A & M Circle, El Paso, TX 79927 (United States); Margez, Juan P. Flores- [Autonomous University of Ciudad Juarez, Departamento de Química y Biología, Instituto de Ciencias Biomédicas, Anillo envolvente PRONAF y Estocolmo, Ciudad Juarez, Chihuahua 32310, México (Mexico); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), El Paso, TX (United States)

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0–500 mg/kg cerium oxide nanoparticles (nano-CeO{sub 2}) under greenhouse condition. After 52 days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO{sub 2} exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65–111% with increasing nano-CeO{sub 2} concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5–250 mg/kg nano-CeO{sub 2} led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25–28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250 mg/kg nano-CeO{sub 2}. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO{sub 2} exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. - Highlights: • Ce translocation to leaves was facilitated by higher organic matter (OM) in soil. • Lower soil OM increased leaf cover area in nano-CeO{sub 2} exposed plants. • Nano-CeO{sub 2} effects on metabolic processes were more

  15. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  16. Modeling the Gas Nitriding Process of Low Alloy Steels

    Science.gov (United States)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  17. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  18. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  19. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  20. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Julie-Anne [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Markley, Tracey [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); CSIRO, Division of Materials Science and Technology, Clayton, Victoria (Australia); Forsyth, Maria, E-mail: maria.forsyth@deakin.edu.au [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Howlett, Patrick C. [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Hinton, Bruce R.W. [Department of Materials Engineering and Australian Centre of Excellence for Electromaterials Science, Wellington Rd, Monash University, Clayton, Victoria (Australia); Defence Science and Technology Organisation, Melbourne, Victoria (Australia)

    2011-02-03

    Graphical abstract: Scanning electron micrographs of microtomed surface shows pristine surface free of corrosion related 'mud cracking' inset for an inhibited AA7050 specimen when only 150 ppm Ce(dpp)3 is present in 0.1 M NaCl solution. Display Omitted Research highlights: > The thin film of hydrolysis products of Ce(dpp)3 and aluminium oxide is proposed to cause the inhibition. > The film consists of discrete Ce rich particles and a thin film over the matrix of Ce, P and Al oxides. > Discrete deposition of Ce is specifically influenced by Cu rich intermetallics. - Abstract: Cerium diphenyl phosphate (Ce(dpp){sub 3}) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp){sub 3} compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

  1. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    Science.gov (United States)

    Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao

    2017-01-01

    Cerium oxide nanoparticles (CeO 2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO 2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO 2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO 2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO 2 NPs concentration increased. CeO 2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r 2  = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r 2  = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO 2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  3. Coulometric microdetermination of organic compounds with manganese(III) and cerium(IV)

    International Nuclear Information System (INIS)

    Chateau-Gosselin, M.; Patriarche, G.J.

    1977-01-01

    The oxidation of compounds such as hydroquinon, p-aminophenol, paracetamol and phenacetin was performed using cerium(IV) and manganese(III) coulometrically electrogenerated. Quantitative results obtained are excellent even at the microscale level. (author)

  4. Simulation of the Nitriding Process

    Science.gov (United States)

    Krukovich, M. G.

    2004-01-01

    Simulation of the nitriding process makes it possible to solve many practical problems of process control, prediction of results, and development of new treatment modes and treated materials. The presented classification systematizes nitriding processes and processes based on nitriding, enables consideration of the theory and practice of an individual process in interrelation with other phenomena, outlines ways for intensification of various process variants, and gives grounds for development of recommendations for controlling the structure and properties of the obtained layers. The general rules for conducting the process and formation of phases in the layer and properties of the treated surfaces are used to create a prediction computational model based on analytical, numerical, and empirical approaches.

  5. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  6. Effect of coating parameters on the microstructure of cerium oxide conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benedict Y.; Edington, Joe; O' Keefe, Matthew J

    2003-11-25

    The microstructure and morphology of cerium oxide conversion coatings prepared under different deposition conditions were characterized by transmission electron microscopy (TEM). The coatings were formed by a spontaneous reaction between a water-based solution containing CeCl{sub 3} and aluminum alloy 7075-T6 substrates. Microstructural characterization was performed to determine the crystallinity of the coatings and to obtain a better understanding of the deposition parameters on coating microstructure. The results of TEM imaging and electron diffraction analysis indicated that the as-deposited coating was composed of nanocrystalline particles of a previously unreported cerium compound. The particles of the coatings produced using glycerol as an additive were found to be much finer than those of the coatings prepared in the absence of glycerol. This indicates that glycerol may act as a grain refiner and/or growth inhibitor during coating deposition. After deposition, the coated panels were treated for 5 min in a phosphate sealing solution. The sealing treatment converted the as-deposited coating into hydrated cerium phosphate. Panels coated from solutions containing no glycerol followed by phosphate sealing performed poorly in salt fog tests. With glycerol addition, the corrosion resistance of the coatings that were phosphate sealed improved considerably, achieving an average passing rate of 85%.

  7. Ultrathin, epitaxial cerium dioxide on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Flege, Jan Ingo, E-mail: flege@ifp.uni-bremen.de; Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Bertram, Florian [Photon Science, Deutsches Elektronensynchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Wollschläger, Joachim [Department of Physics, University of Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  8. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  9. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Deflorian, F., E-mail: flavio.deflorian@ing.unitn.it [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Fedel, M.; Rossi, S. [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Kamarchik, P. [PPG Industries, Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, PA 15101 (United States)

    2011-09-30

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO{sub 2} alone and in combination with milled SiO{sub 2} nanoparticles was investigated. For this purpose milled CeO{sub 2}, CeO{sub 2} and SiO{sub 2} milled together and milled SiO{sub 2} particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO{sub 2} and CeO{sub 2} particles promote the formation of an effective corrosion pigment

  10. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    Fortner, J. A.; Kropf, A. J.; Bakel, A. J.; Hash, M. C.; Aase, S. B.; Buck, E. C.; Chamerlain, D. B.

    1999-01-01

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium L III edge and XANES from the cerium L II edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO 2 , with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  11. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  12. Implementation of a complex multi-phase equation of state for cerium and its correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, Frank J [Los Alamos National Laboratory; Jensen, Brian J [Los Alamos National Laboratory; Elkin, Vyacheslav M [VNIITF

    2009-01-01

    The complexity of cerium combined with its interesting material properties makes it a desirable material to examine dynamically. Characteristics such as the softening of the material before the phase change, low pressure solid-solid phase change, predicted low pressure melt boundary, and the solid-solid critical point add complexity to the construction of its equation of state. Currently, we are incorporating a feedback loop between a theoretical understanding of the material and an experimental understanding. Using a model equation of state for cerium we compare calculated wave profiles with experimental wave profiles for a number of front surface impact (cerium impacting a plated window) experiments. Using the calculated release isentrope we predict the temperature of the observed rarefaction shock. These experiments showed that the release state occurs at different magnitudes, thus allowing us to infer where dynamic {gamma} - {alpha} phase boundary is.

  13. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  14. Colloidal stabilization of cerium-gadolinium oxide (CGO) suspensions via rheology

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Bentzen, Janet Jonna

    2015-01-01

    colloidally stable state. The method was applied to explore the ability of four commercial dispersants (acidic affine, neutral, basic affine, and polyvinylpyrrolidone (PVP)) to disperse cerium-gadolinium oxide (CGO) in ethanol. Only the acidic affine and the PVP dispersants were found to efficiently disperse...

  15. Gas sensing behaviour of cerium oxide and magnesium aluminate

    Indian Academy of Sciences (India)

    Gas sensing behaviour of cerium oxide and magnesium aluminate composites ... A lone pairof the electron state was identified from the electro paramagnetic ... carbon monoxide (CO) (at 0.5, 1.0 and 1.5 bar) and ethanol (at 50 and 100 ppm) was ... The magnitude of the temperature varied linearly regardless of the gas ...

  16. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  17. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  18. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  19. Study of cyclic oxidation for stainless steels AISI 309 T 253 M A, with low additions of cerium

    International Nuclear Information System (INIS)

    Velazquez F, G.L.; Martinez, M.; Ruiz, A.

    1998-01-01

    It has been detected that the addition of small amounts (<1%) of the so called 'reactive elements' such as Cerium to Fe-Cr alloys that was utilized in oxidating environment at high temperatures improving its resistance to oxidation under isothermal and cyclic conditions. In this work, it was evaluated the behavior under cyclic oxidation conditions for an austenitic stainless steel at chromium-nickel (253MA) with cerium addition, and comparing it with the AISI 310S austenitic stainless steel. The cyclic oxidation essays consist of five cycles by 24 hours each one, following of a cooling in air until ambient temperature from the temperatures of 850, 900 and 950 Centigrade, registering the gain mass of the specimen at end of each cycle. In order to this were prepared samples with dimensions of 20 mm. x 10 mm. x 1 mm. Later to the oxidation essays was evaluated the morphology of the corrosion products layer by scanning electron microscopy. The present phases were identified by X-ray diffraction and by chemical microanalysis by Dispersive energy (EDAX). The results obtained show that the steel with cerium addition, presents a higher adherence and resistance to the spalling noting that the cerium promotes the casting anchor of the oxides layer to matrix and by reducing the grain size of the layer improving its plasticity. Additionally the cerium promotes the preferential oxidation of the forming elements of protective layers like the chromium. (Author)

  20. Influence of preliminary deformation and phase strengthening on γ reversible α transformation kinetics in cerium under pressure

    International Nuclear Information System (INIS)

    Larionov, L.V.; Livshits, L.D.; Peresada, G.I.; AN SSSR, Moscow. Inst. Fiziki Zemli)

    1985-01-01

    Using the methods of piezo- and resistometry the influence of preliminary plastic deformation, phase transformation induced strengthening and heat treatment on kinetics of γ reversible α transformation in cerium is studied. It is shown, that the used methods of preliminary treatment of sample material do not change pressure value of γ → α and α →γ transformation initiation and do not affect hysteresis value, but affect considerably its kinetics. Preliminary plastic deformation and structural strengthening increase the average formation rate of a new phase. According to the data of tensile tests, structural strengthening, apprearing as a result of one cycle of γ → α → γ transformation, increases cerium strength characteristics 6y 30-50% with simultaneous decrease in plasticity. Metallographic studies confirm martensitic character of γ → α → γ transformations in cerium

  1. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  2. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  3. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  4. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  5. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  6. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  7. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C.; Villarreal, M. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo1@gmail.com [Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingeniería Mecatrónica, Universidad Militar Nueva Granada, Bogotá (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Prieto, P. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Center of Excellence for Novel Materials, CENM, Cali (Colombia)

    2013-10-31

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN]{sub n} multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm{sup 2} and 0.094*10{sup −3} mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures.

  8. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    International Nuclear Information System (INIS)

    Escobar, C.; Villarreal, M.; Caicedo, J.C.; Aperador, W.; Caicedo, H.H.; Prieto, P.

    2013-01-01

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN] n multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm 2 and 0.094*10 −3 mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

  9. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  10. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  11. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  12. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  13. The kinetics of the cerium(IV)-uranium(IV) reaction at low sulfate concentrations

    International Nuclear Information System (INIS)

    Michaille, P.; Kikindai, T.

    1977-01-01

    The rate of oxidation of uranium(IV) by cerium(IV) was measured with a stopped-flow spectrophotometer at sulfuric acid concentrations of 2 x 10 -6 to 0.5 M. At a constant hydrogen ion concentration of 0.5 M, the maximum rate constant was observed for 2 x 10 -3 M sulfuric acid; at that concentration, two sulfate ions were involved in the activated complex. The dependence of the rate constant on the hydrogen ion concentration showed that the reaction paths involving one or two sulfate ions also involved one hydroxyl ion, whereas one hydrogen ion was involved in the five sulfate dependent path. Spectrophotometric measurements supported the existence of a hydrolyzed monosulfatocomplex of cerium(IV). (author)

  14. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    Science.gov (United States)

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  15. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  16. Thermal expansion and transformation behavior of cerium and plutonium alloys: an application of the Aptekar-Ponyatovsky regular solution model.

    Science.gov (United States)

    Lawson, A C; Lashley, J C

    2011-09-14

    In this paper we apply the Aptekar-Ponyatovsky (AP) regular solution thermodynamic model to the analysis of experimental data for the coefficient of thermal expansion (CTE) and determine the AP model parameters for unalloyed cerium metal, Ce-Th-La alloys, and Pu-Ga alloys. We find that the high temperature CTE of cerium metal follows the predictions of the AP model based on low temperature, high pressure data. For Ce-Th-La alloys we use the AP parameters to track the suppression of the first-order γ-α cerium transition. We show the AP model accounts for the negative CTE observed for Pu-Ga alloys and is equivalent to an earlier invar model. Finally, we apply the AP parameters obtained for Pu-Ga alloys to rationalize the observed δ-α transformation pressures of these alloys. We show that the anomalous values of the Grüneisen and Grüneisen-Anderson parameters are important features of the thermal properties of plutonium. A strong analogy between the properties of plutonium and cerium is confirmed.

  17. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  18. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  19. Electrochemical separation of cerium and yttrium in molten chlorides on liquid-metallic electrodes

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.

    1978-01-01

    An estimating calculation of the coefficients of separation of cerium and yttrium in the process of electrolysis in molten salts on liquid electrodes of aluminium, gallium, indium, lead, tin, antimonium and zinc is carried out. The calculation of the separation coefficients was carried out according to the known values of activation coefficients of cerium and yttrium in fusible metals. The electrolysis was carried out at 973 K in the argon air in the cell with an eutectic mixture of NaCl and KCl as an elactrolyte. It is shown that the salten phase is concentrated by yttrium, and the melallic one- by cerium on all the electrodes. The value of the separation coefficient of Ce and Y is considerably high and continuously increases on the fusible metals in the Zn, In, Ga, Al, Pb, Sn, Sb series. The experimental values of the separation coefficients practically coincide with the theoretically calculated ones, testifying to the possibility of the effective separation of elements even in a single-staged possibility of the effective separation of elements even in a single-staged process. An electrolysis of molten salts is not inferior in its selectivity to the universally recognized methods of the fine purification of substances permitting to separate Ce and Y with the Ksub(sep) approximately equal to 10

  20. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  1. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  2. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  3. Study of cerium doped magnetite (Fe{sub 3}O{sub 4}:Ce)/PMMA nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand (India)

    2012-03-01

    The paper presents the synthesis and properties of polymer nanocomposite material based on cerium doped magnetite (Fe{sub 3}O{sub 4}) as filler material and poly methyl methacrylate (PMMA) as host matrix. The magnetite (Fe{sub 3}O{sub 4}) particles were synthesized by co-precipitation route using stable ferrous and ferric salts with ammonium hydroxide as precipitating agent. Further, they doped by cerium oxide (CeO{sub 2}) non-stoichiometrically. The composite material was fabricated by solvent evaporation method. Here 2.4 GHz microwaves were used to study the effect of microwaves heating on polymerization. The phase and crystal structure is determined by X-ray diffraction (XRD). The average crystallite size of the composites varies from 28 to 35 nm. The chemical structure is confirmed by Fourier transform infrared (FTIR) spectroscopy. The magnetic and thermal properties are investigated by vibrating sample magnetometer (VSM) and differential scanning calorimetry (DSC). The thermal study shows that the microwave heated samples possess higher glass transition temperature (T{sub g}). The magnetic results suggest that coercivity (H{sub C}) and squareness (M{sub r}/M{sub s}) of the loop increases with increasing doping percent of cerium.

  4. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  5. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Ghosh, Swapankumar; Divya, Damodaran; Remani, Kottayilpadi C.; Sreeremya, Thadathil S.

    2010-01-01

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 o C. The activation energy for growth of CeO 2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO 2 particles in narrow size range. CeO 2 nanocrystals precipitated at 35 o C were further annealed at temperatures in the range 300-700 o C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  6. Molecular absorption spectra of beryllium, cerium, lanthanum, iron, and platinum salts

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1980-01-01

    The absorption spectra of some salts of beryllium, cerium, lanthanum, iron and platinum in air-acetylene flame were measured in the wavelength range from 200 to 400 nm. A Hitachi 207 type atomic absorption spectrophotometer was used. A deuterium lamp, a home-made continuous radiation lamp and some hollow cathode lamps were used as light sources. The new molecular absorption spectra of cerium, lanthanum and platinum and the absorption spectra due to Be(OH) 2 , LaO, PtH, FeO and FeCl in 200-400 nm region were obtained. Emission spectra of CeO, LaO and FeOH were also obtained. These molecular absorption bands were estimated as absorption errors of maximum 15 times to the sensitivity of each elements in atomic absorption spectrometry. In addition, spectral line interferences of iron were observed in atomic absorption spectrometry of Zn, Cd, Ni, Cu and Cr. (author)

  7. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  8. Preparation and characterization of gelatin/cerium(Ⅲ) film

    Institute of Scientific and Technical Information of China (English)

    黄崇军; 黄雅钦; 田娜; 童元建; 殷瑞贤

    2010-01-01

    A novel gelatin film with antibacterial activity was prepared by electrostatic crosslinking using cerium (Ⅲ) nitrate hexahydrate as the crosslinking agent. The structure and properties of the films were investigated by Fourier transform infrared spectra, tensile tests, thermogravimetric analysis, static drop contact angle and disc diffusion method. The results showed that cross-linking could not only improve the thermal and mechanical properties and lower the hydrophilic property of the films, but also make...

  9. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    International Nuclear Information System (INIS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-01-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol–gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue–black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  10. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    Science.gov (United States)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  11. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  12. 3D-atom probe analysis of Cr and Cu added nitriding steels

    International Nuclear Information System (INIS)

    Takahashi, J.; Kawakami, K.; Sugiyama, M.; Kawasaki, K.

    2004-01-01

    Full text: Nitriding treatment is a very effective method for hardening the surface of steels and realizing improvement in wear-resistance. Although this technology has been performed for many years, the precipitation and hardening mechanisms are not completely clear. It was not easy to observe very fine precipitates which may be generated in nitriding steels. We performed a three-dimensional atom probe analysis of the nitriding steel plate in which two kinds of precipitates were generated. Hot-rolled steel plates, which mainly contained Cr 1.0wt.% and Cu 1.3wt.%, were nitrided by annealing (550-6000 o ) in a mainly NH 3 atmosphere. The material before the nitriding had a hardness of about 100 Hv. By the nitriding, the surface hardness increased to more than 700 Hv, and the inside hardness also increased to 200 Hv. The specimens were taken from 0.15 mm, 0.3 mm and 0.8 mm depth from the surface, which mostly correspond to the peak, the half and the inside hardness, respectively. In the specimen of 0.8 mm depth, prolate spheroidal Cu precipitates of more than 8 nm in diameter were observed. In the specimen of 0.3 mm depth, plate-shape nitride precipitates of 6-10 nm in diameter were observed in addition to the Cu precipitates. Each Cu precipitate made a pair with the nitride precipitate. In the 0.15 mm depth specimen, Cr nitride precipitates of high volume density in addition to the pairs consisting of a Cu precipitate and a Cr nitride precipitate were observed. The size of the nitride precipitate forming the pair was slightly larger than that of the single Cr nitride precipitates. Furthermore, the denuded zone where the nitride precipitate does not exist was observed around the pairs. From these results, it was concluded that three stages of precipitation arose as follows: By the heat treatment of nitriding processing, Cu precipitates were generated first. Then, Cr nitride nucleated at the surface of the Cu precipitates inhomogeneously, and surrounding solute Cr was

  13. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  14. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  15. Performance characteristics of silver cerium vanadate batteries

    OpenAIRE

    Arof , Abdul; Kamaluddin , Burhanuddin; Radhakrishna , S.

    1993-01-01

    Stoichiometric ratios of AR grade AgI, Ag2O, V2O5 and CeO2 were melted in a furnace and the melt was rapidly quenched to liquid nitrogen temperature to form a glass. The glassy nature of the sample has been confirmed by powder X-ray diffraction technique. The microstructure and microanalysis studies of the silver cerium vanadate (SCV) have been carried out by scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX). The SEM micrograph of the as-quenched melt showed c...

  16. Plasma nitriding of CA-6NM steel: effect of H2 + N2 gas mixtures in nitride layer formation for low N2 contents at 500 ºC

    Directory of Open Access Journals (Sweden)

    Angela Nardelli Allenstein

    2010-12-01

    Full Text Available This work aims to characterize the phases, thickness, hardness and hardness profiles of the nitride layers formed on the CA-6NM martensitic stainless steel which was plasma nitrided in gas mixtures containing different nitrogen amounts. Nitriding was performed at 500 ºC temperature, and 532 Pa (4 Torr pressure, for gas mixtures of 5% N2 + 95% H2, 10% N2 + 90% H2, and 20% N2 + 80% H2, and 2 hours nitriding time. A 6 hours nitriding time condition for gas mixture of 5% N2 + 95% H2 was also studied. Nitrided samples results were compared with non-nitrided condition. Thickness and microstructure of the nitrided layers were characterized by optical microscopy (OM, using Villela and Nital etchants, and the phases were identified by X-ray diffraction. Hardness profiles and hardness measured on surface steel were determined using Vickers hardness and nanoindentation tester, respectively. It was verified that nitrided layer produced in CA-6NM martensitc stainless steel is constituted of compound layer, being that formation of the diffusion zone was not observed for the studied conditions. The higher the nitrogen amounts in gas mixture the higher is the thickness of the nitrided layer and the probability to form different nitride phases, in the case γ'-Fe4N, ε-Fe2-3N and CrN phases. Intrinsic hardness of the nitrided layers produced in the CA-6NM stainless steel is about 12-14 GPa (~1200-1400 HV.

  17. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Rojas-Calderon, E.L.

    1989-01-01

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate C N /C F e near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  18. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  19. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  20. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie; Divya, Damodaran [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India); Remani, Kottayilpadi C. [Sree Neelakanda Government Sanskrit College, Department of Chemistry (India); Sreeremya, Thadathil S. [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India)

    2010-06-15

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 {sup o}C. The activation energy for growth of CeO{sub 2} nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO{sub 2} particles in narrow size range. CeO{sub 2} nanocrystals precipitated at 35 {sup o}C were further annealed at temperatures in the range 300-700 {sup o}C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  1. Development of nitride fuel and pyrochemical process for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo; Uno, Masayoshi

    2010-01-01

    Nitride fuel cycle for transmutation of minor actinides has been investigated under the double-strata fuel cycle concept. Mononitride solid solutions containing minor actinides have been prepared and characterised. Thermo-physical properties, such as thermal expansion, heat capacity and thermal diffusivity, have been measured by use of minor actinide nitride and burn-up simulated nitride samples. Irradiation behaviour of nitride fuel has been examined by irradiation tests. Pyrochemical process for treatment of spent nitride fuel has been investigated mainly by electrochemical measurements and nitride formation behaviour in pyrochemical process has been studied for recycled fuel fabrication. Recent results of experimental study on nitride fuel and pyrochemical process are summarised in the paper. (authors)

  2. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  3. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  4. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  5. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  6. An Auger and XPS survey of cerium active corrosion protection for AA2024-T3 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Uhart, A. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Ledeuil, J.B. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Gonbeau, D. [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Dupin, J.C., E-mail: dupin@univ-pau.fr [IPREM-ECP-UMR CNRS 5254, Université de Pau et des Pays de l' Adour, Technopole Hélioparc, 2 Avenue Président Pierre Angot, 64053 Pau Cedex 09 (France); Bonino, J.P.; Ansart, F. [Université de Toulouse, UPS-INP-CNRS, Institut Carnot CIRIMAT, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Esteban, J. [Messier-Bugatti-Dowty, Etablissement de Molsheim, 3, rue Antoine de St Exupéry, 67129 Molsheim (France)

    2016-12-30

    Graphical abstract: Coupled SAM/SEM survey of cerium inhibitor migration towards corrosion pits in a conversion coating over AA2024-T3 substrate. - Highlights: • XPS evidenced the proximity of the inhibitor with the surface AA2024 alloy. • Cerium conversion coatings with [Ce] = 0.1 M offer the best corrosion resistance. • SAM shown the migration of Ce + III entities towards the corrosion pits or crevices. • High resolution analyses (Auger) connecting the nano-scale order with the chemical distribution.

  7. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  8. Structure and electrochemical properties of plasma-nitrided low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1990-10-01

    Plasma-nitrided SAE 4140 steel has been widely applied industrially because of its superior resistance to wear and fatigue. However, its corrosion behaviour in aqueous environments has not been completely explored. The effects of nitriding on corrosion were investigated by performing electrochemical tests on both nitrided and untreated SAE 4140. It was found that, by plasma nitriding, the corrosion resistance improved significantly in HNO{sub 3} and Na{sub 2}SO{sub 4} aqueous environments. A reaction model is proposed to explain the beneficial effect of nitride on corrosion resistance. It is concluded that nitrogen and chromium (an alloying element) act synergistically to form a dense protective layer which is responsible for the corrosion resistance. Characterization of the surface layers by Auger electron spectroscopy and X-ray photoelectron spectroscopy reveals that the protective layer is composed of (Fe, Cr){sub 4}N, (Fe, Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} together with nitrides in the middle layer, and nitrides, {gamma}'-FeOOH, and Cr(OH){sub 3}.H{sub 2}O in the outermost layer. (orig.).

  9. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  10. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  11. Cerium chloride stimulated controlled conversion of B-to-Z DNA in self-assembled nanostructures

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA adopts different conformation not only because of novel base pairs but also while interacting with inorganic or organic compounds. Self-assembled branched DNA (bDNA) structures or DNA origami that change conformation in response to environmental cues hold great promises in sensing and actuation at the nanoscale. Recently, the B-Z transition in DNA is being explored to design various nanomechanical devices. In this communication we have demonstrated that Cerium chloride binds to the phosphate backbone of self-assembled bDNA structure and induce B-to-Z transition at physiological concentration. The mechanism of controlled conversion from right-handed to left-handed has been assayed by various dye binding studies using CD and fluorescence spectroscopy. Three different bDNA structures have been identified to display B-Z transition. This approach provides a rapid and reversible means to change bDNA conformation, which can be used for dynamic and progressive control at the nanoscale. - Highlights: • Cerium-induced B-to-Z DNA transition in self-assembled nanostructures. • Lower melting temperature of Z-DNA than B-DNA confirmed by CD spectroscopy. • Binding mechanism of cerium chloride is explained using fluorescence spectroscopy. • Right-handed to left-handed DNA conformation is also noticed in modified bDNA structure.

  12. Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst

    International Nuclear Information System (INIS)

    Calza, P.; Gionco, C.; Giletta, M.; Kalaboka, M.; Sakkas, V.A.; Albanis, T.; Paganini, M.C.

    2017-01-01

    Highlights: • Hydrothermal synthesis and characterization of Ce doped ZnO. • The abatement of ACE K is assessed in ultrapure water and in river water matrix. • Demonstrated higher degradation activity than P25 under visible light. • The degradation activity is less affected in river water than for P25. - Abstract: In the present study, we investigated the possibility to abate Acesulfame K, a persistent emerging contaminant, in aqueous media using zinc oxide based materials. For this purpose, bare and Ce-doped zinc oxide was prepared via an easy and cheap hydrothermal process using different cerium salts as precursors. Their photocatalytic performance was evaluated in different media, namely ultrapure and river water under both UV–vis and visible light. Commercial TiO_2 P25 was also employed and used as a reference photocatalyst for comparison purposes. The obtained results pointed out that cerium doped zinc oxide composites exhibit higher performance than TiO_2 P25, especially under visible light and in the presence of organic matter, when the activity of the latter is greatly depressed. In particular, ZnO doped with cerium (1%) was the most effective material, and could be a promising alternative to TiO_2 P25, especially in the treatment of natural waters.

  13. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  14. Preparation and Characterization of Cerium (III Doped Captopril Nanoparticles and Study of their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Ghamami Shahriar

    2016-01-01

    Full Text Available In this research Ce3+ doped Captopril nanoparticles (Ce3+ doped CAP-NP were prepared by a cold welding process and have been studied. Captopril may be applied in the treatment of hypertension and some types of congestive heart failure and for preventing kidney failure due to high blood pressure and diabetes. CAP-NP was synthesized by a cold welding process. The cerium nitrate was added at a ratio of 10% and the optical properties have been studied by photoluminescence (PL. The synthesized compounds were characterized by Fourier transform infrared spectroscopy. The size of CAP-NP was calculated by X-ray diffraction (XRD. The size of CAP-NP was in the range of 50 nm. Morphology of surface of synthesized nanoparticles was studied by scanning electron microscopy (SEM. Finally the luminescence properties of undoped and doped CAP-NP were compared. PL spectra from undoped CAP-NP show a strong pack in the range of 546 nm after doped cerium ion into the captopril appeared two bands at 680 and 357 nm, which is ascribed to the well-known 5d–4f emission band of the cerium.

  15. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  16. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  17. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  18. Electron donating and acid-base properties of cerium oxide and its mixed oxides with alumina

    International Nuclear Information System (INIS)

    Sugunan, S.; Jalaja, J.M.

    1994-01-01

    The electron donating properties of cerium oxide activated at 300, 500 and 800 degC and of its mixed oxides with alumina were examined based on the adsorption of electron acceptors exhibiting different electron affinities. The surface acidity/basicity of the oxides was determined by titrimetry; the H 0,max values are given. The limit of electron transfer from the oxide surface lies within the region of 1.77 and 2.40 eV in terms of the electron affinity of the electron acceptor. Cerium oxide promotes the electron donor nature of alumina while leaving the limit of electron transfer unchanged. 2 tabs., 4 figs., 13 refs

  19. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  20. Influence of plastic deformation on nitriding of a molybdenum-hafnium alloy

    International Nuclear Information System (INIS)

    Lakhtin, Yu.M.; Kogan, Ya.D.; Shashkov, D.P.; Likhacheva, T.E.

    1982-01-01

    The influence of a preliminary plastic strain on the structure and properties of molybdenum alloy with 0.2 wt.% Hf upon nitriding in the ammonia medium at 900-1200 deg C during 1-6 h is investigated. The study of microhardness distribution across the nitrided layer thickness has shown that with increase of the degree of preliminary plastic strain up to 50 % the nitrided layer hardness decreases and with further reduction growth up to 90 % - increases. Nitriding sharply (hundred times) increases wear resistance of molybdenum alloy with hafnium addition. At the reduction degree 25 % the wear resistance is less than at other values of percentage reduction in area owing to the minimum thickness of the nitride zone. The alloy strained before nitriding by 25 % has shown the best results during heat resistance testing

  1. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid.

    Science.gov (United States)

    Barrios, Ana Cecilia; Medina-Velo, Illya A; Zuverza-Mena, Nubia; Dominguez, Osvaldo E; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-01-01

    Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO 2, nCeO 2 +CA), cerium acetate (CeAc), bulk cerium oxide (bCeO 2 ) and citric acid (CA) at 0-500 mg kg -1 . Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO 2 +CA at 62.5, 250 and 500 mg kg -1 reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg -1 nCeO 2 +CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg -1 reduced starch by 78%, compared to control. The bCeO 2 at 250 and 500 mg kg -1 , increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO 2 at 500 mg kg -1 reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg -1 decreased Al by 24%; while nCeO 2 +CA at 125 and 500 mg kg -1 increased B by 33%. On the other hand, bCeO 2 at 62.5 mg kg -1 increased Ca (267%), but at 250 mg kg -1 reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO 2 +CA, while nutritional elements by nCeO 2 ; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    Science.gov (United States)

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  3. Cerium compounds in the fashion of the light actinides

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1984-01-01

    Researchers familiar with the light actinides easily recognize in cerium compounds a microcosm of the rich variety of properties seen in the light actinides. The parallelism seen between comparable cerium and actinide compounds strongly suggests that the same physical models are applicable. The most significant is the relative size of the f-orbital. Localization is generally tighter in Ce compounds than uranium compounds, making Ce roughly analogous to Np through Am. A way to see the actinide parallelism is to compare Hill plots. Compounds in the different regions of the plots (representing different physics) are isostructural compounds with the same companion (B) elements. The most common materials exhibiting a direct f-f interaction are the cubic Laves compounds. Accordingly, we have determined the band structures of CeRu 2 , CeRh 2 , CeIr 2 , CeOs 2 , and CeNi 2 . Compounds illustrative of the interaction of f-orbitals with ligand orbitals are the Cu 3 Au structured materials. Materials calculated in this class are CeRh 3 , CePd 3 , and CeSn 3 - the materials of much interest as mixed valent. Although the focus is on the Ce compounds, calculations performed on uranium isomorphs are used to highlight the interesting physics

  4. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  5. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  6. Method of production of hollow silicon nitride articles

    International Nuclear Information System (INIS)

    Parr, N.L.; Brown, R.L.

    1971-01-01

    The hollow articles prepared according to the invention have a high density, exhibit no internal stresses and correspond to high demands of tolerance and surface quality. One obtains these by flame spraying silicon powder on a pre-heated form designed with separating agent - e.g. NaCl. After removing the form, the silicon is nitridated to silicon nitride by heating in N 2 or in an atmosphere of ammonia. This process can be interrupted if the article is also to be mechanically processed, and then the nitridation can be completed. (Hoe/LH) [de

  7. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  8. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  9. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  10. Nitridation of porous GaAs by an ECR ammonia plasma

    International Nuclear Information System (INIS)

    Naddaf, M; Hullavarad, S S; Ganesan, V; Bhoraskar, S V

    2006-01-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy

  11. Nitridation of porous GaAs by an ECR ammonia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Department of Physics, Atomic Energy Commission of Syria, PO Box 6091, Damascus (Syrian Arab Republic); Hullavarad, S S [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ganesan, V [Inter University Consortium, Indore (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2006-02-15

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  12. Nitridation of porous GaAs by an ECR ammonia plasma

    Science.gov (United States)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  13. Far infrared properties of PbTe doped with cerium

    International Nuclear Information System (INIS)

    Nikolic, P.M.; Koenig, W.; Vujatovic, S.S.; Blagojevic, V.; Lukovic, D.; Savic, S.; Radulovic, K.; Urosevic, D.; Nikolic, M.V.

    2007-01-01

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm -1 . The origin of these local vibrational impurity modes was discussed

  14. Analysis of mechanical properties of steel 1045 plasma nitriding: with and without tempering

    International Nuclear Information System (INIS)

    Machado, N.T.B.; Passos, M.L.M. dos; Riani, J.C.; Recco, A.A.C.

    2014-01-01

    The purpose of this study was to evaluate the possibility of tempering during the nitriding of AISI 1045 steel. The objective was to evaluate the possibility of eliminating this phase, with the nitriding properties remaining unaltered. For this, three parameter samples were compared: quenched, tempered and nitrided for 2h; quenching and nitrided for 2h and quenching and nitrided for 4h. The analysis techniques used for characterizing the samples before and after nitriding were optical microscopy, hardness Rockwell C (HRC), scanning electron microscopy (SEM), X-ray diffraction (XRD). Results showed that phase γ is the most favorable of all parameters tested. The hardness assays showed that samples with different initial hardness (with and without tempering) and even nitriding time showed similar mechanical properties. This fact suggests that the tempering process occurred parallel to the nitriding process. (author)

  15. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  16. Synthesis and characterization of group V metal carbide and nitride catalysts

    Science.gov (United States)

    Kwon, Heock-Hoi

    1998-11-01

    Group V transition metal carbides and nitrides were prepared via the temperature programmed reaction (TPR) of corresponding oxides with NHsb3 or a CHsb4/Hsb2 mixture. Except for the tantalum compounds, phase-pure carbides and nitrides were prepared. The vanadium carbides and nitrides were the most active and selective catalysts. Therefore the principal focus of the research was the preparation, characterization, and evaluation of high surface area vanadium nitride catalysts. A series of vanadium nitrides with surface areas up to 60 msp2/g was prepared. Thermal gravimetric analysis coupled with x-ray diffraction and scanning electron microscopy indicated that the solid-state reaction proceeded by the sequential reduction of Vsb2Osb5 to VOsb{0.9} and concluded with the topotactic substitution of nitrogen for oxygen in VOsb{0.9}. The transformation of Vsb2Osb5 to VN was pseudomorphic. An experimental design was executed to determine effects of the heating rates and space velocities on the VN microstructures. The heating rates had minor effects on the surface areas and pore size distributions; however, increasing the space velocity significantly increased the surface area. The materials were mostly mesoporous. Oxygen chemisorption on the vanadium nitrides scaled linearly with the surface area. The corresponding O/Vsbsurface ratio was ≈0.6. The vanadium nitrides were active for butane activation and pyridine hydrodenitrogenation. During butane activation, their selectivities towards dehydrogenation products were as high as 98%. The major product in pyridine hydrodenitrogenation was pentane. The reaction rates increased almost linearly with the surface area suggesting that these reactions were structure insensitive. The vanadium nitrides were not active for crotonaldehyde hydrogenation; however, they catalyzed an interesting ring formation reaction that produced methylbenzaldehyde and xylene from crotonaldehyde. A new method was demonstrated for the production of very

  17. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  18. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  19. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  20. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Martin-Ramos, Pablo; Correa-Guimaraes, Adriana; Martin-Gil, Jesus

    2011-01-01

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  1. Selective anodic dissolution of cerium from aluminium alloys under potentiostatic conditions

    International Nuclear Information System (INIS)

    Gol'dshtejn, S.L.; Raspopin, S.P.; Seleznev, V.D.; Tunin, A.V.; Fedorov, V.A.

    1975-01-01

    A study was made of selective anodic dissolution of aluminum alloys containing cerium in concentrations from 0.5 to 10% by mass. The electropurification was carried out with the aid of a potentiostatic setup at 700 deg C in atmosphere of purified argon. Liquid aluminum served as the cathode, with chlorine half-cell as reference electrode and the melt of equimolar KCl-NaCl mixture as the electrolyte. The ''current-time'' plots are presented for selective ionization of cerium from aluminum alloys at preset potential values on the installation. For PHIsub(preset)=-2.04 v the current of potentiostatic electrolysis fades out to that of the supporting electrolyte, and the process itself proceeds at a rate that provides maximal extraction of cerium from the alloy (csub9finite)approximately equal to 0.002% by mass) at minimal ionization of the metalsolvent (Δ Msub(Al)approximately equal to 0.2). Alloys containing not less then 1% by mass of Ce exhibit a characteristic abrupt change of the attenuation coefficient apparently owing to nonlinear dependence of unbalance (ΔE) of signals at the input of the potentiostat. The ''ΔE-c'' function for Al alloy containing 0.5% by mass of Ce can be approximated by linear function. In this case the current of potentiostatic electrolysis approaches the value of the limiting diffusion current. To obtain the relationship between the magnitude of the limiting current of Ce ionization and the initial composition of the dissolving alloy, measurements were made under potentiodynamic conditions at a scanning rate of approximately equal to 500 mv/min. The results indicate that isub(intermediate) is directly proportional to csub(initial). It was shown that under the conditions employed, practically complete (csub(finite)<=0.004% by mass) extraction of the electronegative component is possible without noticeable ionization of the metal-solvent

  2. Influence of annealing on texture properties of cerium oxide thin films

    International Nuclear Information System (INIS)

    Arunkumar, P.; Suresh Babu, K.; Ramaseshan, R.; Dash, S.

    2013-01-01

    Future power demand needs an energy source with higher efficiency, better power density, clean energy and fuel flexibility. Solid oxide fuel cell (SOFC) is one of the potential sources for future needs. Though the polymer and direct methanol based electrolyte are much suitable, for versatile applications (portable devices) they are having major challenges such as design, platinum based catalyst, lower power density and fuel flexibility (free from hydrocarbons). However, in SOFC the high operating temperature is the only major issue. Operating temperature of SOFC could be reduced by proper selection of electrolyte material which should have minimum ionic conductivity of 0.1 Scm -1 at reduced activation energy. This can be achieved by thin film based doped cerium oxide electrolyte for SOFC, leads to Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC). In the present work, we focus on the synthesis of cerium oxide and 20 mol % samarium doped cerium oxide (SDC) nanoparticles by co-precipitation method and to synthesis thin films of the same. Pellets of those powders were heat treated at different temperatures and used as targets for e-beam evaporation to fabricate thin film based electrolyte. Stoichiometry of both powders and thin films were confirmed by XRF and EPMA. GIXRD profiles of ceria and SDC thin films are shown below and a preferred orientation effect is observed in SDC films. In SDC films the X-ray peaks have a shift towards lower angles, due to the difference in ionic radii of Ce 4+ and Sm 3+ . The band gap of CeO 2 (2.88 eV) from optical absorption technique indicates the presence of Ce 3+ with Ce 4+ , indirectly shows the concentration of oxygen vacancies which is required for the thin film electrolyte

  3. Energy transfer and thermal studies of Pr 3+ doped cerium oxalate ...

    Indian Academy of Sciences (India)

    The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of ...

  4. Some new aspects of microstructural development during sintering of silicon nitride

    International Nuclear Information System (INIS)

    Feuer, H.; Woetting, G.; Gugel, E.

    1994-01-01

    The mechanical properties of silicon nitride ceramics strongly depend on their microstructure. However, there is still a lively discussion about the parameters controlling the microstructural development. The current research was stimulated by the observation that a bimodal grain-size distribution in dense silicon nitride has a very beneficial effect on the mechanical properties, especially on the fracture toughness. This paper is focused on the relationship between the α-β-transformation and the densification of silicon nitride powders with different characteristics and sintering additives. Effects of β-grains originally present in the silicon nitride powder, of added β-silicon nitride seeds and of β-crystals formed by the α/β-transformation on the resulting microstructure and on the properties are discussed. The results are summarised in a model describing prerequisites and processing conditions, which are necessary to achieve a bimodal microstructure, i. e. a self-reinforced silicon nitride ceramic. (orig.)

  5. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  6. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Center of Tribology and Tech. Diagnostics; Leskovsek, V. [Inst. of Metals and Technologies, Ljubljana (Slovenia)

    1998-10-10

    Plasma nitriding is usually used for ferrous materials to improve their surface properties. Knowledge of the properties of thin surface layers is essential for designing engineering components with optimal wear performance. In our study, we investigated the microstructural, mechanical and tribological properties of plasma- and pulse plasma-nitrided AISI 4140 steel in comparison to hardened steel. The influence of nitriding case depth as well as the presence of a compound layer on its tribological behaviour was also examined. Plasma and pulse plasma nitriding were carried out using commercial nitriding processes. Nitrided samples were fully characterised, using metallographic, SEM microscopic, microhardness and profilometric techniques, before and after wear testing. Wear tests were performed on a pin-on-disc wear testing machine in which nitrided pins were mated to hardened ball bearing steel discs. The wear tests were carried out under dry conditions where hardened samples were used as a reference. The resulting wear loss as well as the coefficient of friction was monitored as a function of load and test time. Several microscopic techniques were used to analyse the worn surfaces and wear debris in order to determine the dominant friction and wear characteristics. Results showed improved tribological properties of AISI 4140 steel after plasma and pulse plasma nitriding compared to hardening. However, the compound layer should be removed from the surface by mechanical means or by decreasing the amount of nitrogen in the nitriding atmosphere, to avoid impairment of the tribological properties by fracture of the hard and brittle compound layer followed by the formation of hard abrasive particles. (orig.) 10 refs.

  8. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    International Nuclear Information System (INIS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-01-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 deg. C and 550 deg. C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N ) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  9. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  10. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  11. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  12. Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores

    Directory of Open Access Journals (Sweden)

    Aranzazu Gomez-Garay

    2016-12-01

    Full Text Available Aim of study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum. Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea. Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC and Lowest-Observed-Adverse-Effect-Concentration (LOEC values for spore germination rate data were analyzed.  Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained. Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. Keywords: Nanoparticles; rhizoid; prothallus; chloroplast; fern.

  13. Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Garay, A.; Pintos, B.; Manzanera, J.A.; Prada, C.; Martin, L.; Gabriel y Galan, J.M.

    2016-07-01

    Aim of the study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum. Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea. Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size) and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC) and Lowest-Observed-Adverse-Effect-Concentration (LOEC) values for spore germination rate data were analyzed. Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained. Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. (Author)

  14. Fabrication of carbide and nitride pellets and the nitride irradiations Niloc 1 and Niloc 2

    International Nuclear Information System (INIS)

    Blank, H.

    1991-01-01

    Besides the relatively well-known advanced LMFBR mixed carbide fuel an advanced mixed nitride is also an attractive candidate for the optimised fuel cycle of the European Fast Reactor, but the present knowledge about the nitride is still insufficient and should be raised to the level of the carbide. For such an optimised fuel cycle the following general conditions have been set up for the fuel: (i) the burnup of the optimised MN and MC should be at least 15 a/o or even beyond, at moderate linear ratings of less than 75 kW/m (ii) the fuel will be used in a He-bonding pin concept and (iii) as far as available an advanced economic pellet fabrication method should be employed. (iv) The fuel structure must contain 15 - 20% porosity in order to accomodate the fission product swelling at high burnup. This report gives a comprehensive description of fuel and pellet fabrication and characterization, irradiation, and post-irradiation examination. From the results important conclusions can be drawn about future work on nitrides

  15. Magnetic properties of Nd3(Fe,Mo)29 compound and its nitride

    International Nuclear Information System (INIS)

    Pan Hongge

    1998-01-01

    The iron-rich ternary intermetallic compound Nd 3 (Fe,Mo) 29 with the Nd 3 (Fe,Ti) 29 -type monoclinic structure and its nitride were prepared. After nitrogenation, the nitride retains the structure of the parent compound, but the unit-cell volume of the nitride is 5.9% greater than that of the parent compound. The Curie temperature of Nd 3 (Fe,Mo) 29 nitride is 70.9% higher than that of the parent compound and the saturation magnetization of the nitride is about 6.6% (at 4.2 K) and 23.7% (at 300 K) higher than that of the parent compound. The anisotropy of the nitride is similar to that of parent compound, which exhibits plane anisotropy. (orig.)

  16. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  17. Precipitation of Chromium Nitrides in the Super Duplex Stainless Steel 2507

    Science.gov (United States)

    Pettersson, Niklas; Pettersson, Rachel F. A.; Wessman, Sten

    2015-03-01

    Precipitation of chromium nitrides during cooling from temperatures in the range 1373 K to 1523 K (1100 °C to 1250 °C) has been studied for the super duplex stainless steel 2507 (UNS S32750). Characterization with optical, scanning and transmission electron microscopy was combined to quantify the precipitation process. Primarily Cr2N nitrides were found to precipitate with a high density in the interior of ferrite grains. An increased cooling rate and/or an increased austenite spacing clearly promoted nitride formation, resulting in precipitation within a higher fraction of the ferrite grains, and lager nitride particles. Furthermore, formation of the meta-stable CrN was induced by higher cooling rates. The toughness seemed unaffected by nitrides. A slight decrease in pitting resistance was, however, noticed for quenched samples with large amounts of precipitates. The limited adverse effect on pitting resistance is attributed to the small size (~200 nm) of most nitrides. Slower cooling of duplex stainless steels to allow nitrogen partitioning is suggested in order to avoid large nitrides, and thereby produce a size distribution with a smaller detrimental effect on pitting resistance.

  18. Density-functional theory for f-electron systems. The α-γ phase transition in cerium

    International Nuclear Information System (INIS)

    Casadei, Marco

    2013-01-01

    Rare earths are technologically important and scientifically highly interesting elements. The description of the volume collapse exhibited by some rare earth metals poses a great challenge to density-functional theory (DFT) since local/semi-local functionals (LDA/GGA) only partially capture the associated phase transitions. In this work this problem is approached by treating all electrons at the same quantum mechanical level, using both hybrid functionals (e.g. PBE0 and HSE06) and exact-exchange plus correlation in the random-phase approximation (EX+cRPA). The performance of recently developed beyond RPA schemes is also assessed. The isostructural α-γ phase transition in cerium is the most studied. The exact exchange contribution in PBE0 and HSE06 is crucial to produce two distinct solutions that can be associated with the α and γ phases. The two solutions emerge in bulk as well as in cluster calculations. Most notable is their presence in the cerium dimer. However, quantitative agreement with the extrapolated phase diagram requires EX+cRPA. So far the EX+cRPA correction can only be applied to cerium clusters and not to the bulk. A cluster of 19 atoms cut from the fcc crystal structure (the same that characterizes the α and γ phases) was therefore determined as representative. (EX+cRPA) rate at PBE0 for Ce 19 provides good agreement with the extrapolated transition pressure to zero temperature. We predict that a pressure induced phase transition should exist at or close to zero. A finite temperature phase diagram can be drawn in reasonable agreement with experiment by adding entropic effects. The cerium neighbors are also studied: lanthanum, which has no f electrons, praseodymium, with three f electrons and a volume collapse, and neodymium, with four f electrons and no volume collapse. Multiple solutions are also present for these f electron elements, confirming the importance of exact-exchange for f electron systems.

  19. Cerium sorption in grounds modified by anti-deflation treatment

    International Nuclear Information System (INIS)

    Firsova, L.P.; Bogatyrev, I.O.

    2001-01-01

    Influence of soils and grounds treatment by anti-deflation compositions on the size of the soil particles was studied. Under static conditions sorption of 144 Ce by turf-podsolic soils prior to an after their modification by the anti-deflation reagents, i.e. bitumens and insoluble in water polyelectrolytic complexes, was considered. Degrees of 144 Ce sorption in the soil-solution systems, depending on solutions pH, presence of alkali metal carbonates and cerium concentration, were determined [ru

  20. Far infrared properties of PbTe doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, P.M. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu; Koenig, W. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80 (Germany); Vujatovic, S.S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Blagojevic, V. [Faculty of Electronic Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Lukovic, D. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Savic, S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Radulovic, K. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Urosevic, D. [Mathematical Institute SASA, Knez Mihailova 35/I, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, Belgrade (Serbia)

    2007-05-16

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm{sup -1}. The origin of these local vibrational impurity modes was discussed.

  1. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  2. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  3. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  4. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Anton L., E-mail: antonpopovleonid@gmail.com [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Popova, Nelly R. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Pushchino State Institute of Natural sciences, Pushchino, Moscow region (Russian Federation); Akkizov, Azamat Y. [Kabardino-Balkarian State University, Nalchik (Russian Federation); Ivanov, Vladimir K. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10{sup −3} M–10{sup −9} M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. - Highlights: • Citrate-stabilized cerium oxide nanoparticles are shown to stimulate proliferation of primary embryonic cells in vitro. • Some of mechanisms involved in stimulating of the proliferation by CeO{sub 2} have been uncovered. • The most effective (optimal) concentration of CeO{sub 2} nanoparticles for stimulation of proliferation was determined.

  5. The preparation of high-adsorption, spherical, hexagonal boron nitride by template method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2014-11-15

    Highlights: • The high-adsorption, spherical, hexagonal boron nitride powders were prepared. • The influence mechanism of template content on the micro-morphology and adsorption was explored. • At appropriate synthesis temperature, higher adsorption mesoporous spheres h-BN began to form. - Abstract: This research used low-cost boric acid and borax as a source of boron, urea as a nitrogen source, dodecyl-trimethyl ammonium chloride (DTAC) as a template, and thus prepared different micro-morphology hexagonal boron nitride powders under a flowing ammonia atmosphere at different nitriding temperatures. The effects of the template content and nitriding temperature on the micro-morphology of hexagonal boron nitride were studied and the formation mechanism analysed. The influences of the template content and nitriding temperature on adsorption performance were also explored. The results showed that at a nitriding temperature of 675 °C, the micro-morphologies of h-BN powder were orderly, inhomogeneous spherical, uniform spherical, beam, and pie-like with increasing template content. The micro-morphology was inhomogeneous spherical at a DTAC dose of 7.5%. The micro-morphology was uniform spherical at a DTAC dose of 10%. At a DTAC dose of 12%, the micro-morphology was a mixture of beam and pie-like shapes. At a certain template content (DTAC at 10%) and at lower nitriding temperatures (625 °C and 650 °C), spherical shell structures with surface subsidence began to form. The porous spheres would appear at a nitriding temperature of 675 °C, and the ball diameter thus formed was approximately 500–600 nm. The ball diameter was about 600–700 nm when the nitriding temperature was 700 °C. At a nitriding temperature of 725 °C, the ball diameter was between 800 and 1000 nm and sintering necking started to form. When the relative pressure was higher, previously closed pores opened and connected with the outside world: the adsorption then increased significantly. The

  6. Further results on cerium fluoride crystals

    International Nuclear Information System (INIS)

    Anderson, S.; Auffray, E.; Aziz, T.; Baccaro, S.; Banerjee, S.; Bareyre, P.; Barone, L.E.; Borgia, B.; Boutet, D.; Burq, J.P.; Chemarin, M.; Chipaux, R.; Dafinei, I.; D'Atanasio, P.; De Notaristefani, F.; Dezillie, B.; Dujardin, C.; Dutta, S.; Faure, J.L.; Fay, J.; Ferrere, D.; Francescangeli, O.; Fuchs, B.A.; Ganguli, S.N.; Gillespie, G.; Goyot, M.; Gupta, S.K.; Gurtu, A.; Heck, J.; Herve, A.; Hillemanns, H.; Holdener, F.; Ille, B.; Joensson, L.; Kierstead, J.; Krenz, W.; Kway, W.; Le Goff, J.M.; Lebeau, M.; Lebrun, P.; Lecoq, P.; Lemoigne, Y.; Loomis, G.; Lubelsmeyer, K.; Madjar, N.; Majni, G.; El Mamouni, H.; Mangla, S.; Mares, J.A.; Martin, J.P.; Mattioli, M.; Mauger, G.J.; Mazumdar, K.; Mengucci, P.; Merlo, J.P.; Moine, B.; Nikl, N.; Pansart, J.P.; Pedrini, C.; Poinsignon, J.; Polak, K.; Raghavan, R.; Rebourgeard, P.; Rinaldi, D.; Rosa, J.; Rosowsky, A.; Sahuc, P.; Samsonov, V.; Sarkar, S.; Schegelski, V.; Schmitz, D.; Schneegans, M.; Seliverstov, D.; Stoll, S.; Sudhakar, K.; Svensson, A.; Tonwar, S.C.; Topa, V.; Vialle, J.P.; Vivargent, M.; Wallraff, W.; Weber, M.J.; Winter, N.; Woody, C.; Wuest, C.R.; Yanovski, V.

    1993-01-01

    A systematic investigation of the properties of cerium fluoride monocrystals has been performed by the 'Crystal Clear' collaboration in view of a possible use of such crystals for the construction of high precision electromagnetic calorimeters for the future generation of high luminosity accelerators. A large sample of different crystals grown by several producers has been studied. The spectroscopic characteristics, the transmission, luminescence and excitation spectra and the decay time curves are analysed. The light yield of the different crystals is measured with photomultipliers and Si photodiodes and compared to reference standards like BGO and NaI(Tl). The radiation damage behaviour is then presented for γ and neutron irradiations, at different doses and dose rates, including thermal and optical bleaching. (orig.)

  7. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  8. Corrosion stability of cermets on the base of titanium nitride

    International Nuclear Information System (INIS)

    Kajdash, O.N.; Marinich, M.A.; Kuzenkova, M.A.; Manzheleev, I.V.

    1991-01-01

    Corrosion resistance of titanium nitride and its cermets in 5% of HCl, 7% of HNO 3 , 10% of H 2 SO 4 is studied. It is established that alloys TiN-Ni-Mo alloyed with chromium (from 10 to 15%) possess the highest corrosion resistance. Cermet TiN-Cr has the higher stability than titanium nitride due to formation of binary nitride (Ti, Cr)N

  9. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  10. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

    Czech Academy of Sciences Publication Activity Database

    Janos, P.; Henych, Jiří; Pelant, O.; Pilařová, V.; Vrtoch, L.; Kormunda, M.; Mazanec, K.; Štengl, Václav

    2016-01-01

    Roč. 304, MAR (2016), s. 259-268 ISSN 0304-3894 Institutional support: RVO:61388980 Keywords : Cerium oxide * Chemical warfare agents * Organophosphate compounds * Decontamination Subject RIV: CA - Inorganic Chemistry Impact factor: 6.065, year: 2016

  11. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  12. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  13. Cerium compounds in the fashion of the light actinides

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1985-01-01

    Researchers familiar with the light actinides easily recognize in cerium compounds a microcosm of the rich variety of properties seen in the light actinides. The parallelism seen between comparable cerium and actinide compounds strongly suggests that the same physical models are applicable. The most significant is the relative size of the f-orbital. Localization is generally tighter in Ce compounds than uranium compounds, making Ce roughly analogous to Np through Am. A way to see the actinide parallelism is to compare Hill plots. Compounds in the different regions of the plots (representing different physics) are isostructural compounds with the same companion (B) elements. The most common materials expected to exhibit direct f-f interaction are the cubic Laves compounds. Accordingly, we have determined the band structures of CeRu 2 , CeRh 2 , CeIr 2 , and CeNi 2 . Surprisingly, it was found that an f-d interaction overshadows any direct f-f interaction in these systems. Compounds illustrative of the interaction of f-orbitals with ''ligand'' orbitals are the Cu 3 Au structured materials. Materials calculated in this class are CeRh 3 , CePd 3 , and CeSn 3 - the materials of much interest as ''mixed valent''. Although the focus is on the Ce compounds, calculations performed on uranium isomorphs are used to highlight the interesting physics. (orig.)

  14. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  15. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  16. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  17. Effect of cerium additive and secondary phase analysis on Ag0.5Bi0 ...

    Indian Academy of Sciences (India)

    Technical University of Madrid (UPM), Madrid 28012, Spain. MS received 27 ... XRD analysis showed the presence of pyrochlore structure and secondary phase when more .... The present work reports the effect of incorporation of cerium in ...

  18. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  19. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  20. Preparation and chemical stability of iron-nitride-coated iron microparticles

    International Nuclear Information System (INIS)

    Luo Xin; Liu Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 deg. C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ε-Fe 3 N, and γ-Fe 4 N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1x10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids

  1. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Matsui, T.; Ohse, R.W.

    1986-01-01

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  2. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  3. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  4. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  5. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  6. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  7. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  8. On the effect of pre-oxidation on the nitriding kinetics

    DEFF Research Database (Denmark)

    Friehling, Peter Bernhard; Somers, Marcel A. J.

    2000-01-01

    The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous...... experimental and theoretical work reported in the literature, puts forward two hypotheses to explain the effects of pre-oxidation on compound layer formation. It is proposed that the nucleation of iron nitrides is enhanced by the presence of an iron-oxide layer and that the growth of an iron-nitride layer...... proceeds faster after pre-oxidation, due to a higher nitrogen content in the part of the compound layer closest to the surface....

  9. Separation of uranium(V I) from binary solution mixtures with thorium(IV), zirconium(IV) and cerium(III) by foaming

    International Nuclear Information System (INIS)

    Shakir, K.; Aziz, M.; Benyamin, K.

    1992-01-01

    Foam separation has been investigated for the removal of uranium(V I), thorium(IV), zirconium(IV) and cerium(III) from dilute aqueous solutions at pH values ranging from about I to about II. Sodium laurel sulphate (Na L S) and acetyl trimethyl ammonium bromide (CTAB), being a strong anionic and a strong cationic surfactants, were used as collectors. The results indicate that Na L S can efficiently remove thorium(IV), zirconium(IV) and cerium(III) but not uranium(V I). CTAB, on the other hand, can successfully float only uranium(V I) and zirconium(IV). These differences in flotation properties of the different cations could be used to establish methods for the separation of uranium(V I) from binary mixtures with thorium(IV), zirconium(IV) or cerium(III). The results are discussed in terms of the hydrolytic behaviour of the tested cations and properties of used collectors.2 fig., 1 tab

  10. Sodium nitrate-cerium nitrate-water ternary system at 25 deg C

    International Nuclear Information System (INIS)

    Fedorenko, T.P.; Onishchenko, M.K.

    1978-01-01

    Solubility isotherm of sodium nitrate-cerium nitrate-water system at 25 deg C consists of three crystallization branches of initial salts and double compound of the composition 2NaNO 3 xCe(NO 3 ) 3 x2H 2 O. Sodium nitrate introduced in the solution strengthens complexing. Physico-chemical characteristics are in a good agreement with solubility curve

  11. Effects of ethylenediaminetetraacetic acid (EDTA)and diethylenetriaminepentaacetic acid (DTPA) derivatives on penetration of ytterbium-169 and cerium-144 into the rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Baltrukiewicz, Z; Burakowski, T; Derecki, J [Wojskowy Inst. Higieny i Epidemiologii, Warsaw (Poland)

    1976-01-01

    Penetration of radioactive ytterbum-169 and cerium-144 into fetuses was determined at the end of pregnancy and penetration into the organism of suckling rats was studied during feeding with the milk of exposed mothers when EDTA or DTPA derivatives were being administered. Injection of ytterbum-169 as a complex with EDTA or DTPA or injection of Na/sub 2/Ca EDTA or Na/sub 3/Ca DTPA 1h after administration of cerium-144 to mothers reduced penetration of both radionuclides into offsprings in relation to the animals receiving no complex compounds. It was observed that the action of DTPA was stronger than that of EDTA. Passage of ytterbium with milk and across the placenta was greater than the passage of cerium.

  12. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  13. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  14. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  15. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  16. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  17. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  18. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  19. Cerium(III-Selective Membrane Electrode Based on Dibenzo-24-crown-8 as a Neutral Carrier

    Directory of Open Access Journals (Sweden)

    Susheel K. Mittal

    2010-01-01

    Full Text Available Cerium(III-selective membrane electrodes have been prepared using dibenzo-24-crown-8 (DB24C8 as an electroactive material. A membrane having a composition: DB24C8 (4.5%, plasticizer (NPOE, 62.5% and PVC (33% gives the best performance. It works well over a wide Ce(III ion-concentration range of 1x10-5 M to 1x10-1 M with a Nernstian slope of 19.0 mV/decade and a detection limit of 3x10-5 M. It has a fast response time of 20 seconds and has an average lifetime of four months. The internal solution concentration does not have a significant effect on the response of the electrode except for a change in intercept of the calibration curves. The working pH range for Ce(III solutions (1x10-2 M and 1x10-3 M is 3.5-8.0. The proposed sensor shows a good selectivity for cerium(III with respect to alkali, alkaline earth, some transition and rare earth metal ions that are normally present along with cerium in its ores. The proposed sensor was investigated in partially non-aqueous media using acetone, methanol and DMSO mixtures with water. The electrode was further used as an indicator electrode for the potentiometric titration of Ce(III solution against oxalic acid solution.

  20. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  1. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  2. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    . Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  3. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    Science.gov (United States)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-02-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  4. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  5. Mixed mode and sequential oscillations in the cerium-bromate-4-aminophenol photoreaction

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jeffrey G.; Wang Jichang [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2013-09-15

    Cerium was introduced to the bromate-aminophenol photochemical oscillator to implement coupled autocatalytic feedbacks. Mixed mode and sequential oscillations emerged in the studied system, making it one of the few chemical oscillators known to support consecutive bifurcations in a batch system. The complex reaction behavior showed a strong dependence on the intensity of illumination supplied to the system. Removal of illumination during an oscillatory window affected both the frequency and amplitude of the oscillation but did not fully extinguish them, indicating that the cerium-bromate-4-aminophenol oscillator was photosensitive rather than photo-controlled. A moderate light intensity allowed for a slow evolution of the system, which proved to be critical for the emergence of transient complex oscillations. Variation of individual reaction parameters was carried out, which indicated that the development of complex oscillations occur in a narrow region and a phase diagram in the 4-aminophenol and sulfuric acid plane demonstrated this. Simulations provide strong support that transient complex oscillations observed experimentally arise from the coupling of two autocatalytic cycles.

  6. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  7. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    International Nuclear Information System (INIS)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-01-01

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L"−"1 BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si−O−M chemical

  8. Sorption studies of radionuclides on a modified mesoporous cerium(IV) silicate

    International Nuclear Information System (INIS)

    Sepehrian, H.; Tarbiat Moallem University, Tehran; Ghannadi-Maragheh, M.; Yavari, R.; Khanchi, A.R.; Waqif-Husain, S.

    2008-01-01

    Five different samples of a new sorbent, modified mesoporous cerium(IV) silicate have been prepared with various mole ratios of Si/Ce and Cetyltrimethylammonium bromide (CTMABr) as template. XRD, nitrogen sorption, SEM, IR, thermogravimetry and sorption of radionuclides have been studied. Separation of Hg(II)-Th(IV), Hg(II)-Zr(IV) and Rb(I)-Zr(IV) have been developed on columns of this novel sorbent. (author)

  9. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  10. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    Science.gov (United States)

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  11. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  12. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Porz, F.

    1982-10-01

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 1500 0 C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE) [de

  13. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  14. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Tatiana V., E-mail: tatiana.ivanova@lut.fi, E-mail: ivanova.tatyana.v@gmail.com; Toivonen, Jenni; Maydannik, Philipp S.; Kääriäinen, Tommi; Sillanpää, Mika [ASTRaL Team, Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Homola, Tomáš; Cameron, David C. [R& D Centre for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 267/2, 611 37 Brno (Czech Republic)

    2016-05-15

    The particulate soot emission from diesel motors has a severe impact on the environment and people's health. The use of catalytic convertors is one of the ways to minimize the emission and decrease the hazard level. In this paper, the activity of cerium oxide for catalytic combustion of diesel soot was studied. Thin films of cerium dioxide were synthesized by atomic layer deposition using tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium [Ce(thd){sub 4}] and ozone as precursors. The characteristics of the films were studied as a function of deposition conditions within the reaction temperature range of 180–350 °C. Thickness, crystallinity, elemental composition, and morphology of the CeO{sub 2} films deposited on Si (100) were characterized by ellipsometry, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy, respectively. The growth rate of CeO{sub 2} was observed to be 0.30 Å/cycle at temperatures up to 250 °C with a slight increase to 0.37 Å/cycle at 300 °C. The effect of CeO{sub 2} films grown on stainless steel foil supports on soot combustion was measured with annealing tests. Based on the analysis of these, in catalytic applications, CeO{sub 2} has been shown to be effective in lowering the soot combustion temperature from 600 °C for the uncoated substrates to 370 °C for the CeO{sub 2} coated ones. It was found that the higher deposition temperatures had a positive effect on the catalyst performance.

  15. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  16. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  17. Estimation of tribological anticorrosion properties of impregnated nitriding layers

    International Nuclear Information System (INIS)

    Iwanow, J.; Senatorski, J.; Tacikowski, J.

    1999-01-01

    In this paper is described aim, experimental and test result of tribological anticorrosion properties of thin nitriding layer (12.5 μm) obtained on 45 steel grade in controlled gas-nitriding process (570 o C, 4 h) impregnated with oil-based formulations, containing corrosion inhibitor BS-43, modified with tribological additives based on ashen organometallic compounds as well as ash-free organic compounds. It was stated, that tribological additives does not influence, in fact, on behaviour of corrosion resistance of nitriding layers impregnated with oil-base formulations mainly connected with inhibitor BS-43. Synergy of tribological additive and corrosion inhibitor is however more visible in modelling of wear resistance of nitriding layer. The influence nature of tribological additives in combination with corrosion inhibitor BS-43 is dependent on their kind and as result improves or worsens the wear resistance by friction. Hence in choice of impregnated formulation, which is enable to accomplish of tribological anticorrosion requirements, determined, above all, tribological additive. (author)

  18. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  19. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  20. Magnetic and Mössbauer Study of Cerium-Based Reactive Sorbent

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Životský, O.; Luňáček, J.; Janos, P.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1096-1098 ISSN 0587-4246. [CSMAG 2016 - Czech and Slovak Conference on Magnetism /16./. Košice, 13.06.2016-17.06.2016] R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Cerium-based sorbent * magnetic properties * phase composition * composite Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  1. Duplex surface treatment of AISI 1045 steel via plasma nitriding of chromized layer

    International Nuclear Information System (INIS)

    Hakami, F.; Sohi, M. Heydarzadeh; Ghani, J. Rasizadeh

    2011-01-01

    In this work AISI 1045 steel were duplex treated via plasma nitriding of chromized layer. Samples were pack chromized by using a powder mixture consisting of ferrochromium, ammonium chloride and alumina at 1273 K for 5 h. The samples were then plasma-nitrided for 5 h at 803 K and 823 K, in a gas mixture of 75%N 2 + 25%H 2 . The treated specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and Vickers micro-hardness test. The thickness of chromized layer before nitriding was about 8 μm and it was increased after plasma nitriding. According to XRD analysis, the chromized layer was composed of chromium and iron carbides. Plasma nitriding of chromized layer resulted in the formation of chromium and iron nitrides and carbides. The hardness of the duplex layers was significantly higher than the hardness of the base material or chromized layer. The main cause of the large improvement in surface hardness was due to the formation of Cr x N and Fe x N phases in the duplex treated layers. Increasing of nitriding temperature from 803 to 823 K enhanced the formation of CrN in the duplex treated layer and increased the thickness of the nitrided layer.

  2. Mechanical properties of molybdenum-titanium alloys micro-structurally controlled by multi-step internal nitriding

    International Nuclear Information System (INIS)

    Nagae, M.; Yoshio, T.; Takemoto, Y.; Takada, J.; Hiraoka, Y.

    2001-01-01

    Internally nitrided dilute Mo-Ti alloys having a heavily deformed microstructure near the specimen surface were prepared by a novel two-step nitriding process at 1173 to 1773 K in N 2 gas. For the nitrided specimens three-point bend tests were performed at temperatures from 77 to 298 K in order to investigate the effect of microstructure control by internal nitriding on the ductile-to-brittle transition temperature (DBTT) of the alloy Yield strength obtained at 243 K of the specimen maintaining the deformed microstructure by the two-step nitriding was about 1.7 times as much as recrystallized specimen. The specimen subjected to the two-step nitriding was bent more than 90 degree at 243 K, whereas recrystallized specimen was fractured after showing a slight ductility at 243 K. DBTT of the specimen subjected to the two-step nitriding and recrystallized specimen was about 153 K and 203 K, respectively. These results indicate that multi-step internal nitriding is very effective to the improvement in the embrittlement by the recrystallization of molybdenum alloys. (author)

  3. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  4. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  5. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  6. Kinetic parameters of nitridation of molybdenum and niobium alloys with various structure states

    International Nuclear Information System (INIS)

    Solodkin, G.A.; Bulgach, A.A.; Likhacheva, T.E.

    1985-01-01

    Effect of preliminary plastic strain under rolling on kinetic parameters of nitridation of VN-2AEh, VN-3 niobium alloys and molybdenum alloy with hafnium is investigated. Extreme character of dependence of kinetic parameters of nitridation on the degree of reduction under rolling is determined. Preliminary plastic strain at negligible reduction is shown to accelerate growth of the zone of internal nitridation and decelerates growth of the nitride zone. Nitrogen atom removal from the surface to the centre is retarded at the increase of the degree of reduction up to 50% and higher. The degree of deformations is the higher the lower nitridation temperature is

  7. Preparation and characterization of morph-genetic aluminum nitride/carbon composites from filter paper

    International Nuclear Information System (INIS)

    Wang Wei; Xue Tao; Jin Zhihao; Qiao Guanjun

    2008-01-01

    Morph-genetic aluminum nitride/carbon composites with cablelike structure were prepared from filter paper template through the surface sol-gel process and carbothermal nitridation reaction. The resulting materials have a hierarchical structure originating from the morphology of cellulose paper. The aluminum nitride/carbon composites have the core-shell microstructure, the core is graphitic carbon, and the shell is aluminum nitride nanocoating formed by carbothermal nitridation reduction of alumina with the interfacial carbon in nitrogen atmosphere. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscope were employed to characterize the structural morphology and phase compositions of the final products

  8. Facile CO cleavage by a multimetallic CsU2 nitride complex

    International Nuclear Information System (INIS)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella; Kefalidis, Christos E.; Maron, Laurent

    2016-01-01

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU 2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU IV -N-U IV core to yield CsU III (OTf) and [MeN=U V ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  9. Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.

    Science.gov (United States)

    Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  11. Critical fields of niobium nitride films of various granularity

    International Nuclear Information System (INIS)

    Antonova, E.A.; Sukhov, V.A.

    1983-01-01

    The behaviour of lattice parameter, specific electrical resistivity, critical temperature, and temperature dependence of upper critical field near Tsub(cr) of sputtered niobium nitride films is investigated versus the substrate temperature and gas mixture composition in the process of reactive cathode sputtering. The relation between extrapolated value of the upper critical field and granularity of niobium nitride films, close as to composition to the stoichiometric one, has been found. Values of the kappa parameter of the Ginsburg-Landau theory and of the coherence length for niobium nitride films of various granularity are estimated in an approximation of uniform distribution of impurities in a sample

  12. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  13. Extraordinary superconductor with nearly trivalent cerium, CeCu2Si2

    International Nuclear Information System (INIS)

    Ishikawa, M.; Jaccard, D.; Jorda, J.-L.

    1982-01-01

    Concentrating on the ternary phase diagram, the authors have performed a complementary investigation on CeCu 2 Si 2 and confirm that the compound containing nearly trivalent cerium ions is a new type of superconductor with Tsub(c) around 0.5 K. The analyses of the upper critical field curve support the description of the compound by heavy fermion quasiparticles. Other particular features of this compound are also presented. (Auth.)

  14. Some observations concerning the direct titration of nitrite with cerium(IV)

    International Nuclear Information System (INIS)

    Muralikrishna, U.; Subrahmanyam, K.; Suryanarayana, M.V.S.; Krishnamurthy, M.

    1983-01-01

    Direct titration of nitrite with cerium(IV), with ferroin as indicator, is shown to give satisfactory results if the acidity is kept between 0.033 and 0.055 M at the end-point. Loss of nitrous acid owing to volatilization and decomposition is discussed. From 10 to 60 mg of sodium nitrite can be estimated with a standard deviation of 5 μg and an average error of 0.2%. (author)

  15. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  16. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  17. Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas.

    Science.gov (United States)

    Wang, Lulu; Zhao, Yongchun; Zhang, Junying

    2017-10-01

    Photocatalytic oxidation is an attractive method for Hg-rich flue gas treatment. In the present study, a novel cerium-based TiO 2 nanofibers was prepared and selected as the catalyst to remove mercury in flue gas. Accordingly, physical/chemical properties of those nanofibers were clarified. The effects of some important parameters, such as calcination temperature, cerium dopant content and different illumination conditions on the removal of Hg 0 using the photocatalysis process were investigated. In addition, the removal mechanism of Hg 0 over cerium-based TiO 2 nanofibers focused on UV irradiation was proposed. The results show that catalyst which was calcined at 400 °C exhibited better performance. The addition of 0.3 wt% Ce into TiO 2 led to the highest removal efficiency at 91% under UV irradiation. As-prepared samples showed promising stability for long-term use in the test. However, the photoluminescence intensity of nanofibers incorporating ceria was significantly lower than TiO 2 , which was attributed to better photoelectron-hole separation. Although UV and O 2 are essential factors, the enhancement of Hg 0 removal is more obviously related to the participation of catalyst. The coexistence of Ce 3+ and Ce 4+ , which leads to the efficient oxidation of Hg 0 , was detected on samples. Hg 2+ is the final product in the reaction of Hg 0 removal. As a consequence, the emissions of Hg 0 from flue gas can be significantly suppressed. These indicate that combining photocatalysis technology with cerium-based TiO 2 nanofibers is a promising strategy for reducing Hg 0 efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  19. Altering properties of cerium oxide thin films by Rh doping

    International Nuclear Information System (INIS)

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír

    2015-01-01

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO x thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO x thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce 4+ and Ce 3+ and rhodium occurs in two oxidation states, Rh 3+ and Rh n+ . We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO x thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO x thin films leads to preparing materials with different properties

  20. High temperature mechanical performance of a hot isostatically pressed silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others

    1996-01-01

    Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

  1. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    Science.gov (United States)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  2. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  3. Plasma-nitriding assisted micro-texturing into stainless steel molds

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Micro-texturing has grown up to be one of the most promising procedures. This related application required for large-area, fine micro-texturing onto the stainless steel mold materials. A new method other than laser-machining, micro-milling or micro-EDM was awaited for further advancement of this micro-texturing. In the present paper, a plasma nitriding assisted micro-texturing was developed to make various kinds of micro-patterns onto the martensitic stainless steels. First, original patterns were printed onto the surface of substrate by using the ink-jet printer. Then, the masked substrate was subjected to high density plasma nitriding; the un-masked surfaces were nitrided to have higher hardness. This nitrided substrate was further treated by sand-blasting to selectively dig the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel substrate was fabricated as a mold to duplicate these micro-patterns onto the work materials. The spatial resolution and depth profile controllability of this plasma nitriding assisted micro-texturing was investigated for variety of initial micro-patterns. The original size and dimension of initial micro-patterns were precisely compared with the three dimensional geometry of micro-textures after blasting treatment. The plastic cover case for smart cellular phones was employed to demonstrate how useful this processing is in practice.

  4. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  5. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1991-01-01

    In this paper, the conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design is performed. As a first step, an intensive literature survey is completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins is designed and analyzed using the SIEX computer code. The analysis predicts that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors

  6. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs

  7. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  8. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  9. Micromagnetic simulation of the influence of grain boundary on cerium substituted Nd-Fe-B magnets

    Directory of Open Access Journals (Sweden)

    D. Liu

    2017-05-01

    Full Text Available A three-dimensional finite element model was performed to study the magnetization reversal of (CexNd1-x2Fe14B nanocomposite permanent magnets. The influences of volume fraction, width and performance parameters of the grain boundary (GB composition on the coercivity were analyzed by the method of micromagnetic simulation. The calculation results indicate that the structure and chemistry of GB phase play important roles in Nd2Fe14B-based magnets. An abnormal increase in the value of coercivity is found to be connected with the GB phase, approximately when the percentage of doped cerium is between 20% and 30%. While the coercivity decreases directly with the increase in cerium content instead of being abnormal when there is no GB phase in magnets at all or the value of magnetocrystalline anisotropy or exchange integral is too large.

  10. Corrosion of Zn5Al and Zn55Al alloys with cerium, praseodymium and neodymium

    International Nuclear Information System (INIS)

    Alikhanova, S.D.

    2017-01-01

    The present work is devoted to corrosion of Zn5Al and Zn55Al alloys with cerium, praseodymium and neodymium. The purpose of present work is elaboration of optimal composition of zinc-aluminium alloys Zn5Al and Zn55Al alloyed by rare-earth metals of cerium subgroup which are used as anode covers for protection of steel from corrosion. Therefore, the regularities of change of corrosion-electrochemical properties in various corrosive mediums have been determined; processes mechanisms of high temperature oxidation of alloys in solid state have been studied; in the products of alloys oxidation their phase components have been defined and their role in the corrosion process have been revealed; the optimal compositions of zinc-aluminium alloys alloyed by rare earth metals, which are protected by two patents of the Republic of Tajikistan have been elaborated.

  11. Protective effects of Curcuma longa against neurobehavioral and neurochemical damage caused by cerium chloride in mice.

    Science.gov (United States)

    Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah

    2018-05-07

    Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.

  12. The study of interaction of lanthanum-, cerium- and neodymium chlorides with sodium borohydride in pyridine- and tetrahydrofuran medium

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Rotenberg, T.G.; Dymova, T.N.

    1976-01-01

    Bis-tetrahydrofurans of lanthanum and neodymium borohydrides and bis-pyridinates of lanthanum, cerium and neodymium borohydrides were obtained by interacting sodium borohydride with lanthanum-, cerium and neodymium chlorides in pyridine and tetrahydrofuran media. All operations involving reagent combination, sampling and phase separation are performed in inert atmosphere using argonvacuum equipment. The reaction in pyridine was virtually instantaneous and accompanied by flocculanet precipitation. The interaction of lanthanum chloride and neodymium chloride with sodium borohydride in tetrahydrofuran (THF) was a slow (23-30 hr) heterophase process. The interaction rate was affected by size reduction of the intial substances, temperature, reagent proportion and mixing rate. The reaction time was twice reduced with boiling tetrahydrofuran

  13. Effects of Ion-Nitriding on the Pitting Behavior of Austenitic Stainless Steels Containing Mo

    International Nuclear Information System (INIS)

    Cho, Yong Seok; Choe, Han Cheol; Kim, Kwan Hyu

    1994-01-01

    Austenitic stainless steels(ASS) containing 1-4wt% Mo were ion-nitrided at 550 .deg. C for 20hrs and 30hrs, and their pitting behavior was examined by the electrochemical measurements. The formation of multiphase surface layers composed of the ε-{(Fe, Cr) 2- 3N} and the γ'-{(Fe, Cr) 4 N} phases was observed after ion-nitriding. The compound layers were approximately 50 μm thick after nitriding for 20hrs and 70 μm thick after 30hrs. Anodic polarization curves indicated that passive current density(I p ) and critical current density(I c ) increased, and corrosion potential(E corr ) decreased as a results of ion-nitriding. As the Mo content in the ion-nitrided ASS increased, passivation breakdown potential(E b ) and repassivation potential(E r ) increased, whereas I c and I p decreased. The pit nucleation time of the ASS nitrided for 20hrs was 10 minutes, while that of the 30hr nitrided samples was 3 minutes. The nucleation and growth of pits were significantly increased with the decreasing of Mo content as well as the increasing of ion-nitriding time

  14. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  15. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    Directory of Open Access Journals (Sweden)

    Adão Felipe Oliveira Skonieski

    2013-01-01

    Full Text Available Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscopy, microhardness test, X-ray diffraction and GDOES. The results showed that there are significant microstructural and morphological differences on the formed layers depending on the quantity of nitrogen and methane added to the plasma nitriding atmosphere. Thicknesses of 10, 5 and 2.5 µm were obtained when the nitrogen content of the gas mixtures were varied. The possibility to obtain a compound layer formed mainly by γ'-Fe4N nitrides was also shown. For all studied plasma nitriding conditions, the presence of a compound layer was recognized as being the responsible to hinder the decarburization on the steel surface. The highest value of surface hardness - 1277HV - were measured in the sample which were nitrided with 3vol.% of CH4.

  16. Synthesis and Characterization of Hybrid Silica-Zirconia Coatings with Cerium Inhibitor on Aluminum 6061

    Directory of Open Access Journals (Sweden)

    M. Bahrami

    2016-12-01

    Full Text Available Organic–inorganic hybrid coatings were prepared by sol–gel method and deposited on aluminum alloy 6061. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR spectroscopy and Scanning Electron Microscopy (SEM were used for structural study of the hybrid coatings. Adhesive strength of sol–gel coatings to the substrate was evaluated quantitatively and qualitatively. Corrosion behavior of the samples was studied by cyclic potentiodynamic and linear polarization tests. Results showed that adhesion strength of the coatings to the substrates was increased with increasing tetrapropoxide of zirconium (TPOZ and cerium content. Corrosion tests showed that corrosion current density of coated samples were decreased three to seven orders of magnitude in comparison with uncoated aluminum alloy 6061. Decreasing in corrosion current density and increasing in polarization resistance was observed by increasing zirconia and cerium content. Unlike the uncoated aluminum alloy 6061, the crack-free coatings did not show pitting tendency. 

  17. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Suegama, P.H. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Sarmento, V.H.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); Montemor, M.F. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Benedetti, A.V. [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil); de Melo, H.G.; Aoki, I.V. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, CP 61548, 05424-970 Sao Paulo, SP (Brazil); Santilli, C.V., E-mail: santilli@iq.unesp.b [Departamento Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2010-07-15

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  18. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly(methyl methacrylate) based film applied on tin coated steel

    International Nuclear Information System (INIS)

    Suegama, P.H.; Sarmento, V.H.V.; Montemor, M.F.; Benedetti, A.V.; de Melo, H.G.; Aoki, I.V.; Santilli, C.V.

    2010-01-01

    This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film.

  19. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  20. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  1. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  2. Effect of gas pressure on active screen plasma nitriding response

    International Nuclear Information System (INIS)

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  3. Friction and Wear of Unlubricated NiTiHf with Nitriding Surface Treatments

    Science.gov (United States)

    Stanford, Malcolm K.

    2018-01-01

    The unlubricated friction and wear properties of the superelastic materials NiTi and NiTiHf, treated by either gas nitriding or plasma nitriding, have been investigated. Pin on disk testing of the studied materials was performed at sliding speeds from 0.01 to 1m/s at normal loads of 1, 5 or 10N. For all of the studied friction pairs (NiTiHf pins vs. NiTi and NiTiHf disks) over the given parameters, the steady-state coefficients of friction varied from 0.22 to 1.6. Pin wear factors ranged from approximately 1E-6 against the NiTiHf and plasma nitrided disks to approximately 1E-4 for the gas nitrided disks. The plasma nitrided disks provided wear protection in several cases and tended to wear by adhesion. The gas nitrided treatment generated the most pin wear but had essentially no disk wear except at the most severe of the studied conditions (1N load and 1m/s sliding speed). The results of this study are expected to provide guidance for design of components such as gears and fasteners.

  4. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  5. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee; Zhao, Chao; Priante, Davide; Ooi, Boon S.; Hussein, Mohamed Ebaid Abdrabou

    2018-01-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  6. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee

    2018-02-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  7. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  8. Nitride passivation of the interface between high-k dielectrics and SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Sardashti, Kasra [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (United States); Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093-0411 (United States); Hu, Kai-Ting [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093-0411 (United States); Tang, Kechao; McIntyre, Paul [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Madisetti, Shailesh; Oktyabrsky, Serge [Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12222 (United States); Siddiqui, Shariq; Sahu, Bhagawan [TD Research, GLOBALFOUNDRIES US, Inc., Albany, New York 12203 (United States); Yoshida, Naomi; Kachian, Jessica; Dong, Lin [Applied Materials, Inc., Santa Clara, California 95054 (United States); Fruhberger, Bernd [California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, California 92093-0436 (United States); Kummel, Andrew C., E-mail: akummel@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (United States)

    2016-01-04

    In-situ direct ammonia (NH{sub 3}) plasma nitridation has been used to passivate the Al{sub 2}O{sub 3}/SiGe interfaces with Si nitride and oxynitride. X-ray photoelectron spectroscopy of the buried Al{sub 2}O{sub 3}/SiGe interface shows that NH{sub 3} plasma pre-treatment should be performed at high temperatures (300 °C) to fully prevent Ge nitride and oxynitride formation at the interface and Ge out-diffusion into the oxide. C-V and I-V spectroscopy results show a lower density of interface traps and smaller gate leakage for samples with plasma nitridation at 300 °C.

  9. Tribological and microstructural characteristics of ion-nitrided steels

    Science.gov (United States)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 3034 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided. Previously announced in STAR as N83-24635

  10. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  11. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  12. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  13. Study on recovering directly the commercial cerium oxide and total of residue rare earths from Dongpao bastnasite concentrate

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Nguyen Thanh Chung; Luu Xuan Dinh

    2003-01-01

    A technology for decomposition roasting and sequential leaching processes of Dong Pao bastnasite concentrate to recover directly commercial cerium oxide and total of residue rare earth elements from the leaching solution of the roasted product have been investigated. The bastnasite concentrate is initially roasted at temperature range of 600 - 650 degC and for time of 4 hrs in order to decompose and convert the hardly soluble carbonate forms of ore into easily soluble oxide. The roasted solid is then leached with sulfuric acid solution of 6N at 60 degC for 4 hrs to convert rare earths in oxide and fluoride form into rare earth sulfate. The recovery yield of rare earths of these stages is more than 95%. The attention has especially been paid on recovering directly the commercial cerium oxide and total of residue rare earth element from the above leaching solution. Complex ions of CeSO 4 2+ , Ce(SO 4 ) 2 , Ce(SO 4 ) 3 2- and Ce(SO 4 ) 4 4- exist in aqueous solution of cerium (IV) sulfate. Based on the property, the method of ion - sieve with DOWEX cation resin column has been applied to estimating separation of the ceric complex anions from Ln(III). The survey showed that most of the ceric complex anions are separated from total of residue rare earths. The latter which are absorbed in the cation column are recovered by elution of HCl of 4N. The recovery yield of cerium can only be reached 20% but the purity of that is very high, can be reached 99.6%. About 5 kg of CeO 2 of high grade and 5 kg of TREO of commercial specification have been produced. (author)

  14. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  15. Nitrogen ion induced nitridation of Si(111) surface: Energy and fluence dependence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Kumar, Mahesh [Physics and Energy Harvesting Group, National Physical Laboratory, New Delhi 110012 (India); Nötzel, R. [ISOM, Universidad Politecnia de Madrid, 28040 (Spain); Shivaprasad, S.M., E-mail: smsprasad@jncasr.ac.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2014-06-01

    We present the surface modification of Si(111) into silicon nitride by exposure to energetic N{sub 2}{sup +} ions. In-situ UHV experiments have been performed to optimize the energy and fluence of the N{sub 2}{sup +} ions to form silicon nitride at room temperature (RT) and characterized in-situ by X-ray photoelectron spectroscopy. We have used N{sub 2}{sup +} ion beams in the energy range of 0.2–5.0 keV of different fluence to induce surface reactions, which lead to the formation of Si{sub x}N{sub y} on the Si(111) surface. The XPS core level spectra of Si(2p) and N(1s) have been deconvoluted into different oxidation states to extract qualitative information, while survey scans have been used for quantifying of the silicon nitride formation, valence band spectra show that as the N{sub 2}{sup +} ion fluence increases, there is an increase in the band gap. The secondary electron emission spectra region of photoemission is used to evaluate the change in the work function during the nitridation process. The results show that surface nitridation initially increases rapidly with ion fluence and then saturates. - Highlights: • A systematic study for the formation of silicon nitride on Si(111). • Investigation of optimal energy and fluence for energetic N{sub 2}{sup +} ions. • Silicon nitride formation at room temperature on Si(111)

  16. Cerium(III) pivalate [Ce(Piv)3(HPiv)3]2: synthesis, crystal structure, and thermal stability

    International Nuclear Information System (INIS)

    Khudyakov, M.Yu.; Kuz'mina, N.P.; Pisarevskij, A.P.; Martynenko, L.I.

    2002-01-01

    Complex [Ce(Piv) 3 (HPiv) 3 ] 2 was prepared by precipitation of cerium(III) nitrate aqueous solution with salt NH 4 (Piv) (HPiv = pivalic acid) and subsequent recrystallization from 5% HPiv solution in hexane. According to data of X-ray diffraction analysis and IR spectroscopy crystal structure of the complex is built of centrally symmetric dimers, in which cerium atoms are bound by four bridge pivalate ligands. Thermal analysis suggests that heating of the complex in nitrogen atmosphere results first in splitting off six HPiv molecules in the range of 90-190 deg C and then in thermolysis of Ce(Piv) 3 formed at 290-450 deg C. Sublimation of Ce(Piv) 3 occurs in the range of 290-350 deg C along with thermolysis during heating in vacuum (0.01 mm Hg), which permits preparing CeO 2 films by the method of chemical precipitation from gaseous phase [ru

  17. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  18. Effect of component's geometry on the plasma nitriding behavior of AISI 4340 steel

    International Nuclear Information System (INIS)

    Asadi, Z. Soltani; Mahboubi, F.

    2012-01-01

    Highlights: → The thickness of the compound layer increases with increasing in temperature and groove width. → Surface layer at the remote regions from the edge is thinner than that of closer regions. → The hardness and the case depth of the nitrided layer increase with increasing the width of the groove. → Intensity of ε phase increases with increasing the width of the groove in both methods. → The ASPN specimens are covered by hexagonal particles and for the CPN by cauliflower shape nitrides. -- Abstract: The main aim of this work was to investigate the effect of the sample geometry on properties of the conventional plasma nitrided (CPN) and active screen plasma nitrided (ASPN) steel. Sample assemblies consisting of rectangular grooved steel blocks with different groove dimensions of 2, 4, 6, 8 and 10 (W) x 40 (H) x 20 (L) mm 3 and AISI 4340 steel plates (substrates) with dimensions of 10 x 40 x 60 mm 3 , to serve as groove cover, were prepared. The sample assemblies were conventional and active screen plasma nitrided under the gas mixture of 75%N 2 + 25%H 2 , at temperatures of 500 o C and 540 o C, pressure of 4 torr, for 5 h. Properties of the nitrided substrates were investigated by evaluating compound layer thickness, case depth, phase composition and hardness profile. Results of the experiments showed that the thickness of the compound layer, hardness and nitrided case depth increased with increasing the width of the groove for both methods. Also, in each sample, nitrogen atoms penetrated more deeply in the regions of the groove closer to the edge. Hallow cathode effect occurred at the sample with 2 mm width groove, in the CPN method, leading to the overheating of the sample. In ASPN, the hardness and the nitrided case depth are lower in comparison with CPN. The surface morphology of the CPN treated samples consists of cauliflower shape surface nitrides while the surface of the AS plasma nitrided samples are covered by the hexagonal particles with

  19. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  20. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel

    Science.gov (United States)

    Mora, M.; Vera, E.; Aperador, W.

    2016-02-01

    In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers.

  1. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel

    International Nuclear Information System (INIS)

    Mora, M; Vera, E; Aperador, W

    2016-01-01

    In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers. (paper)

  2. Facile CO cleavage by a multimetallic CsU{sub 2} nitride complex

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, Marta; Scopelliti, Rosario; Mazzanti, Marinella [Ecole Polytechnique de Federale de Lausanne (EPFL) (Switzerland). Inst. des Sciences et Ingenierie Chimiques; Kefalidis, Christos E.; Maron, Laurent [Toulouse Univ. (France). LPCNO, CNRS et INSA, UPS

    2016-09-26

    Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU{sub 2}(μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU{sup IV}-N-U{sup IV} core to yield CsU{sup III}(OTf) and [MeN=U{sup V}] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

  3. Optimization of time–temperature schedule for nitridation of silicon ...

    Indian Academy of Sciences (India)

    pact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C,. 1300°C, 1350°C and 1400°C). ... Reaction sintered silicon nitride; nitridation; reaction kinetics. 1. Introduction. Formation of ..... cation of silica layer resulted in active oxidation of silicon at high temperature to ...

  4. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  5. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  6. Wear behaviour of nitrogen-implanted and nitrided Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Martinella, R.; Giovanardi, S.; Chevallard, G.; Villani, M.; Molinari, A.; Tosello, C.

    1985-01-01

    The comparison between the wear behaviour of nitrogen-implanted Ti-6Al-4V alloy and that of nitrided Ti-6Al-4V alloy is reported. Both treatments were carried out at temperatures from 573 to 973 K on lapped surfaces; in order to compare roughness effects, nitriding was also carried out on rougher samples. An improvement in wear resistance for lapped surfaces was noted after implantation at 573 K or higher temperatures and after nitriding at temperatures over 773 K only; however, at 873 K, nitriding was more effective than implantation. Rough nitrided surfaces showed better wear resistance than lapped nitrided surfaces or lapped implanted surfaces. Most probably the improvement in wear resistance on implanted samples is due to a reduction in friction induced by chemical modification of the surface as a result of oxide and TiN. Scanning electron microscopy observations which show subsurface voids and coalescence are in good agreement with a wear model previously reported. As implantation preserves the surface finish, a possible application is suggested. (Auth.)

  7. Crystallo-chemistry of actinide nitrides (U1-yPuy)N and effect of impurities

    International Nuclear Information System (INIS)

    Beauvy, M.; Coulon-Picard, E.; Pelletier, M.

    2004-01-01

    Investigations on actinide nitrides has been done in our Laboratories for Fast Breeder Reactors since the seventies and some properties are reported to show the interest for these fuels. Today, the actinide nitrides are reconsidered as possible fuels for the future fission reactors (GFR and LMFR selected by the international forum Generation IV). The results of new investigations on crystal structure of mixed mono-nitrides (U,Pu)N, and the effects of oxygen and carbon contaminations on this structure are presented. The cubic 'NaCl-fcc' type structure of actinide nitrides AnN with space group O5/h-Fm3m does not respect the 'Vegard law' model for the mixed nitrides (U 1-y Pu y )N. These nitrides are usually considered with strong metallic character associated with partial ionic bonding, but the ionic contribution in the An-N bonding determined in this work is very important and near 41.6% for UN and PuN. From results published on resistivity of mixed nitrides, the data on bonding must be also modified for partial covalence. This is in good agreement with the experimental lattice parameters which are not compatible with dominant metallic bonding. The numbers of bonding electrons in the nitrides (U 1-y Pu y )N are reevaluated and the low values proposed comparatively with those previously published confirm the strong ionic character with high concentration of An 3+ ions. The solubility of oxygen and carbon in actinide nitrides (U 1-y Pu y )N are discussed from measurements on volume concentration of actinide oxide phase, total oxygen and carbon contents, and lattice parameter of nitrides. The oxygen solubility limit in UN is near 1000 ppm, with a lightly higher value of 1200 ppm for the mixed nitride (U 0.8 Pu 0.2 )N. The effects of oxygen or carbon atoms in the lattice of (U 1-y Pu y )N are analysed

  8. Cerium(terbium, erbium)chloride-choline chloride aqueous systems

    International Nuclear Information System (INIS)

    Gajfutdinova, R.K.; Zhuravlev, E.F.; Bikbaeva, G.G.; Domrachev, V.N.; Vanskova, G.I.

    1985-01-01

    To clarify the effect of rare earth nature on mutual solubility of rare earth salts and amines the solubility of solid phases in the systems, consisting of choline chloride, water and cerium, terbium, erbium chlorides, has been studied. It is established, that solubility isotherms of all the systems, testify to the formation of new solid phases of the composition: Ce(Tb, Er)xCl 3 x2C 5 H 14 ONClx3H 2 O. Individuality of new solid phases is proved by DTA method, the composition is confirmed by chemical analysis and data of PMR spectra, for choline chloride and its complexes with rare earth chlorides of the given composition PMR and IR spectra are studied

  9. Process for producing ceramic nitrides anc carbonitrides and their precursors

    Science.gov (United States)

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  10. III-nitride semiconductors and their modern devices

    CERN Document Server

    2013-01-01

    This book is dedicated to GaN and its alloys AlGaInN (III-V nitrides), semiconductors with intrinsic properties well suited for visible and UV light emission and electronic devices working at high temperature, high frequency, and harsh environments. There has been a rapid growth in the industrial activity relating to GaN, with GaN now ranking at the second position (after Si) among all semiconductors. This is mainly thanks to LEDs, but also to the emergence of lasers and high power and high frequency electronics. GaN-related research activities are also diversifying, ranging from advanced optical sources and single electron devices to physical, chemical, and biological sensors, optical detectors, and energy converters. All recent developments of nitrides and of their technology are gathered here in a single volume, with chapters written by world leaders in the field. This third book of the series edited by B. Gil is complementary to the preceding two, and is expected to offer a modern vision of nitrides and...

  11. Cerium(III) molybdate nanoparticles: Synthesis, characterization and radionuclides adsorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Taher, E-mail: Taher_yosefy@yahoo.com [NFCRS, Nuclear Science and Technology Institute, Kargher Ave, Tehran (Iran, Islamic Republic of); Tarbiat Moallem University, Mofatteh Ave, Tehran (Iran, Islamic Republic of); Khanchi, Ali Reza; Ahmadi, Seyed Javad [NFCRS, Nuclear Science and Technology Institute, Kargher Ave, Tehran (Iran, Islamic Republic of); Rofouei, Mohamad Kazem [Tarbiat Moallem University, Mofatteh Ave, Tehran (Iran, Islamic Republic of); Yavari, Ramin; Davarkhah, Reza; Myanji, Behzad [NFCRS, Nuclear Science and Technology Institute, Kargher Ave, Tehran (Iran, Islamic Republic of)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new inorganic nanoparticles with average size about 40 nm were synthesized by chemical method. Black-Right-Pointing-Pointer The morphology studies reveal existing nanowires among dense nanoparticles. Black-Right-Pointing-Pointer Investigation shows it has high stability in rough media and high affinity for Cs(I), U(VI), and Th(IV). Black-Right-Pointing-Pointer It was used for adsorption of radionuclides and removal of {sup 134}Cs from real sample. Black-Right-Pointing-Pointer These findings are important for evaluating human and environmental risk assessment. - Abstract: Cerium(III) molybdate nanostructure with average size about 40 nm was prepared by adding cerium(III) chloride and ammonium molybdate solutions under varying conditions. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and Brunauere Emmette Teller (BET) techniques. Ion exchange capacity of the sample for potassium ion and distribution coefficients (K{sub d}) for 23 metal ions were determined, the K{sub d} values for Tl(I), Pb(II), Th(IV), U(VI), and Cs(I) ions were found to be sufficiently high for their removal from various effluents. The adsorption behavior of the sample towards Cs(I){sub 134} species were studied. Finally, the binary separation of Dy(III)-U(VI), Sm(III)-Th(IV) and Cs(I)-Rb(I) and removal of Cs(I){sub 134} from the real sample were successfully achieved.

  12. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  13. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  14. Synthesis of nitrided MoO{sub 2} and its application as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kier.re.kr [New and Renewable Energy Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Jung, Kyu-Nam; Jin, Chang Soo; Shin, Kyung-Hee [New and Renewable Energy Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Synthesis of nitrided molybdenum oxide by nitridation. Black-Right-Pointing-Pointer Superior cyclability for nitrided molybdenum oxide anodes. Black-Right-Pointing-Pointer Electrochemical reaction behavior of nitrided molybdenum oxide with lithium. - Abstract: Nitrided MoO{sub 2} has been synthesized by hydrothermal processing followed by post-nitridation with NH{sub 3} and investigated as alternative anode materials for rechargeable lithium batteries. Characterization data reveal the presence of molybdenum nitride ({gamma}-Mo{sub 2}N and {delta}-MoN) and molybdenum oxynitride (MoO{sub x}N{sub y}). The nitrided MoO{sub 2} exhibits a capacity of >420 mAh/g after 100 cycles and good rate capability. The improved electrochemical performance of the nitrided MoO{sub 2} compared to that of molybdenum oxide (MoO{sub 2}) is attributed to high electrical conductivity provided by nitrogen doping/or substitution in the oxygen octahedral site of MoO{sub 2} structure.

  15. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  16. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  17. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  18. Low-temperature plasma nitriding of sintered PIM 316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Aecio Fernando; Scheuer, Cristiano Jose; Joanidis, Ioanis Labhardt; Cardoso, Rodrigo Perito; Mafra, Marcio; Klein, Aloisio Nelmo; Brunatto, Silvio Francisco, E-mail: brunatto@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida pro Plasma e Metalurgia do Po

    2014-08-15

    This work reports experimental results on sintered PIM 316L stainless steel low-temperature plasma nitriding. The effect of treatment temperature and time on process kinetics, microstructure and surface characteristics of the nitrided samples were investigated. Nitriding was carried out at temperatures of 350, 380, 410 and 440 °C , and times of 4, 8 and 16 h, using a gas mixture composed by 60% N2 + 20% H2 + 20% Ar, at a gas flow rate of 5.00 X 10{sup 6} Nm{sup 3-1}, and a pressure of 800 Pa. The treated samples were characterized by scanning electron microscopy, X-ray diffractometry and microhardness measurements. Results indicate that low-temperature plasma nitriding is a diffusion controlled process. The calculated activation energy for nitrided layer growth was 111.4 kJmol{sup -1}. Apparently precipitation-free layers were produced in this study. It was also observed that the higher the treatment temperature and time the higher is the obtained surface hardness. Hardness up to 1343 HV{sub 0.025} was verified for samples nitrided at 440 °C. Finally, the characterization of the treated surface indicates the formation of cracks, which were observed in regions adjacent to the original pores after the treatment. (author)

  19. Defect states and room temperature ferromagnetism in cerium oxide nanopowders prepared by decomposition of Ce-propionate

    DEFF Research Database (Denmark)

    Mihalache, V.; Grivel, J. C.; Secu, M.

    2018-01-01

    . An improvement of ferromagnetism and intensity of defect-related PL emission was observed when annealing the products in which nanocrystalline cerium oxide coexists with Ce - oxicarbonate traces, Ce2O2CO3. The experimental results were explained based on the following considerations: room temperature......Four batches of cerium oxide powders (with nanocrystallite size of 6.9 nm–572 nm) were prepared from four precursor nanopowders by thermal decomposition of Ce-propionate and annealing in air between 250 °C–1200 °C for 10 min–240 min. Ceria formation reactions, structure, vibrational, luminescence...... and magnetic properties were investigated by differential scanning calorimetry, x-ray diffraction, electron microscopy, infrared spectroscopy, photoluminescence and SQUID. All the samples exhibit room temperature ferromagnetism, RTFM, (with coercivity, Hc, of 8 Oe - 121 Oe and saturation magnetization, Ms...

  20. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.