WorldWideScience

Sample records for cerium hydrides

  1. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  2. Cerium-Hydride Secondary Building Units in a Porous Metal–Organic Framework for Catalytic Hydroboration and Hydrophosphination

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Pengfei; Sawano, Takahiro; Lin, Zekai; Urban, Ania; Boures, Dean; Lin, Wenbin

    2016-11-16

    We report the stepwise, quantitative transformation of CeIV6(μ3-O)4(μ3-OH)4(OH)6(OH2)6 nodes in a new Ce-BTC (BTC = trimesic acid) metal–organic framework (MOF) into the first CeIII6(μ3-O)4(μ3-OLi)4(H)6(THF)6Li6 metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis.

  3. Cerium-Hydride Secondary Building Units in a Porous Metal-Organic Framework for Catalytic Hydroboration and Hydrophosphination.

    Science.gov (United States)

    Ji, Pengfei; Sawano, Takahiro; Lin, Zekai; Urban, Ania; Boures, Dean; Lin, Wenbin

    2016-11-16

    We report the stepwise, quantitative transformation of Ce(IV)6(μ3-O)4(μ3-OH)4(OH)6(OH2)6 nodes in a new Ce-BTC (BTC = trimesic acid) metal-organic framework (MOF) into the first Ce(III)6(μ3-O)4(μ3-OLi)4(H)6(THF)6Li6 metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis.

  4. Influence of partial substitution of cerium for lanthanum on magnetocaloric properties of La1-xCexFe11.44Si1.56 and their hydrides

    Institute of Scientific and Technical Information of China (English)

    慕利娟; 黄焦宏; 张文佳; 刘翠兰; 王高峰; 赵增祺

    2014-01-01

    The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy (x=0, 0.1, 0.2, 0.3, 0.4) were investigated. The samples crystallized mainly in the cubic NaZn13-type structure with a small amount ofα-Fe phase as impurity. The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content. For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56. The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie tem-perature TC under a low magnetic field change of 1.5 T. The value of–ΔSm increased and then decreased with increasing Ce con-tent, reached the maximum, 26.07 J/kg·K for x=0.3. TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content. The first-order metamagnetic transi-tion was still kept in the hydrides and the maximum values of–ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kgK under a magnetic field change of 1.5 T. The values of–ΔSm were nearly inde-pendent of the Ce content and did not increase with increasing x for the hydrides. The La1–xCexFe11.44Si1.56Hy (x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K. These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.

  5. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  6. Boron Hydrides

    Science.gov (United States)

    1946-07-01

    of direct interest could be b.P.4d. ’Thus the discovory of a now proj.ect, since silano is probably too readily infla-zmablo for practical usc’ this...devoted, ho specc4fie compounds vhitih a’-ould be tocdte at prescnt arc: nron tiy * silano , %;2.SiFi3 , diothyl sila~no, (C2 115 )2 Si112, mono r.-rop; ! (n...Bcrohydrido or Li h.... I .A-4A- The prepuation of Silano med of Stannane by the interaction or lithium aluzirun hydride v-ithl silicon tetrtchiorido and

  7. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-01-01

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  8. Advanced Hydride Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T.

    1989-12-31

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  9. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  10. Synthesis of ruthenium hydride

    Science.gov (United States)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  11. Hysteresis in Metal Hydrides.

    Science.gov (United States)

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  12. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  13. Mechanochemical synthesis of cerium orthophosphate

    Institute of Scientific and Technical Information of China (English)

    A.Matraszek; I.Szczygiei; L.Macalik; J.Hanuza

    2009-01-01

    A facile,simple and rapid preparation method of cerium orthophosphate was presented.The synthesis of low-crystalline CePO4 occurred upon mixing of cerium (Ⅲ) nitrate and sodium phosphate,and was an exchange-type reaction.The phase composition of the obtained powder was checked by the XRD and FTIR methods,indicating the presence of cerium phosphate.Further investigations on thermal behavior of the synthesized cerium salt had shown that the obtained onhophosphate crystallized at first in rhabdophane-type structure.It convetted to monazite (monoclinic symmetry) during heating at the temperatures of above 600 ℃.Oxidation of Ce3+ to Ce4+ was avoided during the syntheses,as confirmed by the XPS experiments.

  14. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  15. Lightweight hydride storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  16. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    Science.gov (United States)

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  17. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  18. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  19. First principles study of structural, electronic, elastic and magnetic properties of cerium and praseodymium hydrogen system REHx (RE:Ce, Pr andx=2, 3)

    Institute of Scientific and Technical Information of China (English)

    G Sudha Priyanga; R Rajeswarapalanichamy; K Iyakutti

    2015-01-01

    The structural, electronic, elastic and magnetic properties of cerium, praseodymium and their hydrides REHx (RE=Ce, Pr andx=2, 3) were investigated by the first principles calculations based on density functional theory using the Viennaab-initio simula-tion package. At zero pressure all the hydrides were stable in the ferromagnetic state. The calculated lattice parameters were in good agreement with the experimental results. The bulk modulus decreased with the increase in the hydrogen content for these hydrides. The electronic structure revealed that di-hydrides were metallic whereas trihydrides were half metallic at zero pressure. A pres-sure-induced structural phase transition from cubic to hexagonal phase was predicted in these hydrides. The computed elastic con-stants indicated that these hydrides were mechanically stable at zero pressure. The calculated Debye temperature values were in good agreement with experimental and other theoretical results. A half metallic to metallic transition was also observed in REH3under high pressure. Ferromagnetism was quenched in these hydrides at high pressures.

  20. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp) 3 scarcely dissolves

  1. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  2. Hydride development for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C. [Sandia National Lab., Livermore, CA (United States); Sandrock, G. [SunaTech, Inc., Ringwood, NJ (United States)

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  3. Metal hydride air conditioner

    Institute of Scientific and Technical Information of China (English)

    YANG; Ke; DU; Ping; LU; Man-qi

    2005-01-01

    The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi4.4 Mn0.26 Al0.34 / La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1, LaNi4.61Mn0. 26 Al0.13/La0.6 Nd0.4 Ni4.8 Mn0.2 Cu0. 1 and LaNi4.61 Mn0.26 Al0.13/La0.6 Y0.4 Ni4.8 Mn0. 2, were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small conditioning system was established by using LaNi4.61 Mn0.26 Al0. 13/La0.6 Y0.4 Ni4.8 Mn0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and Wnet =0.09 kW/kg.

  4. Geoneutrino and Hydridic Earth model

    CERN Document Server

    Bezrukov, Leonid

    2013-01-01

    Uranium, Thorium and Potassium-40 abundances in the Earth were calculated in the frame of Hydridic Earth model. Terrestrial heat producton from U, Th and K40 decays was calculated also. We must admit the existance of Earth expansion process to understand the obtained large value of terrestrial heat producton. The geoneutrino detector with volume more than 5 kT (LENA type) must be constructed to definitely separate between Bulk Silicat Earth model and Hydridic Earth model.

  5. Cerium extraction by metallothermic reduction using cerium oxide powder injection

    Institute of Scientific and Technical Information of China (English)

    J.S. Luna A; A. Flores V; R. Mu(n)iz V; A.F. Fuentes; J. Torres; N. Rodríuez R; J.C. Ortiz; P.Orozco

    2011-01-01

    This work presented the feasibility of cerium recovery by Al-Mg alloy through the metallothermic reduction of CeO2 to obtain a master alloy Al-4%Ce. The master alloy obtained in this investigation was for the grain refinement and modification of Al-Si alloys. The reagent was incorporated into a molten alloy using the submerged powder injection technique, and metallic samples were obtained during injection. Chemical and microstructural analyses (by inductively coupled plasma (ICP) and scanning electron microscopy (SEM), respectively) confirmed the possibility of Ce uptake in the bath (0 to 4 wt.%), as CeO2 was reduced through metallothermic reactions in the molten alloys.Based on the characterization of reaction products, the sequence of the reaction was proposed.

  6. Some Environmentally Relevant Reactions of Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Janoš Pavel

    2014-12-01

    Full Text Available Reactive forms of cerium oxide were prepared by a thermal decomposition of various precursors, namely carbonates, oxalates and citrates, commercially available nanocrystalline cerium oxide (nanoceria was involved in the study for comparison. Scanning electron microscopy (SEM and x-ray diffraction analysis (XRD were used to examine the morphology and crystallinity of the samples, respectively, whereas the Brunauer-Emmett-Teller (BET method of nitrogen adsorption was used to determine surface areas. Interactions of cerium oxide with some phosphorus-containing compounds were investigated. Some of the examined samples, especially those prepared by annealing from carbonate precursors, exhibited an outstanding ability to destroy highly toxic organophosphates, such as pesticides (parathion methyl, or nerve agents (soman, VX. There were identified some relations between the degradation efficiency of cerium oxides and their crystallinity. It was also shown that cerium oxide is able to destroy one of widely used flame retardants - triphenyl phosphate. A phosphatase-mimetic activity of various cerium oxides was examined with the aid of a standardized phosphatase test.

  7. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  8. Pharmacological potential of cerium oxidenanoparticles

    Science.gov (United States)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  9. A New Reducing Regent: Dichloroindium Hydride

    Institute of Scientific and Technical Information of China (English)

    A. BABA; I. SHIBATA; N. HAYASHI

    2005-01-01

    @@ 1Introduction Among the hydride derivatives of group 13 elements, various types of aluminum hydrides and boron hydrides have been employed as powerful reduction tools. Indium hydrides have not received much attention,whereas the synthesis of indium trihydride (InH3) was reported several decades ago[1]. There have been no precedents for monometallic indium hydrides having practical reactivity, while activated hydrides such as an ate complex LiPhn InH4-n (n = 0- 2) and phosphine-coordinated indium hydrides readily reduce carbonyl compounds. In view of this background, we focused on the development of dichloroindium hydrides (Cl2InH) as novel reducing agents that bear characteristic features in both ionic and radical reactions.

  10. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  11. Complex and liquid hydrides for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  12. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  13. Photochemistry of Transition Metal Hydrides.

    Science.gov (United States)

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  14. Method of producing a chemical hydride

    Science.gov (United States)

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  15. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  16. Characteristics and Applications of Metal Hydrides

    Science.gov (United States)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  17. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    Science.gov (United States)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  18. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  19. Properties of nanoscale metal hydrides.

    Science.gov (United States)

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  20. CHEMICAL BEHAVIOR OF CERIUM ELEMENT IN ROCK WEATHERING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A study on existing valence state and chemical behavior of cerium element in two categories of rock weathering system in China has been carried out. In the granitoid weathering crust of Southern China,cerium as tetravalent hydroxide absorbed on clay minerals occupies 62.58 % of total amount of cerium and the cerium partitioning in the phase is 69.58 %. The depositing cerium stops its mobility downward, resulting in rare earth partitioning variation, the light rare earth partitioning is high at upper layer of weathering crust, the heavy rare earth partitioning is high at bottom layer of weathering crust, and the extracted product exists cerium lose effect. For Mn2+ as reducing agent existing in black weathering earth of Maoniuping rare earth ore,cerium is trivalent and absorbed on Mn-Fe oxide as colloid phase sediment. Colloid sediment phase can be divided into Mn-Fe combined phase and hydroxide sediment phase with cerium contents of 19.77% and 48.30%, and their cerium partitionings are 80.72% and 37.38% respectively. The Mn-Fe combined phase can selectively absorb cerium.

  1. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  2. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  3. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  4. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  5. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    by annealing at 700°C for 12 hours. The alloys appeared to be nanocrystalline with an average crystallite size around 10 nm before annealing. Special steel containers was developed for the annealing of the metal powders in inert atmosphere. The use of various annealing temperatures was investigated......This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today...... was developed. The parameters milling time, milling intensity, number of balls and form of the alloying metals were investigated. Based on this a final alloying technique for the subsequent preparation of electrode materials was established. The technique comprises milling for 4 hours twice possibly followed...

  6. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Science.gov (United States)

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.

  7. Predicting formation enthalpies of metal hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.

    2004-01-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formedby chemical reaction between hydrogen...... and metal and for the stable hydrides this is associated with release of heat (#DELTA#H_f ). The more thermodynamically stable the hydride, the larger DHf, and the higher temperature is needed in order to desorphydrogen (reverse reaction) and vice versa. For practical application the temperature needed...

  8. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  9. Thermodynamic Hydricity of Transition Metal Hydrides.

    Science.gov (United States)

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  10. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    Science.gov (United States)

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  11. Crystal structure of gold hydride

    Energy Technology Data Exchange (ETDEWEB)

    Degtyareva, Valentina F., E-mail: degtyar@issp.ac.ru

    2015-10-05

    Highlights: • Volume expansion of metal hydrides is due to the increase in the s-band filling. • AuH structure is similar to that of Hg having one more s electron compared to Au. • Structure stability of both Hg and AuH is governed by the Hume-Rothery rule. - Abstract: A number of transition metal hydrides with close-packed metal sublattices of fcc or hcp structures with hydrogen in octahedral interstitial positions were obtained by the high-pressure-hydrogen technique described by Ponyatovskii et al. (1982). In this paper we consider volume increase of metals by hydrogenation and possible crystal structure of gold hydride in relation with the structure of mercury, the nearest neighbor of Au in the Periodic table. Suggested structure of AuH has a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-t I 2. The reasons of stability for this structure are discussed within the model of Fermi sphere–Brillouin zone interactions.

  12. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  13. Synthesis of Cerium-Doped Titania Nanoparticles and Nanotubes.

    Science.gov (United States)

    Cao, Wei; Suzuki, Takuya; Elsayed-Ali, Hani E; Abdel-Fattah, Tarek M

    2015-03-01

    Cerium-doped titania nanoparticles and nanotubes were synthesized via hydrothermal processes. X-Ray Diffraction revealed that cerium-doped titania nanoparticles have an anatase crystal structure, while cerium-doped titania nanotubes have an H2Ti3O7-type structure. Scanning electron microscopy and high resolution transmission electron microscopy showed that both types of titania are well crystallized with relatively uniform size distribution. The photocatalytic degradation of methylthioninium chloride known as methylene blue dye was tested and both cerium-doped titania nanoparticles and nanotubes. The preliminary photocatalytic degradation of Methylene Blue data showed significantly improved visible light photocatalytic activities as compared to commercial titania powders.

  14. Kinetics of hydride front in Zircaloy-2 and H release from a fractional hydrided surface

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.; Gonzalez-Gonzalez, A.; Moya, J. S.; Remartinez, B.; Perez, S.; Sacedon, J. L. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Iberdrola, Tomas Redondo 3, 28033 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)

    2009-07-15

    The authors study the hydriding process on commercial nuclear fuel claddings from their inner surface using an ultrahigh vacuum method. The method allows determining the incubation and failure times of the fuel claddings, as well as the dissipated energy and the partial pressure of the desorbed H{sub 2} from the outer surface of fuel claddings during the hydriding process. The correlation between the hydriding dissipated energy and the amount of zirconium hydride (formed at different stages of the hydriding process) leads to a near t{sup 1/2} potential law corresponding to the time scaling of the reaction for the majority of the tested samples. The calibrated relation between energy and hydride thickness allows one to calculate the enthalpy of the {delta}-ZrH{sub 1.5} phase. The measured H{sub 2} desorption from the external surface is in agreement with a proposed kinetic desorption model from the hydrides precipitated at the surface.

  15. Cerium and jojoba in engines?; Cerium et jojoba dans les moteurs?

    Energy Technology Data Exchange (ETDEWEB)

    Massy-Delhotel, E.

    1996-10-01

    The Belgium company CreaTel proposes a new system, called Forac, which can lead to a 10% reduction of fuel consumption in thermal engines together with a quasi-complete reduction of CO, HC, NOx pollutants and CO{sub 2} particulates emission. The system comprises a steam production device and an admission pipe with a cerium alloy whorl inside. The steam produced is mixed with the admission air and tears cerium particles from the inside of the admission pipe to the combustion chamber. The cerium particles act as a catalyst which favours the complete combustion of the fuel. The same company proposes also lubricant additives made from liquid jojoba wax which allow the reduction of pollutant emissions, fuel consumption and noise emissions of diesel engines. (J.S.)

  16. Thermodynamics of congruently subliming cerium-antimony

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, R.A.; Franzen, H.F.

    1982-01-01

    Congruently vaporizing cerium-antimony has been investigated by vapor pressure measurementa using a simultaneous weight-loss mass-spectrometric Knudsen effusion technique. The melting point of the 1:1 stoichiometry was determined to be 2179 +/- 10 K. The heat of formation at 298 K of CeSb was found to be -128.9 kJ/g-at from thermodynamic measurements in the temperature range 1985-2172 K.

  17. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    OpenAIRE

    2015-01-01

    Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 na...

  18. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  19. Study of the cerium(IV)-picrate system in acetonitrile.

    Science.gov (United States)

    Kratochvil, B; Tipler, M; McKay, B

    1966-07-01

    A potentiometric and spectrophotometric study has been made of the reaction between hexanitratocerate and picrate in dry acetonitrile. Several cerium(IV)-picrate complexes are formed; the formation constant for the first is estimated to be 4 from spectrophotometric measurements. The catalytic effect of picrate on hydroquinone oxidation by nitratocerate is postulated to be due to more rapid electron transfer by cerium picrate complexes.

  20. Formation and characterization of cerium conversion coatings on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LI Lingjie; LEI Jinglei; YU Shenghai; TIAN Yujing; JIANG Qiquan; PAN Fusheng

    2008-01-01

    Chemical conversion treatment by rare earth metal salt solution was considered as an alternative to chromium chemical conversion treatment to improve the corrosion resistance of magnesium alloys. In this study, cerium conversion coatings formed on AZ31 magnesium alloy were characterized and the formation mechanism was discussed. X-ray photoelectron spectroscopy (XPS) analysis showed that cerium conversion coating consisted of cerium hydroxides/oxides, in which both tetravalent cerium Ce(IV) and trivalent cerium Ce(III) species co-existed. Cerium conversion coating was a two-layer structure. Atomic force microscopy (AFM) images revealed that the morphology of the inside layer was different from that of the outside one, which was responsible for the inherent adhesive weakness of the coating. Corrosion potential (Ecorr) measurements indicated that poor adhesion limited the improvement of the corrosion resistance of the coating. During the treating process, the increased pH value of the cerium salt solution led to the precipitation of cerium hydroxides/oxides. The formation kinetics of the coating followed a parabolic curve.

  1. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  2. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver;

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...... by a slightly lower equilibrium coverage of H, which is a consequence of the lower heat of adsorption for H on Pd hydride....

  3. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  4. Synergic effects of ion irradiations (La, Ce) and alkaline pretreatment (KOH) on hydriding kinetic property of a Mm–Ni based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, H., E-mail: abe.hiroshi10@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Aone, S.; Morimoto, R.; Uchida, H. [Course of Applied Science, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-12-15

    Highlights: •Ion irradiations by various ions onto a Mm–Ni based hydrogen storage alloy. •The generation of vacancy type defects by ion irradiations in the surface of a Mm–Ni based alloy. •The enhancement of the initial rate by the ion irradiations of the Mm surface. •The enhancement of the initial rate by an alkaline treatment of the Mm surface. -- Abstract: The ion beam irradiation is known to produce a high density of vacancy type defects in the surface region of a metal and found to be an effective method as a surface modification in order to enhance the hydriding rate of a metal. In this study, we examined synergic effects of both surface modifications of ion irradiations and alkaline treatment on the initial hydriding rate of a Mm–Ni based alloy. In this study, the irradiations by lanthanum (La) and cerium (Ce) ions combined with an alkaline KOH pretreatment were found much more effective in the enhancement of the initial hydriding rate compared with irradiations with other ions. This study reports the synergic effects of the surface modifications by the both the surface irradiations with rare earth ions of La and Ce, and an alkaline surface treatment on the hydriding kinetics.

  5. Ultrathin, epitaxial cerium dioxide on silicon

    Science.gov (United States)

    Flege, Jan Ingo; Kaemena, Björn; Höcker, Jan; Bertram, Florian; Wollschläger, Joachim; Schmidt, Thomas; Falta, Jens

    2014-03-01

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce2O3 film may very effectively be converted at room temperature to almost fully oxidized CeO2 by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  6. Method of forming metal hydride films

    Science.gov (United States)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  7. Sealed aerospace metal-hydride batteries

    Science.gov (United States)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  8. Cerium-tannic acid passivation treatment on galvamzed steel

    Institute of Scientific and Technical Information of China (English)

    LIU Guangming; YU Fei; YANG Liu; TIAN Jihong; DU Nan

    2009-01-01

    A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The mass loss per unit area of passivated samples was measured after the corrosion in 0.5 mol/L NaCl + 0.005 mol/L H2SO4 at room temperature for 96 h. The electrochemical behaviors of cerium, tannic acid, and cerium-tannic acid passivated samples on galvanized steel in 0.5 mol/L NaCI solution were investigated by polarization curves and electrochemical impendence spectra. The corrosion equivalent circuit was established according to the impedance characteristics. The results show that cerium-tannic acid treated samples exhibit better corrosion resistance than the sole cerium or tannic acid treated samples under the same condition. The mechanism of synergistic effect for cerium-tannic acid passivation on galvanized steel was discussed.

  9. Atomic Transition Probabilities for Neutral Cerium

    Science.gov (United States)

    Chisholm, John; Nitz, D.; Sobeck, J.; Den Hartog, E. A.; Wood, M. P.; Lawler, J. E.

    2010-01-01

    Among the rare earth species, the spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are some of the most complex. Like other rare earth species, Ce has many lines in the visible which are suitable for elemental abundance studies. Recent work on Ce II transition probabilities [1] is now being augmented with similar work on Ce I for future studies using such lines from astrophysical sources. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2500 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442 and NSF Grant CTS0613277. [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  10. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  11. Fire retardancy of emulsion polymerized poly (methyl methacrylate)/cerium(IV) dioxide and polystyrene/cerium(IV) dioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Guipeng [Department of Chemistry and Fire Retardant Research Facility, Marquette University, PO Box 1881, Milwaukee, WI 53201 (United States); Lu, Hongdian [Department of Chemical and Materials Engineering, Hefei University, Hefei, Anhui 230022 (China); Zhou, You; Hao, Jianwei [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wilkie, Charles A., E-mail: charles.wilkie@marquette.edu [Department of Chemistry and Fire Retardant Research Facility, Marquette University, PO Box 1881, Milwaukee, WI 53201 (United States)

    2012-12-10

    Highlights: Black-Right-Pointing-Pointer We prepare PMMA and PS containing ceria. Black-Right-Pointing-Pointer Characterization by XRD and TEM shows that some of the ceria is well-dispersed in the polymers. Black-Right-Pointing-Pointer The addition of ceria to both polymers leads to reduced thermal stability. Black-Right-Pointing-Pointer In PMMA, the fire retardancy is enhanced but there is little effect in PS. - Abstract: In situ emulsion polymerization was employed to obtain poly (methyl methacrylate) (PMMA)/cerium(IV) dioxide and polystyrene (PS)/cerium(IV) dioxide nanocomposites at two different cerium(IV) dioxide loadings (2.3 wt% and 4.6 wt%). Transmission electron microscope results indicated uniform dispersion of cerium (IV) dioxide in the polymer matrix. Both PMMA and PS nanocomposites exhibit lower thermal stability than the pristine polymers. Microscale combustion calorimeter (MCC) and cone calorimetry are used to evaluate the fire retardancy of the polymer nanocomposites. PMMA/cerium(IV) dioxide showed significant heat release rate (HRR) reduction at low loadings (<5 wt%), while PS/cerium(IV) dioxide exhibits less HRR reduction at the same loadings. An explanation of the role of cerium (IV) dioxide in fire retardancy of polymer/ceria nanocomposites based on XPS results is suggested.

  12. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused...

  13. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  14. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  15. Improvement in corrosion resistance of magnesium coating with cerium treatment

    Institute of Scientific and Technical Information of China (English)

    Samia Ben Hassen; Latifa Bousselmi; Patricc Bercot; El Mustafa Rezrazi; Ezzeddine Triki

    2009-01-01

    Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was ataibuted to the formation of cerium oxides and hydroxides that gave to a physical barrier effect.

  16. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    Science.gov (United States)

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  17. Preparing Process of Cerium Acetate and Rare Earth Acetate

    Institute of Scientific and Technical Information of China (English)

    Qiao Jun; Ma Ying; Xu Yanhui; Zhang Jun; Chang Shu; Hao Xianku

    2004-01-01

    Preparing process was presented and the influences of concentration of acetic acid, reaction temperature, the ratio of cerium carbonate and acetic acid, heat preservation time to the yield of cerium acetate were discussed.The crystalline cerium acetate and rare earth acetate such as ( La, Ce, Pr, Nd) (Ac) 3, ( Ce, Pr, Nd) (Ac) 3, ( Pr, Nd, Er,Y) (Ac) 3 and yttrium acetate were prepared under this condition.The shape, structure and composition of the crystals were determined by the methods of SEM, TG-DTA, X-ray diffraction and chemical analysis.The optimum prepared conditions of cerium acetate were described.This prepared process has characteristics such as simple process route, low cost, high yield, good quality, no pollution to environment, etc.

  18. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  19. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  20. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  1. Exraction and separation of CERIUM(IV)/FLUORINE in fluoride-bearing cerium sulfate solution with fluoride coordination agent

    OpenAIRE

    Li, Y; J. G. He; X. X. Xue; Ru, H. Q.; X. W. Huang; Yang, H.

    2014-01-01

    In this paper the extraction and separation of cerium/fluorine in fluoride-bearing cerium sulfate solution with fluoride coordination agent has been studied. The UV-vis spectra suggest that Zr6+ and Al3+ can scrub the F- from [CeF2] 2+ complex. The separation and conductivity studies show that aluminum salt is the most suitable fluoride coordination agent, and an ion-exchange reaction is involved between Ce4+/ [CeF2] 2+ and hydrogen ion.

  2. Atom probe analysis of titanium hydride precipitates.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Otsuka, H; Fujii, H

    2009-04-01

    It is expected that the three-dimensional atom probe (3DAP) will be used as a tool to visualize the atomic scale of hydrogen atoms in steel is expected, due to its high spatial resolution and very low detection limit. In this paper, the first 3DAP analysis of titanium hydride precipitates in metal titanium is reported in terms of the quantitative detection of hydrogen. FIB fabrication techniques using the lift-out method have enabled the production of needle tips of hydride precipitates, of several tens of microns in size, within a titanium matrix. The hydrogen concentration estimated from 3DAP analysis was slightly smaller than that of the hydride phase predicted from the phase diagram. We discuss the origin of the difference between the experimental and predicted values and the performance of 3DAP for the quantitative detection of hydrogen.

  3. Lattice contraction in photochromic yttrium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter, E-mail: jepe@ife.no; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul

    2013-12-15

    Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.

  4. Hydrogen storage in complex metal hydrides

    Directory of Open Access Journals (Sweden)

    BORISLAV BOGDANOVIĆ

    2009-02-01

    Full Text Available Complex metal hydrides such as sodium aluminohydride (NaAlH4 and sodium borohydride (NaBH4 are solid-state hydrogen-storage materials with high hydrogen capacities. They can be used in combination with fuel cells as a hydrogen source thus enabling longer operation times compared with classical metal hydrides. The most important point for a wide application of these materials is the reversibility under moderate technical conditions. At present, only NaAlH4 has favourable thermodynamic properties and can be employed as a thermally reversible means of hydrogen storage. By contrast, NaBH4 is a typical non- -reversible complex metal hydride; it reacts with water to produce hydrogen.

  5. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    Science.gov (United States)

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  6. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  7. Hydride formation on deformation twin in zirconium alloy

    Science.gov (United States)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  8. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  9. Destabilization of magnesium hydride through interface engineering

    NARCIS (Netherlands)

    Mooij, L.P.A.

    2013-01-01

    The aim of this thesis is to study the thermodynamics of hydrogenation of nanoconfined magnesium within a thin film multilayer model system. Magnesium hydride is a potential material for hydrogen storage, which is a key component in a renewable energy system based on hydrogen. In bulk form, magnesiu

  10. Potential for recovery of cerium contained in automotive catalytic converters

    Science.gov (United States)

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  11. Electrodeposited cerium film as chromate replacement for tinplate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xingqiao [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Li Ning [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: lining@hit.edu.cn; Wang Huiyong; Sun Hanxiao; Sun Shanshan; Zheng Jian [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-01-30

    The cerium film was prepared on tinplate by electrodeposition method. Sulfide-stain resistance of the Ce-passivated, unpassivated and Cr-passivated tinplates was evaluated using a cysteine tarnish test. Corrosion behavior of these tinplates in contact with 3.5% NaCl solution and 0.1 M citric-citrate buffer solution was investigated using Tafel measurement and electrochemical impedance spectroscopy measurement, respectively. The adhesion of epoxyphenolic lacquer to the Ce-passivated tinplate was checked using a cross hatch cutter. The morphology, composition and thickness of the cerium film were studied by atomic force microscopy, X-ray photoelectron spectroscopy and X-ray fluorescence spectrometry. According to the results, the Ce-passivated tinplate shows the best sulfide-stain resistance and the best corrosion protection property compared with the unpassivated and Cr-passivated tinplates. The adhesion of epoxyphenolic lacquer to the Ce-passivated tinplate is good. The cerium film is composed of the closely packed particles of about 50-200 nm in diameter. The film mainly consists of cerium and oxygen, which mainly exist as CeO{sub 2}, Ce{sub 2}O{sub 3} and their hydrates such as Ce(OH){sub 4}, Ce(OH){sub 3}. The total cerium amount of the film is about 0.110 g/m{sup 2}.

  12. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal

    Institute of Scientific and Technical Information of China (English)

    COLMAN-LERNER Esteban; PELUSO Miguel Andrs; SAMBETH Jorge; THOMAS Horacio

    2016-01-01

    Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds (VOC) (ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter (PM) combustion. The characterization results indicated that Ce was in the form of Ce4+ and Ce3+, and Mn existed in the form of Mn4+and Mn3+on the surface of the Mn/AC sample and in the form of Mn4+ in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO2 (Ce/AC) and MnOx (Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductiv-ity and the reducibility of the oxides.

  13. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    Science.gov (United States)

    Dahle, Jessica T; Arai, Yuji

    2015-01-23

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  14. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jessica T. Dahle

    2015-01-01

    Full Text Available Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydroxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent. This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  15. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  16. Mechanical and Thermophysical Properties of Cerium Monopnictides

    Science.gov (United States)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born-Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young's moduli, bulk moduli, Breazeale's non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  17. Cerium-iron-based magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.

    2017-01-17

    New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo in combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.

  18. Thermodynamic Calculation among Cerium, Oxygen, and Sulfur in Liquid Iron

    Science.gov (United States)

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Su, Yen-Hao; Hwang, Weng-Sing

    2016-10-01

    Thermodynamic calculation has been applied to predict the inclusion formation in molten SS400 steel. When the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, the formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 and also the formation of sulfides containing Cerium would experience the transformation from CeS to Ce2S3 and then to Ce3S4. Below 2000 K the most thermodynamic stable matter is CeO2 and the less thermodynamic stable inclusion is CeS. Only when the amount of [O] is extremely low and the amount of [S] and [Ce] is relatively high, Ce2S3 has the possibility to form.

  19. Elaboration and characterization of thin solid films containing cerium

    Science.gov (United States)

    Hamdi, S.; Guerfi, S.; Siab, R.

    2009-11-01

    Cerium oxide films are widely studied as a promising alternative to Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electrodeposition of Cerium containing thin films was realised on TA6V substrates from a Ce(NO3)3, 6H2O and mixed water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity appears proportional to the quantity of electricity used, as indicated by the Faraday law. Subsequent thermal treatment lead to a CeO2 coating, expected to provide an increase of TA6V oxidation resistance at high temperatures. The deposits were characterized by differential scanning calorimetry (DSC), optical and scanning electron microscopies.

  20. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    Science.gov (United States)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  1. Optical and electrical studies of cerium mixed oxides

    Science.gov (United States)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  2. The PL "violet shift" of cerium dioxide on silicon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied from tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.

  3. Cerium dioxide with large particle size prepared by continuous precipitation

    Institute of Scientific and Technical Information of China (English)

    李梅; 王觅堂; 柳召刚; 胡艳宏; 吴锦绣

    2009-01-01

    Cerium dioxide(CeO2) has attracted much attention and has wide applications such as automotive exhaust catalysts,polishing materials for optical glasses and additives for advanced glasses,as well as cosmetic materials.The particle size and its distribution are key factors to the performance of the materials in the functional applications.However,control of particle size is still a challenge in materials synthesis.Therefore,continuous precipitation of cerium oxalate(precursor of ceria) was carried out at dif...

  4. Optical and electrical studies of cerium mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  5. Isomorphic phase transformation in shocked Cerium using molecular dynamics

    OpenAIRE

    Germann T.C.; Chen S.-P.; Dupont V.

    2011-01-01

    Cerium (Ce) undergoes a significant (∼16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plas...

  6. Exraction and separation of CERIUM(IV/FLUORINE in fluoride-bearing cerium sulfate solution with fluoride coordination agent

    Directory of Open Access Journals (Sweden)

    Y. Li

    2014-07-01

    Full Text Available In this paper the extraction and separation of cerium/fluorine in fluoride-bearing cerium sulfate solution with fluoride coordination agent has been studied. The UV-vis spectra suggest that Zr6+ and Al3+ can scrub the F- from [CeF2] 2+ complex. The separation and conductivity studies show that aluminum salt is the most suitable fluoride coordination agent, and an ion-exchange reaction is involved between Ce4+/ [CeF2] 2+ and hydrogen ion.

  7. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  8. Nickel metal hydride LEO cycle testing

    Science.gov (United States)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  9. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    Science.gov (United States)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  10. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  11. Structural, optical and photocatalytic activity of cerium doped zinc aluminate

    Science.gov (United States)

    Sumathi, Shanmugam; Kavipriya, A.

    2017-03-01

    Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.

  12. Purification of cerium, neodymium and gadolinium for low background experiments

    Directory of Open Access Journals (Sweden)

    Boiko R.S.

    2014-01-01

    Full Text Available Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search, 136Ce (2β+ candidate with one of the highest Q2β. The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  13. Electrorheological Effects of Cerium-Doped TiO2

    Institute of Scientific and Technical Information of China (English)

    尹剑波; 赵晓鹏

    2001-01-01

    It is found that the doping of cerium ion into anatase TiO2 can improve the electrorheological (ER) effects of TiO2 and broaden the operational temperature range. Especially, the substitution of 7-11 mol% of the cerium dopant for Ti can obtain a relatively high shear stress, t-7.4kPa (at 4kV/mm), which is ten times larger than that of pure TiO2 ER fluid. Also, the typical Ce-doped TiO2 ER fluid shows the highest shear stress at 80℃, but 40℃ for pure TiO2 ER fluid. The dielectric loss and dielectric constant at a low frequency of TiO2 is improved by the doping of cerium, and the temperature dependence of the dielectric properties shows an obvious differnce between pure and doped TiO2 ER fluids. These can well explain the ER behaviour of doped TiO2. Furthermore, the change of rheological and dielectric properties is discussed on the basis of the lattice distortion and defects in TiO2 arising from the doping of cerium.

  14. Cerium; crystal structure and position in the periodic table.

    Science.gov (United States)

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-09-17

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized [rlhar2 ] delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table.

  15. Determination of Impurity Elements in Pure Cerium Oxide Product

    Institute of Scientific and Technical Information of China (English)

    Li Peizhong; Chen Limin; Li Jie

    2004-01-01

    Determination of the rare earth impurity in pure cerium oxide is done by ICP-MS.The interference and other factors which affect analytical results were discussed.The accuracy are between 0.81% ~ 11.98% and the recoveries of standard addition are 96% ~ 112.5%.This method can meet the demand for product inspection.

  16. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  17. High energy density battery based on complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  18. Method of making crack-free zirconium hydride

    Science.gov (United States)

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  19. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  20. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  1. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  2. High ramp rate thermogravimetric analysis of zirconium(II) hydride and titanium(II) hydride

    Energy Technology Data Exchange (ETDEWEB)

    Licavoli, Joseph J., E-mail: jjlicavo@mtu.edu; Sanders, Paul G., E-mail: sanders@mtu.edu

    2015-09-20

    Highlights: • A unique arc image device has been proposed for high ramp rate thermogravimetry. • Powder oxidation influences decomposition kinetics at temperatures below 933 K. • Particle size has a negligible effect on TiH{sub 2} decomposition behavior. • Improvements to the device are required to conduct accurate kinetic analysis. - Abstract: Zirconium and titanium hydride are utilized in liquid phase metal foam processing techniques. This application results in immediate exposure to molten metal and almost immediate decomposition at high temperatures. Most decomposition characterization techniques utilize slow heating rates and are unable to capture the decomposition behavior of hydrides under foam processing conditions. In order to address this issue a specialized high ramp rate thermogravimetric analyzer was created from a xenon arc image refiner. In addition to thermogravimetry, complimentary techniques including X-ray diffraction and scanning electron microscopy were used to characterize hydride decomposition and compare the results to literature. Hydrides were partially oxidized and separated into particles size ranges to evaluate the influence of these factors on decomposition. Oxidizing treatments were found to decrease decomposition rate only at temperatures below 933 K (660 °C) while particle size effects appeared to be negligible. Several improvements to the unique TGA apparatus presented in the current work are suggested to allow reliable kinetic modeling and analysis.

  3. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    Science.gov (United States)

    Shek, G. K.; Jovanoviċ, M. T.; Seahra, H.; Ma, Y.; Li, D.; Eadie, R. L.

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extrude pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at KI below 12 MPa √m at both 200 and 250°C very large striations (> 40 μ at 200 and >50 μm at 250°C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when KI was increased beyond about 12 MPa √m for these same specimens, the striation spacing decreased below 30 μ, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface.

  4. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  5. Helium trapping at erbium oxide precipitates in erbium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  6. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  7. Metal hydrides for concentrating solar thermal power energy storage

    Science.gov (United States)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  8. Solubility of cerium in LaCoO3-influence on catalytic activity.

    Science.gov (United States)

    French, S A; Catlow, C R A; Oldman, R J; Rogers, S C; Axon, S A

    2002-11-21

    The recent interest in the catalytic properties of lanthanum perovskites for methane combustion and three way catalysis has led to considerable debate as to their structure and defect chemistry. We have investigated the doping of LaCoO3 with the tetravalent cerium cation using atomistic simulation techniques. We have compared three routes for cerium insertion and identified the favoured doping mechanism, which explain experimental observations relating to the effect of cerium on catalytic activity.

  9. Results of NDE Technique Evaluation of Clad Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  10. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    Science.gov (United States)

    Rico, A.; Martin-Rengel, M. A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F. J.

    2014-09-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young's modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young's modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found.

  11. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    Energy Technology Data Exchange (ETDEWEB)

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  12. Lithium hydride - A space age shielding material

    Science.gov (United States)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  13. Development of nickel-metal hydride cell

    Science.gov (United States)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  14. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  15. Improvement of cerium of photosynthesis functions of maize under magnesium deficiency.

    Science.gov (United States)

    Zhou, Min; Gong, Xiaolan; Wang, Ying; Liu, Chao; Hong, Mengmeng; Wang, Ling; Hong, Fashui

    2011-09-01

    Rare earth elements can promote photosynthesis, but their mechanisms are still poorly understood under magnesium deficiency. The present study was designed to determine the role of cerium in magnesium-deficient maize plants. Maize was cultivated in Hoagland's solution added with cerium with and without adequate quantities of magnesium. Under magnesium-deficient conditions, cerium can prevents inhibition of synthesis of photosynthetic pigment, improves light energy absorption and conversion, oxygen evolution, and the activity of photo-phosphorelation and its coupling factor Ca(2+)-ATPase. These results suggest that cerium could partly substitute magnesium, improving photosynthesis and plant growth.

  16. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  17. Isomorphic phase transformation in shocked cerium using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Virginie [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Chen, Shao - Ping [Los Alamos National Laboratory

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  18. Isomorphic phase transformation in shocked Cerium using molecular dynamics

    Directory of Open Access Journals (Sweden)

    Germann T.C.

    2011-01-01

    Full Text Available Cerium (Ce undergoes a significant (∼16% volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  19. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  20. Synthesis and characterization of cerium sulfide thin film

    Institute of Scientific and Technical Information of China (English)

    Ιshak Afsin Kariper

    2014-01-01

    Cerium sulfide (CexSy) polycrystalline thin film is coated with chemical bath deposition on substrates (commercial glass). Transmittance, absorption, optical band gap and refractive index are examined by using UV/VIS. Spectrum. The hexagonal form is observed in the structural properties in XRD. The structural and optical properties of cerium sulfide thin films are analyzed at different pH. SEM and EDX analyses are made for surface analysis and elemental ratio in films. It is observed that some properties of films changed with different pH values. In this study, the focus is on the observed changes in the properties of films. The pH values were scanned at 6–10. The optical band gap changed with pH between 3.40 to 3.60 eV. In addition, the film thickness changed with pH at 411 nm to 880 nm.

  1. Preparation and characterization of gelatin/cerium(Ⅲ) film

    Institute of Scientific and Technical Information of China (English)

    黄崇军; 黄雅钦; 田娜; 童元建; 殷瑞贤

    2010-01-01

    A novel gelatin film with antibacterial activity was prepared by electrostatic crosslinking using cerium (Ⅲ) nitrate hexahydrate as the crosslinking agent. The structure and properties of the films were investigated by Fourier transform infrared spectra, tensile tests, thermogravimetric analysis, static drop contact angle and disc diffusion method. The results showed that cross-linking could not only improve the thermal and mechanical properties and lower the hydrophilic property of the films, but also make...

  2. From permanent magnets to rechargeable hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Willems, J.J.G.; Buschow, K.H.J.

    1987-02-15

    A brief historical survey is given of how the study of coercitivity mechanisms in SmCo/sub 5/ permanent-magnet materials eventually led to the discovery of the favourable hydrogen sorption properties of the compound LaNi/sub 5/. It is shown how continued research by many investigators dealing with a variety of different physical and chemical properties has resulted in an advanced understanding of some of the principles that govern hydrogen absorption and which are responsible for the changes in physical properties that accompany it. The problems associated with various applications of LaNi/sub 5/-based hydrogen-storage materials are also briefly discussed. A large part of this paper is devoted to the applicability of LaNi/sub 5/-type materials in batteries. Research in this area has resulted in the development of a new type of rechargeable battery: the nickel-hydride cell. This battery can be charged and discharged at high rates and is relatively insensitive to overcharging and overdischarging. Special attention is given to the nature of the electrode degradation process and the effect of composition variations in LaNi/sub 5/-related materials on the lifetime of the corresponding hydride electrodes when subjected to severe electrochemical charge-discharge cycles.

  3. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  4. Metal hydrides for lithium-ion batteries.

    Science.gov (United States)

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  5. Antibacterial activity of polymer coated cerium oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Vishal Shah

    Full Text Available Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO(4, CaCl(2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO(2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts.

  6. Study of tetravalent cerium incorporation in the monazite structure

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, D.; Audubert, F.; Bernache-Assollant, D

    2004-07-01

    The incorporation of tetravalent cerium in the monazite structure (La{sub 1-2x}Ce{sup 4+}{sub x}Ca{sub x}PO{sub 4}) by high temperature solid state synthesis was investigated. First of all, the reaction was followed by DTA-TGA method and X-rays diffraction. It has been shown that CaO first reacts with the phosphate precursor to form Ca(PO{sub 3}){sub 2}. This compound melts near 940 deg C, inducing the dissociation of CeO{sub 2} and the reduction of a large part of cerium IV to cerium III. Two methods have been developed to determine the Ce{sup 4+}/Ce{sup 3+} ratio by using X-ray diffraction and microprobe analysis. We show that Ce{sup 4+} incorporation in LaPO{sub 4} is limited to a Ce{sup 4+}/Ce{sup 3+} = 0.15 value. (authors)

  7. Jet formation in cerium metal to examine material strength

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B. J., E-mail: bjjensen@lanl.gov; Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fezzaa, K. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Iverson, A. J.; Carlson, C. A. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  8. Jet formation in cerium metal to examine material strength

    Science.gov (United States)

    Jensen, B. J.; Cherne, F. J.; Prime, M. B.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.

    2015-11-01

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2-3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  9. pH-distribution of cerium species in aqueous systems

    Institute of Scientific and Technical Information of China (English)

    B.Bouchaud; J.Balmain; G.Bonnet; F.Pedraza

    2012-01-01

    Cerium-based oxide coalings can be obtained through either chemical or electrochemical processes on various conductor and semiconductor substrates.In both cases the films develop through a precipitation mechanism,which strongly depends on the solution chemistry.In the particular case of the electrolytic approach,the elaboration parameters play a key role on the interfacial pH modification thereby leading to an indirect precipitation mechanism.Indeed,the nucleation and growth mechanisms of crystallites and the composition of the resulting layers have been shown to be also strongly affected by the deposition conditions as well as by the substrate composition,which could in turn modify the protectiveness provided by such coatings.Therefore a better fundamental understanding of the system is required,in particular of the distribution of cerium-containing species in aqueous solution.To this end,the present work intended to develop a diagram showing the distribution as well as the relative amount of Ce(Ⅲ)/Ce(Ⅳ) species in aqueous media as a function of the pH range.The resulting pH-distribution diagram turned out to be a useful tool to predict the relevant precipitation mechanisms and species involved during the growth of cerium-containing films and to draw correlations with the characteristics of the as-deposited films.

  10. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    Science.gov (United States)

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  11. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  12. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  13. Technical and economic aspects of hydrogen storage in metal hydrides

    Science.gov (United States)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  14. Single crystal to single crystal transformation and hydrogen-atom transfer upon oxidation of a cerium coordination compound.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; Lewis, Andrew J; DeGregorio, Patrick T; Carroll, Patrick J; Schelter, Eric J

    2013-04-15

    Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.

  15. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    Science.gov (United States)

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity.

  16. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  17. Hydrogen desorption from nanostructured magnesium hydride composites

    Directory of Open Access Journals (Sweden)

    Brdarić Tanja P.

    2007-01-01

    Full Text Available The influence of 3d transition metal addition (Fe, Co and Ni on the desorption properties of magnesium hydride were studied. The ball milling of MgH2-3d metal blends was performed under Ar. Microstructural and morphological characterization were performed by XRD and SEM analysis, while the hydrogen desorption properties were investigated by DSC. The results show a strong correlation between the morphology and thermal stability of the composites. The complex desorption behavior (the existence of more than one desorption peak was correlated with the dispersion of the metal additive particles that appear to play the main role in the desorption. The desorption temperature can be reduced by more than 100 degrees if Fe is added as additive. The activation energy for H2 desorption from the MgH2-Fe composite is 120 kJ/mol, implying that diffusion controls the dehydration process.

  18. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  19. Out-of-pile accelerated hydriding of Zircaloy fasteners

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, J.C.

    1979-10-01

    Mechanical joints between Zircaloy and nickel-bearing alloys, mainly the Zircaloy-4/Inconel-600 combination, were exposed to water at 450/sup 0/F and 520/sup 0/F to study hydriding of Zircaloy in contact with a dissimilar metal. Accelerated hydriding of the Zircaloy occurred at both temperatures. At 450/sup 0/F the dissolved hydrogen level of the water was over ten times that at 520/sup 0/F. At 520/sup 0/F the initially high hydrogen ingress rate decreased rapidly as exposure time increased and was effectively shut off in about 25 days. Severely hydrided Zircaloy components successfully withstood thermal cycling and mechanical testing. Chromium plating of the nickel-bearing parts was found to be an effective and practical barrier in preventing nickel-alloy smearing and accelerated hydriding of Zircaloy.

  20. Artificial exomuscle investigations for applications--metal hydride.

    Science.gov (United States)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  1. DETERMINATION OF METAL HYDRIDE SYSTEMS CHARACTERISTICS WHILE HEATING

    Directory of Open Access Journals (Sweden)

    Yu. Kluchka

    2012-01-01

    Full Text Available Experimental dependence of the pressure of hydrogen in the hydride cartridge when it is heated is obtained. Experimental data prove the theoretical values with an accuracy of ≈ 6%.

  2. Bipolar Nickel-Metal Hydride Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  3. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  4. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  5. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  6. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  7. Method of selective reduction of halodisilanes with alkyltin hydrides

    Science.gov (United States)

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  8. Ab-Initio Study of the Group 2 Hydride Anions

    Science.gov (United States)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  9. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  10. Electronic structure and optical properties of lightweight metal hydrides

    NARCIS (Netherlands)

    Setten, van M.J.; Popa, V.A.; Wijs, de G.A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2, and AlH3, and of the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4, and Mg(AlH4)2, using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-partic

  11. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  12. Metal Hydrides for High-Temperature Power Generation

    Directory of Open Access Journals (Sweden)

    Ewa C. E. Rönnebro

    2015-08-01

    Full Text Available Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES applications. By using TES with solar technologies, heat can be stored from sun energy to be used later, which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT metal hydride operating reversibly at 600–800 °C to generate heat, as well as a low-temperature (LT hydride near room temperature that is used for hydrogen storage during sun hours until there is the need to produce electricity, such as during night time, a cloudy day or during peak hours. We proceeded from selecting a high-energy density HT-hydride based on performance characterization on gram-sized samples scaled up to kilogram quantities with retained performance. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a ~200-kWh/m3 bench-scale prototype was designed and fabricated, and we demonstrated the ability to meet or exceed all performance targets.

  13. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  14. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  15. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  16. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  17. Spectrophotometric determination of cerium with methylthymol blue in the presence of oxalate and cyanide as masking agents

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Martin, A.; Izquierdo-Hornillos, R.; Quejido-Cabezas, A.J.; Peral-Fernandez, J.L. (Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas)

    1983-04-01

    The spectrophotometric determination of cerium can be carried out by several methods, which involve either the formation of complexes of cerium(III) and cerium(IV) or the oxidation of suitable reagents by cerium(IV) and further measuring the intensity of the colour of the oxidised matter. The latter methods show a lack of selectivity and low sensitivity owing to the nature of the redox reaction. The methods that involve the formation of complexes have also been shown to have low selectivity and sensitivity. However, the most useful methods are those based on the complexes of cerium(III) with Xylenol Orange and Methylthymol Blue (MTB), but they are affected by many interferences. In this work the reaction of cerium(III) with MTB in the presence of oxalate and cyanide ions was studied at pH 10.2, which improves the sensitivity and the selectivity of the determination of cerium.

  18. Electrochemical studies on cerium(Ⅲ) in molten fluoride mixtures

    Institute of Scientific and Technical Information of China (English)

    VIRGIL; CONSTANTIN; ANA-MARIA; POPESCU; MIRCEA; OLTEANU

    2010-01-01

    This study aims to determine the principal electrochemical characteristics of the electrodeposition of cerium metal from molten fluoride systems.The cathodic process of Ce3+ ions in LiF-NaF and LiF-NaF-CaF2 molten salts was studied using electrochemical techniques as steady state and cyclic voltammetry methods.The decomposition potential(Ed) and the overvoltage(η) were determined for NaCeF4 using current-potential curves under galvanostatic conditions.The Ed was found to be 2.025 V in LiF-NaF and 2.045 V in...

  19. Cerium oxide based nanometric powders: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Ninić M.

    2007-01-01

    Full Text Available Nanometric powders of solid solutions of cerium oxide were obtained by a modified glycine nitrate procedure. Solid solutions of the host compound CeO2 with one or more dopants in the lattice were synthesized. Rare earth cations (Re=Yb, Gd and Sm were added to ceria in total concentration of x= 0.2 that was kept constant. The criterion in doping was to keep the value of lattice parameter of ceria unchanged. The lattice parameters were calculated by using the model that takes into account the existence of oxygen vacancies in the structure.

  20. Options for the recovery of cerium by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Soldenhoff, K.H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    This paper reports the results of an experimental program to examine the use of various commercial reagents for the extraction of cerium (IV) from sulphate solutions. Extractants tested include organophosphorus esters (TOPO, Cyanex 923 and Cyanex 925), organophosphorus acids (DEHPA, lonquest 801 and Cyanex 272) and high molecular weight amine, Alamine 336. The suitability of reagents is assessed in terms of process relevant criteria such as extraction dependence on acidity, selectivity over other rare earths and thorium, stability of reagent towards oxidation and loading characteristics. (author) 15 refs., 2 tabs., 5 figs.

  1. Identification of the Charge Carriers in Cerium Phosphate Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Hannah L.; Jonghe, Lutgard C. De

    2010-06-02

    The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.

  2. Properties of hot liquid cerium by LDA + U molecular dynamics.

    Science.gov (United States)

    Siberchicot, Bruno; Clérouin, Jean

    2012-11-14

    We present ab initio simulations of liquid cerium in the framework of the LDA + U formulation. The liquid density has been determined self-consistently by searching for the zero pressure equilibrium state at 1320 K with the same set of parameters (U and J) and occupation matrices as those optimized for the γ phase. We have computed static and transport properties. The liquid produced by the simulations appears more structured than the available measurements. This raises questions regarding the ability of the theory to describe such a complex liquid. Conductivity calculations and temperature dependences are nevertheless in reasonable agreement with data.

  3. A quantitative phase field model for hydride precipitation in zirconium alloys: Part II. Modeling of temperature dependent hydride precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Hao, Mingjun [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Guo, Xianghua [State Key Laboratory of Explosion and Safety Science, Beijing Institute of Technology, Beijing 100081 (China); Tang, Guoyi [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Shi, San-Qiang, E-mail: mmsqshi@polyu.edu.hk [The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen (China); PolyU Base (Shenzhen) Limited, Shenzhen (China); Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2015-04-15

    A quantitative free energy functional developed in Part I (Shi and Xiao, 2014 [1]) was applied to model temperature dependent δ-hydride precipitation in zirconium in real time and real length scale. At first, the effect of external tensile load on reorientation of δ-hydrides was calibrated against experimental observations, which provides a modification factor for the strain energy in free energy formulation. Then, two types of temperature-related problems were investigated. In the first type, the effect of temperature transient was studied by cooling the Zr–H system at different cooling rates from high temperature while an external tensile stress was maintained. At the end of temperature transients, the average hydride size as a function of cooling rate was compared to experimental data. In the second type, the effect of temperature gradients was studied in a one or two dimensional temperature field. Different boundary conditions were applied. The results show that the hydride precipitation concentrated in low temperature regions and that it eventually led to the formation of hydride blisters in zirconium. A brief discussion on how to implement the hysteresis of hydrogen solid solubility on hydride precipitation and dissolution in the developed phase field scheme is also presented.

  4. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    Science.gov (United States)

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  5. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  6. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Liu, H.D.; Lin, N.; Yu, H.Y., E-mail: yuhy@ahut.edu.cn

    2015-01-15

    Highlights: • Cerium titanate nanorods have been synthesized by a simple hydrothermal process. • The size of the cerium titanate nanorods can be controlled by growth conditions. • Cerium titanate nanorods exhibit good photocatalytic activities for methyl blue. - Abstract: Cerium titanate nanorods have been prepared via a hydrothermal process using sodium dodecyl sulfate (SDS) as the surfactant. The cerium titanate nanorods have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and ultraviolet–visible (UV–vis) diffuse reflectance spectrum. XRD shows that the nanorods are composed of CeTi{sub 21}O{sub 38} phase. Electron microscopy observations indicate that the nanorods have good single crystalline nature. The diameter and length of the nanorods are about 50–200 nm and 1–2 μm, respectively. Cerium titanate nanorods have a band gap of 2.65 eV. The photocatalytic activities of the nanorods have been investigated by degrading methylene blue (MB) under visible light irradiation. MB solution with the concentration of 10 mg L{sup −1} can be degraded totally with the irradiation time increasing to 240 min. Cerium titanate nanorods exhibit great potential in photocatalytic degradation of MB under visible light irradiation.

  7. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Menaka [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Patra, Rajkumar; Ghosh, Santanu [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Ganguli, Ashok K., E-mail: ashok@chemistry.iitd.ac.in [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  8. Altering properties of cerium oxide thin films by Rh doping

    Energy Technology Data Exchange (ETDEWEB)

    Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148 (Japan); Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Haviar, Stanislav, E-mail: stanislav.haviar@gmail.com [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Matolín, Vladimír, E-mail: matolin@mbox.troja.mff.cuni.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  9. Biosorption potential of cerium ions usingSpirulina biomass

    Institute of Scientific and Technical Information of China (English)

    David Sadovsky; Asher Brenner; Boaz Astrachan; Boaz Asaf; Raphael Gonen

    2016-01-01

    Two types of cyanobacteria of the genusArthrospira (commonly known asSpirulina) were tested for biosorption of ce-rium(III) ions from aqueous solutions. An endemic type (ES) found in the northern Negev desert, Israel, and a commercial powder (CS) were used in this study. Biosorption was evaluated as a function of pH, contact time, initial metal concentration, number of sorp-tion-desorption cycles, and salt concentration. The optimum pH range for biosorption was found to be 5.0–5.5. The kinetic character-istics of bothSpirulina types were found to be highly compatible with a pseudo-second order kinetic model. The adsorption isotherms of both types were found to be well-suited to Langmuir and Freundlich adsorption isotherms. Maximum biosorption uptakes, accord-ing to the Langmuir model, were 18.1 and 38.2 mg/g, for ES and CS, respectively. Sodium chloride concentrations of up to 5 g/L had a minor effect on cerium biosorption. Desorption efficiency was found to be greater than 97% with 0.1 mol/L HNO3 after three sorp-tion-desorption cycles, without significant loss in the biosorption capacity. The results indicated the feasibility of cerium recovery from industrial wastes usingSpirulina biomass.

  10. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  11. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration.

    Science.gov (United States)

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N

    2015-08-06

    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer.

  12. Functionalization of nanostructured cerium oxide films with histidine.

    Science.gov (United States)

    Tsud, Nataliya; Bercha, Sofiia; Acres, Robert G; Vorokhta, Mykhailo; Khalakhan, Ivan; Prince, Kevin C; Matolín, Vladimír

    2015-01-28

    The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.

  13. Titrimetric and Spectrophotometric Methods for the Assay of Ketotifen Using Cerium(IV) and Two Reagents

    OpenAIRE

    Madihalli Srinivas Raghu; Kanakapura Basavaiah; Kudige Nagaraj Prashanth; Kanakapura Basavaiah Vinay

    2013-01-01

    One titrimetric and two spectrophotometric methods are described for the determination of ketotifen fumarate (KTF) in bulk drug and in tablets using cerium(IV) as the oxidimetric agent. In titrimetry (method A), the drug was treated with a measured excess of cerium(IV) in H2SO4 medium and after a standing time of 10 min, the surplus oxidant was determined by back titration with iron(II). The spectrophotometric procedures involve addition of a known excess of cerium(IV) to KTF in acid medium f...

  14. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    Science.gov (United States)

    Raj, S. Gokul; Mathivanan, V.; Kumar, G. Ramesh; Yathavan, S.; Mohan, R.

    2016-05-01

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr0.6B0.4Nb2O6) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce+ ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  15. Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle.

    Science.gov (United States)

    Yoshimoto, Takuya; Goto, Taichi; Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Ross, C A; Inoue, M

    2016-04-18

    Magnetophotonic crystals (MPCs) comprising cerium-substituted yttrium iron garnet (CeYIG) sandwiched by two Bragg mirrors were fabricated by vacuum annealing. CeYIG was deposited on Bragg mirrors at room temperature and annealed in 5 Pa of residual air. No ceria or other non-garnet phases were detected. Cerium 3 + ions substituted on the yttrium sites and no cerium 4 + ions were found. The Faraday rotation angle of the MPC was -2.92° at a wavelength of λ = 1570 nm was 30 times larger than that of the CeYIG film. These results showed good agreement with calculated values derived using a matrix approach.

  16. Micro-scale fracture experiments on zirconium hydrides and phase boundaries

    Science.gov (United States)

    Chan, H.; Roberts, S. G.; Gong, J.

    2016-07-01

    Fracture properties of micro-scale zirconium hydrides and phase boundaries were studied using microcantilever testing methods. FIB-machined microcantilevers were milled on cross-sectional surfaces of hydrided samples, with the most highly-stressed regions within the δ-hydride film, within the α-Zr or along the Zr-hydride interface. Cantilevers were notched using the FIB and then tested in bending using a nanoindenter. Load-displacement results show that three types of cantilevers have distinct deformation properties. Zr cantilevers deformed plastically. Hydride cantilevers fractured after a small amount of plastic flow; the fracture toughness of the δ-hydride was found to be 3.3 ± 0.4 MPam1/2 and SEM examination showed transgranular cleavage on the fracture surfaces. Cantilevers notched at the Zr-hydride interface developed interfacial voids during loading, at loads considerably lower than that which initiate brittle fracture of hydrides.

  17. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  18. Numerical simulation and performance test of metal hydride hydrogen storage system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Bin-Hao Chen, Bao-Dong Chen

    2011-05-01

    Full Text Available Metal hydride reactors are widely used in many industrial applications, such as hydrogen storage, thermal compression, heat pump, etc. According to the research requirement of metal hydride hydrogen storage, the thermal analyses have been implemented in the paper. The metal hydride reaction beds are considered as coupled cylindrical tube modules which combine the chemical absorption and desorption in metal hydride. The model is then used metal hydride LaNi5 as an example to predict the performance of metal hydride hydrogen storage devices, such as the position of hydration front and the thermal flux. Under the different boundary condition the characteristics of heat transfer and mass transfer in metal hydride have influence on the hydrogen absorption and desorption. The researches revealed that the scroll design can improve the temperature distribution in the reactor and the porous tube for directing hydrogen can increase the penetration depth of hydride reaction to decrease the hydrogen absorption time.

  19. Investigation of Cracked Lithium Hydride Reactor Vessels

    Energy Technology Data Exchange (ETDEWEB)

    bird, e.l.; mustaleski, t.m.

    1999-06-01

    Visual examination of lithium hydride reactor vessels revealed cracks that were adjacent to welds, most of which were circumferentially located in the bottom portion of the vessels. Sections were cut from the vessels containing these cracks and examined by use of the metallograph, scanning electron microscope, and microprobe to determine the cause of cracking. Most of the cracks originated on the outer surface just outside the weld fusion line in the base material and propagated along grain boundaries. Crack depths of those examined sections ranged from {approximately}300 to 500 {micro}m. Other cracks were reported to have reached a maximum depth of 1/8 in. The primary cause of cracking was the creation of high tensile stresses associated with the differences in the coefficients of thermal expansion between the filler metal and the base metal during operation of the vessel in a thermally cyclic environment. This failure mechanism could be described as creep-type fatigue, whereby crack propagation may have been aided by the presence of brittle chromium carbides along the grain boundaries, which indicates a slightly sensitized microstructure.

  20. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  1. Comparison of the interactions in the rare gas hydride and Group 2 metal hydride anions.

    Science.gov (United States)

    Harris, Joe P; Manship, Daniel R; Breckenridge, W H; Wright, Timothy G

    2014-02-28

    We study both the rare gas hydride anions, RG-H(-) (RG = He-Rn) and Group 2 (Group IIa) metal hydride anions, MIIaH(-) (MIIa = Be-Ra), calculating potential energy curves at the CCSD(T) level with augmented quadruple and quintuple basis sets, and extrapolating the results to the basis set limit. We report spectroscopic parameters obtained from these curves; additionally, we study the Be-He complex. While the RG-H(-) and Be-He species are weakly bound, we show that, as with the previously studied BeH(-) and MgH(-) species, the other MIIaH(-) species are strongly bound, despite the interactions nominally also being between two closed shell species: M(ns(2)) and H(-)(1s(2)). We gain insight into the interactions using contour plots of the electron density changes and population analyses. For both series, the calculated dissociation energy is significantly less than the ion/induced-dipole attraction term, confirming that electron repulsion is important in these species; this effect is more dramatic for the MIIaH(-) species than for RG-H(-). Our analyses lead us to conclude that the stronger interaction in the case of the MIIaH(-) species arises from sp and spd hybridization, which allows electron density on the MIIa atom to move away from the incoming H(-).

  2. Multidimensional simulations of hydrides during fuel rod lifecycle

    Science.gov (United States)

    Stafford, D. S.

    2015-11-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim.

  3. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  4. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  5. Comparison of Hydrogen Elimination from Molecular Zinc and Magnesium Hydride Clusters

    NARCIS (Netherlands)

    Intemann, J.; Sirsch, Peter; Harder, Sjoerd

    2014-01-01

    In analogy to the previously reported tetranuclear magnesium hydride cluster with a bridged dianionic bis-beta-diketiminate ligand, a related zinc hydride cluster has been prepared. The crystal structures of these magnesium and zinc hydride complexes are similar: the metal atoms are situated at the

  6. Investigation of metal hydride materials as hydrogen reservoirs for metal-hydrogen batteries

    Science.gov (United States)

    ONISCHAK

    1976-01-01

    The performance and suitability of various metal hydride materials were examined for use as possible hydrogen storage reservoirs for secondary metal-hydrogen batteries. Lanthanum pentanickel hydride appears as a probable candidate in terms of stable hydrogen supply under feasible thermal conditions. A kinetic model describing the decomposition rate data of the hydride has been developed.

  7. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    Science.gov (United States)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  8. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, Ana Cecilia [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Rico, Cyren M. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Medina-Velo, Illya A. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States)

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO{sub 2}, CA + nCeO{sub 2}) bulk cerium oxide (bCeO{sub 2}), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO{sub 2} increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO{sub 2} and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO{sub 2} at 250 mg/kg, but reduced by bCeO{sub 2} at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO{sub 2} increased Ce in roots by 10 and 7 times, compared to CA + nCeO{sub 2}, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO{sub 2} nor CA + nCeO{sub 2} affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO{sub 2} at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO{sub 2} at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO{sub 2} on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9

  9. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    Science.gov (United States)

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization.

  10. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  11. Synthesis of cerium oxide (CeO{sub 2}) nanoparticles using simple CO-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P., E-mail: farahamndjou@iauvaramin.ac.ir [Islamis Azad University, Varamin-Phisva Branch, Department of Physics, Varamin (Iran, Islamic Republic of)

    2016-11-01

    Synthesis of cerium oxide (CeO{sub 2}) nanoparticles was studied by new and simple co-precipitation method. The cerium oxide nanoparticles were synthesized using cerium nitrate and potassium carbonate precursors. Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (Sem), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (Ftir) and UV-Vis spectrophotometer. XRD pattern showed the cubic structure of the cerium oxide nanoparticles. The average particle size of CeO{sub 2} was around 20 nm as estimated by XRD technique and direct HRTEM observations. The surface morphological studies from Sem and Tem depicted spherical particles with formation of clusters. The sharp peaks in Ftir spectrum determined the existence of CeO{sub 2} stretching mode and the absorbance peak of UV-Vis spectrum showed the bandgap energy of 3.26 eV. (Author)

  12. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    Science.gov (United States)

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  13. EFFECT OF CERIUM ION IMPLANTATION ON THE AQUEOUS CORROSION BEHAVIOR OF ZIRCONIUM

    Institute of Scientific and Technical Information of China (English)

    D.Q. Peng; X.D. Bai; Q.G. Zhou; X.W. Chen; R.H. Yu; X.Y. Liu

    2004-01-01

    In order to study the influence of cerium ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted by cerium ions with a dosage range from 1 ×1016 to 1 ×1017 ions/cm2 at about 150℃, using MEWA source at an acceler ative voltage of 40kV. The valence of the surface layer was analyzed by X-ray photoelectron spectroscopy (XPS); Three-sweep potentiodynamic polarization measurement was employed to value the aqueous corrosion resistance of zirconium in a 0.5mol/L H2SO4 solution. It was found that a remarkable decline in the aqueous corrosion behavior of zirconium implanted with cerium ions compared with that of the as-received zirconium. Finally, the mechanism of the corrosion resistance decline of the cerium-implanted zirconium is discussed.

  14. Study on Catalysts with Rhodium Loading on Different Cerium-Zirconium Mixed Oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalysts with Rh loading on different cerium-zirconium mixed oxides were characterized by BET, H2-TPR and OSC. The effects of different cerium-zirconium mixed oxides on catalytic performance and thermal stability of Rh loaded catalyst were studied. The results show that: (1) Rh can enhance cerium-zirconium mixed oxides OSC and catalytic reaction rates; (2) cerium-zirconium mixed oxides with high Ce contents and low Zr contents are more favorable to the stability of catalysts. Moreover, the contents of CeO2 have important effect on catalysts characteristics, and the addition of some rare earth components, such as La, Pr and Nd also have some influences.

  15. Theoretical Estimate of Hydride Affinities of Aromatic Carbonyl Compounds

    Institute of Scientific and Technical Information of China (English)

    AI Teng; ZHU Xiao-Qing; CHENG Jin-Pei

    2003-01-01

    @@ Aromatic carbonyl compounds are one type of the most important organic compounds, and the reductions ofthem by hydride agents such as LiAlH4 or NaBH4 are widely used in organic synthesis. The reactivity of carbonyl compounds generally increases in the following order: ketone < aldehyde, and amide < acid < ester < acid halide, which could be related to their hydride affinities (HA). In the previous paper, Robert[1] calculated the absolute HAof a series of small non-aromatic carbonyl compounds. In this paper, we use DFT method at B3LYP/6-311 + + G (2d, 2p)∥B3LYP/6-31 + G* level to estimate hydride affinities of five groups of aromatic carbonyl compounds. The detailed results are listed in Table 1.

  16. CO2 hydrogenation on a metal hydride surface.

    Science.gov (United States)

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.

  17. NUMERICAL ANALYSIS FOR HYDRIDING IN METAL HYDRIDE HYDROGEN STORAGE TANK%金属氢化物储氢器吸氢过程的数值分析

    Institute of Scientific and Technical Information of China (English)

    叶建华; 蒋利军; 李志念; 刘晓鹏; 王树茂

    2011-01-01

    Based on the principle of hydride adsorption, a one-dimensional mathematical model for hydriding in a cylindrical metal hydride hydrogen storage tank was established. The heat and mass transfer of metal hydride beds was computed by finite difference method. The variation in temperature and hydrogen concentration at different radial positions of the hydride layer was analyzed during the process of hydriding. The effects of supply pressure, heat convection coefficient and hydride layer radial thickness on the hydriding was studied. It is shown that hydride formation initially takes place uniformly all over the metal hydride layer, but with the process of hydriding, the hydriding rate at the core region is gradually slower than one at surface region. The increase of supply pressure and heat convection coefficient can accelerate the hydriding of the hydrogen storage tank. The effect of hydride layer radial thickness is significant on the hydriding rate, and the thinner hydride layer, the higher the hydriding rate.%基于金属氢化物吸氢基本特性,建立圆柱形金属氢化物储氢器吸氢过程的-维数学物理模型.采用有限差分法对金属氢化物床体的传热传质进行计算.分别研究金属氢化物床体各处温度和氢含量在吸氢过程中的变化以及氢气压力、对流传热系数和金属氢化物床体径向厚度对金属氢化物吸氢过程的影响.计算结果表明:初始阶段金属氢化物床均匀吸氢,但随着氢化过程的进行,其中心区域的吸氢速率逐渐低于边缘区域;增加吸氢压力、提高对流传热系数均可促进储氢器的吸氢;金属氢化物床的径向厚度对吸氢速率影响很大,金属氢化物床越薄,氢化反应的速度越快.

  18. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  19. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    Science.gov (United States)

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  20. High-Spin Cobalt Hydrides for Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Patrick L. [Yale University

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  1. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gschneidner, K. A. [Ames Lab., Ames, IA (United States); Schmidt, F. A. [Ames Lab., Ames, IA (United States); Frerichs, A. E. [Ames Lab., Ames, IA (United States); Ament, K. A. [Ames Lab., Ames, IA (United States)

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  2. Ab-initio study of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)

    2014-04-24

    We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.

  3. Hydride formation in core-shell alloyed metal nanoparticles

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  4. Hydrogen Desorption from Mg Hydride: An Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Simone Giusepponi

    2012-07-01

    Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.

  5. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  6. Thermopower enhancement by encapsulating cerium in clathrate cages.

    Science.gov (United States)

    Prokofiev, A; Sidorenko, A; Hradil, K; Ikeda, M; Svagera, R; Waas, M; Winkler, H; Neumaier, K; Paschen, S

    2013-12-01

    The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.

  7. Effect of Surface Modification on Behaviors of Cerium Oxide Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Li Mei; Shi Zhenxue; Liu Zhaogang; Hu Yanhong; Wang Mitang; Li Hangquan

    2007-01-01

    Study was made on the effect of surface modification on the behaviors of cerium oxide nanopowders. A surfactant-sodium dodecyl sulfate(C12H25SO4Na) was used to modify the surface of CeO2 powder particles. The unmodified and modified CeO2 powders were characterized by using a powder comprehensive characteristic tester, laser particle size analyzer, specific surface area tester, X-ray diffraction tester, and a scanning electron microscope. The testing and analysis results showed that C12H25SO4Na surface modification might increase the flowability and dispersity, and decrease the specific surface area and agglomeration of CeO2 powders. The mechanism of the surface modification of CeO2 powder particles was also discussed.

  8. EPDM composite membranes modified with cerium doped lead zirconate titanate

    Science.gov (United States)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  9. On the mixed nature of cerium conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Botana, F.J.; Aballe, A.; Bethencourt, M.; Cano, M.J. [Cadiz Univ. (Spain). Dept. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica; Marcos, M. [Cadiz Univ. (Spain). Dept. de Ingenieria Mecanica y Diseno Industrial

    2002-03-01

    Alternative pretreatments are currently under development in order to avoid the environmental impact produced by using surface finishing processes based on chromates. Some of the environmentally friendly alternatives proposed involve the use of lanthanide based compounds. In this study, conversion coatings on AA5083 (Al-Mg) samples developed using full immersion pretreatments in 500 ppm CeCl{sub 3} aqueous solutions have been investigated. Their microscopic and compositional features have been analyzed using SEM images and EDS spectra. From this analysis it has been determined that this layer over the surface of the samples is of a heterogeneous composition. This coating is formed by an alumina coating covering the aluminum matrix and dispersed cerium-rich islands deposited over the cathodic sites of the alloy. A characterization methodology is proposed based on the utilization of different electrochemical techniques, such as open circuit potential monitoring (OCP), linear polarization (LP) and electrochemical impedance spectroscopy (EIS). (orig.)

  10. Characterization of a zinc-cerium flow battery

    Science.gov (United States)

    Leung, P. K.; Ponce-de-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C.

    The performance of a divided, parallel-plate zinc-cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.

  11. Interplay of spin-orbit and entropic effects in cerium

    Energy Technology Data Exchange (ETDEWEB)

    Lanata, Nicola [Rutgers University; Yao, Yong-Xin [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory; Kotliar, Gabriel [Rutgers University

    2014-10-01

    We perform first-principles calculations of elemental cerium and compute its pressure-temperature phase diagram, finding good quantitative agreement with the experiments. Our calculations indicate that, while a signature of the volume-collapse transition appears in the free energy already at low temperatures, at higher temperatures this signature is enhanced because of the entropic effects, and originates an actual thermodynamical instability. Furthermore, we find that the catalyst determining this feature is—in all temperature regimes—a pressure-induced effective reduction of the f-level degeneracy due to the spin-orbit coupling. Our analysis suggests also that the lattice vibrations might be crucial in order to capture the behavior of the pressure-temperature transition line at large temperatures.

  12. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  13. Growth of transition metals on cerium tungstate model catalyst layers

    Science.gov (United States)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  14. The Spin Glass-Kondo Competition in Disordered Cerium Systems

    Science.gov (United States)

    Magalhaes, S. G.; Zimmer, F.; Coqblin, B.

    2013-10-01

    We discuss the competition between the Kondo effect, the spin glass state and a magnetic order observed in disordered Cerium systems. We present firstly the experimental situation of disordered alloys such as CeNi1 - xCux and then the different theoretical approaches based on the Kondo lattice model, with different descriptions of the intersite exchange interaction for the spin glass. After the gaussian approach of the Sherrington-Kirkpatrick model, we discuss the Mattis and the van Hemmen models. Then, we present simple cluster calculations in order to describe the percolative evolution of the clusters from the cluster spin glass to the inhomogeneous ferromagnetic order recently observed in CeNi1 - xCux disordered alloys and finally we discuss the effect of random and transverse magnetic field.

  15. Exploring "aerogen-hydride" interactions between ZOF2 (Z = Kr, Xe) and metal hydrides: An ab initio study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-06-01

    In this work, a new σ-hole interaction formed between ZOF2 (Z = Kr and Xe) as the Lewis acid and a series of metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CN, CH3) is reported. The nature of this interaction, called "aerogen-hydride" interaction, is unveiled by molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. Our results indicate that the aerogen-hydride interactions are quite strong and can be comparable in strength to other σ-hole bonds. An important charge-transfer interaction is also associated with the formation of OF2Z⋯HMX complexes.

  16. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richards, Andrew Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Roland K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13 and the fourth generation model is now complete. Additional high resolution experiments will be run to further test the model.

  17. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  18. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  19. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides; Modelisation au sein de la DFT des proprietes des structures electronique et magnetique et de liaison chimique des Hydrures d'Intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Al Alam, A.F.

    2009-06-15

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe{sub 2}) and Haucke (e.g. LaNi{sub 5}) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U{sub 2}Ni{sub 2}Sn) alloys on the other hand. (author)

  20. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  1. Review of magnesium hydride-based materials: development and optimisation

    NARCIS (Netherlands)

    Crivello, J. -C.; Dam, B.; Denys, R. V.; Dornheim, M.; Grant, D. M.; Huot, J.; Jensen, T. R.; de Jongh, P.; Latroche, M.; Milanese, C.; Milcius, D.; Walker, G. S.; Webb, C. J.; Zlotea, C.; Yartys, V. A.

    2016-01-01

    Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slo

  2. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack. Th

  3. Pore confined synthesis of magnesium boron hydride nanoparticles

    NARCIS (Netherlands)

    Au, Yuen S.; Yan, Yigang; De Jong, Krijn P.; Remhof, Arndt; De Jongh, Petra E.

    2014-01-01

    Nanostructured materials based on light elements such as Li, Mg, and Na are essential for energy storage and conversion applications, but often difficult to prepare with control over size and structure. We report a new strategy that is illustrated for the formation of magnesium boron hydrides, relev

  4. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen stora

  5. Optimization of Internal Cooling Fins for Metal Hydride Reactors

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Kukkapalli

    2016-06-01

    Full Text Available Metal hydride alloys are considered as a promising alternative to conventional hydrogen storage cylinders and mechanical hydrogen compressors. Compared to storing in a classic gas tank, metal hydride alloys can store hydrogen at nearly room pressure and use less volume to store the same amount of hydrogen. However, this hydrogen storage method necessitates an effective way to reject the heat released from the exothermic hydriding reaction. In this paper, a finned conductive insert is adopted to improve the heat transfer in the cylindrical reactor. The fins collect the heat that is volumetrically generated in LaNi5 metal hydride alloys and deliver it to the channel located in the center, through which a refrigerant flows. A multiple-physics modeling is performed to analyze the transient heat and mass transfer during the hydrogen absorption process. Fin design is made to identify the optimum shape of the finned insert for the best heat rejection. For the shape optimization, use of a predefined transient heat generation function is proposed. Simulations show that there exists an optimal length for the fin geometry.

  6. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  7. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  8. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    Science.gov (United States)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  9. Well-defined transition metal hydrides in catalytic isomerizations.

    Science.gov (United States)

    Larionov, Evgeny; Li, Houhua; Mazet, Clément

    2014-09-07

    This Feature Article intends to provide an overview of a variety of catalytic isomerization reactions that have been performed using well-defined transition metal hydride precatalysts. A particular emphasis is placed on the underlying mechanistic features of the transformations discussed. These have been categorized depending upon the nature of the substrate and in most cases discussed following a chronological order.

  10. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations

    Directory of Open Access Journals (Sweden)

    Jacques Huot

    2012-01-01

    Full Text Available It has recently been shown that Severe Plastic Deformation (SPD techniques could be used to obtain nanostructured metal hydrides with enhanced hydrogen sorption properties. In this paper we review the different SPD techniques used on metal hydrides and present some specific cases of the effect of cold rolling on the hydrogen storage properties and crystal structure of various types of metal hydrides such as magnesium-based alloys and body centered cubic (BCC alloys. Results show that generally cold rolling is as effective as ball milling to enhance hydrogen sorption kinetics. However, for some alloys such as TiV0.9Mn1.1 alloy ball milling and cold rolling have detrimental effect on hydrogen capacity. The exact mechanism responsible for the change in hydrogenation properties may not be the same for ball milling and cold rolling. Nevertheless, particle size reduction and texture seems to play a leading role in the hydrogen sorption enhancement of cold rolled metal hydrides.

  11. Metal hydrides for smart window and sensor applications

    NARCIS (Netherlands)

    Yoshimura, K.; Langhammer, C.; Dam, B.

    2013-01-01

    The hydrogenation of metals often leads to changes in optical properties in the visible range. This allows for fundamental studies of the hydrogenation process, as well as the exploration of various applications using these optical effects. Here, we focus on recent developments in metal hydride-base

  12. Tribochemical Decomposition of Light Ionic Hydrides at Room Temperature.

    Science.gov (United States)

    Nevshupa, Roman; Ares, Jose Ramón; Fernández, Jose Francisco; Del Campo, Adolfo; Roman, Elisa

    2015-07-16

    Tribochemical decomposition of magnesium hydride (MgH2) induced by deformation at room temperature was studied on a micrometric scale, in situ and in real time. During deformation, a near-full depletion of hydrogen in the micrometric affected zone is observed through an instantaneous (t MgH2 with reduced crystal size by mechanical deformation.

  13. KNH2-KH: a metal amide-hydride solid solution.

    Science.gov (United States)

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  14. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  15. Thin-film metal hydrides for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mongstad, Trygve Tveiteraas

    2012-11-01

    Thin-film metal hydrides may become important solar energy materials in the future. This thesis demonstrates interesting material properties of metal hydride films, relevant for applications as semiconducting materials for photovoltaic (PV) solar cells and for regulation of light using smart window technology.The work presented here has comprised an experimental study, focusing on three different materials: Magnesium hydride (MgH2), magnesium nickel hydride (Mg2NiH4) and yttrium hydride (YHx). Reactive sputter deposition was used to prepare the metal hydride film samples.This synthesis method is relatively uncommon for metal hydrides. Here,the first demonstration of reactive sputtering synthesis for YHx and Mg2NiH4 is given. Different challenges in forming singlephase, pure metal hydrides were identified: MgH2 could not be deposited without 3-16% metallic Mg present in the films, and YHx was found to react strong-ly to oxygen (O) during the deposition process. On the other hand, Mg2NiH4 films formed easily and apparently without major metallic clusters and with low O content.Mg2NiH4 is a semiconductor with an optical band gap that is suitable for PV solar cells. This study has showed that films with promising electrical and optical properties can be synthesized using reactive cosputtering of Mg and Ni. Using optical methods, the band gap for the as deposited samples was estimated to 1.54-1.76 eV, depending on the Mg-Ni composition. The asdeposited films were amorphous or nano-crystalline, but could be crystallized into the high-temperature fcc structure of Mg2NiH4 using heat treatment at 523 K. The band gap of the crystalline films was 2.1-2.2 eV, depending on the composition.A pronounced photochromic reaction to visible and UV light was observed for transparent yttrium hydride (T-YHx) samples. The optical transmission was reduced when the samples were illuminated, and the original optical transmission was restored when the samples were kept under dark conditions

  16. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  17. Synthesis of hydrides by interaction of intermetallic compounds with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Boris P., E-mail: tarasov@icp.ac.ru [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Fokin, Valentin N.; Fokina, Evelina E. [Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Yartys, Volodymyr A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, Kjeller NO 2027 (Norway); Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim NO 7491 (Norway)

    2015-10-05

    Highlights: • Interaction of the intermetallics A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} with NH{sub 3} was studied. • The mechanism of interaction of the alloys with ammonia is temperature-dependent. • Hydrides, hydridonitrides, disproportionation products or metal–N–H compounds are formed. • NH{sub 4}Cl was used as an activator of the reaction between ammonia and intermetallics. • Interaction with ammonia results in the synthesis of the nanopowders. - Abstract: Interaction of intermetallic compounds with ammonia was studied as a processing route to synthesize hydrides and hydridonitrides of intermetallic compounds having various stoichiometries and types of crystal structures, including A{sub 2}B, AB, AB{sub 2}, AB{sub 5} and A{sub 2}B{sub 17} (A = Mg, Ti, Zr, Sc, Nd, Sm; B = transition metals, including Fe, Co, Ni, Ti and nontransition elements, Al and B). In presence of NH{sub 4}Cl used as an activator of the reaction between ammonia and intermetallic alloys, their interaction proceeds at rather mild P–T conditions, at temperatures 100–200 °C and at pressures of 0.6–0.8 MPa. The mechanism of interaction of the alloys with ammonia appears to be temperature-dependent and, following a rise of the interaction temperature, it leads to the formation of interstitial hydrides; interstitial hydridonitrides; disproportionation products (binary hydride; new intermetallic hydrides and binary nitrides) or new metal–nitrogen–hydrogen compounds like magnesium amide Mg(NH{sub 2}){sub 2}. The interaction results in the synthesis of the nanopowders where hydrogen and nitrogen atoms become incorporated into the crystal lattices of the intermetallic alloys. The nitrogenated materials have the smallest particle size, down to 40 nm, and a specific surface area close to 20 m{sup 2}/g.

  18. Effects of cerium nitrate on the growth and physiological characteristics in Cyclocarya paliurusseedlings

    Institute of Scientific and Technical Information of China (English)

    谢寅峰; 李颖; 刘娜娜; 张颖颖; 郭楠; 王涛; 尚绪岚

    2015-01-01

    Field studies were conducted to examine the effects of cerium on the growth and physiological characteristics ofCyclo-carya paliurusseedlings by spraying the foliage with different concentrations of cerium nitrate. Optimal concentrations of cerium ni-trate improved the relative growth yield of seedling height and stems and the soluble protein and sugar content of the leaves. Cerium nitrate also increased the concentration of secondary metabolites including triterpenoids, quercetin and kaempferol, mineral elements K, P, Mg, Mn, Fe and Cu, and the activities of superoxide dismutase (SOD), peroxidase (POX), and phenylalanine ammonia-lyase (PAL) in the leaves. The effects of cerium nitrate on these indices were dose dependent. A concentration of 0.20 mmol/L was optimal to promote the relative growth yield of seedling height, contents of soluble sugar, kaempferol, K, P, Cu, and activities of PAL, SOD, and POX, significantlyincreased by 54.61%, 14.71%, 55.19%, 105.2%, 74.5%, 133.3%, 80.48%, 25.35% and 22.54%, respectively, as compared with the control. However, the maximal increase in relative growth yield of stems, contents of triterpenoid, quercetin, Mg, Mn, and Fe was attained at 1.00 mmol/L treatment, which significantlyincreased by 87.00%, 80.56%, 452.44%, 93.2%, 29.4%, and 133.9%, respectively, compared with control check (CK). Correlation analysis revealed positive relationships between activities of PAL, SOD and contents of triterpenoid, quercetin and kaempferol within a certain concentration range of cerium nitrate. These re-sults suggested that an appropriate concentration of cerium not only was effective in the improvement of physiological function ofC. paliurus, but alsoincreased seedling resistance. Moreover, it stimulated the synthesis of medicinal components in leaves.

  19. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  20. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  1. Hydride structures in Ti-aluminides subjected to high temperature and hydrogen pressure charging conditions

    Science.gov (United States)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1991-01-01

    The distribution and chemistry of hydrides produced in single and dual phase alloys with a composition near TiAl have been investigated by using a combination of TEM and X-ray diffraction techniques. The alloys were exposed at 650 C to 13.8 MPa of gaseous H2 for 100 h. In the single-phase gamma alloy, large hydrides preferentially nucleated on the grain boundaries and matrix dislocations and a population of small hydrides was distributed throughout the matrix. X-ray and electron diffraction patterns from these hydrides indicated that they have an fcc structure with a lattice parameter of 0.45 nm. EDAX analysis of the hydrides showed that they were enriched in Ti. The hydrides were mostly removed by vacuum annealing at 800 C for 24 h. On dissolution of the hydrides, the chemistry of hydride-free regions of the grain boundary returned to the matrix composition, suggesting that Ti segregation accompanied the hydride formation rather than Ti enrichment causing the formation of the hydride.

  2. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.

    Science.gov (United States)

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2016-05-01

    Nickel-metal hydride batteries (Ni-MH) contain not only the base metals, but valuable rare earth metals (REMs) viz. La, Sm, Nd, Pr and Ce as well. In view of the importance of resource recycling and assured supply of the contained metals in such wastes, the present study has focussed on the leaching of the rare earth metals from the spent Ni-MH batteries. The conditions for the leaching of REMs from the spent batteries were optimized as: 2M H2SO4, 348K temperature and 120min of time at a pulp density (PD) of 100g/L. Under this condition, the leaching of 98.1% Nd, 98.4% Sm, 95.5% Pr and 89.4% Ce was achieved. Besides the rare earth metals, more than 90% of base metals (Ni, Co, Mn and Zn) were also leached out in this condition. Kinetic data for the dissolution of all the rare earth metals showed the best fit to the chemical control shrinking core model. The leaching of metals followed the mechanism involving the chemical reaction proceeding on the surface of particles by the lixiviant, which was corroborated by the XRD phase analysis and SEM-EDS studies. The activation energy of 7.6, 6.3, 11.3 and 13.5kJ/mol was acquired for the leaching of neodymium, samarium, praseodymium and cerium, respectively in the temperature range 305-348K. From the leach liquor, the mixed rare earth metals were precipitated at pH∼1.8 and the precipitated REMs was analyzed by XRD and SEM studies to determine the phases and the morphological features.

  3. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    Science.gov (United States)

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  4. Heavy hydrides: H2Te ultraviolet photochemistry

    Science.gov (United States)

    Underwood, J.; Chastaing, D.; Lee, S.; Wittig, C.

    2005-08-01

    The room-temperature ultraviolet absorption spectrum of H2Te has been recorded. Unlike other group-6 hydrides, it displays a long-wavelength tail that extends to 400 nm. Dissociation dynamics have been examined at photolysis wavelengths of 266 nm (which lies in the main absorption feature) and 355 nm (which lies in the long-wavelength tail) by using high-n Rydberg time-of-flight spectroscopy to obtain center-of-mass translational energy distributions for the channels that yield H atoms. Photodissociation at 355 nm yields TeH(Π1/22) selectively relative to the TeH(Π3/22) ground state. This is attributed to the role of the 3A' state, which has a shallow well at large RH-TeH and correlates to H +TeH(Π1/22). Note that the Π1/22 state is analogous to the P1/22 spin-orbit excited state of atomic iodine, which is isoelectronic with TeH. The 3A' state is crossed at large R only by 2A″, with which it does not interact. The character of 3A' at large R is influenced by a strong spin-orbit interaction in the TeH product. Namely, Π1/22 has a higher degree of spherical symmetry than does Π3/22 (recall that I(P1/22) is spherically symmetric), and consequently Π1/22 is not inclined to form either strongly bonding or antibonding orbitals with the H atom. The 3A'←X transition dipole moment dominates in the long-wavelength region and increases with R. Structure observed in the absorption spectrum in the 380-400 nm region is attributed to vibrations on 3A'. The main absorption feature that is peaked at ˜240nm might arise from several excited surfaces. On the basis of the high degree of laboratory system spatial anisotropy of the fragments from 266 nm photolysis, as well as high-level theoretical studies, the main contribution is believed to be due to the 4A″ surface. The 4A″←X transition dipole moment dominates in the Franck-Condon region, and its polarization is in accord with the experimental observations. An extensive secondary photolysis (i.e., of nascent TeH) is

  5. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  6. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  7. Mechanism of chlorinating lanthanum oxide and cerium oxide with ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    朱国才; 李赋屏; 肖明贵

    2003-01-01

    Using ammonium chloride(NH4Cl)as a chlorinating agent,the effects of chlorinating temperature,at 300℃ for 90 min,and have no advantage to chlorination of lanthanum and cerium oxides at higher temperature.The thermal decomposition of LaCl3 and CeCl3 is carried out to explore the mechanism of chlorinating lanthanum and cerium oxides.At the same time,the chlorination of lanthanum and cerium oxides is not devoted to the HCl decomposed from NH4Cl,but to NH4Cl directly taking part in the chlorination of La2O3 and CeO2.The lanthanum and cerium oxides in chlorination firstly form intermediate LaOCl and CeOCl,and then transfer to LaCl3 and CeCl3,fither prove the existence of the intermediates LaOCl and CeOCl.Therefore the chlorinating temperature and time should strictly be controlled when the lanthanum oxide and cerium oxide are chlorinated with NH4 Cl.And over-dosage of NH4 Cl should be also applied in the process of chlorination.

  8. Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach.

    Science.gov (United States)

    Patel, M A; Bhanvase, B A; Sonawane, S H

    2013-05-01

    Ultrasound assisted synthesis of yellow rare earth cerium zinc molybdate anticorrosion nanopigment is presented. This new class of pigment is eco-friendly alternatives to lead, cadmium and chromium pigment as these pigments contains carcinogenic species like Cr(6+) which is responsible for human disease. The synthesis of nanosized cerium zinc molybdate was carried out using cerium nitrate, sodium zinc molybdate as a precursor materials by conventional and ultrasound assisted chemical precipitation method without addition of emulsification agent. XRD, FTIR and elemental analysis confirm the formation of cerium zinc molybdate nanoparticles. The conductivity results indicate that conventional synthesis takes longer time, while in sonochemical technique (US), reaction completes within short period of time. Improved solute transfer rate, rapid nucleation, and formation of large number of nuclei are attributed to presence of cavitation. Saturation of the Ce(3+) ions reaches earlier in case of sonochemical technique which restricts the growth of particles hence smaller size is obtained. The crystallite size of cerium zinc molybdate was found to be 27nm from XRD analysis.

  9. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    Science.gov (United States)

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-05-24

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  10. Effects of precipitate aging time on the cerium-zirconium composite oxides

    Institute of Scientific and Technical Information of China (English)

    钟强; 崔梅生; 岳梅; 王琦; 王磊; 郭荣贵; 龙志奇; 黄小卫

    2014-01-01

    Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirco-nium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the properties of cerium-zirconium composite oxides were investigated. The prepared cerium-zirconium composite oxides were characterized by X-ray diffraction (XRD), BET specific surface area, pulsed oxygen chemical adsorption, H2 temperature-programmed-reduction (H2-TPR), scanning electron microscopy (SEM), etc. The results showed that the precipitate aging time caused great effects on the properties of cerium zirconium composite oxides. With the increase of aging time, the cerium zirconium composite oxides showed enhanced specific sur-face area, good thermal stability, and high oxygen storage capacity (OSC). The best performance sample was obtained while the pre-cipitate aging time up to 48 h, with the specific surface area of 140.7 m2/g, and OSC of 657.24μmolO2/g for the fresh sample. Even after thermal aged under 1000 ºC for 4 h, the aged specific surface area was 41.6 m2/g, moreover with a good OSC of 569.9μmolO2/g.

  11. Toenail cerium levels and risk of a first acute myocardial infarction: The EURAMIC and heavy metals study

    NARCIS (Netherlands)

    Gomez-Aracena, J.; Riemersma, R.A.; Veer, van 't P.; Kok, F.J.

    2006-01-01

    The association between cerium status and risk of first acute myocardial infarction (AMI) was examined in a case-control study in 10 centres from Europe and Israel. Cerium in toenails was assessed by neutron activation analysis in 684 cases and 724 controls aged 70years or younger. Mean concentratio

  12. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction

    Science.gov (United States)

    Colas, Kimberly B.; Motta, Arthur T.; Daymond, Mark R.; Almer, Jonathan D.

    2013-09-01

    The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. Cycling under stress above the threshold stress for reorientation drastically increases both the reoriented hydride fraction and the hydride size. The reoriented hydride

  13. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  14. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles.

    Science.gov (United States)

    Lord, Megan S; Tsoi, Bonny; Gunawan, Cindy; Teoh, Wey Yang; Amal, Rose; Whitelock, John M

    2013-11-01

    Cerium oxide nanoparticles (nanoceria) are widely reported to be non-cytotoxic and modulate intracellular reactive oxygen species (ROS). In this study, nanoceria (dxRD = 12 nm) were functionalised with either 130 or 880 molecules of unfractionated heparin using the organosilane linker, 3-aminopropyltriethoxysilane. Nanoceria with a low level of heparin functionalisation were found to scavenge intracellular ROS to the same extent as unfunctionalised nanoceria and significantly more than cells exposed to medium only. In contrast, nanoceria with the highest level of heparin functionalisation were not as effective at scavenging intracellular ROS. Nanoceria were localised predominantly in the cytoplasm, while heparin-nanoceria were localised in both the cytoplasm and lysosomes. Together these data demonstrated that the level of nanoceria surface functionalisation with heparin determined the intracellular localisation and ROS scavenging ability of these particles. Additionally, heparin-nanoceria were effective in reducing endothelial cell proliferation indicating that they may find application in the control of angiogenesis in cancer in the future.

  15. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  16. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  17. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  18. Heat transfer analysis of metal hydrides in metal-hydrogen secondary batteries

    Science.gov (United States)

    Onischak, M.; Dharia, D.; Gidaspow, D.

    1976-01-01

    The heat transfer between a metal-hydrogen secondary battery and a hydrogen-storing metal hydride was studied. Temperature profiles of the endothermic metal hydrides and the metal-hydrogen battery were obtained during discharging of the batteries assuming an adiabatic system. Two hydride materials were considered in two physical arrangements within the battery system. In one case the hydride is positioned in a thin annular region about the battery stack; in the other the hydride is held in a tube down the center of the stack. The results show that for a typical 20 ampere-hour battery system with lanthanum pentanickel hydride as the hydrogen reservoir the system could perform successfully.

  19. Molecular early main group metal hydrides: synthetic challenge, structures and applications.

    Science.gov (United States)

    Harder, Sjoerd

    2012-11-25

    Within the general area of early main group metal chemistry, the controlled synthesis of well-defined metal hydride complexes is a rapidly developing research field. As group 1 and 2 metal complexes are generally highly dynamic and lattice energies for their [MH](∞) and [MH(2)](∞) salts are high, the synthesis of well-defined soluble hydride complexes is an obvious challenge. Access to molecular early main group metal hydrides, however, is rewarding: these hydrocarbon-soluble metal hydrides are highly reactive, have found use in early main group metal catalysis and are potentially also valuable molecular model systems for polar metal hydrides as a hydrogen storage material. The article focusses specifically on alkali and alkaline-earth metal hydride complexes and discusses the synthetic challenge, molecular structures, reactivity and applications.

  20. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  1. The role of chemical interactions between thorium, cerium, and lanthanum in lymphocyte toxicity.

    Science.gov (United States)

    Oliveira, Monica S; Duarte, Isabelle M; Paiva, Amanda V; Yunes, Samira N; Almeida, Carlos E; Mattos, Rita C; Sarcinelli, Paula N

    2014-01-01

    Thorium, cerium, and lanthanum are metals present in several types of minerals, the most common of which is monazite. Cerium and lanthanum are elements in the lanthanides series. Thorium, an actinide metal, is a hazardous element due to its radioactive characteristics. There is a lack of information describing the possible chemical interactions among these elements and the effects they may have on humans. Toxicological analyses were performed using cell viability, cell death, and DNA damage assays. Chemical interactions were evaluated based on the Loewe additivity model. The results indicate that thorium and cerium individually have no toxic effects on lymphocytes. However, thorium associated with lanthanum increases the toxicity of this element, thereby reducing the viability of lymphocytes at low concentrations of metals in the mixture.

  2. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  3. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  4. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Science.gov (United States)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  5. Structure, Morphology and Reducibility of Epitaxial Cerium Oxide Ultrathin Films and Nanostructures

    Directory of Open Access Journals (Sweden)

    Paola Luches

    2015-08-01

    Full Text Available Cerium oxide is a very interesting material that finds applications in many different fields, such as catalysis, energy conversion, and biomedicine. An interesting approach to unravel the complexity of real systems and obtain an improved understanding of cerium oxide-based materials is represented by the study of model systems in the form of epitaxial ultrathin films or nanostructures supported on single crystalline substrates. These materials often show interesting novel properties, induced by spatial confinement and by the interaction with the supporting substrate, and their understanding requires the use of advanced experimental techniques combined with computational modeling. Recent experimental and theoretical studies performed within this field are examined and discussed here, with emphasis on the new perspectives introduced in view of the optimization of cerium oxide-based materials for application in different fields.

  6. Study of phase transitions in cerium in shock-wave experiments

    Directory of Open Access Journals (Sweden)

    Zhernokletov M.V.

    2015-01-01

    Full Text Available Cerium has a complex phase diagram that is explained by the presence of structure phase transitions. Planar gauges were used in various combinations in experiments for determination of sound velocity dependence on pressure in cerium by the technique of PVDF gauge. The data of time dependence on pressure profiles with use of x(t diagrams and the D(u relation for cerium allowed the definition of the Lagrangian velocity of the unloading wave CLagr and the Eulerian velocity CEul by taking into account the compression σ. These results accords with data obtained by using the technique of VISAR and a manganin-based gauge, and calculated pressure dependence of isentropic sound velocity according to the VNIITF EOS. Metallography analysis of post-experimental samples did not find any changes in a phase composition.

  7. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Parvinder; Kaur, Simranpreet [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, Gurinder Pal [Department of Physics, Khalsa College, Amritsar 143002 (India); Arora, Deepawali; Kumar, Sunil [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, D.P., E-mail: dpsinghdr@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-08-15

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV‐Vis absorption spectra and fluorescence spectra (λ{sub exc}.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO{sub 4} units thus supporting the density results. The UV‐ Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  8. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  9. Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel

    Directory of Open Access Journals (Sweden)

    V. Sajith

    2010-01-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in the nanoparticle form on the major physicochemical properties and the performance of biodiesel. The physicochemical properties of the base fuel and the modified fuel formed by dispersing the catalyst nanoparticles by ultrasonic agitation are measured using ASTM standard test methods. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Comparisons of the performance of the fuel with and without the additive are also presented. The flash point and the viscosity of biodiesel were found to increase with the inclusion of the cerium oxide nanoparticles. The emission levels of hydrocarbon and NOx are appreciably reduced with the addition of cerium oxide nanoparticles.

  10. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  11. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  12. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling

    OpenAIRE

    Dzierlenga, Michael W.; Antoniou, Dimitri; Schwartz, Steven D.

    2015-01-01

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for obser...

  13. Orbital-like motion of hydride ligands around low-coordinate metal centers.

    Science.gov (United States)

    Ortuño, Manuel A; Vidossich, Pietro; Conejero, Salvador; Lledós, Agustí

    2014-12-15

    Hydrogen atoms in the coordination sphere of a transition metal are highly mobile ligands. Here, a new type of dynamic process involving hydrides has been characterized by computational means. This dynamic event consists of an orbital-like motion of hydride ligands around low-coordinate metal centers containing N-heterocyclic carbenes. The hydride movement around the carbene-metal-carbene axis is the lowest energy mode connecting energy equivalent isomers. This understanding provides crucial information for the interpretation of NMR spectra.

  14. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    Directory of Open Access Journals (Sweden)

    Borislav Bogdanović

    2009-01-01

    Full Text Available For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  15. High temperature metal hydrides as heat storage materials for solar and related applications.

    Science.gov (United States)

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  16. Neutral binuclear rare-earth metal complexes with four μ₂-bridging hydrides.

    Science.gov (United States)

    Rong, Weifeng; He, Dongliang; Wang, Meiyan; Mou, Zehuai; Cheng, Jianhua; Yao, Changguang; Li, Shihui; Trifonov, Alexander A; Lyubov, Dmitrii M; Cui, Dongmei

    2015-03-25

    The first neutral rare-earth metal dinuclear dihydrido complexes [(NPNPN)LnH2]2 (2-Ln; Ln = Y, Lu; NPNPN: N[Ph2PNC6H3((i)Pr)2]2) bearing μ2-bridging hydride ligands have been synthesized. In the presence of THF, 2-Y undergoes intramolecular activation of the sp(2) C-H bond to form dinuclear aryl-hydride complex 3-Y containing three μ2-bridging hydride ligands.

  17. Development of a novel metal hydride-air secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Gamburzev, S.; Zhang, W.; Velev, O.A.; Srinivasan, S.; Appleby, A.J. [Texas A and M University, College Station (United States). Center for Electrochemical Systems and Hydrogen Research; Visintin, A. [Universidad Nacional de La Plata (Argentina). Insituto Nacional de Investigaciones Fisicoquimica Teoricas y Applicadas

    1998-05-01

    A laboratory metal hydride/air cell was evaluated. Charging was via a bifunctional air gas-diffusion electrode. Mixed nickel and cobalt oxides, supported on carbon black and activated carbon, were used as catalysts in this electrode. At 30 mA cm{sup -2} in 6 M KOH, the air electrode potentials were -0.2 V (oxygen reduction) and +0.65 V (oxygen evolution) vs Hg/HgO. The laboratory cell was cycled for 50 cycles at the C/2 rate (10 mA cm{sup -2}). The average discharge/charge voltages of the cell were 0.65 and 1.6 V, respectively. The initial capacity of the metal hydride electrode decreased by about 15% after 50 cycles. (author)

  18. Pyrophoric behaviour of uranium hydride and uranium powders

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyadec, F., E-mail: fabienne.leguyadec@cea.f [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Genin, X.; Bayle, J.P. [CEA Marcoule DEN/DTEC/SDTC, 30207 Bagnols sur Ceze, BP 17171 (France); Dugne, O. [DEN/DTEC/SGCS, 30207 Bagnols sur Ceze, BP 17171 (France); Duhart-Barone, A.; Ablitzer, C. [CEA Cadarache DEN/DEC/SPUA, 13108 St. Paul lez Durance (France)

    2010-01-31

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (<0.5 wt.%) was obtained by heat treatment at low temperature in flowing Ar/5%H{sub 2}. Pure uranium powder was obtained by dehydration in flowing pure argon. Those fine powders showed spontaneous ignition at room temperature in air. An in situ CCD-camera displayed ignition associated with powder temperature measurement. Characterization of powders before and after ignition was performed by XRD measurements and SEM observations. Oxidation mechanisms are proposed.

  19. Detecting low concentrations of plutonium hydride with magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H. [National High Magnetic Field Laboratory, MPA-CMMS, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545 (United States); Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D. [Nuclear Material Science Group, MST-16, LANL, Los Alamos, New Mexico 87545 (United States)

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  20. Reversible metal-hydride phase transformation in epitaxial films.

    Science.gov (United States)

    Roytburd, Alexander L; Boyerinas, Brad M; Bruck, Hugh A

    2015-03-11

    Metal-hydride phase transformations in solids commonly proceed with hysteresis. The extrinsic component of hysteresis is the result of the dissipation of energy of internal stress due to plastic deformation and fracture. It can be mitigated on the nanoscale, where plastic deformation and fracture are suppressed and the transformation proceeds through formation and evolution of coherent phases. However, the phase coherency introduces intrinsic thermodynamic hysteresis, preventing reversible transformation. In this paper, it is shown that thermodynamic hysteresis of coherent metal-hydride transformation can be eliminated in epitaxial film due to substrate constraint. Film-substrate interaction leads to formation of heterophase polydomain nanostructure with variable phase fraction which can change reversibly by varying temperature in a closed system or chemical potential in an open system.

  1. Structural isotope effects in metal hydrides and deuterides.

    Science.gov (United States)

    Ting, Valeska P; Henry, Paul F; Kohlmann, Holger; Wilson, Chick C; Weller, Mark T

    2010-03-07

    Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH(2) and BaH(2) with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.

  2. Effects of metastability on hydrogen sorption in fluorine substituted hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Pinatel, E.R.; Corno, M.; Ugliengo, P.; Baricco, M., E-mail: marcello.baricco@unito.it

    2014-12-05

    Highlights: • Fluorine substitution in simple metal hydrides has been modelled. • The stability of the MH{sub (1−x)}F{sub x} solid solutions has been discussed. • Conditions for reversibility of sorption reactions have been suggested. - Abstract: In this work ab initio calculations and Calphad modelling have been coupled to describe the effect of fluorine substitution on the thermodynamics of hydrogenation–dehydrogenation in simple hydrides (NaH, AlH{sub 3} and CaH{sub 2}). These example systems have been used to discuss the conditions required for the formation of a stable hydride–fluoride solid solution necessary to obtain a reversible hydrogenation reaction.

  3. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Castillo-Michel, Hiram [European Synchrotron Radiation Facility, B.P. 220-38043 Grenoble, Cedex (France); Hernandez-Viezcas, Jose-Angel [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Sahi, Shivendra [Department of Biology, Western Kentucky University, Bowling Green, KY 42101 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Kidney bean roots uptake nCeO{sub 2} primarily without biotransformation. • Cerium reached the root vascular tissues through gaps in the Casparian strip. • On longer exposure to high concentration, roots demonstrate stress response. • In leaves, guaiacol peroxidase plays a major role in ROS scavenging. - Abstract: Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO{sub 2}) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼8 ± 1 nm nCeO{sub 2} (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO{sub 2} exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO{sub 2}, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO{sub 2}/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO{sub 2} exposure in order to maintain cellular homeostasis.

  4. Luminescence properties and decay kinetics of nano ZnO powder doped with cerium ions

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Nihar Ranjan, E-mail: nihar@iitbbs.ac.in [Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Orissa (India); Acharya, B.S., E-mail: bsacharya1950@gmail.com [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar 752054, Orissa (India); Singh, Th. Basanta [Luminescence Dating Laboratory, Manipur University, Imphal 795003 (India); Gartia, R.K. [Department of Physics, Manipur University, Imphal 795003 (India)

    2013-04-15

    ZnO nanopowders doped with cerium ions (1.2 and 1.5 at. wt.%) were synthesized through soft solution route using ultrasound. Sonication has been found to be an effective way for doping rare earth ions like cerium into ZnO. This was confirmed from energy dispersive analysis of X-rays (EDAX) measurement. Further, optical absorption and photoluminescence (PL) measurements corroborate this finding. X-ray diffraction (XRD) studies show the increase of crystallite size and unit cell volume with doping of cerium ions. Formation of fibrous structure of ZnO:Ce was observed from the transmission electron microscopy (TEM) measurements. Although the structural measurements indicate Ce{sup 4+} ion occupying substitutional site in ZnO, PL and absorption studies confirmed the presence of Ce{sup 3+} ion in the powder. The coexistence of Ce{sup 3+} and Ce{sup 4+} ions has been explained on the basis of conversion of Ce{sup 3+} to Ce{sup 4+} in the oxidizing environment. Thermoluminescence (TL) and photo-stimulated decay of luminescence (PSDL) decay studies give an idea of various trapping levels present in the band gap of ZnO. These traps release electrons during optical stimulation to give bimolecular kinetics in nano ZnO:Ce powders. -- Highlights: ► Sonication: an effective way of incorporation of cerium ions into ZnO. ► Site dependent characteristic emission of cerium. ► Energy transfer from host lattice to cerium ions. ► Mono and bimolecular kinetics of ZnO:Ce.

  5. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  6. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    DEFF Research Database (Denmark)

    Singh, Vishvanath P.; Badiger, Nagappa M.; Gerward, Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fittin...... combination of low-and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors....

  7. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  8. METHOD OF MAKING DELTA ZIRCONIUM HYDRIDE MONOLITHIC MODERATOR PIECES

    Science.gov (United States)

    Vetrano, J.B.

    1962-01-23

    A method is given for preparing large, sound bodies of delta zirconium hydride. The method includes the steps of heating a zirconium body to a temperature of not less than l000 deg C, providing a hydrogen atmosphere for the zirconium body at a pressure not greater than one atmosphere, reducing the temperature slowly to 800 deg C at such a rate that cracks do not form while maintaining the hydrogen pressure substantially constant, and cooling in an atmosphere of hydrogen. (AEC)

  9. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    OpenAIRE

    Singh Vishvanath P.; Badiger Nagappa M.; Gerward Leif

    2016-01-01

    Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neu...

  10. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  11. Homoleptic cerium(III) and cerium(IV) nitroxide complexes: significant stabilization of the 4+ oxidation state.

    Science.gov (United States)

    Bogart, Justin A; Lewis, Andrew J; Medling, Scott A; Piro, Nicholas A; Carroll, Patrick J; Booth, Corwin H; Schelter, Eric J

    2013-10-07

    Electrochemical experiments performed on the complex Ce(IV)[2-((t)BuNO)py]4, where [2-((t)BuNO)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(n)Bu4N]2[Ce(NO3)6] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with δ symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  12. Pressure-driven formation and stabilization of superconductive chromium hydrides

    Science.gov (United States)

    Yu, Shuyin; Jia, Xiaojing; Frapper, Gilles; Li, Duan; Oganov, Artem R.; Zeng, Qingfeng; Zhang, Litong

    2015-01-01

    Chromium hydride is a prototype stoichiometric transition metal hydride. The phase diagram of Cr-H system at high pressures remains largely unexplored due to the challenges in dealing with the high activation barriers and complications in handing hydrogen under pressure. We have performed an extensive structural study on Cr-H system at pressure range 0 ∼ 300 GPa using an unbiased structure prediction method based on evolutionary algorithm. Upon compression, a number of hydrides are predicted to become stable in the excess hydrogen environment and these have compositions of Cr2Hn (n = 2–4, 6, 8, 16). Cr2H3, CrH2 and Cr2H5 structures are versions of the perfect anti-NiAs-type CrH with ordered tetrahedral interstitial sites filled by H atoms. CrH3 and CrH4 exhibit host-guest structural characteristics. In CrH8, H2 units are also identified. Our study unravels that CrH is a superconductor at atmospheric pressure with an estimated transition temperature (T c) of 10.6 K, and superconductivity in CrH3 is enhanced by the metallic hydrogen sublattice with T c of 37.1 K at 81 GPa, very similar to the extensively studied MgB2. PMID:26626579

  13. Air passivation of metal hydride beds for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Hsu, R. H. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15

    One waste acceptance criteria for hydride bed waste disposal is that the bed be non-pyrophoric. Batch-wise air ingress tests were performed which determined the amount of air consumed by a metal hydride bed. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 deg.C internal temperature rise upon the first air exposure cycle and a 0.1 deg.C temperature rise upon a second air exposure. A total of 346 sec air was consumed by the bed (0.08 sec per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12. cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water. (authors)

  14. Modellization of Metal Hydride Canister for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Rocio Maceiras

    2015-06-01

    Full Text Available Hydrogen shows very interesting features for its use on-board applications as fuel cell vehicles. This paper presents the modelling of a tank with a metal hydride alloy for on-board applications, which provides good performance under ambient conditions. The metal hydride contained in the tank is Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5. A two-dimensional model has been performed for the refuelling process (absorption and the discharge process (desorption. For that, individual models of mass balance, energy balance, reaction kinetics and behaviour of hydrogen gas has been modelled. The model has been developed under Matlab / Simulink© environment. Finally, individual models have been integrated into a global model, and simulated under ambient conditions. With the aim to analyse the temperature influence on the state of charge and filling and emptying time, other simulations were performed at different temperatures. The obtained results allow to conclude that this alloy offers a good behaviour with the discharge process under normal ambient conditions. Keywords: Hydrogen storage; metal hydrides; fuel cell; simulation; board applications

  15. Investigation of long term stability in metal hydrides

    Science.gov (United States)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  16. Performance study of a hydrogen powered metal hydride actuator

    Science.gov (United States)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  17. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  18. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Science.gov (United States)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-06-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  19. Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate

    Institute of Scientific and Technical Information of China (English)

    陈爱美; 施庆珊; 冯劲; 欧阳友生; 陈仪本; 谭绍早

    2010-01-01

    The biological effect of cerium nitrate on the outer membrane(OM) of Escherichia coli(E.coli) cell was studied,and the antim-icrobial mechanism of rare earth elements was explored.The antimicrobial effect of cerium nitrate on E.coli cell was valued by plate count method,and the morphology change of E.coli cell was observed with scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The results showed that the E.coli cell suspension was flocculated when the concentration of Ce(NO3)3?6H2O...

  20. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  1. Cerium: catalytic properties, technological and environmental applications; Cerio: propriedades cataliticas, aplicacoes tecnologicas e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Tereza S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica; Hewer, Thiago L.R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Freire, Renato S. [Universidade de Sao Paulo (USP), Cubatao (Brazil). Centro de Capacitacao e Pesquisa em Meio Ambiente]. E-mail: tmartins@if.usp.br

    2007-07-01

    Cerium based-compounds have great importance in a wide range of technological applications, such as: fuel cell devices development; metallurgic processes, petroleum refining; glass and ceramic production. Recently, its catalytic properties have been also explored for environmental applications, especially those to prevent or to control atmospheric and water pollution. Subjects covered in this work include a brief description of the fundaments of cerium catalytic properties and some relevant technological applications. Special attention is given to its photo catalytic activity and its ability to degrade pollutants. Recent results and future prospect about these applications are also evaluated. (author)

  2. Synthesis and characterization of two dimensional metal organic framework of cerium with tetraaza macrocyclic

    Energy Technology Data Exchange (ETDEWEB)

    Bt Safiin, Nurul Atikah; Yarmo, Ambar; Yamin, Bohari M. [School of Chemical Science and Food Technology. Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    A two dimensional metal organic framework containing cerium sufate layers and ethylenediaminium between layers was obtained by refluxing the mixture of cerium sulphate and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7, 14-diene bromide. The complex was characterized by infrared spectroscopy and microelemental analysis. X-ray study showed that the complex adopts eleven coordination environments about the central atom. Thermogravimetric study showed the removal of water molecules at about 70°C followed by a gradual mass loss until the whole structure collapsed at about 400°C.

  3. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  4. Feasibility of Substituting Cerium-Rich Metal by La-Pr-Ce Alloy in Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    伏思静; 赵平

    2004-01-01

    In magnesium alloy ZM3, using cheap Lanthanum-praseodymium-cerium (LPC) rare earth as a substitute for rich-cerium rare earth was studied. The experimental results show that when the adding amount of LPC is between 2.53% and 3.33%, the tensile strength increases as the adding amount of LPC increases; when the amount of RE is 2.53% and 3.33%, the average tensile strength is 142.35, 153.65 MPa respectively. The results show that LPC rare earth replacing rich Ce rare earth is feasible for the tensile strength of ZM3.

  5. Effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings

    OpenAIRE

    Yu Mei; Liu Yuxing; Liu Jianhua; Li Songmei; Xue Bing; Zhang You; Yin Xiaolin

    2015-01-01

    The present work examines the effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings. The Si–Zr hybrid sol–gel coatings on a 2A12 aluminum substrate were prepared through hydrolysis and condensation of glycidoxypropyl-trimethoxy-silane (GTMS) and zirconium(IV) n-propoxide (TPOZ). Used as inhibitors for corrosion, three types of cerium salts (Ce(NO3)3, CeCl3, and Ce(CH3COO)3) were doped into the sol–gel coatings. Fourier transform infrared (FTIR) and scanning electron ...

  6. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  7. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  8. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    Science.gov (United States)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  9. Cerium-based conversion coatings on magnesium alloys

    Science.gov (United States)

    Castano Londono, Carlos Eduardo

    This research is primarily focused on gaining a better understanding of the deposition and corrosion behavior of cerium-based conversion coatings (CeCCs) on AZ31B and AZ91D Mg alloys. Deposition of homogenous and protective CeCCs was highly dependent on the surface preparation steps. The best results were obtained when Mg samples underwent grinding, acid cleaning, and alkaline cleaning processes. This reduced the number of active cathodic sites and promoted the formation of a protective Al-rich Mg oxide/hydroxide layer. Electrochemical properties of the CeCCs were also strongly correlated with morphological, microstructural, and chemical characteristics. Protective CeCCs were deposited on both AZ31 and AZ91 Mg alloys using a range of deposition times (5 to 180 s) and temperatures (10 to 80 °C). However, shorter deposition times (5 s) and lower deposition temperatures (~10 °C) showed higher impedance and longer bath stability than other deposition conditions. The increase in impedance was related with fewer cracks and smaller nodule sizes. Additional investigations of post-treated CeCCs exposed to NaCl environments showed an increased in the total impedance. The increase in corrosion protection of the CeCCs was associated with an overall increase in coating thickness from 400 to 800 nm. A microstructural evolution from ~3 nm nodular nanocrystals of CeO2/CePO4*H2O embedded in an amorphous matrix to >50 nm CePO4*H2O nanocrystals was responsible for the electrochemically active corrosion protection. Exposure of CeCCs to sunlight in humid environments promoted the reduction of Ce(IV) into Ce(III) species compared to unexposed coatings. This reduction process was related with photocatalytic water oxidation reaction.

  10. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  11. Thermoluminescence of cerium and terbium -doped calcium pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Lozano R, I. B.; Diaz G, J. A. I., E-mail: jesus.roman@nucleares.unam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The aim of this work is to report the thermoluminescence (Tl) response of Calcium Pyrophosphate phosphor doped with Cerium and Terbium impurities (Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+}). The phosphors were synthesized using the co-precipitation method and annealed at 900 degrees C by two hours for obtain the β phase. The intentional doping with Ce and Tb ions was 1 at.% and 0.1 at.%, whereas in the EDS results the concentration of impurities was 0.39 at.% and 0.05 at.%, respectively. The superficial morphology of phosphor is mainly composed by thin wafers of different size. All samples were exposed to gamma rays from {sup 60}Co in the Gammacell-200 irradiator. The Tl response of the phosphor was measured from Rt up to 350 degrees C and under nitrogen atmosphere in a Harshaw TLD 3500 reader. The glow curves of the Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+} powders showed a broad intense Tl peak centered at 165 degrees C and a shoulder at approximate 260 degrees C was observed. A linear Tl response in the range of absorbed dose of 0.2 to 10 Gy was obtained. Tl glow curves were analyzed using the initial rise (IR)and computerized glow curve deconvolution methods to evaluate the kinetics parameters such as activation energy (E), frequency factor (s) and kinetic order (b). (Author)

  12. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, David R [ORNL; Albrecht, Peter M [ORNL; Calaza, Florencia C [ORNL

    2013-01-01

    Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

  13. Carbene-metal hydrides can be much less acidic than phosphine-metal hydrides: significance in hydrogenations.

    Science.gov (United States)

    Zhu, Ye; Fan, Yubo; Burgess, Kevin

    2010-05-05

    Acidities of iridium hydride intermediates were shown to be critical in some transformations mediated by the chiral analogues of Crabtree's catalyst, 1-3. To do this, several experiments were undertaken to investigate the acidities of hydrogenation mixtures formed using these iridium-oxazoline complexes. DFT calculations indicated that the acidity difference for Ir-H intermediates in these hydrogenations were astounding; iridium hydride from the N-heterocyclic carbene catalyst 1 was calculated to be around seven pK(a) units less acidic than those from the P-based complexes 2 and 3. Consistent with this, the carbene complex 1 was shown to be more effective for hydrogenations of acid-sensitive substrates. In deuteration experiments, less "abnormal" deuteration was observed, corresponding to fewer complications from acid-mediated alkene isomerization preceding the D(2)-addition step. Finally, simple tests with pH indicators provided visual evidence that phosphine-based catalyst precursors give significantly more acidic reaction mixtures than the corresponding N-heterocyclic carbene ones. These observations indicate carbene-for-phosphine (and similar) ligand substitutions may impact the outcome of catalytic reactions by modifying the acidities of the metal hydrides formed.

  14. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  15. Structural and electrochemical studies on the utilization of Cerium (Ce3+ as an additive for nickel hydroxide electrode

    Directory of Open Access Journals (Sweden)

    Marcio Vidotti

    2007-03-01

    Full Text Available This paper describes electrochemical and spectroscopic studies on the utilization of cerium atoms as additives for nickel hydroxide electrodes. Thin films were galvanostatically grown with different amounts of cerium and mixed electrodes were studied by electrochemical measurements and the spectroscopic technique. The electrochromic behavior was investigated by “in situ” experiments , while the amount of species was determined by ICP-OES. The addition of cerium to nickel hydroxide electrodes increases durability, due to modifications in the structural properties, as seen by Raman spectras.

  16. Effects of Cerium on Alloy Elements Distribution in Ferrous Matrix Material

    Institute of Scientific and Technical Information of China (English)

    刘英才; 刘俊友; 尹衍生; 刘国权

    2001-01-01

    The effect of the addition of rare earths in Fe-based high chromium alloy powders on elements distribution in matrix materials and mechanical properties were studied. The results show that the addition of cerium can increase the chromium amount in carbonides and increase the micro-hardness after carbonization and the wear-resistant property of materials.

  17. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  18. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  19. Characteristics of cerium-gadolinium oxide (CGO) suspensions as a function of dispersant and powder properties

    DEFF Research Database (Denmark)

    Phair, John; Lönnroth, Nadja; Lundberg, Mats;

    2009-01-01

    A series of concentrated suspensions ( = 0.18–0.34) of cerium-gadolinium oxide (CGO) in terpineol were prepared as a function of dispersant, powder surface area and solids concentration. The stability of the suspensions was assessed by rheological measurements including viscosity and oscillatory...

  20. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  1. Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, M; Fu, G; Ionescu, E; Ensinger, W, E-mail: mboehme@ca.tu-darmstadt.de [Department of Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany)

    2011-02-11

    This paper reports the synthesis of cerium dioxide nanotubes (CeNTs) by electroless deposition using ion-track-etched polycarbonate templates. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several-step-containing procedure under aqueous conditions. The approach reported below will process open end nanotubes with well-defined outer diameter and wall thickness.

  2. Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure.

    Science.gov (United States)

    Boehme, M; Fu, G; Ionescu, E; Ensinger, W

    2011-02-11

    This paper reports the synthesis of cerium dioxide nanotubes (CeNTs) by electroless deposition using ion-track-etched polycarbonate templates. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several-step-containing procedure under aqueous conditions. The approach reported below will process open end nanotubes with well-defined outer diameter and wall thickness.

  3. Growth and characterization of cerium lanthanum oxalate crystals grown in hydro-silica gel

    Energy Technology Data Exchange (ETDEWEB)

    John, M.V.; Ittyachen, M.A. [Mahatma Gandhi Univ., Kerala (India). School of Pure and Applied Physics

    2001-07-01

    Single crystals of mixed cerium lanthanum oxalate (CLO) are grown by gel method. Over the hydrosilica gel prepared by mixing oxalic acid and sodium meta silicate, a mixture of aqueous solutions of cerium nitrate and lanthanum nitrate are poured gently. Cerium and lanthanum ions diffuse into the gel and react with oxalic acid to give colorless, transparent cerium lanthanum oxalate crystals with in a few days. Different growth parameters give crystals of various dimensions. Infrared (IR) spectrum confirms the presence of water molecules and carboxylic acid. X-ray diffraction (XRD) pattern of these samples reveals the crystalline nature. Diffraction peaks are indexed. Unit cell parameters are determined. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) data support the presence of 9 H{sub 2}O molecules attached to the CLO crystal lattice which are lost around 200 C as revealed by the endotherm record. Exothermic peak around 350 C-425 C shows the release of CO and CO{sub 2}. Elemental analysis done by energy dispersive X-ray fluorescence analysis (EDXRF) for the mixed rare earth compound is almost in good agreement with experimental and theoretical values. (orig.)

  4. Release of cerium dibutylphosphate corrosion inhibitors from highly filled epoxy coating systems

    NARCIS (Netherlands)

    Soestbergen, M. van; Baukh, V.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2014-01-01

    Carcinogenic chromates are phased out as corrosion inhibitors in organic coatings, and are replaced by benign alternatives. Cerium-based compounds are excellent corrosion inhibitors in an aqueous environment. However, whether they are effective as corrosion inhibitor in an organic coating also depen

  5. Crack initiation at long radial hydrides in Zr-2. 5Nb pressure tube material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)

    1994-05-01

    Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.

  6. Arsenic speciation analysis by HPLC postcolumn hydride generation and detection by atomic fluorescence spectrometry

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Rychlovský, P.; Dědina, J. (Jiří)

    2014-01-01

    The aim of this contribution is to present a new method of hydride generation that enables to generate arsines from iAs , iAs , MMA and DMA in a flow injection mode with the same efficiency and in the next step connection of this hydride generator with HPLC column.

  7. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Science.gov (United States)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  8. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  9. Theoretical study on hydrogenation catalysts containing a metal hydride as additional hydrogen supply

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1992-01-01

    A hypothetical hydrogenation catalyst consisting of porous, catalytically active particles embedded with metal hydride powder was evaluated. The metal hydride provides temporarily additional hydrogen if the mass transfer rate of the hydrogen to the internal of the particle is not sufficient. A numer

  10. First-principles study of superabundant vacancy formation in metal hydrides.

    Science.gov (United States)

    Zhang, Changjun; Alavi, Ali

    2005-07-13

    Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.

  11. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    Science.gov (United States)

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.

  12. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    Science.gov (United States)

    Schrange-Kashenock, G.

    2016-09-01

    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120-150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac-Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d -1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining fullerene

  13. Hydrogenation reaction characteristics and properties of its hydrides for magnetic regenerative material HoCu2

    Institute of Scientific and Technical Information of China (English)

    金滔; 吴梦茜; 黄迦乐; 汤珂; 陈立新

    2016-01-01

    The hydrogenation reaction characteristics and the properties of its hydrides for the magnetic regenerative material HoCu2 (CeCu2-type) of a cryocooler were investigated. The XRD testing reveals that the hydrides of HoCu2 were a mixture of Cu, unknown hydride I, and unknown hydride II. Based on the PCT (pressure−concentration−temperature) curves under different reaction temperatures, the relationships among reaction temperature, equilibrium pressure, and maximum hydrogen absorption capacity were analyzed and discussed. The enthalpy changeΔH and entropy changeΔS as a result of the whole hydrogenation process were also calculated from the PCT curves. The magnetization and volumetric specific heat capacity of the hydride were also measured by SQUID magnetometer and PPMS, respectively.

  14. Getting metal-hydrides to do what you want them to

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB/sub 5/ compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi/sub 5/ + H/sub 2/ is used as example. Use of AB/sub 5/ hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV/sub 2/) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures. (DLC)

  15. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  16. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  17. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    Science.gov (United States)

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  18. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.

    Science.gov (United States)

    Schilter, David; Camara, James M; Huynh, Mioy T; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-08-10

    Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.

  19. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  20. Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India)

    2016-02-01

    The current work presents the synthesis and properties of cerium doped magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized by standard chemical co-precipitation method using NH{sub 4}OH as co-precipitating agent. The effects of cerium ion substitution on structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles were reported. These materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The cerium content has a significant influence on structural and magnetic properties. The X-ray diffraction study confirmed the formation of single-phase magnetite with space group Fd3m and crystallite size ranging from 39 to 58 nm. The addition of cerium resulted in a reduction of crystallite size and an increase of cell parameters. FTIR measurements confirmed the formation of different samples and suggested that the reduction of Fe{sup +3} to Fe{sup +2} preferred on a site adjacent to Ce{sup +4}. Magnetic measurements revealed that the saturation magnetization (Ms) and remanence (M{sub r}) decreased while the coercivity (H{sub C}) and squareness (M{sub r}/M{sub S}) increased with increasing cerium content. - Highlights: • There is an increase in cell parameters and strain with Ce-content. • Samples show the presence of secondary phase after 1.0% doping level. • Ce-ions prefer octahedral sites and charge neutrality is accompanied by Fe{sup +3} → Fe{sup +2}. • Magnetization decreases due to weakening of the super exchange interactions. • Squareness and coercivity start to increase with Ce content.

  1. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  2. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  3. ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

    2009-01-09

    Hydrogen storage is one of the challenges to be overcome for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods. The direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali metal alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation of alane from the mixtures of the electrochemical cell. Alane is isolated as the triethylamine (TEA) adduct and converted to pure, unsolvated alane by heating under vacuum.

  4. Electrochemical process and production of novel complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  5. Geoneutrinos and Hydridic Earth (or primordially Hydrogen-Rich Planet)

    CERN Document Server

    Bezrukov, L

    2014-01-01

    Geoneutrino is a new channel of information about geochemical composition of the Earth. We alnalysed here the following problem. What statistics do we need to distinguish between predictions of Bulk Silicate Earth model and Hydridic Earth model for Th/U signal ratio? We obtained the simple formula for estimation of error of Th/U signal ratio. Our calculations show that we need more than $22 kt \\cdot year$ exposition for Gran-Sasso underground laboratory and Sudbury Neutrino Observatory. We need more than $27 kt \\cdot year$ exposition for Kamioka site in the case of stopping of all Japanese nuclear power plants.

  6. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  7. Alkyl and Hydride-Olefin Complexes of Niobocene

    NARCIS (Netherlands)

    Klazinga, A.H.; Teuben, J.H.

    1980-01-01

    Reactions of Cp2NbCl2 with RMgCl (R = n-C3H7, i-C3H7, n-C4H9, s-C4H9 and n-C5H11) give niobocene hydride olefin complexes Cp2Nb(H)L (L = C3H6, C4H8 and C5H10). The last step of the reaction probably proceeds via a stereospecific β-H elimination from the monoalkyl species Cp2NbR. Decomposition of n-a

  8. Comparison between different reactions of group IV hydride with H

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Shaolong; ZHANG; Xuqiang; ZHANG; Qinggang; ZHANG; Yici

    2006-01-01

    The four-dimensional time-dependent quantum dynamics calculations for reactions of group IV hydride with H are carried out by employing the semirigid vibrating rotor target model and the time-dependent wave packet method. The reaction possibility, cross section and rate constants for reactions (H+SiH4 and H+GeH4) in different initial vibrational and rotational states are obtained. The common feature for such kind of reaction process is summarized. The theoretical result is consistent with available measurement, which indicates the credibility of this theory and the potential energy surface.

  9. Effects of Ca additions on some Mg-alloy hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, D.; Biris, A.; Indrea, E.; Bucur, R.V.

    1983-01-01

    The hydrogenation of the alloy of composition CaMg/sub 1/ /sub 8/Ni/sub 0/ /sub 5/ containing CaMg/sub 2/ and MgNi/sub 2/ shows fast activation kinetics. The Mg/sub 2/Ni phase is observed in the dehydrided samples. The three plateaus on the hydrogen desorption isotherms correspond to the most stable magnesium hydrides observed up to now in Mg-alloy (..delta.. H = 20 to 24 kcal/mol H/sub 2/). The effects of Ca additions on the hydrogen storage capacity and desorption rates of some Mg-rich alloys have been studied. 16 references, 3 figures, 1 table.

  10. Bipolar Nickel-Metal Hydride Battery Development Project

    Science.gov (United States)

    Cole, John H.

    1999-01-01

    This paper reviews the development of the Electro Energy, Inc.'s bipolar nickel metal hydride battery. The advantages of the design are that each cell is individually sealed, and that there are no external cell terminals, no electrode current collectors, it is compatible with plastic bonded electrodes, adaptable to heat transfer fins, scalable to large area, capacity and high voltage. The design will allow for automated flexible manufacturing, improved energy and power density and lower cost. The development and testing of the battery's component are described. Graphic presentation of the results of many of the tests are included.

  11. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  12. Equilibrium composition for the reaction of plutonium hydride with air

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There are six independent constituents with 4 chemical elements, i.e. PuH2.7(s), PuN(s), Pu2O3(s), N2, O2 and H2, therefore , the system described involves of 2 independent reactions ,both those of the experimental, which indicates that the chemical equilibrium is nearly completely approached. Therefore, it is believed that the reaction rate of plutonium hydride with air is extremely rapid. The present paper has briefly discussed the simultaneous reactions and its thermodynamic coupling effect.

  13. Convenient synthesis of substituted pyrroles via a cerium (IV ammonium nitrate (CAN-catalyzed Paal–Knorr reaction

    Directory of Open Access Journals (Sweden)

    Ahmed Kamal

    2016-07-01

    Full Text Available A screening of various cerium salts for promoting the Paal–Knorr pyrrole synthesis revealed the superiority of cerium (IV ammonium nitrate (CAN as a catalyst. Excellent yields of substituted pyrroles were obtained in CAN-catalyzed Paal–Knorr reactions of 1,4-diketones with various amines. The protocol is noteworthy for the mild reaction condition, short reaction times, scalability and easy isolation of products and high yields of the products.

  14. Study of gels of molybdenum with cerium in the preparation of generators of 99Mo - 99mTc

    OpenAIRE

    Vanessa Moraes; Bárbara Marczewski; Carla Roberta Dias; João Alberto Osso Junior

    2005-01-01

    99mTc has ideal nuclear properties for organ imaging in nuclear medicine, and it is obtained from the 99Mo-99mTc generator. Four different types of generators are available: chromatographic that uses 99Mo from fission of uranium; MEK solvent extraction; Tc2O7 sublimation; gel chromatographic. This work presents the preparation of gel generators of molybdenum with cerium and characterization of the gels: mass ratio between molybdenum and cerium, structure, size of particles and elution percent...

  15. Identification and characterization of a new zirconium hydride; Identification et caracterisation d'un nouvel hydrure de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Morniroli, J.P.; Legris, A.; Thuinet, L. [Universite des Sciences et Technologies de Lille, USTL, ENSCL, CNRS, 59 - Villeneuve d' Ascq (France); Zhao, Zhao; Blat-Yrieix, M.; Ambard, A.; Legras, L. [Electricite de France (EDF/RD), Centre des Renardieres, 77 - Moret sur Loing (France); Kihn, Y. [CEMES-CNRS, 31 - Toulouse (France)

    2007-07-01

    A study of hydrides characterization has been carried out in using the transmission electron microscopy technique. It has revealed the presence of small hydrides of acicular form whose length does not exceed 500 nm, among the zircaloy-4 samples hydrided by cathodic way. The electronic diffraction has shown that these small hydrides have a crystallographic structure different of those of the hydrides phases already index in literature. A more complete identification study has then been carried out. In combining the different electronic microscopy techniques (precession electronic micro diffraction and EELS) with ab initio calculations, a new hydride phase has been identified. It is called hydride {zeta}, is of trigonal structure with lattice parameters a{sub {zeta}} = a{sub {alpha}}{sub Zr} = 0.33 nm and c{sub {zeta}} 2c{sub {alpha}}{sub Zr} = 1.029 nm, its spatial group being P3m1. (O.M.)

  16. Chromatographic separation of cerium(Ⅲ) in L-valine medium using poly[dibenzo-18-crown-6

    Institute of Scientific and Technical Information of China (English)

    SABALE Sandip R; MOHITE Baburao S

    2009-01-01

    A column chromatographic method has been developed for the separation and determination of cerium(Ⅲ) using poly[dibenzo-18-crown-6]. The separation was carried out in L-valine medium. The adsorption of cerium(Ⅲ) was quantitative from 1×10-1 to 1×10-4 mol/L L-valine. Amongst the various eluents, 1.0-8.0 mol/L hydrochloric acid, 1.0-8.0 mol/L hydrobromic acid, 1.0-8.0 mol/L perchloric acid, 1.0-2.0 mol/L sulfuric acid and 4.0-5.0 mol/L acetic acid, were found to be the efficient eluents for cerium(Ⅲ). The capacity of poly[dibenzo-18-crown-6] for cerium(Ⅲ) was (0.428±0.01) mmol/g. The method was applied to the separation of cerium(Ⅲ) from associated elements link uranium(Ⅵ) and thorium(Ⅳ). It was also applied for the determination of cerium(Ⅲ) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately±2% ).

  17. Structure Analysis of Oxidation Film of Ignition-Inhibition AZ91D Ma gnesium Alloy Added with Cerium

    Institute of Scientific and Technical Information of China (English)

    黄晓锋; 周宏; 何镇明

    2003-01-01

    The effect of cerium on ignition temperature of AZ91D magnesium alloy was studied. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃, so the magnesium alloy added with cerium can be melted in air. The burning temperature increases with the increasing of cerium. The structure and chemical compositions of the surface oxide film were investigated by XRD and Auger electron spectrometry(AES). The results of XRD indicate that the oxide film of the surface of ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, Mg17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AES depth profile analysis shows that the oxide film can be divided into three layers. The outside layer is mainly made up of magnesia, the middle layer, which consists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. Thermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.

  18. Interstellar chemistry of nitrogen hydrides in dark clouds

    CERN Document Server

    Gal, Romane Le; Faure, Alexandre; Forêts, Guillaume Pineau des; Rist, Claire; Maret, Sébastien

    2013-01-01

    The aim of the present work is to perform a comprehensive analysis of the interstellar chemistry of nitrogen, focussing on the gas-phase formation of the smallest polyatomic species and in particular nitrogen hydrides. We present a new chemical network in which the kinetic rates of critical reactions have been updated based on recent experimental and theoretical studies, including nuclear spin branching ratios. Our network thus treats the different spin symmetries of the nitrogen hydrides self-consistently together with the ortho and para forms of molecular hydrogen. This new network is used to model the time evolution of the chemical abundances in dark cloud conditions. The steady-state results are analysed, with special emphasis on the influence of the overall amounts of carbon, oxygen, and sulphur. Our calculations are also compared with Herschel/HIFI observations of NH, NH$_2$, and NH$_3$ detected towards the external envelope of the protostar IRAS 16293-2422. The observed abundances and abundance ratios ...

  19. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  20. Thermodynamic properties of the cubic plutonium hydride solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J M

    1981-12-01

    Pressure, temperature, and composition data for the cubic solid solution plutonium hydride phase, PuH/sub x/, have been measured by microbalance methods. Integral enthalpies and entropies of formation have been evaluated for the composition range 1.90 less than or equal to X less than or equal to 3.00. At 550/sup 0/K, ..delta..H/sup 0/ /sub f/(PuH/sub x/(s)) varies linearly from approximately (-38 +- 1) kcal mol/sup -1/ at PuH/sub 190/ to (-50 +- 1 kcal mol/sup -1/) at PuH/sub 3/ /sub 00/. Thermochemical values obtained by reevaluating tensimetric data from the literature are in excellent agreement with these results. Isotopic effects have been quantified by comparing the results for hydride and deuteride, and equations are presented for predicting ..delta..H/sup 0/ /sub f/ and ..delta..S/sup 0/ /sub f/ values for PuH/sub x/(s) and PuD/sub x/(s).

  1. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-Hui; XIU Xiang-Qan; YAN Huai-Yue; ZHANG Rong; XIE Zi-Li; HAN Ping; SHI Yi; ZHENG You-Dou

    2011-01-01

    @@ GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst.The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy,electron diffraction,roomtemperature photoluminescence and energy dispersive spectroscopy.The results show that the nanowires are wurtzite single crystals growing along the[0001]direction and a redshift in the photoluminescence is observed due to a superposition of several effects.The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.%GaN nanowires are grown by hydride vapor phase epitaxy using nickel as a catalyst. The properties of the obtained GaN nanowires are characterized by scanning and transmission electron microscopy, electron diffraction, room-temperature photoluminescence and energy dispersive spectroscopy. The results show that the nanowires are wurtzite single crystals growing along the [0001] direction and a redshift in the photoluminescence is observed due to a superposition of several effects. The Raman spectra are close to those of the bulk GaN and the significantly broadening of those modes indicates the phonon confinement effects associated with the nanoscale dimensions of the system.

  2. Thermodynamic Calculation on the Formation of Titanium Hydride

    Institute of Scientific and Technical Information of China (English)

    Jing-wei Zhao; Hua Ding; Xue-feng Tian; Wen-juan Zhao; Hong-liang Hou

    2008-01-01

    A modified Miedema model, using interrelationship among the basic properties of elements Ti and H, is employed to calculate the standard enthalpy of formation of titanium hydride TiHx (1≤x≤2). Based on Debye theories of solid thermal capacity, the vibrational entropy, as well as electronic entropy, is acquired by quantum mechanics and statistic thermodynamics methods, and a new approach is presented to calculate the standard entropy of formation of Till2. The values of standard enthalpy of formation of TiHx decrease linearly with increase of x. The calculated results of standard enthalpy, entropy, and free energy of forma- tion of Till2 at 298.16 K are -142.39 kJ/mol, -143.0 J/(mol-K) and -99.75 k J/tool, respectively, which is consistent with the previously-reported data obtained by either experimental or theoretical calculation methods. The results show that the thermodynamic model for titanium hydride is reasonable.

  3. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  4. Electronic Principles of Hydrogen Incorporation and Dynamics in Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Ljiljana Matović

    2012-08-01

    Full Text Available An approach to various metal hydrides based on electronic principles is presented. The effective medium theory (EMT is used to illustrate fundamental aspects of metal-hydrogen interaction and clarify the most important processes taking place during the interaction. The elaboration is extended using the numerous existing results of experiment and calculations, as well as using some new material. In particular, the absorption/desorption of H in the Mg/MgH2 system is analyzed in detail, and all relevant initial structures and processes explained. Reasons for the high stability and slow sorption in this system are noted, and possible solutions proposed. The role of the transition-metal impurities in MgH2 is briefly discussed, and some interesting phenomena, observed in complex intermetallic compounds, are mentioned. The principle mechanism governing the Li-amide/imide transformation is also discussed. Latterly, some perspectives for the metal-hydrides investigation from the electronic point of view are elucidated.

  5. Superconductive "sodalite"-like clathrate calcium hydride at high pressures

    CERN Document Server

    Wang, Hui; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centred cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming a "H4" unit as the building block in the construction of the 3-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone centre. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220-235 K at 150 GPa obtained...

  6. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  7. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs.

  8. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    Science.gov (United States)

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  9. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    Science.gov (United States)

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future.

  10. Insertion of Group 12-16 Hydrides into NHCs: A Theoretical Investigation.

    Science.gov (United States)

    Iversen, Kalon J; Dutton, Jason L; Wilson, David

    2017-03-06

    The endocyclic ring expansion of N-heterocyclic carbene (NHC) rings by transition metal (Group 12) and main group (Group 13-16) element hydrides has been investigated in a computational study. In addition to previously reported insertion reactivity with Si, B, Be and Zn, similar reactivity is predicted to be feasible for heavier group 13 elements (Al, Ga, In, Tl), with the reaction barriers for Al-Tl calculated to be lower than for boron. Insertion is not expected with group 15-16 element hydrides, as the initial adduct formation is thermodynamically unfavourable. The reaction pathway with group 12 hydrides is calculated to be more favourable with two NHCs rather than a single NHC (analogous to Be), however hydride ring insertion with metal dihydrides is not feasible, but rather a reduced NHC is thermodynamically favoured. For group 14, ring-insertion reactivity is predicted to be feasible with the heavier dihydrides. Trends in reactivity of element hydrides may be related to the protic or hydridic character of the element hydrides.

  11. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Science.gov (United States)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  12. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiushi, E-mail: qiushi@clemson.edu [Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634 (United States); Ostien, Jakob T., E-mail: jtostie@sandia.gov [Mechanics of Materials Dept. 8256, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969 (United States); Hansen, Glen, E-mail: gahanse@sandia.gov [Computational Multiphysics Dept. 1443, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1321 (United States)

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J{sub 2} elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton–Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  13. Effects of Cerium Nitrate on Expression of CaM Ⅰ and PMCA Ca2+-ATPase mRNA in Rat Liver

    Institute of Scientific and Technical Information of China (English)

    杨维东; 王艇; 刘洁生; 雷衡毅; 杨燕生

    2001-01-01

    The effect of cerium nitrate on expression of CaM Ⅰ and PMCA1b in rat liver was studied by means of reverse transcription-polymerase chain reaction (RT-PCR). The result shows that neither a high dose (50 mg*kg-1) nor a low dose (1 mg*kg-1) of cerium nitrate induces any alterations of expression of CaM Ⅰ and PMCA 1b mRNA after recurrent intraperitoneal injection of cerium nitrate, which suggests that effect of cerium nitrate on CaM and Ca2+-ATPase might be at posttranscription level.

  14. The storage of hydrogen in the form of metal hydrides: An application to thermal engines

    Science.gov (United States)

    Gales, C.; Perroud, P.

    1981-01-01

    The possibility of using LaNi56, FeTiH2, or MgH2 as metal hydride storage sytems for hydrogen fueled automobile engines is discussed. Magnesium copper and magnesium nickel hydrides studies indicate that they provide more stable storage systems than pure magnesium hydrides. Several test engines employing hydrogen fuel have been developed: a single cylinder motor originally designed for use with air gasoline mixture; a four-cylinder engine modified to run on an air hydrogen mixture; and a gas turbine.

  15. Solid hydrides as hydrogen storage reservoirs; Hidruros solidos como acumuladores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Sanchez, C.; Friedrichs, O.; Ares, J. R.; Leardini, F.; Bodega, J.; Fernandez, J. F.

    2010-07-01

    Metal hydrides as hydrogen storage materials are briefly reviewed in this paper. Fundamental properties of metal-hydrogen (gas) system such as Pressure-Composition-Temperature (P-C-T) characteristics are discussed on the light of the metal-hydride thermodynamics. Attention is specially paid to light metal hydrides which might have application in the car and transport sector. The pros and cons of MgH{sub 2} as a light material are outlined. Researches in course oriented to improve the behaviour of MgH{sub 2} are presented. Finally, other very promising alternative materials such as Al compounds (alanates) or borohydrides as light hydrogen accumulators are also considered. (Author)

  16. Hückel's Rule of Aromaticity Categorizes Aromatic Closo Boron Hydride Clusters

    OpenAIRE

    Poater i Teixidor, Jordi; Solà i Puig, Miquel; Viñas, Clara; Teixidor, Francesc

    2016-01-01

    A direct connection is established between tridimensional aromatic closo boron hydride clusters and planar aromatic [n]annulenes for medium and large size boron clusters. In particular, our results prove the existence of a link between the two-dimensional Hückel rule followed by aromatic [n]-annulenes and Wade-Mingos' rule of three-dimensional aromaticity applied to the aromatic [BnHn]2- closo boron hydride clusters. Our results show that closo boron hydride clusters can be categorized into d...

  17. Generalized computational model for high-pressure metal hydrides with variable thermal properties

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2015-01-01

    This study considers a detailed 1D fueling model applied to a metal hydride system, with Ti1.1CrMn as the absorbing alloy, to predict the weight fraction of the absorbed hydrogen and the solid bed temperature. Dependencies of thermal conductivity and specific heat capacity upon pressure...... and hydrogen content, respectively, are accounted for by interpolating experimental data. The effect of variable parameters on the critical metal hydride thickness is investigated and compared to results obtained from a constant-parameter analysis. Finally, the discrepancy in the metal hydride thickness value...

  18. Thermal decomposition kinetics of titanium hydride and Al alloy melt foaming process

    Institute of Scientific and Technical Information of China (English)

    YANG; Donghui; HE; Deping; YANG; Shangrun

    2004-01-01

    A temperature programmed decomposition (TPD) apparatus with metal tube structure, in which Ar is used as the carrier gas, is established and the TPD spectrum of titanium hydride is acquired. Using consulting table method (CTM), spectrum superposition method (SSM) and differential spectrum technique, TPD spectrum of titanium hydride is separated and a set of thermal decomposition kinetics equations are acquired. According to these equations, the relationship between decomposition quantity and time for titanium hydride at the temperature of 940 K is obtained and the result well coincides with the Al alloy melt foaming process.

  19. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  20. Reduction behavior of cerium(Ⅲ) ions in NaCl-2CsCl melt

    Institute of Scientific and Technical Information of China (English)

    QI Xue; ZHU Hongmin

    2005-01-01

    The cathodic process of cerium(Ⅲ) ions in NaCl-2CsCl melt was studied by cyclic voltammetry and square wave voltammetry with tungsten and gold electrodes at 873 K. The two electroanalytical methods yield similar results. The cathodic process of cerium(Ⅲ) ions consists of two reversible steps: Ce3+ + e-= Ce2+ and Ce2+ + 2e-= Ce. The half wave potentials of Ce3+/Ce2+ and Ce2+/Ce were determined as -2.525 V vs. Cl2/Cl- and -2.975 V vs. Cl2/Cl-, respectively. The diffusion coefficient of Ce3+ was also determined as 5.5 × 10-5 cm2·s-1.

  1. Deposition of cerium contained conversion films on LC4 alloy with square wave pulse method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LI Jiuqing; WU Yinshun; ZHANG Pei; HE Jianping

    2004-01-01

    Cerium contained conversion films were deposited on LC4 aluminum alloy using square wave pulse (SWP) in a CeC13 solution with KMnO4 as the oxidant. Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) were adopted to study the composition and the morphology of the film. It is found that the film is composed of Al, Zn, Cu,and small amount of cerium. The polarization curves of the specimens treated with SWP technique measured in 3.5% (mass fraction) NaCl solution reveal that the film thus formed inhibits both the anodic and cathodic process of the corrosion of the specimen. The immersion tests of treated specimens in 3.5% NaCl solution indicate that the corrosion resistance of the SWP treated specimen is better than that of the untreated and is equivalent to or even better than that of the traditionally electrochemically treated specimens.

  2. Color-Fading Spectrophotometric Determination of Cerium with DBC-Arsenazo

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 张晓霞

    2004-01-01

    In the medium of 0.18~1.08 mol·L-1 sulfuric acid, cerium(Ⅳ) has the color-fading effect on DBC-arsenazo. The apparent molar absorptivity of the color-fading reaction is ε530 nm=1.03×104 L·mol-1·cm-1. Beer′s law is obeyed over the range of 1.20~12.0 μg·ml-1 of Ce (Ⅳ) which shows a linear relationship with the decrease in the absorbance of the colored solution. The effect of thirty-six coexisting ions was studied. The method was applied to the determination of the trace amount of cerium in water samples and has the advantage of high accuracy and good selectivity.

  3. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  4. Synthesis, characterization and antimicrobial activity of zinc and cerium co-doped α-zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    DAI Guangjian; YU Aili; CAI Xiang; SHI Qingshan; OUYANG Yousheng; TAN Shaozao

    2012-01-01

    A series of zinc ions or/and cerium ions co-doped a-zirconium phosphate (Zn-Ce@ZrPs) were prepared.The novel Zn-Ce@ZrPs were characterized and the antibacterial activity on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were tested.The results showed that zinc ions (Zn2+) or/and cerium ions (Ce3+) were combined with ZrP,and the Ce3+ was adsorbed on the surface of ZrP through hydrogen bonds,while Zn2+ intercalated into the interlayer of ZrP.Zn-Ce@ZrPs showed excellent synergistic antibacterial activity.When Zn2+/Ce3+ atomic ratio was 0.6,the Zn-Ce@ZrP3 showed the highest synergistic antibacterial efficiency,suggesting great potential application as antibacterial agents in microbial control.

  5. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  6. Structure and synergetic antibacterial effect of zinc and cerium carried sodium zirconium phosphates

    Institute of Scientific and Technical Information of China (English)

    YANG Yunhua; DAI Guangjian; TAN Shaozao; LIU Yingliang; SHI Qingshan; OUYANG Yousheng

    2011-01-01

    Zinc and cerium carried zirconium phosphates (Zn-Ce/ZrPs) were prepared by exchanging zinc and cerium cations into sodium zirconium phosphate (NaZrP) through the ion-exchange method and characterized by X-ray diffraction(XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). Furthermore, the specific surface area, zeta potential and antibacterial activity were tested. The results showed that Zn-Ce/ZrPs were with hexagonal crystal system, and the surface area of Zn-Ce/ZrPs increased much more than that of NaZrP. Zn-Ce/ZrPs showed obvious synergetic antibacterial effect, and have the potential to be used as antibacterial agents in environmental control.

  7. Post treatment of silane and cerium salt as chromate replacers on galvanized steel

    Institute of Scientific and Technical Information of China (English)

    KONG Gang; LU Jintang; WU Haijiang

    2009-01-01

    A complex film on hot-dip galvanized steel sheet (HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn. The corrosion protection of the complex film was evaluated by potentiodynamic linear polarization(LPR), electrochemical impendence spectra (EIS) and natural salt spray (NSS) tests and compared with that of single cerium film and silane film. The results showed that, the presence of these films on the zinc coating hindered corrosion reaction by reducing the rate of both anodic and cathodic reaction in the corrosion process, and the corrosion protection of the complex film was much better than that of single cerium film or silane film and closed to that of chromate film, because the polarization resistance Rp and electrochemical impendence were increased markedly. Microstructure and chemical composition of these pretreated films were also investigated by scanning electron microscopy (SEM) and AES.

  8. Effect of oxygen defects on thermal conductivity of thorium-cerium dioxide solid solutions

    Science.gov (United States)

    Muta, Hiroaki; Kado, Hirohisa; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-01-01

    Thermal conductivity of thorium-cerium dioxide solid solutions has been measured and analyzed using the relaxation time approximation. Despite the presence of oxygen defects, the partially reduced Th0.8Ce0.2O1.97 exhibited higher thermal conductivity than the stoichiometric one, Th0.8Ce0.2O2.00, showing the same tendency as that previously reported for Th0.7Pu0.3O2-δ. The increase in thermal conductivity with the oxygen defects can be explained by assuming that cerium ions have an average ionic radius of the ionic radii of Ce3+ and Ce4+ in the description of phonon-impurity scattering. This result indicates that the small reduction of (Th,Pu)O2-δ fuel increases the thermal conductivity, especially at high temperatures.

  9. Energy transfer and thermal studies of Pr3+ doped cerium oxalate crystals

    Indian Academy of Sciences (India)

    R Pragash; Gijo Jose; N V Unnikrishnan; C Sudarsanakumar

    2011-07-01

    Energy transfer process at room temperature for cerium (sensitizer) oxalate single crystals doped with different concentrations (10, 13, 15, 17 and 20%) of praseodymium ions (activator) grown by hydro silica gel method has been evaluated. The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of the absorption spectra of Pr3+ and emission spectra of Ce3+ at wavelengths 484 and 478 nm, respectively, strongly supports the possible energy transfer process in this system. From the absorption spectra, oscillator strength, electric dipole moment, branching ratio and Judd–Ofelt parameters of this system were evaluated by least square programming. The quantum efficiency, energy transfer probabilities and thermal properties have been studied.

  10. Thermodynamics of the α -γ transition in cerium studied by an LDA + Gutzwiller method

    Science.gov (United States)

    Tian, Ming-Feng; Song, Hai-Feng; Liu, Hai-Feng; Wang, Cong; Fang, Zhong; Dai, Xi

    2015-03-01

    Utilizing the local-density approximation (LDA) + Gutzwiller method, we have studied the α -γ transition in cerium. Our results indicate that the volume collapse transition between α and γ phases is present at zero temperature with negative pressure. By further providing a newly finite temperature generalization of the LDA + Gutzwiller method (using the mean-field potential approach), the entropy contributed by both electronic quasiparticles and lattice vibration included, we obtain the Gibbs free energy at a given volume and temperature, from which we get the α -γ transition at finite temperature and pressure. Our results indicate that the electronic entropy and lattice vibrational entropy both play important roles in the α -γ transition. We also calculated the equation of state and phase diagram of cerium, finding good agreement with the experiments.

  11. Intensification of electrochemical properties of the molten chloride electrolytes of the cerium subgroup lanthanides

    Science.gov (United States)

    Shabanov, O. M.; Suleymanov, S. I.; Magomedova, A. O.

    2017-01-01

    The electrical conductivity of molten chloride electrolytes of the cerium subgroup lanthanides increases with rising electric field strength and strive to achieve the limiting high voltage values (Wien effect). On exposure of the high-voltage microsecond pulsed fields, the melts are transited into a prolonged non-equilibrium state with increased electrical conductivity and electrolyze current density. During the relaxation processes in non-equilibrium melts, increased electrical conductivity tends to restore the values that are specific to equilibrium systems.

  12. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  13. Photocatalytic C-C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex.

    Science.gov (United States)

    Guo, Jing-Jing; Hu, Anhua; Chen, Yilin; Sun, Jianfeng; Tang, Haoming; Zuo, Zhiwei

    2016-12-05

    A general strategy for the cleavage and amination of C-C bonds of cycloalkanols has been achieved through visible-light-induced photoredox catalysis utilizing a cerium(III) chloride complex. This operationally simple methodology has been successfully applied to a wide array of unstrained cyclic alcohols, and represents the first example of catalytic C-C bond cleavage and functionalization of unstrained secondary cycloalkanols.

  14. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    OpenAIRE

    Woosuck Shin; Takafumi Akamatsu; Toshio Itoh; Ichiro Matsubara; Noriya Izu

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nano...

  15. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  16. Hydride-induced embrittlement of Zircaloy-4 cladding under plane-strain tension

    Science.gov (United States)

    Daum, Robert S.

    The mechanical response of high-burnup Zircaloy-4 fuel cladding subjected to a postulated reactivity initiated accident (referred to as a rod ejection accident (REA) in a pressurized water reactor) can be affected by hydrogen embrittlement. This study addresses the hydrogen embrittlement of non-irradiated, stress-relieved Zircaloy-4 cladding under conditions (state of stress and temperature) relevant to those of a reactivity initiated accident. Specifically, the study has investigated the effects of a concentrated density of hydride particles (in the form of a rim at the outer surface of the cladding tube introduced by gas-charging) on the cladding ductility when tested under a near-plane-strain tension at 25, 300, and 375°C. The influence of the hydride-rim thickness and local hydrogen contents on cladding ductility is studied as a function of temperature and correlated with the hydride microstructure. Using synchrotron x-ray diffraction, this study has found that the delta-hydride phase (i.e., ZrHx, where x ≈ 1.66) is the predominant hydride phase to precipitate in stress-relieved Zircaloy-4 cladding for hydrogen contents up to 1250 wt ppm. At hydrogen contents above 2700 wt ppm, although delta-hydride is still the majority phase, both gamma- and epsilon-hydride phases are also observed. The volume fraction of hydrides was estimated as a function of hydrogen content, using the diffracted x-ray intensities. These estimated values agree well with calculated values assuming hydride precipitates are delta-hydride. Under near-plane-strain hoop tension, the ductility and fracture of the cladding is highly dependent on both the hydride-rim thickness and the testing temperature. At room temperature, due to a high density of hydride particles within the rim, a Mode I crack is injected shortly after yielding. This limits cladding ductility, such that it decreases with increasing thickness of the hydride rim. Cladding containing hydride rims with a thickness of ≥100

  17. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    Science.gov (United States)

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  18. Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores

    Directory of Open Access Journals (Sweden)

    Aranzazu Gomez-Garay

    2016-12-01

    Full Text Available Aim of study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum. Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea. Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC and Lowest-Observed-Adverse-Effect-Concentration (LOEC values for spore germination rate data were analyzed.  Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained. Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. Keywords: Nanoparticles; rhizoid; prothallus; chloroplast; fern.

  19. Synthesis and Characterization of Cerium Doped Titanium Catalyst for the Degradation of Nitrobenzene Using Visible Light

    Directory of Open Access Journals (Sweden)

    Padmini Ellappan

    2014-01-01

    Full Text Available Cerium doped catalyst was synthesized using Titanium isopropoxide as the Titanium source. The metal doped nanoparticles semiconductor catalyst was prepared by sol-sol method with the sol of Cerium. The synthesized catalyst samples were characterized by powder X-ray diffraction, BET surface area, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and UV-vis diffuse reflectance measurements (DRS and compared with undoped TiO2 catalyst. The photocatalytic activity of the sample was investigated for the decomposition of nitrobenzene (NB using visible light as the artificial light source. Cerium doped catalyst was found to have better degradation of nitrobenzene owing to its shift in the band gap from UV to visible region as compared to undoped TiO2 catalyst. The operational parameters were optimized with catalyst dosage of 0.1 g L−1, pH of 9, and light intensity of 500 W. The degradation mechanism followed the Langmuir Hinshelwood kinetic model with the rate constant depending nonlinearly on the operational parameters as given by the relationship Kapp (theoretical = 2.29 * 10−4 * Intensity0.584 * Concentration−0.230 * Dosage0.425 * pH0.336.

  20. Cerium(III-Selective Membrane Electrode Based on Dibenzo-24-crown-8 as a Neutral Carrier

    Directory of Open Access Journals (Sweden)

    Susheel K. Mittal

    2010-01-01

    Full Text Available Cerium(III-selective membrane electrodes have been prepared using dibenzo-24-crown-8 (DB24C8 as an electroactive material. A membrane having a composition: DB24C8 (4.5%, plasticizer (NPOE, 62.5% and PVC (33% gives the best performance. It works well over a wide Ce(III ion-concentration range of 1x10-5 M to 1x10-1 M with a Nernstian slope of 19.0 mV/decade and a detection limit of 3x10-5 M. It has a fast response time of 20 seconds and has an average lifetime of four months. The internal solution concentration does not have a significant effect on the response of the electrode except for a change in intercept of the calibration curves. The working pH range for Ce(III solutions (1x10-2 M and 1x10-3 M is 3.5-8.0. The proposed sensor shows a good selectivity for cerium(III with respect to alkali, alkaline earth, some transition and rare earth metal ions that are normally present along with cerium in its ores. The proposed sensor was investigated in partially non-aqueous media using acetone, methanol and DMSO mixtures with water. The electrode was further used as an indicator electrode for the potentiometric titration of Ce(III solution against oxalic acid solution.

  1. Preparation and Characterization of Cerium (III Doped Captopril Nanoparticles and Study of their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Ghamami Shahriar

    2016-01-01

    Full Text Available In this research Ce3+ doped Captopril nanoparticles (Ce3+ doped CAP-NP were prepared by a cold welding process and have been studied. Captopril may be applied in the treatment of hypertension and some types of congestive heart failure and for preventing kidney failure due to high blood pressure and diabetes. CAP-NP was synthesized by a cold welding process. The cerium nitrate was added at a ratio of 10% and the optical properties have been studied by photoluminescence (PL. The synthesized compounds were characterized by Fourier transform infrared spectroscopy. The size of CAP-NP was calculated by X-ray diffraction (XRD. The size of CAP-NP was in the range of 50 nm. Morphology of surface of synthesized nanoparticles was studied by scanning electron microscopy (SEM. Finally the luminescence properties of undoped and doped CAP-NP were compared. PL spectra from undoped CAP-NP show a strong pack in the range of 546 nm after doped cerium ion into the captopril appeared two bands at 680 and 357 nm, which is ascribed to the well-known 5d–4f emission band of the cerium.

  2. Cerium Biomagnification in a Terrestrial Food Chain: Influence of Particle Size and Growth Stage.

    Science.gov (United States)

    Majumdar, Sanghamitra; Trujillo-Reyes, Jesica; Hernandez-Viezcas, Jose A; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-07-01

    Mass-flow modeling of engineered nanomaterials (ENMs) indicates that a major fraction of released particles partition into soils and sediments. This has aggravated the risk of contaminating agricultural fields, potentially threatening associated food webs. To assess possible ENM trophic transfer, cerium accumulation from cerium oxide nanoparticles (nano-CeO2) and their bulk equivalent (bulk-CeO2) was investigated in producers and consumers from a terrestrial food chain. Kidney bean plants (Phaseolus vulgaris var. red hawk) grown in soil contaminated with 1000-2000 mg/kg nano-CeO2 or 1000 mg/kg bulk-CeO2 were presented to Mexican bean beetles (Epilachna varivestis), which were then consumed by spined soldier bugs (Podisus maculiventris). Cerium accumulation in plant and insects was independent of particle size. After 36 days of exposure to 1000 mg/kg nano- and bulk-CeO2, roots accumulated 26 and 19 μg/g Ce, respectively, and translocated 1.02 and 1.3 μg/g Ce, respectively, to shoots. The beetle larvae feeding on nano-CeO2 exposed leaves accumulated low levels of Ce since ∼98% of Ce was excreted in contrast to bulk-CeO2. However, in nano-CeO2 exposed adults, Ce in tissues was higher than Ce excreted. Additionally, Ce content in tissues was biomagnified by a factor of 5.3 from the plants to adult beetles and further to bugs.

  3. Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework.

    Science.gov (United States)

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Booth, Corwin H; Schelter, Eric J

    2015-12-01

    Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C6 H4 CH2 )3 N](3-) (TriNOx (3-) ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNOx )thf][BAr(F) 4 ], in which Ar(F) =3,5-(CF3 )2 -C6 H3 , and [Ce(TriNOx )py][OTf]. A rare complete Ce-halide series, Ce(TriNOx )X, in which X=F(-) , Cl(-) , Br(-) , I(-) , was also synthesized. The solution chemistry of these complexes was explored through detailed solution-phase electrochemistry and (1) H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X(-) group. DFT calculations on the series of calculations corroborated the experimental findings.

  4. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Science.gov (United States)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  5. Infrared, thermal and X-ray diffraction analysis of cerium soaps

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, K.N. [Agra Univ. (India). Dept. of Chemistry; Chauhan, M. [Agra Univ. (India). Dept. of Chemistry; Shukla, R.K. [R.B.S. Coll., Agra (India)

    1997-03-01

    The physico-chemical characteristics of cerium soaps (Caproate and caprate) in solid state were investigated by IR, thermal and X-ray diffraction measurements. The IR results reveal that the fatty acids exist in dimeric state through hydrogen bonding and soaps possess partial ionic character. The decomposition reaction was found kinetically of zero order with energy of activation 6.7 and 7.3 K cal mol{sup -1} for cerium caproate and caprate, respectively. The X-ray diffraction measurements were used to calculate the long spacings and the results confirm the double layer structure of cerium soaps. (orig.) [Deutsch] Mit Hilfe von IR-, thermischen und Roentgendiffraktionsmessungen wurden die physikalisch-chemischen Eigenschaften von Cerseifen (Capron- und Caprylsaeuresalze)in festem Zustand bestimmt. Die IR-Untersuchungen zeigen, dass die Fettseifen in dimerem Zustand, gebunden durch Wasserstoffbruecken vorliegen und partiell ionischen Charakter haben. Die Zersetzungsreaktion war von einer Kinetik nullter Ordnung, die Aktivierungsenergien lagen bei 6,7 K cal mol{sup -1} fuer Capronsaeuresalze und 7,3 K cal mol{sup -1} fuer Caprylsaeuresalze. Mit Hilfe von Roentgendiffraktionsmessungen wurden die grossen Zwischenraeume bestimmt. Die Ergebnisse lassen auf eine Doppelschichtstruktur der Cerseifen schliessen. (orig.)

  6. Effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings

    Directory of Open Access Journals (Sweden)

    Yu Mei

    2015-04-01

    Full Text Available The present work examines the effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings. The Si–Zr hybrid sol–gel coatings on a 2A12 aluminum substrate were prepared through hydrolysis and condensation of glycidoxypropyl-trimethoxy-silane (GTMS and zirconium(IV n-propoxide (TPOZ. Used as inhibitors for corrosion, three types of cerium salts (Ce(NO33, CeCl3, and Ce(CH3COO3 were doped into the sol–gel coatings. Fourier transform infrared (FTIR and scanning electron microscopy (SEM were employed to investigate the structures and morphologies of various coatings, and the corrosion resistances of the coatings were evaluated by electrochemical methods and neutral salt spray tests. Experimental results indicate that the addition of cerium salts can hinder the process of corrosion due to their self-healing abilities. Furthermore, the sol–gel coating doped with Ce(CH3COO3 has the best corrosion resistance because of the promotions of hydrolysis and condensation provided by CH3COO−.

  7. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process

    Energy Technology Data Exchange (ETDEWEB)

    Recillas, Sonia; Colon, Joan [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain); Casals, Eudald; Gonzalez, Edgar [Catalan Institute of Nanotechnology, Autonomous University of Barcelona Campus, 08193 Bellaterra (Spain); Puntes, Victor [Catalan Institute of Nanotechnology, Autonomous University of Barcelona Campus, 08193 Bellaterra (Spain); Catalan Institute of Research and Advanced Studies, Passeig Lluis Companys, 23, 08010 Barcelona (Spain); Sanchez, Antoni, E-mail: antoni.sanchez@uab.cat [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain); Font, Xavier [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain)

    2010-12-15

    In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water. Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium-cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption-desorption process were observed by TEM. Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.

  8. Effect of cerium oxide addition on electrical properties of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [National Research Center, Dokki, Giza (Egypt). Dept. of Ceramics; Mounir, M. [Dept. of Physics, Cairo Univ., Giza (Egypt); Mahgoub, A.S. [Cairo Univ., Giza (Egypt). Dept. of Chemistry; Turky, G. [Dept. of Physics, National Research Center, Dokki, Giza (Egypt); El-Desouky, O.A. [Cer. Cleopatra Co., Ramadan City (Egypt)

    2002-07-01

    Mixtures of ZnO and Ce{sub 6} O{sub 11} as additive were prepared by solid state reaction from the calcined oxides with the following proportions: 0.03, 0.08, 0.1, 0.2 and 0.4 mole. Disc specimens 1.2 cm 5 cm in diameter and 0.3 cm thickness were processed under a force of 70 kN and fired at 1150 C/ 30 minutes. XRD revealed the presence of limited solid solution of cerium in ZnO, as evident from the shift in the peaks [0.03-0.04 A ] up to 0.1 mole addition and remains constant. SEM revealed the presence of inter-granular phase. EDAX showed it to be a mixture of ZnO and Ce{sub 6}O{sub 11}. Also cerium was detected in the ZnO grains confirming the XRD results. RCL circuit was used to measure the capacitance and resistance at different frequencies at room temperature. The dielectric constant and conductivity were calculated. The change in resistivity with temperature was followed up to 523 K. The change in dielectric strength with temperature at spot frequency of 10 kHz is demonstrated. The electrical conductivity was found to increase with the proportion of cerium oxide up to 0.2 mole then decreased. (orig.)

  9. Final report for the DOE Metal Hydride Center of Excellence.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jay O.; Klebanoff, Leonard E.

    2012-01-01

    This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

  10. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  11. Niche applications of metal hydrides and related thermal management issues

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Satya Sekhar, B. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muthukumar, P. [Mechanical Department, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Linkov, V.; Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • MH H{sub 2} storage, compression & heat management: developments/thermal management. • Thermodynamic criteria for proper selection of MH for different gas phase applications. • Factors influencing on H{sub 2} charge/discharge dynamic performance and energy efficiency. • The improvement of MH heat transfer characteristics is crucial. • Ways of improvement of heat transfer in the MH systems. - Abstract: This short review highlights and discusses the recent developments and thermal management issues related to metal hydride (MH) systems for hydrogen storage, hydrogen compression and heat management (refrigeration, pump and upgrade, etc.). Special attention is paid to aligning the system features with the requirements of the specific application. The considered system features include the MH material, the MH bed on the basis of its corresponding MH container, as well as the layout of the integrated system.

  12. Crystal structure of the superconducting phase of sulfur hydride

    Science.gov (United States)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  13. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  14. Modeling of hydride precipitation and re-orientation

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weck, Philippe F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-18

    In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

  15. Shielding efficiency of metal hydrides and borohydrides in fusion reactors

    Directory of Open Access Journals (Sweden)

    Singh Vishvanath P.

    2016-01-01

    Full Text Available Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.

  16. Capture of liquid hydrogen boiloff with metal hydride absorbers

    Science.gov (United States)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  17. Ovonic nickel metal hydride batteries for space applications

    Science.gov (United States)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-01-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  18. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  19. Hydrogen generation from magnesium hydride by using organic acid

    Science.gov (United States)

    Ho, Yen-Hsi

    In this paper, the hydrolysis of solid magnesium hydride has been studied with the high concentration of catalyst at the varying temperature. An organic acid (acetic acid, CH3COOH) has been chosen as the catalyst. The study has three objectives: first, using three different weights of MgH 2 react with aqueous solution of acid for the hydrogen generation experiments. Secondly, utilizing acetic acid as the catalyst accelerates hydrogen generation. Third, emphasizing the combination of the three operating conditions (the weight of MgH2, the concentration of acetic acid, and the varying temperature) influence the amount of hydrogen generation. The experiments results show acetic acid truly can increase the rate of hydrogen generation and the weight of MgH2 can affect the amount of hydrogen generation more than the varying temperature.

  20. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  1. A micromechanical model for predicting hydride embrittlement in nuclear fuel cladding material

    Science.gov (United States)

    Chan, K. S.

    1996-01-01

    A major concern about nuclear fuel cladding under waste repository conditions is that the slow cooling rate anticipated in the repository may lead to the formation of excessive radial hydrides, and cause embrittlement of the cladding materials. In this paper, the development of a micromechanical model for predicting hydride-induced embrittlement in nuclear fuel cladding is presented. The important features of the proposed model are: (1) the capability to predict the orientation, morphology, and types of hydrides under the influence of key variables such as cooling rate, internal pressure, and time, and (2) the ability to predict the influence of hydride orientation and morphology on the tensile ductility and fracture toughness of the cladding material. Various model calculations are presented to illustrate the characteristics and utilities of the proposed methodology. A series of experiments was also performed to check assumptions used and to verify some of the model predictions.

  2. The two steps thermal decomposition of titanium hydride and two steps foaming of Al alloy

    Institute of Scientific and Technical Information of China (English)

    SHANG Jintang; HE Deping

    2005-01-01

    Two steps foaming (TSF) technique was proposed to prepare shaped Al alloy foam. Based on the thermal decomposition kinetics equation of titanium hydride, the relationship between two steps thermal decomposition kinetics of titanium hydride and two steps foaming Al alloy melt was studied. Two steps thermal decomposition curve of titanium hydride under increasing and constant temperature was calculated respectively. The hydrogen mass needed in the second foaming step was also calculated. Results showed that the hydrogen mass of the second thermal decomposition of titanium hydride is enough for the second foaming step in the condition of as-received Al melt foaming. Experimental and theoretical results indicate that two steps foaming technique can be used to prepare Al alloy foam with high porosity, shaped components and sandwich with Al alloy foam core.

  3. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    Science.gov (United States)

    Courty, Olivier F.; Motta, Arthur T.; Piotrowski, Christopher J.; Almer, Jonathan D.

    2015-06-01

    As a result of in-reactor corrosion during operation in nuclear reactors, hydrogen can enter the zirconium fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold spots so that the distribution of hydrides in the cladding is inhomogeneous. The hydrogen precipitation kinetics plays a strong role in the spatial distribution of the hydrides in the cladding. The precipitation rate is normally described as proportional to the supersaturation of hydrogen in solid solution. The proportionality constant, α2, for hydride precipitation in Zircaloy-4 is measured directly using in situ synchrotron X-Ray diffraction, at different temperatures and with three different initial hydrogen concentrations. The results validate the linear approximation of the phenomenological model and a near constant value of α2 = 4.5 × 10-4 s-1 was determined for the temperature range studied.

  4. Compensation Effect in the Hydrogenation/Dehydrogenation Kinetics of Metal Hydrides

    DEFF Research Database (Denmark)

    Andreasen, A.; Vegge, T.; Pedersen, Allan Schrøder

    2005-01-01

    The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi5 based hydrides. For these systems, we...... find a clear linear relation between apparent prefactors and apparent activation energies, as obtained from an Arrhenius analysis, indicating the existence of a compensation effect. Large changes in apparent activation energies in the case of Mg based hydrides are rationalized in terms of a dependency...... analysis rather than a physical phenomenon. In the case of LaNi5 based hydrides, observed scatter in reported apparent activation energies is less pronounced supporting the general experience that LaNi5 is less sensitive toward surface contamination....

  5. Concerted proton-coupled electron transfer from a metal-hydride complex.

    Science.gov (United States)

    Bourrez, Marc; Steinmetz, Romain; Ott, Sascha; Gloaguen, Frederic; Hammarström, Leif

    2014-02-01

    Metal hydrides are key intermediates in the catalytic reduction of protons and CO2 as well as in the oxidation of H2. In these reactions, electrons and protons are transferred to or from separate acceptors or donors in bidirectional protoncoupled electron transfer (PCET) steps. The mechanistic interpretation of PCET reactions of metal hydrides has focused on the stepwise transfer of electrons and protons. A concerted transfer may, however, occur with a lower reaction barrier and therefore proceed at higher catalytic rates. Here we investigate the feasibility of such a reaction by studying the oxidation–deprotonation reactions of a tungsten hydride complex. The rate dependence on the driving force for both electron transfer and proton transfer—employing different combinations of oxidants and bases—was used to establish experimentally the concerted, bidirectional PCET of a metal-hydride species. Consideration of the findings presented here in future catalyst designs may lead to more-efficient catalysts.

  6. The diastereoselective synthesis of octahedral cationic iridium hydride complexes with a stereogenic metal centre.

    Science.gov (United States)

    Humbert, Nicolas; Mazet, Clément

    2016-08-23

    We report herein the highly diastereoselective synthesis of octahedral cationic Ir(iii) hydride complexes with a stereogenic metal centre following various strategies. The configurational stability of these compounds has also been investigated.

  7. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System....... H- is stable with respect to oxide and halide anions but, among cations only with respect to oxides and halides of strongly electropositive metals such as alkaline, alkaline-earth and main group III metals. H- is only stable in combination with transition metal ions of certain elements...... in their lowest positive oxidation state. Mixed oxide/hydride containing perovskites may thus exist. Steinsvik et al. have recently suggested a defect model for a perovskite including substitutional hydride ions on the oxygen site, H-O(.), and protons associated with a lattice oxygen, OHO.. The defect equations...

  8. Solar conversion by concentration cells with hydrides. [Based on hydrogen pressure differential across protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, R.E.

    1979-01-01

    The efficiency of solar energy conversion in an electrochemical concentration cell which uses a metal hydride chemisorber is evaluated. It is shown that both constant volume and constant pressure cells can achieve the Carnot efficiency in principle. (SPH)

  9. Kinetics of hydrogen desorption from MgH2 and AlH3 hydrides

    Science.gov (United States)

    Terent'ev, P. B.; Gerasimov, E. G.; Mushnikov, N. V.; Uimin, M. A.; Maikov, V. V.; Gaviko, V. S.; Golovatenko, V. D.

    2015-12-01

    Kinetic parameters of the process of thermal decomposition of the MgH2 hydride (obtained by the method of the mechanoactivation of magnesium in a hydrogen atmosphere) and of the commercial AlH3 hydride have been studied upon the rapid heating in the range of temperatures of 150-510°C at hydrogen pressures of 0-2 atm. The time dependences of the amount of hydrogen released by the metal hydrides at different temperatures and pressures have been determined. It has been shown that the activation energies of the hydrogen desorption are 135 kJ/mol for MgH2 and 107 kJ/mol for AlH3. The maximum rates of hydrogen desorption from the investigated metal hydrides have been established, and the temperatures and initial pressures that ensure the maximum rate and maximum volume of the hydrogen release have been determined.

  10. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  11. Direct hydride derivatization of methyl- and ethylmercury chlorides in aqueous solution with KBH4

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A convenient hydride derivatization procedure of methyl-and ethylmercury chlorides to volatile hydrides was reported. In sealed vials methylmercury and ethylmercury compounds in acidic aqueous solutions were converted into their volatile forms by the reaction with potassium tetrahydroborate(KBH4) and elvolved to the headspace of the vials. The gaseous analytes in the headspace were extracted and concentrated by solid phase microextraction(SPME) and injected into gas chromatography (GC) for separation and identified by mass selective detector(MS).

  12. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  13. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen

    Institute of Scientific and Technical Information of China (English)

    高克玮; 王燕斌; 林志; 乔利杰; 褚武扬

    1999-01-01

    Hydrogen embrittlement (HE) of TiAl intermetallics was studied at room temperature. The results showed that there were two forms of HE in TiAl intermetallics, i.e. hydride HE and atomic HE. Most of hydrogen in TiAl intermetallics was transformed into hydrides at room temperature. The hydride exists as (TiAl)Hx for a low hydrogen concentration while it exists in several forms for a higher hydrogen concentration. Stress intensity factor KIC decreased with increase in hydride concentration. KIC decreased further when TiAl intermetallics were charged cathodically with hydrogen in 1 mol/L H2SO4 solution. Stress intensity factor during hydrogen charging KIH was about 50% KIC. 20% of the decrease was caused by hydrides while 30% was caused by atomic hydrogen. Mechanism of HE caused hydrides was the same as any other second phase in nature. Delayed fracture caused by atomic hydrogen resulted from hydrogen induced local plastic deformation.

  14. On the chemistry of hydrides of N atoms and O$^+$ ions

    CERN Document Server

    Awad, Zainab; Williams, David A

    2016-01-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low density lines of sight towards G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H$_2$ formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O$^+$ ions detected by Herschel/HIFI present along many sight lines in the Galaxy. The O$^+$ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic ray fluxes or in somewhat denser diffuse clouds with high cosmic ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  15. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.

    Science.gov (United States)

    Morris, Robert H

    2016-08-10

    Transition metal hydride complexes are usually amphoteric, not only acting as hydride donors, but also as Brønsted-Lowry acids. A simple additive ligand acidity constant equation (LAC for short) allows the estimation of the acid dissociation constant Ka(LAC) of diamagnetic transition metal hydride and dihydrogen complexes. It is remarkably successful in systematizing diverse reports of over 450 reactions of acids with metal complexes and bases with metal hydrides and dihydrogen complexes, including catalytic cycles where these reactions are proposed or observed. There are links between pKa(LAC) and pKa(THF), pKa(DCM), pKa(MeCN) for neutral and cationic acids. For the groups from chromium to nickel, tables are provided that order the acidity of metal hydride and dihydrogen complexes from most acidic (pKa(LAC) -18) to least acidic (pKa(LAC) 50). Figures are constructed showing metal acids above the solvent pKa scales and organic acids below to summarize a large amount of information. Acid-base features are analyzed for catalysts from chromium to gold for ionic hydrogenations, bifunctional catalysts for hydrogen oxidation and evolution electrocatalysis, H/D exchange, olefin hydrogenation and isomerization, hydrogenation of ketones, aldehydes, imines, and carbon dioxide, hydrogenases and their model complexes, and palladium catalysts with hydride intermediates.

  16. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel.

    Science.gov (United States)

    Connelly Robinson, Samantha J; Zall, Christopher M; Miller, Deanna L; Linehan, John C; Appel, Aaron M

    2016-06-14

    The thermodynamic hydricity of a metal hydride can vary considerably between solvents. This parameter can be used to determine the favourability of a hydride-transfer reaction, such as the reaction between a metal hydride and CO2 to produce formate. Because the hydricities of these species do not vary consistently between solvents, reactions that are thermodynamically unfavourable in one solvent can be favourable in others. The hydricity of a water-soluble, bis-phosphine nickel hydride complex was compared to the hydricity of formate in water and in acetonitrile. Formate is a better hydride donor than [HNi(dmpe)2](+) by 7 kcal mol(-1) in acetonitrile, and no hydride transfer from [HNi(dmpe)2](+) to CO2 occurs in this solvent. The hydricity of [HNi(dmpe)2](+) is greatly improved in water relative to acetonitrile, in that reduction of CO2 to formate by [HNi(dmpe)2](+) was found to be thermodynamically downhill by 8 kcal mol(-1). Catalysis for the hydrogenation of CO2 was pursued, but the regeneration of [HNi(dmpe)2] under catalytic conditions was unfavourable. However, the present results demonstrate that the solvent dependence of thermodynamic parameters such as hydricity and acidity can be exploited in order to produce systems with balanced or favourable overall thermodynamics. This approach should be advantageous for the design of future water-soluble catalysts.

  17. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  18. Influence of lanthanon hydride catalysts on hydrogen storage properties of sodium alanates

    Institute of Scientific and Technical Information of China (English)

    WU Zhe; CHEN Lixin; XIAO Xuezhang; FAN Xiulin; LI Shouquan; WANG Qidong

    2013-01-01

    NaAlH4 complex hydrides doped with lanthanon hydrides were prepared by hydrogenation of the ball-milled NaH/Al+xmol.% RE-H composites (RE=La,Ce; x=2,4,6) using NaHl and A1 powder as raw materials.The influence of lanthanon hydride catalysts on the hydriding and dehydriding behaviors of the as-synthesized composites were investigated.It was found that the composite doped with 2 mol.% La.H3.01 displayed the highest hydrogen absorption capacity of 4.78 wt.% and desorption capacity of 4.66wt.%,respectively.Moreover,the composite doped with 6 mol% CeH2.51 showed the best hydriding/dehydriding reaction kinetics.The proposed catalytic mechanism for reversible hydrogen storage properties of the composite was attributed to the presence of active LaH3.01 and CeH2.51 particles,which were scattering on the surface of NaH and A1 particles,acting as the catalytic active sites for hydrogen diffusion and playing an important catalytic role in the improved hydriding/dehydriding reaction.

  19. Cyanex 923 as the extractant in a rare earth element impurity analysis of high-purity cerium oxide.

    Science.gov (United States)

    Duan, Taicheng; Li, Hongfei; Kang, JianZhen; Chen, Hangting

    2004-06-01

    In this work, the feasibility of employing Cyanex 923 as an extractant into the non-cerium REE (rare earth elements) impurity analysis of high-purity cerium oxide was investigated. Through investigations on the choice of the extraction medium, the optimium extraction acidity, matrix Ce4+ effect on the non-cerium REE ion extraction, the optimium extractant concentration and suitable extracting time, and oscillation strengh, it was found that when the phase ratio was at 1:1 and the acicidity was about 2% H2SO4, by gently shaking by hand for about 2 min, 10 mL of 30% Cyanex 923 could not extract even for a 20 ng amount of non-cerium REE3+ ions. However, the extraction efficiency for Ce4+ of 100 mg total amount under the same conditions was about 96%, indicating that a 25-fold preconcentration factor could be achieved. Thus, it was concluded that Cyanex 923 could be used in a REE impurity analysis of 99.9999% or so pure cerium oxide for primary sepapation to elimilate matrix-induced interferences encountered in an ICP-MS (inductively coupled plasma mass spectroscopy) determination.

  20. SYNTHESIS OF CATIONIC CERIUM COMPOUNDS [CP2CE(L)2][BPH4] (L = TETRAHYDROFURAN OR TETRAHYDROTHIOPHENE) AND THE CRYSTAL-STRUCTURE OF THE TETRAHYDROTHIOPHENE DERIVATIVE

    NARCIS (Netherlands)

    HEERES, HJ; MEETSMA, A; TEUBEN, JH

    1991-01-01

    Protolysis of the cerium alkyl Cp2*CeCH(SiMe3)2 (1) by triethylammoniumtetraphenylborate provides a useful route to cationic cerium compounds [Cp2*Ce(L)2][BPh4] (2, L = tetrahydrofuran; 3, L = tetrahydrothiophene). The crystal structure of the tetrahydrothiophene derivative was determined by X-ray d

  1. A DFT based investigation into the electronic structure and properties of hydride rich rhodium clusters.

    Science.gov (United States)

    Brayshaw, Simon K; Green, Jennifer C; Hazari, Nilay; Weller, Andrew S

    2007-05-14

    Density functional theory has been used to investigate the structures, bonding and properties of a family of hydride rich late transition metal clusters of the type [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4), [Rh(6)(PH(3))(6)H(16)](x) (x = +1 or +2) and [Rh(6)(PH(3))(6)H(14)](x) (x = 0, +1 or +2). The positions of the hydrogen atoms around the pseudo-octahedral Rh(6) core in the optimized structures of [Rh(6)(PH(3))(6)H(12)](x) (x = 0, +1, +2, +3 or +4) varied depending on the overall charge on the cluster. The number of semi-bridging hydrides increased (semi-bridging hydrides have two different Rh-H bond distances) as the charge on the cluster increased and simultaneously the number of perfectly bridging hydrides (equidistant between two Rh centers) decreased. This distortion maximized the bonding between the hydrides and the metal centers and resulted in the stabilization of orbitals related to the 2T(2g) set in a perfectly octahedral cluster. In contrast, the optimized structures of the 16-hydride clusters [Rh(6)(PH(3))(6)H(12)](x) (x = +1 or +2) were similar and both clusters contained an interstitial hydride, along with one terminal hydride, ten bridging hydrides and two coordinated H(2) molecules which were bound to two rhodium centers in an eta(2):eta(1)-fashion. All the hydrides were on the outside of the Rh(6) core in the lowest energy structures of the 14-hydride clusters [Rh(6)(PH(3))(6)H(14)] and [Rh(6)(PH(3))(6)H(14)](+), which both contained eleven bridging hydrides, one terminal hydride and one coordinated H(2) molecule. Unfortunately, the precise structure of [Rh(6)(PH(3))(6)H(14)](2+) could not be determined as structures both with and without an interstitial hydride were of similar energy. The reaction energetics for the uptake and release of two molecule of H(2) by a cycle consisting of [Rh(6)(PH(3))(6)H(12)](2+), [Rh(6)(PH(3))(6)H(16)](2+), [Rh(6)(PH(3))(6)H(14)](+), [Rh(6)(PH(3))(6)H(12)](+) and [Rh(6)(PH(3))(6)H(14)](2+) were modelled

  2. Design and Fabricate a Metallic Hydride Heat Pump with a Cooling Capacity of 9000 BTU/H

    Science.gov (United States)

    1989-02-07

    I ERGENICS, INC. N 681 Lawl Ins Road Wyckoff. NJ 07481 DESIGN AND FABRICATE A METALLIC HYDRIDE HEAT PUMP WITH A COOLING CAPACITY OF 9000 BTU/H...air conditioning unit employing a metal hydride heat pump and a silicone heat transfer fluid. The contract was subsequently modified on 29 September 3...for thermally driven ECE systems. Metal hydride heat pumps were proposed as for this application.. However, only laboratory bench experiments have

  3. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    Science.gov (United States)

    2014-06-30

    Final Progress Report (27-02-2012 To 26-02-2014) Project Title:- Development of novel metal hydride -carbon nanomaterial based nanocomposites as...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride –carbon nanomaterial based...be as follows:- Milestone I • Synthesis of nanosized metal hydrides (NMH)-carbon nanotubes (CNT) hybridizing with G (NMH- CNT-G) nanocomposites

  4. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Science.gov (United States)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J.

    2016-12-01

    Highly porous cerium oxide modified Zr(OH)4 samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO2) and hydroxide (Zr(OH)4) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  5. Effect of cerium additive and secondary phase analysis on Ag0.5Bi0.5TiO3 ceramics

    Indian Academy of Sciences (India)

    S Supriya; Antonio J Dos Santos-García; F Fernández-Martinez

    2016-02-01

    Cerium-doped silver bismuth titanate—Ag0.5Bi0.5TiO3 (ABT) ceramics have been synthesized by the high-temperature solid-state reaction method. The structure and elemental examination of the prepared ceramic was analysed by X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energydispersive spectroscopy. XRD analysis showed the presence of pyrochlore structure and secondary phase when more than 5 mol% cerium was added. The impact of temperature on cerium-doped silver bismuth titanate samples was analysed by differential thermal analysis and differential scanning calorimetry. Cerium doping caused the flaky morphology comparing with undoped sample. The homogeneity of all the samples was discussed in detail by diffuse reflectance spectrum. This is the first time the reflection process is analysed for the cerium-doped ABT system to the best of our knowledge.

  6. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  7. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  8. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent nano-research prospects which

  9. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  10. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  11. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Science.gov (United States)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-01

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  12. Catalytic activity of cerium-doped Ru/Al2O3 during ozonation of dimethyl phthalate

    Institute of Scientific and Technical Information of China (English)

    Yunrui ZHOU; Wanpeng ZHU; Xun CHEN

    2008-01-01

    In this paper, factors influencing the mineraliza-tion of dimethyl phthalate (DMP) during catalytic ozona-tion with a cerium-doped Ru/Al2O3 catalyst were studied. The catalytic contribution was calculated through the results of a companrison experiment. It showed that doping cerium significantly enhanced catalytic activity. The total organic carbon (TOC) removal over the doped catalyst at 100 rain reached 75.1%, 61.3% using Ru/Al2O3 catalyst and only 14.0% using ozone alone. Catalytic activity reached the maximum when 0.2% of ruthenium and 1.0% of cerium'were simultaneously loaded onto Al2O3 support. Results of experiments on oxidation by ozone alone, adsorption of the catalyst, Ce ion's and heterogeneous catalytic ozonation confirmed that the contribution of het-erogeneous catalytic ozonation was about 50%, which showed the obvious effect of Ru-Ce/Al2O3 on catalytic activity.

  13. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4:Ce3+

    Science.gov (United States)

    Philippen, J.; Guguschev, C.; Klimm, D.

    2017-02-01

    First single crystal fibers of cerium doped strontium yttrate were fabricated using the laser-heated pedestal growth technique. Through thermodynamic equilibrium calculations and by high-temperature mass spectrometry suitable growth conditions could be determined. The atmosphere played an important role during crystallization. It affected the composition shift, on the one hand, and the valence state of cerium, on the other hand. These dependencies can be explained by combining X-ray diffraction, elemental analysis, and optical spectroscopy. Crystallization in slightly reducing nitrogen atmosphere proved to be a reasonable choice, because evaporation is suppressed and trivalent cerium is stabilized. Strong green emission that depends on the oxygen fugacity during crystallization could be excited using UV light. Optical properties of SrY2O4:Ce3+ were measured for the first time.

  14. Crystallization behavior of electroless Co-Ni-B alloy plated in magnetic field in presence of cerium

    Institute of Scientific and Technical Information of China (English)

    XUAN Tian-peng; ZHANG Lei; HUANG Qin-hua

    2006-01-01

    The electrochemical property, chemical composition and crystal structure of electroless Co-Ni-B-Ce alloy plated in general state as well as in magnetic field were studied using potentiometer, plasma emission spectrometer, X-ray diffractometer,transmission electron microscope. The results show that the static potential and polarizability of electroless Co-Ni-B alloy are remarkably improved as the plating is carried out in magnetic field in the presence of a little amount of cerium in plating bath.Because of the action of magnetic field and rare earth element cerium, the boron content in alloy decreases, while cobalt and nickel contents increase. As a result, the amorphous Co-Ni-B alloy transforms to the microcrystalline Co-Ni-B-Ce alloy when the plating is in general state, and the Co-Ni-B alloy makes a crystalline transformation because of the action of magnetic field and rare earth element cerium.

  15. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  16. Implementation of a complex multi-phase equation of state for cerium and its correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, Frank J [Los Alamos National Laboratory; Jensen, Brian J [Los Alamos National Laboratory; Elkin, Vyacheslav M [VNIITF

    2009-01-01

    The complexity of cerium combined with its interesting material properties makes it a desirable material to examine dynamically. Characteristics such as the softening of the material before the phase change, low pressure solid-solid phase change, predicted low pressure melt boundary, and the solid-solid critical point add complexity to the construction of its equation of state. Currently, we are incorporating a feedback loop between a theoretical understanding of the material and an experimental understanding. Using a model equation of state for cerium we compare calculated wave profiles with experimental wave profiles for a number of front surface impact (cerium impacting a plated window) experiments. Using the calculated release isentrope we predict the temperature of the observed rarefaction shock. These experiments showed that the release state occurs at different magnitudes, thus allowing us to infer where dynamic {gamma} - {alpha} phase boundary is.

  17. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  18. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  19. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf;

    2009-01-01

    Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...

  20. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    Science.gov (United States)

    Tomul, Fatma

    2011-12-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+, Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  1. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi-electrons ar......Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi......-electrons are aromatic and those with 4n+2 pi-electrons are antiaromatic, opposite to Huckel's rule for aromaticity in S(0). Our hypothesis is now that the relative magnitudes of proton and hydride affinities of annulenyl anions and cations reverts systematically as one goes from S(0) to T(1) as a result of the opposite...... electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  2. Improvement of corrosion resistance of AZ31 Mg alloy by anodizing with co-precipitation of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    Salah Abdelghany SALMAN; Ryoichi ICHINO; Masazumi OKIDO

    2009-01-01

    Anodizing of AZ31 Mg alloy in NaOH solution by co-precipitation of cerium oxide was investigated. The chemical composition and phase structure of the coating film were determined via optical microscopy, SEM and XRD. The corrosion properties of the anodic film were characterized by using potentiodynamic polarization curves in 17 mmol/L NaCl and 0.1 mol/L Na2SO4 solution at 298 K. The corrosion resistance of AZ31 magnesium alloy is significantly improved by adding cerium oxide to alkaline solution. In addition, the surface properties are enhanced and the film contains no crack.

  3. Equivalent Activity Coefficient Phenomenon of Cerium Reacting with Lead or Bismuth in Ag, Cu and Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 钱乙余; 董健

    2002-01-01

    The relation between contents of cerium and impurity lead or bismuth to their activity coefficient in Ag, Cu and Zn-base alloy was calculated and analyzed by using the ternary system Chou model. The thermodynamic calculation results show that the "equivalent activity coefficient phenomenon" emerges among the activity coefficient of solute in a certain range of cerium (or at a certain point) for the Ce-Pb-X and Ce-Bi-X (X=Ag, Cu or Zn) ternary alloy system. Under this condition, the activity coefficient of solute has nothing to do with its own concentration. The preliminary theoretical analysis to this phenomenon was also made.

  4. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Subbaramaiah, V. [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Mall, Indra Deo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India)

    2013-03-15

    Highlights: ► Cerium supported SBA-15 (Ce/SBA-15) synthesized by two-step synthesis. ► Characterization of Ce/SBA-15 by FTIR, XRD and BET surface area. ► Catalytic peroxidation of pyridine by Ce/SBA-15. ► Optimization of parameters like catalyst dose, H{sub 2}O{sub 2} dose, initial concentration and temperature. ► Catalyst reusability and leaching study performed. -- Abstract: Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N{sub 2} adsorption–desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter ≈ 70–100 A and pore volume ≈ 0.025 cm{sup 3}/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5–6 g/l), stoichiometric ratio of H{sub 2}O{sub 2}/pyridine (1–6), initial pyridine concentration (50–800 mg/l) and temperature (313–358 K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  5. Spectroscopy of gadolinium gallium garnet doped with cerium under high hydrostatic pressure

    OpenAIRE

    2012-01-01

    Studies of the spectroscopic properties of Ce3+ dopant in bulk Gd3Ga5O12:Ce crystal under pressure are presented. In spite of strong inter-shell 4f ® 5d absorption bands at ambient pressure the cerium luminescence in Gd3Ga5O12 is entirely quenched even at low temperature. It has been shown that applying pressure allows for recovering the 5d ® 4f radiative transitions. Further increase of pressure improves the emission efficiency. This effect is analyzed in terms of two possible phenomen...

  6. ARTICLES: Photoinduced light scattering in cerium-doped barium strontium niobate crystals

    Science.gov (United States)

    Voronov, Valerii V.; Dorosh, I. R.; Kuz'minov, Yu S.; Tkachenko, N. V.

    1980-11-01

    Photoinduced light scattering was observed in cerium-doped (SrxBa1-x)1-y(Nb2O6)y crystals having the composition x = 0.61, y = 0.4993. It was found that this effect is due to holographic amplification of light scattered by crystal defects. An analysis is made of static and dynamic characteristics of self-amplification of scattered light in the crystals. A theoretical model of the process is constructed assuming that the hologram recording process is of the diffusion type. Theoretical results are compared with the experiment.

  7. Photoinduced light scattering in cerium-doped barium strontium niobate crystals

    Science.gov (United States)

    Voronov, V. V.; Dorosh, I. R.; Kuz'minov, Yu. S.; Tkachenko, N. V.

    Photoinduced light scattering was observed in cerium-doped (Srx Ba1-x)1-y(Nb2O6)y crystals having the composition x = 0.61, y = 0.4993. It was found that this effect is due to holographic amplification of light scattered by crystal defects. An analysis is made of static and dynamic characteristics of self-amplification of scattered light in the crystals. A theoretical model of the process is constructed assuming that the hologram recording process is of the diffusion type. Theoretical results are compared with the experiment.

  8. Sequence-specific Hydrolysis of Single-stranded DNA by PNA-Cerium (Ⅳ) Adduct

    Institute of Scientific and Technical Information of China (English)

    He Bai SHEN; Feng WANG; Yong Tao YANG

    2005-01-01

    A novel artificial site specific cleavage reagent, with peptide nucleic acid (PNA) as sequence-recognizing moiety and cerium (Ⅳ) ions as "scissors" for cleaving target DNA, was synthesized. Subsequently, it was employed in the cleavage of target 26-mer single-stranded DNA (ssDNA), which has 10-mer sequence complementary with PNA recognizer in the hybrids,under physiological conditions. Reversed-phase high-performance liquid chromatogram (RPHPLC) experiments indicated that the artificial site specific cleavage reagent could cleave the target DNA specifically.

  9. Trace electrochemical analysis of Europium, Ytterbium, and Cerium at their joint presence in solution

    Directory of Open Access Journals (Sweden)

    Rema Matakova

    2012-03-01

    Full Text Available In the course of several decades at the department of analytical chemistry and chemistry of rare elements there were studied the electrode processes with participation of rare-earth metals (REM in accordance with the long awaiting problem of the development of rare-metal and rare-earth branch of non-ferrous metallurgy of Kazakhstan. With the aim of express and highly sensitive analytical control of raw materials and final product of rare-earth industry there were developed the methods of inversion-voltamperometric determination of low concentrations of europium, ytterbium and cerium under the conditions of their individual and combined presence in the solution.

  10. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet.

    Science.gov (United States)

    Goto, Taichi; Onbasli, Mehmet C; Kim, Dong Hun; Singh, Vivek; Inoue, M; Kimerling, Lionel C; Ross, C A

    2014-08-11

    Vacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties, refractive indices and absorption coefficients were measured. The resonant transmission peak of the racetrack resonator covered with CeYIG was non-reciprocally shifted by applying an in-plane magnetic field.

  11. APPLICATIONS OF CERIUM BIS (MONOMYRISTY—LPHOSPHATE)ADSORBENT TO REVERSED PHASE LIQUID CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    SuZhengquan; FengHuixia; 等

    1996-01-01

    The tetravalent metal salts of monoalkyl phosphates [M(O3POR)2]are a new kind of stationary phases of Chromatography-homogeneous bonded phases.This paper deals with the application of cerium bis(monomyristylphosphate)as support to reversed phase liquid chromatography.The results show that the best mobil phase is CH3CN:H2O=95:5.The good separation to the mixture containing six aromatic hydrocarbons and the determination of naphthalene in a group samples have been achieved.The regression analysis shows that detect limits,linearities and precision for six aromatic hydrocarbons are good.

  12. Relationship between surface area and crystal size of pure and doped cerium oxides

    Institute of Scientific and Technical Information of China (English)

    C.; Bueno-Ferrer; S.; Parres-Esclapez; D.; Lozano-Castelló; A.; Bueno-López

    2010-01-01

    Pure and Zr, La or Pr-doped cerium oxides were characterised by transmission electron microscopy (TEM), N2 adsorption-desorption at -196 oC and X-ray diffraction (XRD). For crystal sizes calculation, the Scherrer and Williamson-Hall equations were compared, and the relationship between surface area and crystal size was critically discussed. It was demonstrated that the Williamson-Hall equation must be used instead of the Scherrer equation to calculate crystal sizes, since the latter equation underestimated ...

  13. UV-Shielding and Catalytic Characteristics of Nanoscale Zinc-Cerium Oxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fine particles of zinc-cerium oxides (ZCO) used as an ultraviolet filter were prepared via combustion synthesis route. The catalytic activity, UV-shielding performance, surface modification and application of ZCO in polyester varnish were discussed in detail. The experimental results indicate that the photo-catalytic activity of ZCO is much smaller than these of ZnO and TiO2; the oxidation catalytic activity of ZCO is far lower than that of CeO2; the ZCO has shown excellent ultraviolet absorption in the range of UV;addition modified ZCO (MZCO) into polyester will enhance the UV-shielding capability of polyester.

  14. High-quality single-crystal growth and unique electronic states in cerium and uranium compounds

    Science.gov (United States)

    Onuki, Yoshichika; Settai, Rikio; Sugiyama, Kiyohiro; Inada, Yoshihiko; Takeuchi, Tetsuya; Haga, Yoshinori; Yamamoto, Etsuji; Harima, Hisatomo; Yamagami, Hiroshi

    2007-03-01

    We have grown many kinds of high-quality single crystals of cerium and uranium compounds and studied the Fermi surface properties via the de Haas-van Alphen experiments and energy band calculations. The quasi-two-dimensional electronic states are clarified in some compounds such as USb2, CeCoIn5, UPtGa5 and most likely UIr. In a ferromagnet CeRh3B2, we have found unique electronic states with quasi-one-dimensional character.

  15. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters

    Science.gov (United States)

    Tsunekawa, S.; Ito, S.; Kawazoe, Y.

    2004-10-01

    Cerium oxide nanocrystalline particles are synthesized and monodispersed in the size range from 2 to 8nm in diameter. The dependence of the lattice parameters on particle size is obtained by x-ray and electron diffraction analyses. The size dependence well coincides with the estimation based on the assumption that the surface is composed of one layer of Ce2O3 and the inside consists of CeO2. The effect of particle size on lattice parameters is discussed from the differences in the fabrication method and the surface structure.

  16. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: liangzeng@hiroshima-u.ac.jp [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  17. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiHx, which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  18. Superhalogens as Building Blocks of Complex Hydrides for Hydrogen Storage

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    Superhalogens are species whose electron affinity (EA) or vertical detachment energy (VDE) exceed to those of halogen. These species typically consist of a central electropositive atom with electronegative ligands. The EA or VDE of species can be further increased by using superhalogen as ligands, which are termed as hyperhalogen. Having established BH4- as a superhalogen, we have studied BH4-x(BH4)x- (x = 1 to 4) hyperhalogen anions and their Li-complexes, LiBH4-x(BH4)x using density functional theory. The VDE of these anions is larger than that of BH4-, which increases with the increase in the number of peripheral BH4 moieties (x). The hydrogen storage capacity of LiBH4-x(BH4)x complexes is higher but binding energy is smaller than that of LiBH4, a typical complex hydride. The linear correlation between dehydrogenation energy of LiBH4-x(BH4)x complexes and VDE of BH4-x(BH4)x- anions is established. These complexes are found to be thermodynamically stable against dissociation into LiBH4 and borane. This stud...

  19. Synthesis and Hydrogen Desorption Properties of Aluminum Hydrides.

    Science.gov (United States)

    Jeong, Wanseop; Lee, Sang-Hwa; Kim, Jaeyong

    2016-03-01

    Aluminum hydride (AlH3 or alane) is known to store maximum 10.1 wt.% of hydrogen at relatively low temperature (hydrogen desorption are still not clear. To understand the desorption properties of hydrogen in alane, thermodynamically stable α-AlH3 was synthesized by employing an ethereal reaction method. The dependence of pathways on phase formation and the properties of hydrogen evolution were investigated, and the results were compared with the ones for γ-AlH3. It was found that γ-AlH3 requires 10 degrees C higher than that of γ-AlH3 to form, and its decomposition rate demonstrated enhanced endothermic stabilities. For desorption, all hydrogen atoms of alane evolved under an isothermal condition at 138 degrees C in less than 1 hour, and the sample completely transformed to pure aluminum. Our results show that the total amount of desorbed hydrogen from α-AlH3 exceeded 9.05 wt.%, with a possibility of further increase. Easy synthesis, thermal stability, and a large amount of hydrogen desorption of alane fulfill the requirements for light-weight hydrogen storage materials once the pathway of hydrogen cycling is provided.

  20. Unloading Effect on Delayed Hydride Cracking in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Sung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    It is well-known that a tensile overload retards not only the crack growth rate (CGR) in zirconium alloys during the delayed hydride cracking (DHC) tests but also the fatigue crack growth rate in metals, the cause of which is unclear to date. A considerable decrease in the fatigue crack growth rate due to overload is suggested to occur due either to the crack closure or to compressive stresses or strains arising from unloading of the overload. However, the role of the crack closure or the compressive stress in the crack growth rate remains yet to be understood because of incomplete understanding of crack growth kinetics. The aim of this study is to resolve the effect of unloading on the CGR of zirconium alloys, which comes in last among the unresolved issues as listed above. To this end, the CGRs of the Zr-2.5Nb tubes were determined at a constant temperature under the cyclic load with the load ratio, R changing from 0.13 to 0.66 where the extent of unloading became higher at the lower R. More direct evidence for the effect of unloading after an overload is provided using Simpson's experiment investigating the effect on the CGR of a Zr-2.5Nb tube of the stress states of the prefatigue crack tip by unloading or annealing after the formation of a pre-fatigue crack