WorldWideScience

Sample records for cerium carbides

  1. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  2. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  3. PYROLYTIC CARBIDE DEVELOPMENT PROGRAM

    Science.gov (United States)

    and injector design changes were made to improve the quality of the carbide produced. Niobium carbide and tantalum carbide coated nozzles are described...Additional data for pyrolytic niobium carbide and hafnium carbide is also presented. (Author)

  4. Interaction of cerium and calcium-enriched phase in the preparation process of YG6 cemented carbide%铈与YG6硬质合金制备过程中富钙相的交互作用

    Institute of Scientific and Technical Information of China (English)

    何文; 谭敦强; 朱红波; 邝海; 欧阳国霞

    2016-01-01

    在硬质合金的原材料仲钨酸铵(APT)粉末中添加Ca和稀土Ce元素,探讨稀土Ce元素与硬质合金制备过程中富钙相的交互作用。材料的物相组成、显微结构及成分分别通过X射线衍射仪、扫描电子显微镜及能谱进行检测与分析。结果表明:氧化钨还原过程中会产生CaWO4和Ca4.26W10O30两种富钙相,分布在钨颗粒内部和周围,使钨颗粒的棱角钝化,碳化后富钙相转变为Ca4.26W10O30和CaC2相,富钙相可急剧降低YG6硬质合金的性能;添加适量稀土Ce可降低富钙相对钨粉的影响,钨粉颗粒的棱角变得明显,颗粒尺寸变小且分布均匀,稀土Ce与富钙相发生反应生成Ce0.9Ca0.1O1.9三元相;稀土Ce与富钙相的交互作用效果显著,与1% Ca-YG6硬质合金相比,1% Ce+1% Ca-YG6硬质合金的致密度、硬度和断裂韧性分别提高了7.8%,34.3%和67.8%。%The elements of Ca and rare earth Ce were added in APT powder. The interaction of rare earth element Ce with calcium-enriched phase was discussed during the preparation process of cemented carbide. The phase composition, microstructure and element distribution were tested by using X-ray diffractometer, scanning electron microscope and energy disperse spectroscopy, respectively. The results show that two kinds of calcium-enriched phases, CaWO4 and Ca4.26W10O30, are generated in the process of reducing tungsten oxide, which passivate tungsten particles. After carburization, calcium-enriched phases transform into the Ca4.26W10O30 and CaC2 phases. Calcium-enriched phases can sharply reduce the property of YG6 cemented carbide. Adding a moderate amount of rare earth Ce can decrease the influence of calcium-enriched phases on tungsten particles. The edges and corners of tungsten particles become more obvious, and the particle size of tungsten powders becomes smaller and uniform. During carburization process, rare earth Ce reacts with calcium-enriched phase and forms

  5. Mechanochemical synthesis of cerium orthophosphate

    Institute of Scientific and Technical Information of China (English)

    A.Matraszek; I.Szczygiei; L.Macalik; J.Hanuza

    2009-01-01

    A facile,simple and rapid preparation method of cerium orthophosphate was presented.The synthesis of low-crystalline CePO4 occurred upon mixing of cerium (Ⅲ) nitrate and sodium phosphate,and was an exchange-type reaction.The phase composition of the obtained powder was checked by the XRD and FTIR methods,indicating the presence of cerium phosphate.Further investigations on thermal behavior of the synthesized cerium salt had shown that the obtained onhophosphate crystallized at first in rhabdophane-type structure.It convetted to monazite (monoclinic symmetry) during heating at the temperatures of above 600 ℃.Oxidation of Ce3+ to Ce4+ was avoided during the syntheses,as confirmed by the XPS experiments.

  6. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    Science.gov (United States)

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  7. Titanium Carbide-Graphite Composites

    Science.gov (United States)

    1991-11-08

    titanium carbide , titanium carbide with free graphite, titanium carbide /vanadium carbide alloy with free graphite, and titanium carbide with...from melts. The test pins were drawn across hot pressed titanium carbide wear plates with 5 newtons of normal force. The lowest friction coefficient at...22 C was 0.12 obtained with pure titanium carbide . The lowest friction coefficient at 900 C was 0.19 obtained with titanium carbide with boron and

  8. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp) 3 scarcely dissolves

  9. SILICON CARBIDE FOR SEMICONDUCTORS

    Science.gov (United States)

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  10. Silicon Carbide Shapes.

    Science.gov (United States)

    Free-standing silicon carbide shapes are produced by passing a properly diluted stream of a reactant gas, for example methyltrichlorosilane, into a...reaction chamber housing a thin walled, hollow graphite body heated to 1300-1500C. After the graphite body is sufficiently coated with silicon carbide , the...graphite body is fired, converting the graphite to gaseous CO2 and CO and leaving a silicon carbide shaped article remaining.

  11. Cerium extraction by metallothermic reduction using cerium oxide powder injection

    Institute of Scientific and Technical Information of China (English)

    J.S. Luna A; A. Flores V; R. Mu(n)iz V; A.F. Fuentes; J. Torres; N. Rodríuez R; J.C. Ortiz; P.Orozco

    2011-01-01

    This work presented the feasibility of cerium recovery by Al-Mg alloy through the metallothermic reduction of CeO2 to obtain a master alloy Al-4%Ce. The master alloy obtained in this investigation was for the grain refinement and modification of Al-Si alloys. The reagent was incorporated into a molten alloy using the submerged powder injection technique, and metallic samples were obtained during injection. Chemical and microstructural analyses (by inductively coupled plasma (ICP) and scanning electron microscopy (SEM), respectively) confirmed the possibility of Ce uptake in the bath (0 to 4 wt.%), as CeO2 was reduced through metallothermic reactions in the molten alloys.Based on the characterization of reaction products, the sequence of the reaction was proposed.

  12. SILICON CARBIDE DATA SHEETS

    Science.gov (United States)

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  13. Some Environmentally Relevant Reactions of Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Janoš Pavel

    2014-12-01

    Full Text Available Reactive forms of cerium oxide were prepared by a thermal decomposition of various precursors, namely carbonates, oxalates and citrates, commercially available nanocrystalline cerium oxide (nanoceria was involved in the study for comparison. Scanning electron microscopy (SEM and x-ray diffraction analysis (XRD were used to examine the morphology and crystallinity of the samples, respectively, whereas the Brunauer-Emmett-Teller (BET method of nitrogen adsorption was used to determine surface areas. Interactions of cerium oxide with some phosphorus-containing compounds were investigated. Some of the examined samples, especially those prepared by annealing from carbonate precursors, exhibited an outstanding ability to destroy highly toxic organophosphates, such as pesticides (parathion methyl, or nerve agents (soman, VX. There were identified some relations between the degradation efficiency of cerium oxides and their crystallinity. It was also shown that cerium oxide is able to destroy one of widely used flame retardants - triphenyl phosphate. A phosphatase-mimetic activity of various cerium oxides was examined with the aid of a standardized phosphatase test.

  14. Pharmacological potential of cerium oxidenanoparticles

    Science.gov (United States)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  15. Thermal Transport in Refractory Carbides.

    Science.gov (United States)

    Thermal energy transport mechanisms in titanium carbide and zirconium carbide have been studied. Several compositions of vanadium carbide alloyed...with titanium carbide were used. The electronic component of the thermal conductivity exceeded the values computed using the classical value for L in

  16. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  17. Titanium Carbide: Nanotechnology, Properties, Application

    OpenAIRE

    Galevsky, G. V.; Rudneva, V. V.; Garbuzova, A. K.; Valuev, Denis Viktorovich

    2015-01-01

    The paper develops scientific and technological bases for fabrication of titanium carbide which is a nanocomponent of composite materials. The authors determine optimum technology specifications and the main titanium carbide properties: fineness of titaniferous raw materials, carbide-forming agent quantity, set temperature of plasma flow, tempering temperature, titanium carbide yield, productivity, specific surface, size and shape of particles. The paper includes equations to describe how the...

  18. CHEMICAL BEHAVIOR OF CERIUM ELEMENT IN ROCK WEATHERING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A study on existing valence state and chemical behavior of cerium element in two categories of rock weathering system in China has been carried out. In the granitoid weathering crust of Southern China,cerium as tetravalent hydroxide absorbed on clay minerals occupies 62.58 % of total amount of cerium and the cerium partitioning in the phase is 69.58 %. The depositing cerium stops its mobility downward, resulting in rare earth partitioning variation, the light rare earth partitioning is high at upper layer of weathering crust, the heavy rare earth partitioning is high at bottom layer of weathering crust, and the extracted product exists cerium lose effect. For Mn2+ as reducing agent existing in black weathering earth of Maoniuping rare earth ore,cerium is trivalent and absorbed on Mn-Fe oxide as colloid phase sediment. Colloid sediment phase can be divided into Mn-Fe combined phase and hydroxide sediment phase with cerium contents of 19.77% and 48.30%, and their cerium partitionings are 80.72% and 37.38% respectively. The Mn-Fe combined phase can selectively absorb cerium.

  19. Titanium Carbide: Nanotechnology, Properties, Application

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Garbuzova, A. K.; Valuev, D. V.

    2015-09-01

    The paper develops scientific and technological bases for fabrication of titanium carbide which is a nanocomponent of composite materials. The authors determine optimum technology specifications and the main titanium carbide properties: fineness of titaniferous raw materials, carbide-forming agent quantity, set temperature of plasma flow, tempering temperature, titanium carbide yield, productivity, specific surface, size and shape of particles. The paper includes equations to describe how the major specifications of the fabrication technique influence the content of titanium carbide and free carbon in the end product.

  20. Silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  1. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Science.gov (United States)

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.

  2. Characterization of Silicon Carbide.

    Science.gov (United States)

    The various electrical and structural measurement techniques for silicon carbide are described. The electrical measurements include conductivity, resistivity, carrier concentration, mobility, doping energy levels, and lifetime. The structural measurements include polytype determination and crystalline perfection. Both bulk and epitaxial films are included.

  3. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  4. Effect of cerium and thermomechanical processing on microstructure and mechanical properties of Fe–10.5Al–0.8C alloy

    Indian Academy of Sciences (India)

    R G Baligidad; Shivkumar Khaple

    2009-10-01

    The effect of cerium content and thermomechanical processing on structure and properties of Fe–10.5 wt.%Al–0.8 wt%C alloy has been investigated. Alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot-forged and hotrolled at 1373 K as well as warm-rolled at 923 K and heat-treated. Hot-rolled, warm-rolled and heat treated alloys were examined using optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction to understand the microstructure of these alloys. The ternary, Fe–10.5 wt.%Al–0.8 wt.%C alloy showed the presence of two phases; Fe–Al with bcc structure, and large volume fraction of Fe3AlC0.5 precipitates. Addition of cerium to Fe–10.5 wt.%Al–0.8 wt.%C alloy resulted in three phases, the additional phase being small volume fraction of fine cerium oxy-carbide precipitates. Improvement in tensile elongation from 3–6.4% was achieved by increasing the cerium content from 0.01–0.2 wt.% and further improvement in tensile elongation from 6.4–10% was achieved by warm-rolling and heat treatment.

  5. Synthesis of Cerium-Doped Titania Nanoparticles and Nanotubes.

    Science.gov (United States)

    Cao, Wei; Suzuki, Takuya; Elsayed-Ali, Hani E; Abdel-Fattah, Tarek M

    2015-03-01

    Cerium-doped titania nanoparticles and nanotubes were synthesized via hydrothermal processes. X-Ray Diffraction revealed that cerium-doped titania nanoparticles have an anatase crystal structure, while cerium-doped titania nanotubes have an H2Ti3O7-type structure. Scanning electron microscopy and high resolution transmission electron microscopy showed that both types of titania are well crystallized with relatively uniform size distribution. The photocatalytic degradation of methylthioninium chloride known as methylene blue dye was tested and both cerium-doped titania nanoparticles and nanotubes. The preliminary photocatalytic degradation of Methylene Blue data showed significantly improved visible light photocatalytic activities as compared to commercial titania powders.

  6. Cerium and jojoba in engines?; Cerium et jojoba dans les moteurs?

    Energy Technology Data Exchange (ETDEWEB)

    Massy-Delhotel, E.

    1996-10-01

    The Belgium company CreaTel proposes a new system, called Forac, which can lead to a 10% reduction of fuel consumption in thermal engines together with a quasi-complete reduction of CO, HC, NOx pollutants and CO{sub 2} particulates emission. The system comprises a steam production device and an admission pipe with a cerium alloy whorl inside. The steam produced is mixed with the admission air and tears cerium particles from the inside of the admission pipe to the combustion chamber. The cerium particles act as a catalyst which favours the complete combustion of the fuel. The same company proposes also lubricant additives made from liquid jojoba wax which allow the reduction of pollutant emissions, fuel consumption and noise emissions of diesel engines. (J.S.)

  7. Thermodynamics of congruently subliming cerium-antimony

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, R.A.; Franzen, H.F.

    1982-01-01

    Congruently vaporizing cerium-antimony has been investigated by vapor pressure measurementa using a simultaneous weight-loss mass-spectrometric Knudsen effusion technique. The melting point of the 1:1 stoichiometry was determined to be 2179 +/- 10 K. The heat of formation at 298 K of CeSb was found to be -128.9 kJ/g-at from thermodynamic measurements in the temperature range 1985-2172 K.

  8. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    OpenAIRE

    2015-01-01

    Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 na...

  9. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  10. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  11. Study of the cerium(IV)-picrate system in acetonitrile.

    Science.gov (United States)

    Kratochvil, B; Tipler, M; McKay, B

    1966-07-01

    A potentiometric and spectrophotometric study has been made of the reaction between hexanitratocerate and picrate in dry acetonitrile. Several cerium(IV)-picrate complexes are formed; the formation constant for the first is estimated to be 4 from spectrophotometric measurements. The catalytic effect of picrate on hydroquinone oxidation by nitratocerate is postulated to be due to more rapid electron transfer by cerium picrate complexes.

  12. Formation and characterization of cerium conversion coatings on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LI Lingjie; LEI Jinglei; YU Shenghai; TIAN Yujing; JIANG Qiquan; PAN Fusheng

    2008-01-01

    Chemical conversion treatment by rare earth metal salt solution was considered as an alternative to chromium chemical conversion treatment to improve the corrosion resistance of magnesium alloys. In this study, cerium conversion coatings formed on AZ31 magnesium alloy were characterized and the formation mechanism was discussed. X-ray photoelectron spectroscopy (XPS) analysis showed that cerium conversion coating consisted of cerium hydroxides/oxides, in which both tetravalent cerium Ce(IV) and trivalent cerium Ce(III) species co-existed. Cerium conversion coating was a two-layer structure. Atomic force microscopy (AFM) images revealed that the morphology of the inside layer was different from that of the outside one, which was responsible for the inherent adhesive weakness of the coating. Corrosion potential (Ecorr) measurements indicated that poor adhesion limited the improvement of the corrosion resistance of the coating. During the treating process, the increased pH value of the cerium salt solution led to the precipitation of cerium hydroxides/oxides. The formation kinetics of the coating followed a parabolic curve.

  13. Silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  14. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  15. Ultrathin, epitaxial cerium dioxide on silicon

    Science.gov (United States)

    Flege, Jan Ingo; Kaemena, Björn; Höcker, Jan; Bertram, Florian; Wollschläger, Joachim; Schmidt, Thomas; Falta, Jens

    2014-03-01

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce2O3 film may very effectively be converted at room temperature to almost fully oxidized CeO2 by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  16. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  17. Cerium-tannic acid passivation treatment on galvamzed steel

    Institute of Scientific and Technical Information of China (English)

    LIU Guangming; YU Fei; YANG Liu; TIAN Jihong; DU Nan

    2009-01-01

    A novel cerium-tannic acid passivation treatment was performed on galvanized steel. The corrosion resistance of cerium-tannic passivated samples was tested by dropping test with 0.5 wt.% CuSO4 aqueous solution. The mass loss per unit area of passivated samples was measured after the corrosion in 0.5 mol/L NaCl + 0.005 mol/L H2SO4 at room temperature for 96 h. The electrochemical behaviors of cerium, tannic acid, and cerium-tannic acid passivated samples on galvanized steel in 0.5 mol/L NaCI solution were investigated by polarization curves and electrochemical impendence spectra. The corrosion equivalent circuit was established according to the impedance characteristics. The results show that cerium-tannic acid treated samples exhibit better corrosion resistance than the sole cerium or tannic acid treated samples under the same condition. The mechanism of synergistic effect for cerium-tannic acid passivation on galvanized steel was discussed.

  18. Atomic Transition Probabilities for Neutral Cerium

    Science.gov (United States)

    Chisholm, John; Nitz, D.; Sobeck, J.; Den Hartog, E. A.; Wood, M. P.; Lawler, J. E.

    2010-01-01

    Among the rare earth species, the spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are some of the most complex. Like other rare earth species, Ce has many lines in the visible which are suitable for elemental abundance studies. Recent work on Ce II transition probabilities [1] is now being augmented with similar work on Ce I for future studies using such lines from astrophysical sources. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2500 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442 and NSF Grant CTS0613277. [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  19. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  20. Fire retardancy of emulsion polymerized poly (methyl methacrylate)/cerium(IV) dioxide and polystyrene/cerium(IV) dioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Guipeng [Department of Chemistry and Fire Retardant Research Facility, Marquette University, PO Box 1881, Milwaukee, WI 53201 (United States); Lu, Hongdian [Department of Chemical and Materials Engineering, Hefei University, Hefei, Anhui 230022 (China); Zhou, You; Hao, Jianwei [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wilkie, Charles A., E-mail: charles.wilkie@marquette.edu [Department of Chemistry and Fire Retardant Research Facility, Marquette University, PO Box 1881, Milwaukee, WI 53201 (United States)

    2012-12-10

    Highlights: Black-Right-Pointing-Pointer We prepare PMMA and PS containing ceria. Black-Right-Pointing-Pointer Characterization by XRD and TEM shows that some of the ceria is well-dispersed in the polymers. Black-Right-Pointing-Pointer The addition of ceria to both polymers leads to reduced thermal stability. Black-Right-Pointing-Pointer In PMMA, the fire retardancy is enhanced but there is little effect in PS. - Abstract: In situ emulsion polymerization was employed to obtain poly (methyl methacrylate) (PMMA)/cerium(IV) dioxide and polystyrene (PS)/cerium(IV) dioxide nanocomposites at two different cerium(IV) dioxide loadings (2.3 wt% and 4.6 wt%). Transmission electron microscope results indicated uniform dispersion of cerium (IV) dioxide in the polymer matrix. Both PMMA and PS nanocomposites exhibit lower thermal stability than the pristine polymers. Microscale combustion calorimeter (MCC) and cone calorimetry are used to evaluate the fire retardancy of the polymer nanocomposites. PMMA/cerium(IV) dioxide showed significant heat release rate (HRR) reduction at low loadings (<5 wt%), while PS/cerium(IV) dioxide exhibits less HRR reduction at the same loadings. An explanation of the role of cerium (IV) dioxide in fire retardancy of polymer/ceria nanocomposites based on XPS results is suggested.

  1. Technology of Iron Carbide Synthesis

    Institute of Scientific and Technical Information of China (English)

    M.Bahgat

    2006-01-01

    Iron carbides are very promising metallurgical products and can be used for steelmaking process, where it plays as an alternative raw material with significant economic advantages. Also it has many other applications,e.g. catalysts, magnets, sensors. The present review investigates the different properties and uses of the iron carbides. The commercial production and the different varieties for the iron carbides synthesis (gaseous carburization, mechanochemical synthesis, laser pyrolysis, plasma pyrolysis, chemical vapor deposition and ion implantation) were reviewed. Also the effect of different factors on the carburization process like gas composition, raw material, temperature, reaction time, catalyst presence and sulfur addition was indicated.

  2. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  3. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  4. Ballistic Evaluation of rolled Homogeneous Steel Armor with Tungsten Carbide and Titanium Carbide Facing.

    Science.gov (United States)

    1960-12-01

    LABORATORIES BALLISTIC EVALUATION OF ROLLED HMtOGE14EOUS STEEL ASWKR f VITH TUNGSTEN CARBIDE AND TITANIUM CARBIDE FACING (U) TECHNICAL REPORT NO. WAL...carbide steel and titanium carbide steel composite armor when attacked by cal. .40 H19B WC cores, cal. .0 AP W2 projectiles, ZOIN fragment simulating...determine the effectiveness of tungsten car- bide (WC) and titanium carbide (TIC) facing on steel armor for the defeat of steel and tungsten carbide

  5. Improvement in corrosion resistance of magnesium coating with cerium treatment

    Institute of Scientific and Technical Information of China (English)

    Samia Ben Hassen; Latifa Bousselmi; Patricc Bercot; El Mustafa Rezrazi; Ezzeddine Triki

    2009-01-01

    Corrosion protection afforded by a magnesium coating treated in cerium salt solution on steel substrate was investigated using open circuit potential, polarization curves, and electrochemical impedance spectroscopy (EIS) in 0.005 M sodium chloride solution (NaCl). The morphology of the surface was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The cerium treated coating was obtained by immersion in CeCl3 solution. The results showed that the corrosion resistance of the treated magnesium coating was improved. The corrosion potential of the treated coating was found to be nobler than that of the untreated magnesium coating and the corrosion current decreased significantly. Impedance results showed that the cerium treatment increased corrosion protection. The improvement of anti-corrosion properties was ataibuted to the formation of cerium oxides and hydroxides that gave to a physical barrier effect.

  6. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    Science.gov (United States)

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  7. Preparing Process of Cerium Acetate and Rare Earth Acetate

    Institute of Scientific and Technical Information of China (English)

    Qiao Jun; Ma Ying; Xu Yanhui; Zhang Jun; Chang Shu; Hao Xianku

    2004-01-01

    Preparing process was presented and the influences of concentration of acetic acid, reaction temperature, the ratio of cerium carbonate and acetic acid, heat preservation time to the yield of cerium acetate were discussed.The crystalline cerium acetate and rare earth acetate such as ( La, Ce, Pr, Nd) (Ac) 3, ( Ce, Pr, Nd) (Ac) 3, ( Pr, Nd, Er,Y) (Ac) 3 and yttrium acetate were prepared under this condition.The shape, structure and composition of the crystals were determined by the methods of SEM, TG-DTA, X-ray diffraction and chemical analysis.The optimum prepared conditions of cerium acetate were described.This prepared process has characteristics such as simple process route, low cost, high yield, good quality, no pollution to environment, etc.

  8. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  9. Exraction and separation of CERIUM(IV)/FLUORINE in fluoride-bearing cerium sulfate solution with fluoride coordination agent

    OpenAIRE

    Li, Y; J. G. He; X. X. Xue; Ru, H. Q.; X. W. Huang; Yang, H.

    2014-01-01

    In this paper the extraction and separation of cerium/fluorine in fluoride-bearing cerium sulfate solution with fluoride coordination agent has been studied. The UV-vis spectra suggest that Zr6+ and Al3+ can scrub the F- from [CeF2] 2+ complex. The separation and conductivity studies show that aluminum salt is the most suitable fluoride coordination agent, and an ion-exchange reaction is involved between Ce4+/ [CeF2] 2+ and hydrogen ion.

  10. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  11. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  12. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  13. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  14. Potential for recovery of cerium contained in automotive catalytic converters

    Science.gov (United States)

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  15. Electrodeposited cerium film as chromate replacement for tinplate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xingqiao [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Li Ning [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: lining@hit.edu.cn; Wang Huiyong; Sun Hanxiao; Sun Shanshan; Zheng Jian [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-01-30

    The cerium film was prepared on tinplate by electrodeposition method. Sulfide-stain resistance of the Ce-passivated, unpassivated and Cr-passivated tinplates was evaluated using a cysteine tarnish test. Corrosion behavior of these tinplates in contact with 3.5% NaCl solution and 0.1 M citric-citrate buffer solution was investigated using Tafel measurement and electrochemical impedance spectroscopy measurement, respectively. The adhesion of epoxyphenolic lacquer to the Ce-passivated tinplate was checked using a cross hatch cutter. The morphology, composition and thickness of the cerium film were studied by atomic force microscopy, X-ray photoelectron spectroscopy and X-ray fluorescence spectrometry. According to the results, the Ce-passivated tinplate shows the best sulfide-stain resistance and the best corrosion protection property compared with the unpassivated and Cr-passivated tinplates. The adhesion of epoxyphenolic lacquer to the Ce-passivated tinplate is good. The cerium film is composed of the closely packed particles of about 50-200 nm in diameter. The film mainly consists of cerium and oxygen, which mainly exist as CeO{sub 2}, Ce{sub 2}O{sub 3} and their hydrates such as Ce(OH){sub 4}, Ce(OH){sub 3}. The total cerium amount of the film is about 0.110 g/m{sup 2}.

  16. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  17. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  18. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  19. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal

    Institute of Scientific and Technical Information of China (English)

    COLMAN-LERNER Esteban; PELUSO Miguel Andrs; SAMBETH Jorge; THOMAS Horacio

    2016-01-01

    Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds (VOC) (ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter (PM) combustion. The characterization results indicated that Ce was in the form of Ce4+ and Ce3+, and Mn existed in the form of Mn4+and Mn3+on the surface of the Mn/AC sample and in the form of Mn4+ in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO2 (Ce/AC) and MnOx (Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductiv-ity and the reducibility of the oxides.

  20. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    Science.gov (United States)

    Dahle, Jessica T; Arai, Yuji

    2015-01-23

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  1. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jessica T. Dahle

    2015-01-01

    Full Text Available Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydroxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent. This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  2. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  3. Mechanical and Thermophysical Properties of Cerium Monopnictides

    Science.gov (United States)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born-Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young's moduli, bulk moduli, Breazeale's non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  4. Cerium-iron-based magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.

    2017-01-17

    New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo in combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.

  5. Thermodynamic Calculation among Cerium, Oxygen, and Sulfur in Liquid Iron

    Science.gov (United States)

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Su, Yen-Hao; Hwang, Weng-Sing

    2016-10-01

    Thermodynamic calculation has been applied to predict the inclusion formation in molten SS400 steel. When the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, the formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 and also the formation of sulfides containing Cerium would experience the transformation from CeS to Ce2S3 and then to Ce3S4. Below 2000 K the most thermodynamic stable matter is CeO2 and the less thermodynamic stable inclusion is CeS. Only when the amount of [O] is extremely low and the amount of [S] and [Ce] is relatively high, Ce2S3 has the possibility to form.

  6. Elaboration and characterization of thin solid films containing cerium

    Science.gov (United States)

    Hamdi, S.; Guerfi, S.; Siab, R.

    2009-11-01

    Cerium oxide films are widely studied as a promising alternative to Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electrodeposition of Cerium containing thin films was realised on TA6V substrates from a Ce(NO3)3, 6H2O and mixed water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity appears proportional to the quantity of electricity used, as indicated by the Faraday law. Subsequent thermal treatment lead to a CeO2 coating, expected to provide an increase of TA6V oxidation resistance at high temperatures. The deposits were characterized by differential scanning calorimetry (DSC), optical and scanning electron microscopies.

  7. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    Science.gov (United States)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  8. Optical and electrical studies of cerium mixed oxides

    Science.gov (United States)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  9. The PL "violet shift" of cerium dioxide on silicon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied from tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.

  10. Cerium dioxide with large particle size prepared by continuous precipitation

    Institute of Scientific and Technical Information of China (English)

    李梅; 王觅堂; 柳召刚; 胡艳宏; 吴锦绣

    2009-01-01

    Cerium dioxide(CeO2) has attracted much attention and has wide applications such as automotive exhaust catalysts,polishing materials for optical glasses and additives for advanced glasses,as well as cosmetic materials.The particle size and its distribution are key factors to the performance of the materials in the functional applications.However,control of particle size is still a challenge in materials synthesis.Therefore,continuous precipitation of cerium oxalate(precursor of ceria) was carried out at dif...

  11. Optical and electrical studies of cerium mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  12. Isomorphic phase transformation in shocked Cerium using molecular dynamics

    OpenAIRE

    Germann T.C.; Chen S.-P.; Dupont V.

    2011-01-01

    Cerium (Ce) undergoes a significant (∼16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plas...

  13. Kinetics and Mechanisms of Creep in Sintered Alpha Silicon Carbide and Niobium Carbide.

    Science.gov (United States)

    1985-09-18

    CARBIDE AND NIOBIUM CARBIDE Supported by 30 F (DMR-812-0804) and ARO (MIPR’s 43-48, 127-83, 141-84) U August, 1985 NCSU .LET tow A CL School of Engineering...SILICON CARBIDE AND NIOBIUM CARBIDE Supported by NSF (DMR-812-0804) and ARO (MIPR’s 43-48, 127-83, 141-84) August, 1985 L. U. 1’ ’’ b b MASTER COPY - FOR...and Mechanisms of Creep in Sintered May 1, 1982-June 15, 1985 Alpha Silicon Carbide and Niobium Carbide 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) 11

  14. Exraction and separation of CERIUM(IV/FLUORINE in fluoride-bearing cerium sulfate solution with fluoride coordination agent

    Directory of Open Access Journals (Sweden)

    Y. Li

    2014-07-01

    Full Text Available In this paper the extraction and separation of cerium/fluorine in fluoride-bearing cerium sulfate solution with fluoride coordination agent has been studied. The UV-vis spectra suggest that Zr6+ and Al3+ can scrub the F- from [CeF2] 2+ complex. The separation and conductivity studies show that aluminum salt is the most suitable fluoride coordination agent, and an ion-exchange reaction is involved between Ce4+/ [CeF2] 2+ and hydrogen ion.

  15. Thermo-Mechanical Characterization of Silicon Carbide-Silicon Carbide Composites at Elevated Temperatures Using a Unique Combustion Facility

    Science.gov (United States)

    2009-09-10

    F THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED...MECHANICAL CTERIZATION OF SILICON CARBIDE -SILIC BIDE COMPOSITES AT LEVATED TEMPER S USING A UNIQUE COMBUSTION FACILITY DISSERTATI N Ted T. Kim...THERMO-MECHANICAL CHARACTERIZATION OF SILICON CARBIDE - SILICON CARBIDE COMPOSITES AT ELEVATED TEMPERATURES USING A UNIQUE COMBUSTION FACILITY

  16. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  17. Structural, optical and photocatalytic activity of cerium doped zinc aluminate

    Science.gov (United States)

    Sumathi, Shanmugam; Kavipriya, A.

    2017-03-01

    Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.

  18. Purification of cerium, neodymium and gadolinium for low background experiments

    Directory of Open Access Journals (Sweden)

    Boiko R.S.

    2014-01-01

    Full Text Available Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search, 136Ce (2β+ candidate with one of the highest Q2β. The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  19. Electrorheological Effects of Cerium-Doped TiO2

    Institute of Scientific and Technical Information of China (English)

    尹剑波; 赵晓鹏

    2001-01-01

    It is found that the doping of cerium ion into anatase TiO2 can improve the electrorheological (ER) effects of TiO2 and broaden the operational temperature range. Especially, the substitution of 7-11 mol% of the cerium dopant for Ti can obtain a relatively high shear stress, t-7.4kPa (at 4kV/mm), which is ten times larger than that of pure TiO2 ER fluid. Also, the typical Ce-doped TiO2 ER fluid shows the highest shear stress at 80℃, but 40℃ for pure TiO2 ER fluid. The dielectric loss and dielectric constant at a low frequency of TiO2 is improved by the doping of cerium, and the temperature dependence of the dielectric properties shows an obvious differnce between pure and doped TiO2 ER fluids. These can well explain the ER behaviour of doped TiO2. Furthermore, the change of rheological and dielectric properties is discussed on the basis of the lattice distortion and defects in TiO2 arising from the doping of cerium.

  20. Cerium; crystal structure and position in the periodic table.

    Science.gov (United States)

    Johansson, Börje; Luo, Wei; Li, Sa; Ahuja, Rajeev

    2014-09-17

    The properties of the cerium metal have intrigued physicists and chemists for many decades. In particular a lot of attention has been directed towards its high pressure behavior, where an isostructural volume collapse (γ phase → α phase) has been observed. Two main models of the electronic aspect of this transformation have been proposed; one where the 4f electron undergoes a change from being localized into an itinerant metallic state, and one where the focus is on the interaction between the 4f electron and the conduction electrons, often referred to as the Kondo volume collapse model. However, over the years it has been repeatedly questioned whether the cerium collapse really is isostructural. Most recently, detailed experiments have been able to remove this worrisome uncertainty. Therefore the isostructural aspect of the α-γ transition has now to be seriously addressed in the theoretical modeling, something which has been very much neglected. A study of this fundamental characteristic of the cerium volume collapse is made in present paper and we show that the localized [rlhar2 ] delocalized 4f electron picture provides an adequate description of this unique behavior. This agreement makes it possible to suggest that an appropriate crossroad position for cerium in The Periodic Table.

  1. Determination of Impurity Elements in Pure Cerium Oxide Product

    Institute of Scientific and Technical Information of China (English)

    Li Peizhong; Chen Limin; Li Jie

    2004-01-01

    Determination of the rare earth impurity in pure cerium oxide is done by ICP-MS.The interference and other factors which affect analytical results were discussed.The accuracy are between 0.81% ~ 11.98% and the recoveries of standard addition are 96% ~ 112.5%.This method can meet the demand for product inspection.

  2. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  3. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  4. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  5. Investigation of Infiltrated and Sintered Titanium Carbide

    Science.gov (United States)

    1952-04-01

    taneive investigations in this field during the ’time preceding this contract, and concentrated their effort® On titanium carbide as the’ refractospy...component • The Basic work of this investigation consisted of? X, KpälfiCÄVtloh and refinement of cOmätrcial grades of titanium carbide hj...facilitate a comparison between the different methods» an investigation was then carried out with composite bodies* consisting of titanium carbide asd

  6. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  7. Shock-wave strength properties of boron carbide and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.

    1994-02-01

    Time-resolved velocity interferometry measurements have been made on boron carbide and silicon carbide ceramics to assess dynamic equation-of-state and strength properties of these materials. Hugoniot pecursor characteristics, and post-yield shock and release wave properties, indicated markedly different dynamic strength and flow behavior for the two carbides.

  8. Methods for producing silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  9. Silicon carbide fibers and articles including same

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  10. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  11. Solubility of cerium in LaCoO3-influence on catalytic activity.

    Science.gov (United States)

    French, S A; Catlow, C R A; Oldman, R J; Rogers, S C; Axon, S A

    2002-11-21

    The recent interest in the catalytic properties of lanthanum perovskites for methane combustion and three way catalysis has led to considerable debate as to their structure and defect chemistry. We have investigated the doping of LaCoO3 with the tetravalent cerium cation using atomistic simulation techniques. We have compared three routes for cerium insertion and identified the favoured doping mechanism, which explain experimental observations relating to the effect of cerium on catalytic activity.

  12. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  13. Improvement of cerium of photosynthesis functions of maize under magnesium deficiency.

    Science.gov (United States)

    Zhou, Min; Gong, Xiaolan; Wang, Ying; Liu, Chao; Hong, Mengmeng; Wang, Ling; Hong, Fashui

    2011-09-01

    Rare earth elements can promote photosynthesis, but their mechanisms are still poorly understood under magnesium deficiency. The present study was designed to determine the role of cerium in magnesium-deficient maize plants. Maize was cultivated in Hoagland's solution added with cerium with and without adequate quantities of magnesium. Under magnesium-deficient conditions, cerium can prevents inhibition of synthesis of photosynthetic pigment, improves light energy absorption and conversion, oxygen evolution, and the activity of photo-phosphorelation and its coupling factor Ca(2+)-ATPase. These results suggest that cerium could partly substitute magnesium, improving photosynthesis and plant growth.

  14. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  15. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  16. Titanium Carbide Bipolar Plate for Electrochemical Devices

    Energy Technology Data Exchange (ETDEWEB)

    LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

    1998-05-08

    Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

  17. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  18. Process for making silicon carbide reinforced silicon carbide composite

    Science.gov (United States)

    Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    1998-01-01

    A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  19. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  20. Isomorphic phase transformation in shocked cerium using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Virginie [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Chen, Shao - Ping [Los Alamos National Laboratory

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  1. Isomorphic phase transformation in shocked Cerium using molecular dynamics

    Directory of Open Access Journals (Sweden)

    Germann T.C.

    2011-01-01

    Full Text Available Cerium (Ce undergoes a significant (∼16% volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  2. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  3. Synthesis and characterization of cerium sulfide thin film

    Institute of Scientific and Technical Information of China (English)

    Ιshak Afsin Kariper

    2014-01-01

    Cerium sulfide (CexSy) polycrystalline thin film is coated with chemical bath deposition on substrates (commercial glass). Transmittance, absorption, optical band gap and refractive index are examined by using UV/VIS. Spectrum. The hexagonal form is observed in the structural properties in XRD. The structural and optical properties of cerium sulfide thin films are analyzed at different pH. SEM and EDX analyses are made for surface analysis and elemental ratio in films. It is observed that some properties of films changed with different pH values. In this study, the focus is on the observed changes in the properties of films. The pH values were scanned at 6–10. The optical band gap changed with pH between 3.40 to 3.60 eV. In addition, the film thickness changed with pH at 411 nm to 880 nm.

  4. Preparation and characterization of gelatin/cerium(Ⅲ) film

    Institute of Scientific and Technical Information of China (English)

    黄崇军; 黄雅钦; 田娜; 童元建; 殷瑞贤

    2010-01-01

    A novel gelatin film with antibacterial activity was prepared by electrostatic crosslinking using cerium (Ⅲ) nitrate hexahydrate as the crosslinking agent. The structure and properties of the films were investigated by Fourier transform infrared spectra, tensile tests, thermogravimetric analysis, static drop contact angle and disc diffusion method. The results showed that cross-linking could not only improve the thermal and mechanical properties and lower the hydrophilic property of the films, but also make...

  5. Antibacterial activity of polymer coated cerium oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Vishal Shah

    Full Text Available Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO(4, CaCl(2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO(2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts.

  6. Study of tetravalent cerium incorporation in the monazite structure

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, D.; Audubert, F.; Bernache-Assollant, D

    2004-07-01

    The incorporation of tetravalent cerium in the monazite structure (La{sub 1-2x}Ce{sup 4+}{sub x}Ca{sub x}PO{sub 4}) by high temperature solid state synthesis was investigated. First of all, the reaction was followed by DTA-TGA method and X-rays diffraction. It has been shown that CaO first reacts with the phosphate precursor to form Ca(PO{sub 3}){sub 2}. This compound melts near 940 deg C, inducing the dissociation of CeO{sub 2} and the reduction of a large part of cerium IV to cerium III. Two methods have been developed to determine the Ce{sup 4+}/Ce{sup 3+} ratio by using X-ray diffraction and microprobe analysis. We show that Ce{sup 4+} incorporation in LaPO{sub 4} is limited to a Ce{sup 4+}/Ce{sup 3+} = 0.15 value. (authors)

  7. Jet formation in cerium metal to examine material strength

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B. J., E-mail: bjjensen@lanl.gov; Cherne, F. J.; Prime, M. B.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fezzaa, K. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Iverson, A. J.; Carlson, C. A. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2015-11-21

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  8. Jet formation in cerium metal to examine material strength

    Science.gov (United States)

    Jensen, B. J.; Cherne, F. J.; Prime, M. B.; Fezzaa, K.; Iverson, A. J.; Carlson, C. A.; Yeager, J. D.; Ramos, K. J.; Hooks, D. E.; Cooley, J. C.; Dimonte, G.

    2015-11-01

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2-3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.

  9. pH-distribution of cerium species in aqueous systems

    Institute of Scientific and Technical Information of China (English)

    B.Bouchaud; J.Balmain; G.Bonnet; F.Pedraza

    2012-01-01

    Cerium-based oxide coalings can be obtained through either chemical or electrochemical processes on various conductor and semiconductor substrates.In both cases the films develop through a precipitation mechanism,which strongly depends on the solution chemistry.In the particular case of the electrolytic approach,the elaboration parameters play a key role on the interfacial pH modification thereby leading to an indirect precipitation mechanism.Indeed,the nucleation and growth mechanisms of crystallites and the composition of the resulting layers have been shown to be also strongly affected by the deposition conditions as well as by the substrate composition,which could in turn modify the protectiveness provided by such coatings.Therefore a better fundamental understanding of the system is required,in particular of the distribution of cerium-containing species in aqueous solution.To this end,the present work intended to develop a diagram showing the distribution as well as the relative amount of Ce(Ⅲ)/Ce(Ⅳ) species in aqueous media as a function of the pH range.The resulting pH-distribution diagram turned out to be a useful tool to predict the relevant precipitation mechanisms and species involved during the growth of cerium-containing films and to draw correlations with the characteristics of the as-deposited films.

  10. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  11. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  12. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  13. Single crystal to single crystal transformation and hydrogen-atom transfer upon oxidation of a cerium coordination compound.

    Science.gov (United States)

    Williams, Ursula J; Mahoney, Brian D; Lewis, Andrew J; DeGregorio, Patrick T; Carroll, Patrick J; Schelter, Eric J

    2013-04-15

    Trivalent and tetravalent cerium compounds of the octamethyltetraazaannulene (H2omtaa) ligand have been synthesized. Electrochemical analysis shows a strong thermodynamic preference for the formal cerium(IV) oxidation state. Oxidation of the cerium(III) congener Ce(Homtaa)(omtaa) occurs by hydrogen-atom transfer that includes a single crystal to single crystal transformation upon exposure to an ambient atmosphere.

  14. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  15. Formation of nanoscale titanium carbides in ferrite: an atomic study

    Science.gov (United States)

    Lv, Yanan; Hodgson, Peter; Kong, Lingxue; Gao, Weimin

    2016-03-01

    The formation and evolution of nanoscale titanium carbide in ferrite during the early isothermal annealing process were investigated via molecular dynamics simulation. The atomic interactions of titanium and carbon atoms during the initial formation process explained the atoms aggregation and carbides formation. It was found that the aggregation and dissociation of titanium carbide occurred simultaneously, and the composition of carbide clusters varied in a wide range. A mechanism for the formation of titanium carbide clusters in ferrite was disclosed.

  16. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    Science.gov (United States)

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity.

  17. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    OpenAIRE

    Matus K.; Pawlyta M.; Matula G.; Gołombek K.

    2016-01-01

    The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary ...

  18. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  19. Carbothermal synthesis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Wei, G.C.; Kennedy, C.R.; Harris, L.A.

    1985-05-01

    Silicon carbide powders were synthesized from various silica and carbon sources by a carbothermal reduction process at temperatures between 1500 and 1600/sup 0/C. The silica sources were fumed silica, methyltrimethoxysilane, and microcrystalline quartz. The carbon sources were petroleum pitch, phenolic resin, sucrose, and carbon black. Submicron SiC powders were synthesized. Their morphologies included equiaxed loosely-bound agglomerates, equiaxed hard-shell agglomerates, and whiskers. Morphology changed with the furnace atmosphere (argon, nitrogen, or nitrogen-4% hydrogen). The best sintering was observed in SiC derived from the fumed-silica-pitch and fumed-silica-sucrose precursors. The poorest sintering was observed in SiC derived from microcrystalline quartz and carbon black. 11 refs., 16 figs., 10 tabs.

  20. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  1. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  2. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  3. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  4. Combustion synthesis of novel boron carbide

    Science.gov (United States)

    Harini, R. Saai; Manikandan, E.; Anthonysamy, S.; Chandramouli, V.; Eswaramoorthy, D.

    2013-02-01

    The solid-state boron carbide is one of the hardest materials known, ranking third behind diamond and cubic boron nitride. Boron carbide (BxCx) enriched in the 10B isotope is used as a control rod material in the nuclear industry due to its high neutron absorption cross section and other favorable physico-chemical properties. Conventional methods of preparation of boron carbide are energy intensive processes accompanied by huge loss of boron. Attempts were made at IGCAR Kalpakkam to develop energy efficient and cost effective methods to prepare boron carbide. The products of the gel combustion and microwave synthesis experiments were characterized for phase purity by XRD. The carbide formation was ascertained using finger-print spectroscopy of FTIR. Samples of pyrolized/microwave heated powder were characterized for surface morphology using SEM. The present work shows the recent advances in understanding of structural and chemical variations in boron carbide and their influence on morphology, optical and vibrational property results discussed in details.

  5. Spectrophotometric determination of cerium with methylthymol blue in the presence of oxalate and cyanide as masking agents

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Martin, A.; Izquierdo-Hornillos, R.; Quejido-Cabezas, A.J.; Peral-Fernandez, J.L. (Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas)

    1983-04-01

    The spectrophotometric determination of cerium can be carried out by several methods, which involve either the formation of complexes of cerium(III) and cerium(IV) or the oxidation of suitable reagents by cerium(IV) and further measuring the intensity of the colour of the oxidised matter. The latter methods show a lack of selectivity and low sensitivity owing to the nature of the redox reaction. The methods that involve the formation of complexes have also been shown to have low selectivity and sensitivity. However, the most useful methods are those based on the complexes of cerium(III) with Xylenol Orange and Methylthymol Blue (MTB), but they are affected by many interferences. In this work the reaction of cerium(III) with MTB in the presence of oxalate and cyanide ions was studied at pH 10.2, which improves the sensitivity and the selectivity of the determination of cerium.

  6. Electrochemical studies on cerium(Ⅲ) in molten fluoride mixtures

    Institute of Scientific and Technical Information of China (English)

    VIRGIL; CONSTANTIN; ANA-MARIA; POPESCU; MIRCEA; OLTEANU

    2010-01-01

    This study aims to determine the principal electrochemical characteristics of the electrodeposition of cerium metal from molten fluoride systems.The cathodic process of Ce3+ ions in LiF-NaF and LiF-NaF-CaF2 molten salts was studied using electrochemical techniques as steady state and cyclic voltammetry methods.The decomposition potential(Ed) and the overvoltage(η) were determined for NaCeF4 using current-potential curves under galvanostatic conditions.The Ed was found to be 2.025 V in LiF-NaF and 2.045 V in...

  7. Cerium oxide based nanometric powders: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Ninić M.

    2007-01-01

    Full Text Available Nanometric powders of solid solutions of cerium oxide were obtained by a modified glycine nitrate procedure. Solid solutions of the host compound CeO2 with one or more dopants in the lattice were synthesized. Rare earth cations (Re=Yb, Gd and Sm were added to ceria in total concentration of x= 0.2 that was kept constant. The criterion in doping was to keep the value of lattice parameter of ceria unchanged. The lattice parameters were calculated by using the model that takes into account the existence of oxygen vacancies in the structure.

  8. Options for the recovery of cerium by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Soldenhoff, K.H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    This paper reports the results of an experimental program to examine the use of various commercial reagents for the extraction of cerium (IV) from sulphate solutions. Extractants tested include organophosphorus esters (TOPO, Cyanex 923 and Cyanex 925), organophosphorus acids (DEHPA, lonquest 801 and Cyanex 272) and high molecular weight amine, Alamine 336. The suitability of reagents is assessed in terms of process relevant criteria such as extraction dependence on acidity, selectivity over other rare earths and thorium, stability of reagent towards oxidation and loading characteristics. (author) 15 refs., 2 tabs., 5 figs.

  9. Identification of the Charge Carriers in Cerium Phosphate Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Hannah L.; Jonghe, Lutgard C. De

    2010-06-02

    The total conductivity of Sr-doped cerium orthophosphate changes by nearly two orders of magnitude depending on the oxygen and hydrogen content of the atmosphere. The defect model for the system suggests that this is because the identity of the dominant charge carrier can change from electron holes to protons when the sample is in equilibrium with air vs. humidified hydrogen. In this work are presented some preliminary measurements that can help to clarify this exchange between carriers. The conduction behavior of a 2percent Sr-doped CePO4 sample under symmetric atmospheric conditions is investigated using several techniques, including AC impedance, H/D isotope effects, and chronoamperometry.

  10. Properties of hot liquid cerium by LDA + U molecular dynamics.

    Science.gov (United States)

    Siberchicot, Bruno; Clérouin, Jean

    2012-11-14

    We present ab initio simulations of liquid cerium in the framework of the LDA + U formulation. The liquid density has been determined self-consistently by searching for the zero pressure equilibrium state at 1320 K with the same set of parameters (U and J) and occupation matrices as those optimized for the γ phase. We have computed static and transport properties. The liquid produced by the simulations appears more structured than the available measurements. This raises questions regarding the ability of the theory to describe such a complex liquid. Conductivity calculations and temperature dependences are nevertheless in reasonable agreement with data.

  11. Metamagnetism of η-carbide-type transition-metal carbides and nitrides

    Science.gov (United States)

    Waki, T.; Terazawa, S.; Umemoto, Y.; Tabata, Y.; Sato, K.; Kondo, A.; Kindo, K.; Nakamura, H.

    2011-09-01

    η-carbide-type transition-metal compounds include the frustrated stella quadran-gula lattice. Due to characteristics of the lattice, we expect subtle transitions between frustrated and non-frustrated states. Here, we report metamagnetic transitions newly found in η-carbide-type compounds Fe3W3C, Fe6W6C and Co6W6C.

  12. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn; Liu, H.D.; Lin, N.; Yu, H.Y., E-mail: yuhy@ahut.edu.cn

    2015-01-15

    Highlights: • Cerium titanate nanorods have been synthesized by a simple hydrothermal process. • The size of the cerium titanate nanorods can be controlled by growth conditions. • Cerium titanate nanorods exhibit good photocatalytic activities for methyl blue. - Abstract: Cerium titanate nanorods have been prepared via a hydrothermal process using sodium dodecyl sulfate (SDS) as the surfactant. The cerium titanate nanorods have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and ultraviolet–visible (UV–vis) diffuse reflectance spectrum. XRD shows that the nanorods are composed of CeTi{sub 21}O{sub 38} phase. Electron microscopy observations indicate that the nanorods have good single crystalline nature. The diameter and length of the nanorods are about 50–200 nm and 1–2 μm, respectively. Cerium titanate nanorods have a band gap of 2.65 eV. The photocatalytic activities of the nanorods have been investigated by degrading methylene blue (MB) under visible light irradiation. MB solution with the concentration of 10 mg L{sup −1} can be degraded totally with the irradiation time increasing to 240 min. Cerium titanate nanorods exhibit great potential in photocatalytic degradation of MB under visible light irradiation.

  13. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Menaka [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Patra, Rajkumar; Ghosh, Santanu [Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India); Ganguli, Ashok K., E-mail: ashok@chemistry.iitd.ac.in [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  14. Altering properties of cerium oxide thin films by Rh doping

    Energy Technology Data Exchange (ETDEWEB)

    Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148 (Japan); Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Haviar, Stanislav, E-mail: stanislav.haviar@gmail.com [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Matolín, Vladimír, E-mail: matolin@mbox.troja.mff.cuni.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  15. Biosorption potential of cerium ions usingSpirulina biomass

    Institute of Scientific and Technical Information of China (English)

    David Sadovsky; Asher Brenner; Boaz Astrachan; Boaz Asaf; Raphael Gonen

    2016-01-01

    Two types of cyanobacteria of the genusArthrospira (commonly known asSpirulina) were tested for biosorption of ce-rium(III) ions from aqueous solutions. An endemic type (ES) found in the northern Negev desert, Israel, and a commercial powder (CS) were used in this study. Biosorption was evaluated as a function of pH, contact time, initial metal concentration, number of sorp-tion-desorption cycles, and salt concentration. The optimum pH range for biosorption was found to be 5.0–5.5. The kinetic character-istics of bothSpirulina types were found to be highly compatible with a pseudo-second order kinetic model. The adsorption isotherms of both types were found to be well-suited to Langmuir and Freundlich adsorption isotherms. Maximum biosorption uptakes, accord-ing to the Langmuir model, were 18.1 and 38.2 mg/g, for ES and CS, respectively. Sodium chloride concentrations of up to 5 g/L had a minor effect on cerium biosorption. Desorption efficiency was found to be greater than 97% with 0.1 mol/L HNO3 after three sorp-tion-desorption cycles, without significant loss in the biosorption capacity. The results indicated the feasibility of cerium recovery from industrial wastes usingSpirulina biomass.

  16. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  17. Cerium Tetrafluoride: Sublimation, Thermolysis, and Atomic Fluorine Migration.

    Science.gov (United States)

    Chilingarov, N S; Knot'ko, A V; Shlyapnikov, I M; Mazej, Z; Kristl, M; Sidorov, L N

    2015-08-06

    Saturated vapor pressure p° and enthalpy of sublimation (ΔsH°) of cerium tetrafluoride CeF4 were determined by means of Knudsen effusion mass spectrometry in the range of 750-920 K. It was discovered that sublimation of cerium tetrafluoride from a platinum effusion cell competes with thermal decomposition to CeF3 in the solid phase, but no accompanying release of fluorine to the gas phase occurs. Thus, fluorine atoms migrate within the surface layer of CeF4(s) to the regions of their irreversible drain. We used scanning electron microscopy to study the distribution of the residual CeF3(s) across the inner surface of the effusion cell after complete evaporation of CeF4(s). It was observed that CeF3 accumulates near the edge of the effusion orifice and near the junction of the lid and the body of the cell, that is, in those regions where the fluorine atoms can migrate to a free platinum surface and thus be depleted from the system. Distribution of CeF3(s) solid particles indicates the ways of fluorine atoms migration providing CeF3(s) formation inside the CeF4(s) surface layer.

  18. Functionalization of nanostructured cerium oxide films with histidine.

    Science.gov (United States)

    Tsud, Nataliya; Bercha, Sofiia; Acres, Robert G; Vorokhta, Mykhailo; Khalakhan, Ivan; Prince, Kevin C; Matolín, Vladimír

    2015-01-28

    The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.

  19. Titrimetric and Spectrophotometric Methods for the Assay of Ketotifen Using Cerium(IV) and Two Reagents

    OpenAIRE

    Madihalli Srinivas Raghu; Kanakapura Basavaiah; Kudige Nagaraj Prashanth; Kanakapura Basavaiah Vinay

    2013-01-01

    One titrimetric and two spectrophotometric methods are described for the determination of ketotifen fumarate (KTF) in bulk drug and in tablets using cerium(IV) as the oxidimetric agent. In titrimetry (method A), the drug was treated with a measured excess of cerium(IV) in H2SO4 medium and after a standing time of 10 min, the surplus oxidant was determined by back titration with iron(II). The spectrophotometric procedures involve addition of a known excess of cerium(IV) to KTF in acid medium f...

  20. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    Science.gov (United States)

    Raj, S. Gokul; Mathivanan, V.; Kumar, G. Ramesh; Yathavan, S.; Mohan, R.

    2016-05-01

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr0.6B0.4Nb2O6) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce+ ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  1. Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle.

    Science.gov (United States)

    Yoshimoto, Takuya; Goto, Taichi; Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Ross, C A; Inoue, M

    2016-04-18

    Magnetophotonic crystals (MPCs) comprising cerium-substituted yttrium iron garnet (CeYIG) sandwiched by two Bragg mirrors were fabricated by vacuum annealing. CeYIG was deposited on Bragg mirrors at room temperature and annealed in 5 Pa of residual air. No ceria or other non-garnet phases were detected. Cerium 3 + ions substituted on the yttrium sites and no cerium 4 + ions were found. The Faraday rotation angle of the MPC was -2.92° at a wavelength of λ = 1570 nm was 30 times larger than that of the CeYIG film. These results showed good agreement with calculated values derived using a matrix approach.

  2. Mirror Surface Grinding of Steel Bonded Carbides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The steel bonded carbide, a composite material, is very difficult to be machined to a fine finish mirror surface. In this paper, an electrolytic in-process dressing (ELID) grinding with metallic bond super-hard abrasive wheel was developed for grinding steel bonded carbide GT35. Factors affecting ELID grinding performance were analyzed by an atomic force microscope (AFM). Based on the analysis of AFM topography of the fine ground mirror surface of the steel bonded carbide, a schematic diagram of the mechanism of micro-removal of the ground surface was described. The AFM topography also shows that the hard brittle carbide particles, on the surface of steel bonded carbide, were machined out by ductile cutting. Since the grinding cracks in the ground surface are due to temperature gradient, temperature distribution in the grinding area was analyzed by finite element method (FEM). Experimental results indicate that a good mirror surface with Ra<0.02pm can be obtained by the developed ELID grinding system.

  3. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    OpenAIRE

    Anton S. Yegorov; Vitaly S. Ivanov; Alexey V. Antipov; Alyona I. Wozniak; Kseniia V. Tcarkova.

    2015-01-01

    silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer...

  4. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  5. Fabrication of thorium bearing carbide fuels

    Science.gov (United States)

    Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.

    1981-01-01

    Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

  6. Titanium carbide nanocrystals in circumstellar environments.

    Science.gov (United States)

    von Helden, G; Tielens, A G; van Heijnsbergen, D; Duncan, M A; Hony, S; Waters, L B; Meijer, G

    2000-04-14

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that infrared wavelength spectra of gas-phase titanium carbide nanocrystals derived in the laboratory show a prominent feature at a wavelength of 20.1 micrometers, which compares well to a similar feature in observed spectra of postasymptotic giant branch stars. It is concluded that titanium carbide forms during a short (approximately 100 years) phase of catastrophic mass loss (>0.001 solar masses per year) in dying, low-mass stars.

  7. Ionisation Potentials of Metal Carbide Clusters

    Science.gov (United States)

    Dryza, Viktoras; Addicoat, M.; Gascooke, Jason; Buntine, Mark; Metha, Gregory

    2006-03-01

    Photo-Ionisation Efficiency (PIE) experiments have been performed on gas phase niobium and tantalum carbide clusters to determine their ionisation potentials (IPs). For TanCm (n = 3-4, m = 0-4) clusters an oscillatory behaviour is observed such that clusters with an odd number of carbon atoms have higher IPs and clusters with an even number of carbons have lower IPs. Excellent agreement is found with relative IPs calculated using density functional theory for the lowest energy structures, which are consistent with the development of a 2x2x2 face-centred nanocrystal. For the niobium carbide clusters we observe the species Nb4C5 and Nb4C6. Initial calculations suggest that these clusters contain carbon-carbon bonding. Interestingly, the stoichiometry for Nb4C6 is half that of a metcar, M8C12. Preliminary data will also be shown on bimetallic-carbide clusters.

  8. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  9. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    Science.gov (United States)

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  10. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  11. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, Ana Cecilia [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Rico, Cyren M. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Trujillo-Reyes, Jesica [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Medina-Velo, Illya A. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States)

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210 days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO{sub 2}, CA + nCeO{sub 2}) bulk cerium oxide (bCeO{sub 2}), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500 mg/kg, both the uncoated and CA + nCeO{sub 2} increased shoot length by ~ 9 and ~ 13%, respectively, while bCeO{sub 2} and CeAc decreased shoot length by ~ 48 and ~ 26%, respectively, compared with MPW (p ≤ 0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA + nCeO{sub 2} at 250 mg/kg, but reduced by bCeO{sub 2} at 62.5 mg/kg, compared with MPW. At 250 and 500 mg/kg, nCeO{sub 2} increased Ce in roots by 10 and 7 times, compared to CA + nCeO{sub 2}, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO{sub 2} nor CA + nCeO{sub 2} affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125 mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500 mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO{sub 2} at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO{sub 2} at 62.5 mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO{sub 2} on tomato plants. - Highlights: • At 500 mg/kg, coated and bare NPs increased stem length by 13 and 9

  12. Synthesis of cerium oxide (CeO{sub 2}) nanoparticles using simple CO-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P., E-mail: farahamndjou@iauvaramin.ac.ir [Islamis Azad University, Varamin-Phisva Branch, Department of Physics, Varamin (Iran, Islamic Republic of)

    2016-11-01

    Synthesis of cerium oxide (CeO{sub 2}) nanoparticles was studied by new and simple co-precipitation method. The cerium oxide nanoparticles were synthesized using cerium nitrate and potassium carbonate precursors. Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (Sem), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (Ftir) and UV-Vis spectrophotometer. XRD pattern showed the cubic structure of the cerium oxide nanoparticles. The average particle size of CeO{sub 2} was around 20 nm as estimated by XRD technique and direct HRTEM observations. The surface morphological studies from Sem and Tem depicted spherical particles with formation of clusters. The sharp peaks in Ftir spectrum determined the existence of CeO{sub 2} stretching mode and the absorbance peak of UV-Vis spectrum showed the bandgap energy of 3.26 eV. (Author)

  13. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    Science.gov (United States)

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  14. EFFECT OF CERIUM ION IMPLANTATION ON THE AQUEOUS CORROSION BEHAVIOR OF ZIRCONIUM

    Institute of Scientific and Technical Information of China (English)

    D.Q. Peng; X.D. Bai; Q.G. Zhou; X.W. Chen; R.H. Yu; X.Y. Liu

    2004-01-01

    In order to study the influence of cerium ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted by cerium ions with a dosage range from 1 ×1016 to 1 ×1017 ions/cm2 at about 150℃, using MEWA source at an acceler ative voltage of 40kV. The valence of the surface layer was analyzed by X-ray photoelectron spectroscopy (XPS); Three-sweep potentiodynamic polarization measurement was employed to value the aqueous corrosion resistance of zirconium in a 0.5mol/L H2SO4 solution. It was found that a remarkable decline in the aqueous corrosion behavior of zirconium implanted with cerium ions compared with that of the as-received zirconium. Finally, the mechanism of the corrosion resistance decline of the cerium-implanted zirconium is discussed.

  15. Study on Catalysts with Rhodium Loading on Different Cerium-Zirconium Mixed Oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalysts with Rh loading on different cerium-zirconium mixed oxides were characterized by BET, H2-TPR and OSC. The effects of different cerium-zirconium mixed oxides on catalytic performance and thermal stability of Rh loaded catalyst were studied. The results show that: (1) Rh can enhance cerium-zirconium mixed oxides OSC and catalytic reaction rates; (2) cerium-zirconium mixed oxides with high Ce contents and low Zr contents are more favorable to the stability of catalysts. Moreover, the contents of CeO2 have important effect on catalysts characteristics, and the addition of some rare earth components, such as La, Pr and Nd also have some influences.

  16. Low-temperature synthesis of silicon carbide inert matrix fuel through a polymer precursor route

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Tulenko, James S. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Baney, Ronald H., E-mail: rbane@mse.ufl.edu [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2011-02-28

    A low temperature process of mixing different sizes of silicon carbide (SiC) particles with a polymer precursor was utilized to synthesize SiC pellets for potential use as inert matrix fuels (IMF) for light water reactors. The lower temperature process is required to prevent the reactions between SiC and the dispersed PuO{sub 2} fuel material. The effect of the polymer content and the cold pressing pressure on the packing of SiC particles was investigated. The effect of mixing coarse and fine SiC particles on the density and the pore size distribution was also investigated. It was found that the density and pore size distribution can be tailored by controlling the SiC size compositions, polymer content and pressing pressure at room temperature. A possible mechanism has been proposed to explain the forming of the pores with respect to the geometric arrangement between SiC particles and the polymer precursor. SEM images showed that ceria (cerium oxide) which is a PuO{sub 2} surrogate in this study, was well distributed in the pellet.

  17. Low-temperature synthesis of silicon carbide inert matrix fuel through a polymer precursor route

    Science.gov (United States)

    Shih, Chunghao; Tulenko, James S.; Baney, Ronald H.

    2011-02-01

    A low temperature process of mixing different sizes of silicon carbide (SiC) particles with a polymer precursor was utilized to synthesize SiC pellets for potential use as inert matrix fuels (IMF) for light water reactors. The lower temperature process is required to prevent the reactions between SiC and the dispersed PuO 2 fuel material. The effect of the polymer content and the cold pressing pressure on the packing of SiC particles was investigated. The effect of mixing coarse and fine SiC particles on the density and the pore size distribution was also investigated. It was found that the density and pore size distribution can be tailored by controlling the SiC size compositions, polymer content and pressing pressure at room temperature. A possible mechanism has been proposed to explain the forming of the pores with respect to the geometric arrangement between SiC particles and the polymer precursor. SEM images showed that ceria (cerium oxide) which is a PuO 2 surrogate in this study, was well distributed in the pellet.

  18. Ablation of carbide materials with femtosecond pulses

    Science.gov (United States)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Sentis, Marc; Marine, Wladimir

    2003-01-01

    The response of cemented tungsten carbide and of titanium carbonitride was investigated with respect to damage and ablation properties, under interaction with ultrashort laser pulses. These carbide materials present high microhardness and are of significant interest for tribological applications. The experiments were carried out in air with a commercial Ti:sapphire laser at energy densities on the target up to 6.5 J/cm 2. The irradiated target surfaces were analyzed with optical, SEM and AFM techniques and the damage and ablation threshold values were determined using the measured spot diameters and the calculated incident energy density distributions.

  19. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  1. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  2. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    Science.gov (United States)

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  3. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  4. Thermopower enhancement by encapsulating cerium in clathrate cages.

    Science.gov (United States)

    Prokofiev, A; Sidorenko, A; Hradil, K; Ikeda, M; Svagera, R; Waas, M; Winkler, H; Neumaier, K; Paschen, S

    2013-12-01

    The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.

  5. Effect of Surface Modification on Behaviors of Cerium Oxide Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Li Mei; Shi Zhenxue; Liu Zhaogang; Hu Yanhong; Wang Mitang; Li Hangquan

    2007-01-01

    Study was made on the effect of surface modification on the behaviors of cerium oxide nanopowders. A surfactant-sodium dodecyl sulfate(C12H25SO4Na) was used to modify the surface of CeO2 powder particles. The unmodified and modified CeO2 powders were characterized by using a powder comprehensive characteristic tester, laser particle size analyzer, specific surface area tester, X-ray diffraction tester, and a scanning electron microscope. The testing and analysis results showed that C12H25SO4Na surface modification might increase the flowability and dispersity, and decrease the specific surface area and agglomeration of CeO2 powders. The mechanism of the surface modification of CeO2 powder particles was also discussed.

  6. EPDM composite membranes modified with cerium doped lead zirconate titanate

    Science.gov (United States)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  7. On the mixed nature of cerium conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Botana, F.J.; Aballe, A.; Bethencourt, M.; Cano, M.J. [Cadiz Univ. (Spain). Dept. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica; Marcos, M. [Cadiz Univ. (Spain). Dept. de Ingenieria Mecanica y Diseno Industrial

    2002-03-01

    Alternative pretreatments are currently under development in order to avoid the environmental impact produced by using surface finishing processes based on chromates. Some of the environmentally friendly alternatives proposed involve the use of lanthanide based compounds. In this study, conversion coatings on AA5083 (Al-Mg) samples developed using full immersion pretreatments in 500 ppm CeCl{sub 3} aqueous solutions have been investigated. Their microscopic and compositional features have been analyzed using SEM images and EDS spectra. From this analysis it has been determined that this layer over the surface of the samples is of a heterogeneous composition. This coating is formed by an alumina coating covering the aluminum matrix and dispersed cerium-rich islands deposited over the cathodic sites of the alloy. A characterization methodology is proposed based on the utilization of different electrochemical techniques, such as open circuit potential monitoring (OCP), linear polarization (LP) and electrochemical impedance spectroscopy (EIS). (orig.)

  8. Characterization of a zinc-cerium flow battery

    Science.gov (United States)

    Leung, P. K.; Ponce-de-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C.

    The performance of a divided, parallel-plate zinc-cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.

  9. Interplay of spin-orbit and entropic effects in cerium

    Energy Technology Data Exchange (ETDEWEB)

    Lanata, Nicola [Rutgers University; Yao, Yong-Xin [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory; Kotliar, Gabriel [Rutgers University

    2014-10-01

    We perform first-principles calculations of elemental cerium and compute its pressure-temperature phase diagram, finding good quantitative agreement with the experiments. Our calculations indicate that, while a signature of the volume-collapse transition appears in the free energy already at low temperatures, at higher temperatures this signature is enhanced because of the entropic effects, and originates an actual thermodynamical instability. Furthermore, we find that the catalyst determining this feature is—in all temperature regimes—a pressure-induced effective reduction of the f-level degeneracy due to the spin-orbit coupling. Our analysis suggests also that the lattice vibrations might be crucial in order to capture the behavior of the pressure-temperature transition line at large temperatures.

  10. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  11. Growth of transition metals on cerium tungstate model catalyst layers

    Science.gov (United States)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  12. The Spin Glass-Kondo Competition in Disordered Cerium Systems

    Science.gov (United States)

    Magalhaes, S. G.; Zimmer, F.; Coqblin, B.

    2013-10-01

    We discuss the competition between the Kondo effect, the spin glass state and a magnetic order observed in disordered Cerium systems. We present firstly the experimental situation of disordered alloys such as CeNi1 - xCux and then the different theoretical approaches based on the Kondo lattice model, with different descriptions of the intersite exchange interaction for the spin glass. After the gaussian approach of the Sherrington-Kirkpatrick model, we discuss the Mattis and the van Hemmen models. Then, we present simple cluster calculations in order to describe the percolative evolution of the clusters from the cluster spin glass to the inhomogeneous ferromagnetic order recently observed in CeNi1 - xCux disordered alloys and finally we discuss the effect of random and transverse magnetic field.

  13. Production of carbide-free thin ductile iron castings

    Institute of Scientific and Technical Information of China (English)

    M. Ashraf Sheikh

    2008-01-01

    The fast cooling rate of thin ductile iron castings requires special consideration to produce carbide-free castings. Extraor-dinary care was taken to select the charge to produce castings of 100-mm long round bars with 16-ram diameter. The castings show the presence of carbides in the bars. Seven melts were made with different temperatures and with different compositions to get rid of carbides. After chemical analyses, it was found that the extra purity of the charge with less than 0.008wt% sulfur in the castings was the cause of carbides. To remove the carbides fi'om the castings, sulfur should be added to the charge.

  14. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  15. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  16. Titanium carbide nanocrystals in circumstellar environments

    NARCIS (Netherlands)

    von Helden, G; Tielens, ACGM; van Heijnsbergen, D; Duncan, MA; Hony, S; Waters, LBFM; Meijer, G.

    2000-01-01

    Meteorites contain micrometer-sized graphite grains with embedded titanium carbide grains. Although isotopic analysis identifies asymptotic giant branch stars as the birth sites of these grains, there is no direct observational identification of these grains in astronomical sources. We report that i

  17. CLAD CARBIDE NUCLEAR FUEL, THERMIONIC POWER, MODULES.

    Science.gov (United States)

    The general objective is to evaluate a clad carbide emitter, thermionic power module which simulates nuclear reactor installation, design, and...performance. The module is an assembly of two series-connected converters with a single common cesium reservoir. The program goal is 500 hours

  18. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  19. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  20. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  1. Method of preparing a porous silicon carbide

    NARCIS (Netherlands)

    Moene, R.; Tazelaar, F.W.; Makkee, M.; Moulijn, J.A.

    1994-01-01

    Abstract of NL 9300816 (A) Described is a method of preparing a porous silicon carbide suitable for use as a catalyst or as a catalyst support. Porous carbon is provided with a catalyst which is suitable for catalysing gasification of carbon with hydrogen, and with a catalyst suitable for cataly

  2. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    Science.gov (United States)

    2008-09-01

    silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time

  3. Boron Carbides As Thermo-electric Materials

    Science.gov (United States)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  4. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  5. Effects of cerium nitrate on the growth and physiological characteristics in Cyclocarya paliurusseedlings

    Institute of Scientific and Technical Information of China (English)

    谢寅峰; 李颖; 刘娜娜; 张颖颖; 郭楠; 王涛; 尚绪岚

    2015-01-01

    Field studies were conducted to examine the effects of cerium on the growth and physiological characteristics ofCyclo-carya paliurusseedlings by spraying the foliage with different concentrations of cerium nitrate. Optimal concentrations of cerium ni-trate improved the relative growth yield of seedling height and stems and the soluble protein and sugar content of the leaves. Cerium nitrate also increased the concentration of secondary metabolites including triterpenoids, quercetin and kaempferol, mineral elements K, P, Mg, Mn, Fe and Cu, and the activities of superoxide dismutase (SOD), peroxidase (POX), and phenylalanine ammonia-lyase (PAL) in the leaves. The effects of cerium nitrate on these indices were dose dependent. A concentration of 0.20 mmol/L was optimal to promote the relative growth yield of seedling height, contents of soluble sugar, kaempferol, K, P, Cu, and activities of PAL, SOD, and POX, significantlyincreased by 54.61%, 14.71%, 55.19%, 105.2%, 74.5%, 133.3%, 80.48%, 25.35% and 22.54%, respectively, as compared with the control. However, the maximal increase in relative growth yield of stems, contents of triterpenoid, quercetin, Mg, Mn, and Fe was attained at 1.00 mmol/L treatment, which significantlyincreased by 87.00%, 80.56%, 452.44%, 93.2%, 29.4%, and 133.9%, respectively, compared with control check (CK). Correlation analysis revealed positive relationships between activities of PAL, SOD and contents of triterpenoid, quercetin and kaempferol within a certain concentration range of cerium nitrate. These re-sults suggested that an appropriate concentration of cerium not only was effective in the improvement of physiological function ofC. paliurus, but alsoincreased seedling resistance. Moreover, it stimulated the synthesis of medicinal components in leaves.

  6. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  7. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    Science.gov (United States)

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  8. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  9. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  10. Mechanism of chlorinating lanthanum oxide and cerium oxide with ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    朱国才; 李赋屏; 肖明贵

    2003-01-01

    Using ammonium chloride(NH4Cl)as a chlorinating agent,the effects of chlorinating temperature,at 300℃ for 90 min,and have no advantage to chlorination of lanthanum and cerium oxides at higher temperature.The thermal decomposition of LaCl3 and CeCl3 is carried out to explore the mechanism of chlorinating lanthanum and cerium oxides.At the same time,the chlorination of lanthanum and cerium oxides is not devoted to the HCl decomposed from NH4Cl,but to NH4Cl directly taking part in the chlorination of La2O3 and CeO2.The lanthanum and cerium oxides in chlorination firstly form intermediate LaOCl and CeOCl,and then transfer to LaCl3 and CeCl3,fither prove the existence of the intermediates LaOCl and CeOCl.Therefore the chlorinating temperature and time should strictly be controlled when the lanthanum oxide and cerium oxide are chlorinated with NH4 Cl.And over-dosage of NH4 Cl should be also applied in the process of chlorination.

  11. Production of cerium zinc molybdate nano pigment by innovative ultrasound assisted approach.

    Science.gov (United States)

    Patel, M A; Bhanvase, B A; Sonawane, S H

    2013-05-01

    Ultrasound assisted synthesis of yellow rare earth cerium zinc molybdate anticorrosion nanopigment is presented. This new class of pigment is eco-friendly alternatives to lead, cadmium and chromium pigment as these pigments contains carcinogenic species like Cr(6+) which is responsible for human disease. The synthesis of nanosized cerium zinc molybdate was carried out using cerium nitrate, sodium zinc molybdate as a precursor materials by conventional and ultrasound assisted chemical precipitation method without addition of emulsification agent. XRD, FTIR and elemental analysis confirm the formation of cerium zinc molybdate nanoparticles. The conductivity results indicate that conventional synthesis takes longer time, while in sonochemical technique (US), reaction completes within short period of time. Improved solute transfer rate, rapid nucleation, and formation of large number of nuclei are attributed to presence of cavitation. Saturation of the Ce(3+) ions reaches earlier in case of sonochemical technique which restricts the growth of particles hence smaller size is obtained. The crystallite size of cerium zinc molybdate was found to be 27nm from XRD analysis.

  12. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    Science.gov (United States)

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-05-24

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  13. Effects of precipitate aging time on the cerium-zirconium composite oxides

    Institute of Scientific and Technical Information of China (English)

    钟强; 崔梅生; 岳梅; 王琦; 王磊; 郭荣贵; 龙志奇; 黄小卫

    2014-01-01

    Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirco-nium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the properties of cerium-zirconium composite oxides were investigated. The prepared cerium-zirconium composite oxides were characterized by X-ray diffraction (XRD), BET specific surface area, pulsed oxygen chemical adsorption, H2 temperature-programmed-reduction (H2-TPR), scanning electron microscopy (SEM), etc. The results showed that the precipitate aging time caused great effects on the properties of cerium zirconium composite oxides. With the increase of aging time, the cerium zirconium composite oxides showed enhanced specific sur-face area, good thermal stability, and high oxygen storage capacity (OSC). The best performance sample was obtained while the pre-cipitate aging time up to 48 h, with the specific surface area of 140.7 m2/g, and OSC of 657.24μmolO2/g for the fresh sample. Even after thermal aged under 1000 ºC for 4 h, the aged specific surface area was 41.6 m2/g, moreover with a good OSC of 569.9μmolO2/g.

  14. Toenail cerium levels and risk of a first acute myocardial infarction: The EURAMIC and heavy metals study

    NARCIS (Netherlands)

    Gomez-Aracena, J.; Riemersma, R.A.; Veer, van 't P.; Kok, F.J.

    2006-01-01

    The association between cerium status and risk of first acute myocardial infarction (AMI) was examined in a case-control study in 10 centres from Europe and Israel. Cerium in toenails was assessed by neutron activation analysis in 684 cases and 724 controls aged 70years or younger. Mean concentratio

  15. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  16. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  17. Recent trends in silicon carbide device research

    Directory of Open Access Journals (Sweden)

    Munish Vashishath

    2008-08-01

    Full Text Available Silicon carbide (SiC has revolutionised semiconductor power device performance. It is a wide band gap semiconductor with an energy gap wider than 2eV and possesses extremely high power, high voltage switching characteristics and high thermal, chemical and mechanical stability. The SiC wafers are available in 6H, 4H, 2H and 3C polytypes. Because of its wide band gap, the leakage current of SiC is many orders of magnitude lower than that of silicon. Also, forward resistance of SiC power devices is approximately 200 times lower than that of conventional silicon devices. The breakdown voltage of SiC is 8-10 times higher than that of silicon. In this paper, silicon carbide Schottky barrier diodes, power MOSFETs, UMOSFET, lateral power MOSFET, SIT (static induction transistor, and nonvolatile memories are discussed along with their characteristics and applications.

  18. Ultrasonic ranking of toughness of tungsten carbide

    Science.gov (United States)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  19. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  20. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  1. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  2. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  3. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  4. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    Science.gov (United States)

    2012-03-22

    thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT...In this thesis, silicon carbide samples are patterned to create elevated emission sites in an attempt to minimize the field emission screening effect...Patterning is accomplished by using standard photolithography methods to implement a masking nickel layer on the silicon carbide . Pillars are created

  5. Delivering carbide ligands to sulfide-rich clusters.

    Science.gov (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper

    2016-02-01

    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  6. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  7. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles.

    Science.gov (United States)

    Lord, Megan S; Tsoi, Bonny; Gunawan, Cindy; Teoh, Wey Yang; Amal, Rose; Whitelock, John M

    2013-11-01

    Cerium oxide nanoparticles (nanoceria) are widely reported to be non-cytotoxic and modulate intracellular reactive oxygen species (ROS). In this study, nanoceria (dxRD = 12 nm) were functionalised with either 130 or 880 molecules of unfractionated heparin using the organosilane linker, 3-aminopropyltriethoxysilane. Nanoceria with a low level of heparin functionalisation were found to scavenge intracellular ROS to the same extent as unfunctionalised nanoceria and significantly more than cells exposed to medium only. In contrast, nanoceria with the highest level of heparin functionalisation were not as effective at scavenging intracellular ROS. Nanoceria were localised predominantly in the cytoplasm, while heparin-nanoceria were localised in both the cytoplasm and lysosomes. Together these data demonstrated that the level of nanoceria surface functionalisation with heparin determined the intracellular localisation and ROS scavenging ability of these particles. Additionally, heparin-nanoceria were effective in reducing endothelial cell proliferation indicating that they may find application in the control of angiogenesis in cancer in the future.

  8. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  9. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  10. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  11. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  12. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  13. Chemical state of fission products in irradiated uranium carbide fuel

    Science.gov (United States)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  14. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  15. HEAT-RESISTANT MATERIAL WITH SILICON CARBIDE AS A BASE,

    Science.gov (United States)

    A new high-temperature material, termed SG-60, is a silicon carbide -graphite composite in which the graphite is the thermostability carrier since it...is more heat-conducting and softer (heat conductivity of graphite is 0.57 cal/g-cm-sec compared with 0.02 cal/g-cm-sec for silicon carbide ) while... silicon carbide is the carrier of high-temperature strength and hardness. The high covalent bonding strength of the atoms of silicon carbide (283 kcal

  16. Chemical Modification Methods of Nanoparticles of Silicon Carbide Surface

    Directory of Open Access Journals (Sweden)

    Anton S. Yegorov

    2015-09-01

    Full Text Available silicon carbide exhibits exceptional properties: high durability, high thermal conductivity, good heat resistance, low thermal expansion factor and chemical inactivity. Reinforcement with silicon carbide nanoparticles increases polymer’s tensile strength and thermal stability.Chemical methods of modification of the silicon carbide surface by means of variety of reagents from ordinary molecules to macromolecular polymers are reviewed in the review.The structure of silicon carbide surface layer and the nature of modificator bonding with the surface of SiC particles are reviewed. General examples of surface modification methodologies and composite materials with the addition of modified SiC are given.

  17. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  18. The role of chemical interactions between thorium, cerium, and lanthanum in lymphocyte toxicity.

    Science.gov (United States)

    Oliveira, Monica S; Duarte, Isabelle M; Paiva, Amanda V; Yunes, Samira N; Almeida, Carlos E; Mattos, Rita C; Sarcinelli, Paula N

    2014-01-01

    Thorium, cerium, and lanthanum are metals present in several types of minerals, the most common of which is monazite. Cerium and lanthanum are elements in the lanthanides series. Thorium, an actinide metal, is a hazardous element due to its radioactive characteristics. There is a lack of information describing the possible chemical interactions among these elements and the effects they may have on humans. Toxicological analyses were performed using cell viability, cell death, and DNA damage assays. Chemical interactions were evaluated based on the Loewe additivity model. The results indicate that thorium and cerium individually have no toxic effects on lymphocytes. However, thorium associated with lanthanum increases the toxicity of this element, thereby reducing the viability of lymphocytes at low concentrations of metals in the mixture.

  19. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  20. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  1. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Science.gov (United States)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  2. Structure, Morphology and Reducibility of Epitaxial Cerium Oxide Ultrathin Films and Nanostructures

    Directory of Open Access Journals (Sweden)

    Paola Luches

    2015-08-01

    Full Text Available Cerium oxide is a very interesting material that finds applications in many different fields, such as catalysis, energy conversion, and biomedicine. An interesting approach to unravel the complexity of real systems and obtain an improved understanding of cerium oxide-based materials is represented by the study of model systems in the form of epitaxial ultrathin films or nanostructures supported on single crystalline substrates. These materials often show interesting novel properties, induced by spatial confinement and by the interaction with the supporting substrate, and their understanding requires the use of advanced experimental techniques combined with computational modeling. Recent experimental and theoretical studies performed within this field are examined and discussed here, with emphasis on the new perspectives introduced in view of the optimization of cerium oxide-based materials for application in different fields.

  3. Study of phase transitions in cerium in shock-wave experiments

    Directory of Open Access Journals (Sweden)

    Zhernokletov M.V.

    2015-01-01

    Full Text Available Cerium has a complex phase diagram that is explained by the presence of structure phase transitions. Planar gauges were used in various combinations in experiments for determination of sound velocity dependence on pressure in cerium by the technique of PVDF gauge. The data of time dependence on pressure profiles with use of x(t diagrams and the D(u relation for cerium allowed the definition of the Lagrangian velocity of the unloading wave CLagr and the Eulerian velocity CEul by taking into account the compression σ. These results accords with data obtained by using the technique of VISAR and a manganin-based gauge, and calculated pressure dependence of isentropic sound velocity according to the VNIITF EOS. Metallography analysis of post-experimental samples did not find any changes in a phase composition.

  4. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Parvinder; Kaur, Simranpreet [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, Gurinder Pal [Department of Physics, Khalsa College, Amritsar 143002 (India); Arora, Deepawali; Kumar, Sunil [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, D.P., E-mail: dpsinghdr@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-08-15

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV‐Vis absorption spectra and fluorescence spectra (λ{sub exc}.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO{sub 4} units thus supporting the density results. The UV‐ Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  5. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  6. Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel

    Directory of Open Access Journals (Sweden)

    V. Sajith

    2010-01-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in the nanoparticle form on the major physicochemical properties and the performance of biodiesel. The physicochemical properties of the base fuel and the modified fuel formed by dispersing the catalyst nanoparticles by ultrasonic agitation are measured using ASTM standard test methods. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Comparisons of the performance of the fuel with and without the additive are also presented. The flash point and the viscosity of biodiesel were found to increase with the inclusion of the cerium oxide nanoparticles. The emission levels of hydrocarbon and NOx are appreciably reduced with the addition of cerium oxide nanoparticles.

  7. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  8. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  9. Epitaxial and bulk growth of cubic silicon carbide on off-oriented 4H-silicon carbide substrates

    OpenAIRE

    Norén, Olof

    2015-01-01

    The growth of bulk cubic silicon carbide has for a long time seemed to be something for the future. However, in this thesis the initial steps towards bulk cubic silicon carbide have been taken. The achievement of producing bulk cubic silicon carbide will have a great impact in various fields of science and industry such as for example the fields of semiconductor technology within electronic- and optoelectronic devices and bio-medical applications. The process that has been used to grow the bu...

  10. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Castillo-Michel, Hiram [European Synchrotron Radiation Facility, B.P. 220-38043 Grenoble, Cedex (France); Hernandez-Viezcas, Jose-Angel [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Sahi, Shivendra [Department of Biology, Western Kentucky University, Bowling Green, KY 42101 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Kidney bean roots uptake nCeO{sub 2} primarily without biotransformation. • Cerium reached the root vascular tissues through gaps in the Casparian strip. • On longer exposure to high concentration, roots demonstrate stress response. • In leaves, guaiacol peroxidase plays a major role in ROS scavenging. - Abstract: Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO{sub 2}) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼8 ± 1 nm nCeO{sub 2} (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO{sub 2} exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO{sub 2}, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO{sub 2}/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO{sub 2} exposure in order to maintain cellular homeostasis.

  11. Luminescence properties and decay kinetics of nano ZnO powder doped with cerium ions

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Nihar Ranjan, E-mail: nihar@iitbbs.ac.in [Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Orissa (India); Acharya, B.S., E-mail: bsacharya1950@gmail.com [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar 752054, Orissa (India); Singh, Th. Basanta [Luminescence Dating Laboratory, Manipur University, Imphal 795003 (India); Gartia, R.K. [Department of Physics, Manipur University, Imphal 795003 (India)

    2013-04-15

    ZnO nanopowders doped with cerium ions (1.2 and 1.5 at. wt.%) were synthesized through soft solution route using ultrasound. Sonication has been found to be an effective way for doping rare earth ions like cerium into ZnO. This was confirmed from energy dispersive analysis of X-rays (EDAX) measurement. Further, optical absorption and photoluminescence (PL) measurements corroborate this finding. X-ray diffraction (XRD) studies show the increase of crystallite size and unit cell volume with doping of cerium ions. Formation of fibrous structure of ZnO:Ce was observed from the transmission electron microscopy (TEM) measurements. Although the structural measurements indicate Ce{sup 4+} ion occupying substitutional site in ZnO, PL and absorption studies confirmed the presence of Ce{sup 3+} ion in the powder. The coexistence of Ce{sup 3+} and Ce{sup 4+} ions has been explained on the basis of conversion of Ce{sup 3+} to Ce{sup 4+} in the oxidizing environment. Thermoluminescence (TL) and photo-stimulated decay of luminescence (PSDL) decay studies give an idea of various trapping levels present in the band gap of ZnO. These traps release electrons during optical stimulation to give bimolecular kinetics in nano ZnO:Ce powders. -- Highlights: ► Sonication: an effective way of incorporation of cerium ions into ZnO. ► Site dependent characteristic emission of cerium. ► Energy transfer from host lattice to cerium ions. ► Mono and bimolecular kinetics of ZnO:Ce.

  12. Homoleptic cerium(III) and cerium(IV) nitroxide complexes: significant stabilization of the 4+ oxidation state.

    Science.gov (United States)

    Bogart, Justin A; Lewis, Andrew J; Medling, Scott A; Piro, Nicholas A; Carroll, Patrick J; Booth, Corwin H; Schelter, Eric J

    2013-10-07

    Electrochemical experiments performed on the complex Ce(IV)[2-((t)BuNO)py]4, where [2-((t)BuNO)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(n)Bu4N]2[Ce(NO3)6] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with δ symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  13. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  14. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Science.gov (United States)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-06-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  15. Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate

    Institute of Scientific and Technical Information of China (English)

    陈爱美; 施庆珊; 冯劲; 欧阳友生; 陈仪本; 谭绍早

    2010-01-01

    The biological effect of cerium nitrate on the outer membrane(OM) of Escherichia coli(E.coli) cell was studied,and the antim-icrobial mechanism of rare earth elements was explored.The antimicrobial effect of cerium nitrate on E.coli cell was valued by plate count method,and the morphology change of E.coli cell was observed with scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The results showed that the E.coli cell suspension was flocculated when the concentration of Ce(NO3)3?6H2O...

  16. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  17. Cerium: catalytic properties, technological and environmental applications; Cerio: propriedades cataliticas, aplicacoes tecnologicas e ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Tereza S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica; Hewer, Thiago L.R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Freire, Renato S. [Universidade de Sao Paulo (USP), Cubatao (Brazil). Centro de Capacitacao e Pesquisa em Meio Ambiente]. E-mail: tmartins@if.usp.br

    2007-07-01

    Cerium based-compounds have great importance in a wide range of technological applications, such as: fuel cell devices development; metallurgic processes, petroleum refining; glass and ceramic production. Recently, its catalytic properties have been also explored for environmental applications, especially those to prevent or to control atmospheric and water pollution. Subjects covered in this work include a brief description of the fundaments of cerium catalytic properties and some relevant technological applications. Special attention is given to its photo catalytic activity and its ability to degrade pollutants. Recent results and future prospect about these applications are also evaluated. (author)

  18. Synthesis and characterization of two dimensional metal organic framework of cerium with tetraaza macrocyclic

    Energy Technology Data Exchange (ETDEWEB)

    Bt Safiin, Nurul Atikah; Yarmo, Ambar; Yamin, Bohari M. [School of Chemical Science and Food Technology. Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    A two dimensional metal organic framework containing cerium sufate layers and ethylenediaminium between layers was obtained by refluxing the mixture of cerium sulphate and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7, 14-diene bromide. The complex was characterized by infrared spectroscopy and microelemental analysis. X-ray study showed that the complex adopts eleven coordination environments about the central atom. Thermogravimetric study showed the removal of water molecules at about 70°C followed by a gradual mass loss until the whole structure collapsed at about 400°C.

  19. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Kartsonakis, I. A., E-mail: ikartsonakis@ims.demokritos.gr; Kontogiani, P.; Pappas, G. S.; Kordas, G. [NCSR ' DEMOKRITOS' , Sol-Gel Laboratory, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (Greece)

    2013-06-15

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 {+-} 15 and 221 {+-} 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  20. Feasibility of Substituting Cerium-Rich Metal by La-Pr-Ce Alloy in Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    伏思静; 赵平

    2004-01-01

    In magnesium alloy ZM3, using cheap Lanthanum-praseodymium-cerium (LPC) rare earth as a substitute for rich-cerium rare earth was studied. The experimental results show that when the adding amount of LPC is between 2.53% and 3.33%, the tensile strength increases as the adding amount of LPC increases; when the amount of RE is 2.53% and 3.33%, the average tensile strength is 142.35, 153.65 MPa respectively. The results show that LPC rare earth replacing rich Ce rare earth is feasible for the tensile strength of ZM3.

  1. Effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings

    OpenAIRE

    Yu Mei; Liu Yuxing; Liu Jianhua; Li Songmei; Xue Bing; Zhang You; Yin Xiaolin

    2015-01-01

    The present work examines the effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings. The Si–Zr hybrid sol–gel coatings on a 2A12 aluminum substrate were prepared through hydrolysis and condensation of glycidoxypropyl-trimethoxy-silane (GTMS) and zirconium(IV) n-propoxide (TPOZ). Used as inhibitors for corrosion, three types of cerium salts (Ce(NO3)3, CeCl3, and Ce(CH3COO)3) were doped into the sol–gel coatings. Fourier transform infrared (FTIR) and scanning electron ...

  2. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    Science.gov (United States)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  3. Cerium-based conversion coatings on magnesium alloys

    Science.gov (United States)

    Castano Londono, Carlos Eduardo

    This research is primarily focused on gaining a better understanding of the deposition and corrosion behavior of cerium-based conversion coatings (CeCCs) on AZ31B and AZ91D Mg alloys. Deposition of homogenous and protective CeCCs was highly dependent on the surface preparation steps. The best results were obtained when Mg samples underwent grinding, acid cleaning, and alkaline cleaning processes. This reduced the number of active cathodic sites and promoted the formation of a protective Al-rich Mg oxide/hydroxide layer. Electrochemical properties of the CeCCs were also strongly correlated with morphological, microstructural, and chemical characteristics. Protective CeCCs were deposited on both AZ31 and AZ91 Mg alloys using a range of deposition times (5 to 180 s) and temperatures (10 to 80 °C). However, shorter deposition times (5 s) and lower deposition temperatures (~10 °C) showed higher impedance and longer bath stability than other deposition conditions. The increase in impedance was related with fewer cracks and smaller nodule sizes. Additional investigations of post-treated CeCCs exposed to NaCl environments showed an increased in the total impedance. The increase in corrosion protection of the CeCCs was associated with an overall increase in coating thickness from 400 to 800 nm. A microstructural evolution from ~3 nm nodular nanocrystals of CeO2/CePO4*H2O embedded in an amorphous matrix to >50 nm CePO4*H2O nanocrystals was responsible for the electrochemically active corrosion protection. Exposure of CeCCs to sunlight in humid environments promoted the reduction of Ce(IV) into Ce(III) species compared to unexposed coatings. This reduction process was related with photocatalytic water oxidation reaction.

  4. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  5. Thermoluminescence of cerium and terbium -doped calcium pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Lozano R, I. B.; Diaz G, J. A. I., E-mail: jesus.roman@nucleares.unam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The aim of this work is to report the thermoluminescence (Tl) response of Calcium Pyrophosphate phosphor doped with Cerium and Terbium impurities (Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+}). The phosphors were synthesized using the co-precipitation method and annealed at 900 degrees C by two hours for obtain the β phase. The intentional doping with Ce and Tb ions was 1 at.% and 0.1 at.%, whereas in the EDS results the concentration of impurities was 0.39 at.% and 0.05 at.%, respectively. The superficial morphology of phosphor is mainly composed by thin wafers of different size. All samples were exposed to gamma rays from {sup 60}Co in the Gammacell-200 irradiator. The Tl response of the phosphor was measured from Rt up to 350 degrees C and under nitrogen atmosphere in a Harshaw TLD 3500 reader. The glow curves of the Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+} powders showed a broad intense Tl peak centered at 165 degrees C and a shoulder at approximate 260 degrees C was observed. A linear Tl response in the range of absorbed dose of 0.2 to 10 Gy was obtained. Tl glow curves were analyzed using the initial rise (IR)and computerized glow curve deconvolution methods to evaluate the kinetics parameters such as activation energy (E), frequency factor (s) and kinetic order (b). (Author)

  6. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, David R [ORNL; Albrecht, Peter M [ORNL; Calaza, Florencia C [ORNL

    2013-01-01

    Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

  7. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  8. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    Science.gov (United States)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2016-10-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V (vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  9. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    Science.gov (United States)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  10. Titanium Carbide-Nickel Cermets: Processing and Joing

    Science.gov (United States)

    1952-03-01

    Titanium carbide -nickel cermets can be sintered to have transverse rupture strengths over 250,000 pounds per square inch. To do so, four principal...enough to allow thorough degassing. Joining titanium - carbide cermets to high-temperature alloys has been accomplished by vacuum diffusion, and gives

  11. TITANIUM CARBIDE CONTENT EFFECT ON EROSION IN CERMET ROCKET NOZZLES

    Science.gov (United States)

    class investigated consisted of an AISI Type 316 stainless steel matrix incorporating a hard phase of titanium carbide ranging in content from 20% to...55% by volume. The results of the study indicated that under the test conditions, increases in the titanium carbide constituents did increase the

  12. Development and characterization of solid solution tri-carbides

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2001-02-01

    Solid-solution, binary uranium/refractory metal carbide fuels have been shown to be capable of performing at high temperatures for nuclear thermal propulsion applications. More recently, tri-carbide fuels such as (U, Zr, Nb)C1+x with less than 10% metal mole fraction uranium have been studied for their application in ultra-high temperature, high performance space nuclear power systems. These tri-carbide fuels require high processing temperatures greater than 2600 K owing to their high melting points in excess of 3600 K. This paper presents the results of recent studies involving hypostoichiometric, single-phase tri-carbide fuels. Processing techniques of cold uniaxial pressing and sintering were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid solution mixed carbide nuclear fuels for testing. Scanning electron microscopy and xray diffraction were used to analyze samples. Liquid phase sintering with UC1+x at temperatures near 2700 K was shown to be instrumental in achieving good densification in hyper- and near-stoichiometric mixed carbides. Hypostoichiometric carbides require even higher processing temperatures greater than 2800 K in order to achieve liquid phase sintering with a UC liquid phase and good densification of the final solid solution, tri-carbide fuel. .

  13. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature. Peri

  14. Interface Defeat of Long Rods Impacting Oblique Silicon Carbide

    Science.gov (United States)

    2011-02-01

    Test data for gold rods impacting unconfined silicon carbide targets are reported. This work focuses on the dwell phenomenon exhibited by silicon ... carbide for targets at obliquity. Experiments are presented for obliquities of 30 deg, 45 deg and 60 deg, with and without cover plates. Results are compared to normal impact.

  15. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  16. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  17. Rapid cost-effective silicon carbide optical component manufacturing technique

    Science.gov (United States)

    Casstevens, John M.; Plummer, Ronald; Jarocki, Jim

    1999-10-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. A combination of extremely high specific stiffness (r/E), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low- expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the costs of preliminary pressing, casting, shaping and final finishing of silicon carbide. Diamond grinding of silicon carbide is a slow and expensive process even on machines specially designed for the task. The process described here begins by machining the component from a special type of graphite. This graphite is easily machined with multi-axis CNC machine tools to any level of complexity and lightweighting required. The graphite is then converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain silicon carbide which is easily polished to extreme smoothness using conventional optical polishing techniques. The fabrication process and a 6 inch diameter development mirror is described.

  18. Niobium carbide precipitation in microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, C.; Hulka, K. [Niobium Products Co. GmbH, Duesseldorf (Germany); Bleck, W. [Inst. for Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany)

    2004-11-01

    The precipitation of niobium carbo-nitrides in the austenite phase, interphase and ferrite phase of microalloyed steel was assessed by a critical literature review and a round table discussion. This work analyses the contribution of niobium carbide precipitates formed in ferrite in the precipitation hardening of commercially hot rolled strip. Thermodynamics and kinetics of niobium carbo-nitride precipitation as well as the effect of deformation and temperature on the precipitation kinetics are discussed in various examples to determine the amount of niobium in solid solution that will be available for precipitation hardening after thermomechanical rolling in the austenite phase and successive phase transformation. (orig.)

  19. Titanium carbide coatings for aerospace ball bearings

    Science.gov (United States)

    Boving, Hans J.; Haenni, Werner; Hintermann, HANS-E.

    1988-01-01

    In conventional ball bearings, steel to steel contacts between the balls and the raceways are at the origin of microwelds which lead to material transfer, surface roughening, lubricant breakdown, and finally to a loss in the bearing performances. To minimize the microwelding tendencies of the contacting partners it is necessary to modify their surface materials; the solid to solid collisions themselves are difficult to avoid. The use of titanium carbide coated steel balls can bring spectacular improvements in the performances and lifetimes of both oil-grease lubricated and oil-grease free bearings in a series of severe applications.

  20. Novel Polymer Nanocomposite With Silicon Carbide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alyona I. Wozniak

    2015-09-01

    Full Text Available Polyimides are ranked among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresistors, nonlinear optical materials, membrane materials for gasseparation, and Langmuir–Blodgett (LB films, among others. While there is a variety of high temperature stable polyimides, there is a growing demand for utilizing these materials at higher temperatures in oxidizing and aggressive environments. Therefore, we sought to use oxidation-resistant materials to enhance properties of the polyimide composition maintaining polyimide weights and processing advantages. In this paper we introduced results of utilizing inorganic nanostructured silicon carbide particles to produce an inorganic particle filled polyimide materials.

  1. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  2. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  3. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  4. Structural and electrochemical studies on the utilization of Cerium (Ce3+ as an additive for nickel hydroxide electrode

    Directory of Open Access Journals (Sweden)

    Marcio Vidotti

    2007-03-01

    Full Text Available This paper describes electrochemical and spectroscopic studies on the utilization of cerium atoms as additives for nickel hydroxide electrodes. Thin films were galvanostatically grown with different amounts of cerium and mixed electrodes were studied by electrochemical measurements and the spectroscopic technique. The electrochromic behavior was investigated by “in situ” experiments , while the amount of species was determined by ICP-OES. The addition of cerium to nickel hydroxide electrodes increases durability, due to modifications in the structural properties, as seen by Raman spectras.

  5. Effects of Cerium on Alloy Elements Distribution in Ferrous Matrix Material

    Institute of Scientific and Technical Information of China (English)

    刘英才; 刘俊友; 尹衍生; 刘国权

    2001-01-01

    The effect of the addition of rare earths in Fe-based high chromium alloy powders on elements distribution in matrix materials and mechanical properties were studied. The results show that the addition of cerium can increase the chromium amount in carbonides and increase the micro-hardness after carbonization and the wear-resistant property of materials.

  6. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  7. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  8. Characteristics of cerium-gadolinium oxide (CGO) suspensions as a function of dispersant and powder properties

    DEFF Research Database (Denmark)

    Phair, John; Lönnroth, Nadja; Lundberg, Mats;

    2009-01-01

    A series of concentrated suspensions ( = 0.18–0.34) of cerium-gadolinium oxide (CGO) in terpineol were prepared as a function of dispersant, powder surface area and solids concentration. The stability of the suspensions was assessed by rheological measurements including viscosity and oscillatory...

  9. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  10. Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, M; Fu, G; Ionescu, E; Ensinger, W, E-mail: mboehme@ca.tu-darmstadt.de [Department of Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany)

    2011-02-11

    This paper reports the synthesis of cerium dioxide nanotubes (CeNTs) by electroless deposition using ion-track-etched polycarbonate templates. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several-step-containing procedure under aqueous conditions. The approach reported below will process open end nanotubes with well-defined outer diameter and wall thickness.

  11. Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure.

    Science.gov (United States)

    Boehme, M; Fu, G; Ionescu, E; Ensinger, W

    2011-02-11

    This paper reports the synthesis of cerium dioxide nanotubes (CeNTs) by electroless deposition using ion-track-etched polycarbonate templates. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several-step-containing procedure under aqueous conditions. The approach reported below will process open end nanotubes with well-defined outer diameter and wall thickness.

  12. Growth and characterization of cerium lanthanum oxalate crystals grown in hydro-silica gel

    Energy Technology Data Exchange (ETDEWEB)

    John, M.V.; Ittyachen, M.A. [Mahatma Gandhi Univ., Kerala (India). School of Pure and Applied Physics

    2001-07-01

    Single crystals of mixed cerium lanthanum oxalate (CLO) are grown by gel method. Over the hydrosilica gel prepared by mixing oxalic acid and sodium meta silicate, a mixture of aqueous solutions of cerium nitrate and lanthanum nitrate are poured gently. Cerium and lanthanum ions diffuse into the gel and react with oxalic acid to give colorless, transparent cerium lanthanum oxalate crystals with in a few days. Different growth parameters give crystals of various dimensions. Infrared (IR) spectrum confirms the presence of water molecules and carboxylic acid. X-ray diffraction (XRD) pattern of these samples reveals the crystalline nature. Diffraction peaks are indexed. Unit cell parameters are determined. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) data support the presence of 9 H{sub 2}O molecules attached to the CLO crystal lattice which are lost around 200 C as revealed by the endotherm record. Exothermic peak around 350 C-425 C shows the release of CO and CO{sub 2}. Elemental analysis done by energy dispersive X-ray fluorescence analysis (EDXRF) for the mixed rare earth compound is almost in good agreement with experimental and theoretical values. (orig.)

  13. Release of cerium dibutylphosphate corrosion inhibitors from highly filled epoxy coating systems

    NARCIS (Netherlands)

    Soestbergen, M. van; Baukh, V.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2014-01-01

    Carcinogenic chromates are phased out as corrosion inhibitors in organic coatings, and are replaced by benign alternatives. Cerium-based compounds are excellent corrosion inhibitors in an aqueous environment. However, whether they are effective as corrosion inhibitor in an organic coating also depen

  14. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    Science.gov (United States)

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  15. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    Science.gov (United States)

    Schrange-Kashenock, G.

    2016-09-01

    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120-150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac-Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d -1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining fullerene

  16. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha

    2000-02-01

    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  17. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  18. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  19. Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India)

    2016-02-01

    The current work presents the synthesis and properties of cerium doped magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized by standard chemical co-precipitation method using NH{sub 4}OH as co-precipitating agent. The effects of cerium ion substitution on structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles were reported. These materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The cerium content has a significant influence on structural and magnetic properties. The X-ray diffraction study confirmed the formation of single-phase magnetite with space group Fd3m and crystallite size ranging from 39 to 58 nm. The addition of cerium resulted in a reduction of crystallite size and an increase of cell parameters. FTIR measurements confirmed the formation of different samples and suggested that the reduction of Fe{sup +3} to Fe{sup +2} preferred on a site adjacent to Ce{sup +4}. Magnetic measurements revealed that the saturation magnetization (Ms) and remanence (M{sub r}) decreased while the coercivity (H{sub C}) and squareness (M{sub r}/M{sub S}) increased with increasing cerium content. - Highlights: • There is an increase in cell parameters and strain with Ce-content. • Samples show the presence of secondary phase after 1.0% doping level. • Ce-ions prefer octahedral sites and charge neutrality is accompanied by Fe{sup +3} → Fe{sup +2}. • Magnetization decreases due to weakening of the super exchange interactions. • Squareness and coercivity start to increase with Ce content.

  20. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  1. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  2. Quantitative evaluation of carbides in nickel-base superalloy MAR-M247

    Science.gov (United States)

    Szczotok, A.

    2011-05-01

    It has been established that carbides in superalloys serve three functions. Fine carbides precipitated in the matrix give strengthening results. Carbides also can tie up certain elements that would otherwise promote phase instability during service. Grain boundary carbides prevent or retard grain-boundary sliding and strengthen the grain boundary, which depends significantly on carbide shape, size and distribution. Various types of carbides are possible, depending on superalloy composition and processing. In the paper optical and scanning electron microscopy investigations of carbides occurring in specimens of the polycrystalline nickel-base superalloy MAR-M247 were carried out. Conditions of carbides revealing and microstructure images acquisition have been described. Taking into consideration distribution and morphology of the carbides in matrix a method of quantitative description of Chinese script-like and blocky primary carbides on the basis of image analysis was proposed.

  3. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  4. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  5. Effects of carbides on fatigue characteristics of austempered ductile iron

    Science.gov (United States)

    Stokes, B.; Gao, N.; Reed, P. A. S.; Lee, K. K.

    2005-04-01

    Crack initiation and growth behavior of an austempered ductile iron (ADI) austenitized at 800 °C and austempered at 260 °C have been assessed under three-point bend fatigue conditions. Initiation sites have been identified as carbides remaining from the as-cast ductile iron due to insufficient austenization. The number of carbides cracking on loading to stresses greater than 275 MPa is critical in determining the failure mechanism. In general, high carbide area fractions promote coalescence-dominated fatigue crack failure, while low area fractions promote propagation-dominated fatigue crack failure. Individual carbides have been characterized using finite body tessellation (FBT) and adaptive numerical modeling (Support vector Parsimonious Analysis Of Variance (SUPANOVA)) techniques in an attempt to quantify the factors promoting carbide fracture. This indicated that large or long and thin carbides on the whole appear to be susceptible to fracture, and carbides that are locally clustered and aligned perpendicular to the tensile axis are particularly susceptible to fracture.

  6. High precision optical finishing of lightweight silicon carbide aspheric mirror

    Science.gov (United States)

    Kong, John; Young, Kevin

    2010-10-01

    Critical to the deployment of large surveillance optics into the space environment is the generation of high quality optics. Traditionally, aluminum, glass and beryllium have been used; however, silicon carbide becomes of increasing interest and availability due to its high strength. With the hardness of silicon carbide being similar to diamond, traditional polishing methods suffer from slow material removal rates, difficulty in achieving the desired figure and inherent risk of causing catastrophic damage to the lightweight structure. Rather than increasing structural capacity and mass of the substrate, our proprietary sub-aperture aspheric surface forming technology offers higher material removal rates (comparable to that of Zerodur or Fused Silica), a deterministic approach to achieving the desired figure while minimizing contact area and the resulting load on the optical structure. The technology performed on computer-controlled machines with motion control software providing precise and quick convergence of surface figure, as demonstrated by optically finishing lightweight silicon carbide aspheres. At the same time, it also offers the advantage of ideal pitch finish of low surface micro-roughness and low mid-spatial frequency error. This method provides a solution applicable to all common silicon carbide substrate materials, including substrates with CVD silicon carbide cladding, offered by major silicon carbide material suppliers. This paper discusses a demonstration mirror we polished using this novel technology. The mirror is a lightweight silicon carbide substrate with CVD silicon carbide cladding. It is a convex hyperbolic secondary mirror with 104mm diameter and approximately 20 microns aspheric departure from best-fit sphere. The mirror has been finished with surface irregularity of better than 1/50 wave RMS @632.8 nm and surface micro-roughness of under 2 angstroms RMS. The technology has the potential to be scaled up for manufacturing capabilities of

  7. Growth kinetics of cubic carbide free layers in graded cemented carbides

    Science.gov (United States)

    Shi, Liu-Yong; Liu, Yi-Min; Huang, Ji-Hua; Zhang, Shou-Quan; Zhao, Xing-Ke

    2012-01-01

    In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and kinetic equation were established based on experimental results. Being different from previous models, this model suggests that nitrogen diffusion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.

  8. Convenient synthesis of substituted pyrroles via a cerium (IV ammonium nitrate (CAN-catalyzed Paal–Knorr reaction

    Directory of Open Access Journals (Sweden)

    Ahmed Kamal

    2016-07-01

    Full Text Available A screening of various cerium salts for promoting the Paal–Knorr pyrrole synthesis revealed the superiority of cerium (IV ammonium nitrate (CAN as a catalyst. Excellent yields of substituted pyrroles were obtained in CAN-catalyzed Paal–Knorr reactions of 1,4-diketones with various amines. The protocol is noteworthy for the mild reaction condition, short reaction times, scalability and easy isolation of products and high yields of the products.

  9. Study of gels of molybdenum with cerium in the preparation of generators of 99Mo - 99mTc

    OpenAIRE

    Vanessa Moraes; Bárbara Marczewski; Carla Roberta Dias; João Alberto Osso Junior

    2005-01-01

    99mTc has ideal nuclear properties for organ imaging in nuclear medicine, and it is obtained from the 99Mo-99mTc generator. Four different types of generators are available: chromatographic that uses 99Mo from fission of uranium; MEK solvent extraction; Tc2O7 sublimation; gel chromatographic. This work presents the preparation of gel generators of molybdenum with cerium and characterization of the gels: mass ratio between molybdenum and cerium, structure, size of particles and elution percent...

  10. Plasma metallurgical production of nanocrystalline borides and carbides

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  11. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  12. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  13. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  14. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  15. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross......-metallic inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  16. First-principles study of structural and bonding properties of vanadium carbide and niobium carbide

    Science.gov (United States)

    Joshi, K. B.; Paliwal, U.

    2009-11-01

    An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes—P86 and PW92—are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.

  17. First-principles study of structural and bonding properties of vanadium carbide and niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, K B; Paliwal, U [Department of Physics, University College of Science, M L Sukhadia University, Udaipur - 313001 (India)], E-mail: k_joshi@yahoo.com

    2009-11-15

    An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes-P86 and PW92-are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.

  18. Chromatographic separation of cerium(Ⅲ) in L-valine medium using poly[dibenzo-18-crown-6

    Institute of Scientific and Technical Information of China (English)

    SABALE Sandip R; MOHITE Baburao S

    2009-01-01

    A column chromatographic method has been developed for the separation and determination of cerium(Ⅲ) using poly[dibenzo-18-crown-6]. The separation was carried out in L-valine medium. The adsorption of cerium(Ⅲ) was quantitative from 1×10-1 to 1×10-4 mol/L L-valine. Amongst the various eluents, 1.0-8.0 mol/L hydrochloric acid, 1.0-8.0 mol/L hydrobromic acid, 1.0-8.0 mol/L perchloric acid, 1.0-2.0 mol/L sulfuric acid and 4.0-5.0 mol/L acetic acid, were found to be the efficient eluents for cerium(Ⅲ). The capacity of poly[dibenzo-18-crown-6] for cerium(Ⅲ) was (0.428±0.01) mmol/g. The method was applied to the separation of cerium(Ⅲ) from associated elements link uranium(Ⅵ) and thorium(Ⅳ). It was also applied for the determination of cerium(Ⅲ) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately±2% ).

  19. Structure Analysis of Oxidation Film of Ignition-Inhibition AZ91D Ma gnesium Alloy Added with Cerium

    Institute of Scientific and Technical Information of China (English)

    黄晓锋; 周宏; 何镇明

    2003-01-01

    The effect of cerium on ignition temperature of AZ91D magnesium alloy was studied. By the addition of cerium of 1%, the ignition temperature is raised by 180 ℃, so the magnesium alloy added with cerium can be melted in air. The burning temperature increases with the increasing of cerium. The structure and chemical compositions of the surface oxide film were investigated by XRD and Auger electron spectrometry(AES). The results of XRD indicate that the oxide film of the surface of ignition-inhibition magnesium alloy can change from loose structure of simple magnesia to compact composite structure consisting of magnesia, cerium oxide, Mg17 A112 and aluminum oxide, which has excellent ignition-inhibition effect. AES depth profile analysis shows that the oxide film can be divided into three layers. The outside layer is mainly made up of magnesia, the middle layer, which consists of cerium oxide, magnesia, and aluminum oxide, is compound and compact. Thermodynamic analysis indicates that the structure of the surface oxide film is accordant to the change of free energy and high vapor pressure of magnesium.

  20. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  1. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  2. Development of a silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1989-01-01

    A silicon carbide (SiC) sewing thread has been designed which consists of a two-ply yarn in a 122 turns-per-meter-twist construction. Two processing aids in thread construction were evaluated. Prototype blankets were sewn using an SiC thread prepared either with polytetrafluoroethylene sizing or with an overwrap of rayon/dacron service yarn. The rayon/dacron-wrapped SiC thread was stronger, as shown by higher break-strength retention and less damage to the outer-mold-line fabric. This thread enables thermal protection system articles to be sewn or joined, or have perimeter close-out of assembled parts when using SiC fabric for high-temperature applications.

  3. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  4. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  5. Stable field emission from nanoporous silicon carbide.

    Science.gov (United States)

    Kang, Myung-Gyu; Lezec, Henri J; Sharifi, Fred

    2013-02-15

    We report on a new type of stable field emitter capable of electron emission at levels comparable to thermal sources. Such an emitter potentially enables significant advances in several important technologies which currently use thermal electron sources. These include communications through microwave electronics, and more notably imaging for medicine and security where new modalities of detection may arise due to variable-geometry x-ray sources. Stable emission of 6 A cm(-2) is demonstrated in a macroscopic array, and lifetime measurements indicate these new emitters are sufficiently robust to be considered for realistic implementation. The emitter is a monolithic structure, and is made in a room-temperature process. It is fabricated from a silicon carbide wafer, which is formed into a highly porous structure resembling an aerogel, and further patterned into an array. The emission properties may be tuned both through control of the nanoscale morphology and the macroscopic shape of the emitter array.

  6. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  7. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  8. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang

    2009-01-01

    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  9. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  10. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  11. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    OpenAIRE

    A.O. Addemir; A.C. Akarsu; A.B. Tugrul; B. Buyuk

    2012-01-01

    Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the expe...

  12. Effects of Cerium Nitrate on Expression of CaM Ⅰ and PMCA Ca2+-ATPase mRNA in Rat Liver

    Institute of Scientific and Technical Information of China (English)

    杨维东; 王艇; 刘洁生; 雷衡毅; 杨燕生

    2001-01-01

    The effect of cerium nitrate on expression of CaM Ⅰ and PMCA1b in rat liver was studied by means of reverse transcription-polymerase chain reaction (RT-PCR). The result shows that neither a high dose (50 mg*kg-1) nor a low dose (1 mg*kg-1) of cerium nitrate induces any alterations of expression of CaM Ⅰ and PMCA 1b mRNA after recurrent intraperitoneal injection of cerium nitrate, which suggests that effect of cerium nitrate on CaM and Ca2+-ATPase might be at posttranscription level.

  13. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  14. Silicon Carbide Threads For High-Temperature Service

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1991-01-01

    New thread material outperforms silica. Sewing threads containing silicon carbide (SiC) yarn withstand temperatures of more than 1,100 degrees C. Intended for use in stitching thermally insulating blankets.

  15. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  16. Status of advanced carbide fuels: Past, present, and future

    Science.gov (United States)

    Anghaie, Samim; Knight, Travis

    2002-01-01

    Solid solution, mixed uranium/refractory metal carbide fuels such as (U, Zr, Nb)C, so called ternary carbide or tri-carbide fuels have great potential for applications in next generation advanced nuclear power reactors. Because of their high melting points, high thermal conductivity, improved resistance to hot hydrogen corrosion, and good fission product retention, these advanced nuclear fuels have great potential for high performance reactors with increased safety margins. Despite these many benefits, some concerns regarding carbide fuels include compatibility issues with coolant and/or cladding materials and their endurance under the extreme conditions associated with nuclear thermal propulsion. The status of these fuels is reviewed to characterize their performance for space nuclear power applications. Results of current investigations are presented and as well as future directions of study for these advanced nuclear fuels. .

  17. Silicon carbide materials for high duty seal applications

    Energy Technology Data Exchange (ETDEWEB)

    Berroth, K.E. (Schunk Ingenieurkeramik GmbH, Duesseldorf (Germany, F.R.))

    1990-12-01

    Properties, fabrication, and high-duty applications of silicon carbide grades are discussed. The two types of silicon carbide, i.e., reaction-bonded and sintered, are considered. The potential for adhesion and the lack of dry running abilities lead to a variety of microstructures. For reaction-bonded silicon carbide, the microstructure can be a tool for optimization of the tribological behavior. Besides the high corrosion resistance of the material, its thermal conductivity is excellent. Grain sizes of about 40-50 microns are used in high-duty applications. Reaction-bonded silicon carbide with residual content of carbon graphite has improved tribological/hydrodynamic characteristics and performs well in sealing hard faces.

  18. Ion implantation phenomena in 4H-silicon carbide

    CERN Document Server

    Phelps, Gordon James

    2003-01-01

    Silicon Carbide is a promising wide band gap semiconductor with many new properties yet to be established and investigated. Ion implantation is the dominant method of incorporating dopant materials into the Silicon Carbide crystalline structure for electronic device fabrication. The implantation process of dopants into Silicon Carbide, both theoretical and practical, is described in this Thesis. Additional fabrication process steps, such as annealing, and their implications are also described. To gain further insight into the process of ion implantation into Silicon Carbide, the detailed design of a special test die is discussed. The aim of the special test die was to obtain general information such as implanted dopant sheet resistivity and to test a novel bipolar transistor design. The fabrication steps involved for the special test die are discussed in detail. The results from the special test die take the form of specific electrical measurements, together with detailed visual observations provided by a sca...

  19. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  20. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  1. Structure and thermal expansion of NbC complex carbides

    Energy Technology Data Exchange (ETDEWEB)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-11-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear expansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical experimental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying.

  2. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  3. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility

    Science.gov (United States)

    2014-11-18

    Fracture Toughness in Nanostructured Diamond−SiC Composites. Appl . Phys. Lett. 2004, 84, 1356−1358. (8) Sigl, L. S.; Mataga, P. A.; Dalgleish, B. J...Commun. 2012, 3, 1052. (11) Sezer, A. O.; Brand , J. I. Chemical Vapor Deposition of Boron Carbide. Mater. Sci. Eng., B 2001, 79, 191−202. (12) Thevenot...23) Johnson, G. R.; Holmquist, T. J. Response of Boron Carbide Subjected to Large Strains, High Strain Rates, and High Pressures. J. Appl . Phys. 1999

  4. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  5. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  6. Dynamic compaction of boron carbide by a shock wave

    Science.gov (United States)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  7. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  8. Implanted Bottom Gate for Epitaxial Graphene on Silicon Carbide

    OpenAIRE

    Waldmann, Daniel; Jobst, Johannes; Fromm, Felix; Speck, Florian; Seyller, Thomas; Krieger, Michael; Weber, Heiko B.

    2011-01-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic...

  9. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  10. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  11. Process for preparing fine-grain metal carbide powder

    Science.gov (United States)

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  12. Reduction behavior of cerium(Ⅲ) ions in NaCl-2CsCl melt

    Institute of Scientific and Technical Information of China (English)

    QI Xue; ZHU Hongmin

    2005-01-01

    The cathodic process of cerium(Ⅲ) ions in NaCl-2CsCl melt was studied by cyclic voltammetry and square wave voltammetry with tungsten and gold electrodes at 873 K. The two electroanalytical methods yield similar results. The cathodic process of cerium(Ⅲ) ions consists of two reversible steps: Ce3+ + e-= Ce2+ and Ce2+ + 2e-= Ce. The half wave potentials of Ce3+/Ce2+ and Ce2+/Ce were determined as -2.525 V vs. Cl2/Cl- and -2.975 V vs. Cl2/Cl-, respectively. The diffusion coefficient of Ce3+ was also determined as 5.5 × 10-5 cm2·s-1.

  13. Deposition of cerium contained conversion films on LC4 alloy with square wave pulse method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; LI Jiuqing; WU Yinshun; ZHANG Pei; HE Jianping

    2004-01-01

    Cerium contained conversion films were deposited on LC4 aluminum alloy using square wave pulse (SWP) in a CeC13 solution with KMnO4 as the oxidant. Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) were adopted to study the composition and the morphology of the film. It is found that the film is composed of Al, Zn, Cu,and small amount of cerium. The polarization curves of the specimens treated with SWP technique measured in 3.5% (mass fraction) NaCl solution reveal that the film thus formed inhibits both the anodic and cathodic process of the corrosion of the specimen. The immersion tests of treated specimens in 3.5% NaCl solution indicate that the corrosion resistance of the SWP treated specimen is better than that of the untreated and is equivalent to or even better than that of the traditionally electrochemically treated specimens.

  14. Color-Fading Spectrophotometric Determination of Cerium with DBC-Arsenazo

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 张晓霞

    2004-01-01

    In the medium of 0.18~1.08 mol·L-1 sulfuric acid, cerium(Ⅳ) has the color-fading effect on DBC-arsenazo. The apparent molar absorptivity of the color-fading reaction is ε530 nm=1.03×104 L·mol-1·cm-1. Beer′s law is obeyed over the range of 1.20~12.0 μg·ml-1 of Ce (Ⅳ) which shows a linear relationship with the decrease in the absorbance of the colored solution. The effect of thirty-six coexisting ions was studied. The method was applied to the determination of the trace amount of cerium in water samples and has the advantage of high accuracy and good selectivity.

  15. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  16. Synthesis, characterization and antimicrobial activity of zinc and cerium co-doped α-zirconium phosphate

    Institute of Scientific and Technical Information of China (English)

    DAI Guangjian; YU Aili; CAI Xiang; SHI Qingshan; OUYANG Yousheng; TAN Shaozao

    2012-01-01

    A series of zinc ions or/and cerium ions co-doped a-zirconium phosphate (Zn-Ce@ZrPs) were prepared.The novel Zn-Ce@ZrPs were characterized and the antibacterial activity on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were tested.The results showed that zinc ions (Zn2+) or/and cerium ions (Ce3+) were combined with ZrP,and the Ce3+ was adsorbed on the surface of ZrP through hydrogen bonds,while Zn2+ intercalated into the interlayer of ZrP.Zn-Ce@ZrPs showed excellent synergistic antibacterial activity.When Zn2+/Ce3+ atomic ratio was 0.6,the Zn-Ce@ZrP3 showed the highest synergistic antibacterial efficiency,suggesting great potential application as antibacterial agents in microbial control.

  17. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  18. Structure and synergetic antibacterial effect of zinc and cerium carried sodium zirconium phosphates

    Institute of Scientific and Technical Information of China (English)

    YANG Yunhua; DAI Guangjian; TAN Shaozao; LIU Yingliang; SHI Qingshan; OUYANG Yousheng

    2011-01-01

    Zinc and cerium carried zirconium phosphates (Zn-Ce/ZrPs) were prepared by exchanging zinc and cerium cations into sodium zirconium phosphate (NaZrP) through the ion-exchange method and characterized by X-ray diffraction(XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). Furthermore, the specific surface area, zeta potential and antibacterial activity were tested. The results showed that Zn-Ce/ZrPs were with hexagonal crystal system, and the surface area of Zn-Ce/ZrPs increased much more than that of NaZrP. Zn-Ce/ZrPs showed obvious synergetic antibacterial effect, and have the potential to be used as antibacterial agents in environmental control.

  19. Post treatment of silane and cerium salt as chromate replacers on galvanized steel

    Institute of Scientific and Technical Information of China (English)

    KONG Gang; LU Jintang; WU Haijiang

    2009-01-01

    A complex film on hot-dip galvanized steel sheet (HDG) was prepared by immersing the sheet in 0.1wt.% Ce(NO3)3 solution and 5vol.% silane solution in turn. The corrosion protection of the complex film was evaluated by potentiodynamic linear polarization(LPR), electrochemical impendence spectra (EIS) and natural salt spray (NSS) tests and compared with that of single cerium film and silane film. The results showed that, the presence of these films on the zinc coating hindered corrosion reaction by reducing the rate of both anodic and cathodic reaction in the corrosion process, and the corrosion protection of the complex film was much better than that of single cerium film or silane film and closed to that of chromate film, because the polarization resistance Rp and electrochemical impendence were increased markedly. Microstructure and chemical composition of these pretreated films were also investigated by scanning electron microscopy (SEM) and AES.

  20. Effect of oxygen defects on thermal conductivity of thorium-cerium dioxide solid solutions

    Science.gov (United States)

    Muta, Hiroaki; Kado, Hirohisa; Ohishi, Yuji; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-01-01

    Thermal conductivity of thorium-cerium dioxide solid solutions has been measured and analyzed using the relaxation time approximation. Despite the presence of oxygen defects, the partially reduced Th0.8Ce0.2O1.97 exhibited higher thermal conductivity than the stoichiometric one, Th0.8Ce0.2O2.00, showing the same tendency as that previously reported for Th0.7Pu0.3O2-δ. The increase in thermal conductivity with the oxygen defects can be explained by assuming that cerium ions have an average ionic radius of the ionic radii of Ce3+ and Ce4+ in the description of phonon-impurity scattering. This result indicates that the small reduction of (Th,Pu)O2-δ fuel increases the thermal conductivity, especially at high temperatures.

  1. Energy transfer and thermal studies of Pr3+ doped cerium oxalate crystals

    Indian Academy of Sciences (India)

    R Pragash; Gijo Jose; N V Unnikrishnan; C Sudarsanakumar

    2011-07-01

    Energy transfer process at room temperature for cerium (sensitizer) oxalate single crystals doped with different concentrations (10, 13, 15, 17 and 20%) of praseodymium ions (activator) grown by hydro silica gel method has been evaluated. The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of the absorption spectra of Pr3+ and emission spectra of Ce3+ at wavelengths 484 and 478 nm, respectively, strongly supports the possible energy transfer process in this system. From the absorption spectra, oscillator strength, electric dipole moment, branching ratio and Judd–Ofelt parameters of this system were evaluated by least square programming. The quantum efficiency, energy transfer probabilities and thermal properties have been studied.

  2. Thermodynamics of the α -γ transition in cerium studied by an LDA + Gutzwiller method

    Science.gov (United States)

    Tian, Ming-Feng; Song, Hai-Feng; Liu, Hai-Feng; Wang, Cong; Fang, Zhong; Dai, Xi

    2015-03-01

    Utilizing the local-density approximation (LDA) + Gutzwiller method, we have studied the α -γ transition in cerium. Our results indicate that the volume collapse transition between α and γ phases is present at zero temperature with negative pressure. By further providing a newly finite temperature generalization of the LDA + Gutzwiller method (using the mean-field potential approach), the entropy contributed by both electronic quasiparticles and lattice vibration included, we obtain the Gibbs free energy at a given volume and temperature, from which we get the α -γ transition at finite temperature and pressure. Our results indicate that the electronic entropy and lattice vibrational entropy both play important roles in the α -γ transition. We also calculated the equation of state and phase diagram of cerium, finding good agreement with the experiments.

  3. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  4. Intensification of electrochemical properties of the molten chloride electrolytes of the cerium subgroup lanthanides

    Science.gov (United States)

    Shabanov, O. M.; Suleymanov, S. I.; Magomedova, A. O.

    2017-01-01

    The electrical conductivity of molten chloride electrolytes of the cerium subgroup lanthanides increases with rising electric field strength and strive to achieve the limiting high voltage values (Wien effect). On exposure of the high-voltage microsecond pulsed fields, the melts are transited into a prolonged non-equilibrium state with increased electrical conductivity and electrolyze current density. During the relaxation processes in non-equilibrium melts, increased electrical conductivity tends to restore the values that are specific to equilibrium systems.

  5. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  6. Photocatalytic C-C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex.

    Science.gov (United States)

    Guo, Jing-Jing; Hu, Anhua; Chen, Yilin; Sun, Jianfeng; Tang, Haoming; Zuo, Zhiwei

    2016-12-05

    A general strategy for the cleavage and amination of C-C bonds of cycloalkanols has been achieved through visible-light-induced photoredox catalysis utilizing a cerium(III) chloride complex. This operationally simple methodology has been successfully applied to a wide array of unstrained cyclic alcohols, and represents the first example of catalytic C-C bond cleavage and functionalization of unstrained secondary cycloalkanols.

  7. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    OpenAIRE

    Woosuck Shin; Takafumi Akamatsu; Toshio Itoh; Ichiro Matsubara; Noriya Izu

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nano...

  8. Nanoceria and bulk cerium oxide effects on the germination of asplenium adiantum-nigrum spores

    Directory of Open Access Journals (Sweden)

    Aranzazu Gomez-Garay

    2016-12-01

    Full Text Available Aim of study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum. Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea. Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC and Lowest-Observed-Adverse-Effect-Concentration (LOEC values for spore germination rate data were analyzed.  Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained. Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. Keywords: Nanoparticles; rhizoid; prothallus; chloroplast; fern.

  9. Synthesis and Characterization of Cerium Doped Titanium Catalyst for the Degradation of Nitrobenzene Using Visible Light

    Directory of Open Access Journals (Sweden)

    Padmini Ellappan

    2014-01-01

    Full Text Available Cerium doped catalyst was synthesized using Titanium isopropoxide as the Titanium source. The metal doped nanoparticles semiconductor catalyst was prepared by sol-sol method with the sol of Cerium. The synthesized catalyst samples were characterized by powder X-ray diffraction, BET surface area, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and UV-vis diffuse reflectance measurements (DRS and compared with undoped TiO2 catalyst. The photocatalytic activity of the sample was investigated for the decomposition of nitrobenzene (NB using visible light as the artificial light source. Cerium doped catalyst was found to have better degradation of nitrobenzene owing to its shift in the band gap from UV to visible region as compared to undoped TiO2 catalyst. The operational parameters were optimized with catalyst dosage of 0.1 g L−1, pH of 9, and light intensity of 500 W. The degradation mechanism followed the Langmuir Hinshelwood kinetic model with the rate constant depending nonlinearly on the operational parameters as given by the relationship Kapp (theoretical = 2.29 * 10−4 * Intensity0.584 * Concentration−0.230 * Dosage0.425 * pH0.336.

  10. Cerium(III-Selective Membrane Electrode Based on Dibenzo-24-crown-8 as a Neutral Carrier

    Directory of Open Access Journals (Sweden)

    Susheel K. Mittal

    2010-01-01

    Full Text Available Cerium(III-selective membrane electrodes have been prepared using dibenzo-24-crown-8 (DB24C8 as an electroactive material. A membrane having a composition: DB24C8 (4.5%, plasticizer (NPOE, 62.5% and PVC (33% gives the best performance. It works well over a wide Ce(III ion-concentration range of 1x10-5 M to 1x10-1 M with a Nernstian slope of 19.0 mV/decade and a detection limit of 3x10-5 M. It has a fast response time of 20 seconds and has an average lifetime of four months. The internal solution concentration does not have a significant effect on the response of the electrode except for a change in intercept of the calibration curves. The working pH range for Ce(III solutions (1x10-2 M and 1x10-3 M is 3.5-8.0. The proposed sensor shows a good selectivity for cerium(III with respect to alkali, alkaline earth, some transition and rare earth metal ions that are normally present along with cerium in its ores. The proposed sensor was investigated in partially non-aqueous media using acetone, methanol and DMSO mixtures with water. The electrode was further used as an indicator electrode for the potentiometric titration of Ce(III solution against oxalic acid solution.

  11. Preparation and Characterization of Cerium (III Doped Captopril Nanoparticles and Study of their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Ghamami Shahriar

    2016-01-01

    Full Text Available In this research Ce3+ doped Captopril nanoparticles (Ce3+ doped CAP-NP were prepared by a cold welding process and have been studied. Captopril may be applied in the treatment of hypertension and some types of congestive heart failure and for preventing kidney failure due to high blood pressure and diabetes. CAP-NP was synthesized by a cold welding process. The cerium nitrate was added at a ratio of 10% and the optical properties have been studied by photoluminescence (PL. The synthesized compounds were characterized by Fourier transform infrared spectroscopy. The size of CAP-NP was calculated by X-ray diffraction (XRD. The size of CAP-NP was in the range of 50 nm. Morphology of surface of synthesized nanoparticles was studied by scanning electron microscopy (SEM. Finally the luminescence properties of undoped and doped CAP-NP were compared. PL spectra from undoped CAP-NP show a strong pack in the range of 546 nm after doped cerium ion into the captopril appeared two bands at 680 and 357 nm, which is ascribed to the well-known 5d–4f emission band of the cerium.

  12. Cerium Biomagnification in a Terrestrial Food Chain: Influence of Particle Size and Growth Stage.

    Science.gov (United States)

    Majumdar, Sanghamitra; Trujillo-Reyes, Jesica; Hernandez-Viezcas, Jose A; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-07-01

    Mass-flow modeling of engineered nanomaterials (ENMs) indicates that a major fraction of released particles partition into soils and sediments. This has aggravated the risk of contaminating agricultural fields, potentially threatening associated food webs. To assess possible ENM trophic transfer, cerium accumulation from cerium oxide nanoparticles (nano-CeO2) and their bulk equivalent (bulk-CeO2) was investigated in producers and consumers from a terrestrial food chain. Kidney bean plants (Phaseolus vulgaris var. red hawk) grown in soil contaminated with 1000-2000 mg/kg nano-CeO2 or 1000 mg/kg bulk-CeO2 were presented to Mexican bean beetles (Epilachna varivestis), which were then consumed by spined soldier bugs (Podisus maculiventris). Cerium accumulation in plant and insects was independent of particle size. After 36 days of exposure to 1000 mg/kg nano- and bulk-CeO2, roots accumulated 26 and 19 μg/g Ce, respectively, and translocated 1.02 and 1.3 μg/g Ce, respectively, to shoots. The beetle larvae feeding on nano-CeO2 exposed leaves accumulated low levels of Ce since ∼98% of Ce was excreted in contrast to bulk-CeO2. However, in nano-CeO2 exposed adults, Ce in tissues was higher than Ce excreted. Additionally, Ce content in tissues was biomagnified by a factor of 5.3 from the plants to adult beetles and further to bugs.

  13. Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework.

    Science.gov (United States)

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Booth, Corwin H; Schelter, Eric J

    2015-12-01

    Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C6 H4 CH2 )3 N](3-) (TriNOx (3-) ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNOx )thf][BAr(F) 4 ], in which Ar(F) =3,5-(CF3 )2 -C6 H3 , and [Ce(TriNOx )py][OTf]. A rare complete Ce-halide series, Ce(TriNOx )X, in which X=F(-) , Cl(-) , Br(-) , I(-) , was also synthesized. The solution chemistry of these complexes was explored through detailed solution-phase electrochemistry and (1) H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X(-) group. DFT calculations on the series of calculations corroborated the experimental findings.

  14. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Science.gov (United States)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  15. Infrared, thermal and X-ray diffraction analysis of cerium soaps

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, K.N. [Agra Univ. (India). Dept. of Chemistry; Chauhan, M. [Agra Univ. (India). Dept. of Chemistry; Shukla, R.K. [R.B.S. Coll., Agra (India)

    1997-03-01

    The physico-chemical characteristics of cerium soaps (Caproate and caprate) in solid state were investigated by IR, thermal and X-ray diffraction measurements. The IR results reveal that the fatty acids exist in dimeric state through hydrogen bonding and soaps possess partial ionic character. The decomposition reaction was found kinetically of zero order with energy of activation 6.7 and 7.3 K cal mol{sup -1} for cerium caproate and caprate, respectively. The X-ray diffraction measurements were used to calculate the long spacings and the results confirm the double layer structure of cerium soaps. (orig.) [Deutsch] Mit Hilfe von IR-, thermischen und Roentgendiffraktionsmessungen wurden die physikalisch-chemischen Eigenschaften von Cerseifen (Capron- und Caprylsaeuresalze)in festem Zustand bestimmt. Die IR-Untersuchungen zeigen, dass die Fettseifen in dimerem Zustand, gebunden durch Wasserstoffbruecken vorliegen und partiell ionischen Charakter haben. Die Zersetzungsreaktion war von einer Kinetik nullter Ordnung, die Aktivierungsenergien lagen bei 6,7 K cal mol{sup -1} fuer Capronsaeuresalze und 7,3 K cal mol{sup -1} fuer Caprylsaeuresalze. Mit Hilfe von Roentgendiffraktionsmessungen wurden die grossen Zwischenraeume bestimmt. Die Ergebnisse lassen auf eine Doppelschichtstruktur der Cerseifen schliessen. (orig.)

  16. Effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings

    Directory of Open Access Journals (Sweden)

    Yu Mei

    2015-04-01

    Full Text Available The present work examines the effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings. The Si–Zr hybrid sol–gel coatings on a 2A12 aluminum substrate were prepared through hydrolysis and condensation of glycidoxypropyl-trimethoxy-silane (GTMS and zirconium(IV n-propoxide (TPOZ. Used as inhibitors for corrosion, three types of cerium salts (Ce(NO33, CeCl3, and Ce(CH3COO3 were doped into the sol–gel coatings. Fourier transform infrared (FTIR and scanning electron microscopy (SEM were employed to investigate the structures and morphologies of various coatings, and the corrosion resistances of the coatings were evaluated by electrochemical methods and neutral salt spray tests. Experimental results indicate that the addition of cerium salts can hinder the process of corrosion due to their self-healing abilities. Furthermore, the sol–gel coating doped with Ce(CH3COO3 has the best corrosion resistance because of the promotions of hydrolysis and condensation provided by CH3COO−.

  17. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process

    Energy Technology Data Exchange (ETDEWEB)

    Recillas, Sonia; Colon, Joan [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain); Casals, Eudald; Gonzalez, Edgar [Catalan Institute of Nanotechnology, Autonomous University of Barcelona Campus, 08193 Bellaterra (Spain); Puntes, Victor [Catalan Institute of Nanotechnology, Autonomous University of Barcelona Campus, 08193 Bellaterra (Spain); Catalan Institute of Research and Advanced Studies, Passeig Lluis Companys, 23, 08010 Barcelona (Spain); Sanchez, Antoni, E-mail: antoni.sanchez@uab.cat [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain); Font, Xavier [Department of Chemical Engineering, Engineering School, Autonomous University of Barcelona, 08193 Bellaterra (Spain)

    2010-12-15

    In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water. Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium-cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption-desorption process were observed by TEM. Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.

  18. Effect of cerium oxide addition on electrical properties of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [National Research Center, Dokki, Giza (Egypt). Dept. of Ceramics; Mounir, M. [Dept. of Physics, Cairo Univ., Giza (Egypt); Mahgoub, A.S. [Cairo Univ., Giza (Egypt). Dept. of Chemistry; Turky, G. [Dept. of Physics, National Research Center, Dokki, Giza (Egypt); El-Desouky, O.A. [Cer. Cleopatra Co., Ramadan City (Egypt)

    2002-07-01

    Mixtures of ZnO and Ce{sub 6} O{sub 11} as additive were prepared by solid state reaction from the calcined oxides with the following proportions: 0.03, 0.08, 0.1, 0.2 and 0.4 mole. Disc specimens 1.2 cm 5 cm in diameter and 0.3 cm thickness were processed under a force of 70 kN and fired at 1150 C/ 30 minutes. XRD revealed the presence of limited solid solution of cerium in ZnO, as evident from the shift in the peaks [0.03-0.04 A ] up to 0.1 mole addition and remains constant. SEM revealed the presence of inter-granular phase. EDAX showed it to be a mixture of ZnO and Ce{sub 6}O{sub 11}. Also cerium was detected in the ZnO grains confirming the XRD results. RCL circuit was used to measure the capacitance and resistance at different frequencies at room temperature. The dielectric constant and conductivity were calculated. The change in resistivity with temperature was followed up to 523 K. The change in dielectric strength with temperature at spot frequency of 10 kHz is demonstrated. The electrical conductivity was found to increase with the proportion of cerium oxide up to 0.2 mole then decreased. (orig.)

  19. Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; van Meirhaeghe, R. L.; Kellock, A. J.; Lavoie, C.

    2006-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin Ti or Mo films and C substrates. Titanium carbide (TiC) was previously reported as a contact material to diamond and carbon nanotubes. However, the present study shows two disadvantages for the solid-state reaction of Ti and C. First, because Ti reacts readily with oxygen, a capping layer should be included to enable carbide formation. Second, the TiC phase can exist over a wide range of composition (about 10%, i.e., from Ti0.5C0.5 to Ti0.6C0.4), leading to significant variations in the properties of the material formed. The study of the Mo-C system suggests that molybdenum carbide (Mo2C) is a promising alternative, since the phase shows a lower resistivity (about 45% lower than for TiC), the carbide forms below 900 °C, and its formation is less sensitive to oxidation as compared with the Ti-C system. The measured resistivity for Mo2C is ρ=59 μΩ cm, and from kinetic studies an activation energy for Mo2C formation of Ea=3.15+/-0.15 eV was obtained.

  20. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  1. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    Science.gov (United States)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  2. Development and characterization of nickel based tungsten carbide laser cladded coatings

    Science.gov (United States)

    Rombouts, Marleen; Persoons, Rosita; Geerinckx, Eric; Kemps, Raymond; Mertens, Myrjam; Hendrix, Willy; Chen, Hong

    Laser cladded coatings consisting of various types of tungsten carbides embedded in a NiCrBSiCFe matrix are characterized. At optimal process parameters crack-free coatings with a thickness of 0.85-1 mm, excellent bonding with the substrate, carbide concentrations up to 60 wt% and a hardness in the range of 40-55 HRC are obtained. During laser cladding the carbides have partly dissolved in the matrix as indicated by the presence of dispersed carbides in the matrix and by a carbide phase growing into the matrix along the edges of the particles. The wear coefficient during sliding contact decreases logarithmically with increasing carbide concentration.

  3. Nanostructured carbide catalysts for the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  4. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    Science.gov (United States)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  5. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  6. Feasibility study of fluxless brazing cemented carbides to steel

    Science.gov (United States)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  7. Methods for producing silicon carbide architectural preforms

    Science.gov (United States)

    DiCarlo, James A. (Inventor); Yun, Hee (Inventor)

    2010-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  8. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  9. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  10. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  11. Yarlongite:A New Metallic Carbide Mineral

    Institute of Scientific and Technical Information of China (English)

    SHI Nicheng; BAI Wenji; LI Guowu; XIONG Ming; FANG Qingsong; YANG Jingsui; MA Zhesheng; RONG He

    2009-01-01

    Yarlongite occurs in ophiolitic chromitite at the Luobusha mine(29°5'N 92°,5'E,about 200 km ESE of Lhasa),Qusum County,Shannan Prefecture,Tibet Autonomous Region,People'S Republic of China.Associated minerals are:diamond,moissanite,wiistite,iridium("osmiridium"), osmium("iridosmine"),periclase,chromite,native irun,native nickel,native chromium,forsterite. Cr-rich diopside,intermetallic compounds Ni-Fe-Cr,Ni-Cr,Cr-C,etc.Yariongite and its associated minerals were handpicked from a large heavy mineral sample of chromitite.The metallic carbides associated with yarlongite are cohenite,tongbaite,khamrabaevite and qusongite(IMA2007.034). Yarlongite occurs as irregular grains,with a size between 0.02 and 0.06 mm,steel-grey colour,H Mohs:5 1/2-6.Tenacity:brittle.Cleavage:{0 0 1}perfect.Fracture:conchoidal.Chemical formula: (Cr4Fe4Ni)∑9C4,or(Cr,Fe,Ni)∑9C4,Crystal system:Hexagonal,Space Group:P63/mc,a=18.839(2)A,C =4.4960(9)A,V=745.7(2)A3,Z=6,Density(calc.)=7.19 g/cm3(with simplified formula).Yarlongite has been approved as a new mineral by the CNMNC(IMA2007-035).Holotype material is deposited at the Geological Museum of China(No.M11650).

  12. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  13. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  14. Cyanex 923 as the extractant in a rare earth element impurity analysis of high-purity cerium oxide.

    Science.gov (United States)

    Duan, Taicheng; Li, Hongfei; Kang, JianZhen; Chen, Hangting

    2004-06-01

    In this work, the feasibility of employing Cyanex 923 as an extractant into the non-cerium REE (rare earth elements) impurity analysis of high-purity cerium oxide was investigated. Through investigations on the choice of the extraction medium, the optimium extraction acidity, matrix Ce4+ effect on the non-cerium REE ion extraction, the optimium extractant concentration and suitable extracting time, and oscillation strengh, it was found that when the phase ratio was at 1:1 and the acicidity was about 2% H2SO4, by gently shaking by hand for about 2 min, 10 mL of 30% Cyanex 923 could not extract even for a 20 ng amount of non-cerium REE3+ ions. However, the extraction efficiency for Ce4+ of 100 mg total amount under the same conditions was about 96%, indicating that a 25-fold preconcentration factor could be achieved. Thus, it was concluded that Cyanex 923 could be used in a REE impurity analysis of 99.9999% or so pure cerium oxide for primary sepapation to elimilate matrix-induced interferences encountered in an ICP-MS (inductively coupled plasma mass spectroscopy) determination.

  15. Effect of cerium addition on microstructures of carbon-alloyed iron aluminides

    Indian Academy of Sciences (India)

    S Sriram; R Balasubramaniam; M N Mungole; S Bharagava; R G Baligidad

    2005-10-01

    The effect of Ce addition on the microstructure of carbon-alloyed Fe3Al-based intermetallic has been studied. Three different alloys of composition, Fe–18.5Al–3.6C, Fe–20.0Al–2.0C and Fe–19.2Al–3.3C–0.07Ce (in at%), were prepared by electroslag remelting process. Their microstructures were characterized using optical and scanning electron microscopies. Stereological methods were utilized to understand the observed microstructures. All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes were finer and uniformly distributed throughout the matrix. The effect of Ce addition on the carbide morphology has been explained based on the known effect of Ce in modifying carbide morphology in cast irons.

  16. SYNTHESIS OF CATIONIC CERIUM COMPOUNDS [CP2CE(L)2][BPH4] (L = TETRAHYDROFURAN OR TETRAHYDROTHIOPHENE) AND THE CRYSTAL-STRUCTURE OF THE TETRAHYDROTHIOPHENE DERIVATIVE

    NARCIS (Netherlands)

    HEERES, HJ; MEETSMA, A; TEUBEN, JH

    1991-01-01

    Protolysis of the cerium alkyl Cp2*CeCH(SiMe3)2 (1) by triethylammoniumtetraphenylborate provides a useful route to cationic cerium compounds [Cp2*Ce(L)2][BPh4] (2, L = tetrahydrofuran; 3, L = tetrahydrothiophene). The crystal structure of the tetrahydrothiophene derivative was determined by X-ray d

  17. Converting a carbon preform object to a silicon carbide object

    Science.gov (United States)

    Levin, Harry (Inventor)

    1990-01-01

    A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.

  18. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Science.gov (United States)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J.

    2016-12-01

    Highly porous cerium oxide modified Zr(OH)4 samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO2) and hydroxide (Zr(OH)4) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  19. Effect of cerium additive and secondary phase analysis on Ag0.5Bi0.5TiO3 ceramics

    Indian Academy of Sciences (India)

    S Supriya; Antonio J Dos Santos-García; F Fernández-Martinez

    2016-02-01

    Cerium-doped silver bismuth titanate—Ag0.5Bi0.5TiO3 (ABT) ceramics have been synthesized by the high-temperature solid-state reaction method. The structure and elemental examination of the prepared ceramic was analysed by X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energydispersive spectroscopy. XRD analysis showed the presence of pyrochlore structure and secondary phase when more than 5 mol% cerium was added. The impact of temperature on cerium-doped silver bismuth titanate samples was analysed by differential thermal analysis and differential scanning calorimetry. Cerium doping caused the flaky morphology comparing with undoped sample. The homogeneity of all the samples was discussed in detail by diffuse reflectance spectrum. This is the first time the reflection process is analysed for the cerium-doped ABT system to the best of our knowledge.

  20. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  1. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated......, attributable to the different electronic structures. Tungsten carbide among the studied electrode samples exhibited the highest HER activity. Upon anodic potential scans in the presence of oxygen, chromium, tantalum and tungsten carbides displayed passivation due to the formation of stable surface layers...

  2. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    A.O. Addemir

    2012-03-01

    Full Text Available Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion

  3. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  4. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  5. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Science.gov (United States)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-01

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  6. Catalytic activity of cerium-doped Ru/Al2O3 during ozonation of dimethyl phthalate

    Institute of Scientific and Technical Information of China (English)

    Yunrui ZHOU; Wanpeng ZHU; Xun CHEN

    2008-01-01

    In this paper, factors influencing the mineraliza-tion of dimethyl phthalate (DMP) during catalytic ozona-tion with a cerium-doped Ru/Al2O3 catalyst were studied. The catalytic contribution was calculated through the results of a companrison experiment. It showed that doping cerium significantly enhanced catalytic activity. The total organic carbon (TOC) removal over the doped catalyst at 100 rain reached 75.1%, 61.3% using Ru/Al2O3 catalyst and only 14.0% using ozone alone. Catalytic activity reached the maximum when 0.2% of ruthenium and 1.0% of cerium'were simultaneously loaded onto Al2O3 support. Results of experiments on oxidation by ozone alone, adsorption of the catalyst, Ce ion's and heterogeneous catalytic ozonation confirmed that the contribution of het-erogeneous catalytic ozonation was about 50%, which showed the obvious effect of Ru-Ce/Al2O3 on catalytic activity.

  7. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4:Ce3+

    Science.gov (United States)

    Philippen, J.; Guguschev, C.; Klimm, D.

    2017-02-01

    First single crystal fibers of cerium doped strontium yttrate were fabricated using the laser-heated pedestal growth technique. Through thermodynamic equilibrium calculations and by high-temperature mass spectrometry suitable growth conditions could be determined. The atmosphere played an important role during crystallization. It affected the composition shift, on the one hand, and the valence state of cerium, on the other hand. These dependencies can be explained by combining X-ray diffraction, elemental analysis, and optical spectroscopy. Crystallization in slightly reducing nitrogen atmosphere proved to be a reasonable choice, because evaporation is suppressed and trivalent cerium is stabilized. Strong green emission that depends on the oxygen fugacity during crystallization could be excited using UV light. Optical properties of SrY2O4:Ce3+ were measured for the first time.

  8. Crystallization behavior of electroless Co-Ni-B alloy plated in magnetic field in presence of cerium

    Institute of Scientific and Technical Information of China (English)

    XUAN Tian-peng; ZHANG Lei; HUANG Qin-hua

    2006-01-01

    The electrochemical property, chemical composition and crystal structure of electroless Co-Ni-B-Ce alloy plated in general state as well as in magnetic field were studied using potentiometer, plasma emission spectrometer, X-ray diffractometer,transmission electron microscope. The results show that the static potential and polarizability of electroless Co-Ni-B alloy are remarkably improved as the plating is carried out in magnetic field in the presence of a little amount of cerium in plating bath.Because of the action of magnetic field and rare earth element cerium, the boron content in alloy decreases, while cobalt and nickel contents increase. As a result, the amorphous Co-Ni-B alloy transforms to the microcrystalline Co-Ni-B-Ce alloy when the plating is in general state, and the Co-Ni-B alloy makes a crystalline transformation because of the action of magnetic field and rare earth element cerium.

  9. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  10. Implementation of a complex multi-phase equation of state for cerium and its correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, Frank J [Los Alamos National Laboratory; Jensen, Brian J [Los Alamos National Laboratory; Elkin, Vyacheslav M [VNIITF

    2009-01-01

    The complexity of cerium combined with its interesting material properties makes it a desirable material to examine dynamically. Characteristics such as the softening of the material before the phase change, low pressure solid-solid phase change, predicted low pressure melt boundary, and the solid-solid critical point add complexity to the construction of its equation of state. Currently, we are incorporating a feedback loop between a theoretical understanding of the material and an experimental understanding. Using a model equation of state for cerium we compare calculated wave profiles with experimental wave profiles for a number of front surface impact (cerium impacting a plated window) experiments. Using the calculated release isentrope we predict the temperature of the observed rarefaction shock. These experiments showed that the release state occurs at different magnitudes, thus allowing us to infer where dynamic {gamma} - {alpha} phase boundary is.

  11. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, K. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)], E-mail: codl@sci.muni.cz; Stankova, A. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Haekkaenen, H.; Korppi-Tommola, J. [Department of Chemistry, University of Jyvaeskylae, P.O. BOX 35, FIN-40014 (Finland); Otruba, V.; Kanicky, V. [Laboratory of Atomic Spectrochemistry, Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2007-12-15

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r{sup 2} > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r{sup 2} = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  12. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  13. 40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium carbide production subcategory. The provisions of this subpart are applicable to discharges resulting...

  14. 40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.

    Science.gov (United States)

    2010-07-01

    ... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to...

  15. Physical Properties of the NbC Carbide

    Directory of Open Access Journals (Sweden)

    Marcio Gustavo Di Vernieri Cuppari

    2016-10-01

    Full Text Available Transition metal carbides are interesting materials with a singular combination of properties, such as high melting points, high hardness, good transport properties and relatively low costs, which makes them excellent candidates for several technological applications. The possible applications of NbC carbide remained unexplored as it was in the past expensive and available in limited volumes. In order to guide investigations of the applicability of NbC, a deeper understanding of the physical properties of this carbide is fundamental. In this review paper, key physical properties of NbC are compiled with emphasis on its chemical bonding, a careful description of the C-Nb phase diagram, the phases formed and the crystal structures. Thermal properties are discussed and correlated with the intrinsic and extrinsic features of NbC. Finally, elastic properties are discussed.

  16. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  17. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;

    2013-01-01

    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  18. Studies on the equation of state of mixed carbide fuel

    Science.gov (United States)

    Joseph, M.; Mathews, C. K.; Rao, P. Bhaskar

    1989-12-01

    The equation of state of reactor fuels is required up to very high temperatures in order to assess the energy release in hypothetical core disruptive accidents (HCM). Though the mixed carbide of uranium and plutonium is a candidate fuel material for fast breeder reactors, much information is not available on its equation of state. This paper reports the results of our studies to obtain the equilibrium vapour pressures of uranium carbide and uranium-plutonium mixed carbide of varying compositions in the temperature range of 1300-9000 K. An extrapolation method based on the principles of equilibrium thermodynamics has been used as also the principle of corresponding states. The agreement between the different results are discussed and their implications in HCDA calculations brought out.

  19. Palladium in cubic silicon carbide: Stability and kinetics

    Science.gov (United States)

    Roma, Guido

    2009-12-01

    Several technological applications of silicon carbide are concerned with the introduction of palladium impurities. Be it intentional or not, this may lead to the formation of silicides. Not only this process is not well understood, but the basic properties of palladium impurities in silicon carbide, such as solubility or diffusion mechanisms, are far from being known. Here the stability and kinetics of isolated Pd impurities in cubic silicon carbide are studied by first principles calculations in the framework of density functional theory. The preferential insertion sites, as well as the main migration mechanisms, are analyzed and presented here, together with the results for solution and migration energies. The early stages of nucleation are discussed based on the properties of isolated impurities and the smallest clusters.

  20. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  1. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  2. Ordering of carbon atoms in boron carbide structure

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, V. I., E-mail: i2212@yandex.ru; Kovalev, I. D.; Konovalikhin, S. V.; Vershinnikov, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2013-05-15

    Boron carbide crystals have been obtained in the entire compositional range according to the phase diagram by self-propagating high-temperature synthesis (SHS). Based on the results of X-ray diffraction investigations, the samples were characterized by the unit-cell metric and reflection half-width in the entire range of carbon concentrations. A significant spread in the boron carbide unit-cell parameters for the same carbon content is found in the data in the literature; this spread contradicts the structural concepts for covalent compounds. The SHS samples have not revealed any significant spread in the unit-cell parameters. Structural analysis suggests that the spread of parameters in the literary data is related to the unique process of ordering of carbon atoms in the boron carbide structure.

  3. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  4. New process of silicon carbide purification intended for silicon passivation

    Science.gov (United States)

    Barbouche, M.; Zaghouani, R. Benabderrahmane; Benammar, N. E.; Aglieri, V.; Mosca, M.; Macaluso, R.; Khirouni, K.; Ezzaouia, H.

    2017-01-01

    In this work, we report on a new, efficient and low cost process of silicon carbide (SiC) powder purification intended to be used in photovoltaic applications. This process consists on the preparation of porous silicon carbide layers followed by a photo-thermal annealing under oxygen atmosphere and chemical treatment. The effect of etching time on impurities removal efficiency was studied. Inductively coupled plasma atomic emission spectrometry (ICP-AES) results showed that the best result was achieved for an etching time of 10 min followed by gettering at 900 °C during 1 h. SiC purity is improved from 3N (99.9771%) to 4N (99.9946%). Silicon carbide thin films were deposited onto silicon substrates by pulsed laser deposition technique (PLD) using purified SiC powder as target. Significant improvement of the minority carrier lifetime was obtained encouraging the use of SiC as a passivation layer for silicon.

  5. Carbide Dissolution during Intercritical Austenitization in Bearing Steel

    Institute of Scientific and Technical Information of China (English)

    LI Hui; MI Zhenli; ZHANG Xiaolei; TANG Di; WANG Yide

    2014-01-01

    In order to investigate the carbide dissolution mechanism of high carbon-chromium bearing steel during the intercritical austenitization, the database of TCFE7 of Thermo-calc and MOBFE of DICTRA software were used to calculate the elements diffusion kinetic and the evolution law of volume fraction of carbide. DIL805A dilatometer was used to simulate the intercritical heat treatment. The microstructure was observed by scanning electron microscopy(SEM), and the micro-hardness was tested. The experimental results indicate that the dissolution of carbide is composed of two stages:initial austenite growth governed by carbon diffusion which sharply moves up the micro-hardness of quenched martensite, and subsequent growth controlled by diffusion of Cr elements in M3C. The volume fraction of M3C decreases with the increasing holding time, and the metallographic analysis shows a great agreement with values calculated by software.

  6. Implanted bottom gate for epitaxial graphene on silicon carbide

    Science.gov (United States)

    Waldmann, D.; Jobst, J.; Fromm, F.; Speck, F.; Seyller, T.; Krieger, M.; Weber, H. B.

    2012-04-01

    We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation. Via nitrogen or phosphor implantation into a silicon carbide wafer and subsequent graphene growth, devices can routinely be fabricated using standard semiconductor technology. We have optimized samples for room temperature as well as for cryogenic temperature operation. Depending on implantation dose and temperature we operate in two gating regimes. In the first, the gating mechanism is similar to a MOSFET, the second is based on a tuned space charge region of the silicon carbide semiconductor. We present a detailed model that describes the two gating regimes and the transition in between.

  7. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    Science.gov (United States)

    Tomul, Fatma

    2011-12-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+, Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  8. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  9. Effects of laser ablation on cemented tungsten carbide surface quality

    Energy Technology Data Exchange (ETDEWEB)

    Tan, J.L.; Butler, D.L.; Sim, L.M.; Jarfors, A.E.W. [Singapore Institute of Manufacturing Technology, Singapore (Singapore)

    2010-11-15

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable. (orig.)

  10. Effects of laser ablation on cemented tungsten carbide surface quality

    Science.gov (United States)

    Tan, J. L.; Butler, D. L.; Sim, L. M.; Jarfors, A. E. W.

    2010-11-01

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable.

  11. High-Q silicon carbide photonic-crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  12. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  13. Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles

    Science.gov (United States)

    Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.

    2016-11-01

    The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.

  14. Catalytic carbide formation at aluminium-carbon interfaces

    Science.gov (United States)

    Maruyama, B.; Rabenberg, L.; Ohuchi, F. S.

    1990-01-01

    X-ray photoelectron spectroscopy investigations of the reaction of several monolayer-thick films of aluminum with glassy carbon substrates are presented. The influence of molecular oxygen and water vapor on the rate of reaction is examined. It is concluded that water vapor catalyzed the formation of aluminum carbide from aluminum and carbon by forming active sites which weakened carbon-carbon bonds at the glassy carbon surface, thus assisting their cleavage. The rate of carbide formation for undosed and molecular oxygen-dosed examples was less as neither metallic aluminum nor oxygen-formed alumina could bond to the carbon atom with sufficient strength to dissociate it quickly.

  15. Improvement of corrosion resistance of AZ31 Mg alloy by anodizing with co-precipitation of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    Salah Abdelghany SALMAN; Ryoichi ICHINO; Masazumi OKIDO

    2009-01-01

    Anodizing of AZ31 Mg alloy in NaOH solution by co-precipitation of cerium oxide was investigated. The chemical composition and phase structure of the coating film were determined via optical microscopy, SEM and XRD. The corrosion properties of the anodic film were characterized by using potentiodynamic polarization curves in 17 mmol/L NaCl and 0.1 mol/L Na2SO4 solution at 298 K. The corrosion resistance of AZ31 magnesium alloy is significantly improved by adding cerium oxide to alkaline solution. In addition, the surface properties are enhanced and the film contains no crack.

  16. Equivalent Activity Coefficient Phenomenon of Cerium Reacting with Lead or Bismuth in Ag, Cu and Zn Alloy

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 钱乙余; 董健

    2002-01-01

    The relation between contents of cerium and impurity lead or bismuth to their activity coefficient in Ag, Cu and Zn-base alloy was calculated and analyzed by using the ternary system Chou model. The thermodynamic calculation results show that the "equivalent activity coefficient phenomenon" emerges among the activity coefficient of solute in a certain range of cerium (or at a certain point) for the Ce-Pb-X and Ce-Bi-X (X=Ag, Cu or Zn) ternary alloy system. Under this condition, the activity coefficient of solute has nothing to do with its own concentration. The preliminary theoretical analysis to this phenomenon was also made.

  17. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Subbaramaiah, V. [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Mall, Indra Deo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India)

    2013-03-15

    Highlights: ► Cerium supported SBA-15 (Ce/SBA-15) synthesized by two-step synthesis. ► Characterization of Ce/SBA-15 by FTIR, XRD and BET surface area. ► Catalytic peroxidation of pyridine by Ce/SBA-15. ► Optimization of parameters like catalyst dose, H{sub 2}O{sub 2} dose, initial concentration and temperature. ► Catalyst reusability and leaching study performed. -- Abstract: Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N{sub 2} adsorption–desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter ≈ 70–100 A and pore volume ≈ 0.025 cm{sup 3}/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5–6 g/l), stoichiometric ratio of H{sub 2}O{sub 2}/pyridine (1–6), initial pyridine concentration (50–800 mg/l) and temperature (313–358 K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  18. Spectroscopy of gadolinium gallium garnet doped with cerium under high hydrostatic pressure

    OpenAIRE

    2012-01-01

    Studies of the spectroscopic properties of Ce3+ dopant in bulk Gd3Ga5O12:Ce crystal under pressure are presented. In spite of strong inter-shell 4f ® 5d absorption bands at ambient pressure the cerium luminescence in Gd3Ga5O12 is entirely quenched even at low temperature. It has been shown that applying pressure allows for recovering the 5d ® 4f radiative transitions. Further increase of pressure improves the emission efficiency. This effect is analyzed in terms of two possible phenomen...

  19. ARTICLES: Photoinduced light scattering in cerium-doped barium strontium niobate crystals

    Science.gov (United States)

    Voronov, Valerii V.; Dorosh, I. R.; Kuz'minov, Yu S.; Tkachenko, N. V.

    1980-11-01

    Photoinduced light scattering was observed in cerium-doped (SrxBa1-x)1-y(Nb2O6)y crystals having the composition x = 0.61, y = 0.4993. It was found that this effect is due to holographic amplification of light scattered by crystal defects. An analysis is made of static and dynamic characteristics of self-amplification of scattered light in the crystals. A theoretical model of the process is constructed assuming that the hologram recording process is of the diffusion type. Theoretical results are compared with the experiment.

  20. Photoinduced light scattering in cerium-doped barium strontium niobate crystals

    Science.gov (United States)

    Voronov, V. V.; Dorosh, I. R.; Kuz'minov, Yu. S.; Tkachenko, N. V.

    Photoinduced light scattering was observed in cerium-doped (Srx Ba1-x)1-y(Nb2O6)y crystals having the composition x = 0.61, y = 0.4993. It was found that this effect is due to holographic amplification of light scattered by crystal defects. An analysis is made of static and dynamic characteristics of self-amplification of scattered light in the crystals. A theoretical model of the process is constructed assuming that the hologram recording process is of the diffusion type. Theoretical results are compared with the experiment.

  1. Sequence-specific Hydrolysis of Single-stranded DNA by PNA-Cerium (Ⅳ) Adduct

    Institute of Scientific and Technical Information of China (English)

    He Bai SHEN; Feng WANG; Yong Tao YANG

    2005-01-01

    A novel artificial site specific cleavage reagent, with peptide nucleic acid (PNA) as sequence-recognizing moiety and cerium (Ⅳ) ions as "scissors" for cleaving target DNA, was synthesized. Subsequently, it was employed in the cleavage of target 26-mer single-stranded DNA (ssDNA), which has 10-mer sequence complementary with PNA recognizer in the hybrids,under physiological conditions. Reversed-phase high-performance liquid chromatogram (RPHPLC) experiments indicated that the artificial site specific cleavage reagent could cleave the target DNA specifically.

  2. Trace electrochemical analysis of Europium, Ytterbium, and Cerium at their joint presence in solution

    Directory of Open Access Journals (Sweden)

    Rema Matakova

    2012-03-01

    Full Text Available In the course of several decades at the department of analytical chemistry and chemistry of rare elements there were studied the electrode processes with participation of rare-earth metals (REM in accordance with the long awaiting problem of the development of rare-metal and rare-earth branch of non-ferrous metallurgy of Kazakhstan. With the aim of express and highly sensitive analytical control of raw materials and final product of rare-earth industry there were developed the methods of inversion-voltamperometric determination of low concentrations of europium, ytterbium and cerium under the conditions of their individual and combined presence in the solution.

  3. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet.

    Science.gov (United States)

    Goto, Taichi; Onbasli, Mehmet C; Kim, Dong Hun; Singh, Vivek; Inoue, M; Kimerling, Lionel C; Ross, C A

    2014-08-11

    Vacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties, refractive indices and absorption coefficients were measured. The resonant transmission peak of the racetrack resonator covered with CeYIG was non-reciprocally shifted by applying an in-plane magnetic field.

  4. APPLICATIONS OF CERIUM BIS (MONOMYRISTY—LPHOSPHATE)ADSORBENT TO REVERSED PHASE LIQUID CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    SuZhengquan; FengHuixia; 等

    1996-01-01

    The tetravalent metal salts of monoalkyl phosphates [M(O3POR)2]are a new kind of stationary phases of Chromatography-homogeneous bonded phases.This paper deals with the application of cerium bis(monomyristylphosphate)as support to reversed phase liquid chromatography.The results show that the best mobil phase is CH3CN:H2O=95:5.The good separation to the mixture containing six aromatic hydrocarbons and the determination of naphthalene in a group samples have been achieved.The regression analysis shows that detect limits,linearities and precision for six aromatic hydrocarbons are good.

  5. Relationship between surface area and crystal size of pure and doped cerium oxides

    Institute of Scientific and Technical Information of China (English)

    C.; Bueno-Ferrer; S.; Parres-Esclapez; D.; Lozano-Castelló; A.; Bueno-López

    2010-01-01

    Pure and Zr, La or Pr-doped cerium oxides were characterised by transmission electron microscopy (TEM), N2 adsorption-desorption at -196 oC and X-ray diffraction (XRD). For crystal sizes calculation, the Scherrer and Williamson-Hall equations were compared, and the relationship between surface area and crystal size was critically discussed. It was demonstrated that the Williamson-Hall equation must be used instead of the Scherrer equation to calculate crystal sizes, since the latter equation underestimated ...

  6. UV-Shielding and Catalytic Characteristics of Nanoscale Zinc-Cerium Oxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fine particles of zinc-cerium oxides (ZCO) used as an ultraviolet filter were prepared via combustion synthesis route. The catalytic activity, UV-shielding performance, surface modification and application of ZCO in polyester varnish were discussed in detail. The experimental results indicate that the photo-catalytic activity of ZCO is much smaller than these of ZnO and TiO2; the oxidation catalytic activity of ZCO is far lower than that of CeO2; the ZCO has shown excellent ultraviolet absorption in the range of UV;addition modified ZCO (MZCO) into polyester will enhance the UV-shielding capability of polyester.

  7. High-quality single-crystal growth and unique electronic states in cerium and uranium compounds

    Science.gov (United States)

    Onuki, Yoshichika; Settai, Rikio; Sugiyama, Kiyohiro; Inada, Yoshihiko; Takeuchi, Tetsuya; Haga, Yoshinori; Yamamoto, Etsuji; Harima, Hisatomo; Yamagami, Hiroshi

    2007-03-01

    We have grown many kinds of high-quality single crystals of cerium and uranium compounds and studied the Fermi surface properties via the de Haas-van Alphen experiments and energy band calculations. The quasi-two-dimensional electronic states are clarified in some compounds such as USb2, CeCoIn5, UPtGa5 and most likely UIr. In a ferromagnet CeRh3B2, we have found unique electronic states with quasi-one-dimensional character.

  8. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters

    Science.gov (United States)

    Tsunekawa, S.; Ito, S.; Kawazoe, Y.

    2004-10-01

    Cerium oxide nanocrystalline particles are synthesized and monodispersed in the size range from 2 to 8nm in diameter. The dependence of the lattice parameters on particle size is obtained by x-ray and electron diffraction analyses. The size dependence well coincides with the estimation based on the assumption that the surface is composed of one layer of Ce2O3 and the inside consists of CeO2. The effect of particle size on lattice parameters is discussed from the differences in the fabrication method and the surface structure.

  9. The Kinetics of Formation and Decomposition of Austenite in Relation to Carbide Morphology

    Science.gov (United States)

    Alvarenga, Henrique Duarte; Van Steenberge, Nele; Sietsma, Jilt; Terryn, Herman

    2017-02-01

    The effect of the carbide morphology on the kinetics of austenite formation and its decomposition was investigated by a combination of measurements of austenite fraction by dilatometry and metallography. These measurements show that coarse carbide morphology is generated by fast cooling through the early stages of eutectoid transformation, enabling fast precipitation of pro-eutectoid ferrite, followed by slow cooling during the final stages of transformation, during the precipitation of carbides. Additionally, a strong influence of the morphology of carbides on the kinetics of austenite formation is observed. The presence of coarse carbides can determine the rate of austenite formation during intercritical annealing as a result of its slow dissolution kinetics.

  10. Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy

    Science.gov (United States)

    Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang

    2016-09-01

    The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.

  11. Scintillation and Luminescence Properties of Undoped and Cerium-doped LiGdCl4 and NaGdCl4

    Energy Technology Data Exchange (ETDEWEB)

    Porter-Chapman, Yetta D.; Bourret-Courchesne, Edith D.; Bizarri, Gregory; Weber, Marvin J.; Derenzo, Stephen E.

    2008-10-05

    We report the scintillation properties of the undoped and cerium-doped variations of LiGdCl4 and NaGdCl4. Powder samples of these materials exhibit significant scintillation under X-rays. The samples were synthesized by solid-state methods from a 1:1 molar ratio of lithium or sodium chloride and gadolinium chloride. Cerium trichloride was used as the dopant. The physical, optical, and scintillation properties of these materials were analyzed by powder X-ray diffraction, photoluminescence, X-ray excited luminescence, and pulsed X-ray luminosity measurements. Increases in light yields are observed as the concentration of cerium increases. The highest light yields occurred at 20 percent cerium doping for both compounds. At larger concentrations neither compound formed, indicating a breakdown of the lattice with the addition of large amounts of cerium cations. At 20 percent cerium, LiGdCl4 and NaGdCl4 display scintillation light 3.6 times and 2.2 times the light yield of the reference material, YAlO3:Ce3+, respectively. Both emit in the ranges of 340 ? 350 nm and 365 - 370 nm and display multiexponential decays with cerium-like decay components at 33 ns (LiGdCl4:Ce) and 26 ns (NaGdCl4:Ce).

  12. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution; Caracterizacao da microestrutura e da atividade catalitica de oxido de cerio obtido por solucao coloidal

    Energy Technology Data Exchange (ETDEWEB)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K., E-mail: carolinasenisse@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alege, RS (Brazil). Lab. de Materiais Ceramicos

    2012-07-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  13. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk.

    Science.gov (United States)

    Bölükbaşı, S C; Al-Sagan, A A; Ürüşan, H; Erhan, M K; Durmuş, O; Kurt, N

    2016-08-01

    This study was conducted to determine the effects of dietary cerium oxide levels (0, 100, 200, 300 or 400 mg/kg) on the laying performance, egg quality, some blood serum parameters and egg lipid peroxidation of laying hen. In total, one hundred and twenty 22-week-old brown Lohman LSL laying hens were randomly assigned to five groups equally (n = 24). Each treatment was replicated six times. Dietary supplementation of cerium oxide had no significant effect on feed intake and egg weight. The addition of cerium oxide to the laying hens' feed improved feed conversion ratio and increased (p laying hens feed led to a significant (p laying hen diets. It was also observed that serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration decreased significantly with supplementation of cerium oxide in diets. Inclusion of cerium oxide resulted in a significant reduction in thiobarbituric acid reactive substance (TBARS) values in egg yolk in this study. It can be concluded that the addition of cerium oxide had positive effects on egg production, feed conversion ratio and egg shelf life. Based on the results of this study, it could be advised to supplement laying hens feed with cerium oxide as feed additives.

  14. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cambon, Jean-Baptiste, E-mail: cambon@chimie.ups-tlse.fr [Institut Carnot CIRIMAT, Université de Toulouse, UMR CNRS 5085, 118 Route de Narbonne, 31062 Toulouse Cedex 9 (France); Esteban, Julien; Ansart, Florence; Bonino, Jean-Pierre; Turq, Viviane [Institut Carnot CIRIMAT, Université de Toulouse, UMR CNRS 5085, 118 Route de Narbonne, 31062 Toulouse Cedex 9 (France); Santagneli, S.H.; Santilli, C.V.; Pulcinelli, S.H. [Departamento Fısico-Química, Instituto de Química, Universidade Estadual Paulista, UNESP, CP 355, 14801-970 Araraquara, SP (Brazil)

    2012-11-15

    Highlights: ► New sol–gel routes to replace chromates for corrosion protection of aluminum. ► Effect of cerium concentration on the microstructure of xerogel. ► Electrochemical and mechanical performances of hybrid coating with different cerium contents. ► Good correlation between the different results with an optimal cerium content of 0.01 M. -- Abstract: An organic–inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyl-trimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al(O{sup s}Bu){sub 3}, with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol–gel coating.

  15. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  16. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jannotti, Phillip; Subhash, Ghatu, E-mail: subhash@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zheng, James Q.; Halls, Virginia [Program Executive Office—Soldier Protection and Individual Equipment, US Army, Fort Belvoir, Virginia 22060 (United States); Karandikar, Prashant G.; Salamone, S.; Aghajanian, Michael K. [M-Cubed Technologies, Inc., Newark, Delaware 19711 (United States)

    2015-01-26

    Raman spectroscopy was used to characterize the microstructure of reaction bonded boron carbide ceramics. Compositional and structural gradation in the silicon-doped boron carbide phase (rim), which develops around the parent boron carbide region (core) due to the reaction between silicon and boron carbide, was evaluated using changes in Raman peak position and intensity. Peak shifting and intensity variation from the core to the rim region was attributed to changes in the boron carbide crystal structure based on experimental Raman observations and ab initio calculations reported in literature. The results were consistent with compositional analysis determined by energy dispersive spectroscopy. The Raman analysis revealed the substitution of silicon atoms first into the linear 3-atom chain, and then into icosahedral units of the boron carbide structure. Thus, micro-Raman spectroscopy provided a non-destructive means of identifying the preferential positions of Si atoms in the boron carbide lattice.

  17. Mullite Coating on Recrytallized Silicon Carbide and Its Cycling Oxidation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mullite coating on recrystallized silicon carbide was successfully prepared by the sol-gel route. The cycling oxidation of coated recrystallized silicon carbide was performed at 1500℃. For comparison, the oxidation of uncoated recrystallized silicon carbide was also carried out at the same condition. The results indicated that a layer of compact, adhesive and crack free mullite coating was found on the recrystallized silicon carbide. After oxidation, the new coatings exhibit adherence and crack resistance under thermal cycling between room temperature and 1500℃, therefore the oxidation resistance capability of silicon carbide was enhanced. With the increase of the dipping frequencies, namely, the increase of the thickness of mullite coating, the oxidation resistance of silicon carbide would be further improved. The formation mechanism of mullite coating was analyzed and discussed and the oxidation dynamics model of coatedmullite silicon carbide has been also proposed.

  18. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  19. MICROSTRUCTURE AT THE INTERFACE OF TITANIUM CARBIDE AND NICKEL ALUMINIDES

    Institute of Scientific and Technical Information of China (English)

    Shen Dian-hong; Wu Xing-fang; Lu Hua; N.Froumin; M.Polak

    2000-01-01

    Microstructure at the interface of titanium carbide and nickelaluminides in the samples obtained by infiltration of molten Ni3Al alloyhas studied by a scanning electron microscopy (SEM) and an analyticaltransmission electron microscopy (ATEM) with an energy dispersivespectrometer (EDS). It is found that the morphology at the interfacesbetween hard phase skeleton of TiC{0.7 and metallic phases depends on theratio of Ti/C in carbide. Some periodic zigzag fringes are observed ata smooth interface between metallic phase and carbides in the sampleof Ni3Al/TiC0.7. The results of analysis using EDS show that Ti inTiC0.7 carbide is easier than that in TiC0.9 to dissolve into the moltenalloy during solid-liquid reaction. The formation of this periodic zigzagfringe,which may be a growth zone of a new Ti-Ni-Al phase,in the interfaceof TiC0.7/Ni3Al would occur during the initial stage of solidification.

  20. The synthesis of titanium carbide-reinforced carbon nanofibers.

    Science.gov (United States)

    Zhu, Pinwen; Hong, Youliang; Liu, Bingbing; Zou, Guangtian

    2009-06-24

    Tailoring hard materials into nanoscale building blocks can greatly extend the applications of hard materials and, at the same time, also represents a significant challenge in the field of nanoscale science. This work reports a novel process for the preparation of carbon-based one-dimensional hard nanomaterials. The titanium carbide-carbon composite nanofibers with an average diameter of 90 nm are prepared by an electrospinning technique and a high temperature pyrolysis process. A composite solution containing polyacrylonitrile and titanium sources is first electrospun into the composite nanofibers, which are subsequently pyrolyzed to produce the desired products. The x-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The Raman analyses show that the composite nanofibers have low graphite clusters in comparison with the pure carbon nanofibers originating from the electrospun polyacrylonitrile nanofibers. The mechanical property tests demonstrate that the titanium carbide-carbon nanofiber membranes have four times higher tensile strength than the carbon nanofiber membranes, and the Young's modulus of the titanium carbide-carbon nanofiber membranes increases in direct proportion to the titanium quantity.

  1. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  2. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  3. Dynamic strength of reaction-sintered boron carbide ceramic

    Science.gov (United States)

    Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Rumyantsev, V. I.

    2015-06-01

    The shock compression wave profiles in three modifications of boron carbide ceramic are studied in the compressive stress range 3-19 GPa. The Hugoniot elastic limit and the spall strength of the materials are determined. It is confirmed that the spall strength of high-hardness ceramic changes nonmonotonically with the compressive stress in a shock wave.

  4. Standard specification for nuclear-Grade boron carbide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This specification applies to boron carbide pellets for use as a control material in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  5. High-hardness ceramics based on boron carbide fullerite derivatives

    Science.gov (United States)

    Ovsyannikov, D. A.; Popov, M. Yu.; Perfilov, S. A.; Prokhorov, V. M.; Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2017-02-01

    A new type of ceramics based on the phases of fullerite derivatives and boron carbide B4C is obtained. The material is synthesized at a temperature of 1500 K and a relatively low pressure of 4 GPa; it has a high hardness of 45 GPa and fracture toughness of 15 MPa m1/2.

  6. Influence of nanometric silicon carbide on phenolic resin composites properties

    Indian Academy of Sciences (India)

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  7. Design and Fabrication of Silicon Carbide Semiconductor Detectors

    Institute of Scientific and Technical Information of China (English)

    MENG; Xin; LIU; Yang; HE; Gao-kui

    2015-01-01

    The potential of silicon carbide(SiC)for use in semiconductor nuclear radiation detectors has been recognized for years.SiC detectors have now been demonstrated for high-resolution alpha particle and X-ray energy spectrometry,beta ray,gamma-ray,thermal-and fast-neutron

  8. Protective infrared antireflection coating based on sputtered germanium carbide

    Science.gov (United States)

    Gibson, Des; Waddell, Ewan; Placido, Frank

    2011-09-01

    This paper describes optical, durablility and environmental performance of a germanium carbide based durable antireflection coating. The coating has been demonstrated on germanium and zinc selenide infra-red material however is applicable to other materials such as zinc sulphide. The material is deposited using a novel reactive closed field magnetron sputtering technique, offering significant advantages over conventional evaporation processes for germanium carbide such as plasma enhanced chemical vapour deposition. The sputtering process is "cold", making it suitable for use on a wide range of substrates. Moreover, the drum format provide more efficient loading for high throughput production. The use of the closed field and unbalanced magnetrons creates a magnetic confinement that extends the electron mean free path leading to high ion current densities. The combination of high current densities with ion energies in the range ~30eV creates optimum thin film growth conditions. As a result the films are dense, spectrally stable, supersmooth and low stress. Films incorporate low hydrogen content resulting in minimal C-H absorption bands within critical infra-red passbands such as 3 to 5um and 8 to 12um. Tuning of germanium carbide (Ge(1-x)Cx) film refractive index from pure germanium (refractive index 4) to pure germanium carbide (refractive index 1.8) will be demonstrated. Use of film grading to achieve single and dual band anti-reflection performance will be shown. Environmental and durability levels are shown to be suitable for use in harsh external environments.

  9. Silicon carbide and other films and method of deposition

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)

    2011-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  10. Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    NARCIS (Netherlands)

    Wit, de P.; Kappert, Emiel J.; Lohaus, T.; Wessling, M.; Nijmeijer, A.; Benes, N.E.

    2015-01-01

    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon ca

  11. Tungsten-yttria carbide coating for conveying copper

    Science.gov (United States)

    Rothman, Albert J.

    1993-01-01

    A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.

  12. Growth stress in tungsten carbide-diamond-like carbon coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Arnoldbik, W.M.; Sloof, W.G.; Janssen, G.C.A.M.

    2009-01-01

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whe

  13. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  14. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15.

    Science.gov (United States)

    Subbaramaiah, V; Srivastava, Vimal Chandra; Mall, Indra Deo

    2013-03-15

    Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter≈70-100Ǻ and pore volume≈0.025cm(3)/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5-6g/l), stoichiometric ratio of H2O2/pyridine (1-6), initial pyridine concentration (50-800mg/l) and temperature (313-358K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  15. Removal of aromatic amines from water by montmorillonite-(cerium or zirconium) phosphate crosslinked compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Pradas, E.; Villafranca-Sanchez, M.; Urena-Amate, M.D. (Univ. of Almeria (Spain). Dept. of Inorganic Chemistry); Del Rey-Bueno, F.; Garcia-Rodriguez, A. (Univ. of Granada (Spain). Dept. of Inorganic Chemistry)

    To evaluate the potential use of two montmorillonite-(Ce or Zr) phosphate crosslinked compounds in removing organic pollutants such as aniline, p-toluidine, and p-acetylaniline from water, adsorption experiments were performed under conditions of varied temperature (288 and 308 K). Adsorption on the montmorillonite-Ce-phosphate compound was best described by a hyperbolic (H-type) isotherm, whereas for the montmorillonite-Zr-phosphate compound, S-type isotherms were obtained for p-toluidine and aniline and L-type for p-acetylaniline. Amines adsorption increases with increasing temperature on the cerium crosslinked material, while for the zirconium-crosslinked compound, adsorption decreases as temperature increases from 288 to 308 K, possibly due to a mainly physical process. Fourier-transform infrared (FTIR) spectroscopy indicated that at the pH generated by the adsorbents, the protonated species of these amines plays an important role in the adsorption process. X-ray diffraction analysis showed that the aromatic amines are intercalated into the adsorbents. For any given amine, the cerium-montmorillonite adsorbent shows a higher capacity of adsorption compared with zirconium-montmorillonite adsorbent, so it might be reasonably used in removing aromatic amines from water.

  16. Visible Light Induced Photocatalysis of Cerium Ion Modified Titania Sol and Nanocrystallites

    Institute of Scientific and Technical Information of China (English)

    Yibing XIE; Chunwei YUAN

    2004-01-01

    The cerium ion(Ce4+) doped titania sol and nanocrystallites were prepared by chemical coprecipitation-peptization and hydrothermal synthesis methods, respectively. The X-ray diffraction pattern shows that Ce4+-TiO2 xerogel powder has semicrystalline structure and thermal sintering sample has crystalline structure. Ce4+-TiO2 nanocrystallites are composed of the major anatase phase titania (88.82 wt pct) and a small amount of crystalline cerium titanate.AFM micrograph shows that primary particle size of well-dispersed ultrafine sol particles is below 15 nm in diameter.The particle sizes are 30 nm for xerogel sample and 70 nm for nanocrystallites sample, which is different from the estimated values (2.41 nm and 4.53 nm) by XRD Scherrer's formula. The difference is mainly due to aggregation of nanocrystallites. The experimental results exhibit that photocatalysts of Ce4+-TiO2 sol and nanocrystallites have the ability to photodegrade reactive brilliant red dye (X-3B) under visible light irradiation with the ion-TiO2/VIS/dye system. Moreover, Ce4+ doped titania sol has shown higher efficiency than the nanocrystallites sample in respect of potocatalytic activity. Meanwhile, dye photodegradation mechanisms are proposed to different photocatalytic reaction systems, which are dye photosensitization, ion-dye photosensitization and interband photocatalysis & dye photosensitization with respect to TiO2 nanocrystallites, Ce4+-TiO2 sol and Ce4+-TiO2 nanocrystallites system.

  17. Cerium(III) molybdate nanoparticles: Synthesis, characterization and radionuclides adsorption studies.

    Science.gov (United States)

    Yousefi, Taher; Khanchi, Ali Reza; Ahmadi, Seyed Javad; Rofouei, Mohamad Kazem; Yavari, Ramin; Davarkhah, Reza; Myanji, Behzad

    2012-05-15

    Cerium(III) molybdate nanostructure with average size about 40nm was prepared by adding cerium(III) chloride and ammonium molybdate solutions under varying conditions. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and Brunauere Emmette Teller (BET) techniques. Ion exchange capacity of the sample for potassium ion and distribution coefficients (K(d)) for 23 metal ions were determined, the K(d) values for Tl(I), Pb(II), Th(IV), U(VI), and Cs(I) ions were found to be sufficiently high for their removal from various effluents. The adsorption behavior of the sample towards Cs(I)(134) species were studied. Finally, the binary separation of Dy(III)-U(VI), Sm(III)-Th(IV) and Cs(I)-Rb(I) and removal of Cs(I)(134) from the real sample were successfully achieved.

  18. Cerium and neodymium co-precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, J.F. [CEA, Nuclear Energy Division, RadioChemistry and Processes Department, SMCS/LEPS, F-30207 Bagnols sur Ceze (France); Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Renard, C., E-mail: catherine.renard@ensc-lille.fr [Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, A. [CEA, Nuclear Energy Division, RadioChemistry and Processes Department, SMCS/LEPS, F-30207 Bagnols sur Ceze (France); Lacquement, J. [CEA, Nuclear Energy Division, DTEC/DIR, F-30207 Bagnols sur Ceze (France); Abraham, F. [Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2013-01-15

    Co-precipitations of cerium (III) and neodymium (III) at 10 wt.% in LiCl-CaCl{sub 2} (30-70 mol%) molten salt at 705 Degree-Sign C have been achieved using an original way of precipitation, wet argon sparging. Several CeCl{sub 3}/NdCl{sub 3} ratios have been studied, and the isolated powders were analyzed using different characterization methods including XRD investigations. The lanthanides precipitation yields have been determined around 99.9% using ICP-AES analysis. XRD demonstrated that the precipitates mainly contained mixed oxychloride (Ce{sub 1-x}Nd{sub x})OCl and a small amount of the mixed oxide Ce{sub 1-y}Nd{sub y}O{sub 2-0.5y}. Calcination of these precipitates has resulted in the cerium and neodymium mixed oxides. For the precipitation with a Ce/Nd = 50/50 ratio, an hydroxychloride Ln(OH){sub 2}Cl and the oxychloride Ce{sup IV}(Nd{sub 0.7}Ce{sub 0.3}){sup III}O{sub 3}Cl have been identified as unexpected intermediate compounds.

  19. Self-healing Performance of Composite Coatings Prepared by Phosphating and Cerium Nitrate Post-sealing

    Institute of Scientific and Technical Information of China (English)

    LIN Bilan; LU Jintang

    2015-01-01

    The phosphated and cerium nitrate post-sealed galvanized steel was ifrstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositions of the scratches were investigated using SEM and EDS. The phases of the corrosion products were examined through XRD. The self-healing mechanism of the composite coatings was discussed. The experimental results show that the composite coatings have an excellent corrosion resistance. The corrosion products increase with corrosion time and ifnally cover the whole scratch. They contain phosphorous, cerium, oxygen, chloride and zinc, and are ifne needle and exceedingly compact. The composite coatings are favorable self-healing. During corrosion, the self-healing ions such as Ce3+, Ce4+, PO43-, Zn2+ in the composite coatings were dissolved, migrated, recombined, and covered the exposed zinc, impeding zinc corrosion. The self-healing process of the scratches on the composite coatings can be divided into three stages, about 2 h, 4 h, and 24 h, respectively.

  20. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain.

    Science.gov (United States)

    Heckman, Karin L; DeCoteau, William; Estevez, Ana; Reed, Kenneth J; Costanzo, Wendi; Sanford, David; Leiter, James C; Clauss, Jennifer; Knapp, Kylie; Gomez, Carlos; Mullen, Patrick; Rathbun, Elle; Prime, Kelly; Marini, Jessica; Patchefsky, Jamie; Patchefsky, Arthur S; Hailstone, Richard K; Erlichman, Joseph S

    2013-12-23

    Cerium oxide nanoparticles are potent antioxidants, based on their ability to either donate or receive electrons as they alternate between the +3 and +4 valence states. The dual oxidation state of ceria has made it an ideal catalyst in industrial applications, and more recently, nanoceria's efficacy in neutralizing biologically generated free radicals has been explored in biological applications. Here, we report the in vivo characteristics of custom-synthesized cerium oxide nanoparticles (CeNPs) in an animal model of immunological and free-radical mediated oxidative injury leading to neurodegenerative disease. The CeNPs are 2.9 nm in diameter, monodispersed and have a -23.5 mV zeta potential when stabilized with citrate/EDTA. This stabilizer coating resists being 'washed' off in physiological salt solutions, and the CeNPs remain monodispersed for long durations in high ionic strength saline. The plasma half-life of the CeNPs is ∼4.0 h, far longer than previously described, stabilized ceria nanoparticles. When administered intravenously to mice, the CeNPs were well tolerated and taken up by the liver and spleen much less than previous nanoceria formulations. The CeNPs were also able to penetrate the brain, reduce reactive oxygen species levels, and alleviate clinical symptoms and motor deficits in mice with a murine model of multiple sclerosis. Thus, CeNPs may be useful in mitigating tissue damage arising from free radical accumulation in biological systems.

  1. Effects of different valences of cerium ion on conformation of Horseradish Peroxidase

    Institute of Scientific and Technical Information of China (English)

    XIANG Li; GE Zhiqiang

    2008-01-01

    Our previous studies demonstrated that Ce4+ could induce reactive oxygen species (ROS) burst as a signal to promote pacilitaxel biosynthesis in suspension cultured Taxus cuspidate cells. To further understand the mechanism of cerium ions inducing ROS burst, circular dichroism (CD), synchronous fluorescence, and electron paramagnetic resonance (EPR) were used to detect them inducing conforma-tional change of horseradish peroxidase (HRF). Horseradish peroxidase activity was reduced by 78% by 0.1 mmol/L Ce4+, whereas it was only reduced by 28% by 0.1 mmol/L Ce3+. Circular dichroism spectra showed that the percentage of transition from helical content and other structure to βstrands andβturns was 23.1 when induced by Ce4+, whereas it was only 13.2 when induced by Ce3+. In synchronous fluorescence spectra, Ce4+ led to red shift and intensity-elevation of tryptophan fluorescence emission maximum, whereas in the case of Ce3+, the results were a contrast to the above. Furthermore, g factor (gx and gy) in electron paramagnetic resonance (EPR) induced by Ce4+ and Ce3+ was significantly different. These results indicated that the different valence of cerium ion induced various conformations of HRP, and Ce4+ was more effective than Ce3+. This suggested that Ce4+ affected the burst of ROS through changing the conformation of oxidoreductase.

  2. FT-IR Studies of Cerium Oxide Nanoparticles and Natural Zeolite Materials

    Directory of Open Access Journals (Sweden)

    Oana Lelia Pop

    2015-05-01

    Full Text Available An emerging topic of our days is nanoscience and nanotechnology successfully applied in the food industry. Characteristics such as size, surface area and morphology can modify the basic properties and the chemical reactivity of the nanomaterials. The breakthrough of innovative materials, processes, and phenomena at the nanoscale, as well as the progress of new experimental and theoretical techniques for research, supply novel opportunities for the expansion of original nanosystems and nanostructured materials. These study examine two types of nanoparticles, namely cerium oxide nanoparticles (CeO2 NP and natural zeolites. In view of the importance of CeO2 NP in various biological applications, the primary objective of this study is to characterise four samples of CeO2 NP in order to understand the role of the synthesis process in the final product. Nanocrystalline natural zeolites are materials with interesting properties which allows them to be used as adjuvant in many therapies. The characterisation of CeO2 NP and two types of natural zeolites using Fourier Transform Infrared (FT-IR spectroscopy is described. Therefore, this study examined two types of nanomaterials, namely cerium oxide nanoparticles and zeolites, for further applications on microorganisms and living cells.

  3. Kinetics of Cerium(IV) Extraction from H(2)SO(4)-HF Medium with Cyanex 923.

    Science.gov (United States)

    Liao, Wuping; Yu, Guihong; Yue, Shantang; Li, Deqian

    2002-03-11

    Studies of the extraction kinetics of cerium(IV) from H(2)SO(4)-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 kJ mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 kJ mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.

  4. [XPS study on the influence of calcination conditions to cerium ion valence].

    Science.gov (United States)

    Mei, Yan; Yan, Jian-ping; Nie, Zuo-ren

    2010-01-01

    For the system of Ce(NO3)2.6H2O and urea solution during homogeneous precipitation method, X-ray diffraction (XRD), infrared spectrum (IR) and especially X-ray photoelectron spectroscopy (XPS) were used to study and characterize the product structure, variety of cerium ion valence, compound surface character and kernel electronic configurations. The results of XRD and IR showed that calcination temperature had a great effect on the cerium ion valence. The products are orthorhombic Ce2 O(CO3)2.H2O with valence III by using homogeneous precipitation method directly. When heated from the temperature 200 degrees C to 250 degrees C, the product of CeO(CO3)2.H2O with valence VI was finally changed into stable CeO2 with valence IV. XPS was used to study the surface character and kernel electronic configurations of the three different compounds through fine scanning of O(1s), Ce(3d) and Ce(4d) apices, and the results approved that the compounds with different valences are caused by the different valence electronic configurations of the products.

  5. Selective catalytic oxidation of ammonia over copper-cerium composite catalyst.

    Science.gov (United States)

    Lou, Jie-Chung; Hung, Chang-Mao; Yang, Sheng-Fu

    2004-01-01

    This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).

  6. Cerium relieving the inhibition of photosynthesis and growth of spinach caused by lead

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Min

    2009-01-01

    Chloroplasts were isolated from spinach cultured in lead chloride-present, Ce3+-administered, cerium chloride-administered lead chloride-present Hoagland's media or that of Hoagland's media. The experimental study demonstrated the effects of cerium (Ce) on distribu-tion of light energy and photochemical activities of spinach chloroplast grown in lead (Pb)-present media. It was observed that Pb2+ signifi-cantly inhibited photosynthesis in spinach, including light absorption, energy transfer from LHCII to photosystem II, excitation energy dis-tribution from photosystem I to photosystem II, and transformation from light energy to electron energy and oxygen evolution of chloroplasts,and decreased spinach growth. However, Ce3+ treatment to pb2+-present chloroplasts could obviously improve light absorption and excitation energy distribution in both photosystems and increase activity of photochemical reaction and oxygen evolution of chloroplasts. The results suggested that Ce3+ under Pb2+ stress could maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloro-plast, thus promote spinach growth.

  7. Cerium relieving the inhibition of photosynthesis and growth of spinach caused by lead

    Institute of Scientific and Technical Information of China (English)

    ZHOU Min; ZE Yuguan; LI Na; DUAN Yanmei; CHEN Ting; LIU Chao; HONG Fashui

    2009-01-01

    Chloroplasts were isolated from spinach cultured in lead chloride-present, Ce~(3+)-administered, cerium chloride-administered lead chloride-present Hoagland's media or that of Hoagland's media. The experimental study demonstrated the effects of cerium (Ce) on distribu-tion of light energy and photochemical activities of spinach chloroplast grown in lead (Pb)-present media. It was observed that Pb~(2+) signifi-cantly inhibited photosynthesis in spinach, including light absorption, energy transfer from LHCII to photosystem II, excitation energy dis-tribution from photosystem I to photosystem II, and transformation from light energy to electron energy and oxygen evolution of chloroplasts,and decreased spinach growth. However, Ce~(3+) treatment to pb~(2+)-present chloroplasts could obviously improve light absorption and excitation energy distribution in both photosystems and increase activity of photochemical reaction and oxygen evolution of chloroplasts. The results suggested that Ce~(3+) under Pb~(2+) stress could maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloro-plast, thus promote spinach growth.

  8. Cerium-zinc redox flow battery: Positive half-cell electrolyte studies

    Institute of Scientific and Technical Information of China (English)

    XIE Zhipeng; ZHOU Debi; XIONG Fengjiao; ZHANG Shimin; HUANG Kelong

    2011-01-01

    Experimental work was performed to evaluate the Ce3+/Ce4+ redox couple in methane sulfonic acid (MSA) electrolyte for use in redox flow battery (RFB) technology. The electrochemical behaviour of the Ce3+/Ce4+ in MSA media was investigated using cyclic voltammetry, linear sweep voltammetry, chronoamperometry and rotating disc electrode. The standard rate constant of the Ce3+/Ce4+ redox reaction on graphite electrode in MSA was 4.06x10-4 cm/s. The diffusion coefficient of Ce3+ in MSA was 5.87-6.15x10-6 cm2/s, and was 2.56-2.68x 10-6 cm2/s for Ce4+. The energy efficiency of a cerium-zinc test cell was 74.8%. The high stability of cerium salts in MSA media and relatively fast redox kinetics of the Ce3+/Ce4+ redox reaction at graphite ectrode indicated that the Ce3+/Ce4+ might be well suited for use in RFB technology.

  9. Sputtering and codeposition of silicon carbide with deuterium

    Science.gov (United States)

    Causey, Rion A.

    2003-03-01

    Due to its excellent thermal properties, silicon carbide is being considered as a possible plasma-facing material for fusion devices. If used as a plasma-facing material, the energetic hydrogen isotope ions and charge-exchanged neutrals escaping from the plasma will sputter the silicon carbide. To assess the tritium inventory problems that will be generated by the use of this material, it is necessary that we know the codeposition properties of the redeposited silicon carbide. To determine the codeposition properties, the deuterium plasma experiment at Sandia National Laboratories in Livermore, California has been used to directly compare the deuterium sputtering and codeposition of silicon carbide with that of graphite. A Penning discharge at a flux of 6×10 19 D/m 2 and an energy of ≈300 eV was used to sputter silicon and carbon from a pair of 0.05 m diameter silicon carbide disks. The removal rate of deuterium gas from the fixed volume of the system isolated from all other sources and sinks was used to measure the codeposition probability (probability that a hydrogen isotope atom will be removed through codeposition per ion striking the sample surface). A small catcher plate used to capture a fraction of the codeposited film was analyzed using Auger spectroscopy. This analysis showed the film to begin with a high carbon to silicon ratio due to preferential sputtering of the carbon. As the film became thicker, the ratio of the depositing material changed over to the (1:1) value that must eventually be attained.

  10. Effect of cerium ion implantation on the oxidation behavior of zircaloy-4 at 500 degree sign C

    CERN Document Server

    Chen, X W; Yu, H R; Zhou, Q G; Chen, B S

    2002-01-01

    In order to investigate the oxidation behavior changes of zircaloy-4 induced by cerium ion implantation using a MEVVA source at an energy of 40 keV with a dose range from 1x10 sup 1 sup 6 to 1x10 sup 1 sup 7 ions/cm sup 2 at the maximum temperature of 130 degree sign C, weight gain curves of the different specimens including as-received zircaloy-4 and cerium-implanted zircaloy-4 were measured after oxidation in air at 500 degree sign C for 100 min. It was obviously found that a significant improvement was achieved in the oxidation behavior of cerium ion implanted zircaloy-4 compared with that of the as-received zircaloy-4. The depth profile of the element composition in the surface region of the samples was obtained by Auger electron spectroscopy, and the valence of the oxides in the scale was analyzed by X-ray photoemission spectroscopy. Glancing angle X-ray diffraction employed to examine the phase transformation in the oxide films showed that the addition of cerium transformed the phase from monoclinic zir...

  11. Effect of rare element cerium on the morphology and corrosion resistance of electro-less Ni-P coatings

    Directory of Open Access Journals (Sweden)

    Fu Chuan-qi

    2015-01-01

    Full Text Available This paper reports an experimental study on the microstructure and corrosion resistance of electro-less Ni-P coatings with increasing content of the rare element cerium (Ce. Surface morphology and the composition of the electro-less Ni-P coatings were studied by scanning electron microscope (SEM, X-ray energy dispersed analysis (EDS and X-ray diffraction analysis (XRD. Hardness and Adhesive force are researched by a HX-200 Vickers diamond indenter micro-hardness tester. Furthermore, we study the adhesive force by using the Revetest scratch tester. We get the possession of Ce amorphous Ni-P coatings which has excellent properties in anti-corrosion. The effect of the rare element cerium concentration on corrosion resistance of the coatings was evaluated in the groundwater immersion test and porosity test, respectively. The results indicated that added little the rare element cerium into the plating bath increased the phosphorus content of the coatings, decreased the corrosion rates, it also decreases the porosity of the amorphous Ni-P coatings. The lowest corrosion rates of the amorphous Ni-P coatings in groundwater immersion test is 4.1 um · h-1, at the rare element cerium concentration of 0.12g · L-1.

  12. A mixed acid based vanadium-cerium redox flow battery with a zero-gap serpentine architecture

    Science.gov (United States)

    Leung, P. K.; Mohamed, M. R.; Shah, A. A.; Xu, Q.; Conde-Duran, M. B.

    2015-01-01

    This paper presents the performance of a vanadium-cerium redox flow battery using conventional and zero-gap serpentine architectures. Mixed-acid solutions based on methanesulfonate-sulfate anions (molar ratio 3:1) are used to enhance the solubilities of the vanadium (>2.0 mol dm-3) and cerium species (>0.8 mol dm-3), thus achieving an energy density (c.a. 28 Wh dm-3) comparable to that of conventional all-vanadium redox flow batteries (20-30 Wh dm-3). Electrochemical studies, including cyclic voltammetry and galvanostatic cycling, show that both vanadium and cerium active species are suitable for energy storage applications in these electrolytes. To take advantage of the high open-circuit voltage (1.78 V), improved mass transport and reduced internal resistance are facilitated by the use of zero-gap flow field architecture, which yields a power density output of the battery of up to 370 mW cm-2 at a state-of-charge of 50%. In a charge-discharge cycle at 200 mA cm-2, the vanadium-cerium redox flow battery with the zero-gap architecture is observed to discharge at a cell voltage of c.a. 1.35 V with a coulombic efficiency of up to 78%.

  13. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan;

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders...

  14. [The changes of the motor function of the stomach and the colon under the action of the nanocrystalline cerium dioxide].

    Science.gov (United States)

    Iefimenko, O Iu; Savchenko, Iu O; Falalieieva, T M; Berehova, T V; Shcherbakov, O B; Ivanov, V K; Zholobak, N M; Maliukin, Iu V; Spivak, M Ia

    2014-01-01

    We investigated the effect of nanocrystalline cerium dioxide on parameters of spontaneous and stimulated motility of the stomach and colon in rats. It was found that administration of nanocrystalline cerium dioxide for 10 days increased the amplitude of contractions of stimulated motility in the stomach by 33.0 +/- 2.4% and the frequency of contractions of the colon by 80.3 +/- 7.5%. In this group, the introduction of carbachol also increased the frequency of the contractions by 274.0 +/- 22.9%, compared to the control group. The administration of nanocrystalline cerium dioxide increased the index of motor activity of spontaneous and stimulated motility of the stomach by 19.8 +/- 1.4 and 14.5 +/- 9.0%, respectively. In the colon, the motor activity increased by 14.3 +/- 1.1 and 11.1 +/- 0.8%, respectively. We also found that the nanocrystalline cerium dioxide rebuilt morphological condition of the mucous of the colon.

  15. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  16. The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Fransen, T.; Geerdink, B.; Gellings, P.J.; Stroosnijder, M.F.

    1991-01-01

    The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence

  17. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin

    2016-12-01

    This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe3C and Co3C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe3C, and Co3C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  18. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  19. The Active Oxidation of Silicon Carbide

    Science.gov (United States)

    Jacobson, Nathan S.; Myers, Dwight L.

    2009-01-01

    The high temperature oxidation of silicon carbide occurs in two very different modes. Passive oxidation forms a protective oxide film which limits further attack of the SiC: SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g) Active oxidation forms a volatile oxide and may lead to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g) Generally passive oxidation occurs at higher oxidant pressures and active oxidation occurs at lower oxidant pressures and elevated temperatures. Active oxidation is a concern for reentry, where the flight trajectory involves the latter conditions. Thus the transition points and rates of active oxidation are a major concern. Passive/active transitions have been studied by a number of investigators. An examination of the literature indicates many questions remain regarding the effect of impurity, the hysteresis of the transition (i.e. the difference between active-to-passive and passive-toactive), and the effect of total pressure. In this study we systematically investigate each of these effects. Experiments were done in both an alumina furnace tube and a quartz furnace tube. It is known that alumina tubes release impurities such as sodium and increase the kinetics in the passive region [1]. We have observed that the active-to-passive transition occurs at a lower oxygen pressure when the experiment is conducted in alumina tubes and the resultant passive silica scale contains sodium. Thus the tests in this study are conducted in quartz tubes. The hysteresis of the transition has been discussed in the detail in the original theoretical treatise of this problem for pure silicon by Wagner [2], yet there is little mention of it in subsequent literature. Essentially Wagner points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. A series of experiments were conducted for active-to-passive and passive

  20. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    Science.gov (United States)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack

  1. Nanocrystalline cerium dioxide efficacy for prophylaxis of erosive and ulcerative lesions in the gastric mucosa of rats induced by stress.

    Science.gov (United States)

    Golyshkin, Dmytro; Kobyliak, Nazarii; Virchenko, Oleksandr; Falalyeyeva, Tetyana; Beregova, Tetyana; Ostapchenko, Lyudmyla; Caprnda, Martin; Skladany, Lubomir; Opatrilova, Radka; Rodrigo, Luis; Kruzliak, Peter; Shcherbokov, Alexandr; Spivak, Mykola

    2016-12-01

    In our previous works, the important therapeutic properties of nanocrystalline cerium dioxide such as strong antioxidant ability, prebiotical and antibiotic activity were shown. Such properties were obtained due to stabilization of nanoparticles with precise size 3-7nm. Such modification of nanocrystalline cerium dioxide has contributed to its remarkable efficacy and low toxicity. We have carried out the investigation of toxicity of the nanodrug and revealed that in the condition of the acute toxicity test, LD 50 was 2000mg/kg when it was administered per os. This indicator is approximately 1000 times greater than effective dose of the compound that proved the possibility of its usage for humans. Considering the strong antioxidant properties of this substance, we have performed the investigation of the influence of nanocrystalline cerium dioxide on the erosive-ulcerative lesions in gastric mucosa of rats induced by Selye's restraint stress. It was established that the studied compound significantly reduced the lesions area by 58.3% (p<0.05) induced by Selye's restraint stress. The attenuation of inflammation and decrease of lipid peroxidation in the conditions of gastric lesions and prophylactic administration of nanocrystalline cerium dioxide were shown. That was confirmed by the decrease of pro-inflammatory cytokines content (interleukin (IL) 1β, 12B p40) and raise of anti-inflammatory cytokines content (IL-10 and transforming growth factor β). Measurement of lipid peroxidation products has proved the antioxidant properties of nanocrystalline cerium dioxide as it decreased the content of conjugated dienes and thiobarbituric acid active products in the conditions of gastric ulceration induced by stress.

  2. Electric Heating Property from Butyl Rubber-Loaded Boron Carbide Composites

    Institute of Scientific and Technical Information of China (English)

    MENG Dechuan; WANG Ninghui; LI Guofeng

    2014-01-01

    We researched the electric heating property from butyl rubber-loaded boron carbide composite. The effects of boron carbide content on bulk resistivity, voltage-current characteristic, thermal conductivity and thermal stability of boron carbide/butyl rubber (IIR) polymer composite were introduced. The analysis results indicated that the bulk resistivity decreased greatly with increasing boron carbide content, and when boron carbide content reached to 60%, the bulk resistivity achieved the minimum. Accordingly, electric heating behavior of the composite is strongly dependent on boron carbide content as well as applied voltage. The content of boron carbide was found to be effective in achieving high thermal conductivity in composite systems. The thermal conductivity of the composite material with added boron carbide was improved nearly 20 times than that of the pure IIR. The thermal stability test showed that, compared with pure IIR, the thermal stable time of composites was markedly extended, which indicated that the boron carbide can significantly improve the thermal stability of boron carbide/IIR composite.

  3. Silicon carbide high performance optics: a cost-effective, flexible fabrication process

    Science.gov (United States)

    Casstevens, John M.; Rashed, Abuagela; Plummer, Ronald; Bray, Don; Gates, Rob L.; Lara-Curzio, Edgar; Ferber, Matt K.; Kirkland, Tim

    2001-12-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. This material offers many advantages over glasses and metals that have historically been used in high performance optical systems. A combination of extremely high specific stiffness (E/r), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low-expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the cost associated with preliminary shaping and final finishing of silicon carbide. Because silicon carbide is an extremely hard and strong material, precision machining can only be done with expensive diamond tooling on very stiff high quality machine tools. Near-net-shape slip casting of silicon carbide can greatly reduce the cost of silicon carbide mirror substrates but this process still requires significant diamond grinding of the cast components. The process described here begins by machining the component from all special type of graphite. This graphite can rapidly be machined with conventional multi-axis CNC machine tools to achieve any level of complexity and lightweighting required. The graphite is then directly converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain CVD silicon carbide which is easily polished to extreme smoothness. Details of the fabrication process are described and photos and performance specifications of an eight-inch elliptical demonstration mirror are provided.

  4. Titanium Carbide and Silicon Carbide Thermal Conductivity under Heavy Ions Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrero, J.; Weisbecker, P.; Pailler, R. [LCTS, F-33600 Pessac (France); Cabrero, J.; Audubert, F. [CEA Cadarache, DEN 13108 Saint Paul Iez Durance (France); Kusiak, A. [TREFLE, Esplanade des Arts et Metiers 33405 Talence Cedex (France)

    2010-07-01

    SiC(f)/SiC ceramic matrix composites (CMC) are considered as structural materials in next generation fission nuclear reactors. However, thermal conductivity of SiC is reduced on the one hand at the highest temperatures, but also under irradiation. Titanium carbide, because of its peculiar thermal properties is an attractive material to be used as a matrix in a CMC to enhance the thermal conductivity of CMC under irradiation and at high temperature. In this study, we performed irradiation experiments on TiC, TiC{sub x}SiC{sub 1-x} and SiC samples, with heavy ions at room temperature (74 MeV Kr, fluence from 10{sup 13} to 10{sup 15} ions/cm{sup 2}). This energy results in an irradiated layer of about 7 {mu}m for TiC. Thermal conductivity of the irradiated layer is measured using IR radiometry as a function of fluence and composition. The structural evolution of the irradiated samples was investigated by Raman micro spectroscopy and transmission electron microscopy. (authors)

  5. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  6. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  7. Development and Processing of Nickel Aluminide-Carbide Alloys

    Science.gov (United States)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  8. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  9. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  10. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  11. Cerium doped lanthanum halides: fast scintillators for medical imaging; Halogenures de lanthane dopes cerium des scintillateurs rapides pour l'imagerie medicale

    Energy Technology Data Exchange (ETDEWEB)

    Selles, O

    2006-12-15

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl{sub 3}:Ce{sup 3+} and LaBr{sub 3}:Ce{sup 3+}).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce{sup 3+} ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  12. Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    H. Hasannejad; T. Shahrabi; M. Aliofkhazraei

    2009-01-01

    Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), crack-flee films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase.

  13. Electrical transport and thermoelectric properties of boron carbide nanowires

    Science.gov (United States)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  14. Preparation and electrocatalytic properties of tungsten carbide electrocatalysts

    Institute of Scientific and Technical Information of China (English)

    马淳安; 张文魁; 成旦红; 周邦新

    2002-01-01

    The tungsten carbide(WC) electrocatalysts with definite phase components and high specific surface area were prepared by gas-solid reduction method. The crystal structure, phase components and electrochemical properties of the as-prepared materials were characterized by XRD, BET(Brunauer Emmett and Teller Procedure) and electrochemical test techniques. It is shown that the tungsten carbide catalysts with definite phase components can be obtained by controlling the carburizing conditions including temperature, gas flowing rate and duration time. The electrocatalysts with the major phase of W2C show higher electrocatalytic activity for the hydrogen evolution reaction. The electrocatalysts with the major phase of WC are suitable to be used as the anodic electrocatalyst for hydrogen anodic oxidation, which exhibit higher hydrogen anodic oxidation electrocatalytic properties in HCl solutions.

  15. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  16. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  17. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  18. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  19. Electronic transport properties of the armchair silicon carbide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Song Jiuxu; Yang Yintang; Liu Hongxia [Key Laboratory of Ministry of Education for Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Guo Lixin [School of Science, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: songjiuxu@126.com [Information Science and Technology Institution, Northwest University, Xi' an 710069 (China)

    2010-11-15

    The electronic transport properties of the armchair silicon carbide nanotube (SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory. In the equilibrium transmission spectrum of the nanotube, a transmission valley of about 2.12 eV is discovered around Fermi energy, which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important, negative differential resistance is found in its current voltage characteristic. This phenomenon originates from the variation of density of states caused by applied bias voltage. These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices.

  20. Synthesis of titanium carbide by induction plasma reactive spray

    Institute of Scientific and Technical Information of China (English)

    JIANG Xian-Liang(蒋显亮); M.Boulos

    2004-01-01

    A novel method capable of sufficient mixing of titanium powder and methane of carbon source was developed in the synthesis of titanium carbide by induction plasma reactive spray. X-ray diffraction analysis, optical microscopy, scanning electron microscopy, and microhardness test were used to characterize the spray-formed deposit.The experimental results show that both primary carburization of the titanium particles inside the plasma flame and secondary carburization of the growing deposit on high temperature substrate contribute to the forming of titanium carbide. The transitional phase of TiC1-x has the same crystal structure as TiC, but has a slightly low lattice constant. The deposit consists of fine grain structure and large grain structure. The fine grain structure, harder than large grain structure, shows grain boundary fracture.