WorldWideScience

Sample records for cerium 129

  1. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  2. Probing the cerium/cerium hydride interface using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Brierley, Martin, E-mail: martin.brierley@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); University of Manchester, Manchester M13 9PL (United Kingdom); Knowles, John, E-mail: john.knowles@awe.co.uk [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2015-10-05

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase.

  3. Probing the cerium/cerium hydride interface using nanoindentation

    International Nuclear Information System (INIS)

    Highlights: • A disparity exists between the minimum energy and actual shape of a cerium hydride. • Cerium hydride is found to be harder than cerium metal by a ratio of 1.7:1. • A zone of material under compressive stress was identified surrounding the hydride. • No distribution of hardness was apparent within the hydride. - Abstract: A cerium hydride site was sectioned and the mechanical properties of the exposed phases (cerium metal, cerium hydride, oxidised cerium hydride) were measured using nanoindentation. An interfacial region under compressive stress was observed in the cerium metal surrounding a surface hydride that formed as a consequence of strain energy generated by the volume expansion associated with precipitation of the hydride phase

  4. Hydrated cerium(3) vanadates

    International Nuclear Information System (INIS)

    It has been ascertained by the methods of chemical, thermal and X-ray phase analyses, IR spectroscopy that in the system LiVO3-Ce(NO3)3-HNO3-LiOH-H2O in equilibrium conditions the following compounds are precipitated: cerium dodecavanadate Ce2(V12O31)3·3nH2O, where 11.0 5O13)2·nH2O, where 6.5 2V10O28·19H2O; vanadates Ce(VO3)3·4H2O and CeVO4·H2O. Cerium orthovanadate is crystallized in tetragonal crystal system with zircon structure and crystal lattice parameters as follows: a=7.3726(14) and c=6.4939(23) A

  5. Thermodynamic properties of cerium oxide

    International Nuclear Information System (INIS)

    Thermodynamic properties of cerium oxides in the CeO2-CeO1.5 composition range are studied. For this purpose method of electromotive force with solid electrolyte is used, equilibrium constants of reduction of cerium oxides by hydrogen are measured. Necessity of using atmosphere of argon or purified nitrogen to work with pyrophoric cerium oxides is stressed. The obtained results and the earlier known literary data on CeO2 and Ce2O3 thermodynamic properties are tabulated. 14 refs.; 5 tabs

  6. Preparation of cerium halide solvate complexes

    Science.gov (United States)

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  7. Valence instabilities in cerium intermetallics

    International Nuclear Information System (INIS)

    The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn3. In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn3 and Cesub(1-x)Ysub(x)Sn3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn3, also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In3 and Cesub(1-x)Ysub(x)In3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi2, CeSi, and in CeGa2. (Auth.)

  8. Improvements in or relating to cerium compounds

    International Nuclear Information System (INIS)

    A process for the preparation of a dispersible cerium compound comprises heating a substantially dry cerium (IV) oxide hydrate in the presence of a deaggregating agent to cause deaggregation of aggregated crystallites in the cerium (IV) oxide hydrate and produce a dry dispersible cerium compound. The deaggregating agent is an acid species e.g. NO3-, Cl- or ClO4-. The dry dispersible product may be mixed with an aqueous medium to form a colloidal dispersion and if the dispersion is allowed to dry, a gel. (author)

  9. Radiative lifetimes of neutral cerium

    International Nuclear Information System (INIS)

    Radiative lifetimes, accurate to ±5%, have been measured for 153 levels of neutral cerium using time-resolved laser-induced fluorescence (TRLIF) on a slow beam of cerium atoms. Of the 153 levels studied, 150 are even parity and 3 are odd parity. The levels range in energy from 16 869 to 28 557 cm-1. This set of Ce I lifetimes is much more extensive than others published to date, and will provide the absolute calibration for a very large set of measured Ce I transition probabilities. Accurate transition probabilities for lines in the visible and ultraviolet are needed both in astrophysics, for the determination of elemental abundances, and by the lighting community, for research and development of metal halide high-intensity discharge lamps.

  10. Radiative lifetimes of neutral cerium

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, E A; Buettner, K P; Lawler, J E [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: eadenhar@wisc.edu, E-mail: Kevin.Buettner@usma.edu, E-mail: jelawler@wisc.edu

    2009-04-28

    Radiative lifetimes, accurate to {+-}5%, have been measured for 153 levels of neutral cerium using time-resolved laser-induced fluorescence (TRLIF) on a slow beam of cerium atoms. Of the 153 levels studied, 150 are even parity and 3 are odd parity. The levels range in energy from 16 869 to 28 557 cm{sup -1}. This set of Ce I lifetimes is much more extensive than others published to date, and will provide the absolute calibration for a very large set of measured Ce I transition probabilities. Accurate transition probabilities for lines in the visible and ultraviolet are needed both in astrophysics, for the determination of elemental abundances, and by the lighting community, for research and development of metal halide high-intensity discharge lamps.

  11. Investigation of I-129 radioecology

    International Nuclear Information System (INIS)

    In milk samples taken at Friedrichstal values from 0.3 to 0.5 pCi 129I/l were measured. In thyroid samples from rabbits about 10 pCi 129I/thyroid were found. In the present half year the collection of aliquot parts of low-activity effluent waters from WAK, from its destillates, from the settling basins and from the Rhine river and of combined monthly samples was started. First measurements of 129I emissions from WAK were performed. Since about 200 samples for 129I had to be taken in the WAK emissions, the ecological program has been delayed by 2 1/2 months. An ion sensitive electrode for 127I measurement in milk and in thyroid samples was used successfully. (orig.)

  12. Signature splitting in 129Ce

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; WU Xiao-Guang; ZHU Li-Hua; LI Guang-Sheng; HE Chuang-Ye; LI Xue-Qin; PAN Bo; HAO Xin; LI Li-Hua; WANG Zhi-Min; LI Zhong-Yu; XU Qiang

    2009-01-01

    The high spin states of 129Ce have been populated via heavy-ion fusion evaporation reaction 96Mo (37C1, 1p3n) 129Ce. The γ-γ coincidence and intensity balance used to measure the B(M1; I→I-1)/B(E2; I→I-2) (the probability ratio of the dipole and quadrupole transition) in v7/2[523] rotational band of 129Ce. And the energy splitting (Δe') has been got through the experimental Routhians. The lifetimes and quadrupole moments Qt have been extracted from the lineshape analyses using DSAM. The deformation of the v7/2[523] rotational band of 129Ce was extracted from the Qt and moment of inertia JRR.

  13. Inhibited oxidation of polymethylsiloxane, containing cerium

    International Nuclear Information System (INIS)

    The kinetics of oxidation of oligomeric polydimethylsiloxane in the presence of cerium-containing organosilicon antioxidant at 285-310 deg was investigated. High energy of activation for initiation process (around 272 kJ/mole) was established as a feature specific for chain oxidation of polydimethylsiloxane. It was found that cerium-containing antioxidant, as well as the iron-containing one, based on iron capronate, is of the ''depleting'' inhibitors, i.e. it looses its inhibiting ability during oxidation

  14. Electrodeposition of Oriented Cerium Oxide Films

    OpenAIRE

    Golden, Teresa D.; Adele Qi Wang

    2013-01-01

    Cerium oxide films of preferred orientation are electrodeposited under anodic conditions. A complexing ligand, acetate, was used to stabilize the cerium (III) ion in solution for deposition of the thin films. Fourier transform infrared spectroscopy showed that the ligand and metal tended to bind as a weakly bidentate complex. The crystallite size of the films was in the nanometer range as shown by Raman spectroscopy and was calculated from X-ray diffraction data. Crystallite sizes from 6 to 2...

  15. Ionic flotation of cerium, praseodymium and neodymium

    International Nuclear Information System (INIS)

    The possibility of practically complete flotation extraction of cerium, praseodymium and neodymium ions collected with the help of potassium abietate is shown. It is established that the most complete flotation extraction of cerium, praseodymium and neodymium ions takes place from solutions having 6-8 pH value in the presence of 1.5-2.5 multiple collector surplus. Solution temperature increase from 20 to 80 deg influences positively the flotation process

  16. Pharmacological potential of cerium oxidenanoparticles

    Science.gov (United States)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  17. 46 CFR 129.353 - Battery categories.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery categories. 129.353 Section 129.353 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.353 Battery categories. This section applies to batteries installed to meet the requirements of § 129.310(a) for secondary sources of power to vital...

  18. Management modes for iodine-129

    International Nuclear Information System (INIS)

    While 8.05 day /sup 131/I has been recognised as a potential radiological hazard from the earliest days of the nuclear industry, concern about 16 Ma /sup 129/I is of more recent origin. Being very long-lived, it is only feebly radioactive and hence of very low radiotoxicity. Nevertheless, as the nuclear industry expands, the quantities of /sup 129/I produced increase approximately in proportion to the amount of electricity generated, and attention must be paid to methods of controlling the nuclide so as to limit the doses to man. /sup 129/I is a fission product, and arises exclusively in the nuclear fuel, in quantities which can be calculated from the fission yields. It remains nearly completely in the fuel in the reactor and during spent fuel storage. If the fuel is reprocessed it finds its way into various reprocessing plant effluents, some of which are at present discharged to the environment. Precautions to prevent or minimise /sup 131/I discharges also provide some control of /sup 129/I, but whereas for /sup 131/I a sufficient time-delay before discharge removes any potential hazard, this expedient is not available for /sup 129/I. The purpose of this report is to examine methods of controlling the latter nuclide

  19. Management modes for iodine-129

    International Nuclear Information System (INIS)

    This study completes a two-stage programme, supported by the Commission of the European Communities, on management modes for iodine-129. The models for the radiological assessment of iodine-129 management modes have been reviewed and, where necessary, revised, and a generic radiological assessment has been carried out using these models. Cost benefit analysis has been demonstrated for a variety of iodine-129 management modes; for a wide range of assumptions, the costs of abatement of atmospheric discharges would be outweighed by the radiological benefits. The cost benefit analysis thus complements and confirms the preliminary conclusion of the previous study: iodine-129 should be trapped to a large extent from the off-gases of a large reprocessing plant and disposed of by other suitable means, in order to ensure that all exposures from this radionuclide are as low as reasonably achievable. Once the major fraction of the iodine-129 throughput of a reprocessing plant has been trapped from the dissolver off-gases, there are unlikely to be strong radiation protection incentives either for further trapping from the dissolver off-gases or for trapping from the vessel off-gases. In a generic study it is not possible to state an optimum choice of process(es) for abatement of atmospheric discharges of iodine-129. This choice must be determined by assessments in the specific context of a particular reprocessing plant, its site, the waste disposal routes that are actually available, and also in the wider context of the management plans for all radioactive wastes at the plant in question

  20. Optimization of process efficiency in cerium electrorefining

    International Nuclear Information System (INIS)

    Reactive metal electrorefining presents a number of problems that pose daunting obstacles to commercial operation. Typical reduction of reactive metal oxides or halide can introduce a variety of impurities such as iron, nickel, chromium, silicon, aluminum and various other metals which must be removed. This research program has addressed the various parameters of molten salt electrorefining of cerium metal to provide insight to this extremely important process. Cerium has been chosen as the surrogate for certain reactive metals on account of its similar electrochemical characteristics. The justification for such a choice has been investigated. The cell components and configuration, current efficiency of the process, purity of the cathodically deposited metal and the power requirement of the system have been optimized in a molten calcium chloride salt electrolyte using a molten, stirred impure metal anode. Various refractory crucible design and electrode materials have been studied to improve the process reliability. The equimolar NaKCl2 salt used in the electrorefining of some reactive metals is found to be inappropriate as a relatively high temperature is required to electrorefine cerium, i.e. melting point of Ce [798 C]. The homogeneity of the anode is controlled by the stirring at an optimized rate. This paper highlights the validity of cerium oxide and intermetallics of cerium as a surrogate for other reactive metal oxides or the respective intermetallics

  1. The collectivity in CSR 129Xe + 129Xe collisions

    International Nuclear Information System (INIS)

    The Heavy Ion Research Facility in Lanzhou (HIRFL) – Cooler Storage Ring (CSR), which can gather few hundreds MeV/nucleon for heavy ion beam energy in the external-target experiments, could make a significant contribution in studying the property of dense matter. By using a Relativistic Transport Model(ART1.0), we study the collectivity of identified hadrons in 129Xe + 129Xe collisions in CSR energy regions. Our investigation indicates that the anisotropic flow reaches its extremum around 500 MeV/nucleon of beam energy. The system size and EOS dependence on anisotropic flow show that directed flow is very sensitive to the equation of state. (author)

  2. Nuclear Data Sheets for A = 129

    Energy Technology Data Exchange (ETDEWEB)

    Timar, Janos; Elekes, Zoltan; Singh, Balraj

    2014-09-15

    The experimental nuclear spectroscopic data for known nuclides of mass number 129 (Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm) have been evaluated and presented together with adopted properties for levels and γ rays. This evaluation represents a revision of the previous one 18 years ago by Y. Tendow (1996Te01). Extensive new data have become available for many nuclides in the intervening years, although, no data are available for excited states in {sup 129}Pm and {sup 129}Sm, and for {sup 129}Ag and {sup 129}Cd, only limited information is available for the g.s. and isomers. The decay schemes of {sup 129}Ag, {sup 129}Pm and {sup 129}Sm are unknown, and those for {sup 129}Cd, {sup 129}In, {sup 129}Ce, {sup 129}Pr and {sup 129}Nd are incomplete. Many γ rays and extended level schemes have been reported for the ground state and isomer decays of {sup 129}Ba to {sup 129}Cs, yet the adopted set of intensities in this evaluation originate from a brief paper in an annual laboratory report. There remain several unplaced gamma rays, coupled with ambiguity about division of intensities amongst the two activities of {sup 129}Ba with nearly the same half-lives. Isomerism is expected in {sup 129}Pr, but there is no confirmed identification. Low-lying level structure in {sup 129}Nd, including identification of a possible third long-lived isomer in this nuclide, remains uncertain. The spin-parity assignments of (5/2+) for the ground state and (7/2−) for an isomer at 107.6 keV in {sup 129}Ce are assigned based on strong support from systematics and band configurations, yet this result is in contradiction with the quadrupole interaction hyperfine structure measurement which favors 9/2− over 7/2− for the isomer, consequently 7/2+ for the ground state. Direct measurements of spins of ground state and isomer of {sup 129}Ce are needed to settle this issue. Confirmed spins and parities of the ground state and isomer of {sup 129}La are also lacking. Assignments

  3. Study of the discharge ionization of cerium at a solid-paste graphite electrode

    International Nuclear Information System (INIS)

    The discharge ionization of cerium(3) at a solid-paste graphite electrode was studied by stripping voltametry. The optimal conditions for the concentration and following determination of cerium in 1 x 10-4 - 1 x 10-6 M cerium(3) solutions were found. The conditional constant of cerium(4) reduction to cerium(3) was also calculated

  4. Excited states of 129Xe

    International Nuclear Information System (INIS)

    Here investigation of the observed yrast and excited bands in 129Xe populated by the heavy-ion fusion reaction 124Sn(11B, p5n)129Xe has been presented. An isotopically enriched (99.9%) self-supporting 124Sn target of thickness 2.2 mg/cm2 was utilized. The experiment was performed at the Linac accelerator facility at the Tata Institute of Fundamental Research (TIFR), Mumbai, India. The experimental set-up, called the Indian National Gamma Array (INGA), consisted of 21 Compton suppressed clover HPGe detectors. Two of these detectors were placed at 23°, three at 40°, three at 65°, four at 90°, three at 140°, three at 115° and three at 157° with respect to the beam direction. The triple gamma coincidence data were collected in the event-by-event mode

  5. 14 CFR 135.129 - Exit seating.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Exit seating. 135.129 Section 135.129....129 Exit seating. (a)(1) Applicability. This section applies to all certificate holders operating... certificate holder shall make the passenger exit seating determinations required by this paragraph in a...

  6. 14 CFR 129.25 - Airplane security.

    Science.gov (United States)

    2010-01-01

    ... security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane security. 129.25 Section 129.25... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25...

  7. 7 CFR 1955.129 - Business brokers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Business brokers. 1955.129 Section 1955.129 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS... Dispose of Inventory Property § 1955.129 Business brokers. The services of business brokers or...

  8. 46 CFR 129.220 - Basic safety.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Basic safety. 129.220 Section 129.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be...

  9. 46 CFR 129.390 - Shore power.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Shore power. 129.390 Section 129.390 Shipping COAST... Power Sources and Distribution Systems § 129.390 Shore power. Each vessel that has an electrical system operating at more than 50 volts and has provisions for receiving shore power must meet the requirements...

  10. 40 CFR 129.4 - Toxic pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Toxic pollutants. 129.4 Section 129.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS TOXIC POLLUTANT EFFLUENT STANDARDS Toxic Pollutant Effluent Standards and Prohibitions § 129.4 Toxic pollutants. The following...

  11. 7 CFR 1260.129 - Customs Service.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Customs Service. 1260.129 Section 1260.129... Promotion and Research Order Definitions § 1260.129 Customs Service. Customs Service means the United States Customs Service of the United States Department of the Treasury....

  12. New layered functionalized cerium(IV) phenylphosphonates

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, Jan; Zima, Vítězslav; Vlček, Milan

    Lille: European Materials Research Society, 2014. Q.PI-20. [E- MRS 2014 Spring Meeting. 26.05.2014-30.05.2014, Lille] R&D Projects: GA ČR(CZ) GA14-13368S Institutional support: RVO:61389013 Keywords : cerium * layered phosphonates * thermogravimetry Subject RIV: CA - Inorganic Chemistry

  13. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    Science.gov (United States)

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth. PMID:25531028

  14. Thermodynamic studies in the system cerium-gadolinium-oxygen

    International Nuclear Information System (INIS)

    Two independent measuring methods have been applied to studying the phase relations of the system cerium-gadolinium. The calorimetric measurements have been done in a high-temperature calorimeter with cerium dioxide doped with 10 mole % of Gd2O3. Further thermodynamic quantities have been obtained by the electrochemical method and e.m.f. measurements, yielding additional information on disorders in doped cerium dioxide. (orig./BBR)

  15. Electrochemical reduction of cerium oxide into metal

    International Nuclear Information System (INIS)

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO2 reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO2 into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO2 were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl2-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  16. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  17. Cerium and jojoba in engines?; Cerium et jojoba dans les moteurs?

    Energy Technology Data Exchange (ETDEWEB)

    Massy-Delhotel, E.

    1996-10-01

    The Belgium company CreaTel proposes a new system, called Forac, which can lead to a 10% reduction of fuel consumption in thermal engines together with a quasi-complete reduction of CO, HC, NOx pollutants and CO{sub 2} particulates emission. The system comprises a steam production device and an admission pipe with a cerium alloy whorl inside. The steam produced is mixed with the admission air and tears cerium particles from the inside of the admission pipe to the combustion chamber. The cerium particles act as a catalyst which favours the complete combustion of the fuel. The same company proposes also lubricant additives made from liquid jojoba wax which allow the reduction of pollutant emissions, fuel consumption and noise emissions of diesel engines. (J.S.)

  18. Accelerator transmutation of 129I

    International Nuclear Information System (INIS)

    Iodine-129 is one of several long-lived reactor products that is being considered for transmutation by the Los Alamos Accelerator Transmutation of Waste (ATW) program. A reasonable rate of transmutation of 1291 is possible in this system because of the anticipated high neutron flux generated from the accelerator. This report summarizes previous papers dealing with the transmutation of 1291 where reactor technologies have been employed for neutron sources. The transmutation process is considered marginal under these conditions. Presented here are additional information concerning the final products that could be formed from the transmutation process in the ATW blanket. The transmutation scheme proposes the use of solid iodine as the target material and the escape of product xenon from the containers after van Dincklange (1981). Additional developmental plans are considered

  19. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Cerium oxide (CeO2) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  20. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  1. Radiation induced color centers in cerium-doped and cerium-free multicomponent silicate glasses

    Institute of Scientific and Technical Information of China (English)

    傅鑫杰; 宋力昕; 李家成

    2014-01-01

    The effect of doped cerium on the radiation-resistance behavior of silicate glass was investigated in our work. The ultra-violet-visible absorption spectra and electron paramagnetic resonance (EPR) spectra were obtained after the cerium-rich and ce-rium-free multicomponent silicate glasses (K509 and K9) were irradiated by gamma rays with a dose range from 10 to 1000 kGy. The results showed that E’ center, oxygen deficient center (ODC) and non-bridging oxygen hole center (HC1 and HC2) were induced in K9 and K509 glasses after radiation. The concentrations of all color centers presented an exponential growth with the increase of the gamma dose. Moreover, the concentration of HC1 and HC2 in cerium-doped K509 glass was much lower than that in cerium-free K9 glass at the same dose of radiation, which could be attributed to the following mechanism:Ce3+ions capturing holes then forming Ce3++centers inhibited the formation of hole trapped color centers (HC1 and HC2) and Ce4+ions capturing electrons to form Ce3+centers suppressed the formation of electron trapped color centers like E’ center.

  2. 14 CFR 129.28 - Flightdeck security.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flightdeck security. 129.28 Section 129.28... Flightdeck security. (a) After August 20, 2002, except for a newly manufactured airplane on a non-revenue...; or the operator must implement a security program approved by the Transportation...

  3. 14 CFR 65.129 - Performance standards.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Performance standards. 65.129 Section 65.129 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... authorized by the Administrator or the manufacturer; (e) Pack, maintain, or alter a parachute in any...

  4. 31 CFR 129.2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Definitions. 129.2 Section 129.2 Money and Finance: Treasury Regulations Relating to Money and Finance PORTFOLIO INVESTMENT SURVEY... States business enterprise, or an equivalent interest in an unincorporated United States...

  5. 129I in the Ob river

    International Nuclear Information System (INIS)

    The aim of this study was: 1) to determine 129I concentrations in the Ob river, and 2) to determine 129I concentrations in surficial sediments in the river. Some results from the study are summarized in the present paper. 5 refs., 3 figs

  6. Ultrathin, epitaxial cerium dioxide on silicon

    International Nuclear Information System (INIS)

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce2O3 film may very effectively be converted at room temperature to almost fully oxidized CeO2 by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness

  7. Ultrathin, epitaxial cerium dioxide on silicon

    OpenAIRE

    Flege, Jan Ingo; Kaemena, Björn; Höcker, Jan; Bertram, Florian; Wollschläger, Joachim; Schmidt, Thomas; Falta, Jens

    2014-01-01

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce2O3 film may very effectively be converted at room temperature to almost fully oxidized CeO2 by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film cryst...

  8. Radiative lifetimes of singly ionized cerium

    International Nuclear Information System (INIS)

    Radiative lifetimes accurate to ±5% have been measured for 74 levels in Ce II using time-resolved laser-induced fluorescence on a slow beam of cerium ions. The 17 odd-parity and 57 even-parity levels studied here lie in the energy range 24 000-36 000 cm-1. This new set of lifetimes in Ce II is substantially more extensive than previously published sets, to which a detailed comparison is made. The present lifetime results will provide the absolute calibration for a very large set of measured transition probabilities for Ce II. These are needed for research in astrophysics and lighting

  9. Radiative lifetimes of singly ionized cerium

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, E A Den; Lawler, J E [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: eadenhar@wisc.edu, E-mail: jelawler@wisc.edu

    2008-02-28

    Radiative lifetimes accurate to {+-}5% have been measured for 74 levels in Ce II using time-resolved laser-induced fluorescence on a slow beam of cerium ions. The 17 odd-parity and 57 even-parity levels studied here lie in the energy range 24 000-36 000 cm{sup -1}. This new set of lifetimes in Ce II is substantially more extensive than previously published sets, to which a detailed comparison is made. The present lifetime results will provide the absolute calibration for a very large set of measured transition probabilities for Ce II. These are needed for research in astrophysics and lighting.

  10. Crystal structure of cerium(4) - dicesium trisulfate

    International Nuclear Information System (INIS)

    Cerium(4) - dicesium trisulfate is investigated by the X-ray diffraction method. Parameters of a monoclinic cell equal: a = 9.772(2), b = 16.797(2), c = 14.812(1)A, β 96.40(1), sp.gr. P21. The structure is formed by interchanging of anion [Ce4(SO4)128-]∞ and cation (Cs+) layers arranged parallel (101). Atoms Ce and Cs are arranged according to the law of a cubic close packing. Coordination polyhedron Ce1 and Ce2 is the two-hat trigonal prism, nine vertices Ce3 and Ce4 are one-hat antiprism

  11. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  12. Low soluble cerium compounds in salt melts

    International Nuclear Information System (INIS)

    The behaviour of cerium tungstate NaCe(WO4)2 and cerium phosphate Na3Ce2(PO4)3 in high-temperature salt melts has been investigated. The solubility in the NaCe(WO4)2-NaWO4-NaCl(1) and Na3Ce2(PO4)3-Na2WO4-NaCl(2) systems at 700-800 deg C has been studied. It is shown, that with the increase of the Na2WO4 part in systems (1), (2) the solubility increases in the following way: for NaCe(WO4)2 from 1.3x10-3 m in NaCl melt to 4.9x10-3 m in NaWO4 melt, for Na3Ce2(PO4)3 from 0.4x10-3 m in NaCl melt to 5.7x10-3 m in NaWO4 melt. With an increase in the Na2WO4 part in system (2) the formation of a new phase - NaCe(WO4)2 is observed. The melting enthalpy of NaCe(WO4)2 is 19+-3 kJ/mol

  13. 129I measurements in lake water for an estimate of regional 129I depositions

    International Nuclear Information System (INIS)

    Estimates of 129I depositions from 129I releases of reprocessing plants are so far based on measurements of soil and rain water samples. Because 129I concentrations in these samples show a highly temporal and spatial variability, the 129I deposition values deduced from single measurements cannot be seen as representative for a larger area. Here it is proposed to use lake water as an archive for former 129I depositions, to overcome these limitations. If the limnological parameters of any lake are known, the local 129I deposition flux can be deduced which is temporally averaged over the flushing time, and spatially averaged over the catchment area of the lake. Samples were collected from various European lakes and from Lake Baikal (Russia). The 129I concentration in these samples was measured by means of accelerator mass spectrometry, and values between 0.3 and 8.1 x 108 at/l were obtained. Deduced 129I deposition fluxes averaged over the flushing times of the lakes range from 0.3 to 9.3 x 1012 at/m2 y. The 129I deposition fluence measured for Lake Baikal is attributed predominantly to releases from the former Soviet reprocessing facilities Chelyabinsk, Tomsk and Krasnoyarsk, while the 129I deposition fluxes deduced for all other lakes are attributed to releases from the European reprocessing activities at Sellafield, Marcoule and La Hague

  14. Management of iodine-129 from reprocessing plants

    International Nuclear Information System (INIS)

    The technological and radiological aspects of the management of 129I arising in fuel reprocessing plants (FRPs) are reviewed and discussed. The dissolver off-gases of FRPs can be made to contain about 99% of the 129I throughput, and efficient techniques are available for trapping iodine from this stream. This iodine could be discharged as a liquid effluent (e.g. to coastal waters) if local circumstances permit; otherwise it would have to be immobilized and disposed of as a solid. All management modes for 129I (except transmutation or extraterrestrial disposal, neither of which is a real option at present) will ultimately lead to its dispersal throughout the natural global iodine reservoirs, particularly in the long term the deep oceans and sediments. A revised global-circulation model for iodine is presented, together with new results for the radiological impact of 129I discharged as an airborne or liquid effluent, or trapped and disposed of as a solid to the deep ocean bed or to two kinds of deep geologic repository. The long-term radiological impacts of different management modes for 129I are very similar owing to the common factor of global circulation; but there are considerable differences in the shorter term. Atmospheric discharges of 129I from large FRPs would need to be abated, to control doses to the local critical group; none of the other management modes considered appears to be precluded on radiological grounds. (Auth.)

  15. Soil bioassays and the 129I problem

    International Nuclear Information System (INIS)

    Iodine-129 is a very long-lived radionuclide associated with spent nuclear fuel. Because 129I has a 107-year half-life, is very mobile in the environment and is a biologically essential element, it is the most limiting radionuclide affecting disposal of spent fuel. Traditionally, the potential impacts of 129I have been estimated for human receptors, with the implicit assumption that all other organisms are less at risk. Risk is the operative word, the objective for protection of humans is to protect individuals, whereas the objective for other biota is usually to protect populations. Here, 129I poses an interesting problem: the half-life is so long it is barely radioactive. Thus, the chemical toxicity may be more limiting than the radiological impact. A series of soil bioassays were employed, including a life-cycle plant (Brassica rapa) bioassay, a modified earthworm survival bioassay, a microarthropod colonization/survival bioassay, and a series of more common soil and aquatic bioassays. Chemical toxicity was indicated at soil concentrations as low as 5 mg kg-1. At these levels, radiological impact on non-human biota would not be expected, and therefore the chemical toxicity effects are more critical. However, human food-chain model estimates show these levels, as pure 129I, would be unacceptable for human radiological exposure, so that for 129I, protection of the human environment should also be protective of non-human biota

  16. Bordoni relaxation and magnetic transformation in cerium and cerium-lanthanum alloys

    International Nuclear Information System (INIS)

    The internal friction in pure cerium and cerium-base alloys with 2.5 and 12 weight percent of lanthanum added at temperature ranging from 4.2 deg up to 77 deg K is described. Amplitude-independent internal friction has been measured with an inverse torsion pendulum with a specimen oscillation frequency of 1-30 hz in vacuum not less than 1.10-5 torr. A temperature of the specimen has been determined with a capacitance-type sensor and a gas gauge. A curve showing the dependence of internal friction upon a temperature of pure cerium has two distinct peaks; the first at 12.5 deg K, the second at 45 deg K. The 12.5 deg K peak is accounted for by a transition of antiferromagnetic β-Ce into a paramagnetic state. The 45 deg K peak is a Bordoni maximum. The paper describes an influence of additions, specimen oscillation frequency variations, deformation and annealing upon the peak behaviour. Added lanthanum reduces not only a peak temperature but a height as well. Studies of the 45 deg K peak have shown that its temperature location depends upon the specimen oscillation frequency. As the frequency increases the peak tends to a range of high temperatures which confirms its relaxation nature

  17. Preparing Process of Cerium Acetate and Rare Earth Acetate

    Institute of Scientific and Technical Information of China (English)

    Qiao Jun; Ma Ying; Xu Yanhui; Zhang Jun; Chang Shu; Hao Xianku

    2004-01-01

    Preparing process was presented and the influences of concentration of acetic acid, reaction temperature, the ratio of cerium carbonate and acetic acid, heat preservation time to the yield of cerium acetate were discussed.The crystalline cerium acetate and rare earth acetate such as ( La, Ce, Pr, Nd) (Ac) 3, ( Ce, Pr, Nd) (Ac) 3, ( Pr, Nd, Er,Y) (Ac) 3 and yttrium acetate were prepared under this condition.The shape, structure and composition of the crystals were determined by the methods of SEM, TG-DTA, X-ray diffraction and chemical analysis.The optimum prepared conditions of cerium acetate were described.This prepared process has characteristics such as simple process route, low cost, high yield, good quality, no pollution to environment, etc.

  18. Adsorption of Some Hazardous Radionuclides on Cerium(IV) Antimonate

    International Nuclear Information System (INIS)

    Cerium(IV) antimonate had been prepared by the dropwise addition of 0.6 M antimony pentachloride and 0.6 M cerium ammonium nitrate solutions by a molar radio of Ce/Sb 0.75. Exchange isotherms for H+/Co2+ , H+/Cs+, H+/Zn2+ , H+/Sr2+ and H+/Eu3+ have been determined at 25, 40 and 60 degree. Besides it was proved that europium is physically adsorbed while zinc, strontium, cobalt and cesium are chemically adsorbed. Moreover, the heat of adsorption of zinc, strontium, cobalt and cesium on cerium(IV) antimonate had been calculated and indicated that cerium(IV) antimonate is of endothermic behaviour towards these ions. Also the distribution coefficients of these ions were determined and it was found that the selectivity in the order: Eu3+ >Sr2+ > Cs+>Na+

  19. A contribution to the radiologic findings in cerium pneumoconiosis

    International Nuclear Information System (INIS)

    Report on a 69 year old man, who had been employed as photographer in the printing industry and who had been exposed to Cerium for 40 years. The chest X-ray which was performed 9 years after the end of the exposure displayes striate densities of the lungs, which must be considered as a late stage of Cerium-pneumoconiosis. The changes which were found fulfill the code 't 1/0 RO, RM, RU, LO, LM, LU, p 0/1 RO, RM, LO, LM, em, tbu' according to the 'ILO U/C 1971 classification of pneumoconiosis'. The diagnosis could be substantiated by measureing Cerium in the lung parenchyma qualitatively and quantitatively using neutrone activating analysis. The radiolgic findings of the Cerium pneumoconiosis are discussed. (orig.)

  20. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    OpenAIRE

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to underst...

  1. Cerium intermetallics CeTX. Review III

    International Nuclear Information System (INIS)

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore 119Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  2. Cerium fluoride crystals for calorimetry at LHC

    International Nuclear Information System (INIS)

    High-resolution homogeneous calorimetry is fully justified for part of the physics program at the Large Hadron Collider (LHC). The main design features of proposed CeF3 crystals for calorimetry for LHC are discussed. The severe constraints LHC imposes on detectors make the use of 'classical' crystals impossible. Therefore, a large R and D effort has been undertaken by the 'Crystal Clear' collaboration in order to find new, dense, fast and radiation hard crystals. A good candidate, cerium fluoride, has been identified and studied. It is interesting at this stage to review the specifications of scintillators for LHC and to see how well available data on CeF3 luminescence, decay time, light yield, optical transmission and resistance to radiation meet them. Milestones to reach before starting a large scale crystal production in view of the eventual construction of a calorimeter, are also discussed. (author) 15 refs., 15 figs., 1 tab

  3. Further results on cerium fluoride crystals

    International Nuclear Information System (INIS)

    A systematic investigation of the properties of cerium fluoride monocrystals has been performed by the 'Crystal Clear' collaboration in view of a possible use of such crystals for the construction of high precision electromagnetic calorimeters for the future generation of high luminosity accelerators. A large sample of different crystals grown by several producers has been studied. The spectroscopic characteristics, the transmission, luminescence and excitation spectra and the decay time curves are analysed. The light yield of the different crystals is measured with photomultipliers and Si photodiodes and compared to reference standards like BGO and NaI(Tl). The radiation damage behaviour is then presented for γ and neutron irradiations, at different doses and dose rates, including thermal and optical bleaching. (orig.)

  4. Further results on cerium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.; Auffray, E.; Aziz, T.; Baccaro, S.; Banerjee, S.; Bareyre, P.; Barone, L.E.; Borgia, B.; Boutet, D.; Burq, J.P.; Chemarin, M.; Chipaux, R.; Dafinei, I.; D' Atanasio, P.; De Notaristefani, F.; Dezillie, B.; Dujardin, C.; Dutta, S.; Faure, J.L.; Fay, J.; Ferrere, D.; Francescangeli, O.; Fuchs, B.A.; Ganguli, S.N.; Gillespie, G.; Goyot, M.; Gupta, S.K.; Gurtu, A.; Heck, J.; Herve, A.; Hillemanns, H.; Holdener, F.; Ille, B.; Joensson, L.; Kierstead, J.; Krenz, W.; Kway, W.; Le Goff, J.M.; Lebeau, M.; Lebrun, P.; Lecoq, P.; Lemoigne, Y.; Loomis, G.; Lubelsmeyer, K.; Madjar, N.; Majni, G.; El Mamouni, H.; Mangla, S.; Mares, J.A.; Martin, J.P.; Mattioli, M.; Mauger, G.J.; Mazumdar, K.; Mengucci, P.; Merlo, J.P.; Moine, B.; Nikl, N.; Pansart, J.P.; Pedrini, C.; Poinsignon, J.; Polak, K.; Raghavan, R.; Rebourgeard, P.; Rinaldi, D.; Rosa, J.; Rosowsky, A.; Sahuc, P.; Samsonov, V.; Sarkar, S.; Schegelski, V.; Schmitz, D.; Schneegans, M.; Seliverstov, D.; Stoll, S.; Sudhakar, K.; Sven; Crystal Clear Collaboration

    1993-08-15

    A systematic investigation of the properties of cerium fluoride monocrystals has been performed by the 'Crystal Clear' collaboration in view of a possible use of such crystals for the construction of high precision electromagnetic calorimeters for the future generation of high luminosity accelerators. A large sample of different crystals grown by several producers has been studied. The spectroscopic characteristics, the transmission, luminescence and excitation spectra and the decay time curves are analysed. The light yield of the different crystals is measured with photomultipliers and Si photodiodes and compared to reference standards like BGO and NaI(Tl). The radiation damage behaviour is then presented for [gamma] and neutron irradiations, at different doses and dose rates, including thermal and optical bleaching. (orig.)

  5. Mechanical and Thermophysical Properties of Cerium Monopnictides

    Science.gov (United States)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  6. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  7. Comparison of Titration ICP and XRF Spectrometry Methods in Determination of Cerium in Lens Polishing Powder

    International Nuclear Information System (INIS)

    Three analytical methods in determination of cerium in cerium oxide separated from monazite ore for producing lens polishing powder were compared. These methods are titration ICP and XRF spectrometry techniques. The cerium oxide sample with estimated 45% cerium content needed to be digested and converted into solution before the analysis. The analytical results shown significantly no difference between each method. However, the titration method was found to be more convenient and suitable for quality control in the production of cerium oxide as it does not require standard cerium and the complicated analytical instruments

  8. Global environmental transfer of 129I

    International Nuclear Information System (INIS)

    Highlights: • A compartmental model is used to estimate the transfer of 129I through various environmental segments. • Scenario of initial release to each of the compartments is considered. • Dose due to natural production of 129I is constant and continuous i.e. 2.07 × 10−11 mSv/y. • Maximum dose due to 129I for nuclear weapon tests carried for a period of 10 y is 2.42 × 10−7 mSv/y. • Dose due to infinite releases of 129I from NPP and FRP is highest but insignificant as compared to regulations. - Abstract: 129I is released to the environment via natural production due to cosmic interaction in the upper atmosphere; past nuclear weapon tests and routine releases from nuclear power plants (NPP) and fuel reprocessing plants (FRP). In this study, a compartmental model is used to estimate the transfer of 129I through various environmental segments like ocean atmosphere, land atmosphere, terrestrial biosphere, ocean mixed layer, surface soil, deep ocean, ocean sediment, shallow subsurface soil and deep subsurface soil due to its release in any one or more compartments. Due to NPP and FRP releases into the land atmosphere for a period of 1000 y, the highest inventory of 129I is observed in the surface soil up to a period of 3000 y; afterwards the deep ocean shows the highest inventory. The lowest inventory is found in the ocean sediment up to a period of 200 y; followed by the ocean atmosphere up to a period of 1250 y; afterwards the land atmosphere shows the lowest inventory. The maximum annual effective dose to the world population due to releases of 129I from NPP and FRP for a period of 100 y is estimated as 4.14 × 10−6 mSv/y. If the release period is 1000 y, the annual effective dose increases to 1.05 × 10−5 mSv/y and for an infinite period of release, it is estimated as 1.5 × 10−4 mSv/y. The model results are verified by comparing the effective dose per TBq release of 129I at different time periods with those reported by different

  9. Iodine-129: limits to radiologic dose

    International Nuclear Information System (INIS)

    To determine the impact of 129I on iodine metabolism and to further evaluate the extent of possible radiologic effects associated with exposure to 129I, 14 4-month-old beagle dogs of both sexes were administered varying amounts of the radionuclide. Single oral doses of 0, 0.45, 1.13, 2.5 and 5 mg 129I (corresponding to 0, 0.07, 0.2, 0.4 and 0.8 μCi, respectively) containing 14% 127I as a contaminant were given as NaI. In addition, 7 μCi 131I was administered to each pup as a tracer for external whole-body and thyroidal monitoring over the subsequent 2-week period. Each 131I dosage was equivalent to about 60 pg iodine. The dietary intake of stable iodine was approx 0.2 mg/day. It was found that the radiologic hazard associated with 129I appears inherently limited, resulting from its low specific activity and from biologic mechanisms which serve to control the amount of intra- and extrathyroidal iodine. Although the risk to human health from long-term, low-level exposure to 129I is yet to be defined, it may be expected to be restricted by these physical and physiologic constraints. (U.K.)

  10. Behaviour of 129I in the environment

    International Nuclear Information System (INIS)

    Iodine-129 (radiological half-life: 16 million years) is one of the most important long-lived radionuclides released into the environment through nuclear applications. We have carried out several studies on the levels and behaviour of radioactive and stable iodine in the environment to obtain information related to the radiation assessment of nuclear facilities (e.g. nuclear fuel reprocessing plants). In this paper, we summarize our recent investigations on the following points: (1) chemical forms of iodine in the atmosphere, (2) deposition of gaseous iodine on plants, (3) iodine in soil, (4) transfer of iodine from soil to plants, (5) volatilization of iodine from the soil-plants system, (6) levels of 129I in the environment. As a topic, determination of 129I in Chernobyl soil for the estimation of 131I levels at the accident is also described. (author)

  11. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  12. Cerium as a Surrogate in the Plutonium Immobilized Form

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) plans to immobilize a portion of the excess weapons useable plutonium in a ceramic form for final geologic disposal. The proposed immobilization form is a titanate based ceramic consisting primarily of a pyrochlore phase with lesser amounts of brannerite, rutile, zirconolite, vitreous phases and/or other minor phases depending on the impurities present in the feed. The ceramic formulation is cold-pressed and then densified via a reactive sintering process. Cerium has been used as a surrogate for plutonium to facilitate formulation development and process testing. The use of cerium vs. plutonium results in differences in behavior during sintering of the ceramic form. The phase development progression and final phase assemblage is different when cerium is substituted for the actinides in the form. However, the physical behavior of cerium oxide powder and the formation of a pyrochlore-rich ceramic of similar density to the actinide-bearing material make cerium an adequate surrogate for formulation and process development studies

  13. Electrodeposited cerium film as chromate replacement for tinplate

    International Nuclear Information System (INIS)

    The cerium film was prepared on tinplate by electrodeposition method. Sulfide-stain resistance of the Ce-passivated, unpassivated and Cr-passivated tinplates was evaluated using a cysteine tarnish test. Corrosion behavior of these tinplates in contact with 3.5% NaCl solution and 0.1 M citric-citrate buffer solution was investigated using Tafel measurement and electrochemical impedance spectroscopy measurement, respectively. The adhesion of epoxyphenolic lacquer to the Ce-passivated tinplate was checked using a cross hatch cutter. The morphology, composition and thickness of the cerium film were studied by atomic force microscopy, X-ray photoelectron spectroscopy and X-ray fluorescence spectrometry. According to the results, the Ce-passivated tinplate shows the best sulfide-stain resistance and the best corrosion protection property compared with the unpassivated and Cr-passivated tinplates. The adhesion of epoxyphenolic lacquer to the Ce-passivated tinplate is good. The cerium film is composed of the closely packed particles of about 50-200 nm in diameter. The film mainly consists of cerium and oxygen, which mainly exist as CeO2, Ce2O3 and their hydrates such as Ce(OH)4, Ce(OH)3. The total cerium amount of the film is about 0.110 g/m2

  14. Potential for recovery of cerium contained in automotive catalytic converters

    Science.gov (United States)

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  15. 7 CFR 400.129 - Salary offset.

    Science.gov (United States)

    2010-01-01

    ... Rate on Delinquent Debts; USDA Debt Collection Regulations in 7 CFR part 3; and 4 CFR 102.13. (g) For... AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Debt Management-Regulations for the 1986 and Succeeding Crop Years § 400.129 Salary offset. (a) Debt collection by salary offset is feasible if: the cost to...

  16. Characterization of cerium fluoride nanocomposite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Brown, Leif O [Los Alamos National Laboratory; Couture, Aaron J [Los Alamos National Laboratory; Mckigney, Edward A [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Gilbertson, Robert D [Los Alamos National Laboratory; Mccleskey, T Mark [Los Alamos National Laboratory; Reifarth, Rene [Los Alamos National Laboratory

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  17. Characterization of cerium fluoride nanocomposite scintillators

    International Nuclear Information System (INIS)

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF3) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  18. Stabilized zirconia with cerium and neodymium addition

    International Nuclear Information System (INIS)

    Zr0,9 Ce0,05 Nd0,05 O1,975 system was synthesized with the use of the Pechini method. The polymeric resin was calcined at 350 deg C/3 h and analysed by FTIR that show bands relative to organic. Radicals esther type. The TGA curve indicated the polymeric decomposition occurring from 30 deg C to 740 deg C. DTA analysis show a exothermic peak in 100 deg C due to loss of water of material. From 500 deg C to 800 deg C was observed a intense peak due to polymer decomposition and the zirconia crystallization. The calcined powder from 350 deg C/3 h e 30 min to 900 deg/3 h were analysed by XRD that show the crystalline phase formation with the increase of temperature. The X-ray diffraction pattern show the presence of two phases, such as tetragonal and cubic of zirconia demonstrating that neodymium and cerium additions led to zirconia stabilization. (author)

  19. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  20. Chlorination and Carbochlorination of Cerium Oxide

    International Nuclear Information System (INIS)

    The chlorination and carbochlorination of cerium oxide were studied by thermogravimetry under controlled atmosphere (TG) in the 7000C 9500C temperature range.Both reactants and products were analyzed by X-ray diffraction (RX), scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). Thermodynamic calculations were performed by computer assisted software.The chlorination starts at a temperature close to 8000C.This reaction involves the simultaneous formation and evaporation of CeCl3.Both processes control the reaction rate and their kinetic may not be easily separated.The apparent chlorination activation energy in the 8500C-9500C temperature range is 172 to 5 kJ/ mole.Carbon transforms the CeO2-Cl2 into a more reactive system: CeO2-C-Cl2, where the effects of the carbon content, total flow rate and temperature were analyzed.The carbochlorination starting temperature is 7000C.This reaction is completed in one step controlled by mass transfer with an apparent activation energy of 56 to 5 kJ/mole in the 8500C-9500C temperature range

  1. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jessica T. Dahle

    2015-01-01

    Full Text Available Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydroxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent. This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  2. Cerium luminescence in borate glass and effect of aluminium on blue green emission of cerium ions

    International Nuclear Information System (INIS)

    CeO2 doped lead borate (CE) and lead alumino borate (CEA) glasses are prepared by melt quench method at high temperature. The main luminescence band of 5d–4f transition of Ce3+ ions with maxima at around 489 nm of Ce3+ ions in these glasses has been observed, along with red shift and larger stokes shift, which shows that the covalency of the rare earth to oxygen bond increases with the increase in CeO2 content at the expense of Al2O3. Shifting of UV absorption edge towards longer wavelength and a decrease in band gap with increase in CeO2 concentration in both the glass systems has been observed. Moreover densification and stabilization of glass network has been observed which is due to conversion of BO3 units to more compact and stable BO4 units. This covalency effect and the formation of BO4 groups with addition of CeO2 and incorporation of Al2O3 content are responsible for clear effect on luminescence of the present glass system. Moreover the optical basicity values were theoretically determined along with density and molar volume. -- Highlights: • Aluminium incorporation assists in dispersing the clusters of cerium ions and thus enhancing luminescence response. • Decrease of optical band gap energy with an increase of cerium concentration shows the semiconducting behavior. • Larger stokes shift shows that the covalency of rare earth to oxygen bond increases with increase in CeO2

  3. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal

    Institute of Scientific and Technical Information of China (English)

    COLMAN-LERNER Esteban; PELUSO Miguel Andrs; SAMBETH Jorge; THOMAS Horacio

    2016-01-01

    Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds (VOC) (ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter (PM) combustion. The characterization results indicated that Ce was in the form of Ce4+ and Ce3+, and Mn existed in the form of Mn4+and Mn3+on the surface of the Mn/AC sample and in the form of Mn4+ in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO2 (Ce/AC) and MnOx (Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductiv-ity and the reducibility of the oxides.

  4. Elaboration and characterization of thin solid films containing cerium

    Science.gov (United States)

    Hamdi, S.; Guerfi, S.; Siab, R.

    2009-11-01

    Cerium oxide films are widely studied as a promising alternative to Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electrodeposition of Cerium containing thin films was realised on TA6V substrates from a Ce(NO3)3, 6H2O and mixed water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity appears proportional to the quantity of electricity used, as indicated by the Faraday law. Subsequent thermal treatment lead to a CeO2 coating, expected to provide an increase of TA6V oxidation resistance at high temperatures. The deposits were characterized by differential scanning calorimetry (DSC), optical and scanning electron microscopies.

  5. Cerium uptake by zeolite A synthesized from natural clinoptilolite tuffs

    International Nuclear Information System (INIS)

    Natural clinoptilolite tuffs from the Semnan region in Iran was used for the synthesis of zeolite A. The tuffs and synthesized zeolites were characterized by XRD and XRF. The sorption behavior of the synthesized zeolite toward cerium was studied. Using the Lagergren's equation, the absorption constant was calculated. The measured distribution coefficient values (Kd) indicated that cerium uptake is higher in lower initial concentrations, higher temperature and higher pH values. Thermodynamic parameters of the exchange were calculated through construction of ion-exchange isotherms at three temperatures of 298, 323 and 343 K. The dynamic absorption of cerium was also studied by passing the solution through a column in the presence and absence of sodium ions. (author)

  6. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    Science.gov (United States)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  7. The PL "violet shift" of cerium dioxide on silicon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CeO2 thin film was fabricated by dual ion beam epitaxial technique. The phenomenon of PL violet shift at room temperature was observed, and the distance of shift was about 65 nm. After the analysis of crystal structure and valence in the compound were carried out by XRD and XPS technique, it was concluded that the PL shift was related with valence of cerium ion in the oxides. When the valence of cerium ion varied from tetravalence to trivalence, the PL peak position would move from blue region to violet region and the phenomenon of "violet shift" was observed.

  8. Photo-assisted reduction in nanostructured cerium-based coatings

    International Nuclear Information System (INIS)

    Nanostructured cerium-based coatings on AZ31 Mg alloy substrates exposed to sunlight under ambient conditions had an ∼30% increase in Ce(III) species compared to unexposed coatings as measured by X-ray photoelectron spectroscopy. A decrease in film cracks and shift in bandgap from 2.5 eV to 2.7 eV were also measured. Visible changes in color, from yellow to translucent, with exposure were also observed and suggest that cerium-based coatings are reduced by light exposure in humid environments

  9. Membrane assisted liquid-liquid extraction of cerium

    International Nuclear Information System (INIS)

    Membrane assisted liquid-liquid extraction of cerium was investigated, with emphasis placed on the study of the reaction chemistry and the kinetics of non-dispersive solvent extraction and stripping with microporous membranes. A bulk liquid membrane process was developed for the purification of cerium(IV) from sulfate solutions containing other rare earth elements. The cerium process was studied in both a flat sheet contained liquid membrane configuration and with hollow fibre contactors. Di-2-ethylhexyl phosphoric acid (DEHPA) was identified as a suitable extractant for cerium(IV) from sulfuric acid solution, with due consideration of factors such as extraction ability, resistance to degradation, solvent selectivity and potential for sulfate transfer into a strip solution. A detailed study of the extraction of cerium(IV) with DEHPA defined the extraction reaction chemistry. The Ce/DEHPA/sulfate system was also investigated with a flat sheet bulk liquid membrane configuration, using both sulfuric and hydrochloric acid as receiver solutions. These tests identified that hydrophobic membranes provide better mass transfer for extraction and hydrophilic membranes are better for stripping. The presence of an impurity, mono 2-ethylhexyl phosphoric acid (MEHPA), was found to have a dramatic accelerating effect on the rate of the chemical extraction reaction. This was attributed to its higher interfacial activity and population compared to DEHPA, and the fact that MEHPA was also found to be an active carrier for cerium(IV). The mass transfer rate of membrane assisted extraction and stripping of cerium, using hydrophobic and hydrophilic microporous membranes, respectively, was investigated using a modified Lewis-type cell. It was quantitatively demonstrated that the extraction process was mainly controlled by membrane diffusion and the stripping process was controlled by the chemical reaction rate, with membrane diffusion becoming important at low distribution coefficients

  10. Optical and electrical studies of cerium mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, T. R., E-mail: trsherly@gmail.com [Post Graduate Department of Physics, Sanathana Dharma College, Alappuzha, Kerala (India); Raveendran, R. [Nanoscience Research Laboratory, Sree Narayana College, Kollam, Kerala 691001 (India)

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  11. Electrical, thermal and infrared studies of cerium(III) orthovanadate

    International Nuclear Information System (INIS)

    Cerium(III) orthovandate with a small deviation from stoichiometric composition is a p-type semiconductor between 30 and 800 degC. The electrical conduction in cerium(III) orthovanadate is due to thermally activated hopping of holes on equivalent Ce3+ -Ce4+ lattice sites. The DTA result of CeVO4 indicated a possible phase transition at about 70 degC. The IR spectrum of the sample showed bands at 865 and 810 cm-1, typical of VO4 group of orthovanadates. (author). 10 refs., 3 figs

  12. Stepwise hydrochloric acid extraction of monazite hydroxides for the recovery of cerium lean rare earths, cerium, uranium and thorium

    International Nuclear Information System (INIS)

    Monazite sand is normally processed by the caustic soda route to produce mixed rare earth chloride, thorium hydroxide and trisodium phosphate. Bulk of the mixed rare earth chloride is used for the preparation of FC catalysts. Recently some of the catalyst producers have shown preference to cerium depleted (lanthanum enriched) rare earth chloride rather than the natural rare earth chloride obtained from monazite. Therefore, a process for producing cerium depleted rare earth chloride, cerium, thorium and uranium from rare earth + thorium hydroxide obtained by treating monazite, based on stepwise hydrochloric acid extraction, was developed in the authors laboratory. The process involves drying of the mixed rare earth-thorium hydroxide cake obtained by monazite-caustic soda process followed by stepwise extraction of the dried cake with hydrochloric acid under specified conditions

  13. Properties of Cerium Containing Lead Free Solder

    Science.gov (United States)

    Xie, Huxiao

    With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.

  14. Modulated structures in oxidized cerium niobates

    International Nuclear Information System (INIS)

    Three previously reported oxidized cerium niobate phases CeNbO4+x (x = 0.08, 0.25, and 0.33) have been synthesized and characterized by X-ray powder and electron diffraction. All three phases display structures which are modulated variants of a parent fergusonite-type CeIIINbO4 structure (I2/a, a = 5.5342(2) angstrom, b = 11.4016(6) angstrom, c = 5.1583(3) angstrom, β = 94.600(5)degree). The x = 0.08 phase with parent unit cell (I2/a, a = 5.3029(8) angstrom, b = 11.483(2) angstrom, c = 5.2515(8) angstrom, β = 91.32(2)degree) is a two-dimensional, incommensurately modulated phase characterized by incommensurate primary modulation wavevectors q1 ∼ [0.345, 0, 0.138]p* and q2 ∼ [-0.069, 0, 0.172]p* (p for parent). The x = 0.25 phase with parent unit cell (I2/a, a = 5.3522(8) angstrom, b = 11.374(3) angstrom, c = 5.116(1) angstrom, β = 93.34(2)degree) is a commensurately modulated superstructure phase characterized by the reciprocal space unit cell ar* = 1/12[402]p*, br* = 1/4[020]p*, and cr* = 1/3[101]p* (r for resultant). The x = 0.33 phase with parent unit cell (I1, a = 5.4374(8) angstrom, b = 11.189(2) angstrom, c = 5.1458(8) angstrom, α = 90.56(1), β = 94.37(1), γ = 88.19(1)degree) is again commensurately modulated with q = 1/3[101]p*. The close structural relationship between the three oxidized phases and possible interstitial oxygen sites in the CeIIINbO4 structure are discussed

  15. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S (058000); Gianotto, Anita K (057404); McIlwain, Michael E (051783); Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  16. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  17. Cerium tartrate as a corrosion inhibitor for AA 2024-T3

    International Nuclear Information System (INIS)

    Highlights: • Cerium tartrate was found to be an effective inhibitor for AA 2024-T3. • Both anodic and cathodic inhibitions were present during the corrosion process. • The corrosion of Al2CuMg phase was well inhibited by cerium tartrate. - Abstract: A new corrosion inhibitor, cerium tartrate, was synthetized. The inhibition behavior of cerium tartrate for 2024-T3 aluminum alloy was investigated in 0.05 M NaCl solution. The immersion tests indicate that the corrosion of Al2CuMg phase was well inhibited. The electrochemical results show that both anodic and cathodic inhibitions are present during the corrosion process. The surface characterizations reveal that the protective film of cerium tartrate inhibits the dealloying of Al2CuMg phase in the initial stage, and then cerium ions transform to cerium oxide/hydroxides and appear at the Al2CuMg phase, blocking the further corrosion at those corrosion sites

  18. 46 CFR 129.560 - Engine-order telegraphs.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an...

  19. 9 CFR 2.129 - Confiscation and destruction of animals.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Confiscation and destruction of animals. 2.129 Section 2.129 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Miscellaneous § 2.129 Confiscation and destruction...

  20. 24 CFR 886.129 - Leasing to eligible families.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Leasing to eligible families. 886.129 Section 886.129 Housing and Urban Development Regulations Relating to Housing and Urban... Additional Assistance Program for Projects With HUD-Insured and HUD-Held Mortgages § 886.129 Leasing...

  1. 5 CFR 185.129 - Computation of time.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Computation of time. 185.129 Section 185.129 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PROGRAM FRAUD CIVIL REMEDIES § 185.129 Computation of time. (a) In computing any period of time under this part or...

  2. 12 CFR 225.129 - Activities closely related to banking.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Activities closely related to banking. 225.129 Section 225.129 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL... Holding Companies Interpretations § 225.129 Activities closely related to banking. Courier activities....

  3. 29 CFR 452.129 - Non-discrimination.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Non-discrimination. 452.129 Section 452.129 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT... DISCLOSURE ACT OF 1959 Election Procedures; Rights of Members § 452.129 Non-discrimination....

  4. 7 CFR 1942.129 - Borrower supervision and servicing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Borrower supervision and servicing. 1942.129 Section 1942.129 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE... Facilities Projects § 1942.129 Borrower supervision and servicing. Loans under this subpart are subject...

  5. 7 CFR 1220.129 - State and United States.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false State and United States. 1220.129 Section 1220.129... CONSUMER INFORMATION Soybean Promotion and Research Order Definitions § 1220.129 State and United States. The terms State and United States include the 50 States of the United States of America, the...

  6. 7 CFR 989.129 - Voting at nomination meetings.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Voting at nomination meetings. 989.129 Section 989.129... GROWN IN CALIFORNIA Administrative Rules and Regulations Raisin Administrative Committee § 989.129 Voting at nomination meetings. Any person (defined in § 989.3 as an individual, partnership,...

  7. 46 CFR 129.550 - Power for cooking and heating.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power for cooking and heating. 129.550 Section 129.550... INSTALLATIONS Miscellaneous Electrical Systems § 129.550 Power for cooking and heating. (a) Equipment for cooking and heating must be suitable for marine use. Equipment designed and installed to comply with...

  8. 31 CFR 129.6 - Penalties specified by law.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Penalties specified by law. 129.6 Section 129.6 Money and Finance: Treasury Regulations Relating to Money and Finance PORTFOLIO INVESTMENT SURVEY REPORTING § 129.6 Penalties specified by law. Reporters are advised that the Act provides...

  9. 46 CFR 129.320 - Generators and motors.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Generators and motors. 129.320 Section 129.320 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.320 Generators and motors. (a) Each generator and motor, except a submersible-pump motor, must be— (1) In an accessible space, adequately ventilated...

  10. 29 CFR 570.129 - Relation to other laws.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Relation to other laws. 570.129 Section 570.129 Labor... Provisions of the Fair Labor Standards Act of 1938, as Amended Enforcement § 570.129 Relation to other laws... incidental driving of automobiles and trucks on public highways under specified conditions. These...

  11. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  12. Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hamlaoui, Y. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France); Pedraza, F. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France)], E-mail: fpedraza@univ-lr.fr; Remazeilles, C.; Cohendoz, S.; Rebere, C. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France); Tifouti, L. [Laboratoire de Genie de l' Environnement, Universite Badji Mokhtar, BP 1223, 23020 El Hadjar-Annaba (Algeria); Creus, J. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France)

    2009-02-15

    In this work the elaboration by cathodic electrodeposition of cerium-based oxides on carbon steel from relatively concentrated cerium nitrate solutions is investigated. In particular, the study presented here (Part I) focuses on the electrochemical and analytical characterisation of the films and on the correlations between the electrochemical features and the characteristics of the layers. The effect of other parameters such as concentration, temperature, pH and additives to improve the behaviour of the film against corrosion will be investigated in part II of the study. The electrochemical characterisation will reveal that Ce(IV)-steel interactions can be responsible for some weak electrochemical waves appearing in the cyclic voltammograms that often are attributed to oxygen or nitrates reduction. This results from the oxidation of Ce(III) solutions to Ce(IV) in contact with air. Furthermore, the deposits strongly depend on the applied current density. Low current densities do not render fully covering deposits on the steel and a carbonated green rust will appear. On the contrary, the increase of the current density leads to denser layers of relatively small crystallite size that readily covers the steel surface. The deposits have a needle-like morphology and the Ce content achieves a plateau of about 20-22 at.%. However, a significant network of cracks appears probably occurring during the deposition process itself. The differential scanning calorimetry (DSC) results indicate that the deposits are not fully crystalline after 550 deg. C in contrast with the X-ray diffraction (XRD) patterns that unambiguously show a fluorite-type CeO{sub 2} phase whose crystallite size decreases with increasing the current density. The rinsing medium also brings about different features of the films. Rinsing with water allows to incorporate more nitrates and to adsorb CO{sub 2} than when rinsing with ethanol. However, R-OH bonds will be trapped in the latter.

  13. Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions

    International Nuclear Information System (INIS)

    In this work the elaboration by cathodic electrodeposition of cerium-based oxides on carbon steel from relatively concentrated cerium nitrate solutions is investigated. In particular, the study presented here (Part I) focuses on the electrochemical and analytical characterisation of the films and on the correlations between the electrochemical features and the characteristics of the layers. The effect of other parameters such as concentration, temperature, pH and additives to improve the behaviour of the film against corrosion will be investigated in part II of the study. The electrochemical characterisation will reveal that Ce(IV)-steel interactions can be responsible for some weak electrochemical waves appearing in the cyclic voltammograms that often are attributed to oxygen or nitrates reduction. This results from the oxidation of Ce(III) solutions to Ce(IV) in contact with air. Furthermore, the deposits strongly depend on the applied current density. Low current densities do not render fully covering deposits on the steel and a carbonated green rust will appear. On the contrary, the increase of the current density leads to denser layers of relatively small crystallite size that readily covers the steel surface. The deposits have a needle-like morphology and the Ce content achieves a plateau of about 20-22 at.%. However, a significant network of cracks appears probably occurring during the deposition process itself. The differential scanning calorimetry (DSC) results indicate that the deposits are not fully crystalline after 550 deg. C in contrast with the X-ray diffraction (XRD) patterns that unambiguously show a fluorite-type CeO2 phase whose crystallite size decreases with increasing the current density. The rinsing medium also brings about different features of the films. Rinsing with water allows to incorporate more nitrates and to adsorb CO2 than when rinsing with ethanol. However, R-OH bonds will be trapped in the latter

  14. Electrorheological Effects of Cerium-Doped TiO2

    Institute of Scientific and Technical Information of China (English)

    尹剑波; 赵晓鹏

    2001-01-01

    It is found that the doping of cerium ion into anatase TiO2 can improve the electrorheological (ER) effects of TiO2 and broaden the operational temperature range. Especially, the substitution of 7-11 mol% of the cerium dopant for Ti can obtain a relatively high shear stress, t-7.4kPa (at 4kV/mm), which is ten times larger than that of pure TiO2 ER fluid. Also, the typical Ce-doped TiO2 ER fluid shows the highest shear stress at 80℃, but 40℃ for pure TiO2 ER fluid. The dielectric loss and dielectric constant at a low frequency of TiO2 is improved by the doping of cerium, and the temperature dependence of the dielectric properties shows an obvious differnce between pure and doped TiO2 ER fluids. These can well explain the ER behaviour of doped TiO2. Furthermore, the change of rheological and dielectric properties is discussed on the basis of the lattice distortion and defects in TiO2 arising from the doping of cerium.

  15. Purification of cerium, neodymium and gadolinium for low background experiments

    Directory of Open Access Journals (Sweden)

    Boiko R.S.

    2014-01-01

    Full Text Available Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search, 136Ce (2β+ candidate with one of the highest Q2β. The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  16. Enhanced K-edge angiography utilizing cerium-target diode

    International Nuclear Information System (INIS)

    The cerium-target x-ray tube is useful in order to perform cone-beam K-edge angiography because Kα rays from the cerium target are absorbed effectively by iodine-based contrast mediums. The x-ray generator consists of a main controller, an x-ray tube unit with a high-voltage circuit and an insulation transformer, and a personal computer. The tube is a glass-enclosed diode with a cerium target and a 0.5-mm-thick beryllium window. The maximum tube voltage and current were 65 kV and 0.4 mA, respectively, and the focal-spot sizes were approximately 1 x 1 mm. Sharp cerium Kα lines were left using a barium sulfate filter, and the x-ray intensity was 16.8 μGy/s at 1.0 m from the source with a tube voltage of 60 kV and a current of 0.40 mA. Angiography was performed with an x-ray film (Fuji IX 100) using iodine-based microspheres 15 μm in diameter. In angiography of non-living animals, we observed fine blood vessels of 100 μm or less with high contrasts. (author)

  17. Electrodeposition of cerium from aqueous cerous chloride solutions

    International Nuclear Information System (INIS)

    Cerium was plated as a grey, metallic, adherent deposit from aqueous cerous chloride baths containing certain organic addition agents. The cathodic current efficiency was determined for each case. Chemical analysis indicates that the purity of the metal is better than 99.0 per cent. (author). 7 refs

  18. 40 CFR 721.8657 - Cerium, hydroxy oleate propionate complexes.

    Science.gov (United States)

    2010-07-01

    ... complexes. 721.8657 Section 721.8657 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8657 Cerium, hydroxy oleate propionate complexes. (a) Chemical substance..., hydroxy oleate propionate complexes (PMN P-99-0026) is subject to reporting under this section for...

  19. Thermoluminescence studies in cerium doped NaCl crystals

    International Nuclear Information System (INIS)

    Cerium is known to enter substitutionally in trivalent state when doped in alkali halides. Cerium doped NaCl crystals exhibit greatly enhanced thermoluminescence output upon X-irradiation at RT, the intensity of emission being about 10 times that in undoped crystals for similar dosage of irradiation. The cerium doped crystals give upon X-irradiation a very intense glow peak at 145degC with shoulders at 120degC and 210degC. Upon partially bleaching the crystal with F-light, the peak at 120degC becomes prominent probably due to faster bleaching of the glow at 145degC. From further optical bleaching studies, it is concluded that the glow peak at around 120degC is due to cerium centres in the irradiated crystal and the 145degC peak due to F centres. This F centre emission occurs at lower temperature, compared to that in the undoped crystals where it occurs at around 180degC. The spectral emission in the Ce doped crystals is in the blue-green region as compared to the emission in the blue region in undoped crystals. The trap depth and other parameters of the 120degC glow peak are estimated by the total curve fitting method. (author)

  20. Competition between magnetic order and Kondo effect in cerium compounds

    International Nuclear Information System (INIS)

    We present a mean-field analysis of the competition between magnetic order and Kondo effect in a Kondo-lattice model usually employed to discuss properties of certain cerium compounds. A phase diagram is obtained showing an antiferromagnetic phase and a Kondo-compensated regime, in agreement with the Doniach diagram. A general discussion of the mean-field approach is also presented

  1. Electrical measurements in the cerium oxide doped samples

    International Nuclear Information System (INIS)

    Electrical behaviour of an interface formed by cerium oxide doped system has been studied. The system was (Ce O2)1-0,005 (Y O 1,5)0,005/(Ce O2)1-0,14(Y O 1,5)0,14. This work relates results of impedance analysis, and curves U(I) at different temperatures and polarizations conditions. (author)

  2. Purification of cerium, neodymium and gadolinium for low background experiments

    Science.gov (United States)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  3. Cerium as a surrogate in the plutonium immobilization waste form

    Science.gov (United States)

    Marra, James Christopher

    In the aftermath of the Cold War, approximately 50 tonnes (MT) of weapons useable plutonium (Pu) has been identified as excess. The U.S. Department of Energy (DOE) has decided that at least a portion of this material will be immobilized in a titanate-based ceramic for final disposal in a geologic repository. The baseline formulation was designed to produce a ceramic consisting primarily of a highly substituted pyrochlore with minor amounts of brannerite and hafnia-substituted rutile. Since development studies with actual actinide materials is difficult, surrogates have been used to facilitate testing. Cerium has routinely been used as an actinide surrogate in actinide chemistry and processing studies. Although cerium appeared as an adequate physical surrogate for powder handling and general processing studies, cerium was found to act significantly different from a chemical perspective in the Pu ceramic form. The reduction of cerium at elevated temperatures caused different reaction paths toward densification of the respective forms resulting in different phase assemblages and microstructural features. Single-phase fabrication studies and cerium oxidation state analyses were performed to further quantify these behavioral differences. These studies indicated that the major phases in the final phase assemblages contained point defects likely leading to their stability. Additionally, thermochemical arguments predicted that the predominant pyrochlore phase in the ceramic was metastable. The apparent metastabilty associated with primary phase in the Pu ceramic form indicated that additional studies must be performed to evaluate the thermodynamic properties of these compounds. Moreover, the metastability of this predominant phase must be considered in assessment of long-term behavior (e.g. radiation stability) of this ceramic.

  4. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  5. Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate

    International Nuclear Information System (INIS)

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because o f abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972 -- 73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. (author)

  6. [Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate].

    Science.gov (United States)

    Hirakawa, K

    1983-02-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because of abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972-73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. PMID:6867381

  7. Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Keiko (Nippon Medical School, Tokyo)

    1983-02-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because of abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972 -- 73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney.

  8. Global cycling of tritium and iodine-129

    International Nuclear Information System (INIS)

    Dynamic linear compartmnt models are used widely to describe global cycling of environmental tritium and 129I. Important tests of these models by comparison of predictions with environmental data from anthropogenic sources are discussed. A tritium model, based on the global hydrologic cycle that reproduces time-series data from atmospheric nuclear weapons testing on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude-dependence of atmosperic tritium in both hemispheres is presented. The model includes: hemispheric stratosphere compartments; disaggregation of the troposphere and ocean surface waters into eight latitude zones; consideration of the different concentrations of water in air over land and the ocean in calculating the specific activity of atmospheric tritium; and use of a box-diffusion model for transport in the ocean. An important prediction of a global model for 129I, which we developed previously from data on cycling of naturally occurring stable iodine, is that the mean residence time in the first 1 m of surface soil is about 4000 y. However, a recent analysis of measured soil profiles of 129I near the Savannah River Plant, based on a linear compartment model for downward transport through soil, suggested that the mean residence time in the first 0.3 m is only about 40 y. A diffusion model is used to describe the measured soil profiles, and the resulting diffusion coefficient is shown to correspond to mean residence times in the first 0.3 m and 1 m of soil of about 80 and 900 y, respectively. The value for the first 1 m can be reconciled with the prediction of the global model

  9. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. Roof renovation of buildings 128 and 129

    CERN Multimedia

    2015-01-01

    The roof renovation of buildings 128 and 129 is scheduled to take place from 17 August to 15 October 2015.   During this period, access to the "raw material" workshop will be limited and controlled due to asbestos removal. Collecting your orders directly from the building will be difficult, or even impossible, and urgent requests will be difficult to carry out. We therefore ask you to create your requests via EDH, so that delivery may be carried out as soon as possible. Thank you for your understanding. GS Department

  11. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    Science.gov (United States)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  12. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  13. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol-1.

  14. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohui, E-mail: mkmkzxh@hotmail.com [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Liu, Jinzhi [School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei Province (China); Xing, Jiandong; Ma, Shengqiang [State Key Laboratory Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi Province (China)

    2014-05-01

    The effect of cerium modification on the microstructure and properties of hypereutectic high chromium cast iron primarily containing 4.0 wt% C and 20.0 wt% Cr was studied by means of optical microscopy, transmission electron microscope, scanning electron microscope, and energy dispersive X-ray spectrometry. The primary M{sub 7}C{sub 3} carbides were refined obviously when cerium was added in the melt. Ce{sub 2}S{sub 3} was found in the primary M{sub 7}C{sub 3} carbides and acted as the heterogeneous substrate of M{sub 7}C{sub 3} carbides. The impact toughness of the specimen modified with 0.5 wt% cerium increased by 50% compared with the specimen without cerium modification. The hardness of the alloy modified with cerium increased slightly compared with the specimen without cerium modification.

  15. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    Science.gov (United States)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  16. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  17. NMR of laser-polarized 129Xe in blood foam

    Science.gov (United States)

    Tseng, C. H.; Peled, S.; Nascimben, L.; Oteiza, E.; Walsworth, R. L.; Jolesz, F. A.

    1997-01-01

    Laser-polarized 129Xe dissolved in a foam preparation of fresh human blood was investigated. The NMR signal of 129Xe dissolved in blood was enhanced by creating a foam in which the dissolved 129Xe exchanged with a large reservoir of gaseous laser-polarized 129Xe. The dissolved 129Xe T1 in this system was found to be significantly shorter in oxygenated blood than in deoxygenated blood. The T1 of 129Xe dissolved in oxygenated blood foam was found to be approximately 21 (+/-5) s, and in deoxygenated blood foam to be greater than 40 s. To understand the oxygenation trend, T1 measurements were also made on plasma and hemoglobin foam preparations. The measurement technique using a foam gas-liquid exchange interface may also be useful for studying foam coarsening and other liquid physical properties.

  18. Speciation and migration of 129I in soil profiles

    DEFF Research Database (Denmark)

    Luo, Maoyi; Hou, Xiaolin; Zhou, Weijian;

    2013-01-01

    A method has been developed for speciation analysis of ultra low level 129I in soil using sequential extraction combined with coprecipitation for separation of carrier free iodine and AMS measurement of 129I. Two loess profiles collected from northwest China were analyzed for species of 129I and...... suggest that migration of iodine downwards in the soil profile is a slow process; the oxides and residue are the less mobile fractions of iodine. © 2012 Elsevier Ltd....... 127I. Similar partitioning of 129I and 127I was observed in the loess profiles, the distribution of iodine isotopes followed an order of organic > leachable > reducible > residue. The 129I concentrations and 129I/127I ratios decreased exponentially with the depth, and 2 orders of magnitude lower in...

  19. Study on Radioecology and Tracer of Iodine-129

    International Nuclear Information System (INIS)

    Iodine-129 (15.7 Ma) is a naturally occurring radioisotope of iodine. The ratio of 129I/127I was estimated to be ∼ 10-12 in the ocean and 10-11 in the territorial environment in pre-nuclear era, releases from nuclear weapon tests have increased this ratio to ∼ 10-10. However, a large amount of iodine-129 was released from various nuclear facilities, and the greatest releases of 129I are from two European reprocessing plants, especially in recent years. By 1998, 2600 Kg and 220 Kg 129I have been discharged to the marine environment and atmosphere from La Hague (France) and Sellafield reprocessing plants, respectively. This amount is tens times larger than the total 129I inventory in the pre-nuclear ocean and weapon test releases. Although there is no significant radiation risk for the human health at present level of 129I, the continuously increasing production and release of 129I make the accumulation of 129I in the environment, immigration, cycle and long term radioecological risk should be give more attention due to its long half-life, high accumulation in human thyroid and high mobility. Iodine is a conservative element in the ocean, the large amount of iodine-129 discharged to the marine system can therefore be used as a oceanographic tracer to study the physical dispersion, mixing and circulative processes of water mass in the ocean. In Riso national laboratory, a radiochemical neutron activation analysis method was developed, using this method the radioecology and tracer of iodine-129 was studied. Some representative works are presented below. (1) Evaluation of radiation exposure of humans to iodine-129. The human and animal thyroids collected from different places, such as Tianjin in China, Gemol in Belarus, Ribe in Denmark, human urine in Denmark, seafood in China were analysed for iodine-129 concentration and 129I/127I ratio, the exposure level were compared with other places. (2) Reconstruction of radiation dose from I-131 in the Chernobyl

  20. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    Science.gov (United States)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  1. Doping of KDP single crystals with cerium: Growth and optical properties

    International Nuclear Information System (INIS)

    The features of doping of KDP crystals with cerium ions and organocerium complexes with alizarin complexon and arsenazo III have been investigated. It is established that 'direct' doping by introducing cerium salts into the initial solution cannot be implemented. The effect of organometallic complexes of cerium on the crystal growth has been studied. Organocerium complexes predominantly enter the prismatic or pyramidal growth sectors. It is shown that the complex arsenazo III + Ce blocks the growth of the prismatic sector. Cerium-doped KDP crystals exhibit a photoluminescence band peaking at the wavelength λmax= 350 nm.

  2. Fabrication of mesoporous cerium dioxide films by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Young-Soo; Lee, Jin-Kyu; Ahn, Jae-Hoon; Park, Eun-Kyung; Kim, Gil-Pyo; Baeck, Sung-Hyeon

    2007-11-01

    Mesoporous cerium dioxide (Ceria, CeO2) thin films have been successfully electrodeposited onto ITO-coated glass substrates from an aqueous solution of cerium nitrate using CTAB (Cetyltrimethylammonium Bromide) as a templating agent. The synthesized films underwent detailed characterizations. The crystallinity of synthesized CeO2 film was confirmed by XRD analysis and HR-TEM analysis, and surface morphology was investigated by SEM analysis. The presence of mesoporosity in fabricated films was confirmed by TEM and small angle X-ray analysis. As-synthesized film was observed from XRD analysis and HR-TEM image to have well-crystallized structure of cubic phase CeO2. Transmission electron microscopy and small angle X-ray analysis revealed the presence of uniform mesoporosity with a well-ordered lamellar phase in the CeO2 films electrodeposited with CTAB templating. PMID:18047150

  3. Antioxidant activity of levan coated cerium oxide nanoparticles.

    Science.gov (United States)

    Kim, Sun-Jung; Chung, Bong Hyun

    2016-10-01

    Levan coated cerium oxide nanoparticles (LCNPs) with the enhanced antioxidant activity were successfully synthesized and characterized. Levan and their derivatives are attractive for biomedical applications attributable to their antioxidant, anti-inflammation and anti-tumor properties. LCNPs were synthesized using the one-pot and green synthesis system with levan. For production of nanoparticles, levan plays a role as a stabilizing and reducing agent. Fourier transform infrared spectroscopy (FT-IR) analysis showed that LCNPs successfully synthesized. The morphology and size of nanoparticles were confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). LCNPs have good water solubility and stability. The conjugation of levan with cerium oxide nanoparticles improved antioxidant activity. Moreover the level of ROS was reduced after treatment of LCNPs to H2O2 stimulated NIH3T3 cells. These results demonstrate that the LCNPs are useful for applying of treatment of ROS induced diseases. PMID:27312651

  4. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  5. Contribution of nuclear medicine procedures to global 129I inventory

    International Nuclear Information System (INIS)

    129I content of batches of Na131I vials used for nuclear medical procedures was estimated by neutron activation analysis. The average value of the 129I/131I activity ratio (corresponding to zero decay time of the latter) was (4.98+-2.8)x10-9. It is concluded that the contribution of 129I from medical applications of 131I in India is insignificant. (author)

  6. Development of a zinc-cerium redox flow battery

    OpenAIRE

    Leung, P. K.

    2011-01-01

    Redox flow batteries (RFBs) can be used to store energy on the large and medium scale (kW – MW), particularly in applications such as load levelling of electrical power supplies, power quality control application and facilitating renewable energy deployment. In this thesis, the development of a divided and undivided zinc-cerium redox flow battery from its fundamental chemistry in aqueous methanesulfonic acid has been described. This comprehensive investigation has focused on th...

  7. Purification of cerium, neodymium and gadolinium for low background experiments

    OpenAIRE

    Boiko R.S.; Barabash A.S.; Belli P.; Bernabei R.; Cappella F.; Cerulli R.; Danevich F.A.; Incicchitti A.; Laubenstein M.; Mokina V.M.; Nisi S.; Poda D.V.; Polischuk O.G.; Tretyak V.I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical an...

  8. Properties of ceramics based on cerium dioxide with crystalline filaments

    International Nuclear Information System (INIS)

    Problems of the increase of thermal resistance of ceramics on the basis of cerium dioxide with the interduction of filamentous crystals (FC) of CeO2 and MgO have been considered. It is established that FC of MgO and CeO2 are dissolved in the matrix, foAming fine oblong pores, promoting relaxation of thermal strains and preventing crack propagation, which increases the material thermal resistance

  9. Far infrared properties of PbTe doped with cerium

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, P.M. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia)]. E-mail: nikolic@sanu.ac.yu; Koenig, W. [Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80 (Germany); Vujatovic, S.S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Blagojevic, V. [Faculty of Electronic Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Lukovic, D. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Savic, S. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Radulovic, K. [Institute of Technical Sciences SASA, Knez Mihailova 35/IV, 11000 Belgrade (Serbia); Urosevic, D. [Mathematical Institute SASA, Knez Mihailova 35/I, 11000 Belgrade (Serbia); Nikolic, M.V. [Center for Multidisciplinary Studies of the University of Belgrade, Kneza Viseslava 1, Belgrade (Serbia)

    2007-05-16

    Single crystal samples of lead telluride doped with cerium were made using the Bridgman method. Far infrared reflectivity spectra in the temperature range from 10 to 300 K are presented. The experimental data were numerically analyzed using a fitting procedure based on the plasmon-phonon interaction model and optical parameters were determined. Two additional local modes were observed at about 138 and 337 cm{sup -1}. The origin of these local vibrational impurity modes was discussed.

  10. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    OpenAIRE

    Nelson, Bryant C.; Monique E. Johnson; Walker, Marlon L.; Riley, Kathryn R.; Christopher M. Sims

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where o...

  11. Monomers, Dimers, and Helices: Complexities of Cerium and Plutonium Phenanthrolinecarboxylates.

    Science.gov (United States)

    Cary, Samantha K; Ferrier, Maryline G; Baumbach, Ryan E; Silver, Mark A; Lezama Pacheco, Juan; Kozimor, Stosh A; La Pierre, Henry S; Stein, Benjamin W; Arico, Alexandra A; Gray, Danielle L; Albrecht-Schmitt, Thomas E

    2016-05-01

    The reaction of Ce(III) or Pu(III) with 1,10-phenanthroline-2,9-dicarboxylic acid (PDAH2) results in the formation of new f-element coordination complexes. In the case of cerium, Ce(PDA)(H2O)2Cl·H2O (1) or [Ce(PDAH)(PDA)]2[Ce(PDAH)(PDA)] (2) was isolated depending on the Ce/ligand ratio in the reaction. The structure of 2 is composed of two distinct substructures that are constructed from the same monomer. This monomer is composed of a Ce(III) cation bound by one PDA(2-) dianionic ligand and one PDAH(-) monoanionic ligand, both of which are tetradentate. Bridging by the carboxylate moieties leads to either [Ce(PDAH)(PDA)]2 dimers or [Ce(PDAH)(PDA)]1∞ helical chains. For plutonium, Pu(PDA)2 (3) was the only product isolated regardless of the Pu/ligand ratio employed in the reaction. During the reaction of plutonium with PDAH2, Pu(III) is oxidized to Pu(IV), generating 3. This assignment is consistent with structural metrics and the optical absorption spectrum. Ambiguity in the assignment of the oxidation state of cerium in 1 and 2 from UV-vis-near-IR spectra invoked the use of Ce L3,2-edge X-ray absorption near-edge spectroscopy, magnetic susceptibility, and heat capacity measurements. These experiments support the assignment of Ce(III) in both compounds. The bond distances and coordination numbers are also consistent with these assignments. 3 contains 8-coordinate Pu(IV), whereas the cerium centers in 1 and 2 are 9- and/or 10-coordinate, which correlates with the increased size of Ce(III) versus Pu(IV). Taken together, these data provide an example of a system where the differences in the redox behavior between these f elements creates more complex chemistry with cerium than with plutonium. PMID:27070401

  12. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO2 nanoparticles. • Biosynthesized CeO2 nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO2) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN3O9·6H2O) results in the extracellular formation of CeO2 nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy, Photoluminescence spectroscopy (PL), Transmission

  13. A review on 129I analysis in air

    International Nuclear Information System (INIS)

    A review of literature focused on 129I determination in air is provided. 129I analysis in the environment represents a vital tool for tracing transport mechanisms, distribution pathways, safety assessment and its application as environmental tracer. To achieve that, specific chemical extraction methods and high sensitivity analytical techniques have been developed. This paper is intended to give an overview about the sample collection, extraction and distribution of 129I in the air. Sensitivity of available measurement techniques for the determination of 129I is compared. The article also provides the summary of current worldwide distribution of 129I in air and respective radiation exposure of man. -- Highlights: • This paper gives an overview about the occurrence, sample collection and extraction of 129I from the air. • Gaseous emissions and liquid discharges from reprocessing plants mainly contribute to 129I in the atmosphere. • Alkaline leaching and combustion are preferred methods for iodine extraction. • AMS presents the most important breakthrough in analytical technologies for 129I measurement. • High concentration of 129I in the closest proximity of reprocessing plants is of radiological relevance

  14. Analysis list: nhr-129 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nhr-129 Larvae + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/nhr-12...9.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/nhr-129.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/ce10/target/nhr-129.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/nhr-129.Larvae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Larvae.gml ...

  15. Estimation of 129I inventory in the oceans

    International Nuclear Information System (INIS)

    Spatial distribution of oceanic 129I inventory presented here is based on collection of data from published literatures coupled with model calculation using ArcGIS software tools. A total of 363 thiessen polygons were created for the oceans in order to cover the tremendous variability in distribution of 129I data range. The results indicate that total 129I oceanic inventory is approximately 7310 kg, which is mainly stored in the region of the North Atlantic and the Arctic Oceans. The concentrations of 129I in the oceans are 3-4 orders of magnitude higher than the pre-anthropogenic level reflecting effects of post 1945 anthropogenic activities. (author)

  16. Jet formation in cerium metal to examine material strength

    International Nuclear Information System (INIS)

    Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solid phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. From these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. The data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions

  17. Enhancing cerium and plutonium solubility by reduction in borosilicate glass

    Science.gov (United States)

    Cachia, J.-N.; Deschanels, X.; Den Auwer, C.; Pinet, O.; Phalippou, J.; Hennig, C.; Scheinost, A.

    2006-06-01

    High-level radioactive wastes produced by spent fuel reprocessing containing fission and activation products as well as actinides are incorporated in a borosilicate glass. To ensure optimum radionuclide containment, the resulting glass must be as homogeneous as possible. Microscopic heterogeneity can arise from various processes including the excess loading of an element above its solubility limit. The current actinide loading limit is 0.4 wt%. Work is in progress to assess the actinide solubility in these glasses, especially for plutonium. Initially the actinides were simulated by lanthanides and hafnium. The results show that trivalent elements (La, Gd) exhibit greater solubility than tetravalent elements (Pu, Hf). Cerium is an interesting element because its oxidation state varies from IV to III depending on the process conditions, such as the temperature and redox potential of the melt. In order to quantify the solubility increase, cerium-doped glass samples were melted under reducing conditions by adding a reducing agent. The solubility observed at 1473 K increased significantly from 0.95 to 13.00 wt%. Several reducing compounds have been tested. This paper deals with this study and the application to reduce Pu(IV) to Pu(III). The reduction state was characterized by X-ray absorption spectroscopy (XANES) for plutonium and by chemical analysis for cerium. The material homogeneity was verified by optical and scanning electron microscopy. Preliminary findings concerning the reduction of Pu-doped glasses fabricated in hot cells are also discussed.

  18. Dissolution of cerium from cerium-based conversion coatings on Al 7075-T6 in 0.1 M NaCl solutions

    International Nuclear Information System (INIS)

    Highlights: ► Dissolution of cerium from cerium-based conversion coatings (CeCCs) on Al 7075-T6. ► Immersion of CeCCs in 0.1 M NaCl showed dissolution only possible at pH ⩽ 2. ► Corrosion protection of CeCCs is not provided by dissolution of cerium species. ► CeCCs corrosion protection mechanism differ from chromate-based conversion coatings. - Abstract: Cerium-based conversion coatings (CeCCs) were immersed in 0.1 M NaCl for ∼500 h over a range of pH (2.0–5.7) to investigate the dissolution of cerium species. Dissolution was detected by UV–vis spectroscopy only in the pH 2 solution. Similar cerium concentrations were detected from the dissolution of as-deposited and phosphate post-treated CeCCs. Solubility diagrams for Ce(OH)3, Ce(OH)4, CeO2, and CePO4 showed that only Ce(OH)3 was soluble in acidic conditions. Although pKsp(CePO4) ≈ pKsp(Ce(OH)3), the dissolution of the post-treated CeCCs was slightly higher than the as-deposited CeCCs. Thus, corrosion protection of CeCCs is not provided solely by dissolution of cerium species.

  19. The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage

    International Nuclear Information System (INIS)

    Zinc–cerium redox flow batteries (ZCBs) are emerging as a very promising new technology with the potential to store a large amount of energy economically and efficiently, thanking to its highest thermodynamic open-circuit cell voltage among all the currently studied aqueous redox flow batteries. However, there are numerous scientific and technical challenges that must be overcome if this alluring promise is to turn into reality, from designing the battery structure, to optimizing the electrolyte compositions and elucidating the complex chemical reactions that occur during charge and discharge. This review article is the first summary of the most significant developments and challenges of cerium half-cell and the current understanding of their chemistry. We are certain that this review will be of great interest to audience over a broad range, especially in fields of energy storage, electrochemistry, and chemical engineering

  20. {sup 129}I dispersion and sources in Northwest Canada

    Energy Technology Data Exchange (ETDEWEB)

    Herod, Matthew N., E-mail: mattherod@gmail.com [University of Ottawa, Department of Earth Sciences, Marion Hall, Ottawa, ON, K1N6N5 (Canada); Clark, Ian D. [University of Ottawa, Department of Earth Sciences, Marion Hall, Ottawa, ON, K1N6N5 (Canada); Kieser, W.E. [University of Ottawa, Department of Physics, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada); Agosta, Sarah [University of Ottawa, Department of Earth Sciences, Marion Hall, Ottawa, ON, K1N6N5 (Canada); Zhao Xiaolei [University of Ottawa, Department of Physics, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada)

    2013-01-15

    Radioiodine, {sup 129}I is a biophilic and mobile radionuclide, and a major contaminant of concern for long term radioactive waste disposal. Nuclear fuel reprocessing has released large amounts of anthropogenic {sup 129}I in a number of locations globally; this has led to an increase in the concentration of {sup 129}I and the {sup 129}I/{sup 127}I ratio in the environment. Therefore, a detailed understanding of its movement and concentration in the environment is essential. While {sup 129}I dispersion has been examined in the vicinity of nuclear activities, little is known about its accumulation in remote regions. Accordingly, we have undertaken reconnaissance sampling in the Arctic as a location that may be affected by {sup 129}I fallout. Samples from large watersheds were collected in northern Canada on a trajectory starting in Whitehorse, Yukon Territory (60 Degree-Sign 43 Prime 00 Double-Prime N) and moving north to Tsiigehtchic, Northwest Territory (67 Degree-Sign 26 Prime 26 Double-Prime N). Results show concentrations of {sup 129}I up to 27 Multiplication-Sign 10{sup 6} atoms/L are present in Northwest Canada and {sup 129}I/I ratios up to 1.68 Multiplication-Sign 10{sup -10}. Annual {sup 129}I fallout ranges from 2.78 Multiplication-Sign 10{sup 9} to 7.95 Multiplication-Sign 10{sup 9} atoms/m{sup 2}/yr, calculated by normalizing the measured values to watershed area and discharge. These quantities substantially exceed literature values for waters containing only geogenic or cosmogenic production and are similar for all watersheds regardless of watershed area or discharge. Anthropogenic releases of {sup 129}I into the atmosphere or oceans are the major potential sources of {sup 129}I in the Arctic.

  1. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  2. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis. ► Cerium oxide particles were detected in

  3. Electrochemical behavior of carbon paper on cerium methanesulfonate electrolytes for zinc-cerium flow battery

    International Nuclear Information System (INIS)

    The voltammetric behavior of the Ce(III)/(IV) half-cell reaction in various electrolytes containing 0.6 M Ce was investigated on both pristine and metal-modified carbon paper (CP) electrodes at three different temperatures (25, 40 and 55 °C) in order to find the most favorable electrochemical conditions. The pristine CP displayed robust electrochemical performance for up to 200 repetitive CV cycles while the Pt loaded electrode’s performance was stable for only 70 cycles, even though the latter exhibited a more reversible behavior, moving from a quasi-reversible to a reversible system (Dox. = 4.0 × 10−6 cm2 s−1 and Dred. = 2.5 × 10−6 cm2 s−1). The In and La metal modified electrodes did not show any improvement with regard to the kinetics or reversibility of the reaction. The addition of 1 M H2SO4 to the base electrolyte enhanced the cerium reduction reaction by a factor of 3, (−7.2 × 10−3 A cm−2). The highest exchange current densities (jo) were achieved at 40 °C for the CP-Pt (1 × 10−3 A cm−2) attributable to the presence of the catalytic Pt. Elevated temperatures (40 and 55 °C) improved D and ΔEp. while also the mass transport parameters a) dynamic viscosity (∼1.5 mPa·s) and b) electrolytic conductivity (∼265 mS cm−1) of the Ce(III)/(IV) half-cell reaction. Overall, pristine CP and to a lesser extent CP-Pt demonstrated good stability with prolonged cycling and kinetics comparable with the ones of Pt and Pt based electrodes

  4. Dicty_cDB: CFG129 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CF (Link to library) CFG129 (Link to dictyBase) - - - Contig-U12859-1 CFG129F (Link to Original ... kg*kycickw*qyyy* kckesngsryll*tsmsnhcckvctkw*lyckw*csr *ftylgyitkgtylksnlqsiew cnp*ycmdir*stfscsw*w*reiwcs ...

  5. Dicty_cDB: SFF129 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SF (Link to library) SFF129 (Link to dictyBase) - G20048 DDB0218464 Contig-U03537-1 SFF129P (Lin ... iqln qlntilnyhyniqilmf*ipflivv*fyyl**fqyf*lyflirnk*pkis *xlrn Homology vs CSM-cDNA Score E Sequences produc ...

  6. 14 CFR 129.113 - Fuel tank system maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system maintenance program. 129... Continued Airworthiness and Safety Improvements § 129.113 Fuel tank system maintenance program. (a) Except... limitations for fuel tank systems. (d) The proposed fuel tank system maintenance program revisions must...

  7. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields

  8. EIS study of nano crystalline Ni-cerium oxide coating electrodeposition mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hasannejad, H. [Department of Materials Science and Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shahrabi, T., E-mail: Tshahrabi34@modares.ac.ir [Department of Materials Science and Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Jafarian, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Rouhaghdam, A. Sabour [Department of Materials Science and Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-02-03

    Research highlights: > In this study a new procedure was used for electrodeposition of Ni-cerium oxide amorphous-nano crystalline composite coatings. The innovation of this method is that the metal and oxides are deposited simultaneously on the samples from the plating bath solution containing Ni ions and Ce ions with no powder added. - Abstract: In this study a novel procedure was used for the electrodeposition of Ni-cerium oxide nano crystalline composite coatings. The novelty of this method lies in the fact that the metal and the oxide are both deposited simultaneously on the substrate, directly from the plating bath containing Ni and Ce ions with no oxide powder addition. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) were used to study the mechanisms of Ni-CeO{sub 2} nanocomposite coating deposition. The results indicated that the morphology of Ni-cerium oxide coatings varied based on the Ni:Ce ion ratio. When this ratio exceeds 100, sporadic distribution of cerium oxide in the Ni matrix occurred. On the other hand, when the aforementioned ratio was less than 100, it was found that Ni species were dispersed in a continuous film of cerium oxide. Furthermore, it was observed that Ni in Ni-cerium oxide composite coating was nanocrystalline, while cerium oxide was amorphous. Introduction of the cerium ions to the plating bath resulted in the reduction of the Ni grains average size.

  9. Electrodeposition of cerium from fused mixture of CeCl sub(3)+NaCl-KCl

    International Nuclear Information System (INIS)

    Metallic cerium has been prepared by fused salt electrolysis of 30% CeCl sub(3)+ NaCl-KCl (equimolar) mixture, in the temperature ranged 650-850 sup(0)C, in argon atmosphere. The metal nodules were collected from solidified salts bath. Analysis of these nodules has been done and a 97,3% metallic cerium was obtained. (author)

  10. EIS study of nano crystalline Ni-cerium oxide coating electrodeposition mechanism

    International Nuclear Information System (INIS)

    Research highlights: → In this study a new procedure was used for electrodeposition of Ni-cerium oxide amorphous-nano crystalline composite coatings. The innovation of this method is that the metal and oxides are deposited simultaneously on the samples from the plating bath solution containing Ni ions and Ce ions with no powder added. - Abstract: In this study a novel procedure was used for the electrodeposition of Ni-cerium oxide nano crystalline composite coatings. The novelty of this method lies in the fact that the metal and the oxide are both deposited simultaneously on the substrate, directly from the plating bath containing Ni and Ce ions with no oxide powder addition. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) were used to study the mechanisms of Ni-CeO2 nanocomposite coating deposition. The results indicated that the morphology of Ni-cerium oxide coatings varied based on the Ni:Ce ion ratio. When this ratio exceeds 100, sporadic distribution of cerium oxide in the Ni matrix occurred. On the other hand, when the aforementioned ratio was less than 100, it was found that Ni species were dispersed in a continuous film of cerium oxide. Furthermore, it was observed that Ni in Ni-cerium oxide composite coating was nanocrystalline, while cerium oxide was amorphous. Introduction of the cerium ions to the plating bath resulted in the reduction of the Ni grains average size.

  11. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Dong Rip, E-mail: dongrip@hanyang.ac.kr [School of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-06-15

    Graphical abstract: - Highlights: • Cerium oxide nanorods were uniformly grown on diverse substrates. • Changes in growth conditions led to morphology evolution of cerium oxide nanostructures. • The grown cerium oxide nanostructures were single or poly crystalline. • Direct growth of cerium oxide nanorods made the diverse substrates superhydrophobic and anti-corrosive without any surface modifiers. - Abstract: Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  12. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    Science.gov (United States)

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity. PMID:26706928

  13. Speciation of 129I in sea, lake and rain waters

    International Nuclear Information System (INIS)

    Concentrations of the very long-lived fission product 129I and stable iodine (127I) in the Baltic Sea and lake and rain waters from Finland, were measured as well as their occurrence as iodide (I−) and iodate (IO3−). The highest concentrations of both 127I and 129I occurred in sea water, on average 11.1 ± 4.3 μg/l and 3.9 ± 4.1 × 10−9 at/l. In rain and lake waters the concentration of 129I was more or less identical and almost one order of magnitude lower than in sea water. Based on these observations, and data from the literature, it is assumed that the source of 129I in lakes is precipitation and the major source in the Baltic Sea is the inflow of sea water from the North Sea through the Danish Straits. The concentration of 129I in the Baltic Sea has increased by a factor of six during ten years from 1999. In all studied water types the main chemical form of both iodine isotopes was iodide; in sea and lake waters by 92–96% and in rain water by 75–88%. Compared to 127I the fraction of iodide was slightly higher in case of 129I in all waters. - Highlights: ► Concentrations of 129I in Finnish lakes are equal with the concentrations in rain water. ► The source of 129I in lakes is the precipitation. ► Concentrations of 129I in the Baltic Sea are at least ten times higher than in lakes. ► In all water types iodide is the major chemical species of iodine. ►129I occurs slightly more in iodide form than stable iodine (127I).

  14. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  15. The recrystallization and texture of magnesium-zinc-cerium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, L.W.F. [Novelis Global Technology Centre, 945 Princess Street, Kingston, Ontario, K7L 5L9 (Canada); Department of Mining and Materials Engineering, McGill University, 3610 University, Montreal, Quebec, H3A 2B2 (Canada)], E-mail: luke.mackenzie@novelis.com; Pekguleryuz, M.O. [Department of Mining and Materials Engineering, McGill University, 3610 University, Montreal, Quebec, H3A 2B2 (Canada)

    2008-09-15

    Optical microscopy, electron backscatter diffraction and X-ray diffraction are employed to characterize the microstructures and textures of as-rolled and annealed Mg-1Zn and Mg-1Zn-xCe. Mg-1Zn exhibited 'basal' textures: the basal poles aligned with the sheet normal direction. With the addition of cerium, the texture was basal when recrystallization was limited; during recrystallization, the basal texture component weakened, to be replaced by a component with basal poles rotated {approx}45 deg. towards the transverse direction. Deformation, recrystallization and texture are discussed.

  16. The recrystallization and texture of magnesium-zinc-cerium alloys

    International Nuclear Information System (INIS)

    Optical microscopy, electron backscatter diffraction and X-ray diffraction are employed to characterize the microstructures and textures of as-rolled and annealed Mg-1Zn and Mg-1Zn-xCe. Mg-1Zn exhibited 'basal' textures: the basal poles aligned with the sheet normal direction. With the addition of cerium, the texture was basal when recrystallization was limited; during recrystallization, the basal texture component weakened, to be replaced by a component with basal poles rotated ∼45 deg. towards the transverse direction. Deformation, recrystallization and texture are discussed

  17. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    Science.gov (United States)

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. PMID:27343939

  18. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis

    International Nuclear Information System (INIS)

    Highlights: • Cerium titanate nanorods have been synthesized by a simple hydrothermal process. • The size of the cerium titanate nanorods can be controlled by growth conditions. • Cerium titanate nanorods exhibit good photocatalytic activities for methyl blue. - Abstract: Cerium titanate nanorods have been prepared via a hydrothermal process using sodium dodecyl sulfate (SDS) as the surfactant. The cerium titanate nanorods have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and ultraviolet–visible (UV–vis) diffuse reflectance spectrum. XRD shows that the nanorods are composed of CeTi21O38 phase. Electron microscopy observations indicate that the nanorods have good single crystalline nature. The diameter and length of the nanorods are about 50–200 nm and 1–2 μm, respectively. Cerium titanate nanorods have a band gap of 2.65 eV. The photocatalytic activities of the nanorods have been investigated by degrading methylene blue (MB) under visible light irradiation. MB solution with the concentration of 10 mg L−1 can be degraded totally with the irradiation time increasing to 240 min. Cerium titanate nanorods exhibit great potential in photocatalytic degradation of MB under visible light irradiation

  19. An environmentally compliant cerium-based conversion coating for aluminum protection

    Science.gov (United States)

    Lin, Xuan

    Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.

  20. X-ray absorption study of cerium in the passive film on aluminum

    International Nuclear Information System (INIS)

    The corrosion-resistance of aluminum-based alloys and metal-matrix composites can be increased by treatment with cerium compounds. Immersion in a 1000 ppm solution of Ce Cl3 for periods of several days has been shown to increase the pitting potential and reduce the corrosion rate. Such treatment is being considered as an alternative to the use of chromate conversion coatings. The protective action of cerium is considered to be due to the formation of a film containing cerium oxide/hydroxide with cerium in the oxidation states 3 and 4. This occurs by precipitation of cerium compounds onto cathodic sites due to the increase of pH associated with oxygen reduction. Cerium compounds are considerably less soluble than aluminum compounds at high pH. It is proposed that the cerium oxide/hydroxide creates a barrier to the reduction of oxygen stifling cathodic reaction with a corresponding reduction in corrosion rate and open circuit potential. Glancing angle x-ray techniques are well-suited to studying the composition and structure of surface layers on materials. X-rays incident at very small angles (of the order of milliradians) below the critical angle do not penetrate beyond the surface layers of the material. With the extremely high brightness beams of x-rays provided by synchrotron sources the authors detect and characterize the chemical state of elements present in low concentrations in the surface of materials

  1. The solubility of cerium in La2Ti2O7 by DFT + U calculations

    International Nuclear Information System (INIS)

    To investigate the solubility of cerium in La2Ti2O7, the density functional theory plus Hubbard U correction (DFT + U) approach is employed. The geometrical structure, solution energy and electronic structure of La2−yCeyTi2O7 (0 ≤ y ≤ 2) have been analyzed. The results reveal that the La2Ti2O7–Ce2Ti2O7 solid solution exits over the entire range of cerium content. The calculated increase in the O48f positional parameter, x, with increasing cerium content, may indicate the increased radiation resistance. The results of the density of states distribution and the Bader charge for each ion in La2Ti2O7–Ce2Ti2O7 solid solution suggest that cerium exhibits a reduced charge state in the solid solution. - Highlights: • La2Ti2O7–Ce2Ti2O7 solid solution exits over the entire range of cerium content from 0 to 2. • Cerium incorporation in La2Ti2O7 may lead to increased radiation resistance of La2−yCeyTi2O7 (0 ≤ y ≤ 2) . • Cerium in the solid solution of La2−yCeyTi2O7 (0 ≤ y ≤ 2) exhibits a reduced charge state

  2. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  3. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  4. Mesoscopic structure of cerium waste loaded hydrated cement by SANS

    International Nuclear Information System (INIS)

    Cementation is one of the most commonly used methods for conditioning radioactive wastes. It provides a cost-effective solution for encapsulation of low and intermediate level radioactive wastes into suitable solid form for long term safety storage. Cerium is used for decontamination of alpha contaminated metallic waste and after this decontamination process, secondary wastes with corrosion products are created, which must be managed properly and cemented for near surface disposal. In the present work, modification of mesoscopic structure in hydrated cement due to addition of simulated cerium waste at different concentrations has been investigated by small-angle neutron scattering (SANS). Structural modifications, in mesoscopic length scale, have been observed. The scattering profiles for three kinds of cement blocks (virgin, 10 g/l and 20 g/l of corrosion product (C.P.) with 4 mm thickness) are shown. Data have been analyzed in the light of polydisperse spherical particles model assuming a log-normal distribution. Widely separated bimodal particle size distributions best represent the present data. Further, it has been observed that the scattering profile obeys power-law (Q-n) behaviour in two domains of Q, which reflects the self-similar/self-affined morphology of the inhomogeneities. Estimated parameters from SANS data are tabulated. A comparison is shown mentioning the value of scattering radius of gyration, exponent values (η) and average particle size for each kind of hydrated cement sample. (author)

  5. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  6. Sorption removal of arsenic by cerium-exchanged zeolite P

    International Nuclear Information System (INIS)

    Modification of zeolite P was performed by exchanged of its sodium with cerium(III). The resulting cerium-exchanged zeolite P, (CeZP) did not change in its crystallinity compared to original zeolite. The CeZP was subsequently used to sorb As(V) from aqueous solution. Maximum sorption of As(V) by CeZP occurred at pH range 3-10. In addition, the sorption capacity increased with increasing initial As(V) concentrations. The sorption follows Langmuir model with maximum sorption capacity of 8.72 mg g-1 at 25 deg. C and increased to 23.42 mg g-1 at 90 deg. C, indicating an endothermic process. The arsenic sorption by CeZP was not affected by the present of nitrate, chloride, sulphate, carbonate and bromide but was reduced significantly in the presence of phosphate. This study shows that the as prepared CeZP was found effective for the removal of arsenic from wastewater sample of wood treatment industry

  7. New sunscreen materials based on amorphous cerium and titanium phosphate

    International Nuclear Information System (INIS)

    Cerium-titanium pyrophosphates Ce1-xTi xP2O7 (with x = 0, 0.50, and 1.0), which are novel phosphate materials developed as UV-shielding agents for use in cosmetics, were characterized by X-ray diffraction, X-ray fluorescent analysis, UV-vis reflectance, and Raman spectroscopy. Since the optical reflectance shifted to lower wavelengths by the crystallization of the phosphates and the stabilization of the amorphous state of the cerium-titanium pyrophosphates was carried out by doping niobium (Nb). Raman spectroscopic study of the phosphate showed that P-O-P bending and stretching modes decreased with the loading of Nb, accompanying with the formation of Nb-O stretching mode. Therefore, the increase in the amount of the non-bridging oxygen in the amorphous phosphate should be the reason for the inhibition of the crystallization. This stabilization is a significant improvement, which enables to apply these amorphous phosphates not only to cosmetics and paints, but also plastics and films

  8. Altering properties of cerium oxide thin films by Rh doping

    International Nuclear Information System (INIS)

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeOx thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeOx thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce4+ and Ce3+ and rhodium occurs in two oxidation states, Rh3+ and Rhn+. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeOx thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeOx thin films leads to preparing materials with different properties

  9. Cerium compounds in the fashion of the light actinides

    International Nuclear Information System (INIS)

    Researchers familiar with the light actinides easily recognize in cerium compounds a microcosm of the rich variety of properties seen in the light actinides. The parallelism seen between comparable cerium and actinide compounds strongly suggests that the same physical models are applicable. The most significant is the relative size of the f-orbital. Localization is generally tighter in Ce compounds than uranium compounds, making Ce roughly analogous to Np through Am. A way to see the actinide parallelism is to compare Hill plots. Compounds in the different regions of the plots (representing different physics) are isostructural compounds with the same companion (B) elements. The most common materials exhibiting a direct f-f interaction are the cubic Laves compounds. Accordingly, we have determined the band structures of CeRu2, CeRh2, CeIr2, CeOs2, and CeNi2. Compounds illustrative of the interaction of f-orbitals with ligand orbitals are the Cu3Au structured materials. Materials calculated in this class are CeRh3, CePd3, and CeSn3 - the materials of much interest as mixed valent. Although the focus is on the Ce compounds, calculations performed on uranium isomorphs are used to highlight the interesting physics

  10. Spectrophotometric determination of Cerium from Monazite Bangka using Tiron reagent

    International Nuclear Information System (INIS)

    To anticipate the analysis of individual rare earth element from monazite processing which have done at PTPBGN division and samples from other division of P2BGN, and to develop the Ce analysis method by spectrophotometric using tiron reagent. The purpose of the experiment is to find out the method and the condition of Ce analysis with high accuracy and applicable. The variable observation were cerium-tiron spectrum, pH, ligand concentration, buffer concentration, linearity, anion influence, limit detection, impurities of elements and complex stability. The complex of cerium-tiron produce the maximum absorption at 497.5 nm and stable until 8 hours. The optimum conditions of this method was : tiron concentration is 0.25 %, pH 8.5 with buffer solution sodium acetate is 0.3 M. Detection limit is 1.00 ppm and area of linearity between 1 - 100 ppm, and PO4, Fe, U and Ti was influence to this method. The content of Ce from 2 samples of monazite Bangka which determine by this method was 18%

  11. Cerium fluoride nanoparticles protect cells against oxidative stress

    International Nuclear Information System (INIS)

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF3:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF3 and CeF3:Tb stable aqueous sols synthesis is proposed. • Naked CeF3 nanoparticles are shown to be non-toxic and to protect cells from the action of H2O2. • CeF3 and CeF3:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus

  12. The van Hemmen-Kondo model for disordered cerium systems

    International Nuclear Information System (INIS)

    The interplay between disorder and strong correlations has been observed experimentally in disordered cerium alloys such as Ce(Ni, Cu) or Ce(Pd, Rh). In the case of Ce(Ni, Cu) alloys with a Cu concentration x between 0.6 and 0.3, the first studies have shown a smooth transition with decreasing temperature from a spin glass phase to ferromagnetism; for x smaller than 0.2, a Kondo phase has been observed. The situation is more complicated now due to the recent observation of magnetic clusters. The competition between the Kondo effect, the spin glass (SG) and the ferromagnetic (FE) ordering has been extensively studied theoretically. The Kondo effect is described by the usual mean-field approximation; we have treated the SG behavior successively by the Sherrington-Kirkpatrick model, then by the Mattis model and finally by the van Hemmen model, which takes both a ferromagnetic part and a site-disorder random part for the intersite exchange interaction. We present here the results obtained by the van Hemmen-Kondo model: for a large Kondo exchange JK, a Kondo phase is obtained while, for smaller JK, the succession of an SG phase, a mixed SG-FE one and finally an FE one has been obtained with decreasing temperature. This model improves the theoretical description of disordered Kondo systems by providing a simpler approach for further calculations of magnetic clusters and can, therefore, account for recent experimental data on disordered cerium systems.

  13. New sunscreen materials based on amorphous cerium and titanium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Toshiyuki [Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hirai, Hidekazu [Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imanaka, Nobuhito [Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)]. E-mail: imanaka@chem.eng.osaka-u.ac.jp; Adachi, Gin-ya [Juri Institute for Environmental Science and Chemistry, College of Analytical Chemistry, 2-1-8 Temma, Kita-ku, Osaka 530-0043 (Japan)

    2006-02-09

    Cerium-titanium pyrophosphates Ce{sub 1-x}Ti {sub x}P{sub 2}O{sub 7} (with x = 0, 0.50, and 1.0), which are novel phosphate materials developed as UV-shielding agents for use in cosmetics, were characterized by X-ray diffraction, X-ray fluorescent analysis, UV-vis reflectance, and Raman spectroscopy. Since the optical reflectance shifted to lower wavelengths by the crystallization of the phosphates and the stabilization of the amorphous state of the cerium-titanium pyrophosphates was carried out by doping niobium (Nb). Raman spectroscopic study of the phosphate showed that P-O-P bending and stretching modes decreased with the loading of Nb, accompanying with the formation of Nb-O stretching mode. Therefore, the increase in the amount of the non-bridging oxygen in the amorphous phosphate should be the reason for the inhibition of the crystallization. This stabilization is a significant improvement, which enables to apply these amorphous phosphates not only to cosmetics and paints, but also plastics and films.

  14. 38 CFR 21.129 - Home study course.

    Science.gov (United States)

    2010-07-01

    ...) VOCATIONAL REHABILITATION AND EDUCATION Vocational Rehabilitation and Employment Under 38 U.S.C. Chapter 31 Educational and Vocational Training Services § 21.129 Home study course. (a) Definition. A home study...

  15. Atmospheric dispersal of 129iodine from nuclear fuel reprocessing facilities

    International Nuclear Information System (INIS)

    129I/127I ratios measured in meteoric water and epiphytes from the continental United States are higher than those measured in coastal seawater or surface freshwater and suggest long-range atmospheric transport of 129I from the main source for the earth's surface inventory, viz., nuclear fuel reprocessing facilities. The median ratio for 14 meteoric water samples is 2100 x 10-12, corresponding to a 129I concentration of 2.5 x 107 atoms/L, whereas 9 epiphyte samples have a median ratio of 1800 x 10-12. Calculated deposition rates of 129I in the continental United States reveal that a small but significant fraction of the atmospheric releases from the nuclear fuel reprocessing facilities at Sellafield, England, and Cap de La Hague, France, is deposited after distribution by long-range transport. The inferred dominant mode of transport is easterly, within the troposphere, mainly in the form of the organic gas methyl iodide

  16. [Ion chromatography of L-ascorbic acid, sulfite and thiosulfate using their postcolumn reactions with cerium (IV) and fluorescence detection of cerium (III)].

    Science.gov (United States)

    Chen, Q; Hu, K; Miura, Y

    1999-09-01

    An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected. PMID:12552889

  17. PREFACE: Nobel Symposium 129 on Neutrino Physics

    Science.gov (United States)

    Bergström, Lars; Botner, Olga; Carlson, Per; Hulth, Per Olof; Ohlsson, Tommy

    2005-01-01

    Nobel Symposium 129 on Neutrino Physics was held at Haga Slott in Enköping, Sweden during August 19 24, 2004. Invited to the symposium were around 40 globally leading researchers in the field of neutrino physics, both experimental and theoretical. In addition to these participants, some 30 local researchers and graduate students participated in the symposium. The dominant theme of the lectures was neutrino oscillations, which after several years were recently verified by results from the Super-Kamiokande detector in Kamioka, Japan and the SNO detector in Sudbury, Canada. Discussion focused especially on effects of neutrino oscillations derived from the presence of matter and the fact that three different neutrinos exist. Since neutrino oscillations imply that neutrinos have mass, this is the first experimental observation that fundamentally deviates from the standard model of particle physics. This is a challenge to both theoretical and experimental physics. The various oscillation parameters will be determined with increased precision in new, specially designed experiments. Theoretical physics is working intensively to insert the knowledge that neutrinos have mass into the theoretical models that describe particle physics. It will probably turn out that the discovery of neutrino oscillations signifies a breakthrough in the description of the very smallest constituents of matter. The lectures provided a very good description of the intensive situation in the field right now. The topics discussed also included mass models for neutrinos, neutrinos in extra dimensions as well as the `seesaw mechanism', which provides a good description of why neutrino masses are so small. Also discussed, besides neutrino oscillations, was the new field of neutrino astronomy. Among the questions that neutrino astronomy hopes to answer are what the dark matter in the Universe consists of and where cosmic radiation at extremely high energies comes from. For this purpose, large neutrino

  18. Structural, topographical and electrical properties of cerium doped strontium barium niobate (Ce:SBN60) ceramics

    Science.gov (United States)

    Raj, S. Gokul; Mathivanan, V.; Kumar, G. Ramesh; Yathavan, S.; Mohan, R.

    2016-05-01

    Tungsten bronze type cerium doped strontium barium niobate (Ce:SBN - Sr0.6B0.4Nb2O6) ceramics were synthesized by solid state process. Cerium was used as dopant to improve its electrical properties. Influence of Ce+ ions on the photoluminescence properties was investigated in detail. The grain size topographical behavior of SBN powders and their associated abnormal grain growth (AGG) were completely analyzed through SEM studies. Finally dielectric, measurement discusses about the broad phase transition observed due to cerium dopant The results were discussed in detail.

  19. Violet/blue emission from epitaxial cerium oxide films on silicon substrates

    International Nuclear Information System (INIS)

    Violet/blue photoluminescence was observed from epitaxial cerium oxide films on silicon substrates. The films were deposited on silicon (111) substrates under ultrahigh vacuum conditions using pulsed laser ablation of a cerium oxide target and treated by rapid thermal annealing in argon. High resolution transmission electron microscopy and x-ray diffraction measurements indicated the formation of a single crystal cerium oxide phase Ce6O11 different from CeO2 in the annealed films. The emission might be due to charge transfer transitions from the 4f band to the valence band of the oxide. copyright 1997 American Institute of Physics

  20. The study on preparation of high dispersion and pure cerium dioxide for producing automotive exhaust catalysts

    International Nuclear Information System (INIS)

    The multi-stage counter-current solvent extraction process using TBP as the solvent has been carried out for purifying cerium and the ammonium carbonate precipitation method has been used to produce the cerium oxide of high dispersion and pure. The flow sheet of extraction system includes 3 extraction stages with O/A = 0.7,2 stripping stages and 4 scrubbing stages with O/A = 5. The condition for ammonium carbonate precipitation, drying and calcination have been investigated and a procedure that seem to be practically suitable to prepare cerium dioxide powder with great specific surface area for producing automotive exhaust catalyst has been proposed. (LMT)

  1. Effect of Cerium on Mechanical Properties and Morphology of ZZn4-1 Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Effect of the addition of cerium in appropriate amount on the mechanical properties and morphology of ZZn4-1 alloy was investigated. In the case of samples collected from metal mould, the results show that the addition of cerium in appropriate amount can increase tensile strength and HB hardness, and can refine the microstructure of ZZn4-1 alloy considerably. In the case of samples collected from pressure die-casting, the addition of cerium in appropriate amount can refine the primary η-phase and the eutectic structure of pressure die-casting and improve mechanical and processing properties of the alloy.

  2. Ion exchange reactions in amorphous and crystalline aluminium silicates from solution of cerium salts

    International Nuclear Information System (INIS)

    Reactions of ion-exchange of Na+ by Ce3+ and NH4+ on the zeolite containing catalyst, amorphous silica alumina and zeolite Y have been studied. The cerium cations are shown to be exchanged by the Na+ cations with more selectivity than the anmonia cations. In the case of the zeolite containing catalyst and amorphous silica alumina the region of the staggered ion-exchange from the mixture of the solutions of cerium and ammonium sulphates was been detected. This is explained by the formation fo cerium complexes with the sulphate ions

  3. Soil bioassays and the {sup 129}I problem

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, S.C. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada)

    1995-12-31

    Iodine-129 is a very long-lived radionuclide associated with spent nuclear fuel. Because {sup 129}I has a 10{sup 7}-year half-life, is very mobile in the environment and is a biologically essential element, it is the most limiting radionuclide affecting disposal of spent fuel. Traditionally, the potential impacts of {sup 129}I have been estimated for human receptors, with the implicit assumption that all other organisms are less at risk. Risk is the operative word, the objective for protection of humans is to protect individuals, whereas the objective for other biota is usually to protect populations. Here, {sup 129}I poses an interesting problem: the half-life is so long it is barely radioactive. Thus, the chemical toxicity may be more limiting than the radiological impact. A series of soil bioassays were employed, including a life-cycle plant (Brassica rapa) bioassay, a modified earthworm survival bioassay, a microarthropod colonization/survival bioassay, and a series of more common soil and aquatic bioassays. Chemical toxicity was indicated at soil concentrations as low as 5 mg kg{sup {minus}1}. At these levels, radiological impact on non-human biota would not be expected, and therefore the chemical toxicity effects are more critical. However, human food-chain model estimates show these levels, as pure {sup 129}I, would be unacceptable for human radiological exposure, so that for {sup 129}I, protection of the human environment should also be protective of non-human biota.

  4. A summary of global 129I in marine waters

    International Nuclear Information System (INIS)

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic 129I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on 129I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on 129I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic 129I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about 129I distribution in the marine waters.

  5. Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor

    International Nuclear Information System (INIS)

    Cerium oxide (CeO2) buffer layers play an important role for the development of YBa2Cu3O7-x (YBCO) based superconducting tapes using the rolling assisted biaxially textured substrates (RABiTS) approach. The chemical solution deposition (CSD) approach has been used to grow epitaxial CeO2 films on textured Ni-3 at.% W alloy substrates with various starting precursors of ceria. Precursors such as cerium acetate, cerium acetylacetonate, cerium 2-ethylhexanoate, cerium nitrate, and cerium trifluoroacetate were prepared in suitable solvents. The optimum growth conditions for these cerium precursors were Ar-4% H2 gas processing atmosphere, solution concentration levels of 0.2-0.5 M, a dwell time of 15 min, and a process temperature range of 1050-1150 deg. C. X-ray diffraction, AFM, SEM, and optical microscopy were used to characterize the CeO2 films. Highly textured CeO2 layers were obtained on Ni-W substrates with both cerium acetate and cerium acetylacetonate as starting precursors. YBCO films with a J c of 1.5 MA/cm2 were obtained on cerium acetylacetonate-based CeO2 films with sputtered YSZ and CeO2 cap layers

  6. Iodine-129 in the environment of a nuclear fuel reprocessing plant: II. Iodine-129 and iodine-127 contents of soils, forage plants and deer thyroids

    International Nuclear Information System (INIS)

    Concentrations of 129I and 127I in soils, forage plants and deer thyroids collected in the environment of the small Karlsruhe nuclear fuel reprocessing plant (WAK) were determined by neutron activation analysis. Levels of 129I in all samples were found to be elevated by several orders of magnitude above current average biospheric background values. In particular, deer thyroids were found to have very high 129I levels and corresponding high 129I/127I ratios.Using all the analytical data for 129I and 127I concentrations in plants it seems probable that there is a correlation between the 129I and the natural 127I concentrations in plants

  7. The 129-Iodine content of subtropical Pacific waters: impact of Fukushima and other anthropogenic 129I sources

    Science.gov (United States)

    Guilderson, T. P.; Tumey, S. J.; Brown, T. A.; Buesseler, K. O.

    2013-12-01

    Results obtained from a dedicated radiochemistry cruise approximately 100 days after the 11 March 2011 Tohoku earthquake and subsequent disaster at the Dia'ichi Fukushima Nuclear Power Plant show that Fukushima derived radionuclides in the nearby ocean environment had penetrated, on average, to ≤250 m depth (1026.5 kg m-3 potential density surface). The excess inventory of Fukushima-derived 129I in the region (∼150 000 km2) sampled during the cruise is estimated to have been between 0.89 and 1.173 billion Bq (∼136 to ∼179 g) of 129I. Based on a tight tracer-tracer relation with 134Cs (or 137Cs) and estimates that most of the excess cesium is due to direct discharge, we infer that much of the excess 129I is from direct (non-atmospheric deposition) discharge. After taking into account oceanic transport, we estimate the direct discharge off Fukushima to have been ∼1 kg 129I. Although this small pulse is dwarfed by the ∼90 kg of weapons-testing derived 129I that was released into the environment in the late 1950s and early 1960s, it should be possible to use Fukushima derived 129I and other radionuclides (e.g., 134, 137Cs) to study transport and entrainment processes along the Kuroshio Current.

  8. The 129-iodine content of subtropical Pacific waters: impact of Fukushima and other anthropogenic 129-iodine sources

    Science.gov (United States)

    Guilderson, T. P.; Tumey, S. J.; Brown, T. A.; Buesseler, K. O.

    2014-09-01

    Results obtained from a dedicated radiochemistry cruise approximately 100 days after the 11 March 2011 Tohoku earthquake and subsequent disaster at the Fukushima Daiichi Nuclear Power Plant show that Fukushima derived radionuclides in the nearby ocean environment had penetrated, on average, to ≤250 m depth (1026.5 kg m3 potential density surface). The excess inventory of Fukushima-derived 129I in the region (∼150 000 km2) sampled during the cruise is estimated to have been between 0.89 and 1.173 billion Bq (∼136 to ∼179 grams) of 129I. Based on a tight tracer-tracer relation with 134Cs (or 137Cs) and estimates that most of the excess cesium is due to direct discharge, we infer that much of the excess 129I is from direct (non-atmospheric deposition) discharge. After taking into account oceanic transport, we estimate the direct discharge, i.e., that directly released into the ocean, off Fukushima to have been ∼1 kg 129I. Although this small pulse is dwarfed by the ~90 kg of weapons-testing-derived 129I that was released into the environment in the late 1950s and early 1960s, it should be possible to use Fukushima-derived 129I and other radionuclides (e.g., 134, 137Cs) to study transport and entrainment processes along and across the Kuroshio Current.

  9. Coulometric microdetermination of organic compounds with manganese(III) and cerium(IV)

    International Nuclear Information System (INIS)

    The oxidation of compounds such as hydroquinon, p-aminophenol, paracetamol and phenacetin was performed using cerium(IV) and manganese(III) coulometrically electrogenerated. Quantitative results obtained are excellent even at the microscale level. (author)

  10. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xianhe, E-mail: maoxianhe@hotmail.com; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-15

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl{sub 11}O{sub 18} and Ce{sub 2}SiO{sub 5}. The leaching rate of cerium over a period of 28 days was 10{sup −5}–10{sup −6} g/(m{sup 2} day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  11. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Science.gov (United States)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  12. Electroreduction of cerium ions on silver electrode in halide melts at 973 K

    International Nuclear Information System (INIS)

    The mechanism of electroreduction of cerium ions in equimolar KCl-NaCl melt is explored at 973 K. The effect of the anionic composition of the melt on the electroreduction of cerium ions is studied. It is shown that the electrodeposition of cerium metal from halide melts on a silver electrode is the primary electrochemical process that occurs at potentials more positive than those corresponding to the supporting-electrolyte decomposition. The electroreduction of chloride complexes of cerium on a silver electrode in the melt in both steady- and non-steady-state polarization modes at rates below V≤0.5 V/s is controlled by the diffusion delivery; at higher polarization rates, the charge-transfer stage predominates

  13. Electrochemical separation of uranium and cerium in molten LiCl-KCl

    International Nuclear Information System (INIS)

    The electrochemical separation of uranium from cerium in LiCl–KCl eutectic and the electrochemical behavior of Ce(III) were studied. According to the cyclic voltammogram of Ce(III) and the former result of U(III), electrodeposition potential was determined at -1.65 V (vs Ag/AgCl). The uranium metal was successfully deposited and separated from cerium. The morphology of deposit and cross section of electrode were investigated by SEM, firstly uranium deposit alloys with stainless steel and forms a thin transition layer, and secondly the uranium metal layer grows from the transition layer. The separation factors of uranium/cerium on different recovery ratios were determined through a series of steps. It was found that the content of cerium in the deposit and separation factors declined with increasing the initial concentration of U3+ in molten salts; the separation factors remained stable at around 20 in different uranium recovery ratios. (author)

  14. Synergistic extraction of uranium (VI), thorium (IV) and cerium (III) by thenoyltri-fluoroacetone and phenanthroline

    International Nuclear Information System (INIS)

    The synergistic extraction of uranium(VI), thorium(IV) and cerium(III) with thenoyltrifluoroacetone (HTTA) and phenanthroline (phen) is studied. The extraction equilibrium constants are calculated and the mechanism of the synergistic extraction has been discussed

  15. The low gas flow rate foam separation of cerium(III) from dilute aqueous solutions

    International Nuclear Information System (INIS)

    Two low gas flow rate foam separation techniques, ion and precipitate flotation, have been investigated for the separation of trivalent cerium from solutions with initial cerium concentrations ranging from 1 x 10-8 to 1 x 10-4M in the pH range of 1.8 to 12 using the anionic collector sodium lauryl sulphate and the cationic surfactant cetyl trymethyl ammonium bromide. In addition to the type of collector, the pH and the cerium ion concentration, and other factors which can affect flotation results, viz. the time period of bubbling, the rate of gas flow, the ageing of both the cerium and the collector ions, the ionic strength, and the concentration of the collector ions have been investigated and optimum conditions have been established. Under optimum conditions removals as high a 98.5% can be achieved. (author)

  16. Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6

    International Nuclear Information System (INIS)

    Highlights: • Cerium-based conversion coatings. • Cerium salt sources assisted with hydrogen peroxide. • Protective properties of the conversion coating. - Abstract: Cerium-based conversion coatings were deposited on aluminium alloy 6061-T6 by immersion in two cerium salt sources (chloride- and nitrate-based) assisted with hydrogen peroxide (H2O2). The morphology and composition of the coatings were analysed using scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrochemical measurements to assess corrosion behaviour were performed using free corrosion potential, polarisation and electrochemical impedance spectroscopy with a 3% NaCl solution. The influence of H2O2 on the generation of the coating was studied by cyclic voltammetry tests. The protective properties of the coating generated are heavily dependent upon the chelating effect, chaotropic anion, the pH and H2O2 content

  17. Synergistic inhibition of carbon steel corrosion in seawater by cerium chloride and sodium gluconate

    International Nuclear Information System (INIS)

    Highlights: • Significant synergistic effect was determined for cerium and gluconate. • The mixture showed significant corrosion inhibition of carbon steel in seawater. • Predominant anodic inhibition mechanism was observed. • The presence of cerium ions incorporated in the protective layer was confirmed. - Abstract: In this research the effect of cerium (III) chloride heptahydrate (CC) and sodium gluconate (SG) on the corrosion inhibition of carbon steel C45 (1531) in natural seawater has been evaluated using electrochemical methods and scanning electron microscopy (SEM). The results show that substantial corrosion inhibition (94.98%) using CC and SG can be obtained in synergistic manner. Surface analysis confirmed the presence of cerium ions incorporated in the protective layer of carbon steel specimen. SG acts predominantly as anodic inhibitor whereas CC acts as a mixed type inhibitor. Using both inhibitors predominant mechanism of anodic inhibition is observed

  18. Cerium oxide for the destruction of chemical warfare agents: A comparison of synthetic routes

    Czech Academy of Sciences Publication Activity Database

    Janos, P.; Henych, Jiří; Pelant, O.; Pilařová, V.; Vrtoch, L.; Kormunda, M.; Mazanec, K.; Štengl, Václav

    2016-01-01

    Roč. 304, MAR (2016), s. 259-268. ISSN 0304-3894 Institutional support: RVO:61388980 Keywords : Cerium oxide * Chemical warfare agents * Organophosphate compounds * Decontamination Subject RIV: CA - Inorganic Chemistry Impact factor: 4.529, year: 2014

  19. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    Science.gov (United States)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  20. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    Science.gov (United States)

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  1. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    International Nuclear Information System (INIS)

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important since the corrosion inhibition mechanism of the cerium component is a result of its deposition as a highly electrical resistive (passivation) layer on the cathode. It is studied whether the cerium can reach the cathode when fed into the corrosion cell from an external source after the onset of corrosion. To this end a simulation model was set up that includes the Poisson–Nernst–Planck theory to describe ion transport and the Frumkin–Butler–Volmer equation to describe charge transfer at the electrodes. In this model both the self-dissociation of water and the formation of cerium hydroxide are taken into account. To support our findings experimentally a corrosion cell consisting of an aluminum and copper electrode was used, in which the pH fronts were visualized using a pH-indicator. Two types of inhibitors were used; namely, highly soluble CeCl3 and sparsely soluble cerium dibutylphosphate, Ce(dbp)3. The results show that CeCl3 can reduce the size of the alkaline region and reach the cathode to form a passivation layer, whereas the solubility in case of Ce(dbp)3 is too low to supply sufficient amounts of trivalent cerium cations to penetrate the alkaline region. This behavior can be explained by the simulation results, which reveal a threshold for the corrosion inhibitor solubility below which no passivation of the cathode occurs

  2. Construction of heterocyclic structures by trivalent cerium salts promoted bond forming reactions.

    Science.gov (United States)

    Properzi, Roberta; Marcantoni, Enrico

    2014-02-01

    Cerium(III) salts have recently gained increasing attention in the synthetic community, owing to the powerful features that are reviewed in detail in this tutorial. This review reports significant examples of cerium(III) promoted synthesis of heterocyclic structures, initially dealing with the synthesis of five- and six-membered ring nitrogen containing heterocycles, then describing the preparation of their oxygenated analogues and finally discussing the achievement of seven-membered rings and mixed heterocyclic motifs. PMID:24217370

  3. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential

    OpenAIRE

    Patil, Swanand; Sandberg, Amanda; Heckert, Eric; Self, William; Seal, Sudipta

    2007-01-01

    The surface chemistry of biomaterials can have a significant impact on their performance in biological applications. Our recent work suggests that cerium oxide nanoparticles are potent antioxidants in cell culture models and we have evaluated several therapeutic applications of these nanoparticles in different biological systems. Knowledge of protein adsorption and cellular uptake will be very useful in improving the beneficial effects of cerium oxide nanoparticles in biology. In the present ...

  4. Effects of Morphology of Cerium Oxide Catalysts for Reverse Water Gas Shift Reaction

    OpenAIRE

    Kovasevic, M.; Mojet, B.L.; Ommen, van, B.; Lefferts, L.

    2016-01-01

    Reverse water gas shift reaction (RWGS) was investigated over cerium oxide catalysts of distinct morphologies: cubes, rods and particles. Catalysts were characterized by X-ray diffraction, Raman spectroscopy and temperature programmed reduction (TPR) in hydrogen. Nanoshapes with high concentration of oxygen vacancies contain less surface oxygen removable in TPR. Cerium oxide cubes exhibited two times higher activity per surface area as compared to rods and particles. Catalytic activity of the...

  5. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    Mirella Gutiérrez-Arzaluz; Luis Noreña-Franco; Saúl Ángel-Cuevas; Violeta Mugica-Álvarez; Miguel Torres-Rodríguez

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  6. Energy-dispersive X-ray fluorescence analysis of cerium in ferrosilicon

    International Nuclear Information System (INIS)

    The cerium was determined in ferrosilicon samples by energy-dispersive X-ray fluorescence techniques (XRF) techniques, with a secondary target of gadolinium. The methods employed were: comparison and linear regression with reference materials with cerium concentration between 0.4 and 1.0%. The samples were prepared in the form of pellets and the analytical results are reported as an average of five determinations with a confidence limits at 95% probability. (Author)

  7. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions

    OpenAIRE

    Mehdi, Hasan; Bodor, Andrea; Lantos, Diana; Horváth, István T; De Vos, Dirk; Binnemans, Koen

    2007-01-01

    Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Ca...

  8. A chemical cleaning process with Cerium (IV)-sulfuric acid

    International Nuclear Information System (INIS)

    A chemical cleaning process with a high decontamination factor (DF) is requested for decommissioning. Usually, the process should be qualified with the features, such as the feasibility of treating large or complicated form waste, the minimization of secondary waste. Therefore, a powerful technique of redox decontamination process with Ce+4/Ce+3 has been studied at INER. First, the redox of cerium ion with electrolytic method was developed. Two kinds of home-made electrolyzer were used. One is with an ion-exchange membrane, and the other one is with a ceramic separator. Second, factors influencing the decontamination efficiency, such as the concentration of Ce+4, regeneration current density, temperature, acidity of solution were all studied experimentally, and the optimum conditions were specified too. Third, the liquid waste recycling and treatment were developed with electrodialysis and ion-exchange absorption methods. Finally, the hot test was proceeded with the contaminated metals from DCR of nuclear facility. (author)

  9. Extraction behavior of cerium by tetraoctyldiglycolamide from nitric acid solutions

    International Nuclear Information System (INIS)

    The diamide N,N,N',N'-tetraoctyldiglycolamide (TODGA) was synthesized and characterized. The prepared TODGA was applied for extraction of Ce(III) from nitric acid solutions. The equilibrium studies included the dependencies of cerium distribution ratio on nitric acid, TODGA, nitrate ion, hydrogen ion and cerous ion concentrations. Analysis of the results indicates that the main extracted species is Ce(TODGA)2(NO3)3HNO3. The capacity of Ce loading is approximately 45 mmol/L for 0.1 M solution of TODGA in n-hexane. Finally, the thermodynamic parameters were calculated: K (25 deg C) = 3.8 x 103, ΔH = -36.7 ± 1.0 kJ/mol, ΔS = -54.6 ± 3.0 J/K mol, and ΔG = -20.4 ± 0.1 kJ/mol. (author)

  10. Deposition and investigation of lanthanum cerium hexaboride thin films

    Science.gov (United States)

    Kuzanyan, A. S.; Harutyunyan, S. R.; Vardanyan, V. O.; Badalyan, G. R.; Petrosyan, V. A.; Kuzanyan, V. S.; Petrosyan, S. I.; Karapetyan, V. E.; Wood, K. S.; Wu, H.-D.; Gulian, A. M.

    2006-09-01

    Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 °C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ( T) and S( T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed.

  11. Structure and activity of tellurium-cerium oxide acrylonitrile catalysts

    International Nuclear Information System (INIS)

    Ammoxidation of propylene to acrylonitrile (ACN) was investigated over various silica-supported (Te,Ce)O catalysts at 360 and 4400C. The binary oxide system used consists of a single nonstoichiometric fluorite-type phase α-(Ce,Te)O2 up to about 80 mole% TeO2 and a tellurium-saturated solid solution β-(Ce,Te)O2 at higher tellurium concentrations. The ACN yield varies almost linearly with the tellurium content of (Ce,Te)O2. The β-(Ce,Te)O2 phase is the most active component of the system (propylene conversion and ACN selectivity at 440 C of 76.7 and 74%, respectively) and is slightly more selective to ACN than α-Te02. Tellurium reduces the overoxidation properties of cerium and selective oxidation occurs through Te(IV)-bonded oxygen

  12. Effect of Surface Modification on Behaviors of Cerium Oxide Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Li Mei; Shi Zhenxue; Liu Zhaogang; Hu Yanhong; Wang Mitang; Li Hangquan

    2007-01-01

    Study was made on the effect of surface modification on the behaviors of cerium oxide nanopowders. A surfactant-sodium dodecyl sulfate(C12H25SO4Na) was used to modify the surface of CeO2 powder particles. The unmodified and modified CeO2 powders were characterized by using a powder comprehensive characteristic tester, laser particle size analyzer, specific surface area tester, X-ray diffraction tester, and a scanning electron microscope. The testing and analysis results showed that C12H25SO4Na surface modification might increase the flowability and dispersity, and decrease the specific surface area and agglomeration of CeO2 powders. The mechanism of the surface modification of CeO2 powder particles was also discussed.

  13. Management of decontamination solution arising from Cerium redox process

    International Nuclear Information System (INIS)

    This paper describes the recovery of Pu from decontamination stream generated from Cerium Redox Process meant for decontamination of contaminated metallic wastes. Extraction of Pu is carried out using PUREX solvent after reducing it to tetravalent state which is subsequently stripped using hydroxylamine nitrate and nitric acid mixture. Raffinate from this step containing Ce3+, 241Am and corrosion products is subjected to ozonisation wherein Ce3+ is oxidized to Ce4+. Quantitative extraction of Ce is achieved by PUREX solvent in second cycle which is stripped using a mixture of NaNO2 and HNO3. Raffinate from this step contains 241Am and corrosion product which is removed by solvent extraction using TEHDGA. The final alpha lean waste can be managed by cementation. (author)

  14. Modification mechanism of cerium on the Al-18Si alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of the rare earth cerium (Ce) on the hypereutectic Al-Si alloy under different casting states have been studied by optical microscope and quantitative image analysis. It is found that the size and the quantity of primary silicon in castings decrease with the increase of added Ce in the melt. Meanwhile primary silicon changes from branched shape to fine facetted shape. Although the modification on eutectic silicon in castings also improves with the increase of added Ce in the melt, the effect of modification on eutectic silicon away from primary silicon is more obvious than that on eutectic silicon close to primary silicon. The modification mechanism was analyzed in detail by means of scanning electron microscope equipped with energy dispersive analysis of X-ray and thermodynamics analysis, which included the analysis on the change in standard Gibbs energy of reaction and reaction equilibrium.

  15. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    International Nuclear Information System (INIS)

    Highlights: • Ce5Si3, Ce3Si2, CeSi, CeSi2−x and CeSi2 were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce5Si3, Ce3Si2, CeSi, CeSi2−y, and CeSi2−x, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce5Si4 was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides

  16. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  17. Study on the uranium-cerium extraction and his application to the treatment of irradiated uranium

    International Nuclear Information System (INIS)

    It was made a study on the behavior of uranium and cerium(IV) extraction, using the latter element as a plutonium simulator in a flowsheet of the treatment of irradiated uranium. Cerium(IV) was used under the same conditions as a plutonium in the Purex process because the admitted similar properties. An experimental work was initiated to determine the equilibrium curves of uranium, under the following conditions: concentration of 1 to 20 g U/1 and acidity varying from 1 to 5M in HNO3. Other parameters studied were the volumetric ratio of the phases and the influence of the concentration of TBP (tri-n-butyl phosphate). To guarantee the cerium(IV) extraction, the diluent (varsol) was previously treated with 10% potassium dichromate in perchloric acid, potassium permanganate in 1M sulphuric acid and concentrated sulphuric acid at 70 deg to eliminate reducing compounds. The results obtained for cerium extraction, allowed a better understanding of its behavior in solution. The results permitted to conclude that the decontamination for cerium are very high in the first Purex extraction cycle. The easy as cerium(IV) is reduced to the trivalent state contributes a great deal to its decontamination. (author)

  18. Extraction of tetravalent berkelium and cerium by aliquate-336-S-NO3 quaternary ammonium salt

    International Nuclear Information System (INIS)

    Extraction of tetravalent berkelium and cerium by aliquate-336-S-NO3 quaternary ammonium salt from nitric acid solutions is investigated. The effect of concentrations of nitric acid and extracting agent, nature of an oxidant (potassium bromate, potassium bichromate, mixture of AgNO3 and (NH4)2S2O8) and solvent on the distribution coefficient of berkelium(4) and cerium(4) is studied. It is established that solutions of aliquate-336-S-NO3 in carbon tetrachloride and dichloroethane extract quantitatively tetravalent berkelium from 10-12 M nitric acid solutions and cerium - from 1-10 M nitric acid solutions containing potassium bichromate as an oxidant. It is shown that the value of distribution coefficient for berkelium and cerium depends on the nature of an oxidant and extracting agent concentration. It is established that in the case of extraction by quaternary ammonium salt with one berkelium(4) mole four aliquate-336-SNO3 moles are associated and 1.5-1.6 mole of extracting agent are associated with one cerium(4) mole. It permits to make a conclusion that stoichiometry of extraction reactions by quaternary ammonium salt is not the same for tetravalent berkelium and cerium. It is shown that trivalent transplutonium and rare earth elements are not practically extracted by aliquate-336-S-NO3 from nitric acid solutions

  19. Level and origin of Iodine-129 in the Baltic Sea

    International Nuclear Information System (INIS)

    Environmental samples, such as seawater, seaweed, lake water, lake sediment and grass collected from the Baltic Sea area were analyzed for 129I and 127I by radiochemical neutron activation analysis. In 2000, the concentration of 129I in the seawater from Borholm and Moeen in the Baltic Sea has reached 6.0x10-13 and 16x10-13 g/l, respectively, these are more than two orders of magnitude higher than the global fallout level. The highest value of 270x10-13 g/l being found in the seawater from the Kattegat. By comparison of the level of 129I in the lake water and precipitation in this region, it is estimated that more than 95% of 129I in the Baltic Sea originates from reprocessing emissions, especially from the French nuclear fuel reprocessing plant at La Hague. More than 30% of 129I in the south Baltic and 93% in the Kattegat directly originates from the marine discharges of the European reprocessing plants

  20. AMS of I-129: cross contamination and its correction

    Energy Technology Data Exchange (ETDEWEB)

    Vockenhuber, Christof [ETH Zurich, Labor fuer Ionenstrahlphysik, Zuerich (Switzerland)

    2014-07-01

    Low-energy AMS is well suited for measurements of the long-lived nuclide {sup 129}I because the interfering stable isobar {sup 129}Xe does not form negative ions, thus high ion energies are not required for discrimination in the final detector. Furthermore, low-energy AMS has the advantage that in combination with helium stripping the most probable charge state can be selected; in our case at the TANDY running at 300 kV we select charge state 2+ with a transmission of >50%. With a proper spectrometer at the high-energy side interferences of the stable isotope {sup 127}I can be completely eliminated. Contrary to many AMS nuclides {sup 129}I readily forms negative ions and the overall efficiency is high. The challenges lie more in the ion source where cross contamination can be quite severe due to the volatile nature of iodine. This is particularly of importance when analyzing samples that are influenced from anthropogenic sources because the isotopic ratios can span several orders of magnitude. On the other hand special care must be taken when analyzing samples with low isotopic ratios ({sup 129}I/{sup 127}I < 10{sup -13}) or samples with very low iodine content (carrier free samples) due to the very same reason. This talk discusses the advantages and challenges of low-energy AMS of I-129 with the focus on the issues with cross contamination and its correction.

  1. Speciation of 129I in sea, lake and rain waters

    DEFF Research Database (Denmark)

    Lehto, Jukka; Räty, Tero; Hou, Xiaolin;

    2012-01-01

    11.1±4.3μg/l and 3.9±4.1×10−9 at/l. In rain and lake waters the concentration of 129I was more or less identical and almost one order of magnitude lower than in sea water. Based on these observations, and data from the literature, it is assumed that the source of 129I in lakes is precipitation and......Concentrations of the very long-lived fission product 129I and stable iodine (127I) in the Baltic Sea and lake and rain waters from Finland, were measured as well as their occurrence as iodide (I−) and iodate (IO3−). The highest concentrations of both 127I and 129I occurred in sea water, on average...... sea and lake waters by 92–96% and in rain water by 75–88%. Compared to 127I the fraction of iodide was slightly higher in case of 129I in all waters....

  2. Excess 129Xe in terrestrial samples: A non-primordial hypothesis

    International Nuclear Information System (INIS)

    Excesses of 129Xe relative to the isotopic composition in air are observed in some terrestrial samples. Traditionally these 129Xe excesses have been thought to be related to 129I that was present in abundance in the early solar system. We propose an alternative hypothesis to explain terrestrial 129Xe excesses based on the production of 129I from the spontaneous fission of 238U

  3. Excess /sup 129/Xe in terrestrial samples: A non-primordial hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Caffee, M.W.; Hudson, G.B.

    1987-03-01

    Excesses of /sup 129/Xe relative to the isotopic composition in air are observed in some terrestrial samples. Traditionally these /sup 129/Xe excesses have been thought to be related to /sup 129/I that was present in abundance in the early solar system. We propose an alternative hypothesis to explain terrestrial /sup 129/Xe excesses based on the production of /sup 129/I from the spontaneous fission of /sup 238/U.

  4. Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?

    International Nuclear Information System (INIS)

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output

  5. Detection of iodine-129 in some environmental samples

    International Nuclear Information System (INIS)

    The recent accumulation of the long-lived isotope of iodine, 129I, which is released in environment by the peaceful use of nuclear energy or nuclear test explosion is becoming important in the view point of the internal exposure by the low level radiation. The studies on the detection of determination of 129I in environmental samples so far published are still very few. The authors tried to detect 129I in some Japanese seaweeds and soil samples with the aid of the activation method by using the nuclear reaction of 129I(n, #betta#)130I. The samples analysed in this work are tangle (Laminaria japonica) for daily food grown in Hidaka, Hokkaido and uncultivated soil collected in Tokai, Ibaraki Pref. As the #betta#-ray peak indicator for 130I, cesium oxide and the aged radioisotope product of 131I are also subjected to the neutron irradiation. From cesium oxide, 130I is formed by the reaction of 133Cs(n, α)130I. An aged vial of the 131I product is expected to contain very minute amounts of 129I which is also produced both by the fission of uranium and neutron capture reaction of tellurium followed by #betta#--decay. The #betta#-ray spectra for the soil sample, cesium oxide and the aged 131I vial are shown in Fig. 1. No appreciable peak was found for the seaweeds sample. In the #betta#-ray spectra for irradiated cesium oxide and the aged 131I vial, several typical peaks for 130I were observed. By comparing with these peaks, several small peaks which appear at around 418, 536 and 739 keV in the soil sample can be attributed to those of 130I. The 129I content in the soil sample is roughly estimated to be 2 x 10-10 Bq/g. (author)

  6. Recent improvements of a mobile polarizer system for 129Xe

    International Nuclear Information System (INIS)

    (HP)129Xe has numerous applications both in fundamental physics like nuclear spin clocks and in medical research, e.g. in lung MRI. We report on a compact mobile 129Xe polarizer built in order to achieve high polarization degrees operating in counter flow. The optical pumping scheme is optimized in terms of magnetic field homogeneity, rubidium saturation, freeze-thaw method, gas-transport and its storage in special vessels with low wall relaxation. This talk will cover different aspects of HP gas production, manipulation and minimization of losses due to relaxation.

  7. Analysis of 129I and its Application as Environmental Tracer

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Hou, Yingkun

    2012-01-01

    Iodine-129, the long-lived radioisotope of iodine, occurs naturally, but anthropogenic generated 129I has dominated the environment in the past 60 years. Due to active chemical and environmental properties of iodine and the enhanced analytical capacity for 129I measurement, the application of 129I...... as an environmental tracer has highly increased in the past 10 years. Neutron activation analysis and accelerator mass spectrometry are the only techniques for measurement of 129I at environmental level. This article mainly compares these two analytical techniques for the determination of 129I at...... environmental level, and highlights the progress of these analytical methods for chemical separation and sensitive measurement of 129I. The naturally occurred 129I has been used for age dating of samples/events in a range of 2-80 Ma. For the purpose of this study, an initial value of 129I has to be measured...

  8. Thyroidal burdens of 129I from various dietary sources

    International Nuclear Information System (INIS)

    Thyroidal burdens of 129I were calculated for 1-, 4- and 14-yr-olds, and adults, using available dietary data. Milk and milk products contributed 63, 57, 54 and 33% of the total thyroidal 129I burden of the four respective age groups. As the contribution from dairy products decreased, that from meat increased from about 12% for 1-yr-olds to 35% for adults, while that from leafy vegetables remained relatively stable, from 17 to 21%. From ingested foods produced in air assumed to contain 1 pCi 129I per m3, daily dietary 129I intakes of 1.3, 1.2, 1.7 and 1.5 nCi were computed for the 1-, 4-, and 14-yr-old child and adult, respectively. For each nCi ingested daily, thyroidal dose rates for the respective age groups were calculated to be 4.9, 2.1, 1.7 and 2.6 rem/yr, with the altered dose rates reflecting age-related differences in thyroid gland size and iodine kinetics. (author)

  9. 40 CFR 129.105 - Polychlorinated biphenyls (PCBs).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Polychlorinated biphenyls (PCBs). 129... Polychlorinated biphenyls (PCBs). (a) Specialized definitions. (1) PCB Manufacturer means a manufacturer who produces polychlorinated biphenyls. (2) Electrical capacitor manufacturer means a manufacturer who...

  10. Iodine-129 in thyroid and urine in Ukraine and Denmark

    Czech Academy of Sciences Publication Activity Database

    Hou, XL.; Malencheko, AF.; Kučera, Jan; Dahlgaard, H.; Nielsen, SP.

    2003-01-01

    Roč. 302, 1, 2, 3 (2003), s. 63-73. ISSN 0048-9697 R&D Projects: GA AV ČR KSK4055109 Keywords : neutron-activation analysis * environmental materials * I-129 concentrations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.455, year: 2003

  11. Determination of the 129I in primary coolant of PWR

    International Nuclear Information System (INIS)

    Among the radioactive wastes generated from the nuclear power plant, a radioactive nuclide such as 129I is classified as a difficult-to-measure (DTM) nuclide, owing to its low specific activity. Therefore, the establishment of an analytical procedure, including a chemical separation for 129I as a representative DTM, becomes essential. In this report, the adsorption and recovery rate were measured by adding 125I as a radio-isotopic tracer (t1/2 = 60.14 d) to the simulation sample, in order to measure the activity concentration of 129I in a pressurized-water reactor primary coolant. The optimum condition for the maximum recovery yield of iodine on the anion exchange resins (AG1 x2, 50-100 mesh, Clform) was found to be at pH 7. In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of 129I was examined, as was the effect of 3H on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous 3H presence was found with activity concentrations of 3H lower than 50 Bq/mL, and with a boron concentration of less than 2,000 μg/mL.

  12. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

    2012-09-24

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  13. 46 CFR 129.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery must be located as high above the bilge as practicable within the space the battery is located in...

  14. 21 CFR 129.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 129.1 Section... Current good manufacturing practice. The applicable criteria in part 110 of this chapter, as well as the... manufacturing practice to assure that bottled drinking water is safe and that it has been processed,...

  15. 20 CFR 220.129 - Education as a vocational factor.

    Science.gov (United States)

    2010-04-01

    ... ACT DETERMINING DISABILITY Vocational Considerations § 220.129 Education as a vocational factor. (a... responsibilities the claimant had when he or she was working may show that he or she has intellectual abilities... results of testing may also show that the claimant has significant intellectual ability that can be...

  16. Methods of I-129 analysis for environmental monitoring

    International Nuclear Information System (INIS)

    Among the radioiodine isotopes discharged from nuclear facilities 12+H9I has the longest half-life of 1.7x107 years and is accumulated in the environment for a long time period. Therefore, it is one of the most important nuclides in the environmental monitoring around a fuel reprocessing plant. Low level contamination of environmental samples with 129I may cause considerably high thyroid dose to the population. For instance, only ten pico-curies of 129I per liter of fresh milk may give one millirem of thyroid dose. Methods for the analysis of low level 129I in environmental samples such as milk, leafy vegetables and seaweeds have been developed. Iodine in the samples dried at low temperature is sublimated by heating at about 900degC in oxygen gas flow, and then trapped in the first charcoal trap. The trapped iodine is purged and condensed into the second mini-charcoal trap, then transferred into a quartz tube for neutron activation analysis. Iodine in the sample activated by thermal neutrons is purified by solvent extraction technique using chloroform. Purified iodine ion is converted to silver iodide precipitate. 130I and 128I contents in the precipitate are determined by gamma-ray spectrometry. The lower detection limit of 129I by this method was found to be 0.01 - 0.1 pCi/kg wet weight. (author)

  17. 129Xe EDM Search Experiment Using Active Nuclear Spin Maser

    Science.gov (United States)

    Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Suzuki, Takahiro; Shirai, Hazuki; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher P.; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    An active nuclear spin maser, which enables a precision measurement of spin precession frequency, is employed in the experimental search for permanent electric dipole moment (EDM) in the diamagnetic atom 129Xe. In order to eliminate systematic errors which limit the sensitivity of the experiment to an EDM, the following tactics are adopted: (i) 3He comagnetometry for the cancellation of long-term drifts in the external magnetic fields and (ii) double-cell geometry for the mitigation of frequency shifts due to interaction of 129Xe spin with polarized Rb atoms. In the present work, the design for the double-cell has been changed and a magnetic shield-coil system to provide a highly homogeneous magnetic field has been newly introduced. Thanks to increased polarization and longer 3He spin relaxation time, the dual-species maser of 129Xe and 3He in a double-cell geometry operated successfully. Our experiment is now at the stage of assembling these separate technical elements in order to start the measurement of 129Xe EDM in the 10-28 ecm region.

  18. I-129 Moessbauer effect of polyacetylene with iodine addition

    International Nuclear Information System (INIS)

    The I-129 Moessbauer effect of polyacetylene with iodine addition was measured. The gamma-ray used was emitted from the first excited state of I-129, which is a decay product of Te-129. The Te-129 was produced by neutron irradiation of ZnTe128. The state of iodine in the #betta#-carotene-iodine complex was studied by the Moessbauer method. An obtained Moessbauer spectrum showed the presence of two kinds of iodine. As a result, it can be said that the #betta#-carrotene iodine complex is present in an ionic state of (C40H56)+ I3-. The states of iodine doped into cis- and trans-polyacetylene were also measured by the Moessbauer method. The test samples were made by dipping the polyacetylene into carbon tetrachloride solution of iodine. The obtained Moessbauer spectra were more complex than that of the #betta#-carotene iodine complex. Eight components of iodine were assumed for the analysis of spectra. It is suggested that the iodine states in polyacetylene are I3- and I5-. The I5- ions are linear. The number of I5- increases with increase of the iodine concentration in cis and trans polyacetylene. (Kato, T.)

  19. Transport properties of the calcium ionophore ETH-129.

    Science.gov (United States)

    Wang, E; Erdahl, W L; Hamidinia, S A; Chapman, C J; Taylor, R W; Pfeiffer, D R

    2001-12-01

    The transport mechanism and specificities of ionophore ETH-29 have been investigated in a highly defined phospholipid vesicle system, with the goal of facilitating the application of this compound to biological problems. ETH-129 transports Ca(2+) via an electrogenic mechanism, in contrast to A23187 and ionomycin, which function in a charge neutral manner. The rate of transport is a function of membrane potential, increasing by 3.9-fold per 59 mV over a broad range of that parameter. Rate is independent of the transmembrane pH gradient and strongly stimulated by the uncoupler carbonyl cyanide m-chlorophenylhydrazone when no external potential has been applied. The effect of uncoupler reflects the collapse of an opposing potential arising during Ca(2+) transport, but also reflects the formation of a mixed complex between the uncoupler, ETH-129, and Ca(2+) that readily permeates the vesicle membrane. Oleate does not substitute for the uncoupler in either regard. ETH-129 transports polyvalent cations according to the selectivity sequence La(3+) > Ca(2+) > Zn(2+) approximately equal to Sr(2+) > Co(2+) approximately equal to Ni(2+) approximately equal to Mn(2+), with the magnitude of the selectivity coefficients reflecting the cation concentration range considered. There is little or no activity for the transport of Na(+), K(+), and Mg(2+). These properties suggest that ETH-129 will be useful for investigating the consequences of a mitochondrial Ca(2+) overload in mammalian cells, which is difficult to pursue through the application of electroneutral ionophores. PMID:11720991

  20. 22 CFR 129.6 - Requirement for license/approval.

    Science.gov (United States)

    2010-04-01

    ...) Brokering activities undertaken by or for an agency of the United States Government— (i) For use by an agency of the United States Government; or (ii) For carrying out any foreign assistance or sales program... LICENSING OF BROKERS § 129.6 Requirement for license/approval. (a) No person may engage in the business...

  1. CNN Newsroom Classroom Guides. May 1-29, 1998.

    Science.gov (United States)

    Cable News Network, Atlanta, GA.

    CNN Newsroom is a daily 15-minute commercial-free news program specifically produced for classroom use and provided free to participating schools. These guides are designed to accompany the program broadcasts for May 1-29, 1998. Top stories include: effects of a labor strike on Denmark's economy (May 1); the new currency of the European Union, the…

  2. Thermal expansion and stability of cerium-doped Lu2SiO5

    International Nuclear Information System (INIS)

    In-situ X-ray diffraction, differential scanning calorimetry and dilatometry were used to measure the thermal expansion and thermal stability of cerium-doped Lu2SiO5. The thermal expansion of Lu2SiO5 was highly anisotropic, with expansion along the b- and c-axes 5-10 times greater than expansion along the a-axis. There were no measurable differences in the thermal expansion between undoped Lu2SiO5, cerium-doped Lu2SiO5 with high scintillation efficiency, cerium-doped Lu2SiO5 with low scintillation efficiency and annealed cerium-doped Lu2SiO5. Lu2SiO5 decomposed at temperatures as low as 1350 deg. C in 2, while the presence of 100-150 ppm O2 stabilized Lu2SiO5 at temperatures up to 1760 deg. C. No bulk defects were identified to account for the difference between high scintillation efficiency and low scintillation efficiency cerium-doped Lu2SiO5 samples

  3. Electrochemical deposition of cerium on porous silicon to improve photoluminescence properties

    International Nuclear Information System (INIS)

    In this work, we present results for Cerium (Ce) doping effects on photoluminescence (PL) properties of porous silicon (PS). Cerium was deposited using electrochemical deposition on porous silicon prepared by electrochemical anodization of P-type (100) Si. From the photoluminescence spectroscopy, it was shown that porous silicon treated with cerium can lead to an increase of photoluminescence when they are irradiated by light compared to the porous silicon layer without cerium. In order to understand the contribution of cerium to the enhanced photoluminescence, energy dispersive X-ray (EDX) spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and atomic force microscopy (AFM) were performed, and it was shown that the improved photoluminescence may be attributed to the change of Si–H bonds into Si–O–Ce bonds and to a newly formed PS layer during electrochemical Ce coating. - Highlights: ► Degradation of the surface structures and the PL properties of PS remains a key issue for industrial production. ► In order to solve this problem, the passivation of the PS surface by treating it with Ce is investigated. ► To understand the effects of Ce on PL properties, EDX, FTIR, XRD, AFM and UV–vis analysis were performed.

  4. Electrochemical deposition of cerium on porous silicon to improve photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Atyaoui, Malek, E-mail: atyaoui.malek@yahoo.fr [Laboratoire de Photovoltaieque, Centre de Recherches et des Technologies de l' energie, PB:95, Hammam Lif 2050 (Tunisia); Dimassi, Wissem; Monther, Ghrib; Chtourou, Radhouane; Ezzaouia, Hatem [Laboratoire de Photovoltaieque, Centre de Recherches et des Technologies de l' energie, PB:95, Hammam Lif 2050 (Tunisia)

    2012-02-15

    In this work, we present results for Cerium (Ce) doping effects on photoluminescence (PL) properties of porous silicon (PS). Cerium was deposited using electrochemical deposition on porous silicon prepared by electrochemical anodization of P-type (100) Si. From the photoluminescence spectroscopy, it was shown that porous silicon treated with cerium can lead to an increase of photoluminescence when they are irradiated by light compared to the porous silicon layer without cerium. In order to understand the contribution of cerium to the enhanced photoluminescence, energy dispersive X-ray (EDX) spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and atomic force microscopy (AFM) were performed, and it was shown that the improved photoluminescence may be attributed to the change of Si-H bonds into Si-O-Ce bonds and to a newly formed PS layer during electrochemical Ce coating. - Highlights: Black-Right-Pointing-Pointer Degradation of the surface structures and the PL properties of PS remains a key issue for industrial production. Black-Right-Pointing-Pointer In order to solve this problem, the passivation of the PS surface by treating it with Ce is investigated. Black-Right-Pointing-Pointer To understand the effects of Ce on PL properties, EDX, FTIR, XRD, AFM and UV-vis analysis were performed.

  5. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  6. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    Science.gov (United States)

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns. PMID:27231888

  7. The kinetics of bromate-cerium(III) and -iron(II) reactions

    International Nuclear Information System (INIS)

    The bromate-cerium(III) and -iron(II) reactions in acidic media were examined with special reference to their induction periods and reaction rates. In the bromate-cerium(III)reaction, the induction period is followed by a burst of cerium (IV) formation and then a gradual formation of cerium(IV). In the bromate-iron(II) reaction, a slow decrease occurs only in acidic media, even without bromate, so it may differ from the decrease in the tris(1, 10-phenanthroline)iron(II) concentration based on the oxidation by bromate. Itwas interpreted as the dissociation from ( Fe(phen)3 ) 2+ to ( Fe(phen)2 ) 2+ and phen. This is the induction period for iron(III) formation, which follows as the burst. The induction period and the rates of cerium(IV) or iron(III) formation can be interpreted on the basis of the mechanism for the Belousov oscillatory and the present redox reactions proposed by Noyes and his co-workers. (author)

  8. Effect of cerium loading on structure and morphology of modified Ce-USY zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Fillipe A.C.; Araujo, Daniel R.; Silva, Junia C.M.; Macedo, Julio L. de; Dias, Silvia C.L.; Dias, Jose A., E-mail: scdias@unb.br, E-mail: jdias@unb.br [Laboratorio de Catalise, Instituto de Quimica, Faculdade UnB-Gama, Universidade de Brasilia, DF (Brazil); Ghesti, Grace F. [Engenharia de Energia, Faculdade UnB-Gama, Universidade de Brasilia, DF (Brazil); Filho, Geraldo N.R. [Centro de Ciencias Exatas e Naturais, Universidade Federal do Para, Belem, PA (Brazil)

    2011-09-15

    This work describes comprehensibly the effect of cerium loading on the structure and morphology of NH{sub 4}USY zeolite. The Ce-USY (2-25 wt.% of CeO{sub 2}) was obtained by wet impregnation of CeCl{sub 3} followed by calcination at 550 deg C for 8 h. At low loadings (2-10%), cerium species are mainly located at ion exchange positions in the framework, whereas at higher loadings (15.25%), small aggregates were formed on the HUSY surface. X-ray diffractograms (XRD) exhibited only the reflections related to HUSY, demonstrating the high dispersion of cerium species, but Fourier transform Raman spectroscopy (FT-Raman) detected CeO{sub x} for the materials above 10%. Reaction of CeCl{sub 3} with NH{sub 4}USY produced NH{sub 4}Cl, which decomposed to form HCl, leading to framework dealumination. The materials showed an increased Lewis/Bronsted ratio with increasing cerium loadings due to the interaction between the excess cerium and the OH groups of USY, and the consequent formation of CeO{sub x} species. (author)

  9. In-house SAD phasing with surface-bound cerium ions

    International Nuclear Information System (INIS)

    Cerium was used to enhance the anomalous signal in hen egg-white lysozyme crystals and led to successful in-house SAD phasing. The anomalous signal of cerium(III) ions present in a derivative of hen egg-white lysozyme (HEWL) crystals obtained by the addition of 0.025 M cerium chloride to the crystallization medium was used for phasing. X-ray intensity data were collected to 2 Å resolution using an in-house Cu Kα radiation data-collection facility. Phasing of a single-wavelength data set purely based on its f′′ led to a clearly interpretable electron-density map. Automated substructure solution by AutoSol in PHENIX resulted in four highest peaks corresponding to cerium(III) ions with data limited to 3 Å resolution, and about 90% of the residues were built automatically by AutoBuild in PHENIX. Cerium(III) ions bound on the surface of the enzyme are found to interact mainly with the main-chain and side-chain carbonyl groups of Asn, Glu, Tyr and Asp and with water molecules. Ce3+ ions were used as potential anomalous scatterers for the in-house single-wavelength anomalous scattering technique, and this is proposed as a tool for macromolecular phasing and for the study of the interactions of trivalent metal ions with proteins and other macromolecules

  10. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    Science.gov (United States)

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-01

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 °C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 °C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles.

  11. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Han Beom; Jung, Chong-Hun; Yoon, In-Ho; Kim, Chorong; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process.

  12. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Science.gov (United States)

    Nelson, Bryant C.; Johnson, Monique E.; Walker, Marlon L.; Riley, Kathryn R.; Sims, Christopher M.

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  13. Deposition and investigation of lanthanum-cerium hexaboride thin films

    International Nuclear Information System (INIS)

    Thin films of lanthanum-cerium hexaboride, the promising thermoelectric material for low-temperature applications, are deposited on various substrates by the electron-beam evaporation, pulsed laser deposition and magnetron sputtering. The influence of the deposition conditions on the films X-ray characteristics, composition, microstructure and physical properties, such as the resistivity and Seebeck coefficient, is studied. The preferred (100) orientation of all films is obtained from XRD traces. In the range of 780-800 deg. C deposition temperature the highest intensity of diffractions peaks and the highest degree of the preferred orientation are observed. The temperature dependence of the resistivity and the Seebeck coefficient of films are investigated in the temperature range of 4-300 K. The features appropriate to Kondo effect in the dependences ρ(T) and S(T) are detected at temperatures below 20 K. Interplay between the value of the Seebeck coefficient, metallic parameters and Kondo scattering of investigated films is discussed. - Graphical abstract: Kondo scattering in (La,Ce)B6 films: temperature dependence of the resistivity of (La,Ce)B6 films on various substrates and the ceramics La0.99Ce0.01B6

  14. Synthesis and characterization of cerium oxide by electrochemical methods

    International Nuclear Information System (INIS)

    Ceria-based materials have been synthesized by electrochemical process. Electrodeposition is an interesting cheap method which can be performed at ambient pressure and rather low temperature (less than 100 C). Moreover, it is easy to control in situ the film thickness. Ceria coatings were obtained by an indirect electrodeposition method. A potentiostatic technique (-0.7 V/SCE) was used to first reduce a hydroxide precursor (O2 or NO3-) before leading to the formation of cerium oxide after 2h of deposition time. This work focused on the characterization of ceria films deposited onto stainless steel in view of high temperature fuel cell applications. The chosen deposition conditions lead to quite adherent, homogenous and covering films. The microstructure and the crystallinity of the ceria thin layers were characterized by SEM, TEM and XRD measurements. Electrochemical microscopy (SECM) was also used to locally study the conductive properties of ceria layers and the homogeneity of the deposited films. Finally, electrochemical characterizations such as impedance spectroscopy were performed under air atmosphere. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Synthesis and characterization of cerium oxide by electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lair, V.; Ringuede, A. [LECA CNRS UMR 7575-ENSCP-Paris 6, Paris (France); Vermaut, P. [Groupe Metallurgie Structurale LPCS UMR CNRS, ENSCP-Paris 6, Paris (France); Griveau, S. [Ecole Nationale Superieure de Chimie de Paris, Faculty of Pharmacy, Chemical and Genetic Pharmacology Laboratory, Paris (France)

    2008-07-01

    Ceria-based materials have been synthesized by electrochemical process. Electrodeposition is an interesting cheap method which can be performed at ambient pressure and rather low temperature (less than 100 C). Moreover, it is easy to control in situ the film thickness. Ceria coatings were obtained by an indirect electrodeposition method. A potentiostatic technique (-0.7 V/SCE) was used to first reduce a hydroxide precursor (O{sub 2} or NO{sub 3}{sup -}) before leading to the formation of cerium oxide after 2h of deposition time. This work focused on the characterization of ceria films deposited onto stainless steel in view of high temperature fuel cell applications. The chosen deposition conditions lead to quite adherent, homogenous and covering films. The microstructure and the crystallinity of the ceria thin layers were characterized by SEM, TEM and XRD measurements. Electrochemical microscopy (SECM) was also used to locally study the conductive properties of ceria layers and the homogeneity of the deposited films. Finally, electrochemical characterizations such as impedance spectroscopy were performed under air atmosphere. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Electron inelastic mean free paths in cerium dioxide

    Science.gov (United States)

    Krawczyk, M.; Holdynski, M.; Lisowski, W.; Sobczak, J. W.; Jablonski, A.

    2015-06-01

    Electron transport properties in CeO2 powder samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the CeO2 sample surface was pre-sputtered by 0.5 keV Ar ion etching. As a result, an altered layer with thickness of 1.3 nm was created. X-ray photoelectron spectroscopy (XPS) analysis revealed two chemical states of cerium Ce4+ (68%) and Ce3+ (32%) at the surface region of CeO2 sample after such treatment. The inelastic mean free path (IMFP), characterizing electron transport, was evaluated as a function of energy within the 0.5-2 keV range. Experimental IMFPs were corrected for surface excitations and approximated by the simple function λ = kEp, where λ was the IMFP, E denoted the energy (in eV), and k = 0.207 and p = 0.6343 were the fitted parameters. The IMFPs measured here were compared with IMFPs resulting from the TPP-2M predictive equation for the measured composition of oxide surface. The measured IMFPs were found to be from 3.1% to 20.3% smaller than the IMFPs obtained from the predictive formula in the energy range of 0.5-2 keV. The EPES IMFP value at 500 eV was related to the altered layer of sputtered CeO2 samples.

  17. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  18. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine.

    Science.gov (United States)

    Nelson, Bryant C; Johnson, Monique E; Walker, Marlon L; Riley, Kathryn R; Sims, Christopher M

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  19. Cerium doped lanthanum halides: fast scintillators for medical imaging

    International Nuclear Information System (INIS)

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl3:Ce3+ and LaBr3:Ce3+).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  20. Cerium toxicity, uptake and translocation in Arabidopsis thaliana seedlings

    Institute of Scientific and Technical Information of China (English)

    WANG Xue; LIN Yousheng; LIU Dongwu; XU Hengjian; LIU Tao; ZHAO Fengyun

    2012-01-01

    Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity,uptake and translocation of rare earth elements (REEs).The results showed that Ce could be largely absorbed by the roots of A.thaliana and translocated to the shoots.But the uptake rates of Ce by the roots were much higher than the translocation rates from roots to shoots.Ultrastructural analysis revealed that Ce was mainly distributed on the cell wall.At higher concentration,Ce could also enter cell,destroy the ultrastructure of cells and disturb the intrinsic balance of nutrient elements of A.thaliana.Addition of Ce (50-500 μmol/L) to the culture medium significantly inhibited the elongation of primary roots,decreased chlorophyll content,rosette diameter and fresh mass of plants.The damage increased with the increase of Ce concentration in culture medium,although primary root elongation,chlorophyll content,and rosette diameter were stimulated by relatively low concentration (0.5 μmol/L) of Ce.Thus,it is speculated that REEs may become a new type contamination if we don't well control the release of REEs into the environment.

  1. Effect of Cerium(IV)-Surfactant Reaction in Foam Decontamination

    International Nuclear Information System (INIS)

    Using foams allows the decommissioning of complex shaped facilities. The decontamination foam comprises at least one surfactant to generate the foam and one or more chemical reactants to achieve the dissolution of the contaminants at the solid surface. In order to improve the efficiency of decontamination foam, the present study attempts to find the optimum condition of chemical reagents to the foaming solution. The corrosion rate of radioactive nuclides contaminated stainless steel metal is very important factor for the foam decontamination process. The goal of this study is to develop the decontamination process for contaminated stainless steel in medium of nitric acid. Stainless steel needs a strong oxidizing agent such as Ce(IV) ion and the effects of cerium(IV). Surfactant interaction involved in foam decontamination and finally the improvement brought by formulation science. The formulation of foams loaded with strong oxidizing reagents such as Ce(IV) is an important factor. The enhanced decontamination properties of nitric acid with Ce(IV) additive on stainless steel is well known in liquid mediums. stainless steel metal is an important aspect in the foam decontamination process

  2. Measurements of 129I in human and bovine thyroids in Europe--transfer of 129I into the food chain

    International Nuclear Information System (INIS)

    Bovine thyroid glands from different countries in Europe and human thyroid glands from Lower Saxony (Federal Republic of Germany) show isotopic 129I/127I ratios of 2.1 X 10(-9) to 8.2 X 10(-8) for cattle and 2.1 X 10(-9) to 8 X 10(-8) in humans. These values give information about the concentration of fallout 129I in Europe since most of these glands were collected in areas without nuclear facilities. Some of the human thyroids were collected after the Chernobyl accident between May 1986 and February 1988. Results obtained from human thyroids taken in some locations of Lower Saxony show no significant increase of the 129I during this time. Higher concentrations of 129I were only found in cattle grazing in the vicinity of a reprocessing plant in Mol, Belgium. Samples of soil, vegetation, milk, and water from this area contained higher than normal concentrations of 129I. The long-term transfer of radioiodine from the soil to the plant and the translocation within the soil were studied using a soil monolith with a 129I-contaminated surface. During the 4 y of the experiment, the transfer factor plant/soil decreased from 0.3 to 2.2 X 10(-3). Soil samples taken in 5-cm steps to a depth of 30 cm then at 40 and 50 cm depths showed that the transport of radioiodine to lower layers proceeds very slowly. In an in-vivo study with a dairy cow, the transfer of radioiodine from feed to milk to cow meat and to pig thyroid gland was followed for 53 d using 129I-labeled pasture grass contaminated via roots. A part of the milk obtained from the cow was fed to a pig as a substitute for humans. The mean value of the transfer factor milk/feed was 2.4 X 10(-3) d kg-1. The values of the transfer factor cow meat/feed obtained for different muscle cuts and organs (excluding thyroid) ranged between 3.0 X 10(-4) (kidney) and 5.4 X 10(-2) d kg-1 f.w

  3. Toenail cerium levels and risk of a first acute myocardial infarction: The EURAMIC and heavy metals study

    NARCIS (Netherlands)

    Gomez-Aracena, J.; Riemersma, R.A.; Veer, van 't P.; Kok, F.J.

    2006-01-01

    The association between cerium status and risk of first acute myocardial infarction (AMI) was examined in a case-control study in 10 centres from Europe and Israel. Cerium in toenails was assessed by neutron activation analysis in 684 cases and 724 controls aged 70years or younger. Mean concentratio

  4. Origin and Transport Mechanism of Iodine-129 to the Japan Sea

    Science.gov (United States)

    Suzuki, T.; Kabuto, S.; Amano, H.; Togawa, O.

    2007-05-01

    Iodine-129 is a long-lived radioisotope with a half life of 1.57 ? 107 years and produced naturally (129Inatural) by cosmic ray-induced spallation of xenon and spontaneous fission of uranium. Anthropogenic 129I has two main sources of releases into the environment during the last 60 years: one is nuclear weapons testing (129INWT) and the other is nuclear fuel reprocessing plants (129INFRP). Because of its long half life, anthropogenic 129I has a potential using as a tracer of the migration behavior of iodine for the last several decades. In this presentation, we discuss not only the origin but also the transport mechanism of 129I to the Japan Sea. Seawater samples were collected at the Toyama Bay and a region off Sekine in or near the Japan Sea. The concentrations of 129I in these samples were determined by accelerator mass spectrometry. The observed concentrations exceed the amounts expected from 129Inatural and 129INWT. The total fraction of 129Inatural and 129INWT is only a few percent. The majority of the concentration must come primarily from nuclear fuel reprocessing plants in Europe. This result indicates a rapid distribution of 129I through atmospheric transport on a global scale. A depth profile of 129I in a seawater column at the Toyama Bay shows that the 129I maximum is in a mixed layer and decrease with depth. The inventory of 129I in the Toyama Bay is four times higher than the Gulf of Mexico which has almost the same depth as the Toyama Bay. This higher inventory probably reflects: 1) the seawater rapid sinking in the Japan Sea, 2) the difference of sampling locations associated with a distance from 129I released points and latitudinal distribution and 3) the differences of sampling dates before which integrated emissions from nuclear fuel reprocessing plants differed.

  5. Epigenetic inactivation of the MIR129-2 in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Wong Kwan-Yeung

    2013-02-01

    Full Text Available Abstract Background MIR129-2 has been shown to be a tumor suppressor microRNA hypermethylated in epithelial cancers. Patients and methods Epigenetic inactivation of MIR129-2 was studied by methylation-specific PCR (MSP in 13 cell lines (eight myeloma and five lymphoma, 15 normal controls and 344 primary samples including acute myeloid leukemia (AML, acute lymphoblastic leukemia (ALL, chronic myeloid leukemia (CML, chronic lymphocytic leukemia (CLL, non-Hodgkin’s lymphoma (NHL, multiple myeloma (MM at diagnosis, MM at relapse/progression, and monoclonal gammopathy of undetermined significance (MGUS. Expression of MIR129 and its target, SOX4, in cell lines was measured before and after hypomethylating treatment and MIR129 overexpression. MIR129 expression was correlated with MIR129-2 methylation status in primary lymphoma samples. Tumor suppressor function of MIR129 was demonstrated by MTT and trypan blue exclusion assay after MIR129 overexpression. Results The sensitivity of the methylated-MSP was one in 103. Different MSP statuses, including complete methylation, partial methylation, and complete unmethylation, were verified by quantitative bisulfite pyrosequencing. All five lymphoma and seven of eight myeloma cell lines showed complete and partial MIR129-2 methylation. In primary samples, MIR129-2 methylation was absent in AML and CML, but detected in 5% ALL, 45.9% CLL, 49.5% MM at diagnosis, and 59.1% NHL. In CLL, MIR129-2 methylation adversely impacted on survival (p=0.004. In MM, MIR129-2 methylation increased from 27.5% MGUS to 49.5% MM at diagnosis and 41.5% at relapse/progression (p=0.023. In NHL, MIR129-2 methylation was associated with MIR124-1 and MIR203 methylation (pMIR129 expression (p=0.009. Hypomethylation treatment of JEKO-1, homozygously methylated for MIR129-2, led to MIR129-2 demethylation and MIR129 re-expression, with downregulation of SOX4 mRNA. Moreover, MIR129 overexpression in both mantle cell lines, JEKO-1 and GRANTA

  6. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  7. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    Directory of Open Access Journals (Sweden)

    Subas K. Muduli

    2014-04-01

    Full Text Available A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species.

  8. Kinetics of deso/sub x/ reaction on copper and cerium-based sorbent-catalysts

    International Nuclear Information System (INIS)

    Kinetics of SO/sub 2/ removal using a copper-based sorbent CuO/gamma-AI/sub 2/O/sub 3/ and a cerium modified copper sorbent CuO-CeO/sub 2/gamma-AI/sub 2/O, were measured on a TGA and their kinetics behaviors were simulated with a proposed empirical rate model (ERM). The purpose of cerium addition to the copper sorbent was to study the difference of sorbent's kinetics. The cerium modified copper sorbent showed a higher reaction rate on initial sulfation than the regular copper sorbent. Both sorbents however had similar calculated activation energy. The proposed ERM model appeared to describe the SO/sub 2/ removal kinetics well in the temperature range 250-400 degree C. (author)

  9. Magnetic ordering in the static intermediate-valent cerium compound Ce2RuZn4

    Science.gov (United States)

    Eyert, Volker; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang; Hermes, Wilfried; Pöttgen, Rainer

    2008-12-01

    The low-temperature behavior of Ce2RuZn4 has been investigated. Specific-heat and magnetic-susceptibility data reveal an antiferromagnetic transition at a Néel temperature of 2 K. Ce2RuZn4 is a static intermediate-valent compound with two crystallographically independent cerium atoms. The magnetic data clearly show that only one cerium site is magnetic (Ce3+) , while the second one carries no magnetic moment. The experimental data are interpreted with the help of first-principles electronic structure calculations using density-functional theory and the augmented spherical wave method. The calculations reveal the occurrence of two different cerium sites, which are characterized by strongly localized magnetic moments and strong Ce-Ru bonding.

  10. Electro-deposition of cerium thin film compound, elaboration and characterisation

    International Nuclear Information System (INIS)

    Cerium oxide films are widely studied as a promising alternative to the toxic hexavalent Chromium Cr(VI) based pre-treatments for the corrosion protection of different metals and alloys. Cathodic electro-deposition of Cerium compound thin films was realised on Ti alloy (TA6V) substrates from a Ce(NO3)3, 6H2O in water-ethyl alcohol solutions at 0.01 M. Experimental conditions to obtain homogeneous and crack free thin films were determined. The deposited cerium quantity, as expected, is proportional to the used electric charge, following the Faraday law. Subsequent thermal treatment led to a CeO2 coating, which is expected to increase the TA6V oxidation resistance at high temperatures. The deposits were characterized by Differential Scanning Calorimetry (DSC), optical and scanning electron microscopies.(author)

  11. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  12. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yuan, Paul Guss, and Sanjoy Mukhopadhyay

    2009-04-01

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector’s self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  13. Self-Correction of Lanthanum-Cerium Halide Gamma Spectra (pre-print)

    International Nuclear Information System (INIS)

    Lanthanum-cerium halide detectors generally exhibit superior energy resolutions for gamma radiation detection compared with conventional sodium iodide detectors. However, they are also subject to self-activities due to lanthanum-138 decay and contamination due to beta decay in the low-energy region and alpha decay in the high-energy region. The detector's self-activity and crystal contamination jointly contribute a significant amount of uncertainties to the gamma spectral measurement and affect the precision of the nuclide identification process. This paper demonstrates a self-correction procedure for self-activity and contamination reduction from spectra collected by lanthanum-cerium halide detectors. It can be implemented as an automatic self-correction module for the future gamma radiation detector made of lanthanum-cerium halide crystals.

  14. Electrolytic technique for the chemical decontamination process with sulfuric acid-cerium (IV) for decommissioning

    International Nuclear Information System (INIS)

    An electrolyzer with an ion-exchange membrane as the separator has been used to study the electrolytic redox reaction of Ce4+ / Ce3+ in sulfuric acid solution, which is a reagent for predismantling system decontamination. Influencing factors such as current density, cerium concentration, acidity, electrolyte flow rate, membrane type and electrode material were studied experimentally. The results indicate that the redox can be achieved with high conversion even as the cerium concentration is below 0.005 M. However, the current efficiency strongly depends on the cerium concentration. In addition, the acid content and the electrolyte flow rate show little influence on the redox reaction. Both cation and anion membrane are feasible for this process. Therefore, the operation conditions are widely applicable. Moreover, two different electrode materials, platinized titanium meshes and graphite, were used. The results show that the platinized titanium meshes is preferable to the graphite for higher current efficiency. (author)

  15. Cathodic electrolysis method of depositing cerium conversion films on industrial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two two-step techniques, called TS2/TS7 and TS3/TS7, respectively, have been developed to form cerium conversion films on the surface of industrial pure aluminum. The tested material was cathodically electrolyzed in the alkaline solution containing cerium salt, and uniform films containing cerium were obtained after the two-step treatment. It is found that the films obtained by TS2/TS7 and TS3/TS7 techniques are about 4.0 and 3.0 m in thickness, respectively. The material has better corrosion resistance in the chloride solution after the two-step electrolysis treatment compared with the one-step treated and naked specimens.

  16. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O' Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  17. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Science.gov (United States)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  18. Catalytic spectrophotometric determination of cerium by ion exchange separation coupled to a flow injection system

    International Nuclear Information System (INIS)

    A flow injection method is described intended for the determination of cerium based on its catalytic effect on the oxidation of gallocyanine by peroxydisulfate in acidic media. The proposed flow injection manifold incorporates a ion exchange separation system in the carrier stream. The decolorisation of gallocyanine due to its oxidation was used to monitor the reaction by spectrophotometry at 524 nm. The variables which affected the reaction rate were fully investigated. By this method cerium(4) can be determined in the range of 0.30-10.0 μg with a limit of detection of 0.25 μg. The relative standard deviation for ten replicate determinations of 1.0 μg of cerium(4) was 1.8 %

  19. Protection against corrosion in marine environments of AA6060 aluminium alloy by cerium chlorides

    International Nuclear Information System (INIS)

    Lanthanide salts are being considered as an environmentally friendly alternative to the classic systems based on chromates. The addition of small concentrations of cerium chloride to aerated aqueous 3.5% NaCl solution inhibits uniform and pitting corrosion processes of AA6060. Full immersion tests combined with different electrochemical techniques were involved to determine the protection degree and the inhibition character supplied by the cerium ion. Their microscopic and compositional features have been analyzed using SEM and EDS spectra. The results obtained show that the protective layer has heterogeneous composition. An alumina layer covers the aluminium matrix while dispersed cerium-rich islands deposited over the cathodic sites of the alloy. In the case of AA6060, α-Al(Fe,Mn)Si acts as permanent cathodic sites.

  20. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Kidney bean roots uptake nCeO2 primarily without biotransformation. • Cerium reached the root vascular tissues through gaps in the Casparian strip. • On longer exposure to high concentration, roots demonstrate stress response. • In leaves, guaiacol peroxidase plays a major role in ROS scavenging. - Abstract: Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼8 ± 1 nm nCeO2 (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO2 exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO2, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO2/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO2 exposure in order to maintain cellular homeostasis

  1. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Sanghamitra [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Castillo-Michel, Hiram [European Synchrotron Radiation Facility, B.P. 220-38043 Grenoble, Cedex (France); Hernandez-Viezcas, Jose-Angel [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States); Sahi, Shivendra [Department of Biology, Western Kentucky University, Bowling Green, KY 42101 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Department of Chemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN) (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Kidney bean roots uptake nCeO{sub 2} primarily without biotransformation. • Cerium reached the root vascular tissues through gaps in the Casparian strip. • On longer exposure to high concentration, roots demonstrate stress response. • In leaves, guaiacol peroxidase plays a major role in ROS scavenging. - Abstract: Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO{sub 2}) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼8 ± 1 nm nCeO{sub 2} (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO{sub 2} exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO{sub 2}, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO{sub 2}/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO{sub 2} exposure in order to maintain cellular homeostasis.

  2. The solvent extraction of cerium from sulphate solution - mini plant trials

    International Nuclear Information System (INIS)

    Full text: The Mt. Weld deposit in Western Australia has a complex rare earth mineralisation. The rare earth phosphate minerals, which include monazite, are amenable to conventional caustic cracking followed by hydrochloric acid dissolution of the trivalent rare earths. The presence of the mineral cerianite in the ore, which is unaffected by the alkali attack, results in rejection of a considerable proportion of the cerium to the acid leach residue. The recovery of cerium from a sulphate solution, resulting from the processing of such a residue, is the subject of the current paper. The liquor treated by solvent extraction contained 63 g L-1 rare earths and the cerium to total rare earth ratio was 75%. Other impurities, including Fe and Th, totalled 2000 ppm. A solvent mixture of commercially available extractants in a low aromatic content diluent was used to extract Ce4+ selectively over the trivalent rare earths. Partial co-extraction of Fe and Th occurred but it was found that these elements were not easily stripped and therefore selective back extraction of cerium was possible. The cerium was stripped from the organic phase by hydrochloric acid and hydrogen peroxide. In continuous counter-current trials two extraction stages and three strip stages were used. In order to produce two grades of strip liquor, stripping was divided into two circuits. The first strip circuit consisting of a single stage, contained proportionally more of the trivalent rare earths. The second strip circuit, consisting of two stages, removed the remaining cerium with proportionally less of the rare earths. A bleed solvent stream was treated for removal of impurities to prevent build-up in the solvent. In the continuous counter current trials, 95% Ce4+ extraction was achieved and the Ce to total rare earth ratio was upgraded to > 99%

  3. Luminescence properties and decay kinetics of nano ZnO powder doped with cerium ions

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Nihar Ranjan, E-mail: nihar@iitbbs.ac.in [Indian Institute of Technology Bhubaneswar, Bhubaneswar 751013, Orissa (India); Acharya, B.S., E-mail: bsacharya1950@gmail.com [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar 752054, Orissa (India); Singh, Th. Basanta [Luminescence Dating Laboratory, Manipur University, Imphal 795003 (India); Gartia, R.K. [Department of Physics, Manipur University, Imphal 795003 (India)

    2013-04-15

    ZnO nanopowders doped with cerium ions (1.2 and 1.5 at. wt.%) were synthesized through soft solution route using ultrasound. Sonication has been found to be an effective way for doping rare earth ions like cerium into ZnO. This was confirmed from energy dispersive analysis of X-rays (EDAX) measurement. Further, optical absorption and photoluminescence (PL) measurements corroborate this finding. X-ray diffraction (XRD) studies show the increase of crystallite size and unit cell volume with doping of cerium ions. Formation of fibrous structure of ZnO:Ce was observed from the transmission electron microscopy (TEM) measurements. Although the structural measurements indicate Ce{sup 4+} ion occupying substitutional site in ZnO, PL and absorption studies confirmed the presence of Ce{sup 3+} ion in the powder. The coexistence of Ce{sup 3+} and Ce{sup 4+} ions has been explained on the basis of conversion of Ce{sup 3+} to Ce{sup 4+} in the oxidizing environment. Thermoluminescence (TL) and photo-stimulated decay of luminescence (PSDL) decay studies give an idea of various trapping levels present in the band gap of ZnO. These traps release electrons during optical stimulation to give bimolecular kinetics in nano ZnO:Ce powders. -- Highlights: ► Sonication: an effective way of incorporation of cerium ions into ZnO. ► Site dependent characteristic emission of cerium. ► Energy transfer from host lattice to cerium ions. ► Mono and bimolecular kinetics of ZnO:Ce.

  4. Dose coefficients from incorporated 129 Iodine. Influence of dietary intake

    International Nuclear Information System (INIS)

    Dose coefficients from incorporated 129 Iodine. Influence of Dietary intake. Internal dose coefficients recently published by the International Commission on Radiological Protection, and adopted in the new European Directive, allow direct calculation of the committed effective dose by multiplying the intake of radionuclide, expressed as becquerels, Bq, by those dose coeffIcients. For iodine, however, this methodology needs adaptation as iodine uptake by thyroid from blood is ruled by an adjustment process to the daily iodine intake: The greater that intake, the smaller the iodine fraction of thyroid uptake. Dealing with the 129 iodine radioactive isotope, for a same ingested Bq, the uptake factor can vary, from 0.3, for a daily dietary intake of 165 μg, to 0.03 for a daily dietary intake of 2.2 mg. Illustrations of this variability are simulated in several situations that could involve contaminated water consumption. (authors)

  5. Ultraviolet Laser Induced Photochromic Centers in Cerium Doped Calcium-Fluoride

    Science.gov (United States)

    Pogatshnik, Gerald Joseph

    The optical excitation of the lowest 4f to 5d transition in Ce('3+):CaF(,2) using the 308 nm output of a XeCl excimer laser results in a strong coloration of the sample. The centers created by the UV laser irradiation were identified, using low temperature absorption spectroscopy, and were found to be divalent cerium ions at cubic sites in the crystal. The system exhibits photochromic properties in that the crystal can be returned to the original transparent state by illuminating it with light which is absorbed by the divalent cerium ions. The creation process for these photochromic centers involves a resonant two-photon transition from the 4f ground state of the cerium ion to the conduction band of the CaF(,2) host. The lowest 5d level of the cerium ion serves as the real intermediate state for this transition. The photoionized electron can be trapped by another trivalent cerium ion at a site of cubic symmetry. These impurity sites with O(,h) symmetry result when the charge compensator associated with the rare earth ion is somewhat removed from the cerium ion site. The charge compensator is needed to maintain charge neutrality in the crystal when a trivalent rare earth is substituted for a Ca ion in the host lattice. The absence of a local charge compensator at a Ce('3+) site with O(,h) symmetry, provides a net positive Coulombic potential, which aids in the trapping of electrons from the conduction band. The capture of an electron by a cerium ion at cubic site, changes the valence state of the ion to Ce('2+). The presence of divalent cerium, with its broad absorption bands in the visible region of the spectrum, accounts for the coloration of the crystal after illumination with UV laser light. A model for the production of the photochromic centers, based on a rate equation is presented. This model reflects the two-photon nature of the photoionization process, as well as the optical bleaching characteristics of the photochromic center, and accurately reproduces the

  6. [Laser resonance ionization spectroscopy of even-parity autoionization states of cerium atom].

    Science.gov (United States)

    Li, Zhi-ming; Zhu, Feng-rong; Zhang, Zi-bin; Ren, Xiang-jun; Deng, Hu; Zhai, Li-hua; Zhang, Li-xing

    2004-12-01

    This paper describes the investigation of even-parity autoionization states of cerium atoms by three-step three-color resonance ionization spectroscopy (RIS). Twenty-seven odd-parity highly excited levels, whose transition probability is high, were used in this research. One hundred and forty-one autoionization states were found by these channels with the third-step laser scanning in the wavelength range of 634-670 nm. The ionization probabilities of different channels, which had higher cross sections, were compared. On the basis of this, eight optimal photoionization schemes of cerium atom have been given. PMID:15828309

  7. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    International Nuclear Information System (INIS)

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol–gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue–black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  8. METHOD OF SEPARATING TETRAVALENT PLUTONIUM VALUES FROM CERIUM SUB-GROUP RARE EARTH VALUES

    Science.gov (United States)

    Duffield, R.B.; Stoughton, R.W.

    1959-02-01

    A method is presented for separating plutonium from the cerium sub-group of rare earths when both are present in an aqueous solution. The method consists in adding an excess of alkali metal carbonate to the solution, which causes the formation of a soluble plutonium carbonate precipitate and at the same time forms an insoluble cerium-group rare earth carbonate. The pH value must be adjusted to bctween 5.5 and 7.5, and prior to the precipitation step the plutonium must be reduced to the tetravalent state since only tetravalent plutonium will form the soluble carbonate complex.

  9. Cerium Binding Activity of Pectins Isolated from the Seagrasses Zostera marina and Phyllospadix iwatensis

    OpenAIRE

    Valeri Kovalev; Maxim Khotimchenko; Yuri Khotimchenko; Elena Khozhaenko

    2012-01-01

    Cerium binding activity of three different water soluble pectin compounds of different origin was studied in a batch sorption system. The Langmuir, Freundlich and BET sorption models were adopted to describe the binding reactions between metal ions and pectin molecules. The Langmuir model provided the best fit. Within the pH range from 4.0 to 6.0, the largest amount of the cerium ions was bound by pectin isolated from the seagrass Phylospadix iwatensis in comparison to pectin extracted from t...

  10. Synthesis and characterization of two dimensional metal organic framework of cerium with tetraaza macrocyclic

    Energy Technology Data Exchange (ETDEWEB)

    Bt Safiin, Nurul Atikah; Yarmo, Ambar; Yamin, Bohari M. [School of Chemical Science and Food Technology. Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    A two dimensional metal organic framework containing cerium sufate layers and ethylenediaminium between layers was obtained by refluxing the mixture of cerium sulphate and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7, 14-diene bromide. The complex was characterized by infrared spectroscopy and microelemental analysis. X-ray study showed that the complex adopts eleven coordination environments about the central atom. Thermogravimetric study showed the removal of water molecules at about 70°C followed by a gradual mass loss until the whole structure collapsed at about 400°C.

  11. Thin film growth of epitaxial gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide by electrodeposition

    International Nuclear Information System (INIS)

    Thin films of gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide were electrodeposited from non-aqueous baths. The films were on the order of 15 nm thick, and were grown epitaxially on textured nickel-tungsten substrates. The effect of deposition rate, annealing temperature and secondary metals on crystallinity and crystal orientation was investigated by X-ray diffraction and transmission electron microscopy. Slower rates, higher temperatures and low concentrations of yttrium improve the crystallinity of gadolinium oxide films, whereas the introduction of cerium induced polycrystallinity.

  12. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    International Nuclear Information System (INIS)

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  13. Plasma-electrolytic formation of cerium-containing surface structures on titanium and aluminum

    International Nuclear Information System (INIS)

    The possibility of obtaining cerium-containing structures on aluminum and titanium by the plasma-electrolytic method with the use of aqueous solutions of electrolytes containing Ce3+ polyphosphate complexes was demonstrated. The amount of cerium in the films obtained depended on the molar ratio n [polyphosphate]/[Ce3+] in the electrolyte. The films contained crystalline CePO4. The growth of films on titanium was characterized by the formation of secondary layers by the mechanism involving the appearance of new phase nuclei followed by their expansion

  14. Thin film growth of epitaxial gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jonathan R., E-mail: jonathan.mann@nrel.gov; Bhattacharya, Raghu N.

    2010-10-29

    Thin films of gadolinium oxide, gadolinium yttrium oxide, and gadolinium cerium oxide were electrodeposited from non-aqueous baths. The films were on the order of 15 nm thick, and were grown epitaxially on textured nickel-tungsten substrates. The effect of deposition rate, annealing temperature and secondary metals on crystallinity and crystal orientation was investigated by X-ray diffraction and transmission electron microscopy. Slower rates, higher temperatures and low concentrations of yttrium improve the crystallinity of gadolinium oxide films, whereas the introduction of cerium induced polycrystallinity.

  15. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  16. Electronic interaction in oxide copper-cerium catalysts according to exoemission data

    International Nuclear Information System (INIS)

    The electronic properties of the oxide copper-cerium catalysts with different copper content are studied through the exoemission methods. It is shown, that the introduction of the copper increases the CeO2 emission activity and the number of the electrons, emitted from the catalysts surface, as compared to the surface of the CeO2 and CuO initial oxides. It is concluded, that the event of synergism in the exoemission from the studied systems surface is conditioned through the electronic interactions, including the electronic transitions on the cerium oxide - copper oxide boundary

  17. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  18. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  19. XPS study of cerium conversion coating on the anodized 2024 aluminum alloy

    International Nuclear Information System (INIS)

    Cerium-rich conversion coating was deposited on anodized aluminum alloy 2024 in a solution containing Ce(NO3)3. X-ray photoelectron spectroscopy (XPS) was used as the analysis method. The composition of the Ce conversion coating deposited on the anodized 2024 alloy was investigated using this method. It was revealed that the coating predominately consisted of three-valent state cerium compound. Some of the CeIII was oxidized to CeIV in the outer layer coating

  20. Synthesis and characterization of two dimensional metal organic framework of cerium with tetraaza macrocyclic

    International Nuclear Information System (INIS)

    A two dimensional metal organic framework containing cerium sufate layers and ethylenediaminium between layers was obtained by refluxing the mixture of cerium sulphate and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7, 14-diene bromide. The complex was characterized by infrared spectroscopy and microelemental analysis. X-ray study showed that the complex adopts eleven coordination environments about the central atom. Thermogravimetric study showed the removal of water molecules at about 70°C followed by a gradual mass loss until the whole structure collapsed at about 400°C

  1. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  2. Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate

    Institute of Scientific and Technical Information of China (English)

    陈爱美; 施庆珊; 冯劲; 欧阳友生; 陈仪本; 谭绍早

    2010-01-01

    The biological effect of cerium nitrate on the outer membrane(OM) of Escherichia coli(E.coli) cell was studied,and the antim-icrobial mechanism of rare earth elements was explored.The antimicrobial effect of cerium nitrate on E.coli cell was valued by plate count method,and the morphology change of E.coli cell was observed with scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The results showed that the E.coli cell suspension was flocculated when the concentration of Ce(NO3)3?6H2O...

  3. Pramipexole reduces phosphorylation of α-Synuclein at Serine-129

    OpenAIRE

    K. Y. Chau; Cooper, J.M.; Schapira, A H

    2013-01-01

    α-Synuclein is a central component of the pathogenesis of Parkinson’s disease (PD). Phosphorylation at serine-129 represents an important post-translational modification and constitutes the major form of the protein in Lewy bodies. Several kinases have been implicated in the phosphorylation of α-synuclein. The targeting of kinase pathways as a potential to influence the pathogenesis of PD is an important focus of attention, given that mutations of specific kinases (LRRK2 and PINK1) are causes...

  4. Interference control in low-level analysis of iodine 129

    International Nuclear Information System (INIS)

    This work analyses the integration of several steps applied to control potentials sources of error in the determination of 129I and prevent spurious results in order to achieve the minimum detection limit. The procedure of pre and post-irradiation purification, neutron irradiation, radioactive counting and data analysis are needed. High resolution gamma spectrometry was used for detection and measurement of low level interferences. (author)

  5. Combustion resistance of the 129Xe hyperpolarized nuclear spin state.

    Science.gov (United States)

    Stupic, Karl F; Six, Joseph S; Olsen, Michael D; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-01-01

    Using a methane-xenon mixture for spin exchange optical pumping, MRI of combustion was enabled. The (129)Xe hyperpolarized nuclear spin state was found to sufficiently survive the complete passage through the harsh environment of the reaction zone. A velocity profile (V(z)(z)) of a flame was recorded to demonstrate the feasibility of MRI velocimetry of transport processes in combustors. PMID:23165418

  6. 16 CFR 1500.129 - Substances named in the Federal Caustic Poison Act.

    Science.gov (United States)

    2010-01-01

    ... Poison Act. 1500.129 Section 1500.129 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL... REGULATIONS § 1500.129 Substances named in the Federal Caustic Poison Act. The Commission finds that for those substances covered by the Federal Caustic Poison Act (44 Stat. 1406), the requirements of section 2(p)(1)...

  7. Seasonal variation of 129I species in the Baltic Proper

    DEFF Research Database (Denmark)

    Yi, P.; Aldahan, A.; Possnert, G.;

    2013-01-01

    new data on profiles of 129I speciation in the Baltic Proper during November 2009. Along with the two earlier investigations (August 2006 and April 2007), an assessment of seasonal variation of 129I species is presented. The results show that, due to the anoxic nature of Baltic Proper, presence of 129...

  8. Time Series of I-129 and I-127 Speciation in Precipitation from Denmark

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Aldahan, Ala; Nielsen, Sven Poul; Possnert, Göran

    2009-01-01

    concentrations of total 129I in precipitation vary from 0.28 to 5.63 × 109 atoms 129I L−1 with an average of (2.34 ± 1.43) × 109 atoms 129I L−1, and the annual deposition flux of 129I is (1.25 ± 0.30) × 1012 atoms m−2. Increased 129I levels in precipitation and 129I/127I ratio are attributed to the releases of...... 129I from the reprocessing plants at La Hague and Sellafield. Iodide is the major specie of 129I, which accounts for 50−99% of total 129I. The concentrations of total 127I vary from 0.78 to 2.70 μg iodine L−1 with an average of 1.63 ± 0.47 μg iodine L−1, and annual deposition flux of 0.95 ± 0.26 mg m......−8. Seasonal variations of 129I/127I values and 129I concentrations are associated with highs in spring and lows in summer−autumn periods. Re-emission of 129I from the surface water of the English Channel, Irish Sea, North Sea, and Norwegian Sea, especially from the European continental coast areas, is...

  9. Optimisation of the measurement protocols of 129I and 129I/127I. Methodology establishment for the measurement in environmental matrices

    International Nuclear Information System (INIS)

    129I, is a natural long-lived isotope, with a half-life of 15,7 million years, also artificially produced in nuclear power plant. It is then released in the liquid and gaseous effluents of the nuclear fuel reprocessing plants. 129I is integrated in all biological compartments at different activity levels, depending on their distance from the emission source and their ability to metabolize iodine. Performances of the different 129I and 129I/127I measurement techniques available: Radiochemical Neutron Activation Analysis, Accelerator Mass Spectrometry, direct γ-X spectrometry and liquid scintillation were evaluated. Associated radiochemical preparation steps of the two first techniques were optimized and adapted to the characteristics of the major environmental matrices. In a first step, the radiochemical protocols were developed and validated. In a second step, intercomparison exercises have been lead on various environmental samples presenting different 129I activity levels. They showed the good agreement between the results given by the three techniques on different environmental matrices with activities between 0,2 and 200 Bq.kg-1 dry weight. As a conclusion, a methodology for the measurement of 129I and 129I/127I ratio in environmental samples is proposed. It includes a decisional diagram taking into account the characteristics of the matrices, the detection limits and the answer delay. A study on the losses of 129I during the calcination of an algae was lead by direct γ-X spectrometry and application studies were made to measure 129I levels in different biological compartments issued from various locations: 129I activity interspecific variation in different species of seaweeds from the French channel coast under the relative influence of La Hague, 129I levels in bovine thyroids from the Cotentin area and 129I in vegetal samples collected around the nuclear reprocessing plant of Marcoule. (author)

  10. Determination of iodine 129 in vegetables using neutron activation analysis

    International Nuclear Information System (INIS)

    The developed methodology allows the determination of iodine 129 in vegetables, using neutron activation analysis. The chemical treatment removes the interferences present in these matrixes, as well as the bromine 82 originated in the activation process. The experimental method for the determination of iodine 129 by neutron activation analysis involves five steps: 1- digestion by alkaline fusion; 2- pre-irradiation purification of iodine 129 by distillation followed by solvent extraction, and adsorption on activated charcoal by distillation; 3- neutron irradiation; 4- post-irradiation purification of iodine 130 by distillation followed by solvent extraction; 5- gamma spectrometry. A chemical recovery of 95 % is obtained in the distillations, measured using iodine 131 as tracer. The whole process recovery is within 70 % and 85 %. The detection limit is 2 mBq/kg of sample, but several factors affect this value, such as type of vegetable, natural iodine concentration, irradiation time and neutron flux. The methodology developed is applied at environmental surveillance with safeguards proposes, in the detection of undeclared reprocessing of irradiated fuel. (authors)

  11. Comparative Study of Magnetic Instabilities in Cerium Compounds

    International Nuclear Information System (INIS)

    The variety of new phases and physical phenomena discovered in intermetallic compounds containing Rare Earths or Actinides has motivated, during the last four decades, the sustained study of their magnetic phase diagrams.The current interest is focused on the investigation of the region of the phase diagram where the magnetic order of Cerium, Ytterbium and Uranium based systems is destabilized.In this region different behaviours have been detected, such as non conventional superconductivity and the anomalous dependencies of the thermal, magnetic and transport properties at very low temperatures, associated to non-Fermi liquid behaviour.A simple model, the Doniach diagram, has guided the interpretation of the destabilization of the magnetic order in the previously mentioned systems.However, most of the systems that have been studied so far cannot be described within this model.This fact has motivated the development of a phenomenological classification of phase diagrams that has been mostly applied to cerium based compounds.This classification defines three types of phase diagrams, that can be distinguished by the way in which the magnetic transition is suppressed when a control parameter (such as doping or pressure) is driven towards its critical value.Within this scenario, we study the suppression of the antiferromagnetic order of the intermetallic compounds CeIn3, CeRh2Si2 and CePd2Al3 as a function of Ce-ligand alloying.The resulting systems, CeIn3-xSnx, Ce(CuxRh1-x)2Si2 and CePd2-xNixAl3, present different crystalline structures and the effects produced by the alloying process are different in each case.We analyse the resulting magnetic phase diagrams, and compare them with the above mentioned phenomenological classification.With such a purpose, we study in detail the region in which the magnetic instability takes place, in the proximity of the respective critical concentrations.Taking into account both our results and those reported in the literature, we

  12. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    International Nuclear Information System (INIS)

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells

  13. Thermoluminescence of cerium and terbium -doped calcium pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Lozano R, I. B.; Diaz G, J. A. I., E-mail: jesus.roman@nucleares.unam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The aim of this work is to report the thermoluminescence (Tl) response of Calcium Pyrophosphate phosphor doped with Cerium and Terbium impurities (Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+}). The phosphors were synthesized using the co-precipitation method and annealed at 900 degrees C by two hours for obtain the β phase. The intentional doping with Ce and Tb ions was 1 at.% and 0.1 at.%, whereas in the EDS results the concentration of impurities was 0.39 at.% and 0.05 at.%, respectively. The superficial morphology of phosphor is mainly composed by thin wafers of different size. All samples were exposed to gamma rays from {sup 60}Co in the Gammacell-200 irradiator. The Tl response of the phosphor was measured from Rt up to 350 degrees C and under nitrogen atmosphere in a Harshaw TLD 3500 reader. The glow curves of the Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+} powders showed a broad intense Tl peak centered at 165 degrees C and a shoulder at approximate 260 degrees C was observed. A linear Tl response in the range of absorbed dose of 0.2 to 10 Gy was obtained. Tl glow curves were analyzed using the initial rise (IR)and computerized glow curve deconvolution methods to evaluate the kinetics parameters such as activation energy (E), frequency factor (s) and kinetic order (b). (Author)

  14. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  15. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    Science.gov (United States)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  16. Contribution to research on the metabolism of fission product. Studies on the physico-chemical state and the metabolic fate of radio-cerium solution

    International Nuclear Information System (INIS)

    This paper describes a study of the physico-chemical state of radio-cerium in dilute solutions on the tracer scale, as a function of the pH of the solution. The way in which this radioelement is transported in the blood is studied in vitro and in vivo, with reference to the ionic or colloidal state of the radio-cerium used. The distribution of cerium amongst the various components of the blood is studied by a new method of blood fractionation and by paper electrophoresis. Evidence of a cerium globulin connection is shown in the case of ionic cerium. A study of the initial distribution of radio-cerium in rats, after intravenous administration of ionic or colloidal solutions, shows considerable differences according to the physico-chemical state of the cerium injected. (author)

  17. Highlights of analytical chemistry in Switzerland. Increase of 129I in the European environment

    International Nuclear Information System (INIS)

    The anthropogenic production of 129I produced a large increase of the abundance of this nuclide in the atmosphere. The sources of 129I are atmospheric nuclear weapon tests and nuclear fuel reprocessing, the Marcoule plant being the major European source of airborne 129I . For the period 1970-2002, the total emissions were compared with the analyses of an ice core from a Swiss Alp glacier, by means of accelerator mass spectrometry after extraction and purification of total iodine. The measured evolution of the 129I deposition agrees well with the estimated 129I releases into atmosphere

  18. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination

    International Nuclear Information System (INIS)

    A type of nitrogen and cerium co-doped titania photocatalyst, which could degrade nitrobenzene under visible light irradiation, was prepared by the sol-gel route. Titanium isopropoxide, ammonium nitrate, and cerium nitrate were used as the sources of titanium, nitrogen, and cerium, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherm were employed to characterize the as-prepared photocatalyst. The degradation of nitrobenzene under visible light illumination was taken as probe reaction to evaluate the photoactivity of the co-doped photocatalyst. The commercial TiO2 photocatalyst (Degussa P25), which was thought as a high active photocatalyst, was chosen as standard photocatalyst to contrast the photoactivity of the nitrogen and cerium co-doped titania photocatalyst. The results showed that the photocatalytic performance of the nitrogen and cerium co-doped titania was related with the calcination temperature and the component. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. The doping cerium atoms existed in the forms of Ce2O3 and dispersed on the surface of TiO2. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the nitrogen and cerium co-doping

  19. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.

    Science.gov (United States)

    Ma, Xingmao; Wang, Qiang; Rossi, Lorenzo; Zhang, Weilan

    2016-07-01

    Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants. PMID:26691446

  20. Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters and of the addition of PEG

    Energy Technology Data Exchange (ETDEWEB)

    Hamlaoui, Y. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France); Institut des Sciences et Sciences de l' Ingenieur, Centre Universitaire de Souk-Ahras, BP 1553, 41000 Souk-Ahras (Algeria); Tifouti, L. [Laboratoire de Genie de l' Environnement, Universite Badji Mokhtar, BP 1223, 23020, El Hadjar-Annaba (Algeria); Remazeilles, C. [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France); Pedraza, F., E-mail: fpedraza@univ-lr.fr [Laboratoire d' Etudes des Materiaux en Milieux Agressifs (LEMMA), Pole Sciences et Technologie, Universite de La Rochelle, Avenue Michel Crepeau, 17042 La Rochelle Cedex 1 (France)

    2010-03-15

    The mechanisms of formation of cerium based oxides on carbon steel by cathodic electrodeposition from relatively concentrated cerium nitrate solutions were investigated in a previous work (Part I). It was shown that some corrosion products developed on the steel upon and soon after coating, thereby suggesting the films were not protective. This work (Part II) focuses on the influence of various elaboration parameters on the composition and morphology of the deposits likely to improve the corrosion resistance of carbon steel. It will be shown that an increase of the precursor concentration increases the Ce(OH){sub 3} content of the deposits and brings about larger crystallite sizes at low to moderate applied current densities. As a result, the formation of the carbonated green rust corrosion product is not hindered. The kinetics of formation of the film follows a polynomial law in which concurrent deposition and dissolution steps are combined. However, an increase of the deposition time results in a reduced content of Ce(OH){sub 3} in the layers, hence in an evolution of the colour of the deposits. Similarly, the increase of the temperature of the bath brings about significant modifications of the surface morphology, of the crystallite size and of the content of oxygen vacancies that are suspected not to confer adequate protection. In contrast, the addition of 10 g L{sup -1} of PEG to the 0.1 M cerium nitrate solutions will be shown to inhibit the development of the carbonated green rust.

  1. Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters and of the addition of PEG

    International Nuclear Information System (INIS)

    The mechanisms of formation of cerium based oxides on carbon steel by cathodic electrodeposition from relatively concentrated cerium nitrate solutions were investigated in a previous work (Part I). It was shown that some corrosion products developed on the steel upon and soon after coating, thereby suggesting the films were not protective. This work (Part II) focuses on the influence of various elaboration parameters on the composition and morphology of the deposits likely to improve the corrosion resistance of carbon steel. It will be shown that an increase of the precursor concentration increases the Ce(OH)3 content of the deposits and brings about larger crystallite sizes at low to moderate applied current densities. As a result, the formation of the carbonated green rust corrosion product is not hindered. The kinetics of formation of the film follows a polynomial law in which concurrent deposition and dissolution steps are combined. However, an increase of the deposition time results in a reduced content of Ce(OH)3 in the layers, hence in an evolution of the colour of the deposits. Similarly, the increase of the temperature of the bath brings about significant modifications of the surface morphology, of the crystallite size and of the content of oxygen vacancies that are suspected not to confer adequate protection. In contrast, the addition of 10 g L-1 of PEG to the 0.1 M cerium nitrate solutions will be shown to inhibit the development of the carbonated green rust.

  2. Time Series of I-129 and I-127 Speciation in Precipitation from Denmark

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Aldahan, Ala; Nielsen, Sven Poul;

    2009-01-01

    Environmental 129I mainly released from reprocessing plants at La Hague (France) and Sellafield (UK) provides a unique atmospheric and environmental tracer. This study deals with 129I and 127I speciation in precipitation collected in Denmark during 2001−2006 that indicates many new findings. The...... concentrations of total 129I in precipitation vary from 0.28 to 5.63 × 109 atoms 129I L−1 with an average of (2.34 ± 1.43) × 109 atoms 129I L−1, and the annual deposition flux of 129I is (1.25 ± 0.30) × 1012 atoms m−2. Increased 129I levels in precipitation and 129I/127I ratio are attributed to the releases of......−8. Seasonal variations of 129I/127I values and 129I concentrations are associated with highs in spring and lows in summer−autumn periods. Re-emission of 129I from the surface water of the English Channel, Irish Sea, North Sea, and Norwegian Sea, especially from the European continental coast areas, is...

  3. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    International Nuclear Information System (INIS)

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (Eg) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe2O3) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe2−xCexOy nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe2O3 nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products

  4. A review on speciation of iodine-129 in the environmental and biological samples

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Hansen, Violeta; Aldahan, Ala;

    2009-01-01

    As a long-lived beta-emitting radioisotope of iodine, I-129 is produced both naturally and as a result of human nuclear activities. At present time, the main part of I-129 in the environment originates from the human nuclear activity, especially the releases from the spent nuclear fuel reprocessing...... plants, the I-129/I-127 ratios have being reached to values of 10(-10) to 10(-4) in the environment from 10(-12) in the pre-nuclear era. In this article, we review the occurrence, sources, inventory, and concentration level of I-129 in environment and the method for speciation analysis of I-129 in the...... environment. Measurement techniques for the determination of I-129 are presented and compared. An overview of applications of I-129 speciation in various scientific disciplines such as radiation protection, waste depository, and environmental sciences is given. In addition, the bioavailability and radiation...

  5. Evolution of the local environment of cerium and neodymium during simplified SON68 glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Jollivet, Patrick [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, BP 17171, 30207 Bagnols-sur-Ceze (France)]. E-mail: patrick.jollivet@cea.fr; Lopez, Christophe [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, BP 17171, 30207 Bagnols-sur-Ceze (France); Auwer, Christophe Den [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, BP 17171, 30207 Bagnols-sur-Ceze (France); Simoni, Eric [Institut de Physique Nucleaire, Batiment 100, 91406 Orsay cedex (France)

    2005-11-15

    The evolution of the sites occupied by cerium and neodymium (coordination numbers and Ce, Nd-O distances) during alteration of simplified SON68 glass specimens was determined by L{sub III}-edge XAS. Cerium and neodymium are situated in a silicate environment in the glass, surrounded by eight oxygen atoms at an average distance of 2.44 and 2.48 A, respectively. These two rare earth elements exhibit different leaching behavior, however. The main environment of cerium becomes a silicate (d {sub Ce-O} = 2.19 A) with a second oxide or more probably oxyhydroxide site (d {sub Ce-O} = 2.32 A). The cerium coordination number increases by 1 to 3 compared with the glass, depending on the leaching conditions. Neodymium is found mainly in a hydroxycarbonate environment (d {sub Nd-O} = 2.46 A); the second site is a silicate (d {sub Nd-O} = 2.54 A). The neodymium coordination number increases by 1 compared with the glass. When glass containing neodymium is doped with phosphorus, Nd is situated in a phosphate environment; this change is also reflected in the coordination number and Nd-O distance (seven oxygen atoms at 2.42 A). During glass leaching, neodymium is present at two different sites, phosphate (d {sub Nd-O} = 2.52 A) and hydroxycarbonate (d {sub Nd-O} = 2.40 A)

  6. XPS and factor analysis study of initial stages of cerium oxide growth on polycrystalline tungsten

    Czech Academy of Sciences Publication Activity Database

    Polyak, Yaroslav; Bastl, Zdeněk

    2015-01-01

    Roč. 47, č. 6 (2015), s. 663-671. ISSN 0142-2421 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : XPS * FA * PLD * cerium oxide * WO 3 * Ce (3d) Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.245, year: 2014

  7. Demonstration of enhanced K-edge angiography using a cerium target x-ray generator

    International Nuclear Information System (INIS)

    The cerium target x-ray generator is useful in order to perform enhanced K-edge angiography using a cone beam because K-series characteristic x rays from the cerium target are absorbed effectively by iodine-based contrast mediums. The x-ray generator consists of a main controller, a unit with a Cockcroft-Walton circuit and a fixed anode x-ray tube, and a personal computer. The tube is a glass-enclosed diode with a cerium target and a 0.5-mm-thick beryllium window. The maximum tube voltage and current were 65 kV and 0.4 mA, respectively, and the focal-spot sizes were 1.0x1.3 mm. Cerium Kα lines were left using a barium sulfate filter, and the x-ray intensity was 0.48 μC/kg at 1.0 m from the source with a tube voltage of 60 kV, a current of 0.40 mA, and an exposure time of 1.0 s. Angiography was performed with a computed radiography system using iodine-based microspheres. In coronary angiography of nonliving animals, we observed fine blood vessels of approximately 100 μm with high contrasts

  8. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  9. Influences of the main anodic electroplating parameters on cerium oxide films

    International Nuclear Information System (INIS)

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  10. Influences of the main anodic electroplating parameters on cerium oxide films

    Science.gov (United States)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu; Zhang, Zhao; Zhang, Jianqing

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  11. Photochemical precipitation of thorium and cerium and their separation from other ions in aqueous solution.

    Science.gov (United States)

    Das, M; Heyn, A H; Hoffman, M Z; Agarwal, R P

    1970-10-01

    Thorium was precipitated from homogeneous solution by exposing solutions of thorium and periodate in dilute perchloric acid to 253.7 nm radiation from a low-pressure mercury lamp. Periodate is reduced photochemically to iodate which causes the formation of a dense precipitate of the basic iodate of thorium(IV). The precipitate was redissolved, the iodate reduced, the thorium precipitated first as the hydroxide, then as the oxalate and ignited to the dioxide for weighing. Thorium(IV) solutions containing 8-200 mg of ThO(2) gave quantitative results with a standard deviation (s) of 0.2 mg. Separations from 25 mg each of iron, calcium, magnesium, 50 mg of yttrium and up to 500 mg of uranium(VI) were quantitative (s = 0.25 mg). Separations from rare earths, except cerium, were accomplished by using hexamethylenetetramine rather than ammonia for the precipitation of the hydroxide. Cerium(III) was similarly precipitated and converted into CeO(2) for weighing. Quantitative results were obtained for 13-150 mg of CeO(2) with a standard deviation of 0.2 mg. Separations from 200 mg of uranium were quantitative. Other rare earths and yttrium interfered seriously. The precipitates of the basic cerium(IV) and thorium iodates obtained are more compact than those obtained by direct precipitation and can be handled easily. Attempts to duplicate Suzuki's method for separating cerium from neodymium and yttrium were not successful. PMID:18960820

  12. Excimer Laser Deposition and Characterization of Cerium Doped TiO2

    Czech Academy of Sciences Publication Activity Database

    Fajgar, Radek; Dřínek, Vladislav; Kupčík, Jaroslav; Šubrt, Jan; Murafa, Nataliya

    - : -, 2011, s. 131. ISSN N. [EuroCVD 18. Kinsale, Co. Cork (IE), 04.09.2011-09.09.2011] Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : laser deposition * TiO2 * cerium Subject RIV: CH - Nuclear ; Quantum Chemistry

  13. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  14. Separation of cerium from high level waste solution of Purex origin

    International Nuclear Information System (INIS)

    A simple solvent extraction procedure for the separation of 144Ce from Purex high level waste (HLW) is described. 2-ethylhexyl 2-ethylhexyl phosphonic acid (KSM-17) has been used as extractant. About 10 mCi of cerium was separated from HLW using this technique. This method is amenable for automation and scale up. (author)

  15. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  16. Growth and characterization of Sm3+ doped cerium oxalate single crystals

    Directory of Open Access Journals (Sweden)

    Minu Mary C

    2016-07-01

    Full Text Available Single crystals of Sm3+ doped cerium oxalate decahydrate were synthesized using single diffusion gel technique and the conditions influencing the size, morphology, nucleation density and quality of the crystals were optimized. Highly transparent single crystals of average size 3 mm × 2 mm × 1 mm with well-defined hexagonal morphology were grown during a time period of two weeks. X-ray powder diffraction analysis revealed that the grown crystals crystallize in the monoclinic system with space group P21/c as identical with the pure cerium oxalate. The various functional groups of the oxalate ligand and the water of crystallization were identified by Fourier transform infrared spectroscopy. The photoluminescence spectrum of the Sm3+ doped cerium oxalate indicated that the Sm3+ ions are optically active in the cerium oxalate matrix. The crystal has a strong and efficient orange red emission with a wavelength peak at 595 nm and hence can be effectively used for optical amplification. Microhardness measurements of the crystal revealed that they belong to the soft material category.

  17. EXAFS and XANES analysis of plutonium and cerium edges from titanate ceramics for fissile materials disposal

    International Nuclear Information System (INIS)

    We report x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra from the plutonium LIII edge and XANES from the cerium LII edge in prototype titanate ceramic hosts. The titanate ceramics studied are based upon the hafnium-pyrochlore and zirconolite mineral structures and will serve as an immobilization host for surplus fissile materials, containing as much as 10 weight % fissile plutonium and 20 weight % (natural or depleted) uranium. Three ceramic formulations were studied: one employed cerium as a ''surrogate'' element, replacing both plutonium and uranium in the ceramic matrix, another formulation contained plutonium in a ''baseline'' ceramic formulation, and a third contained plutonium in a formulation representing a high-impurity plutonium stream. The cerium XANES from the surrogate ceramic clearly indicates a mixed III-IV oxidation state for the cerium. In contrast, XANES analysis of the two plutonium-bearing ceramics shows that the plutonium is present almost entirely as Pu(IV) and occupies the calcium site in the zirconolite and pyrochlore phases. The plutonium EXAFS real-space structure shows a strong second-shell peak, clearly distinct from that of PuO2, with remarkably little difference in the plutonium crystal chemistry indicated between the baseline and high-impurity formulations

  18. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis

    Directory of Open Access Journals (Sweden)

    Vellaisamy Selvaraj

    2015-09-01

    Full Text Available The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press. The data present here provides confirmation of cerium oxide nanoparticle treatments ability to prevent the LPS induced sepsis associated changes in physiological, blood cell count, inflammatory protein and growth factors in vivo. In vitro assays investigation the treated of macrophages cells with different concentrations of cerium oxide nanoparticle demonstrate that concentration of cerium oxide nanoparticles below 1 µg/ml did not significantly influence cell survival as determined by the MTT assay.

  19. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis.

    Science.gov (United States)

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankenhanel, Erin; Ma, J Y; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-09-01

    The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of cerium oxide nanoparticle treatments ability to prevent the LPS induced sepsis associated changes in physiological, blood cell count, inflammatory protein and growth factors in vivo. In vitro assays investigation the treated of macrophages cells with different concentrations of cerium oxide nanoparticle demonstrate that concentration of cerium oxide nanoparticles below 1 µg/ml did not significantly influence cell survival as determined by the MTT assay. PMID:26217772

  20. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  1. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    The influence of Cerium doping on the structural and magnetic properties of BiFeO3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi1−xCexFeO3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm−1) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm−1), shows a minor shift. Sudden evolution of Raman mode at 668 cm−1, manifested as A1-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (Ms) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi0.88Ce0.12FeO3 thin film found to exhibit better magnetic properties with Ms=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi1−xCexFeO3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred

  2. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)

    2015-03-15

    The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical

  3. Band structure, cohesive properties, and Compton profile of γ- and α-cerium

    Science.gov (United States)

    Podloucky, R.; Glötzel, D.

    1983-03-01

    Recent Compton scattering experiments on the high-volume (γ) and low-volume (α) phases of fcc cerium and their interpretation in terms of the renormalized-free-atom model cast severe doubts on the promotional model of Pauling and Zachariasen for the γ-α transition. Stimulated by these results, we have extended a previous self-consistent local-density band-structure investigation to study the Compton profiles of γ- and α-cerium. For the band structure, Bloch functions, and their Fourier transforms we use the linear muffin-tin orbital method in the atomic-sphere approximation. We analyze the calculated Compton profiles in terms of band structure and local angular momentum character of the wave functions. The change in band structure and wave functions under compression (with approximately one electron per atom in the 4f band of both phases) accounts well for the observed change in the Compton profile. This provides further evidence against the promotional model in agreement with the analysis of Kornstädt et al. In addition, we study the cohesive energy of fcc cerium as a function of volume in the local-density approximation. For α-cerium in the 4f1(5d 6s)3 configuration we find a cohesive energy of 5.4 eV/atom in good agreement with experiment, whereas the "promotional" 4f0(5d 6s)4 state yields a binding energy of 0.6 eV/atom only. Therefore the fourth valence electron has to be a 4f electron, and α-cerium has to be regarded as an f-band metal.

  4. High temperature condensation and thermal radiation properties of cerium dioxide in solid and liquid states

    International Nuclear Information System (INIS)

    Full Text: Measuring thermal radiation properties of cerium dioxide at high temperatures is very complicated problem from experimental point of view. It is connected with high evaporation of this material at high temperatures. In order to solve this problem with a subsecond laser technique the excess pressure of inert atmosphere is maintained in the working chamber to suppress surface evaporation in the focal area of the sample. In this paper it is shown that in this case the dense vapor phase formed above the investigated sample actively interacts with the sample surface and the laser radiation and distorts the experimental results. The developed polychromatic reflectometer with laser heating enabled one to discover the interesting phenomenon of the interaction of the vapor, liquid and solid phases in cerium dioxide under CO2 laser irradiation. This phenomenon is exhibited in the form of the exothermic peak of the condensation on the cooling curves moreover the temperature level of this transition is regulated by experimental parameters. The possibility of the change of the position of this floating phase transition on the temperature scale permits one to model the interaction of liquid-vapor and solid-vapor to estimate the contribution of the dense vapor phase formed above the sample to the thermal radiation properties of cerium dioxide at high temperatures. The experimental data on thermal radiation properties of stoichiometric cerium dioxide in the spectral range 0.4-1.1 μm and in the temperature region 2000-3500 K measured by the method developed are presented. Reflectivity and emissivity measurement error does not exceed ±3 %. The experimental results obtained are compared with the data of other authors and the recommended values for spectral reflectivity and emissivity of cerium dioxide at high temperatures are given. (author)

  5. The importance of cerium substituted phosphates as cation exchanger some unique properties and related application potentials

    International Nuclear Information System (INIS)

    Seven different samples of an inorganic ion exchanger, cerium phosphate, suitable for column use have been prepared under varying conditions. The property of these exchangers has been characterized by Inductively Coupled Plasma Spectroscopy. These exchangers are stable in water, dilute mineral acids, ethanol, methanol, acetone and ether. However, in concentrated HCl and HNO3 they decompose. They retain about 50% of their exchange value after drying at 80 degC, and can be regenerated twice without any decrease in exchange capacity. The distribution coefficient measurements for alkaline earth metals, tellurium, iodine and molybdenum using these seven ion exchangers were studied. This revealed the relative affinity for each exchanger, where the sorption in general was most effective at P H 6-8. The titration curves of cerium phosphate (disodium) with alkaline earth metals showed that the selectivity sequence Ba2+>Sr2+>CA2+>Mg2+ is observed. Furthermore, it could be deduced that the adsorption of alkaline earth metal cations greatly depends on the cation. These studies have also shown that cerium phosphates with divalent ions are strongly preferred to monovalent ones. Therefore, as for the cerium phosphates with large monovalent ions, the lack of exchange for Ba2+, Mg2+ or other alkaline earth metal ions should be essentially due to steric hindrance and this could include any one of the following: the large crystalline radius of metal ions or large hydrated ionic radius and high energy of hydration for other divalent ions. Three binary separations of TeIV - MoIV, TeIV -I1 has been developed and the recovery ranging from 90 to 100% has been achieved on cerium phosphate (disodium) columns

  6. Using cerium anomaly as an indicator of redox reactions in constructed wetland

    Science.gov (United States)

    Liang, R.

    2013-12-01

    The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high dissolved oxygen (5 ppm) but the NH4 content is still high, which indicates a non-equilibrium condition. In this study, the cerium anomaly is alternatively utilized to evaluate the water redox state. The results demonstrate that the input water has the negative cerium anomaly of -0.16. Along the flow path, the cerium negative anomaly does not change in the first two cells and dramatically becomes -0.23 in cell 3. The trend of cerium anomaly is more close to the removal efficiency of NH4 rather than dissolve oxygen. Accordingly, cerium anomaly could become a better indicator of removal efficiency of constructed wetland.

  7. A social-scientific reading of Psalm 129

    Directory of Open Access Journals (Sweden)

    P.J. Botha

    2002-11-01

    Full Text Available Psalm 129 is analysed as a poetic composition, as well as an ideological document. It was found that the social codes of honour and shame play an important role in what and how the psalm was supposed to communicate. It is described as an attempt to strengthen the cohesion and loyalty of an in-group of people living near or in Jerusalem. This group considers itself to be part of the people of Israel. Its members expect Yahweh to intervene on their behalf and to restore their (and his own honour by shaming their enemies.

  8. Improvements in production and storage of HP-129 Xe

    OpenAIRE

    Repetto, Maricel Teresa

    2015-01-01

    Seit seiner Entdeckung im Jahre 1978 wurden für hyperpolarisiertes (HP) 129Xe zahlreiche Anwendungen gefunden. Aufgrund seiner hohen Verstärkung von NMR-Signalen wird es dabei typischerweise für Tracer- und Oberflächenstudien verwendet. Im gasförmigen Zustand ist es ein interessantes, klinisches Kontrastmittel, welches für dynamische Lungen MRT genutzt oder auch in Blut oder lipophilen Flüssigkeiten gelöst werden kann. Weiterhin findet HP-Xe auch in der Grundlagenphysik in He-Xe Co-Magnetomet...

  9. Transport properties of the calcium ionophore ETH-129.

    OpenAIRE

    Wang, E.; Erdahl, W L; Hamidinia, S A; Chapman, C J; Taylor, R.W.; Pfeiffer, D R

    2001-01-01

    The transport mechanism and specificities of ionophore ETH-29 have been investigated in a highly defined phospholipid vesicle system, with the goal of facilitating the application of this compound to biological problems. ETH-129 transports Ca(2+) via an electrogenic mechanism, in contrast to A23187 and ionomycin, which function in a charge neutral manner. The rate of transport is a function of membrane potential, increasing by 3.9-fold per 59 mV over a broad range of that parameter. Rate is i...

  10. Dicty_cDB: CHN129 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHN129 (Link to dictyBase) - - - Contig-U16495-1 - (Link to Original site) ... e sequence. 44 2.4 1 AW048636 |AW048636.1 UI-M-BH1-amd -c-12-0-UI.s1 NIH_BMAP_M_S2 Mus musculus cDNA clone ... UI-M-BH1-amd -c-12-0-UI 3', mRNA sequence. 44 2.4 1 dna update 2 ...

  11. Environmental behavior of technetium-99 and iodine-129

    International Nuclear Information System (INIS)

    The environmental behavior of technetium-99 and iodine-129 was once thought to be similar, particularly with respect to their soil solubility and biological interactions. Over the past several years, the comparative behavior of these two anions has been studied with respect to their fate in natural environments (both aquatic and terrestrial). The mechanisms studied include physical, chemical and biological parameters that account for differences in soil behavior, cycling between soil and/or air to vegetation, adsorption and metabolism in plants, and their availability and fate following ingestion by animals

  12. Variations of 129I in the atmospheric fallout of Tokyo, Japan: 1963-2003.

    Science.gov (United States)

    Toyama, Chiaki; Muramatsu, Yasuyuki; Uchida, Yuka; Igarashi, Yasuhito; Aoyama, Michio; Matsuzaki, Hiroyuki

    2012-11-01

    Atmospheric fallout samples collected from Tokyo between 1963 and 2003 were analyzed using accelerator mass spectrometry (AMS) in order to determine (129)I/(127)I ratios and to examine the deposition rate of (129)I and its secular variation in Tokyo. The (129)I/(127)I ratios in the atmosphere during 1963-1977 ranged from 1 × 10(-8) to 2 × 10(-8). This is roughly 4 orders of magnitude higher than pre-atomic levels, possibly due to atmospheric nuclear weapons tests. The calculated monthly atmospheric deposition rates of (129)I differed from those produced by nuclear fallout of (90)Sr and (137)Cs, indicating that the variations in (129)I deposition are not influenced exclusively by either nuclear bomb testing or by the Chernobyl accident. After 1978, high (129)I depositions (up to 0.13 mBq/m(2)/month) were observed. The (129)I depositions started to increase markedly at the latter half of the 1970s. The secular variation of the estimated annual (129)I deposition in Tokyo showed a close relationship between the annual atmospheric discharge of (129)I from the Tokai Reprocessing plant. Therefore, the atmospheric fallout collected from Tokyo after the late 1970s is influenced primary by the (129)I discharge from the Tokai Reprocessing plant. PMID:22694935

  13. Long-lived radionuclides in the environment: the case of iodine-129

    International Nuclear Information System (INIS)

    Results are presented from an ongoing project to study the status and behavior of 129I and 127I in the environment. 129I and 127I abundances were investigated in precipitation, surface and ground waters from Lower Saxony, Germany, and in soil samples from various European locations. From the analysis of 129I in rain, 129I annual deposition densities were determined for the time period from 1997- 1999. We conclude that 129I deposition rates in Switzerland and Germany increased by three orders of magnitude since 1950 and changed just little after 1987. From the analysis of soils, 129I deposition densities at various places of Europe were determined. Thereby, the 129I natural equilibrium deposition density as well as that of the fall-out from atmospheric weapon tests was estimated. Elevated 129I abundances in Ukrainian soils contaminated by Chernobyl fall-out provide a basis for retrospective dosimetry of the radiation exposure due to 131I. Soil profiles from Germany exhibit the influence of ongoing emissions from European reprocessing plants and demonstrate the complexity of iodine migration. Biospheric 129I/127I ratios in Germany are an order of magnitude lower than in precipitation and. Because of the disequilibrium of iodine isotopes in the different compartments further detailed investigations of the pathways of 129I through the environment to man are considered necessary. (orig.)

  14. An improved analytical method for iodine-129 determination in low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Kong; Wang, TsingHai; Jian, Li-Wei; Chen, Wei-Han; Wang, Chu-Fang [National Tsing Hua Univ., Hsinchu, Taiwan (China). Dept. of Biomedical Engineering and Environmental Sciences; Tsai, Tsuey-Lin [Atomic Energy Council, Taiwan (China). Chemical Analysis Div.

    2014-07-01

    In this study, an alkaline-digestion pretreatment and a subsequent ICP-MS measurement were conducted for iodine-129 (I-129) determination in low-level radioactive waste. A TMAH + H{sub 2}O{sub 2} + Triton X-100 mixed alkaline digestion was the most effective mixture for I-129 determination. Using this alkaline reagent, a high level of I-129 recovery (101 ± 6%) was achieved for the analysis of the I-129-spiked standard reference materials NIST 2709 and 2711. Importantly, the I-129 concentrations determined for ten real samples provided by the Lan-Yu radioactive waste temporary storage site were found to be below the detection limit (0.011 mg/kg). This value was only approximately 30-70% of the values determined using the I-129/Cs-137 scaling factor. This means that using the I-129/Cs-137 scaling factor severely overestimates the I-129 concentration in these low-level radioactive wastes. We therefore suggest that a detailed re-inspection of the I-129/Cs-137 scaling factor should be performed to appropriately categorize these low-level radioactive wastes.

  15. An improved analytical method for iodine-129 determination in low-level radioactive waste

    International Nuclear Information System (INIS)

    In this study, an alkaline-digestion pretreatment and a subsequent ICP-MS measurement were conducted for iodine-129 (I-129) determination in low-level radioactive waste. A TMAH + H2O2 + Triton X-100 mixed alkaline digestion was the most effective mixture for I-129 determination. Using this alkaline reagent, a high level of I-129 recovery (101 ± 6%) was achieved for the analysis of the I-129-spiked standard reference materials NIST 2709 and 2711. Importantly, the I-129 concentrations determined for ten real samples provided by the Lan-Yu radioactive waste temporary storage site were found to be below the detection limit (0.011 mg/kg). This value was only approximately 30-70% of the values determined using the I-129/Cs-137 scaling factor. This means that using the I-129/Cs-137 scaling factor severely overestimates the I-129 concentration in these low-level radioactive wastes. We therefore suggest that a detailed re-inspection of the I-129/Cs-137 scaling factor should be performed to appropriately categorize these low-level radioactive wastes.

  16. Iodine-129 as a long-lived tracer in the environment

    International Nuclear Information System (INIS)

    129I is an important tracer of human activities as well of environmental processes. However, its potential can only be exploited if the 129I abundances in and the pathways between the different environmental compartments are known. Until today, our knowledge of the radioecology of 129I is still insufficient. Results are presented from a long-term project which shall improve this situation. 129I and 127I abundances were investigated in precipitation, surface and ground waters from Lower Saxony, Germany, and in soil samples from various European locations. From the analysis of 129I in rain, 129I annual deposition densities were determined for the time period from 1997- 1999. We conclude that 129I deposition rates in Switzerland and Germany increased by three orders of magnitude since 1950 and changed just little after 1987. The different 129I/127I ratios in precipitation, surface and ground waters allow to estimate mean residence times of iodine in surface soil zones. From the analysis of soils, 129I deposition densities at various places of Europe were determined. Thereby, the 129I natural equilibrium deposition density as well as that of the fall-out from atmospheric weapon tests was estimated. Elevated 129I abundances in Ukrainian soils contaminated by Chernobyl fall-out provide a basis for retrospective dosimetry of the radiation exposure due to 131I. Soil profiles from Germany exhibit the influence of ongoing emissions from European reprocessing plants and demonstrate the complexity of iodine migration. Biospheric 129I/127I ratios in Germany are an order of magnitude lower than in precipitation. Because of the disequilibrium of iodine isotopes in the different compartments further detailed investigations of the pathways of 129I through the environment to man are considered necessary. (author)

  17. 40 CFR 86.129-94 - Road load power, test weight, inertia weight class determination, and fuel temperature profile.

    Science.gov (United States)

    2010-07-01

    ... weight class determination, and fuel temperature profile. 86.129-94 Section 86.129-94 Protection of... Procedures § 86.129-94 Road load power, test weight, inertia weight class determination, and fuel temperature...,500 lb. equivalent test weight. (b)-(c) . For guidance see § 86.129-80. (d) Fuel temperature...

  18. Determination of Iodine-129 in Low Level Radioactive Wastes - 13334

    International Nuclear Information System (INIS)

    For the radioactivity determination of 129I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the 129I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO3 was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6±3.8%, and 86.4±1.6% for the anionic exchange separation method. (authors)

  19. Equation of state measurements by radiography provide evidence for a liquid-liquid phase transition in cerium

    Science.gov (United States)

    Lipp, M. J.; Jenei, Zs; Ruddle, D.; Aracne-Ruddle, C.; Cynn, H.; Evans, W. J.; Kono, Y.; Kenney-Benson, C.; Park, C.

    2014-05-01

    A pressure-volume isotherm in cerium metal at 1100 K was measured in a large volume press of the Paris-Edinburgh type up to 6 GPa. The volume was determined by imaging a rectangular shape of the sample via white X-ray radiography. Energy dispersive x-ray diffraction spectra were recorded to ensure that the highly reactive cerium in the cell assembly remained pure at this temperature. Even at 1100 K the p-V equation of state of liquid cerium shows a pronounced decrease of the bulk modulus above the y-phase region similar to the 775 K isotherm in the solid that also shows an inflection point between y- and a-type cerium. The inflection point in the 1100 K isotherm indicating the minimum in the bulk modulus separating the γ- from the α-type liquid is located at approximately 3.5 GPa.

  20. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brunelli, Katya [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy); Dabala, Manuele [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy)]. E-mail: manuele.dabala@unipd.it; Calliari, Irene [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy); Magrini, Maurizio [Department of Mechanical Innovation and Management, University of Padua, Via Marzolo 9, 35131 Padua (Italy)

    2005-04-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected.

  1. Titrimetric and Spectrophotometric Assay of Ganciclovir in Pharmaceuticals Using Cerium(IV) Sulphate as the Oxidimetric Agent

    OpenAIRE

    Pavagada J. Ramesh; Kanakapura Basavaiah; Cijo M. Xavier; Prashanth, Kudige N.; Raghu, Madihalli S.; Kanakapura B. Vinay

    2012-01-01

    Titrimetric and spectrophotometric assay of ganciclovir (GNC) is described using cerium(IV) sulphate as the oxidimetric reagent. The methods are based on the oxidation of GNC with a measured excess of cerium(IV) sulphate in acid medium followed by determination of the unreacted oxidant by two different reaction schemes. In titrimetry, the unreacted oxidant was determined by back titration with ferrous ammonium sulphate (FAS) in sulphuric acid medium, and spectrophotometry involves the reactio...

  2. Reactions between cerium(IV) and methyl-6-x-derivatives of aniline in perchloric acid solutions

    International Nuclear Information System (INIS)

    The oxidation of 2,6-dimethyl-, 2-isopropyl-6-methyl, 2-chloro-6-methyl-and 2-methyl-6-nitro aniline with cerium(IV) in perchloric acid solutions has been examined. It has been found that the concentration of hydrogen ions and the basicity of nitrogen atom in the amine group decide about the resultant intermediate products. Some of these products can be practically prepared using cerium(IV) as an oxidizing agent. (author). 16 refs, 1 tab

  3. The dissolution and formation enthalpy of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems

    International Nuclear Information System (INIS)

    Present article is devoted to dissolution and formation enthalpy of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems. Therefore the dissolution temperatures of alloys and intermetallics of aluminium-lanthanum and aluminium-cerium systems were defined by means of calorimetry method. The enthalpy of formation of intermetallics of Al-Ce system was defined as well. The regularities in changes of dissolution and formation enthalpy of alloys and intermetallics depending on composition were studied.

  4. Prospects for ''iodine-129 dating'' of marine organic matter using AMS

    International Nuclear Information System (INIS)

    Natural levels of iodine 129 have been overwhelmed by a build-up of ''new'' iodine-129, a product of our nuclear age. Much of this new iodine-129 has entered the ocean and is now found in its upper layers. During primary production, marine organic matter incorporates iodine, which then moves through the food chain. The 129I/127I ratio in marine organics therefore represents the value found in the ocean's photic zone when the organic matter formed. Because the 129I/127I ratio in any well-mixed marine basin has increased rapidly since the advent of the nuclear age, establishing the build up pattern of 129I in that basin's surface waters would allow us to ''date'' the time of formation of any organics formed there, provided that we can obtain an adequate amount of iodine from samples. Measurement of this ratio requires the use of AMS. (orig.)

  5. Relative influence of 129I sources in a sediment core from the Kattegat area

    International Nuclear Information System (INIS)

    The depth profiles of the 129I concentration and the 129I/127I ratio in a surface sediment core from the Kattegat area have been analyzed in order to obtain information about the different sources of 129I in that core. Therefore, a mathematical model that relates the measured values to the available emission data from the nuclear fuel reprocessing plants and nuclear weapons tests has been applied. Results show that the reprocessing plants at La Hague and Sellafield are the main sources of 129I in the sediment. Results about the transfer from the release points at the reprocessing plants to the sampling zone agree with other literature data. The model calculates quite fast the sedimentation of 129I in the sampling place, probably attached to organic matter. Finally, an estimation of approximately 89 kg of 129I released by Sellafield between 1952 and 1968 has been obtained from the model

  6. Separation and measurement of 129I and 127I in pre-nuclear-era marine algae with ultra-low 129I/127I isotopic ratios

    International Nuclear Information System (INIS)

    The iodine isotopes 127I and 129I were isolated from marine algal samples to obtain 129I/127I ratios by accelerator mass spectrometry (AMS). The collection efficiency of iodine was 16–99%, and the treatment temperature in the present study was lower than that used in conventional methods for 129I analysis. Using the separation method reported here, we can easily measure ultra-low 129I/127I ratios in the orders of magnitude of 10−13–10−12, which were observed in algal samples from the pre-nuclear era (before 1945). The 129I/127I ratios observed in algae collected from 1929 to 1987 ranged from 10−13 to 10−10. The 129I/127I ratio in algae collected in 1987 was 100–1000 times as high as the ratio measured in algae collected before 1945. This dramatic increase in 129I/127I ratio after 1945 is attributed to human activity.

  7. Analysis of single and binary phases in cerium doped sodium bismuth titanate -inorganic materials Na0.5Bi(0.5-x)CexTiO3

    International Nuclear Information System (INIS)

    The pure and cerium doped sodium bismuth titanate (NBT) inorganic powders were synthesized by solid-state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. When x= 0.05 of cerium doped NBT is heat treated at 1200 degree centigrade, the compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated up to 1350 degree centigrade, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, Fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermogravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work, we present our recent results on the synthesis and characterization of cerium doped sodium bismuth titanate materials. (Author)

  8. Chromatographic separation of cerium(Ⅲ) in L-valine medium using poly[dibenzo-18-crown-6

    Institute of Scientific and Technical Information of China (English)

    SABALE Sandip R; MOHITE Baburao S

    2009-01-01

    A column chromatographic method has been developed for the separation and determination of cerium(Ⅲ) using poly[dibenzo-18-crown-6]. The separation was carried out in L-valine medium. The adsorption of cerium(Ⅲ) was quantitative from 1×10-1 to 1×10-4 mol/L L-valine. Amongst the various eluents, 1.0-8.0 mol/L hydrochloric acid, 1.0-8.0 mol/L hydrobromic acid, 1.0-8.0 mol/L perchloric acid, 1.0-2.0 mol/L sulfuric acid and 4.0-5.0 mol/L acetic acid, were found to be the efficient eluents for cerium(Ⅲ). The capacity of poly[dibenzo-18-crown-6] for cerium(Ⅲ) was (0.428±0.01) mmol/g. The method was applied to the separation of cerium(Ⅲ) from associated elements link uranium(Ⅵ) and thorium(Ⅳ). It was also applied for the determination of cerium(Ⅲ) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately±2% ).

  9. Optimisation of the measurement protocols of {sup 129}I and {sup 129}I/{sup 127}I. Methodology establishment for the measurement in environmental matrices; Optimisation des protocoles de mesurage de {sup 129}I et {sup 129}I/{sup 127}I. Etablissement d'une methodologie adaptee aux echantillons de l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Frechou, C

    2000-07-01

    {sup 129}I, is a natural long-lived isotope, with a half-life of 15,7 million years, also artificially produced in nuclear power plant. It is then released in the liquid and gaseous effluents of the nuclear fuel reprocessing plants. {sup 129}I is integrated in all biological compartments at different activity levels, depending on their distance from the emission source and their ability to metabolize iodine. Performances of the different {sup 129}I and {sup 129}I/{sup 127}I measurement techniques available: Radiochemical Neutron Activation Analysis, Accelerator Mass Spectrometry, direct {gamma}-X spectrometry and liquid scintillation were evaluated. Associated radiochemical preparation steps of the two first techniques were optimized and adapted to the characteristics of the major environmental matrices. In a first step, the radiochemical protocols were developed and validated. In a second step, intercomparison exercises have been lead on various environmental samples presenting different {sup 129}I activity levels. They showed the good agreement between the results given by the three techniques on different environmental matrices with activities between 0,2 and 200 Bq.kg{sup -1} dry weight. As a conclusion, a methodology for the measurement of {sup 129}I and {sup 129}I/{sup 127}I ratio in environmental samples is proposed. It includes a decisional diagram taking into account the characteristics of the matrices, the detection limits and the answer delay. A study on the losses of {sup 129}I during the calcination of an algae was lead by direct {gamma}-X spectrometry and application studies were made to measure {sup 129}I levels in different biological compartments issued from various locations: {sup 129}I activity interspecific variation in different species of seaweeds from the French channel coast under the relative influence of La Hague, {sup 129}I levels in bovine thyroids from the Cotentin area and {sup 129}I in vegetal samples collected around the nuclear

  10. Thermodynamic studies in the system cerium-gadolinium-oxygen. Thermodynamische Untersuchungen am System Cer-Gadolinium-Sauerstoff; Kalorimetrische und elektrochemische Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, N.

    1993-01-01

    Two independent measuring methods have been applied to studying the phase relations of the system cerium-gadolinium. The calorimetric measurements have been done in a high-temperature calorimeter with cerium dioxide doped with 10 mole % of Gd[sub 2]O[sub 3]. Further thermodynamic quantities have been obtained by the electrochemical method and e.m.f. measurements, yielding additional information on disorders in doped cerium dioxide. (orig./BBR)

  11. Recovery of Cerium Dioxide from Spent Glass-Polishing Slurry and Its Utilization as a Reactive Sorbent for Fast Degradation of Toxic Organophosphates

    OpenAIRE

    Pavel Janoš; Pavel Kuráň; Jakub Ederer; Martin Šťastný; Luboš Vrtoch; Martin Pšenička; Jiří Henych; Karel Mazanec; Miroslav Skoumal

    2015-01-01

    The recovery of cerium (and possibly other rare earth elements) from the spent glass-polishing slurries is rather difficult because of a high resistance of polishing-grade cerium oxide toward common digestion agents. It was shown that cerium may be extracted from the spent polishing slurries by leaching with strong mineral acids in the presence of reducing agents; the solution may be used directly for the preparation of a ceria-based reactive sorbent. A mixture of concentrated nitric acid and...

  12. Determination of 129I in 131I-pharmaceuticals produced in THOR

    International Nuclear Information System (INIS)

    131I is one of the most important radionuclides used in nuclear medicine. The accompanying isotope 129I with insignificant activities in 131I-pharmaceuticals, produced in THOR, were determined in terms of 129I/131I ratio by neutron activation analysis. The detection limit of 129I can be lowered to order of 0.1 Bq, superior to conventional radiometric methods. The 129I/131I ratios in the 131I-pharmaceuticals, were measured to be in the range from 3.9 to 8.3

  13. 129I assessment reveals the impact of Fukushima incident on Dapeng Peninsula, Shenzhen, China

    International Nuclear Information System (INIS)

    In order to assess the radioactive impact of Fukushima Incident on the coastal environment of Dapeng Peninsula, Shenzhen, China, combining accelerator mass spectrometry with epithermal neutron activation analysis, we measured the 129I/127I ratios and 129I levels in surface seawater, oyster (Ostrea gigas) and kelp (Sargassum henslouianum). The results showed that the influence of Daya Bay Nuclear Power Base was ignorable to local environment, but the Fukushima Incident had caused significant increase of 129I levels in oyster (P 129I levels in oyster and kelp were far below the guideline given by Codex Alimentarius Commission and would not cause immediate harm to the health of local residents. (author)

  14. The measurement of {sup 129}I in ferromanganese crusts and aerosol samples with AMS at CIAE

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kejun, E-mail: dkj401@aliyun.com [China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Jiang, Shan, E-mail: jiangs@ciae.ac.cn [China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); He, Ming; Lin, Min; Ouyang, Yinggen; Wu, Shaoyong [China Institute of Atomic Energy, P.O. Box 275-50, Beijing 102413 (China); Xie, Linbo; Liu, Guangshan; Ji, Lihong [College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005 (China); Li, Qi; Wang, Shilian [CTBT Beijing National Data Centre and Radionuclide Laboratory, Beijing 100085 (China)

    2015-06-15

    The determination of long-lived nuclide {sup 129}I in terrestrial formations has many important applications. The AMS measurement method of {sup 129}I has been set up for many years at China Institute of Atomic Energy (CIAE). For further exploring the potential applications of {sup 129}I, samples of Deep Sea Ferromanganese Crusts (DSFC) and aerosol were analyzed by Accelerator Mass Spectrometry (AMS). The results show that {sup 129}I is not only a good tool for dating, but also an ideal nuclide for nuclear safety monitoring. The newest experimental progress and the main results are detailed in this presentation.

  15. Magnetic Field Stabilization for 129Xe EDM Search Experiment

    Science.gov (United States)

    Furukawa, Takeshi; Inoue, Takeshi; Nanao, Tsubasa; Yoshimi, Akihiro; Tsuchiya, Masato; Hayashi, Hironori; Uchida, Makoto; Asahi, Koichiro

    2011-09-01

    Magnetic field stabilization is a crucial condition parameter for many kinds of ultra-high precision measurements such as a search for an electric dipole moment (EDM). The instability of magnetic field strength often arises from the drift of current flow in a solenoid coil to generate the magnetic field. For our EDM search experiment with maser oscillating diamagnetic 129Xe atoms, we have developed a new stabilized current source based on a feedback system which is devised to correct the amount of current flow measured precisely with high-precision digital multimeter and standard resistor. Using this new current source, we have successfully reduced the drifts of coil current by at least a factor of 100 compared to commercially available current sources.

  16. Magnetic Field Stabilization for 129Xe EDM Search Experiment

    International Nuclear Information System (INIS)

    Magnetic field stabilization is a crucial condition parameter for many kinds of ultra-high precision measurements such as a search for an electric dipole moment (EDM). The instability of magnetic field strength often arises from the drift of current flow in a solenoid coil to generate the magnetic field. For our EDM search experiment with maser oscillating diamagnetic 129Xe atoms, we have developed a new stabilized current source based on a feedback system which is devised to correct the amount of current flow measured precisely with high-precision digital multimeter and standard resistor. Using this new current source, we have successfully reduced the drifts of coil current by at least a factor of 100 compared to commercially available current sources.

  17. Characterization of Lethal Zika Virus Infection in AG129 Mice

    Science.gov (United States)

    Walker, Emma C.; Larkin, Katrina E.; Camacho, Erwin; Osorio, Jorge E.

    2016-01-01

    Background Mosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage. Methodology/Principal Findings Using mice deficient in interferon α/β and Ɣ receptors (AG129 mice), we report that these animals were highly susceptible to ZIKV infection and disease, succumbing within seven to eight days. Rapid viremic dissemination was observed in visceral organs and brain; but only was associated with severe pathologies in the brain and muscle. Finally, these results were consistent across challenge routes, age of mice, and inoculum doses. These data represent a mouse model for ZIKV that is not dependent on adapting ZIKV to intracerebral passage in mice. Conclusions/Significance Foot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing. PMID:27093158

  18. Characterization of Lethal Zika Virus Infection in AG129 Mice.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2016-04-01

    Full Text Available Mosquito-borne Zika virus (ZIKV typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage.Using mice deficient in interferon α/β and Ɣ receptors (AG129 mice, we report that these animals were highly susceptible to ZIKV infection and disease, succumbing within seven to eight days. Rapid viremic dissemination was observed in visceral organs and brain; but only was associated with severe pathologies in the brain and muscle. Finally, these results were consistent across challenge routes, age of mice, and inoculum doses. These data represent a mouse model for ZIKV that is not dependent on adapting ZIKV to intracerebral passage in mice.Foot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.

  19. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  20. Radioluminescence and phosphororescence in electron-tube glasses doped with tin and cerium oxides

    International Nuclear Information System (INIS)

    Cerium and tin additions effect upon radioluminescence and phosphorescence of glasses (basic components are: SiO2, Al2O-3, ZnO, B2O3, Na2O, K2O) exposed to gamma radiation is studied. It has been shown that the following small amounts of CeO2 and SnO2 additions cause a considerable change in radioluminescence (2 times) and phosphorescence (more than an order). Tin oxide concentration increase results in radioluminescence growth in the short-wave spectral region. The dependence of radioluminescence and phosphorescence on cerium oxide concentration as well as the dependence of phosphorescence on tin oxide concentration has its maximum at 0.5-0.7 mass% of these additions. Radiation and optical characteristics of the glass under study have been compared to those of industrial glasses

  1. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 oC. The activation energy for growth of CeO2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO2 particles in narrow size range. CeO2 nanocrystals precipitated at 35 oC were further annealed at temperatures in the range 300-700 oC. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  2. Improvement and analysis of the hydrogen-cerium redox flow cell

    Science.gov (United States)

    Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.

    2016-09-01

    The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.

  3. Color-Fading Spectrophotometric Determination of Cerium with DBC-Arsenazo

    Institute of Scientific and Technical Information of China (English)

    翟庆洲; 张晓霞

    2004-01-01

    In the medium of 0.18~1.08 mol·L-1 sulfuric acid, cerium(Ⅳ) has the color-fading effect on DBC-arsenazo. The apparent molar absorptivity of the color-fading reaction is ε530 nm=1.03×104 L·mol-1·cm-1. Beer′s law is obeyed over the range of 1.20~12.0 μg·ml-1 of Ce (Ⅳ) which shows a linear relationship with the decrease in the absorbance of the colored solution. The effect of thirty-six coexisting ions was studied. The method was applied to the determination of the trace amount of cerium in water samples and has the advantage of high accuracy and good selectivity.

  4. A Novel Open-Framework Cerium Phosphate Fluoride: (NH 4)[Ce IVF 2(PO 4)

    Science.gov (United States)

    Yu, Ranbo; Wang, Dan; Takei, Takahiro; Koizumi, Hitoshi; Kumada, Nobuhiro; Kinomura, Nobukazu

    2001-02-01

    A novel open-framework cerium phosphate fluoride, (NH4)[CeIVF2(PO4)], has been synthesized under hydrothermal conditions and characterized by means of single-crystal X-ray diffraction, ion chromatography analysis, and thermal analysis. The compound crystallizes in the monoclinic space group P21/m(No. 11), with a=6.660(2), b=5.875(2), c=7.177(3) Å, β=114.31(2)°, and V=255.9(2) Å3 (R=0.039 and Rw=0.045). In this compound, the cerium-centered CeO4F4 polyhedra link via Ce2F2 rings to form corrugated chains along the b axis of the structure. These are tetrahedrally connected via PO4 groups to create the three-dimensional network with a one-dimensional channel. NH+4 cations are accommodated at the intersection of the channels.

  5. Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)

    2009-01-15

    Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)

  6. Effect of cerium oxide addition on electrical and physical properties of alkali borosilicate glasses

    International Nuclear Information System (INIS)

    The study of electrical conductivity, density and coefficient of thermal expansion (CTE) of Na2O:K2O:B2O3:SiO2:BaO glass samples with addition of cerium oxide has been carried out. It has been observed that the addition of cerium oxide affects the electrical conductivity, density and CTE. The results have been explained on the basis of the variation in number of bridging oxygens (BOs) and non-bridging oxygens (NBOs) present in the glass. In general, the glass with more NBOs has a weak network which exhibits higher electrical conductivity. The weakening of the network has been supported by the observed decrease in density and increase in CTE for the glasses.

  7. Spectral tunability of cerium photoluminescence in nano sized LaF3:Ce3+

    International Nuclear Information System (INIS)

    Nano sized LaF3:Ce3+ was synthesized by adopting co-precipitation technique with nominal composition as well as with different molar ratio of reactants La3+ (Lanthanum) and F− (Fluoride). All the samples were subjected to X-ray diffraction (XRD), XRF, UV-Vis absorption, and PL characterizations. XRD analysis did not reveal any significant change in the diffraction profile. Particle size variations were observed with respect to change in lanthanum to fluoride molar ratio. An interesting and intense photoluminescence excitation peaks were observed for the samples prepared non-stoichiometrically. The effect of varying nominal reactant composition demonstrates a possibility of introducing tunability in cerium emission in the same host. Life time of cerium has been measured to be in the order of nano seconds

  8. Energy transfer and thermal studies of Pr3+ doped cerium oxalate crystals

    Indian Academy of Sciences (India)

    R Pragash; Gijo Jose; N V Unnikrishnan; C Sudarsanakumar

    2011-07-01

    Energy transfer process at room temperature for cerium (sensitizer) oxalate single crystals doped with different concentrations (10, 13, 15, 17 and 20%) of praseodymium ions (activator) grown by hydro silica gel method has been evaluated. The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of the absorption spectra of Pr3+ and emission spectra of Ce3+ at wavelengths 484 and 478 nm, respectively, strongly supports the possible energy transfer process in this system. From the absorption spectra, oscillator strength, electric dipole moment, branching ratio and Judd–Ofelt parameters of this system were evaluated by least square programming. The quantum efficiency, energy transfer probabilities and thermal properties have been studied.

  9. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  10. Protection of the AZ31 magnesium alloy with cerium modified silane coatings

    International Nuclear Information System (INIS)

    Highlights: → Silane conversion coatings as possible alternative to Cr(VI) based pre-treatments. → 3-mercapto-propyl-trimethoxysilane (PropS-SH) tested on Mg alloys. → PropS-SH forms a porous conversion coating which allows a rapid electrolyte uptake. → Ce(NO3)3 addition to pre-treatment bath improves PropS-SH coating performance. → Ce3+ ions presence provides self-healing feature to the coating. - Abstract: This research investigates the effect of cerium ion addition on the efficiency of a 3-mercapto-propyl-trimethoxysilane (PropS-SH) coating formed on AZ31 magnesium alloy. The coating was obtained by dipping AZ31 coupons in a hydroalcoholic 3-mercapto-propyl-trimethoxysilane solution, added with cerium nitrate, in order to obtain a 5 x 10-3 or 5 x 10-4 M Ce+3 ion concentration. The silane baths were regulated at pH 4 and utilized for filming treatment after 48 h following their preparation. The treated specimens were finally cured for 1 h at 100 deg. C. The protective efficiency of cerium modified and unmodified PropS-SH coatings was evaluated by recording potentiodynamic polarization curves and electrochemical impedance spectra in a 0.1 M NaCl environment. In comparison to PropS-SH coating, cerium nitrate modified silane layer exhibited noticeably improved performances, in particular in presence of a 5 x 10-3 M Ce3+ concentration. The increased protectiveness and stability of the modified coatings were attributed to a lower porosity and defectiveness and to self-healing ability provided by Ce3+ ion presence.

  11. Theoretical modeling of heterogeneous catalysts based on platinum and cerium oxide

    OpenAIRE

    Bruix Fusté, Albert

    2014-01-01

    This thesis focuses on the computational study of models for platinum catalysts supported on cerium oxide (CeO2) which are of technological relevance. In these catalysts, ceria is often found acting as a non-inert support, leading to complex metal-support interactions (MSI) that modify the properties of both the oxide and the supported metal. First principles computational methods based on the Density functional Theory (DFT) have been used to study the nature of these interactions and their e...

  12. Effect of Pressure on the Ferromagnetic Cerium Compound CeCu9Sn4

    International Nuclear Information System (INIS)

    Electrical resistivity measurements under hydrostatic pressure up to 2.2 GPa was carried out for a ferromagnetic ternary cerium compound CeCu9Sn4. The ferromagnetic transition temperature increases with increasing pressure up to 0.8 GPa and then decreases with increasing pressure above 1 GPa. Origins of this pressure dependence may be the competition between magnetic interaction in the c-plane and along the c-direction. (author)

  13. A cerium glass fiber-optic active target for high energy physics experiments

    International Nuclear Information System (INIS)

    A fiber-optic plate imaging system has been developed for active target and tracking applications, in which the active element is Ce(3+) in a silicate glass. Particle tracks and interactions have been recorded with a hit density of greater than or equal to 4/mm for minimum ionizing particles and with a spatial resolution sigma approx. = 28μ m.) The properties of cerium scintillation glass are discussed

  14. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    OpenAIRE

    Claudia von Montfort; Lirija Alili; Sarah Teuber-Hanselmann; Peter Brenneisen

    2014-01-01

    Recently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and red...

  15. Nanocrystalline cerium dioxide efficacy for gastrointestinal motility: potential for prokinetic treatment and prevention in elderly

    OpenAIRE

    Yefimenko, Olena Yu; Savchenko, Yuliya O; Tetyana M. Falalyeyeva; Beregova, Tetyana V; Zholobak, Nadiya M; Spivak, Mykola Ya; Shcherbakov, Oleksandr B; Bubnov, Rostyslav V

    2015-01-01

    Background Constipation is a common condition, with prevalence after 65 years, is a major colorectal cancer risk factor. Recent works have demonstrated advances in personalized, preventive nanomedicine, leading to the construction of new materials and nanodrugs, in particular, nanocrystalline cerium dioxide (NCD), having strong antioxidative prebiotic effect. The aim of our study was to investigate the influence of NCD on motor function of the stomach and colon in vivo and contractive activit...

  16. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    OpenAIRE

    Gerardo Pulido-Reyes; Ismael Rodea-Palomares; Soumen Das; Tamil Selvan Sakthivel; Francisco Leganes; Roberto Rosal; Sudipta Seal; Francisca Fernández-Piñas

    2015-01-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main drive...

  17. One step hydrothermal synthesis of a carbon nanotube/cerium oxide nanocomposite and its electrochemical properties

    Science.gov (United States)

    Kalubarme, Ramchandra S.; Kim, Yong-Han; Park, Chan-Jin

    2013-09-01

    A carbon nanotube (CNT)/cerium oxide composite was prepared by a one-pot hydrothermal reaction in the presence of KOH and capping agent polyvinylpyrrolidone. The nanocomposite displayed pronounced capacitive behaviour with very small diffusion resistance. The electrochemical performance of the composite electrode in a symmetric supercapacitor displayed a high energy density of 35.9 Wh kg-1 corresponding to a specific capacitance of 289 F g-1. These composite electrodes also demonstrated a long cycle life with better capacity retention.

  18. Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b.

    Science.gov (United States)

    Farhan Ul Haque, Muhammad; Kalidass, Bhagyalakshmi; Bandow, Nathan; Turpin, Erick A; DiSpirito, Alan A; Semrau, Jeremy D

    2015-11-01

    Methanotrophs have multiple methane monooxygenases that are well known to be regulated by copper, i.e., a "copper switch." At low copper/biomass ratios the soluble methane monooxygenase (sMMO) is expressed while expression and activity of the particulate methane monooxygenase (pMMO) increases with increasing availability of copper. In many methanotrophs there are also multiple methanol dehydrogenases (MeDHs), one based on Mxa and another based on Xox. Mxa-MeDH is known to have calcium in its active site, while Xox-MeDHs have been shown to have rare earth elements in their active site. We show here that the expression levels of Mxa-MeDH and Xox-MeDH in Methylosinus trichosporium OB3b significantly decreased and increased, respectively, when grown in the presence of cerium but the absence of copper compared to the absence of both metals. Expression of sMMO and pMMO was not affected. In the presence of copper, the effect of cerium on gene expression was less significant, i.e., expression of Mxa-MeDH in the presence of copper and cerium was slightly lower than in the presence of copper alone, but Xox-MeDH was again found to increase significantly. As expected, the addition of copper caused sMMO and pMMO expression levels to significantly decrease and increase, respectively, but the simultaneous addition of cerium had no discernible effect on MMO expression. As a result, it appears Mxa-MeDH can be uncoupled from methane oxidation by sMMO in M. trichosporium OB3b but not from pMMO. PMID:26296730

  19. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent.

    Directory of Open Access Journals (Sweden)

    Jane Q Chen

    Full Text Available Female 129:Stat1-null mice (129S6/SvEvTac-Stat1(tm1Rds homozygous uniquely develop estrogen-receptor (ER-positive mammary tumors. Herein we report that the mammary glands (MG of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment.

  20. Distribution and sources of 129I in rivers of the Baltic region

    International Nuclear Information System (INIS)

    The concentration of 129I was measured in 54 river waters discharging into the Baltic Sea from Sweden, Finland, Estonia, Latvia, Lithuania, Poland and Germany. Sample collection was performed during a well-bracketed time interval (June-July 1999), thus allowing comparison of the rivers over a wide latitude range without the effect of long temporal spread. Although there is no direct input of anthropogenic 129I in the watersheds, the concentration of the isotope is about two to three orders of magnitude higher than the expected pre-nuclear era natural values in the rivers of Finland and northern Sweden, and in the rivers of southern Sweden, Lithuania, Estonia, Latvia, Poland and Germany; the 129I concentration may reach five orders of magnitude higher. Furthermore, there are significant correlations between the 129I concentration and latitude and/or distance from the North Sea and between 129I and Cl. These findings suggest seawater as a main source of 129I to the rivers through atmospheric transport. Of the many chemical parameters investigated, the pH may account for some of the variability in 129I concentrations of the rivers. The contribution from nuclear weapon tests and the Chernobyl accident to the riverine 129I is insignificant compared to the releases from the nuclear fuel reprocessing facilities. The total flux of 129I by rivers to the Baltic Sea and related basins represents minor amounts of the isotope pool in these marine waters. External radioactivity hazards from 129I are considered to be negligible in the Baltic region. However, as the main 129I intake to the human body is likely through water, due to the large amount of daily water consumption, more concern should be given to internal radioactivity hazard that may be associated with the isotope's localized elevated concentration in the human organs

  1. Level and source of 129I of environmental samples in Xi'an region, China

    International Nuclear Information System (INIS)

    Iodine-129 is widely used as a tracer in various environmental practices such as monitoring of nuclear environmental safety, seawater exchange and transport, geochemical cycle of stable iodine and dating of geological events. The spatial distribution of 129I concentration varies significantly on global scale because of anthropogenic input from nuclear activities coupled with scarcity of data on environmental 129I variability in many parts of the world including Asia. Here we report new data on 129I and 127I concentrations in soil, vegetation, river water and precipitation collected from Xi'an area, China. The results indicate values for environmental 129I/127I ratios in the investigated area range from 1.1 x 10-10 to 43.5 x 10-10 with a mean of 20.6 x 10-10, which is 1-3 orders of magnitude lower than the ratios observed in Europe, but comparable with those observed in the locations far from direct effect of point release sources and at similar latitude. The main source of 129I in the investigated area is attributed to the global fallout of both atmospheric nuclear weapons testing and long distance dispersion of fuel reprocessing releases. - Research highlights: → We present the first investigation of anthropogenic radioactive 129I in the terrestrial environment in middle China. → River water, surface soil and vegetation samples from Xi'an region were analyzed for 129I and stable 127I. → The distribution, source term, and transfer from soil to plants of 129I in middle China are presented. → AMS shows its unique capacity in 129I analysis and environmental safety research using 129I and other radionuclides. → The results supplied a basic data for evaluating nuclear risk in the future.

  2. Development of Stable Cerium Zirconium Mixed Oxide Nanoparticle Additive for Emission Reduction in Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Sajith V

    2015-06-01

    Full Text Available Harmful emissions associated with the use of biodiesel is a serious issue and various fuel additives are being used for the reduction of emissions as well as for the improvement of engine performance. Use of cerium oxide nanoparticles as fuel additive is one of the methods for the reduction of emissions, due to its peculiar redox functionality and oxygen buffering capability. Doping of ceria with transition metals such as zirconium improves its Oxygen storage capacity and thermal stability, thereby enhancing simultaneous oxidation and reduction reactions. The present work focuses on the development of cerium zirconium mixed oxide nanoparticle based additive for the reduction of emissions from diesel engine fuelled with biodiesel - diesel blends. Cerium zirconium mixed oxide was synthesized by means of co precipitation method. The stability of the nanofluids was improved by the addition of surfactant, namely Oleic acid. The optimum concentration of surfactant was determined based on estimation of critical micelle concentration, by means of standard tests. Stability of catalytic nanoparticle in fuel was evaluated from the measurement of Zeta potential. Various properties were determined as per ASTM standards to investigate the effect of the nanoparticles on fuel properties. Addition of catalytic nanoparticle in diesel - biodiesel blends does not significantly affect the fuel properties. Engine performance and emission tests were conducted on single cylinder diesel engine to assess the potential of synthesized nanofuel and 15% average reduction of NO emissions was observed for B5 and B10 blends with 15 ppm of catalytic nanoparticle concentration.

  3. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings

    International Nuclear Information System (INIS)

    Cerium-based conversion coatings are progressing as an effective alternative to hazardous chromate-based systems used in the treatment of metal surfaces. However, there is still considerable debate over the mechanism by which these coatings are formed. Here, titrations of cerium-based conversion coating solutions were carried out in order to model the reactions that occur at the metal-solution interface during coating, with a particular emphasis on investigating the role of hydrogen peroxide (H2O2). The titration curves obtained support the proposed formation of Ce(III) peroxo complexes such as Ce(H2O2)3+ as an initial step, followed by deprotonation, oxidation and precipitation to form peroxo-containing Ce(IV) species such as Ce(IV)(O2)(OH)2. The precipitates resulting from titrations were characterised by Raman spectroscopy, X-ray diffraction and thermogravimetric analysis, confirming the presence of peroxo bonds, and nano-sized CeO2 crystallites that decreased in size with increasing H2O2 concentration. Characterisation of cerium conversion coatings on aluminium alloy surfaces confirmed the presence of peroxo species in the coatings, thereby supporting the titration model

  4. Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy

    Science.gov (United States)

    Shruti, S.; Andreatta, F.; Furlani, E.; Marin, E.; Maschio, S.; Fedrizzi, L.

    2016-08-01

    Surface modification is one of the methods for improving the performance of medical implants in biological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5 mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 V substrates by dip-coating method in order to obtain an inorganic-organic hybrid coating (MBG-PCL). Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 μm. Glass and polymer phases were detected in the coating along with the presence of biologically potent elements cerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samples in simulated body fluid (SBF) for up to 30 days at 37 °C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In this way, an attempt was made to develop a new biomaterial with improved in vitro bioactive response due to bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biological properties of cerium, gallium and zinc.

  5. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  6. Effect of cerium oxide addition on electrical properties of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [National Research Center, Dokki, Giza (Egypt). Dept. of Ceramics; Mounir, M. [Dept. of Physics, Cairo Univ., Giza (Egypt); Mahgoub, A.S. [Cairo Univ., Giza (Egypt). Dept. of Chemistry; Turky, G. [Dept. of Physics, National Research Center, Dokki, Giza (Egypt); El-Desouky, O.A. [Cer. Cleopatra Co., Ramadan City (Egypt)

    2002-07-01

    Mixtures of ZnO and Ce{sub 6} O{sub 11} as additive were prepared by solid state reaction from the calcined oxides with the following proportions: 0.03, 0.08, 0.1, 0.2 and 0.4 mole. Disc specimens 1.2 cm 5 cm in diameter and 0.3 cm thickness were processed under a force of 70 kN and fired at 1150 C/ 30 minutes. XRD revealed the presence of limited solid solution of cerium in ZnO, as evident from the shift in the peaks [0.03-0.04 A ] up to 0.1 mole addition and remains constant. SEM revealed the presence of inter-granular phase. EDAX showed it to be a mixture of ZnO and Ce{sub 6}O{sub 11}. Also cerium was detected in the ZnO grains confirming the XRD results. RCL circuit was used to measure the capacitance and resistance at different frequencies at room temperature. The dielectric constant and conductivity were calculated. The change in resistivity with temperature was followed up to 523 K. The change in dielectric strength with temperature at spot frequency of 10 kHz is demonstrated. The electrical conductivity was found to increase with the proportion of cerium oxide up to 0.2 mole then decreased. (orig.)

  7. Laser ablated plasma plume diagnostics of cerium oxide: effect of oxygen partial pressure

    International Nuclear Information System (INIS)

    This paper describes the spatial and temporal investigation of laser ablated plasma plume of cerium oxide target using Langmuir probe to measure the plasma parameters. Cerium oxide target was ablated using a KrF (λ ∼ 248 nm) gas laser at an energy of 300 mJ per pulse. Experimental studies confirmed that oxygen partial pressure of 2 x 10-2 mbar is sufficient enough to get good quality films of cerium oxide. At this pressure, plume was diagnosed for their spatial and temporal behaviour. The tungsten probe tip was inserted along the length of the plasma to collect the ions and electrons effectively. A thin probe tip (about 0.4 mm diameter) was used to avoid plasma perturbation during measurements. A variable voltage was applied to the tip and corresponding current due to electrons and ions was collected. Spatial distribution was investigated at a regular interval of 15 mm from the target up maximum distance 45 mm and the temporal behaviour was recorded in the range of 0 to 50 μS with an interval of 0.5 μS. The ion and average electron density are found to be maximum at 30 mm from the target position and the plasma current of ceria is found to be maximum at 22 μS. (author)

  8. Cerium Modified Pillared Montmorillonite Supported Cobalt Catalysts for Fischer Tropsch Synthesis

    International Nuclear Information System (INIS)

    Fischer-Tropsch (FT) synthesis was accomplished over Al-pillared Montmorillonite supported 20 wt% Co modified with different weight% of cerium catalysts. These catalysts were prepared by impregnation method while structural characterizations of the prepared samples were performed by XRD, TPR, NH/sub 3/TPD, TGA, BET, XRF and SEM techniques. The Fischer Tropsch reaction was studied in fixed bed micro catalytic reactor at temperature range of 220, 260 and 275 degree C and at different pressure (1, 5 and 10 bars). From the activity results, it was found that by pillaring NaMMT with Al higher catalytic activity and lower methane selectivity of NaMMT was achieved. Furthermore, the results of FT synthesis reaction revealed that cerium incorporation increased the dispersion of Co/sub 3/O/sub 4/ on the surface and consequently resulted in enhanced catalytic activity. Additionally, the C/sub 5/-C/sub 12/ hydrocarbons and methane selectivity increased while C/sub 22+/ hydrocarbons selectivity was decreased over cerium modified catalysts. Higher reaction temperature (>220 degree C) resulted in significant enhancement in CO conversion and methane selectivity. Though, increase in pressure from 1 to 10 bars eventually resulted in increase in C/sub 5+/ hydrocarbons and decrease in methane and C/sub 2/-C/sub 5/ hydrocarbons selectivity. (author)

  9. Cerium valence change in the solid solutions Ce(Rh1-xRux)Sn

    International Nuclear Information System (INIS)

    The solid solutions Ce(Rh1-xRux)Sn were investigated by means of susceptibility measurements, specific heat, electrical resistivity, X-ray absorption spectroscopy (XAS), and 119Sn Moessbauer spectroscopy. Magnetic measurements as well as XAS data show a cerium valence change in dependence on the ruthenium content. Higher ruthenium content causes an increase from 3.22 to 3.45 at 300 K. Furthermore χ and χ-1 data indicate valence fluctuation for cerium as a function of temperature. For example, Ce(Rh0.8Ru0.2)Sn exhibits valence fluctuations between 3.42 and 3.32 in the temperature range of 10 to 300 K. This could be proven by using the interconfiguration fluctuation (ICF) model introduced by Sales and Wohlleben. Cerium valence change does not influence the tin atoms as proven by 119Sn Moessbauer spectroscopy, but it influences the electrical properties. Ce(Rh0.9Ru0.1)Sn behaves like a typical valence fluctuating compound, and higher ruthenium content causes an increase of the metallic behavior. (orig.)

  10. Thermal decomposition study of uranyl nitrate and cerium hydroxide in a spray dryer

    International Nuclear Information System (INIS)

    A study, in a spray dryer system based on drying and thermal decomposition of uranyl nitrate solutions aiming the production of uranium trioxide adequate for the use in posterior steps of reduction and hydro fluorination in nuclear fuel cycle; and cerium hydroxide suspensions for the production of cerium oxide with high surface area is presented. Thus, the project and construction of a countercurrent spray dryer was elaborated for capacity of 10 Kg U O3/h and 3,5 k Ce O2/h. The methodology used in these experiments consisted in the analysis of several parameters (concentration and flow rate of the feed, atomization pressure and inlet temperature of the dryer) over the physical and chemical properties of the products. Using the obtained results, with the help of a mathematical model, it was developed the project of a continuous pilot unity for the production of uranium trioxide or cerium oxide, with capacity of 20 Kg U O3/h or 10 Kg Ce O2/h, respectively. (author)

  11. Effect of coating parameters on the microstructure of cerium oxide conversion coatings

    International Nuclear Information System (INIS)

    The microstructure and morphology of cerium oxide conversion coatings prepared under different deposition conditions were characterized by transmission electron microscopy (TEM). The coatings were formed by a spontaneous reaction between a water-based solution containing CeCl3 and aluminum alloy 7075-T6 substrates. Microstructural characterization was performed to determine the crystallinity of the coatings and to obtain a better understanding of the deposition parameters on coating microstructure. The results of TEM imaging and electron diffraction analysis indicated that the as-deposited coating was composed of nanocrystalline particles of a previously unreported cerium compound. The particles of the coatings produced using glycerol as an additive were found to be much finer than those of the coatings prepared in the absence of glycerol. This indicates that glycerol may act as a grain refiner and/or growth inhibitor during coating deposition. After deposition, the coated panels were treated for 5 min in a phosphate sealing solution. The sealing treatment converted the as-deposited coating into hydrated cerium phosphate. Panels coated from solutions containing no glycerol followed by phosphate sealing performed poorly in salt fog tests. With glycerol addition, the corrosion resistance of the coatings that were phosphate sealed improved considerably, achieving an average passing rate of 85%

  12. Basic study on decontamination of TRU waste with cerium-mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    It is important to decrease the radioactivity of transuranium (TRU) waste arising from reprocessing plants by the decontamination for its disposal. In order to dispose TRU waste safely and rationally, a decontamination technology is required to be developed. For this purpose, the Japan Atomic Energy Agency has conducted a basic study focusing on the cerium-mediated electrolytic oxidation (CeMEX) method. In this study, two series of tests were performed to confirm the sufficient corrosion rate for the decontamination of metallic waste with the CeMEX method. One is the pre-corrosion test to survey an optimum solution condition for the generation of cerium(IV) ion under different conditions in concentration of cerium(III) ion and nitric acid. The other is the corrosion test to evaluate the corrosion rate of stainless steel as simulating waste under the optimized solution condition. It was confirmed that the average corrosion rate of stainless steel was 3.3 μm/h for 90 hours. This means that the decontamination can be completed within 6 hours and that the decontamination solution can be recycled 15 times, assuming that the decontamination to the clearance-level needs corrosion depth of 20 μm. From the results, the CeMEX method is sufficiently applicable to the decontamination of TRU waste. (author)

  13. Cerium Biomagnification in a Terrestrial Food Chain: Influence of Particle Size and Growth Stage.

    Science.gov (United States)

    Majumdar, Sanghamitra; Trujillo-Reyes, Jesica; Hernandez-Viezcas, Jose A; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-07-01

    Mass-flow modeling of engineered nanomaterials (ENMs) indicates that a major fraction of released particles partition into soils and sediments. This has aggravated the risk of contaminating agricultural fields, potentially threatening associated food webs. To assess possible ENM trophic transfer, cerium accumulation from cerium oxide nanoparticles (nano-CeO2) and their bulk equivalent (bulk-CeO2) was investigated in producers and consumers from a terrestrial food chain. Kidney bean plants (Phaseolus vulgaris var. red hawk) grown in soil contaminated with 1000-2000 mg/kg nano-CeO2 or 1000 mg/kg bulk-CeO2 were presented to Mexican bean beetles (Epilachna varivestis), which were then consumed by spined soldier bugs (Podisus maculiventris). Cerium accumulation in plant and insects was independent of particle size. After 36 days of exposure to 1000 mg/kg nano- and bulk-CeO2, roots accumulated 26 and 19 μg/g Ce, respectively, and translocated 1.02 and 1.3 μg/g Ce, respectively, to shoots. The beetle larvae feeding on nano-CeO2 exposed leaves accumulated low levels of Ce since ∼98% of Ce was excreted in contrast to bulk-CeO2. However, in nano-CeO2 exposed adults, Ce in tissues was higher than Ce excreted. Additionally, Ce content in tissues was biomagnified by a factor of 5.3 from the plants to adult beetles and further to bugs. PMID:26690677

  14. Synthesis and Characterization of Cerium Doped Titanium Catalyst for the Degradation of Nitrobenzene Using Visible Light

    Directory of Open Access Journals (Sweden)

    Padmini Ellappan

    2014-01-01

    Full Text Available Cerium doped catalyst was synthesized using Titanium isopropoxide as the Titanium source. The metal doped nanoparticles semiconductor catalyst was prepared by sol-sol method with the sol of Cerium. The synthesized catalyst samples were characterized by powder X-ray diffraction, BET surface area, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and UV-vis diffuse reflectance measurements (DRS and compared with undoped TiO2 catalyst. The photocatalytic activity of the sample was investigated for the decomposition of nitrobenzene (NB using visible light as the artificial light source. Cerium doped catalyst was found to have better degradation of nitrobenzene owing to its shift in the band gap from UV to visible region as compared to undoped TiO2 catalyst. The operational parameters were optimized with catalyst dosage of 0.1 g L−1, pH of 9, and light intensity of 500 W. The degradation mechanism followed the Langmuir Hinshelwood kinetic model with the rate constant depending nonlinearly on the operational parameters as given by the relationship Kapp (theoretical = 2.29 * 10−4 * Intensity0.584 * Concentration−0.230 * Dosage0.425 * pH0.336.

  15. Specifics of new phase crystal nucleation during isostructural γ↔α transformation in cerium

    International Nuclear Information System (INIS)

    Specifics of new phase nucleation and subsequent growth under γ-α-transformation in cerium near the surface of the sample is suggested. It is assumed that this specifics can effect mechanical behaviour of a laminar sample under transition at three-point bend. Measurement of deflection of cerium samples at the sensitivity of ∼ 10-6 m at three-point loading was carried out in the 4.2-300 K temperature range at p=10-4 GPa as well as in a chamber of high pressure (in the range of hydrostatic pressures up to 1.0 GPa at T=293 K). It is shown that the effects of change in the form experimentally discovered in the given paper and accompanying isostructural γ-α-transformation in cerium may be explained by the fact that crystal nucleation of γ- and α-phases differing by the volume takes place mainly from the surface of the sample and not in its volume

  16. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process

    International Nuclear Information System (INIS)

    In this study, suspended cerium oxide nanoparticles stabilized with hexamethylenetetramine were used for the removal of dissolved chromium VI in pure water. Several concentrations of adsorbent and adsorbate were tested, trying to cover a large range of possible real conditions. Results showed that the Freundlich isotherm represented well the adsorption equilibrium reached between nanoparticles and chromium, whereas adsorption kinetics could be modeled by a pseudo-second-order expression. The separation of chromium-cerium nanoparticles from the medium and the desorption of chromium using sodium hydroxide without cerium losses was obtained. Nanoparticles agglomeration and morphological changes during the adsorption-desorption process were observed by TEM. Another remarkable result obtained in this study is the low toxicity in the water treated by nanoparticles measured by the Microtox commercial method. These results can be used to propose this treatment sequence for a clean and simple removal of drinking water or wastewater re-use when a high toxicity heavy metal such as chromium VI is the responsible for water pollution.

  17. Cerium-based coating for enhancing the corrosion resistance of bio-degradable Mg implants

    International Nuclear Information System (INIS)

    Recently there has been interest in employing degradable metallic implants for internal fixation in bone fracture healing. The major purpose of using degradable implants is to avoid a second surgery for implant removal when bone healing has completed. However, the corrosion rate of Mg in vivo is too high. Thus increasing the corrosion resistance of Mg is the key problem to address in the development of degradable Mg implants. One possible route is by way of surface treatment, which would lower the corrosion rate at the initial phase of bone healing, the period during which the implant provides mechanical support for the broken bone. In the present study cerium oxide coating was prepared on pure Mg by cathodic deposition in cerium nitrate solution followed by hydrothermal treatment. The coated samples were characterized by SEM, EDS and XRD. The corrosion resistance in Hanks' solution (a simulated body fluid) was studied using polarization method and electrochemical impedance spectroscopy (EIS). The corrosion resistance of cerium oxide coated Mg in Hanks' solution at 37 deg. C and pH 7.4 was higher than that of bare Mg by about two orders of magnitude.

  18. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Highlights: • Phosphate-dispersed CeO2 NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO2 NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO2 NP were caused by dissolved Ce3+ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24 h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5 ± 0.84 μM for wild type and EC50 of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of

  19. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Röhder, Lena A. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Brandt, Tanja [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); Sigg, Laura [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland); ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092 (Switzerland); Behra, Renata, E-mail: Renata.behra@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600 (Switzerland)

    2014-07-01

    Highlights: • Phosphate-dispersed CeO₂ NP did not affect photosynthetic yield in C. reinhardtii. • Agglomerated CeO₂ NP slightly decreased photosynthetic yield. • Cerium(III) was shown to affect photosynthetic yield and intracellular ROS level. • Slight effects of CeO₂ NP were caused by dissolved Ce³⁺ ions present in suspensions. • Wild type and cell wall free mutant of C. reinhardtii showed the same sensitivity. - Abstract: Cerium oxide nanoparticles (CeO₂ NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO₂ NP and effects on algae are largely unknown. In this study, the short term effects of CeO₂ NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO₂ NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO₂ NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO₂ NP had a surface charge of ~0 mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO₂ NP at pH 7.5 over 24 h. This effect was exploited to test CeO₂ NP dispersed in phosphate with a mean size of 140 nm and agglomerated in absence of phosphate with a mean size of 2000 nm. The level of dissolved cerium(III) in CeO₂ NP suspensions was very low and between 0.1 and 27 nM in all tested media. Exposure of C. reinhardtii to Ce(NO₃)₃ decreased the photosynthetic yield in a concentration dependent manner with EC₅₀ of 7.5 ± 0.84 μM for wild type and EC₅₀ of 6.3 ± 0.53 μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO₃)₃ with effective concentrations similar to those inhibiting photosynthesis. The agglomerated Ce

  20. 21 CFR 201.129 - Drugs; exemption for radioactive drugs for research use.

    Science.gov (United States)

    2010-04-01

    ... to human research subjects during the course of a research project intended to obtain basic research... labeled drug or regarding human physiology, pathophysiology, or biochemistry (but not intended for... research use. 201.129 Section 201.129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH...

  1. 34 CFR 76.129 - How does a consolidated grant work?

    Science.gov (United States)

    2010-07-01

    ... applies for a consolidated grant under the Vocational Education Act, the Handicapped Preschool and School... 34 Education 1 2010-07-01 2010-07-01 false How does a consolidated grant work? 76.129 Section 76.129 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS How a...

  2. Iodine-129 in Seawater Offshore Fukushima: distribution, inorganic speciation, sources, and budget

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Povinec, Pavel P.; Zhang, Luyuan;

    2013-01-01

    The Fukushima nuclear accident in March 2011 has released a large amount of radioactive pollutants to the environment. Of the pollutants, iodine-129 is a long-lived radionuclide and will remain in the environment for millions of years. This work first report levels and inorganic speciation of 129I...... geochemical cycle of iodine in the northwestern Pacific Ocean in the future....

  3. Iodine 129 concentration in river and lake water in the Fukushima area

    International Nuclear Information System (INIS)

    A large amount of radionuclides, including 129I, were released into the environment by Fukushima Daiichi nuclear power plant accident. In determination of 129I, accelerator mass spectrometry is extraordinarily sensitive. We found that river and lake water in Fukushima area contained significant amount of 129I from the accident, and provided fruitful information for us. The concentration of 129I in the river and lake water taken in June 2012 ranged from 3.88 x 107 atoms/L to 3.32 x 109 atoms/L. The concentration of 129I in samples taken in Kawauchi village and Tamura city located in the west of the nuclear power plant was low, while that in Namie town, Iitate village and Minamisouma city was relatively high. In addition, the concentration of 129I in samples taken at the same place in December 2011, March 2012 and June 2012 was increased except one sample. This is result from the outflow of 129I which was attached to the organic matter, and from seasonal changes. To investigate the state of dilution of 129I in river and lake, it is necessary to take long-term and fixed-point observation. (author)

  4. Behavior in water system of iodine-129 from Fukushima Daiichi nuclear disaster

    International Nuclear Information System (INIS)

    Because determination of 129I by Accelerator Mass Spectrometry is a very high sensitivity, measuring the concentration of 129I in tap water shows clearly the impact of Fukushima Daiichi nuclear accident. So we examined the range of effects by the accident and natural dilution of 129I by the aqueous flow, by measuring the concentration of 129I in tap water samples taken in Tokyo, Nagano, Aomori, and Ehime. The concentration of 129I in tap water taken in Nagano, Aomori, and Ehime were lower than 2.69 x 107 atoms/L which that of Tokyo before the accident was, while the concentration of 129I in tap water taken in Tokyo in April 2011 was 1.20 x 108 atoms/L. This was considered as the impact of the accident. The concentration of 129I in samples taken in Tokyo in May and in July 2011 was 6.55 x 107 atoms/L and 5.91 x 107 atoms/L, respectively. The concentration of 129I has been decreased. (author)

  5. 38 CFR 4.129 - Mental disorders due to traumatic stress.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Mental disorders due to traumatic stress. 4.129 Section 4.129 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... traumatic stress. When a mental disorder that develops in service as a result of a highly stressful event...

  6. New insights on the role of sea ice in intercepting atmospheric pollutants using 129I

    International Nuclear Information System (INIS)

    Highlights: • 129I content was measured in sea ice collected in 2007 in the Arctic Ocean. • The 129I inventory in the sea ice was estimated to be (6.5 ± 4.5) × 1012 atoms m−2. • Atmospheric transport from Sellafield and La Hague is the main source of 129I. • This source provides 98.4% of the total 129I present in the Arctic sea ice. - Abstract: Measurements of 129I carried out on sea ice samples collected in the central Arctic Ocean in 2007 revealed relatively high levels in the range of 100–1400 × 107 at L−1 that are comparable to levels measured in the surface mixed layer of the ocean at the same time. The 129I/127I ratio in sea ice is much greater than that in the underlying water, indicating that the 129I inventory in sea ice cannot be supported by direct uptake from seawater or by iodine volatilization from proximal (nearby) oceanic regimes. Instead, it is proposed that most of the 129I inventory in the sea ice is derived from direct atmospheric transport from European nuclear fuel reprocessing plants at Sellafield and Cap La Hague. This hypothesis is supported by back trajectory simulations indicating that volume elements of air originating in the Sellafield/La Hague regions would have been present at arctic sampling stations coincident with sampling collection

  7. Speciation analysis of 129I and its applications in environmental research

    DEFF Research Database (Denmark)

    Zhang, Luyuan; Hou, Xiaolin

    2013-01-01

    129I, a long-lived radionuclide, is important in view of geological repository of nuclear waste, and environmental tracing applications related to diverse natural processes of iodine. The environmental behaviors and bioavailability of 129I are highly related to its species. A number of methods have...

  8. 14 CFR 129.111 - Electrical wiring interconnection systems (EWIS) maintenance program.

    Science.gov (United States)

    2010-01-01

    ... (EWIS) maintenance program. 129.111 Section 129.111 Aeronautics and Space FEDERAL AVIATION... interconnection systems (EWIS) maintenance program. (a) Except as provided in paragraph (f) of this section, this....S.-registered airplane identified in paragraph (a) of this section unless the maintenance...

  9. On the origin of 129I in rain water near Zuerich

    International Nuclear Information System (INIS)

    129I concentrations in precipitation at Duebendorf/Zuerich, Switzerland, have been determined with monthly resolution for almost three years in the mid 1990s. The results confirm that annual mean 129I concentrations in precipitation in central Europe have remained about constant since the late 1980s. Liquid and gaseous emissions from the nuclear fuel reprocessing plants at Sellafield and La Hague are discussed as the only possible sources of 129I in precipitation in central Europe. Based on an upper limit estimate for iodine transferred from the sea to the atmosphere, the gaseous discharges constitute the potentially bigger 129I reservoir for precipitation. Moreover, the time dependence of the annual gaseous 129I releases from Sellafield and La Hague correlates much better with the 129I concentrations in precipitation in central Europe since the late 1980s than does the time dependence of the liquid emissions from these sites. At monthly resolution, the 129I concentrations in the precipitation samples close to Zuerich exhibit a large variability. A meteorological transport analysis was carried out for four selected months with particularly low or high observed 129I concentrations. It was found that meteorological transport alone, based upon assimilated wind fields and observed precipitation values, can not directly account for the large month-to-month variability. (orig.)

  10. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    International Nuclear Information System (INIS)

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO2 alone and in combination with milled SiO2 nanoparticles was investigated. For this purpose milled CeO2, CeO2 and SiO2 milled together and milled SiO2 particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO2 and CeO2 particles promote the formation of an effective corrosion pigment. The tests evidence also the beneficial effect of

  11. Optical hyperpolarization and NMR detection of $^{129}$Xe on a microfluidic chip

    CERN Document Server

    Jimenez-Martinez, Ricardo; Rosenbluh, Michael; Donley, Elizabeth A; Knappe, Svenja; Seltzer, Scott J; Ring, Hattie L; Bajaj, Vikram S; Kitching, John

    2014-01-01

    Optically hyperpolarized $^{129}$Xe gas has become a powerful contrast agent in nuclear magnetic resonance (NMR) spectroscopy and imaging, with applications ranging from studies of the human lung to the targeted detection of biomolecules. Equally attractive is its potential use to enhance the sensitivity of microfluidic NMR experiments, in which small sample volumes yield poor sensitivity. Unfortunately, most $^{129}$Xe polarization systems are large and non-portable. Here we present a microfabricated chip that optically polarizes $^{129}$Xe gas. We have achieved $^{129}$Xe polarizations greater than 0.5$\\%$ at flow rates of several microliters per second, compatible with typical microfluidic applications. We employ in situ optical magnetometry to sensitively detect and characterize the $^{129}$Xe polarization at magnetic fields of 1 $\\mu$T. We construct the device using standard microfabrication techniques, which will facilitate its integration with existing microfluidic platforms. This device may enable the...

  12. 129I record in a sediment core from Tinto River (Spain)

    International Nuclear Information System (INIS)

    The potential of 129I (T 1/2 = 15.7 x 106 y) as an environmental tracer has extensively been shown in the literature. However, more information about the transport and distribution of this radionuclide in nature is needed. In this work, we present the results obtained for the 129I concentration in a sediment core profile taken at the Tinto River, in Southern Spain. This place can be considered far away from the direct impact of the nuclear fuel reprocessing plants, which are the main anthropogenic 129I sources. However, the 129I profile found in the core clearly not only shows the presence of anthropogenic 129I but it also allows obtaining information about its possible specific origin

  13. Observation of radioactive iodine ((131)I, (129)I) in cropland soil after the Fukushima nuclear accident.

    Science.gov (United States)

    Fujiwara, Hideshi

    2016-10-01

    During the early stages of the Fukushima nuclear accident, the temporal variations of (131)I deposited on the ground and of (131)I accumulated in cropland soil were monitored at a fixed location in Japan. Moreover, concentrations of long-lived radioactive iodine ((129)I) in atmospheric deposits and soil were measured to examine the feasibility of retrospectively reconstructing (131)I levels from the levels of accident-derived (129)I. The exceptionally high levels of (131)I in deposits and soil were attributed to rainfall-related deposition of radionuclides. In the crop field studied, the losses of deposited (131)I and (129)I due to volatilization were small. The atomic ratio (129)I/(131)I in the topsoil corresponded to the same ratio in deposits. The (131)I concentrations measured in the topsoil were very consistent with the (131)I concentrations reconstructed from the (129)I concentrations in the soil. PMID:27320744

  14. Transmutation rates of technetium 99 and iodine 129 in the CANDU actinide burner

    International Nuclear Information System (INIS)

    Transmutation rates for the two long-lived fission products technetium 99 and iodine 129 have been calculated for the CANDU Actinide Burner that operates with weapons grade plutonium in an inert matrix as fuel. These transmutation rates are compared with those obtained for the current natural uranium CANDU and for LWRs and FBRs. The higher thermal flux and the softer neutron spectrum of the CANDU Actinide Burner, which is a result of its lower fissile requirements can provide net transmutation half lives as short as 14 y for technetium 99 and 2 y for iodine 129. It is assumed that the iodine 129 can be irradiated as a solution in heavy water. The shorter half life for iodine 129 is due to the large volume of moderator and reflector available that leads to negligible self shielding of the iodine 129 cross section. (author) 1 fig., 2 tabs., 2 refs

  15. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Fogh, C.L.; Kucera, J.;

    2003-01-01

    Soil samples from areas in Belarus, Russia and Sweden contaminated by the Chernobyl accident were analysed for I-129 by radiochemical neutron activation analysis, as well as for Cs-137 by gamma-spectrometry. The atomic ratio of I-129/(CS)-C-137 in the upper layer of the examined soil cores ranged...... from 0.10 to 0.30, with an average of 0.18, and no correlation between I-129/Cs-137 ratio and the distance from Chernobyl reactor to sampling location was observed. It seems feasible to use the I-129/Cs-137 ratio to reconstruct the deposition pattern of I-131 in these areas. The association of I-129...

  16. 3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.

    Science.gov (United States)

    Cleveland, Zackary I; Virgincar, Rohan S; Qi, Yi; Robertson, Scott H; Degan, Simone; Driehuys, Bastiaan

    2014-12-01

    A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening. PMID:24816478

  17. Preparation of magnetron sputtered thin cerium oxide films with a large surface on silicon substrates using carbonaceous interlayers.

    Science.gov (United States)

    Dubau, Martin; Lavková, Jaroslava; Khalakhan, Ivan; Haviar, Stanislav; Potin, Valerie; Matolín, Vladimír; Matolínová, Iva

    2014-01-22

    The study focuses on preparation of thin cerium oxide films with a porous structure prepared by rf magnetron sputtering on a silicon wafer substrate using amorphous carbon (a-C) and nitrogenated amorphous carbon films (CNx) as an interlayer. We show that the structure and morphology of the deposited layers depend on the oxygen concentration in working gas used for cerium oxide deposition. Considerable erosion of the carbonaceous interlayer accompanied by the formation of highly porous carbon/cerium oxide bilayer systems is reported. Etching of the carbon interlayer with oxygen species occurring simultaneously with cerium oxide film growth is considered to be the driving force for this effect resulting in the formation of nanostructured cerium oxide films with large surface. In this regard, results of oxygen plasma treatment of a-C and CNx films are presented. Gradual material erosion with increasing duration of plasma impact accompanied by modification of the surface roughness is reported for both types of films. The CNx films were found to be much less resistant to oxygen etching than the a-C film. PMID:24372305

  18. Effects of cerium microalloying on the structure and properties of heat resistant steel of 4Kh4VMFS

    International Nuclear Information System (INIS)

    It is attempted to follow the peculiarity of structural-physical changes under high-temperature heating in subcritical region and on this base possible mechanisms of cerium effect on heat resistance increase of instrumental compos ition (0.42% C; 0.80% Si; 0.37% Mn; 4.0% Cr; 0.98% W; 1.55% Mo; 1.22% V; 0.01% Ca including the variant with 0.08% Ce) is chosen for investigation. Cerium microalloying is shown to result in advisability of precipitations in the 400-500 deg C tempering temperature range of cementite carbides on the boundaries and in the centre of matrix grains that is associated with liquating inhomogeneity by cerium and carbon. The noted inhomogeneity is levelled with the increase of tempering temperature above 500 deg C. Cerium inhibits the process of Fesub(α)-solid solution decomposition under tempering and its depletion by tungsten and molybdenum. Cerium microalloying of 4Kh4VMFS steel restrains carbide phase coagulation at high temperatures of tempering, it promotes inhibiting the recrystallization processes, assures increased fracture toughness

  19. Effect of cerium additive and secondary phase analysis on Ag0.5Bi0.5TiO3 ceramics

    Indian Academy of Sciences (India)

    S Supriya; Antonio J Dos Santos-García; F Fernández-Martinez

    2016-02-01

    Cerium-doped silver bismuth titanate—Ag0.5Bi0.5TiO3 (ABT) ceramics have been synthesized by the high-temperature solid-state reaction method. The structure and elemental examination of the prepared ceramic was analysed by X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscopy and energydispersive spectroscopy. XRD analysis showed the presence of pyrochlore structure and secondary phase when more than 5 mol% cerium was added. The impact of temperature on cerium-doped silver bismuth titanate samples was analysed by differential thermal analysis and differential scanning calorimetry. Cerium doping caused the flaky morphology comparing with undoped sample. The homogeneity of all the samples was discussed in detail by diffuse reflectance spectrum. This is the first time the reflection process is analysed for the cerium-doped ABT system to the best of our knowledge.

  20. Preparation of cerium-doped TiO2 film on 304 stainless steel and its bactericidal effect in the presence of sulfate-reducing bacteria (SRB)

    International Nuclear Information System (INIS)

    Cerium-doped TiO2 film with bactericidal activity was prepared on 304 stainless steel by a sol-gel process. The doped cerium ions were identified to have retarding effect on the phase transition from amorphous TiO2 to anatase TiO2. This effect was interpreted as the distortion of crystal lattice, due to the introduction of cerium ions into the crystal structure of TiO2. The absorption band edge of cerium-doped TiO2 film has a red shift compared with that of pure TiO2 film in UV-vis spectra. The films covered with sulfate-reducing bacteria (SRB) medium were exposed to sunlight for 6 h and the bactericidal efficiency was evaluated with most probable number technique. It was found that the bactericidal efficiency of cerium-doped TiO2 film and pure TiO2 film were 95% and 85%, respectively.

  1. Sweetener preference of C57BL/6ByJ and 129P3/J mice.

    Science.gov (United States)

    Bachmanov, A A; Tordoff, M G; Beauchamp, G K

    2001-09-01

    Previous studies have shown large differences in taste responses to several sweeteners between mice of the C57BL/6ByJ (B6) and 129P3/J (129) inbred strains. The goal of this study was to compare behavioral responses of B6 and 129 mice to a wider variety of sweeteners. Seventeen sweeteners were tested using two-bottle preference tests with water. Three main patterns of strain differences were evident. First, sucrose, maltose, saccharin, acesulfame-K, sucralose and SC-45647 were preferred by both strains, but the B6 mice had lower preference thresholds and higher solution intakes. Second, the amino acids D-phenylalanine, D-tryptophan, L-proline and glycine were highly preferred by B6 mice, but not by 129 mice. Third, glycyrrhizic acid, neohesperidin dihydrochalcone, thaumatin and cyclamate did not evoke strong preferences in either strain. Aspartame was neutral to all 129 and some B6 mice, but other B6 mice strongly preferred it. Thus, compared with the 129 mice the B6 mice had higher preferences for sugars, sweet tasting amino acids and several but not all non-caloric sweeteners. Glycyrrhizic acid, neohesperidin, thaumatin and cyclamate are not palatable to B6 or 129 mice. PMID:11555485

  2. An approach for measuring the 129I/127I ratio in fish samples

    Science.gov (United States)

    Kusuno, Haruka; Matsuzaki, Hiroyuki; Nagata, Toshi; Miyairi, Yosuke; Yokoyama, Yusuke; Ohkouchi, Naohiko

    2015-10-01

    The 129I/127I ratio in marine fish samples was measured employing accelerator mass spectrometry. The measurement was successful because of the low experimental background of 129I. Pyrohydrolysis was applied to extract iodine from fish samples. The experimental background of pyrohydrolysis was checked carefully and evaluated as 104-105 atoms 129I/combustion. The methodology employed in the present study thus required only 0.05-0.2 g of dried fish samples. The methodology was then applied to obtain the 129I/127I ratio of marine fish samples collected from the Western Pacific Ocean as (0.63-1.2) × 10-10. These values were similar to the ratio for the surface seawater collected at the same station, 0.4 × 10-10. The 129I/127I ratio of IAEA-414, which was a mix of fish from the Irish Sea and the North Sea, was also measured and determined as 1.82 × 10-7. Consequently, fish from the Western Pacific Ocean and the North Sea were distinguished by their 129I/127I ratios. The 129I/127I ratio is thus a direct indicator of the area of habitat of fish.

  3. The determination of iodine-129 in environmental samples used mass spectrometry

    International Nuclear Information System (INIS)

    Iodine-129 is important radionuclides for environmental assessment, because it has a long half-life. In the JNC, the Neutron activation analysis was developed to determine the iodine-129 in environmental samples. The above method is influenced by the operation cycle of the nuclear reactor. New analytical technique using the Microwave Induced Plasma Mass Spectrometry (MIP-MS) was applied to the determination of iodine-129 in environmental samples. The MIP-MS uses the nitrogen gas for plasma and carrier gas. The above gas has no Xe-129, therefore the background counts in the region of m/z=129 are lower compared to the ICP-MS. The above reason is effective for the determining iodine-129 in the level of environmental sample. In environmental samples, a large amount of matrix elements is present. Therefore, the matrix elements were eliminated by ashing at 1000degC, and iodine was trapped by the activated charcoal and finally extracted by the tetramethylammonium hydroxide. A soil sample was analyzed by the neutron activation analysis as well as the MIP-MS method. Good agreement resulted. In order to widely apply the MIP-MS method for determining iodine-129 in environmental samples, the TMAH concentration was examined by stable iodine. (author)

  4. Iodine-129 in forage and deer on the Hanford site and other Pacific Northwest locations

    International Nuclear Information System (INIS)

    Samples of surface soil, litter, forage, and deer (rumen content, muscle, liver, and thyroid gland) were collected from Bend, Oregon; Centralia, Washington; Wenatchee, Washington; the Wooten Game Range near Dayton, Washington; and on or near the Hanford Site, Richland, Washington. The concentrations of 129I and 127I were determined using neturon activation techniques. The purpose of the study was to establish the current levels of 129I in the environs of the Hanford Site prior to the proposed restart of fuel reprocessing at the PUREX plant. The results of this study clearly demonstrated the longevity of 129I in the biosphere following gaseous release from a nuclear facility. Analyses of thyroid glands showed that deer living within 160 km (Wooten Game Range) of Hanford had elevated levels of 129I when compared to the more distant Pacific Northwest locations (Centralia, or Bend). Levels of 129I in deer thyroid from Bend, or Centralia, (15 fCi/g wet weight), were about five times higher than values reported for the central United States, while, Hanford samples were about 2,700 times higher. The average concentration of 129I in deer thyroids collected at Hanford in 1978 was similar to samples collected 14 years earlier. The concentrations of 129I in soil, litter, forage, and other deer samples generally decrease in the order: Hanford > Wooten > Wenatchee > Centralia approx. = Bend. This corresponds to an increase in distance from the Hanford Site

  5. Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event

    International Nuclear Information System (INIS)

    We present an initial characterization of the input of 129I into the Pacific Ocean resulting from the 2011 Fukushima nuclear accident. This characterization is based primarily on 129I measurements on samples collected from a research cruise conducted in waters off the eastern coast of Japan in June 2011. These measurements were compared with samples intended to reflect pre-Fukushima background that were collected during a May 2011 transect of the Pacific by a commercial container vessel. In surface waters, we observed peak 129I concentrations of ∼300 μBq/m3 which represents an elevation of nearly three orders of magnitude compared to pre-Fukushima backgrounds. We coupled our 129I results with 137Cs measurements from the same cruise and derived an average 129I/137Cs activity ratio of 0.442 x 10-6 for the effluent from Fukushima. Finally, we present 129I depth profiles from five stations from this cruise which form the basis for future studies of ocean transport and mixing process as well as estimations of the total budget of 129I released into the Pacific. (author)

  6. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jian [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Shuping [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Zengqiang, E-mail: drquzengqiang@163.com [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Wu, Dong, E-mail: wudongstc@126.com [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China)

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  7. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    International Nuclear Information System (INIS)

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10−9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions

  8. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  9. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Science.gov (United States)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo; Mariani, R. D.; Unal, Cetin

    2015-12-01

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10-9 m2/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  10. An application of secondary ion mass spectrometry (SIMS) in studies of internal contamination micro localization of cerium

    International Nuclear Information System (INIS)

    Secondary Ion Mass Spectrometry (SIMS) permits the detection of stable and radioactive elements in micro volume. Based on the ablation of specimens by ion bombardment, this mass spectrometry method allows a rapid assessment of trace elements in biological samples. Its resolving mass power provides an efficient analytical method and, in particular, it makes possible accurate isotopic ratio determination. In this work, a particular example is presented on the basis of results obtained as a result of analyses of duodenal tissue sections from rats contaminated with cerium. Tests were performed with SIMS to localize cerium in tissue sections obtained from rats 12, 24 and 48 hours after contamination with this element. In all specimens groups, cerium was found in apical region of micro villus, with the exception of those obtained 48 h after contamination. In this report, strengths and limitations of SIMS are pointed out as well as the potential of SIMS in biological research. (author)

  11. A study of quantitative chemical state analysis on cerium surface by using auger electron spectroscopy and factor analysis

    International Nuclear Information System (INIS)

    A reaction with oxygen during oxygen exposure to Cerium metal surface under ultra high vacuum condition and depth profiling on formed Cerium oxide layer were investigated in term of chemical state analysis by Auger electron spectroscopy (AES) and by factor analysis. Principal component analysis (PCA) on Ce NON Auger spectra suggested that three physically meaningful components existed from the analyzed data in both cases. After the PCA, three spectra were extracted from the data and these showed significant peak shape changes in each spectrum which were corresponding to different chemical states. In addition, the profiles constructed by factor analysis showed the chemical state changes on the Cerium metal surface during oxidation or chemical depth distributions in the oxide layer. (author)

  12. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    Science.gov (United States)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  13. Production of CeO2 Nanoparticles by Method of Laser Ablation of Bulk Metallic Cerium Targets in Liquid

    Science.gov (United States)

    Svetlichnyi, V. A.; Lapin, I. N.

    2016-03-01

    The method of pulsed laser ablation in liquid was used to synthesize dispersions of cerium oxide nanoparticles when subjecting a metallic cerium target in water and alcohol to basic frequency radiation of the nanosecond Nd:YAG laser (1064 nm, 7 ns, 20 Hz). Researchers have studied the effect of laser radiation parameters, duration of impact, and optical scheme of experiment on the ablation process. The average rate of nanoparticle production was 50 mg/h in water and 25 mg/h in alcohol. Researchers have studied the size characteristics and crystalline structure of the nanoparticles produced. The particles have bimodal size distribution with 6 nm and 25 nm maximums. The average crystallite size is 17-19 nm. The crystalline structure of nanoparticles, namely cubic cerium oxide (fluorite structure), space group Fm-3m, is confirmed by the X-ray diffraction data, as well as optical absorption spectra and Raman spectroscopy.

  14. Implementation of a complex multi-phase equation of state for cerium and its correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, Frank J [Los Alamos National Laboratory; Jensen, Brian J [Los Alamos National Laboratory; Elkin, Vyacheslav M [VNIITF

    2009-01-01

    The complexity of cerium combined with its interesting material properties makes it a desirable material to examine dynamically. Characteristics such as the softening of the material before the phase change, low pressure solid-solid phase change, predicted low pressure melt boundary, and the solid-solid critical point add complexity to the construction of its equation of state. Currently, we are incorporating a feedback loop between a theoretical understanding of the material and an experimental understanding. Using a model equation of state for cerium we compare calculated wave profiles with experimental wave profiles for a number of front surface impact (cerium impacting a plated window) experiments. Using the calculated release isentrope we predict the temperature of the observed rarefaction shock. These experiments showed that the release state occurs at different magnitudes, thus allowing us to infer where dynamic {gamma} - {alpha} phase boundary is.

  15. Catalytic activity of cerium-doped Ru/Al2O3 during ozonation of dimethyl phthalate

    Institute of Scientific and Technical Information of China (English)

    Yunrui ZHOU; Wanpeng ZHU; Xun CHEN

    2008-01-01

    In this paper, factors influencing the mineraliza-tion of dimethyl phthalate (DMP) during catalytic ozona-tion with a cerium-doped Ru/Al2O3 catalyst were studied. The catalytic contribution was calculated through the results of a companrison experiment. It showed that doping cerium significantly enhanced catalytic activity. The total organic carbon (TOC) removal over the doped catalyst at 100 rain reached 75.1%, 61.3% using Ru/Al2O3 catalyst and only 14.0% using ozone alone. Catalytic activity reached the maximum when 0.2% of ruthenium and 1.0% of cerium'were simultaneously loaded onto Al2O3 support. Results of experiments on oxidation by ozone alone, adsorption of the catalyst, Ce ion's and heterogeneous catalytic ozonation confirmed that the contribution of het-erogeneous catalytic ozonation was about 50%, which showed the obvious effect of Ru-Ce/Al2O3 on catalytic activity.

  16. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results

    Science.gov (United States)

    Patz, Samuel; Muradyan, Iga; Hrovat, Mirko I.; Dabaghyan, Mikayel; Washko, George R.; Hatabu, Hiroto; Butler, James P.

    2011-01-01

    We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90° radio-frequency pulses applied to the dissolved phase, rather than traditional 180° pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ~320 to 80 cm-1 both h~13 μm and τ~1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ~25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.

  17. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results

    International Nuclear Information System (INIS)

    We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 900 radio-frequency pulses applied to the dissolved phase, rather than traditional 1800 pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ∼320 to 80 cm-1; both h∼13 μm and τ∼1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ∼25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.

  18. Measurement of reaction cross sections of {sup 129}I induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The cross sections were measured for the {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions by DT neutrons, at OKTAVIAN facility of Osaka University, Japan. The foil activation method was used in the measurement. The sample was a sealed source of {sup 129}I, which was covered with a Cd foil. The irradiations were performed for 75 minutes to obtain the cross section of reaction producing {sup 128}I (T{sub 1/2}=24.99m) and 22 hours for the {sup 130}I (T{sub 1/2}=12.36h), respectively. The gamma-rays emitted from the irradiated sample were measured with a high purity Ge detector. The measured cross sections of {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions were 0.92{+-}0.11 barn and 0.013{+-}0.002 barn, respectively. For the {sup 129}I(n,2n){sup 128}I reaction, the evaluation of JENDL-3.2 overestimates cross section about 60% to the experimental result. However, especially for the {sup 129}I(n,{gamma}) reaction, the measured cross section may include the contribution from the neutrons in MeV region as well as epithermal ones. Also, the obtained cross section of the {sup 129}I(n,{gamma}){sup 130}I reaction was evaluated as an effective production cross section of {sup 130}I including {sup 129}I(n,{gamma}){sup 130m}I reaction. In order to remove the contribution from the epithermal and MeV region neutrons. A new method was proposed for the measurement of (n,{gamma}) reaction cross section. (author)

  19. 7 CFR 1.29 - Subpoenas relating to investigations under statutes administered by the Secretary of Agriculture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Subpoenas relating to investigations under statutes administered by the Secretary of Agriculture. 1.29 Section 1.29 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Departmental Proceedings § 1.29 Subpoenas relating to...

  20. Determination of proton-induced production cross sections and production rates of {sup 129}I from Te

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, C.; Lopez-Guitierrez, J.M.; Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gloris, M.; Leya, I.; Michel, R. [Hannover Univ. (Germany); Herpers, U. [Koeln Univ. (Germany)

    1997-09-01

    In order to model the production of {sup 129}I in meteoroids, proton-induced production cross sections in the medium range of {sup 129}I from Te as well as production from meteoroid simulation experiments have been determined. {sup 129}I is a very important cosmogenic nuclide to study the constancy of cosmic radiation on long time scales. (author) 2 figs., 2 refs.

  1. Sweetener preference of C57BL/6ByJ and 129P3/J mice

    OpenAIRE

    Bachmanov, Alexander A.; Tordoff, Michael G.; Gary K Beauchamp

    2001-01-01

    Previous studies have shown large differences in taste responses to several sweeteners between mice from the C57BL/6ByJ (B6) and 129P3/J (129) inbred strains. The goal of this study was to compare behavioral responses of the B6 and 129 mice to a wider variety of sweeteners. Seventeen sweeteners were tested using two-bottle preference tests with water. Three main patterns of strain differences were evident. First, sucrose, maltose, saccharin, acesulfame, sucralose and SC-45647 were preferred b...

  2. Iodine (I-129 and I-127) in aerosols from northern Europe

    DEFF Research Database (Denmark)

    Englund, E.; Aldahan, A.; Hou, Xiaolin;

    2010-01-01

    Huge amount of 129I has been emitted to the environment during the last decades from a variety of anthropogenic nuclear activities. Aerosols represent a carrier of iodine in the atmosphere in addition to gaseous forms for which data are lacking in Sweden. In this study the first time series of io...... concentrations between the sites being 6 times higher for 129I compared to 3 times for 127I. The portion of the 129I related to dry deposition, based on aerosol data, represents only a minor amount of the total fallout which is dominated by wet deposition....

  3. Dose estimation due to 129I release by nuclear installations. Local and regional scales

    International Nuclear Information System (INIS)

    On a regional scale, doses related to 129I release in the environment were calculated by two methods: the specific activity method and the critical pathway or transfer chain method. The transfer chain method evaluates all the possible pathways of man environmental exposure and calculates 129I concentration in the various part of the food chain and the corresponding exposure. This method enables a more realistic dose estimation than the specific activity method. On a regional scale, the published estimations of 129I release impact are few and based on very different hypothesis, nevertheless the results obtained are relatively similar

  4. Determination of 129I/127I in aerosol samples in Seville (Spain)

    International Nuclear Information System (INIS)

    In this work we present results of the 129I/127I ratio in aerosols of Seville, Southwest of Spain (37.4 deg. N,6 deg. W). A radiochemical method is applied to extract the iodine from the aerosols and prepare samples to be measured by accelerator mass spectrometry (AMS) at the ETH facility in Zuerich. We have found the possibility of monitoring the 129I/127I isotopic ratio on a two-days basis with sensitivities in the order of 104-105 atoms 129I/m3, and values of 10-8-10-9 for the isotopic ratio

  5. Bronchial artery embolization: Clinical analysis of 129 cases

    International Nuclear Information System (INIS)

    Bronchial artery embolization is well-accepted and widely used for management of massive and recurrent hemoptysis. This may either provide a definite therapeutic measure or a stabilizing effect on the patient in preparation for surgery. Retrospectively we reviewed 129 cases(106 patients) of bronchial artery embolization with Gelfoam pudding and Ivalon for control of hemoptysis from July 1985 to January 1991. The causes of hemoptysis were pulmonary tuberculosis(80.2%), bronchiectasis(11.3%), aspergilloma(2.8%), and other (5.7%). The cases of pulmonary tuberculosis included tuberculous bronchiectasis(40.0%), active(34.1%), undetermined(14.1%) and inactive(11.8%). The results were as follows: Immediate control of hemoptysis was achieved in 104 of 122 cases(85.2%). Immediate control of massive hemoptysis was achieved in 94 of 107 cases(87.6%) and of chronic intermittent hemoptysis in 10 of 15 cases(76%). Hemoptysis recurred in 39 of 90 follow up cases(43.3%) on follow-up studies performed ranging in period from 2 to 49 month after the initial studies. Thirty three of 81 cases of massive hemoptysis recurred(40.7%) and six of 9 cases of chronic intermittent hemoptysis recurred(67.0%). One year rebleeding rate of massive hemoptysis was 34.6%. The rebleeding cases of massive hemoptysis were controlled by conservative treatment in 25 of 33 cases(75.8%). In conclusion, bronchial artery embolization for hemoptysis control is effective in massive hemoptysis, but nearly ineffective in chronic intermittent hemoptysis. The goal of bronchial artery embolization is life-saving procedure without permanent effect, especially hemoptysis related to pulmonary tuberculosis

  6. Selection of a form for fixation of iodine-129

    International Nuclear Information System (INIS)

    This report summarizes work on the selection of an 129I disposal form. Iodine compounds have been screened on the basis of solubilities, thermal stabilities, cost and availability, toxicity of the cation, and the thermodynamic resistance to oxidation and hydrolysis, and leaching of that compound in portland type III cement. Also considered were iodine capture technology, disposal criteria or guidelines, and the disposal site/strategy. The recommended iodine fixation forms, based on their leach resistance and chemical stability and contingent on the disposal strategy/site and capture technique, are silver iodide in cement and barium, calcium, or strontium, and mercuric iodates in cement. Iodine sodalite appears promising and merits further study. If compatible with disposal requirements, the recommended forms for Mercurex and Iodox are insoluble iodates in cement and for silver sorbents the sorbents in cement or AgI in cement. Conversion between the different oxidation states of iodine is feasible but complicates the iodine treatment. For the different disposal strategies, isotopic dilution or ocean disposal has the least stringent disposal form requirements. Any of the recommended forms should be suitable with proper site selection. Isolation in a geologic repository for thousands of years requires the disposal form to be thermally and chemically stable and resistant to leaching at elevated temperatures. Probably the best form studied for isolation is silver iodide in cement. For extraterrestrial disposal, the disposal form may have to withstand reentry impact and surface disposal in the event of an aborted mission; this assumes the capsule is not recovered. Thus the primary containment barrier is critical. The suggested iodine form for space disposal is a heavy metal iodide

  7. Force modulation atomic force microscopy: background, development and application to electrodeposited cerium oxide films

    Science.gov (United States)

    Li, Feng-Bin; Thompson, G. E.; Newman, R. C.

    1998-04-01

    In force modulation atomic force microscopy (FMAFM), vertical oscillation of the scanning tip of the AFM is added purposely and the deflection of the tip, which is influenced by surface features of the sample, is used as the z dimension to construct images. FMAFM represents a powerful technique for scientific research, but its merit has not been realized adequately to date. In this paper, the basic principles and particular features, as well as potential drawbacks of the technique, are presented and demonstrated systematically, through its application to electrochemically deposited cerium oxide films. Comparisons are also made with the more familiar contact mode AFM (CMAFM) and tapping mode AFM (TMAFM). It is shown that FMAFM reveals the major topographic features of CMAFM, but affords (i) greater resolution for sample features that are difficult in CMAFM, and (ii) continuous two-dimensional mapping of local mechanical properties on a scale of nanometres that the CMAFM, TMAFM and any other techniques, are not capable of sensing. This information can be used to elucidate other properties of the investigated surface, such as crystallinity variation, phase separation and distribution, and mechanisms of formation of deposited films. Major artifacts associated with the technique include `wedge cavity effect' and `tip slip effect', for which a geometric model is proposed to elucidate their origins. The cerium oxide films are shown to be composed of relatively hard crystalline grains, of well-defined individual geometry and comparatively regular packing, alongside relatively soft amorphous patches, devoid of distinct geometry and assembled disorderly. These features are consistent with a nucleation and growth mechanism of the deposition, in which crystalline nuclei arise and grow from an intermediate cerium gel mass, produced in the interfacial region during deposition.

  8. Microstructure and mechanical properties of the Al-Ti alloy with cerium addition

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-12-01

    Full Text Available Purpose: In this work there are presented the investigation results of mechanical properties and microstructure concerning mainly intermetallic phases of the aluminium – titanium alloy with a defined content of 2 and 4 % of cerium addition. The purpose of this work was also to determine the heat treatment conditions for solution heat treatment of the investigation alloys.Design/methodology/approach: The reason of this work was to determine the heat treatment influence, particularly solution heat treatment time to the changes of the microstructure, as well to determine which intermetallic phases occur after the heat treatment performed, and how is the morphology of these particles.Findings: After solution heat treatment for 4 hours the structure changes. The grains are larger and no more uniform as showed before. The most stable intermetallic in the Al-Ti system is the Al3Ti phase. The solution heat treatment time should be greater than 4 hours to ensure a proper solution of titanium and cerium in the Al-α solid solution.Research limitations/implications: The investigated aluminium samples were examined metallographically using optical microscope with different image techniques, scanning electron microscope and also analyzed using a Vickers micro-hardness tester, also EDS microanalysis was made.Practical implications: As an implication for the practice a new alloy can be developed, some other investigation should be performed in the future, but the knowledge found in this research shows an interesting investigation direction.Originality/value: The combination of light weight and high strength Ti-based alloys is very attractive for aerospace and automotive industries. Furthermore, the presence of calcium cerium into existence new unknown phases as well can enhance the thermal stability of ternary Al-Ti-Ce alloy because of its higher melting point then Al-Ti.

  9. High temperature stability of a 316 austenitic stainless steel coated with cerium oxide nanoparticles

    Science.gov (United States)

    Mendoza Del Angel, Humberto

    Cerium oxide (CeO2-x) nanoparticles were used for coating protection on a 316 Austenitic Stainless Steel (Aust. SS) to enhance the thermal stability of the oxide films formed at high temperatures. Three simple coating methods were used, dipping, spraying and spinning in order to explore the coating film morphology, nanoparticle distribution and its effect on thermal stability of the steel substrates. Experimentally, the selected steel was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. The cerium oxide nanoparticles used on the three methods were synthesized in the laboratory obtaining nanoparticles in the range of 3.5 to 6.2 nanometers. It was found that cerium oxide particle size is affected by temperature. In this case, the activation energy for particle growth was estimated to be around 21,1 kJ/mol. Characterization of the film morphologies before and after oxidation were carried out using Atomic Force Microscopy (AFM), Surface Profilometry, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). A comparison of the three coating methods was carried out for the particular case of the 316 Aust. SS coupons. In addition, the oxidation kinetics was experimentally investigated for the coated samples. For this purpose thermal gravimetric determinations were made at 800°C, 900°C, and 1000°C and oxidation rate constants were calculated at each temperature.

  10. The Electrodiffusion of Trace Elements in γ-Cerium, γ-Uranium and ϵ-Plutonium

    International Nuclear Information System (INIS)

    Measurements of solid state diffusion, in an electric field, of various metals in trace concentrations have been made using cerium, uranium and plutonium as solvent metals. An apparatus is described which permits sustained experiments in a controlled atmosphere under constant temperature conditions. Extensive data have been obtained in the case of cerium in the temperature range of 490 - 650°C at current densities from 250 to 500 A/cm2 and over times up to 240 hours. Data are presented for a dozen solute elements. In the case of some transition elements, notably iron, cobalt and nickel, the migration is quite rapid. The use of radioactive tracers, where possible, provided data for quantitative treatment of the results. Spectroscopic analysis provided additional information. Migration rates in uranium measured at 900°C were lower and reduced even more in plutonium at 500°C. However, it was still possible to measure a rate of electrodiffusion of iron. No movement was detected for antimony, magnesium, manganese, silicon or zirconium. With the exception of molybdenum and tin, the metals studied migrated towards the anode. Electrodiffusion presumably results from the net effect of the electric field acting on the ions and from momentum interchange between the ions and conduction electrons. The two effects may thus oppose or reinforce each other. It is felt that the field effect is greater in the cases studied. The tendency of the solute element to form a compound with the solvent metal is one measure of whether migration is to be expected. It is also shown that a relative size effect is important. An interesting aspect of the electrodiffusion of iron in cerium is the very low (∼2 kcal) activation energy. Some comparisons have been made with chemical gradient diffusion. (author)

  11. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Subbaramaiah, V. [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Mall, Indra Deo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India)

    2013-03-15

    Highlights: ► Cerium supported SBA-15 (Ce/SBA-15) synthesized by two-step synthesis. ► Characterization of Ce/SBA-15 by FTIR, XRD and BET surface area. ► Catalytic peroxidation of pyridine by Ce/SBA-15. ► Optimization of parameters like catalyst dose, H{sub 2}O{sub 2} dose, initial concentration and temperature. ► Catalyst reusability and leaching study performed. -- Abstract: Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N{sub 2} adsorption–desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter ≈ 70–100 A and pore volume ≈ 0.025 cm{sup 3}/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5–6 g/l), stoichiometric ratio of H{sub 2}O{sub 2}/pyridine (1–6), initial pyridine concentration (50–800 mg/l) and temperature (313–358 K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  12. Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: Equilibrium, kinetic, and thermodynamic studies

    OpenAIRE

    Torab-Mostaedi Meisam

    2013-01-01

    Biosorption of lanthanum (III) and cerium (III) from aqueous solution by tangerine (Citrus reticulate) peel has been investigated in a batch system as a function of pH, biosorbent dosage, contact time, and temperature. The equilibrium pH was found to severely affect the biosorption performance; pH 5.0 is found to be an optimum pH for favorable biosorption of La (III) and Ce (III). The biosorption of lanthanum and cerium was investigated by the Langmuir, Freundlich and Dubinin-Radushkevi...

  13. Changes in Physiological and Agronomical Parameters of Barley (Hordeum vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles

    OpenAIRE

    Luca Marchiol; Alessandro Mattiello; Filip Pošćić; Guido Fellet; Costanza Zavalloni; Elvio Carlino; Rita Musetti

    2016-01-01

    The aims of our experiment were to evaluate the uptake and translocation of cerium and titanium oxide nanoparticles and to verify their effects on the growth cycle of barley (Hordeum vulgare L.). Barley plants were grown to physiological maturity in soil enriched with either 0, 500 or 1000 mg·kg−1 cerium oxide nanoparticles (nCeO2) or titanium oxide nanoparticles (nTiO2) and their combination. The growth cycle of nCeO2 and nTiO2 treated plants was about 10 days longer than the controls. In nC...

  14. Improvement of corrosion resistance of AZ31 Mg alloy by anodizing with co-precipitation of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    Salah Abdelghany SALMAN; Ryoichi ICHINO; Masazumi OKIDO

    2009-01-01

    Anodizing of AZ31 Mg alloy in NaOH solution by co-precipitation of cerium oxide was investigated. The chemical composition and phase structure of the coating film were determined via optical microscopy, SEM and XRD. The corrosion properties of the anodic film were characterized by using potentiodynamic polarization curves in 17 mmol/L NaCl and 0.1 mol/L Na2SO4 solution at 298 K. The corrosion resistance of AZ31 magnesium alloy is significantly improved by adding cerium oxide to alkaline solution. In addition, the surface properties are enhanced and the film contains no crack.

  15. In situ growth of blue-emitting thin films of cerium-doped barium chloride hydrate at low temperatures

    OpenAIRE

    J. Hao; LOU, Z; Cocivera, M

    2003-01-01

    Blue emission was observed from thin films of barium chloride hydrate doped with cerium. The films were deposited by spray pyrolysis of aqueous solutions with substrate temperatures between 250 and 450°C. The cathodoluminescence (CL) spectrum consists of two peaks at 443 and 485 nm due to 4f-5d transitions of cerium ion. The dependence of the emission band on deposition temperature and Ce/Ba ratio is discussed. The CL luminance and luminous efficiency at 5 kV were 120 cd/m² and 0.48 lm/W, res...

  16. Iranian natural clinoptilolite and its synthetic zeolite P for removal of cerium and thorium from nuclear wastewaters

    International Nuclear Information System (INIS)

    The ion-exchange behaviors of an Iranian natural clinoptilolite and its modified forms as well as a relevant synthetic zeolite P were investigated toward cerium and thorium from nuclear wastewaters. Column experiments were performed on different exchangers in various conditions and the effect of parameters such as particle size, pH, temperature, and time were considered. The distribution coefficient, cation exchange capacity and some thermodynamic parameters were calculated. Ion-exchange isotherms and break-through curves were plotted. As a result, the selectivity of synthetic zeolite P from Iranian natural clinoptilolite toward cerium and thorium was compared with that of natural and cationic forms of clinoptilolite. (author)

  17. APPLICATIONS OF CERIUM BIS (MONOMYRISTY—LPHOSPHATE)ADSORBENT TO REVERSED PHASE LIQUID CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    SuZhengquan; FengHuixia; 等

    1996-01-01

    The tetravalent metal salts of monoalkyl phosphates [M(O3POR)2]are a new kind of stationary phases of Chromatography-homogeneous bonded phases.This paper deals with the application of cerium bis(monomyristylphosphate)as support to reversed phase liquid chromatography.The results show that the best mobil phase is CH3CN:H2O=95:5.The good separation to the mixture containing six aromatic hydrocarbons and the determination of naphthalene in a group samples have been achieved.The regression analysis shows that detect limits,linearities and precision for six aromatic hydrocarbons are good.

  18. Characteristics of cerium-gadolinium oxide (CGO) suspensions as a function of dispersant and powder properties

    DEFF Research Database (Denmark)

    Phair, John; Lönnroth, Nadja; Lundberg, Mats;

    2009-01-01

    A series of concentrated suspensions ( = 0.18–0.34) of cerium-gadolinium oxide (CGO) in terpineol were prepared as a function of dispersant, powder surface area and solids concentration. The stability of the suspensions was assessed by rheological measurements including viscosity and oscillatory...... measurements. Six dispersants with different molecular weights and terminal groups were compared for their relative efficiency in dispersing the powders by viscosity measurements. A Rhodafac dispersant, a long chain polymer containing phosphoric acid terminal groups, was found to produce suspensions with the...

  19. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    International Nuclear Information System (INIS)

    Kinetics of bromide catalysed oxidation of dextrose by CeIV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO4-] or [SO42-] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  20. Trace electrochemical analysis of Europium, Ytterbium, and Cerium at their joint presence in solution

    Directory of Open Access Journals (Sweden)

    Rema Matakova

    2012-03-01

    Full Text Available In the course of several decades at the department of analytical chemistry and chemistry of rare elements there were studied the electrode processes with participation of rare-earth metals (REM in accordance with the long awaiting problem of the development of rare-metal and rare-earth branch of non-ferrous metallurgy of Kazakhstan. With the aim of express and highly sensitive analytical control of raw materials and final product of rare-earth industry there were developed the methods of inversion-voltamperometric determination of low concentrations of europium, ytterbium and cerium under the conditions of their individual and combined presence in the solution.